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Summary. In analogy to the recent paper [11] which studied lattice rule algorithms
for approximation in weighted Korobov spaces, we consider the approximation prob-
lem in a weighted Hilbert space of Walsh series. Our approximation uses a truncated
Walsh series with Walsh coefficients approximated by numerical integration using
digital nets. We show that digital nets (or more precisely, polynomial lattices) tai-
lored specially for the approximation problem lead to better error bounds. The error
bounds can be independent of the dimension s, or depend only polynomially on s,
under certain conditions on the weights defining the function space.

1 Introduction

We introduce an algorithm to approximate functions f : [0, 1]s → R in certain
Hilbert spaces. These spaces are in analogy to weighted Korobov spaces (see
[24]), but instead of trigonometric functions we use Walsh functions, see Sec-
tion 2. Recently, the approximation problem has been studied in [11] where
a function from the weighted Korobov space is approximated by a truncated
Fourier series, with the remaining Fourier coefficients approximated using lat-
tice rules. Here, in analogy, we want to approximate functions from a Hilbert
space of Walsh series using digital nets (see [19] or Section 4 below).

More precisely, every function f in our Hilbert space Hs is given by its
Walsh-series representation

f(x) =
∑

k∈Ns
0

f̂(k)walk(x), with f̂(k) :=
∫

[0,1]s
f(x)walk(x) dx, (1)

where N0 = {0, 1, 2, . . .} denotes the set of nonnegative integers, and f̂(k) are
the Walsh coefficients associated with the Walsh functions walk(x) (see (3)
and (4) below). For functions f ∈ Hs, the values of |f̂(k)| are larger for k
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“closer” to 0. We introduce a set As of vectors k ∈ Ns
0 that are close to 0 in

some sense, and we approximate f by the Walsh polynomial

F (x) :=
∑

k∈As

F̂ (k)walk(x), with F̂ (k) :=
1
N

N−1∑
n=0

f(xn)walk(xn), (2)

where {x0, . . . , xN−1} ∈ [0, 1)s is a digital net. A similar algorithm for lattice
rules was proposed in [10] and has recently been studied in [11] (see also
[12, 15, 30]).

It is natural to use digital nets for the approximation of the integrals
arising from the Walsh coefficients, since Walsh functions are characters over
the group formed by digital nets (see [7] or (13) below), which implies that
the Walsh coefficients are aliased via the so-called dual net D (see [7] or (12)
below), i.e., it can be shown that

F̂ (k) = f̂(k) +
∑

h∈D
f̂(h⊕ k),

where ⊕ denotes digit-wise addition modulo b, and it is to act on the vectors
component-wise. If the dual net D contains only elements k which are in
some sense large and f̂(k) is small for large k, then F̂ (k) will be a good
approximation of f̂(k), as

∑
h∈D f̂(h ⊕ k) is small in this case compared

to f̂(k). Hence the Walsh polynomial F (x) will give a good approximation
to f(x).

There are several ways of finding suitable digital nets. One choice is to con-
struct polynomial lattices which are suitable for integration in the space Hs

(see [5]). This way one can make use of the weights (see [23]), which are intro-
duced to moderate the importance of successive variables. Another way is to
use existing digital nets, say, obtained from Sobol ′ sequences or Niederreiter
sequences. The third method is to construct polynomial lattices for approxi-
mation directly. This construction is similar to the one considered in [5], but
with a different quality measure which appears in the upper bound on the
approximation error and, at least theoretically, yields a better approximation
algorithm. This is also in analogy to the results for lattice rule algorithms in
[11] for approximation in weighted Korobov spaces.

We also study tractability and strong tractability of the approximation
problem in Hs. Strong tractability means that the error converges to zero with
increasing N independently of the dimension s whereas tractability means
that the error converges with N with at most a polynomial dependence on s.
We show that our approximation algorithms based on digital nets achieve
tractability or strong tractability error bounds under certain conditions on
the weights. These results are again analogous to the results in [11].

This paper is organized as follows. We introduce the weighted Hilbert
space of Walsh series in Section 2, and we discuss the approximation problem
in Section 3. In Section 4 we review and develop results on digital nets for
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the integration problem that are relevant to the approximation problem. The
final section, Section 5, contains the main results of this paper as discussed
above.

2 Weighted Hilbert Spaces of Walsh Series

Let b ≥ 2 be an integer – the base. (Later we will restrict ourselves to a prime
base b for simplicity.) Let N0 denote the set of nonnegative integers.

Each k ∈ N0 has a b-adic representation k =
∑∞

i=0 κib
i, κi ∈ {0, . . . , b−1}.

Each x ∈ [0, 1) has a b-adic representation x =
∑∞

i=1 χib
−i, χi ∈ {0, . . . , b−1},

which is unique in the sense that infinitely many of the χi must differ from
b− 1. If κa 6= 0 is the highest nonzero digit of k, we define the Walsh function
walk : [0, 1) −→ C by

walk(x) := e2πi(χ1κ0+···+χa+1κa)/b. (3)

For dimension s ≥ 2 and vectors k = (k1, . . . , ks) ∈ Ns
0 and x = (x1, . . . , xs) ∈

[0, 1)s we define walk : [0, 1)s −→ C by

walk(x) :=
s∏

j=1

walkj (xj). (4)

It follows from the definition above that Walsh functions are piecewise
constant functions. For more information on Walsh functions, see, e.g., [2, 27].

We consider functions in a weighted Hilbert space of Walsh series. This
function space was considered in [5, 6, 7, 8]; the notion of weights was first
introduced in [23].

Let α > 1, s ≥ 1, and b ≥ 2 be fixed. Let γ = (γj)∞j=1 be a sequence of
non-increasing weights, with 0 < γj ≤ 1 for all j. The weighted Hilbert space
Hs = Hwal,b,s,α,γ is a tensor product of s one-dimensional Hilbert spaces of
univariate functions, each with weight γj . Every function f in Hs can be
written in a Walsh-series representation (1).

