Maximum weight of a connected graph of given order and size

Mirko Horňák
(joint with S. Jendrol' and I. Schiermeyer)

Institute of Mathematics

P.J. Šafárik University Košice

Workshop on Discrete Mathematics
Vienna, November 22, 2008

G a graph (simple, finite, undirected)
weight of edge $e=x y \in E(G) \quad w_{G}(e):=\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)$ weight of G
$w(G):=\min \left(w_{G}(e): e \in E(G)\right)$
G a graph (simple, finite, undirected)
weight of edge $e=x y \in E(G) \quad w_{G}(e):=\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)$ weight of G $w(G):=\min \left(w_{G}(e): e \in E(G)\right)$

$$
\begin{aligned}
w(G) & =5 \\
|V(G)| & =8 \\
|E(G)| & =11
\end{aligned}
$$

G a graph (simple, finite, undirected)
weight of edge $e=x y \in E(G) \quad w_{G}(e):=\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)$ weight of G $w(G):=\min \left(w_{G}(e): e \in E(G)\right)$

$$
\begin{aligned}
w(G) & =5 \\
|V(G)| & =8 \\
|E(G)| & =11
\end{aligned}
$$

$n \in \mathbb{Z}, n \geq 2, m \in\left\{1, \ldots,\binom{n}{2}\right\}, \mathcal{P}$ a graph property
$\mathcal{P}(n, m):=\{G \in \mathcal{P}:|V(G)|=n,|E(G)|=m\} \neq \emptyset$
$w(n, m, \mathcal{P}):=\max (w(G): G \in \mathcal{P}(n, m))$
G a graph (simple, finite, undirected)
weight of edge $e=x y \in E(G) \quad w_{G}(e):=\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)$ weight of G $w(G):=\min \left(w_{G}(e): e \in E(G)\right)$

$$
\begin{aligned}
w(G) & =5 \\
|V(G)| & =8 \\
|E(G)| & =11
\end{aligned}
$$

$n \in \mathbb{Z}, n \geq 2, m \in\left\{1, \ldots,\binom{n}{2}\right\}, \mathcal{P}$ a graph property
$\mathcal{P}(n, m):=\{G \in \mathcal{P}:|V(G)|=n,|E(G)|=m\} \neq \emptyset$
$w(n, m, \mathcal{P}):=\max (w(G): G \in \mathcal{P}(n, m))$
\mathcal{I} "to be a graph" $\rightarrow w(8,11, \mathcal{I}) \geq 5$

Problem (Erdős 1990)

Given n and m determine $w(n, m, \mathcal{I})$.

Problem (Erdős 1990)

Given n and m determine $w(n, m, \mathcal{I})$.

Theorem (Ivančo, Jendrol' 1991)

Let $a=\left\lceil\frac{1}{2}(1+\sqrt{1+8 m})\right\rceil$ and $b=\frac{1}{2}\left(a^{2}-a-2 m\right)$, let $h=\left\lceil\frac{1}{2}\left(2 n-1-\sqrt{(2 n-1)^{2}-8 m}\right)\right\rceil$ and let $p, k \in \mathbb{Z}$ be such that $h k+p=m, h+k \leq n$ and $h(h-3)<2 p \leq h(h-1)$. Let $f(n, m)=h+k+\left\lfloor\frac{2 p}{h}\right\rfloor$ and let $g(n, m)$ be defined by

$$
g(n, m)=\left\{\begin{array}{l}
2 a-2 \text { if } b=0 \\
2 a-3 \text { if } b=1 ; \\
2 a-4 \text { if } 2 \leq b \leq\left\lfloor\frac{a}{2}\right\rfloor \text { or } b=3 ; \\
2 a-5 \text { if }\left\lfloor\frac{a}{2}\right\rfloor<b \leq\left\lceil\frac{a+2}{2}\right\rceil \text { or } a=8 \text { and } b=6 \\
2 a-6 \text { in all other cases. }
\end{array}\right.
$$

Then $w(n, m, \mathcal{I}) \geq \max (f(n, m), g(n, m))$.

Ivančo, Jendrol' 1991: $w(n, m, \mathcal{I})$ for $m \in\left\{\binom{n}{2}-n+2, \ldots,\binom{n}{2}\right\}$
Conjecture
$w(n, m, \mathcal{I})=\max (f(n, m), g(n, m))$ for all pairs ($n, m)$.

