Distinguishing finite and infinite graphs

- with special emphasis on Cartesian products -

Wilfried Imrich
Chair of Applied Mathematics
Montanuniversität Leoben, Austria

Presentation of joint work with J. Jerebic, S. Klavžar, W. Klöckl and
V. Trofimov

Workshop on Discrete Mathematics
Vienna, Austria, November 19 -22, 2006

Contents

1. The distinguishing number and finite hypercubes
2. Distinguishing the infinite hypercube
3. Distinguishing products of two complete graphs
4. A recursion for the distinguishing number of $K_{k} \square K_{n}$
5. Infinite trees and tree-like graphs
6. General countable graphs

1. The distinguishing number

$D(G)$ of a graph G is the least natural number d such that G has a labeling with $D(G)$ labels that is not preserved by any nontrivial automorphism:

$$
D\left(P_{n}\right)=2 \text { for } n>1
$$

$D\left(P_{\infty}\right)=1$

$$
D\left(T_{2}\right)=2
$$

$$
D\left(K_{3} \square K_{2}\right)=2
$$

Proposition The automorphisms of a Cartesian product of prime graphs are induced by automorphisms of the factors and permutations of isomorphic factors.

The Cartesian product $G \square H$

$$
V(G \square H)=V(G) \times V(H),
$$

$E(G \square H)$ that is the set of all pairs [(u,v), (x,y)]
where either $u=x$ and $[v, y] \in E(H)$ or $[u, x] \in E(G)$ and $v=y$

Bogstad and Cowen, 2004, determined $D\left(Q_{k}\right)$:
$D\left(Q_{2}\right)=D\left(Q_{3}\right)=3$; the figure shows $D\left(Q_{3}\right) \leq 3$

$D\left(Q_{k}\right)=2$ for $k \geq 4$

We needed $k+2$ black vertices for the distinguishing coloring. One can do with k for $k \geq 7$:

Thus, one needs fewer than k black vertices to distinguish Q_{k}. How many suffice?

Let B be a smallest set of distinguishing black vertices. Any automorphism that stabilizes it is the identity. Clearly $|B| \leq k$.

What is we look for a smallest set S such that every automorphism α that fixes every element in S is the identity. It is plausible that S can be as small as $\log k$ for Q_{k}.

But, since S is so small, we $d_{G}(u, v) \neq d_{G}(x, y)$ unless $\{u, v\}=\{x, y\}$. But then every automorphism that stabilizes S also fixes every vertex, and thus is the identity.

Theorem (Debra Boutin) Let B be a smallest set of black vertices that distinguishes Q_{k}. If $k \geq 5$, then

$$
\left\lceil\log _{2} k\right\rceil+1 \leq|B| \leq 2\left\lceil\log _{2} k\right\rceil-1
$$

Suppose $\alpha B=\beta B$.

Then $\beta^{-1} \alpha B=B$. Hence $\beta^{-1} \alpha=i d$ and $\alpha=\beta$.

This means, if we wish to check whether α and β are the same, we have to check whether $\alpha B=\beta B$, where B has size

$$
<2 \log _{2} k
$$

Boutin's proof uses a tedious construction. She also can probably prove that

$$
\left\lceil\log _{3}(2 k+1)\right\rceil+1 \leq|B| \leq 2\left\lceil\log _{3}(2 k+1)\right\rceil-1
$$

for K_{3}^{k}.

Can one prove a general theorem for K_{n}^{k} by probabilistic methods?

2. Distinguishing the infinite hypercube

- mainly with Werner Klöckl -

The vertices of the infinite hypercube $Q_{\aleph_{0}}$ are the infinite 01-sequences; any two of them being adjacent if they differ in exactly one place.
$Q_{\aleph_{0}}$ is a component of the Cartesian product of \aleph_{0} copies of K_{2}, the so-called weak Cartesian product.

Theorem $D\left(Q_{\aleph_{0}}\right)=2$.

Proof. Let P be a one-sided infinite path that contains exactly one edge of every set of parallel edges of $Q_{\aleph_{0}}$. Color its vertices black and all others white. This is a distinguishing coloring.

Corollary Let G be the weak Cartesian product of \aleph_{0} complete graphs K_{2} or K_{3}. Then $D(G)=2$.

Proof. A triangle is fixed if two of its vertices are fixed.
Choose the edges of P such that it contains exactly one edge of every set of parallel edges for every factor K_{2} and one edge of every set of parallel triangles (K_{3}-fibers) for every factor K_{3}.

This construction also works for the Cartesian product of finitely many $K_{2}-\mathrm{s}$ and $K_{3}-\mathrm{s}$ if there is at least factor is a K_{2} and one a K_{3}.

Then P is a finite path.
We choose its first edge from a triangle and the last such that it is not in a triangle.

Theorem Let G be the weak Cartesian product of countably many finite or countable prime (e.g. complete) graphs. Then $D(G)=2$.

Remark: To any two natural numbers k, n one can always find k finite complete graphs $K_{i}, 1 \leq i \leq k$ such that

$$
D\left(\prod_{1 \leq i \leq k}^{\square} K_{i}\right)>n .
$$

Up to now all graphs were countable. Now a result for an uncountable graph.