The inner product and norm in Hs are defined by

〈f, g〉Hs :=
∑

k∈Ns
0

r(α, γ,k)−1f̂(k) ĝ(k),

and ‖f‖Hs
:= 〈f, f〉1/2

Hs
, where r(α, γ, k) :=

∏s
j=1 r(α, γj , kj), with

r(α, γ, k) :=

{
1 if k = 0,

γ b−αψb(k) if k 6= 0,
and ψb(k) := blogb(k)c. (5)

(Equivalently, ψb(k) = a iff κa 6= 0 is the highest nonzero digit in the b-adic
representation of k =

∑∞
i=0 κib

i.) For x > 1 we define
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µ(x) :=
∞∑

k=1

b−xψb(k) = (b− 1)
∞∑

a=0

b−(x−1)a =
bx(b− 1)
bx − b

. (6)

(The equalities hold since for any a ≥ 0 there are ba(b− 1) values of k ≥ 1 for
which ψb(k) = a.) Note that µ(x) is defined in analogy to the Riemann zeta
function ζ(x) :=

∑∞
k=1 k−x, x > 1.

The space Hs is a Hilbert space with the reproducing kernel (see [1, 7])

K(x,y) =
∑

k∈Ns
0

r(α, γ, k)walk(x)walk(y).

The kernel satisfies the reproducing property 〈f,K(·, y)〉Hs
= f(y) for all

f ∈ Hs and all y ∈ [0, 1)s.
As we have said in the introduction, we approximate functions from Hs

by truncated Walsh series, see (2). Now we define precisely the set of Walsh
terms to remain in the truncated Walsh series. In analogy to [11], let M > 0
and define

As(M) := {k ∈ Ns
0 : r(α, γ, k)−1 ≤ M}. (7)

Following [11, Lemma 1] and its proof, we can derive a number of properties
for our set As(M) here; the most important one is an upper bound on the
cardinality of the set, which we state as a lemma below.

Lemma 1. (cf. [11, Lemma 1(d)]) For any M > 0 we have

|As(M)| ≤ Mq
s∏

j=1

(
1 + µ(αq)γq

j

)

for all q > 1/α, where the function µ is defined in (6).

We end this section with a useful property that will be needed later. For
k, h ∈ N0 with b-adic representations k =

∑∞
i=0 κib

i and h =
∑∞

i=0 ~ib
i, let ⊕

and ª denote digit-wise addition and subtraction modulo b, i.e.,

k ⊕ h :=
∞∑

i=0

((κi + ~i) mod b) bi and k ª h :=
∞∑

i=0

((κi − ~i) mod b) bi.

For vectors h, k ∈ Ns
0, the operations are defined component-wise.

Lemma 2. (cf. [21, Formula (23)]) For any h,k ∈ Ns
0, we have

r(α, γ,h⊕ k) ≤ r(α, γ,k) r(α, γ, h)−1.

Proof. It is sufficient to prove the result in one dimension, i.e., r(α, γ, h⊕k) ≤
r(α, γ, k) r(α, γ, h)−1. Clearly this holds when h = 0 or k = 0. When h 6= 0
and k 6= 0, we have

r(α, γ, h⊕ k)
r(α, γ, h)
r(α, γ, k)

= γ

(
bψb(k)−ψb(h)

bψb(k⊕h)

)α

≤ 1,

because ψb(k)− ψb(h) ≤ ψb(k ⊕ h). This completes the proof. 2
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3 Approximation in the Weighted Hilbert Space Hs

We now discuss the approximation problem in the weighted Hilbert space Hs

following closely the discussions from [11, 21] for the weighted Korobov space,
see also [25, 28, 29] for general results.

Without loss of generality (see, e.g., [25]), we approximate f by a linear
algorithm of the form

AN,s(f) =
N−1∑
n=0

anLn(f),

where each an is a function from L2([0, 1]s) and each Ln is a continuous
linear functional defined on Hs from a permissible class Λ of information.
We consider two classes: Λall is the class of all continuous linear functionals,
while Λstd is the class of standard information consisting only of function
evaluations. In other words, Ln ∈ Λstd iff there exists xn ∈ [0, 1]s such that
Ln(f) = f(xn) for all f ∈ Hs. (The approximation (2) in the introduction is
of the linear form above and uses standard information from Λstd.)

The worst case error of the algorithm AN,s is defined as

ewor−app
N,s (AN,s) := sup

‖f‖Hs
≤1

‖f −AN,s(f)‖L2([0,1]s) .

The initial error associated with A0,s ≡ 0 is

ewor−app
0,s := sup

‖f‖Hs
≤1

‖f‖L2([0,1]s) = 1,

where the exact value 1 is obtained by considering f ≡ 1. Since the initial
error is conveniently 1, from this point on we omit the initial error from our
discussion.

For ε ∈ (0, 1), s ≥ 1, and Λ ∈ {Λall, Λstd}, we define

Nwor(ε, s, Λ) := min
{

N : ∃AN,s with Ln ∈ Λ so that ewor−app
N,s (AN,s) ≤ ε

}
.

We say that the approximation problem for the space Hs is tractable in the
class Λ iff there are nonnegative numbers C, p, and a such that

Nwor(ε, s, Λ) ≤ Cε−psa ∀ε ∈ (0, 1) and ∀s ≥ 1. (8)

The approximation problem is strongly tractable in the class Λ iff (8) holds
with a = 0. In this case, the infimum of the numbers p is called the exponent
of strong tractability, and is denoted by pwor−app(Λ).