Ivančo, Jendrol' 1991: $w(n, m, \mathcal{I})$ for $m \in\left\{\binom{n}{2}-n+2, \ldots,\binom{n}{2}\right\}$
Conjecture
$w(n, m, \mathcal{I})=\max (f(n, m), g(n, m))$ for all pairs ($n, m)$.
Conjecture \rightarrow Theorem (Jendrol', Schiermeyer 2001)

Ivančo, Jendrol' 1991: $w(n, m, \mathcal{I})$ for $m \in\left\{\binom{n}{2}-n+2, \ldots,\binom{n}{2}\right\}$

Conjecture

$w(n, m, \mathcal{I})=\max (f(n, m), g(n, m))$ for all pairs ($n, m)$.
Conjecture \rightarrow Theorem (Jendrol', Schiermeyer 2001)
\mathcal{B} "to be a bipartite graph"
Theorem (H, Jendrol', Schiermeyer)
Let $n \in \mathbb{Z}, n \geq 2, m \in\left\{1, \ldots,\left\lfloor\frac{n^{2}}{4}\right\rfloor\right\}, a^{*}=\left\lceil\frac{n-\sqrt{n^{2}-4 m}}{2}\right\rceil$, $b^{*}=\left\lceil\frac{m}{a^{*}}\right\rceil$ and $s^{*}=a^{*} b^{*}-m$. Then
(1) $a^{*}+b^{*} \leq w(n, m, \mathcal{B}) \leq a^{*}+b^{*}+1$;
(2) $w(n, m, \mathcal{B})=a^{*}+b^{*}$ for $s^{*}=0,1$;
(3) if $w(n, m, \mathcal{B})=a^{*}+b^{*}+1$, there exists $k \in \mathbb{Z}$ with $\left(a^{*}+k\right)\left(b^{*}-k-1\right)=m$.

Fact

If $\mathcal{P}_{1} \subseteq \mathcal{P}_{2}$, then $w\left(n, m, \mathcal{P}_{1}\right) \leq w\left(n, m, \mathcal{P}_{2}\right)$. Moreover, if $w\left(n, m, \mathcal{P}_{1}\right) \geq w$ and $w\left(n, m, \mathcal{P}_{2}\right) \leq w$, then $w(n, m, \mathcal{P})=w$ for any \mathcal{P} with $\mathcal{P}_{1} \subseteq \mathcal{P} \subseteq \mathcal{P}_{2}$.

Sparse graphs

Fact

If $\mathcal{P}_{1} \subseteq \mathcal{P}_{2}$, then $w\left(n, m, \mathcal{P}_{1}\right) \leq w\left(n, m, \mathcal{P}_{2}\right)$. Moreover, if $w\left(n, m, \mathcal{P}_{1}\right) \geq w$ and $w\left(n, m, \mathcal{P}_{2}\right) \leq w$, then $w(n, m, \mathcal{P})=w$ for any \mathcal{P} with $\mathcal{P}_{1} \subseteq \mathcal{P} \subseteq \mathcal{P}_{2}$.
$\mathcal{C}:=\{G: G$ is connected, $|V(G)| \geq 2\} \subseteq \mathcal{D}_{1+}:=\{G: \delta(G) \geq 1\}$

Fact

If $\mathcal{P}_{1} \subseteq \mathcal{P}_{2}$, then $w\left(n, m, \mathcal{P}_{1}\right) \leq w\left(n, m, \mathcal{P}_{2}\right)$. Moreover, if $w\left(n, m, \mathcal{P}_{1}\right) \geq w$ and $w\left(n, m, \mathcal{P}_{2}\right) \leq w$, then $w(n, m, \mathcal{P})=w$ for any \mathcal{P} with $\mathcal{P}_{1} \subseteq \mathcal{P} \subseteq \mathcal{P}_{2}$.
$\mathcal{C}:=\{G: G$ is connected, $|V(G)| \geq 2\} \subseteq \mathcal{D}_{1+}:=\{G: \delta(G) \geq 1\}$
G sparse $\ldots|E(G)|=m \leq\binom{ n}{2}-\binom{[n / 2\rceil}{ 2} \leq \frac{3 n^{2}-4 n+1}{8}$
optimum for $w(n, m, \mathcal{C})$: a subgraph of $G_{n, k}:=D_{k} \oplus K_{n-k}$ (join) $D_{k}=\overline{K_{k}} \ldots$ discrete graph on k vertices $\quad\left|E\left(G_{n, k}\right)\right|=\binom{n}{2}-\binom{k}{2}$