Theorem For any infinite cardinal \mathfrak{n} the distinguishing number of $Q_{\mathfrak{n}}$ is 2 .

Proof by transfinite induction.
3. Distinguishing products of two complete graphs

- with Janja Jerebic and Sandi Klavžar -

\mathbb{N}_{d}^{k} - set of vectors of length k with integer entries between 1 and d (Here $k=3$ and $d=2 ; D\left(K_{4} \square K_{2^{4}-4+1}\right)=2$.)

Let $\pi \in S_{k}$ and $\mathbf{v}=\left(v_{1}, \ldots, v_{k}\right) \in \mathbb{N}_{d}^{k}$. Set $\pi \mathbf{v}=\left(v_{\pi^{-1}(1)}, \ldots, v_{\pi^{-1}(k)}\right)$
We say $X=\left\{\mathbf{v}^{1}, \ldots, \mathbf{v}^{r}\right\}$ is column-invariant if $\exists \pi \in S_{k}$ such that

$$
\left\{\mathbf{v}^{1}, \ldots, \mathbf{v}^{r}\right\}=\left\{\pi \mathbf{v}^{1}, \ldots, \pi \mathbf{v}^{r}\right\}
$$

For example, the following vectors are column-invariant:

Lemma (Switching Lemma) Let $k, d \geq 2$ and $1 \leq r<d^{k}$. Then every set of r vectors from \mathbb{N}_{d}^{k} is column invariant
if and only if
every set of $d^{k}-r$ vectors from \mathbb{N}_{d}^{k} is column invariant.
Theorem (Basic) Let $2 \leq d, k<n$ and $(d-1)^{k}<n \leq d^{k}-k+1$.
Then

$$
D\left(K_{k} \square K_{n}\right)=d
$$

Theorem (Bounding) Let $k, d \geq 2$ and $1 \leq r \leq k-2$. Then the following implications hold

$$
\begin{aligned}
D\left(K_{r} \square K_{k}\right) \geq d+1 & \Rightarrow D\left(K_{k} \square K_{d^{k}-r}\right)=d+1 \\
D\left(K_{r} \square K_{k}\right) \leq d & \Rightarrow D\left(K_{k} \square K_{d^{k}-r}\right)=d .
\end{aligned}
$$

Thus $\quad d \leq D\left(K_{k} \square K_{n}\right) \leq d+1 \quad$ for $\quad d=\left\lceil n^{1 / k}\right\rceil$.
4. A recursion for the distinguishing number of $K_{k} \square K_{n}$

- mainly with Janja Jerebic and Sandi Klavžar -

Distinguishing (k, n)
INPUT: Integers k, n with $1 \leq k \leq n$
OUTPUT: $D\left(K_{k} \square K_{n}\right)$

1. $\quad d=\left\lfloor n^{1 / k}\right\rfloor+1$
2. if $(d-1)^{k} \leq n \leq d^{k}-k+1$
3. then $D\left(K_{k} \square K_{n}\right)=d$
4. else determine $D\left(K_{k} \square K_{n}\right)$ from $D\left(K_{d^{k}-n} \square K_{k}\right)$ by an application of the Bounding Theorem

Analysis of the recursion

Step 3 returns the distinguishing number Step 4, is executed only if $d^{k}-k+1<n$. Since $d \geq 2$

$$
\begin{aligned}
2^{k}-k+1 & <n \\
2^{k} & <2 n \\
k-1 & <\log _{2} n
\end{aligned}
$$

Hence $d^{k}-n<k-1<\log _{2} n$.
We must thus consider $K_{k_{1}} \square K_{k}$, where $k_{1}=d^{k}-n<\log _{2} n$.
If Distinguishing $\left(k_{1}, k\right)$ also enters the recursive step, then with a call of Distinguishing $\left(k_{2}, k_{1}\right)$, where $k_{2}<\log _{2} k$.
Since $k_{i} \geq 1$ the number of recursive steps is bounded by the iterated logarithm $\log _{2}^{*} n$.
$\log _{2}^{*} 2=1, \log _{2}^{*} 4=2, \log _{2}^{*} 16=3, \log _{2}^{*} 65536=4, \log _{2}^{*}\left(2^{65536}\right)=5$.
Theorem (Finite $K_{k} \square K_{n}$) The distinguishing number $D\left(K_{k} \square K_{n}\right)$ of the product of two complete graphs K_{k} and K_{n}, where $1 \leq k \leq n$, can be determined in $O\left(\mathrm{log}^{*} n\right)$ time.