It is known from classical results (see, e.g., [25]) that the optimal algorithm
in the class Λall is the truncated Walsh series

A
(opt)
N,s (f)(x) :=

∑

k∈As(ε−2)

f̂(k)walk(x), N =
∣∣As(ε−2)

∣∣ ,
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where we have taken M = ε−2 in (7), which ensures that the worst case error
satisfies ewor−app

N,s (A(opt)
N,s ) ≤ ε. In fact, it is known from the general result in

[28] that strong tractability and tractability in the class Λall are equivalent,
and they hold iff sγ < ∞, where

sγ := inf

{
λ > 0 :

s∑

j=1

γλ
j < ∞

}
(9)

is known as the sum exponent of the weights γ = (γj)∞j=1. Furthermore, the
exponent of strong tractability is pwor−app(Λall) = 2 max(1/α, sγ).

For the class Λstd, which is the focus of this paper, a lower bound on the
worst case error for any algorithm AN,s(f) =

∑N−1
n=0 anf(xn) can be obtained

following the argument in [21], i.e.,

ewor−app
N,s (AN,s) ≥ sup

‖f‖Hs
≤1

∣∣∣∣∣
∫

[0,1]s
f(x) dx−

N−1∑
n=0

bnf(xn)

∣∣∣∣∣ ,

where bn :=
∫
[0,1]s

an(x) dx. This lower bound is exactly the worst case in-

tegration error in Hs for the linear integration rule
∑N−1

n=0 bnf(xn). Hence
the approximation problem is no easier than the integration problem in Hs,
and thus the necessary condition for (strong) tractability for the integration
problem in Hs is also necessary for the approximation problem.

(Strong) tractability in the weighted Hilbert space Hs for the family of
equal-weight integration rules have been analyzed in [7], where it is shown
that strong tractability holds iff

∑∞
j=1 γj < ∞, and tractability holds iff

lim sups→∞
∑s

j=1 γj/ ln(s + 1) < ∞. The same conditions can be obtained
for the family of linear integration rules following the argument used in [24]
for the weighted Korobov space. Hence, the same conditions are necessary for
(strong) tractability of the approximation problem in the class Λstd. It fol-
lows from [29] that these conditions are also sufficient for (strong) tractability
of approximation. Moreover, if

∑∞
j=1 γj < ∞ then the exponent of strong

tractability satisfies pwor−app(Λstd) ∈ [pwor−app(Λall), pwor−app(Λall) + 2], see
[29, Corollary 2(i)].

We summarize this discussion in the following theorem.

Theorem 1. Consider the approximation problem in the worst case setting
in the weighted Hilbert space Hs.

• Strong tractability and tractability in the class Λall are equivalent, and they
hold iff sγ < ∞, where sγ is defined in (9). When this holds, the exponent
of strong tractability is

pwor−app(Λall) = 2 max
(

1
α , sγ

)
.
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• The problem is strongly tractable in the class Λstd iff

∞∑

j=1

γj < ∞. (10)

When this holds, the exponent of strong tractability satisfies

pwor−app(Λstd) ∈ [
pwor−app(Λall), pwor−app(Λall) + 2

]
.

• The problem is tractable in the class Λstd iff

` := lim sup
s→∞

∑s
j=1 γj

ln(s + 1)
< ∞. (11)

Note that when (10) holds, we have sγ ≤ 1. When (10) does not hold but
(11) holds, we have sγ = 1.

The results for the class Λstd are non-constructive. In this paper we obtain
constructive algorithms based on digital nets, and we reduce the upper bound
on the exponent of strong tractability to pwor−app(Λstd) ≤ 2 pwor−app(Λall).

4 Integration Using Digital Nets

In this section we introduce nets and review results on numerical integration
rules using those point sets.

A detailed theory of (t, m, s)-nets and (t, s)-sequences was developed in
[16] (see also [19, Chapter 4] and [20] for a recent survey). The (t,m, s)-nets
in base b provide sets of bm points in the s-dimensional unit cube [0, 1)s which
are well distributed if the quality parameter t is small.

Definition 1. Let b ≥ 2, s ≥ 1 and 0 ≤ t ≤ m be integers. A point set
P consisting of bm points in [0, 1)s forms a (t,m, s)-net in base b if every
subinterval J =

∏s
j=1[ajb

−dj , (aj + 1)b−dj ) ⊆ [0, 1)s of volume bt−m, with
integers dj ≥ 0 and integers 0 ≤ aj < bdj for 1 ≤ j ≤ s, contains exactly bt

points of P .

In practice, all concrete constructions of (t,m, s)-nets are based on the
general construction scheme of digital nets. To avoid too many technical no-
tions we restrict ourselves to digital point sets defined over the finite field
Zb = {0, 1, . . . , b − 1} with b prime. For a more general definition, see, e.g.,
[13, 14, 19]. Throughout the paper, > means the transpose of a vector or
matrix.

Definition 2. Let b be a prime and let s ≥ 1 and m ≥ 1 be integers. Let
C1, . . . , Cs be m ×m matrices over the finite field Zb. For each 0 ≤ n < bm

with b-adic representation n =
∑m−1

i=0 ηib
i, and each 1 ≤ j ≤ s, we multiply

the matrix Cj by the vector (η0, . . . , ηm−1)> ∈ Zm
b , i.e.,
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Cj (η0, . . . , ηm−1)> =: (χn,j,1, . . . , χn,j,m)> ∈ Zm
b ,

and set
xn,j :=

χn,j,1

b
+ · · ·+ χn,j,m

bm
.

If the point set {xn = (xn,1, . . . , xn,s) : 0 ≤ n < bm} is a (t,m, s)-net in base
b for some integer t with 0 ≤ t ≤ m, then it is called a digital (t,m, s)-net
over Zb.

See [19, Theorem 4.28] and [22] for results concerning the determination
of the quality parameter t of digital nets.

Niederreiter introduced in [18] (see also [19, Section 4.4]) a special family of
digital nets known now as polynomial lattices. In the following, let Zb((x−1))
be the field of formal Laurent series over Zb,

∑∞
l=w tlx

−l, where w is an arbi-
trary integer and all tl ∈ Zb. Further, let Zb[x] be the set of all polynomials
over Zb, and let

Rb,m := {q ∈ Zb[x] : deg(q) < m and q 6= 0}.