Sparse graphs

Fact

If $\mathcal{P}_{1} \subseteq \mathcal{P}_{2}$, then $w\left(n, m, \mathcal{P}_{1}\right) \leq w\left(n, m, \mathcal{P}_{2}\right)$. Moreover, if $w\left(n, m, \mathcal{P}_{1}\right) \geq w$ and $w\left(n, m, \mathcal{P}_{2}\right) \leq w$, then $w(n, m, \mathcal{P})=w$ for any \mathcal{P} with $\mathcal{P}_{1} \subseteq \mathcal{P} \subseteq \mathcal{P}_{2}$.
$\mathcal{C}:=\{G: G$ is connected, $|V(G)| \geq 2\} \subseteq \mathcal{D}_{1+}:=\{G: \delta(G) \geq 1\}$
G sparse $\ldots|E(G)|=m \leq\binom{ n}{2}-\binom{[n / 2\rceil}{ 2} \leq \frac{3 n^{2}-4 n+1}{8}$
optimum for $w(n, m, \mathcal{C})$: a subgraph of $G_{n, k}:=D_{k} \oplus K_{n-k}$ (join) $D_{k}=\overline{K_{k}} \ldots$ discrete graph on k vertices $\quad\left|E\left(G_{n, k}\right)\right|=\binom{n}{2}-\binom{k}{2}$
$\binom{n}{2}-\binom{k+1}{2}<m \leq\binom{ n}{2}-\binom{k}{2} \quad m^{\prime}:=\binom{n}{2}-\binom{k}{2}-m \leq k-1$ $m^{\prime} \ldots$ the number of edges to be deleted from $G_{n, k}$
$0 \leq r:=\left\lceil\frac{m^{\prime}}{n-k}\right\rceil \quad \exists$ a vertex in $V\left(K_{n-k}\right)$ with $\geq r$ edges deleted
$c:= \begin{cases}1, & 0 \leq m^{\prime} \leq\left\lfloor\frac{n-k}{2}\right\rfloor \text { or } m^{\prime}=(n-k-1)^{2} \\ 2, & \text { otherwise }\end{cases}$

Theorem

If $n \geq 49$, $m \in\left\{n-1, \ldots,\binom{n}{2}-\binom{[n / 2\rceil}{ 2}\right\}, \mathcal{C} \subseteq \mathcal{P} \subseteq \mathcal{D}_{1+}$ and integers k, m^{\prime}, r, c are defined as before, then $w(n, m, \mathcal{P})=2 n-k-r-c$.

Theorem

If $n \geq 49, m \in\left\{n-1, \ldots,\binom{n}{2}-\binom{\lceil n / 2\rceil}{ 2}\right\}, \mathcal{C} \subseteq \mathcal{P} \subseteq \mathcal{D}_{1+}$ and integers k, m^{\prime}, r, c are defined as before, then $w(n, m, \mathcal{P})=2 n-k-r-c$.
$w(n, m, \mathcal{C}) \geq 2 n-k-r-c$ by constructions
$V\left(D_{k}\right)=A=\left\{a_{1}, \ldots, a_{k}\right\}, V\left(K_{n-k}\right)=B=\left\{b_{1}, \ldots, b_{n-k}\right\}$