Here any finite number d is the distinguishing number of some product of complete graphs. In the infinite case we have:

Theorem (Infinite $K_{\mathfrak{n}} \square K_{\mathfrak{m}}$) For infinite cardinals \mathfrak{n} we have:

$$
\begin{aligned}
& D\left(K_{\mathfrak{n}} \square K_{2^{\mathfrak{n}}}\right)=2 . \\
& \text { If } 2^{\mathfrak{n}}<\mathfrak{m}, \text { then } D\left(K_{\mathfrak{n}} \square K_{\mathfrak{m}}\right)>\mathfrak{n} .
\end{aligned}
$$

If the generalized continuum hypothesis does not hold, then there are cardinals

$$
\mathfrak{n} \text { and } \mathfrak{m}
$$

such that

$$
\mathfrak{n}<\mathfrak{m}<2^{\mathfrak{n}}
$$

We do not know whether $D\left(K_{\mathfrak{n}} \square K_{\mathfrak{m}}\right)=2$ in this case.

We only prove $D\left(K_{\aleph_{0}} \square K_{\aleph_{0}}\right)=2$.
To see this one simply labels as in the figure.

To show $D\left(K_{\mathfrak{n}} \square K_{\mathfrak{n}}\right)=2$ for arbitrary \mathfrak{n} one well-orders the vertices of the factors and proceeds by transfinite induction.

For $D\left(K_{\mathfrak{n}} \square K_{\mathfrak{m}}\right)$ the Switching Lemma is needed.

5. Infinite trees and tree-like graphs

 - with Sandi Klavžar and Vladimir Trofimov -Theorem The distinguishing number of the homogeneous tree $T_{\mathfrak{n}}$ of finite or infinite degree \mathfrak{n} is 2.

Proof for $\mathfrak{n}=4$

Proof for $\mathfrak{n}=\aleph_{0}$

Theorem Let Γ be a connected graph with $d(v) \leq 2^{\aleph_{0}} \quad \forall v \in V(\Gamma)$. Suppose there is a vertex x in Γ with the following property:
$\forall y \in V(\Gamma) \exists z \in V(\Gamma)$ such that $\{y\}=\Gamma(z) \cap B_{x}(d(x, z)-1)$.
Then $D(\Gamma) \leq 2$.

6. General countable graphs

- with Sandi Klavžar and Vladimir Trofimov -

Theorem Let G be a connected, infinite graph with largest degree $\Delta(G)<\infty$. Then $D(G) \leq \Delta(G)$.

In the finite case the bound is $\Delta(G)+1$.

Theorem The distinguishing number of the random graph is 2.

Property of the random graph R : For any finite disjoint subsets X and Y of $V(R)$, there are infinitely many vertices z of R such that

$$
\begin{gathered}
z x \in E(R) \text { for all } x \in X \text { and } \\
z y \notin E(R) \text { for all } y \in Y .
\end{gathered}
$$

7. Appendix - Exact formulas and examples for finite graphs

- with Janja Jerebic and Sandi Klavžar -

Theorem (Basis for explicit results) Let $k, d \geq 2,1 \leq r \leq k-2$. Then $D\left(K_{k} \square K_{d^{k}-r}\right)=d+1$ if and only if every set consisting of r vectors from \mathbb{N}_{d}^{k} is column-invariant.

Proof. If every set of r vectors from \mathbb{N}_{d}^{k} is column-invariant, then $D\left(K_{k} \square K_{r}\right) \geq d+1$, and thus $D\left(K_{k} \square K_{d^{k}-r}\right)=d+1$ by (i) of the Bounding Theorem.

If there is a set of r vectors from \mathbb{N}_{d}^{k} that is not column-invariant, then $D\left(K_{k} \square K_{r}\right) \leq d$, and thus $D\left(K_{k} \square K_{d^{k}-r}\right) \neq d+1$
by (ii) of the Bounding Theorem.

Proposition 4.2 Let $d \geq 2,3 \leq k \leq d$. Then

$$
D\left(K_{k} \square K_{d^{k}-1}\right)=d .
$$

Proposition 4.3 Let $k, d \geq 2$ and $0 \leq r<\log _{d} k$. Then

$$
D\left(K_{k} \square K_{d^{k}-r}\right)=d+1 .
$$

Proposition 4.4 Let $d, r \geq 2$ and $r+2 \leq k \leq d^{r}-r+1$. Then

$$
D\left(K_{k} \square K_{d^{k}-r}\right)=d .
$$

Proposition 4.5 Let $d, r \geq 2$ and $d^{r}-\log _{d} r<k \leq d^{r}$. Then

$$
D\left(K_{k} \square K_{d^{k}-r}\right)=d+1 .
$$

The rare case when the recursion applies (white field) for $2^{k}<n \leq 3^{k}$

(Theorem 3.3 is the Basic Theorem)

Summary for $D\left(K_{k} \square K_{n}\right)$

$$
D\left(K_{k} \square K_{n}\right) \text { satisfies the inequality }
$$

$$
\begin{gathered}
\qquad d \leq D\left(K_{k} \square K_{n}\right) \leq d+1 \\
\text { where } d=\left\lceil n^{1 / k}\right\rceil \text { and } 1 \leq k \leq n
\end{gathered}
$$

It can be determined explicitly unless

$$
d^{r}-r+2 \leq k \leq d^{r}-\log _{d} r
$$

Then it can be computed by at most $\log _{2}^{*} n$ calls of a recursion.

Can one replace the recursion by an explicit formula?