Definition 3. Let b be a prime and let s ≥ 1 and m ≥ 1 be integers. Let υm

be the map from Zb((x−1)) to the interval [0, 1) defined by

υm

( ∞∑

l=w

tlx
−l

)
:=

m∑

l=max(1,w)

tlb
−l.

Choose polynomials p ∈ Zb[x] with deg(p) = m and q := (q1, . . . , qs) ∈ Rs
b,m.

For each 0 ≤ n < bm with b-adic representation n =
∑m−1

i=0 ηib
i, we associate

n with the polynomial n(x) =
∑m−1

i=0 ηix
i ∈ Zb[x]. Then the point set

PPL :=
{

xn =
(

υm

(
n(x)q1(x)

p(x)

)
, . . . , υm

(
n(x)qs(x)

p(x)

))
: 0 ≤ n < bm

}

is a polynomial lattice.

We are ready to review known results on digital nets for integration. Let
P = {x0, . . . , xN−1} denote a digital (t,m, s)-net over Zb consisting of N =
bm points. For f ∈ Hs, we approximate the integral of f by an equal-weight
integration rule using the point set P . The worst case error of the point set
P (or more precisely, of the equal-weight integration rule using the point set)
for integration in the space Hs is defined by

ewor−int
N,s (P ) := sup

‖f‖Hs
≤1

∣∣∣∣∣
∫

[0,1]s
f(x) dx− 1

N

N−1∑
n=0

f(xn)

∣∣∣∣∣ .

First we discuss the results from [7]. For k ∈ N0 with b-adic representation
k =

∑∞
i=0 κib

i, we write
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trm(k) := (κ0, . . . , κm−1)> ∈ Zm
b

to denote the truncated digit vector of k. For a digital net P over Zb generated
by matrices C1, . . . , Cs, we define the dual net D by

D := {k ∈ Ns
0 \ {0} : C>1 trm(k1) + · · ·+ C>s trm(ks) = 0}, (12)

where the matrix-vector multiplications and vector additions are to be carried
out in Zb. It is well known that Walsh functions are characters over the group
formed by digital nets (see, e.g., [7]), i.e.,

1
N

N−1∑
n=0

walk(xn) =

{
1 if k ∈ D ∪ {0},
0 otherwise.

(13)

It follows easily from the character property that for any f ∈ Hs,

∫

[0,1]s
f(x) dx− 1

N

N−1∑
n=0

f(xn) = −
∑

k∈D
f̂(k), (14)

and hence (see [7])

[ewor−int
N,s (P )]2 =

∑

k∈D
r(α, γ,k). (15)

4.1 Results for Polynomial Lattices

Now we discuss the results from [5] concerning polynomial lattices. We need
some further notation: for every nonnegative integer k =

∑∞
i=0 κib

i we define
the polynomial

t̃rm(k)(x) := κ0 + κ1x + · · ·+ κm−1x
m−1 ∈ Zb[x],

and for the vector k = (k1, . . . , ks) ∈ Ns
0 we consider

t̃rm(k) := (t̃rm(k1), . . . , t̃rm(ks))> ∈ Zb[x]s

to be a vector of polynomials. It is shown in [5] that the dual net for the
polynomial lattice PPL, with polynomials p ∈ Zb[x] and q = (q1, . . . , qs) ∈
Rs

b,m, can be expressed as

DPL :=
{
k ∈ Ns

0 \ {0} : t̃rm(k) · q ≡ 0 (mod p)
}

, (16)

where t̃rm(k) · q ≡ 0 (mod p) means that the polynomial p divides the poly-
nomial

t̃rm(k) · q :=
s∑

j=1

t̃rm(kj) qj ∈ Zb[x].

The main result of [5] is summarized in the following lemma.
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Lemma 3. (cf. [5, Algorithm 4.3 and Theorem 4.4]) Given prime b ≥ 2, pos-
itive integer m, and irreducible polynomial p ∈ Zb[x], a vector of polynomials
q = (q1, . . . , qs) ∈ Rs

b,m for a polynomial lattice PPL with N = bm points can
be constructed by a component-by-component algorithm such that

[ewor−int
N,s (PPL)]2 ≤ (bm − 1)−1/λ

s∏

j=1

(
1 + µ(αλ)γλ

j

)1/λ

for all λ ∈ (1/α, 1], where the function µ is defined in (6).

Using the property
∏s

j=1(1 + xj) = exp(
∑s

j=1 ln(1+ xj)) ≤ exp(
∑s

j=1 xj)
for all nonnegative xj , we see from Lemma 3 that if sγ ≤ 1/α then

ewor−int
N,s (PPL) = O(N−α/2+δ), δ > 0,

with the implied factor in the big-O notation is independent of N and s. This
is the optimal rate of convergence for integration in Hs.

4.2 Results for General Digital Nets

For any digital (t, m, s)-net with regular generating matrices, we can obtain
a worst case error bound in terms of its t-value. This is in analogy to results
obtained in [3, 6, 8].

Lemma 4. Let P be a digital (t,m, s)-net over Zb with non-singular gener-
ating matrices. For each ∅ 6= u ⊆ {1, . . . , s}, suppose that the projection of P
onto the coordinates in u is a (tu,m, |u|)-net. Then we have

[ewor−int
N,s (P )]2 ≤ 1

bαm

(
1 +

∑

∅6=u⊆{1,...,s}
bαtu

∏

j∈u

(
bα+1(m + 2)µ(α)γj

)
)

.