Theorem

If $n \geq 49, m \in\left\{n-1, \ldots,\binom{n}{2}-\binom{\lceil n / 2\rceil}{ 2}\right\}, \mathcal{C} \subseteq \mathcal{P} \subseteq \mathcal{D}_{1+}$ and integers k, m^{\prime}, r, c are defined as before, then $w(n, m, \mathcal{P})=2 n-k-r-c$.
$w(n, m, \mathcal{C}) \geq 2 n-k-r-c$ by constructions
$V\left(D_{k}\right)=A=\left\{a_{1}, \ldots, a_{k}\right\}, V\left(K_{n-k}\right)=B=\left\{b_{1}, \ldots, b_{n-k}\right\}$
$m^{\prime} \leq\left\lfloor\frac{n-k}{2}\right\rfloor \Rightarrow 0 \leq r \leq 1, c=1$
M^{\prime} a matching of size m^{\prime} in $G_{n, k}\langle B\rangle$ with $M^{\prime} \neq \emptyset \Rightarrow b_{1} \in V\left(M^{\prime}\right)$
$G_{n, k}-M^{\prime} \in \mathcal{C}(n, m)$ degrees in $A: n-k \quad B: n-1-r \rightarrow n-1$
$w\left(G_{n, k}-M^{\prime}\right)=w\left(a_{1} b_{1}\right)=(n-k)+(n-1-r)=2 n-k-r-c$

Sparse graphs (continued)

Theorem

If $n \geq 49, m \in\left\{n-1, \ldots,\binom{n}{2}-\binom{\lceil n / 2\rceil}{ 2}\right\}, \mathcal{C} \subseteq \mathcal{P} \subseteq \mathcal{D}_{1+}$
and integers k, m^{\prime}, r, c are defined as before, then
$w(n, m, \mathcal{P})=2 n-k-r-c$.
$w(n, m, \mathcal{C}) \geq 2 n-k-r-c$ by constructions
$V\left(D_{k}\right)=A=\left\{a_{1}, \ldots, a_{k}\right\}, V\left(K_{n-k}\right)=B=\left\{b_{1}, \ldots, b_{n-k}\right\}$
$m^{\prime} \leq\left\lfloor\frac{n-k}{2}\right\rfloor \Rightarrow 0 \leq r \leq 1, c=1$
M^{\prime} a matching of size m^{\prime} in $G_{n, k}\langle B\rangle$ with $M^{\prime} \neq \emptyset \Rightarrow b_{1} \in V\left(M^{\prime}\right)$ $G_{n, k}-M^{\prime} \in \mathcal{C}(n, m)$ degrees in $A: n-k \quad B: n-1-r \rightarrow n-1$ $w\left(G_{n, k}-M^{\prime}\right)=w\left(a_{1} b_{1}\right)=(n-k)+(n-1-r)=2 n-k-r-c$

optimum graph G with parameters $n=7, m=14, k=4, m^{\prime}=1$, $r=1, c=1, w(G)=7$

Sparse constructions

$$
\begin{aligned}
& \left\lfloor\frac{n-k}{2}\right\rfloor<m^{\prime} \leq k-1, m^{\prime} \neq(n-k-1)^{2} \Rightarrow c=2 \\
& E_{m^{\prime}}:=\left\{a_{i} b_{i}: i=1, \ldots, m^{\prime}\right\} \quad \text { indices modulo } n-k \leq k
\end{aligned}
$$

$\left\lfloor\frac{n-k}{2}\right\rfloor<m^{\prime} \leq k-1, m^{\prime} \neq(n-k-1)^{2} \Rightarrow c=2$
$E_{m^{\prime}}:=\left\{a_{i} b_{i}: i=1, \ldots, m^{\prime}\right\} \quad$ indices modulo $n-k \leq k$
degrees of vertices in $G_{n, k}-E_{m^{\prime}} \in \mathcal{C}(n, m)$:
$A \ldots n-k-1, n-k \quad B \ldots n-1-\left\lceil\frac{m^{\prime}}{n-k}\right\rceil, n-1-\left\lfloor\frac{m^{\prime}}{n-k}\right\rfloor$
$w\left(G_{n, k}-E_{m^{\prime}}\right)=w\left(a_{2} b_{1}\right)=(n-k-1)+\left(n-1-\left\lceil\frac{m^{\prime}}{n-k}\right\rceil\right)=$
$2 n-k-r-c$
$\left\lfloor\frac{n-k}{2}\right\rfloor<m^{\prime} \leq k-1, m^{\prime} \neq(n-k-1)^{2} \Rightarrow c=2$
$E_{m^{\prime}}:=\left\{a_{i} b_{i}: i=1, \ldots, m^{\prime}\right\} \quad$ indices modulo $n-k \leq k$
degrees of vertices in $G_{n, k}-E_{m^{\prime}} \in \mathcal{C}(n, m)$:
$A \ldots n-k-1, n-k \quad B \ldots n-1-\left\lceil\frac{m^{\prime}}{n-k}\right\rceil, n-1-\left\lfloor\frac{m^{\prime}}{n-k}\right\rfloor$
$w\left(G_{n, k}-E_{m^{\prime}}\right)=w\left(a_{2} b_{1}\right)=(n-k-1)+\left(n-1-\left\lceil\frac{m^{\prime}}{n-k}\right\rceil\right)=$
$2 n-k-r-c$

