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1- and 2-connected graphs

X 1-connected, tree decomosition: cut-points and 2-connected blocks.

small = one element, large = 2-connected blocks

X 2-connected, tree decomposition similar

(Tutte, Droms, Servatius, Servatius).

small = two element, large = 3-connected “blocks”

We cannot decompose 3-connected graphs into 4-connected blocks like

that.
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tree decomposition → tree
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ends of graphs

graph X = (VX ,EX ) ray R -q q q q q
R1 ≈ R2 ⇐⇒ ∃R3 such that |R3 ∩ R1| = |R3 ∩ R2| =∞.

Equivalence classes are the ends of X .

This definition is due to Halin (1964).
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C ⊂ VX , NC = {x ∈ VX \ C | x ∼ C}, C ∗ = VX \ (C ∪ NC )

write R  C if |C \ R| <∞.

Equivalent definitition:

R1 6≈ R2 if ∃C s.t. |NC | <∞, R1  C and R2  C ∗

That is, large sets C and C ∗ are separated by the small set NC .

small = finite set of vertices, large = containing a ray (i.e., an end)

Freudenthal’s original definition from 1931 for locally compact, connected

space with a countable base:

small = compact, large = not compact, open, connected

In 1945 he studied ends of locally finite graphs.
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Cayley graphs

G = 〈S〉 finitely generated,

X = Cay(G , S) Cayley graph

VX = G

EX : x ∼ y ⇐⇒ ∃s ∈ S such that xs = y

or x ∼ y ⇐⇒ x−1y ∈ S

If S = S−1 = {s−1 | s ∈ S} then X is undirected.
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free amalgamated products
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HNN-extensions
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Stallings’ structure theorem

G splits over H < G if

G = G1 ∗α G2 or G = G1∗α for some α : H → H ′.

Theorem (Stallings’ structure theorem, 1971)

G finitely generated. Then

G has more than one end ⇐⇒ G splits over finite subgroup
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Dicks and Dunwoody’s theory

Combinatorial (graph theoretic) proof of Stallings’ theorem by Dunwoody:

Automorphism-invariant tree decompositions where

small = finite set of edges, large = containing a ray.

The crucial part of the proof is a complicated construction of certain

“nice” edge-cuts (paper “Cutting up graphs” 1982), uses Bass-Serre

theory.

Fully developed theory in the book

M.J. Dunwoody, W. Dicks “Groups acting on Graphs”, 1989.
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historic root = Seifert - van Kampen theorem

X = U ∪ V U U ∩ V V

π1(X , x) ∼= π1(U, x) ∗π1(U∩V ,x) π1(V , x), x ∈ U ∩ V
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Axioms - vertex cuts

Let X be a connected graph.

Sets C and S of non-empty sets of vertices are called cut-system and

separator-system, respectively, if they satisfy the following.

(A1) Separators are finite sets whose complements have at least two

components which contain a cut.

(A2) Cuts are the components of the complement of a separator which

contain a cut.

(A3) A cut minus a separator contains a cut.

Note: S is determined by C, but C is usually not determined by S.

A set is called large if it contains a cut.
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Examples of cut systems

Example

X 1-connected

S = 1-element separators (cut-points)

C = components obtained by removing a separator
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Examples of cut systems

for us the most important example:

Example

X connected

S = finite sets which separate ends

C = those components in the complement of a separator,

which contain a ray (i.e., an end).
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Examples of cut systems

more general:

Example

X connected, M ⊂ VX

S = finite subsets of M which separate ends

C = components in the complement of a separator, which contain a ray.

The following is the setting in the book of Dicks and Dunwoody.

Example

edge cuts: put an additional vertex on each edge and let M be the set of

these new vertices.
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vertex cuts - edge cuts

E edge cut ⇒ E vertex cut

E vertex cut 6⇒ E edge cut

X locally finite: E vertex cut ⇐⇒ E edge cut
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What about finite graphs?

Y ⊂ VX is called k-inseparable if |Y | > k and for all S ⊂ VX , |S | = k ,

the set Y is contained in the union of S and one component of VX \ S .

In other words: No k-set S separates Y .

Example

Let κ be the minimal integer (if it exists) such that there is a κ-set S

which separates two κ-inseparable sets Y1 and Y2 in the sense that there

are components C1 and C2 of VX \ S, C1 6= C2 and

Y1 ⊂ C1 ∪ S and Y2 ⊂ C2 ∪ S .

S = κ-sets which separate two κ-inseparable sets

C = those components in the complement a separator, which contain a

κ-inseparable set.
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minimal cuts

Let C be a cut system and let κ be the minimal cardinality of a separator.

A cut whose boundary has κ elements is called a minimal cut.

Theorem (Dunwoody, Krön)

The set of minimal cuts is a cut system.
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nestedness

4 corners, 4 links, 1 center.

isolated corner = not large and both adjacent links are empty

Sets of vertices E and F are nested if they have an isolated corner.
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Main theorem

Theorem (Dunwoody, Krön)

Every cut system has a minimal cut which is nested with all other cuts.

The existence of so-called “structure cuts” (or D-cuts) follows as corollary.

See Dunwoody “Cutting up graphs” 1982,

Dicks and Dunwoody“Groups acting on Graphs” 1989.
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Counterexample

In the papers on edge cuts, nestedness of cuts E and F means that one of

following inclusions hold

E ⊂ F or E ⊂ VX \ F or VX \ E ⊂ F or VX \ E ⊂ VX \ F .

Equivalently,

E ⊂ F or F ⊂ E or E ∩ F = ∅ or E ∪ F = VX .

There are graphs with more than one end, where there is no automorphism

invariant cut system which satisfies the above condition for all pairs of

cuts. We have to use our weaker concept of nestedness which uses isolated

corners.
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Generalized structure trees

Let G be a group acting on X and let C be a G -set.

Let N be the set of minimal cuts which are nested with all other cuts.

Then N is a G -set. And there is a tree T with

ET = N and VT = S ∪ N/ ∼

where ∼ is an equivalence relation on N . The equivalence classes

correspond to the blocks between the separators.

Then G acts on T such that the stabilizers of the edges of T are the

stabilizers of cuts in N .
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cuts → tree
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Why two types of vertices?
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Generalization of Stallings’ Structure Theorem

Theorem (Stallings’ structure theorem, 1971)

Let G be a finitely generated group. Then

G has more than one end ⇐⇒
G splits over a finite subgroup.

Theorem (Dunwoody, Krön)

Let G be any group. Then

G has a Cayley-graph with more than one end ⇐⇒
G splits over a finite subgroup.
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