Proof. We start with (15) and consider all vectors k in the dual net D given
by (12). If k = bml with l ∈ Ns

0 \ {0}, then trm(kj) = 0 for 1 ≤ j ≤ s.
Otherwise we can write k = k∗ + bml with l ∈ Ns

0, k∗ = (k∗1 , . . . , k∗s) 6= 0 and
0 ≤ k∗j < bm for all 1 ≤ j ≤ s. In the latter case we have trm(kj) = trm(k∗j )
for all 1 ≤ j ≤ s. Thus we have (after renaming k∗ to k)

[ewor−int
N,s (P )]2 =

∑

l∈Ns
0\{0}

r(α, γ, bml)+
∑

k∈D∗

∑

l∈Ns
0

r(α, γ,k + bml) =: Σ∗
1 +Σ∗

2 ,

where

D∗ :=
{
k ∈ {0, . . . , bm − 1}s \ {0} : C>1 trm(k1) + · · ·+ C>s trm(ks) = 0

}
.

It follows from the definition (5) that for 0 ≤ kj < bm we have
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∞∑

l=0

r(α, γj , kj + bml) = r(α, γj , kj) +
∞∑

l=1

r(α, γj , b
ml) = r(α, γj , kj) +

µ(α)
bmα

γj .

Thus

Σ∗
1 =

s∏

j=1

(
1 +

µ(α)
bmα

γj

)
− 1

and

Σ∗
2 =

∑

k∈D∗

s∏

j=1

(
r(α, γj , kj) +

µ(α)
bmα

γj

)

=
∑

k∈D∗
r(α, γ, k) +

∑

u({1,...,s}

[( ∑

k∈D∗

∏

j∈u

r(α, γj , kj)
) ∏

j /∈u

(
µ(α)γj

bmα

) ]
. (17)

First we investigate the sum
∑

k∈D∗
∏

j∈u r(α, γj , kj) where u is a proper
subset of {1, . . . , s}. Let k = (k1, . . . , ks) ∈ {0, . . . , bm − 1}s \ {0} and j0 /∈ u.
Since the generating matrices C1, . . . , Cs are non-singular, for any combination
of the s− 1 components kj ∈ {0, . . . , bm− 1} with j 6= j0, there is exactly one
value of kj0 ∈ {0, . . . , bm − 1} which ensures that k ∈ D∗. Hence we have

∑

k∈D∗

∏

j∈u

r(α, γj , kj) = bm(s−|u|−1)
∏

j∈u

(
bm−1∑

k=0

r(α, γj , k)

)
− 1

≤ bm(s−|u|−1)
∏

j∈u

(1 + µ(α)γj)− 1,

from which we can show that the second term in (17) is bounded by

1
bαm

s∏

j=1

(1 + 2µ(α)γj)−Σ∗
1 .

It remains to obtain a bound on the first term in (17). Here we only outline
the most important steps; the details follow closely the proofs of [3, Lemma 7]
and [8, Lemma 7], see also [6, Lemma 3].

We have

∑

k∈D∗
r(α, γ, k) =

∑

∅6=u⊆{1,...,s}
u={u1,...,ue}

bm−1∑

ku1 ,...,kue=1

C>u1
trm(ku1 )+···+C>ue

trm(kue )=0

∏

j∈u

r(α, γj , kj). (18)

The u = {1, . . . , s} term in (18) is
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bm−1∑

k1,...,ks=1

C>1 trm(k1)+···+C>s trm(ks)=0

s∏

j=1

r(α, γj , kj)

=
m−1∑

v1,...,vs=0

∏s
j=1 γj

bα(v1+···+vs)

b−1∑

l1,...,ls=1

(l1+1)bv1−1∑

k1=l1bv1

· · ·
(ls+1)bvs−1∑

ks=lsbvs︸ ︷︷ ︸
C>1 trm(k1)+···+C>s trm(ks)=0

1.

Using the fact that P is a digital (t, m, s)-net, it can be shown that

(l1+1)bv1−1∑

k1=l1bv1

· · ·
(ls+1)bvs−1∑

ks=lsbvs︸ ︷︷ ︸
C>1 trm(k1)+···+C>s trm(ks)=0

1 ≤ (b− 1)s
m−1∑

v1,...,vs=0
m−t−s+1≤v1+···+vs≤m−t

∏s
j=1 γj

bα(v1+···+vs)

+ (b− 1)s
m−1∑

v1,...,vs=0
v1+···+vs>m−t

∏s
j=1 γj

bα(v1+···+vs)
bv1+···+vs−m+t.

The ∅ 6= u ( {1, . . . , s} terms in (18) can be estimated in a similar way by
making use of the fact that the projection of P onto the coordinates in u is a
digital (tu,m, |u|)-net. Combining all the terms together, we finally obtain

∑

k∈D∗
r(α, γ,k) ≤

∑

∅6=u⊆{1,...,s}

(
b− 1

bα−1 − 1

)|u| 2(m− tu + 2)|u|−1

bα(m−tu+1−2|u|)
∏

j∈u

γj

≤ 1
bα(m+1)

∑

∅6=u⊆{1,...,s}
bαtu

∏

j∈u

(
bα+1(m + 2)µ(α)γj

)
,

from which the result can be derived. 2

We now give two examples of digital nets for which explicit bounds on the
values of tu are known. Let PSob and PNie denote the digital net generated
by the modified (as discussed below) left upper m × m sub-matrices of the
generating matrices of Sobol ′ sequences and Niederreiter sequences (which are
examples of digital (t, s)-sequences, see, e.g., [18]), respectively. We need to
modify the generating matrices to make them regular; this can be achieved
by changing the least significant rows of the matrices without influencing the
digital net property nor the quality parameter of the net and its projections.

Lemma 5. Let P ∈ {PSob, PNie} be a digital (t, m, s)-net over Zb obtained
from either a Sobol ′ sequence (b = 2) or a Niederreiter sequence. We have

[ewor−int
N,s (PSob)]2

≤ 1
2αm

s∏

j=1

(
2αc+1 (j log2(j + 1) log2 log2(j + 3))α (m + 2)µ(α)γj

)
,
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where c is some constant independent of all parameters, and

[ewor−int
N,s (PNie)]2 ≤ 1

bαm

s∏

j=1

(
b2α+1 (j logb(j + b))α (m + 2)µ(α)γj

)
.