optimum graph G

$$
\begin{aligned}
& n=10, m=19, k=7 \\
& m^{\prime}=5, r=2, c=2 \\
& w(G)=9
\end{aligned}
$$

$$
\begin{aligned}
& m^{\prime}=(n-k-1)^{2} \Rightarrow c=1 \\
& r=\left\lceil\frac{m^{\prime}}{n-k}\right\rceil=\left\lceil\frac{(n-k)^{2}-2(n-k)+1}{n-k}\right\rceil=\left\lceil n-k-2+\frac{1}{n-k}\right\rceil=n-k-1
\end{aligned}
$$

$m^{\prime}=(n-k-1)^{2} \Rightarrow c=1$
$r=\left\lceil\frac{m^{\prime}}{n-k}\right\rceil=\left\lceil\frac{(n-k)^{2}-2(n-k)+1}{n-k}\right\rceil=\left\lceil n-k-2+\frac{1}{n-k}\right\rceil=n-k-1$
$K_{\text {optimum graph } G}^{n-1}$

$$
\begin{aligned}
& w(G)=2 n-k-r-c=n \\
& w(G)=(n-1)+1=k+(n-k)
\end{aligned}
$$

deleted all edges between
$D_{2 k+1-n} V\left(D_{n-k-1}\right)$ and $V\left(K_{n-k-1}\right)$
$w\left(n, m, \mathcal{D}_{1+}\right) \leq 2 n-k-r-c \ldots$ crucial part of Theorem different analysis for $r \leq 6$ and $r \geq 7$

Dense graphs

$\frac{2 m}{n} \ldots$ average degree of a graph in $\mathcal{I}(n, m) d:=\left\lfloor\frac{2 m}{n}\right\rfloor \leq n-1$
\exists a graph $G \in \mathcal{C}(n, m)$ with $\delta(G)=d \Rightarrow w(n, m, \mathcal{C}) \geq 2 d$
$e:= \begin{cases}0, & m=\binom{n}{2}-1 \\ 0, & d \leq n-3 \wedge(\exists q \in\{0, \ldots, d-1\} \quad 2 m \equiv q(\bmod n)) \\ 1, & \text { otherwise }\end{cases}$

Dense graphs

$\frac{2 m}{n} \ldots$ average degree of a graph in $\mathcal{I}(n, m) d:=\left\lfloor\frac{2 m}{n}\right\rfloor \leq n-1$
\exists a graph $G \in \mathcal{C}(n, m)$ with $\delta(G)=d \Rightarrow w(n, m, \mathcal{C}) \geq 2 d$

$$
e:= \begin{cases}0, & m=\binom{n}{2}-1 \\ 0, & d \leq n-3 \wedge(\exists q \in\{0, \ldots, d-1\} 2 m \equiv q(\bmod n)) \\ 1, & \text { otherwise }\end{cases}
$$

Theorem

If $n \geq 15,\binom{n}{2}-\binom{[n / 2\rceil}{ 2}+1 \leq m \leq\binom{ n}{2}, \mathcal{C} \subseteq \mathcal{P} \subseteq \mathcal{D}_{1+}$ and integers d, e are defined as above, then $w(n, m, \mathcal{P})=2 d+e$.

Dense graphs

$\frac{2 m}{n} \ldots$ average degree of a graph in $\mathcal{I}(n, m) d:=\left\lfloor\frac{2 m}{n}\right\rfloor \leq n-1$
\exists a graph $G \in \mathcal{C}(n, m)$ with $\delta(G)=d \Rightarrow w(n, m, \mathcal{C}) \geq 2 d$
$e:= \begin{cases}0, & m=\binom{n}{2}-1 \\ 0, & d \leq n-3 \wedge(\exists q \in\{0, \ldots, d-1\} \quad 2 m \equiv q(\bmod n)) \\ 1, & \text { otherwise }\end{cases}$