If {∑∞
j=1(j ln j ln ln j)αγj < ∞ when P = PSob,∑∞
j=1(j ln j)αγj < ∞ when P = PNie,

(19)

then

[ewor−int
N,s (P )]2 ≤ Cδ N−α+δ, Cδ ∈ {CSob,δ, CNie,δ}, δ > 0,

where CSob,δ and CNie,δ are independent of m and s but depend on δ, b, α,
and γ.

Proof. The construction of Sobol′ sequences makes use of primitive poly-
nomials in base b = 2, one polynomial pj for each dimension j, with non-
decreasing degrees as the dimension increases. It is known (see e.g. [26])
that tu =

∑
j∈u(deg(pj) − 1) and deg(pj) ≤ log2 j + log2 log2(j + 1) +

log2 log2 log2(j + 3) + c, where c is a constant independent of j. (Note that
the above formula for tu is associated with the whole sequence; for a net of
bm points tu is bounded by the minimum of m and the given formula.) Thus
we have

btu = 2tu ≤
∏

j∈u

(
2c−1j log2(j + 1) log2 log2(j + 3)

)
.

On the other hand, the construction of Niederreiter sequences makes use
of monic irreducible polynomials, and it is known (see [26, Lemma 2]) that
deg(pj) ≤ logb j + logb logb(j + b) + 2. Thus in this case

btu ≤
∏

j∈u

(bj logb(j + b)) .

Substituting these bounds on btu into Lemma 4 proves the first part of this
lemma.

To prove the second part of this lemma, we follow closely the proof of
[9, Lemma 3]. Consider first the Niederreiter sequence and suppose that∑∞

j=1(j ln j)αγj < ∞. For k ≥ 0, define σk := b2α+1µ(α)
∑∞

j=k+1(j logb(j +
b))αγj . Then we have

s∏

j=1

(
b2α+1 (j logb(j + b))α (m + 2)µ(α)γj

) ≤ (1 + σ−1
k )k b(m+2)σk(σ0+1).

Let δ > 0 and choose kδ such that σkδ
(σ0 + 1) ≤ δ. The desired result is

obtained with CNie,δ := b2δ(1+σ−1
kδ

)kδ . The result for the Sobol′ sequence can
be obtained in the same way. 2
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5 Approximation Using Digital Nets

Now we formalize the approximation algorithm (2). For M > 0 and P =
{x0, . . . , xN−1} a digital net with N = bm points, we define

AN,s,M (f) :=
∑

h∈As(M)

(
1
N

N−1∑
n=0

f(xn)walh(xn)

)
walh(x).

Recall that the worst case error for the algorithm AN,s,M using the point set
P is defined by

ewor−app
N,s,M (P ) = ewor−app

N,s,M (AN,s,M ) := sup
‖f‖Hs

≤1

‖f −AN,s,M (f)‖L2([0,1]s) .

We have

‖f −AN,s,M (f)‖2L2([0,1]s)

=
∑

h/∈As(M)

|f̂(h)|2 +
∑

h∈As(M)

∣∣∣∣∣
∫

[0,1]s
f(x)walh(x) dx− 1

N

N−1∑
n=0

f(xn)walh(xn)

∣∣∣∣∣

2

≤ 1
M
‖f‖2Hs

+
∑

h∈As(M)

|〈f, τh〉Hs |2 ,

where

τh(t) :=
∫

[0,1]s
K(t,x)walh(x) dx− 1

N

N−1∑
n=0

K(t,xn)walh(xn).

Hence

ewor−app
N,s,M (P ) =

(
β

M
+ sup
‖f‖Hs

≤1

∑

h∈As(M)

|〈f, τh〉Hs |2
)1/2

for some β ∈ [0, 1]. Moreover, it can be shown that the second term involving
the supremum is essentially the spectral radius ρ of the matrix TP whose
entries are given by 〈τh, τp〉Hs .

Using (14), it can be shown that

τh(t) = −
∑

k∈D
r(α, γ, hª k)walhªk(t)

= −
∑

q∈Ns
0\{h}

C>1 trm(h1ªq1)+···+C>s trm(hsªqs)=0

r(α, γ, q) walq(t).

Consequently,
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〈τh, τp〉Hs =





0 if C>1 trm(h1 ª p1) + · · ·+ C>s trm(hs ª ps) 6= 0,

∑

k∈Ns
0\{0,pªh}

C>1 trm(k1)+···+C>s trm(ks)=0

r(α, γ, h⊕ k) otherwise. (20)

We state the result in the following lemma.

Lemma 6. (cf. [11, Lemma 2]) The worst case error for the approximation
algorithm AN,s,M using a digital net P satisfies

ewor−app
N,s,M (P ) =

(
β

M
+ ρ(TP )

)1/2

for some β ∈ [0, 1],

where TP is a nonnegative-definite symmetric |As(M)|× |As(M)| matrix with
entries given by 〈τh, τp〉Hs

in (20) for h,p ∈ As(M).

Unfortunately we do not have a computable expression for the spectral
radius ρ(TP ). Therefore we consider its upper bound, the trace of TP ,

ρ(TP ) ≤ trace(TP ) =
∑

h∈As(M)

∑

k∈D
r(α, γ,h⊕ k). (21)

5.1 Nets Constructed for Integration

A natural question to ask is: how good are the nets constructed for integration
when they are used for approximation? To relate the worst case error for
approximation ewor−app

N,s (P ) to the worst case error for integration ewor−int
N,s (P ),

we apply Lemma 2 to (21) and obtain

ρ(TP ) ≤
∑

h∈As(M)

1
r(α, γ, h)

∑

k∈D
r(α, γ,k) ≤ M |As(M)|[ewor−int

N,s (P )]2.

Hence it follows from Lemma 6 that

ewor−app
N,s,M (P ) ≤

(
1
M

+ M |As(M)|[ewor−int
N,s (P )]2

)1/2

. (22)

Applying Lemmas 1 and 3 to (22), we obtain the following result for poly-
nomial lattices constructed for the integration problem.

Lemma 7. (cf. [11, Lemma 3]) Let PPL be a polynomial lattice constructed
component-by-component for integration. Then the worst case error for the
approximation algorithm AN,s,M using PPL satisfies

ewor−app
N,s,M (PPL) ≤

(
1
M

+
Cs,q,λMq+1

(N − 1)1/λ

)1/2
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for all q > 1/α and λ ∈ (1/α, 1], where

Cs,q,λ :=
s∏

j=1

(
1 + µ(αλ)γλ

j

)1/λ (
1 + µ(αq)γq

j

)
.

Given ε ∈ (0, 1), we want to find small M and N = bm for which the error
bound in Lemma 7 is at most ε. To ensure that the two terms in the error
bound are of the same order, we first choose M = 2ε−2, and then choose N
such that the second term is no more than the first term. Hence it is sufficient
that we take N = bm with

m =
⌈
logb

((
Cs,q,λMq+2

)λ
+ 1

)⌉
. (23)

Using the property
∏s

j=1(1 + xj) = exp(
∑s

j=1 log(1 + xj)) ≤ exp(
∑s

j=1 xj)
for nonnegative xj , we can write

Cs,q,λ ≤ exp

(
µ(αλ)

λ

s∑

j=1

γλ
j + µ(αq)

s∑

j=1

γq
j

)
(24)

= (s + 1)µ(αλ)λ−1 ∑s
j=1 γλ

j / ln(s+1) + µ(αq)
∑s

j=1 γq
j / ln(s+1). (25)

Let p∗ = 2 max(1/α, sγ). When (10) holds but sγ = 1, we have p∗ = 2 and
we take q = λ = p∗/2 = 1. Then we see from (24) that sups≥1 Cs,q,λ < ∞.
When (10) holds and sγ < 1, we have p∗ < 2 and we choose q = λ = p∗/2 + δ
for some δ > 0. Then µ(αλ) < ∞ and

∑∞
j=1 γλ

j < ∞, and once again we
see from (24) that sups≥1 Cs,q,λ < ∞. In both cases, we see from (23) that
N = O(ε−p), with p equal to or arbitrarily close to 2p∗+p∗2/2 as δ goes to 0.

When (11) holds but not (10), we have sγ = 1. We take q = λ = 1 and
it follows from (23) and (25) that N = O(ε−6) and Cs,q,λ = O(sa), with a
arbitrarily close to 2µ(α)`.

We summarize the analysis in the following theorem.

Theorem 2. (cf. [11, Theorem 1]) Let PPL be a polynomial lattice constructed
component-by-component for integration. For ε ∈ (0, 1) set M = 2ε−2. If (10)
holds, then the approximation algorithm AN,s,M using PPL achieves the worst
case error bound ewor−app

N,s,M (PPL) ≤ ε using N = O(ε−p) function values, with
p equal to or arbitrarily close to

2 pwor−app(Λall) +
[pwor−app(Λall)]2

2
.

If (10) does not hold but (11) holds, then the error bound ewor−app
N,s,M (PPL) ≤ ε

is achieved using N = O(saε−6) function values, with a arbitrarily close to
2µ(α)`. The implied factors in the big O-notations are independent of ε and s.

Now we use Lemmas 1 and 5 in (22) to derive results for digital nets
obtained from Sobol′ sequence or Niederreiter sequence.
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Lemma 8. Let P ∈ {PSob, PNie} be a digital net obtained from either a Sobol ′

or a Niederreiter sequence. If (19) holds, then the worst case error for the
approximation algorithm AN,s,M using P satisfies

ewor−app
N,s,M (P ) ≤

(
1
M

+
C̄s,q,δM

q+1

Nα−δ

)1/2

, C̄s,q,δ := Cδ

s∏

j=1

(
1 + µ(αq)γq

j

)
,

for all q > 1/α and δ > 0, with Cδ ∈ {CSob,δ, CNie,δ} given in Lemma 5.

Note that both conditions on the weights in (19) imply (10) as well as
sγ ≤ 1/α. For ε ∈ (0, 1) we take q = 1/α + δ, M = 2ε−2 and N = bm with

m =
⌈
logb

((
C̄s,q,δM

q+2
)1/(α−δ)

)⌉
.

Then we have sups≥1 C̄s,q,δ < ∞ and N = O(ε−p), with p arbitrarily close to
4/α + 2/α2 as δ goes to 0. This is summarized in the theorem below.

Theorem 3. Let P ∈ {PSob, PNie} be a digital net obtained from either a
Sobol ′ or a Niederreiter sequence. For ε ∈ (0, 1) set M = 2ε−2. If (19)
holds, then the approximation algorithm AN,s,M using P achieves the worst
case error bound ewor−app

N,s,M (P ) ≤ ε using N = O(ε−p) function values, with p
arbitrarily close to

2 pwor−app(Λall) +
[pwor−app(Λall)]2

2
.

The implied factor in the big O-notation is independent of ε and s.

5.2 Polynomial Lattices Constructed for Approximation

In this section we study polynomial lattices with the generating polynomials
specially constructed for the approximation problem. It is perhaps not sur-
prising that such polynomial lattices yield smaller error bounds than those
studied in the previous subsection.