Theorem

If $n \geq 15,\binom{n}{2}-\binom{[n / 2\rceil}{ 2}+1 \leq m \leq\binom{ n}{2}, \mathcal{C} \subseteq \mathcal{P} \subseteq \mathcal{D}_{1+}$ and integers d, e are defined as above, then $w(n, m, \mathcal{P})=2 d+e$.
$w\left(n, m, \mathcal{D}_{1+}\right) \leq 2 d+e \ldots$ easier than for sparse graphs $w(n, m, \mathcal{C}) \geq 2 d+e$: optimum graph by constructions depending on the parity of n and d

Dense construction

$$
2 m \equiv q(\bmod n)), q \geq d \Rightarrow e=1 \quad d=\frac{2 m-q}{n}
$$

$2 m \equiv q(\bmod n)), q \geq d \Rightarrow e=1 \quad d=\frac{2 m-q}{n}$
first case: $d n \equiv 0(\bmod 2) \Rightarrow d(2 d+2-n) \equiv 0(\bmod 2)$ let G_{1} be a $(2 d+2-n)$-regular graph with $\left|V\left(G_{1}\right)\right|=d$ easy: $2(2 d+2-n) \geq n>d \Rightarrow G_{1}$ is Hamiltonian
$2 m \equiv q(\bmod n)), q \geq d \Rightarrow e=1 \quad d=\frac{2 m-q}{n}$
first case: $d n \equiv 0(\bmod 2) \Rightarrow d(2 d+2-n) \equiv 0(\bmod 2)$
let G_{1} be a $(2 d+2-n)$-regular graph with $\left|V\left(G_{1}\right)\right|=d$
easy: $2(2 d+2-n) \geq n>d \Rightarrow G_{1}$ is Hamiltonian
$G_{2}:=D_{n-d} \ldots$ 0-regular graph with $\left|V\left(G_{2}\right)\right|=n-d$
$G:=G_{1} \oplus G_{2} \quad 2|E(G)|=d(2 d+2-n)+2 d(n-d)=d(n+2)$
$2 m \equiv q(\bmod n)), q \geq d \Rightarrow e=1 \quad d=\frac{2 m-q}{n}$
first case: $d n \equiv 0(\bmod 2) \Rightarrow d(2 d+2-n) \equiv 0(\bmod 2)$
let G_{1} be a $(2 d+2-n)$-regular graph with $\left|V\left(G_{1}\right)\right|=d$
easy: $2(2 d+2-n) \geq n>d \Rightarrow G_{1}$ is Hamiltonian
$G_{2}:=D_{n-d} \ldots$ 0-regular graph with $\left|V\left(G_{2}\right)\right|=n-d$
$G:=G_{1} \oplus G_{2} \quad 2|E(G)|=d(2 d+2-n)+2 d(n-d)=d(n+2)$
$2|E(G)|-2 m=\frac{2 m-q}{n}(n+2)-2 m=2 m-q+2 d-2 m=$ $2 d-q \leq 2 d-d=d \Rightarrow|E(G)|=m+s, s=\frac{2 d-q}{2} \leq \frac{d}{2}$
$2 m \equiv q(\bmod n)), q \geq d \Rightarrow e=1 \quad d=\frac{2 m-q}{n}$
first case: $d n \equiv 0(\bmod 2) \Rightarrow d(2 d+2-n) \equiv 0(\bmod 2)$
let G_{1} be a $(2 d+2-n)$-regular graph with $\left|V\left(G_{1}\right)\right|=d$
easy: $2(2 d+2-n) \geq n>d \Rightarrow G_{1}$ is Hamiltonian
$G_{2}:=D_{n-d} \ldots$ 0-regular graph with $\left|V\left(G_{2}\right)\right|=n-d$
$G:=G_{1} \oplus G_{2} \quad 2|E(G)|=d(2 d+2-n)+2 d(n-d)=d(n+2)$
$2|E(G)|-2 m=\frac{2 m-q}{n}(n+2)-2 m=2 m-q+2 d-2 m=$ $2 d-q \leq 2 d-d=d \Rightarrow|E(G)|=m+s, s=\frac{2 d-q}{2} \leq \frac{d}{2}$
degrees in G for $V\left(G_{1}\right):(2 d+2-n)+(n-d)=d+2$ degrees in G for $V\left(G_{2}\right): 0+d=d$

$$
\begin{aligned}
& C=\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}, x_{0}\right) \text { a Hamiltonian cycle in } G_{1} \\
& G \rightarrow \tilde{G}:=G-\left\{x_{2 i-1} x_{2 i}: i \in\{1, \ldots, s\}\right\} \\
& V(\tilde{G})|=n, E(\tilde{G})=|E(G)|-s=m, \tilde{G} \in \mathcal{C}(n, m)
\end{aligned}
$$

$C=\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}, x_{0}\right)$ a Hamiltonian cycle in G_{1}
$G \rightarrow \tilde{G}:=G-\left\{x_{2 i-1} x_{2 i}: i \in\{1, \ldots, s\}\right\}$
$V(\tilde{G})|=n, E(\tilde{G})=|E(G)|-s=m, \tilde{G} \in \mathcal{C}(n, m)$
degrees in $\tilde{G}: \operatorname{deg}_{\tilde{G}}\left(x_{i}\right)=\operatorname{deg}_{G}\left(x_{i}\right)-1=d+1, i=1, \ldots, 2 s \leq d$ $\operatorname{deg}_{\tilde{G}}\left(x_{i}\right)=\operatorname{deg}_{G}\left(x_{i}\right)=d+2, i=2 s+1, \ldots, d$ degrees for $V\left(G_{2}\right)$ remain d
$C=\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}, x_{0}\right)$ a Hamiltonian cycle in G_{1}
$G \rightarrow \tilde{G}:=G-\left\{x_{2 i-1} x_{2 i}: i \in\{1, \ldots, s\}\right\}$
$V(\tilde{G})|=n, E(\tilde{G})=|E(G)|-s=m, \tilde{G} \in \mathcal{C}(n, m)$
degrees in $\tilde{G}: \operatorname{deg}_{\tilde{G}}\left(x_{i}\right)=\operatorname{deg}_{G}\left(x_{i}\right)-1=d+1, i=1, \ldots, 2 s \leq d$ $\operatorname{deg}_{\tilde{G}}\left(x_{i}\right)=\operatorname{deg}_{G}\left(x_{i}\right)=d+2, i=2 s+1, \ldots, d$ degrees for $V\left(G_{2}\right)$ remain d
$v \in V\left(G_{2}\right) \Rightarrow w_{\tilde{G}}\left(x_{i} v\right) \geq(d+1)+d=2 d+1, i=1, \ldots, d$
$x_{i} x_{j} \in E(\tilde{G}) \Rightarrow w_{\tilde{G}}\left(x_{i} x_{j}\right) \geq 2(d+1)=2 d+2$
$w(\tilde{G}) \geq 2 d+1$
$C=\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}, x_{0}\right)$ a Hamiltonian cycle in G_{1}
$G \rightarrow \tilde{G}:=G-\left\{x_{2 i-1} x_{2 i}: i \in\{1, \ldots, s\}\right\}$
$V(\tilde{G})|=n, E(\tilde{G})=|E(G)|-s=m, \tilde{G} \in \mathcal{C}(n, m)$
degrees in $\tilde{G}: \operatorname{deg}_{\tilde{G}}\left(x_{i}\right)=\operatorname{deg}_{G}\left(x_{i}\right)-1=d+1, i=1, \ldots, 2 s \leq d$ $\operatorname{deg}_{\tilde{G}}\left(x_{i}\right)=\operatorname{deg}_{G}\left(x_{i}\right)=d+2, i=2 s+1, \ldots, d$ degrees for $V\left(G_{2}\right)$ remain d
$v \in V\left(G_{2}\right) \Rightarrow w_{\tilde{G}}\left(x_{i} v\right) \geq(d+1)+d=2 d+1, i=1, \ldots, d$
$x_{i} x_{j} \in E(\tilde{G}) \Rightarrow w_{\tilde{G}}\left(x_{i} x_{j}\right) \geq 2(d+1)=2 d+2$
$w(\tilde{G}) \geq 2 d+1$
second case: $d \equiv n \equiv 1(\bmod 2) \rightarrow$ similar construction G_{1} a $(2 d+3-n)$-regular graph with $\left|V\left(G_{1}\right)\right|=d$

Thank you.