Since M r(α, γ,h) ≥ 1 for all h ∈ As(M), we have from (21) that ρ(TP ) ≤
M SN,s(P ), where

SN,s(P ) :=
∑

h∈Ns
0

∑

k∈D
r(α, γ,h) r(α, γ,k ⊕ h). (26)

Thus it follows from Lemma 6 that

ewor−app
N,s,M (P ) ≤

(
1
M

+ M SN,s(P )
)1/2

. (27)

An analogous expression to SN,s(P ) for lattice rule algorithms in weighted
Korobov spaces was considered in [4] for some integral equation problem. (It
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is advocated that the expression Sn,d(z) in [4] should be considered instead of
the quantity En,d(z) in [11] for the approximation problem.) Observe that the
quantity SN,s(P ) depends only on the digital net P = {x0, . . . , xN−1} and
does not depend on the value of M nor the set As(M). Following [7, Proof of
Theorem 2]), we can rewrite SN,s(P ) in an easily computable form

SN,s(P ) = −
s∏

j=1

(
1 + µ(2α)γ2

j

)
+

1
N

s∏

j=1

(1 + µ(α)γj)
2

+
1
N

N−1∑
n=1

s∏

j=1

(1 + ω(xn,j)γj)
2
,

where ω(0) = µ(α), and ω(x) = µ(α) − b(a−1)(1−α)(µ(α) + 1) if x 6= 0 and
χa 6= 0 is the first nonzero digit in the b-adic representation x =

∑∞
i=0 χib

−i.
Let p be an irreducible polynomial of degree m. We wish to construct

a vector of polynomials q = (q1, . . . , qs) for a polynomial lattice PPL, one
polynomial at a time, such that the quantity SN,s(q1, . . . , qs) = SN,s(P ) is as
small as possible.

Algorithm 1 Let m ≥ 1 and N = bm. Let p be an irreducible polynomial in
Zb[x] with deg(p) = m.

1. Set q1 = 1.
2. For d = 2, 3, . . . , s find qd in Rb,m to minimize SN,s(q1, . . . , qd−1, qd).

Lemma 9. (cf. [11, Lemma 6]) Let P ∗PL denote the polynomial lattice con-
structed by Algorithm 1. Then the worst case error for the approximation
algorithm AN,s,M using P ∗PL satisfies

ewor−app
N,s,M (P ∗PL) ≤

(
1
M

+
C̃s,λ,δM

N1/λ

)1/2

for all λ ∈ (1/α, 1] and δ > 0, where

C̃s,λ,δ :=
1
δ

s∏

j=1

(
1 + (1 + δλ)µ(αλ)γλ

j

)2/λ
.

Proof. We prove by induction that the polynomials q∗1 , . . . , q∗s for a polyno-
mial lattice P ∗PL constructed by Algorithm 1 satisfy, for each d = 1, . . . , s,

SN,d(q∗1 , . . . , q∗d) ≤ C̃d,λ,δN
−1/λ (28)

for all λ ∈ (1/α, 1] and δ > 0. Our proof follows the argument used in the
proofs of [4, Lemma 4] and [11, Lemma 6]. We present here only a skeleton
proof; the technical details can be verified in analogy to [4, 11].
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The d = 1 case can easily be verified. Suppose now that q∗ = (q∗1 , . . . , q∗d) ∈
Rd

b,m is chosen according to Algorithm 1 and that SN,d(q∗) satisfies (28) for
all λ ∈ (1/α, 1] and δ > 0. By separating the kd+1 = 0 and kd+1 6= 0 terms in
(26) (with the dual net D replaced by DPL in (16)), we can write

SN,d+1(q∗, qd+1) = φ(q∗) + θ(q∗, qd+1),

where

φ(q∗) =
∑

hd+1∈N0

r2(α, γd+1, hd+1)
∑

h∈Nd
0

∑

k∈Nd
0\{0}

t̃rm(k)·q∗≡0 (mod p)

r(α, γ, h)r(α, γ,k ⊕ h)

= (1 + µ(2α)γ2
d+1)SN,d(q∗),

and

θ(q∗, qd+1) =
∑

(h,hd+1)∈Nd+1
0

∞∑

kd+1=1

∑

k∈Nd
0

t̃rm(k)·q∗≡−t̃rm(kd+1)·qd+1 (mod p)

r(α, γ, h)r(α, γd+1, hd+1)

×r(α, γd+1, kd+1 ⊕ hd+1)r(α, γ,k ⊕ h).

We choose q∗d+1 to minimize SN,d+1(q∗, qd+1). Then for any λ ∈ (1/α, 1]
we have

θ(q∗, q∗d+1) ≤
(

1
N − 1

∑

qd+1∈Rb,m

(θ(q∗, qd+1))λ

)1/λ

.

After some very long and tedious calculations to estimate this average on
the right hand side, with the aid of Jensen’s inequality and the property
[r(α, γ, hj)]λ = r(αλ, γλ, hj), we finally obtain

θ(q∗, q∗d+1) ≤
(
2µ(αλ)γλ

d+1 + 4(µ(αλ))2γ2λ
d+1

)1/λ
N−1/λ

d∏

j=1

(
1 + µ(αλ)γλ

j

)2/λ
.

Hence it follows from the induction hypothesis that

SN,d+1(q∗, q∗d+1) ≤
((

1 + µ(2α)γ2
d+1

)
+ δ

(
2µ(αλ)γλ

d+1 + 4(µ(αλ))2γ2λ
d+1

)1/λ
)

× δ−1N−1/λ
d∏

j=1

(
1 + (1 + δλ)µ(αλ)γλ

j

)2/λ
.

With some elementary inequalities we can show that the multiplying factor in
the expression above is bounded by (1+(1+δλ)µ(αλ)γλ

d+1)
2/λ. This completes

the proof. 2
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For ε ∈ (0, 1), we choose M = 2ε−2 and N = bm with

m =
⌈

logb

(
C̃s,λ,δM

2
)λ

⌉
.

We have

C̃s,λ,δ ≤ 1
δ

exp

(
2(1 + δλ)µ(αλ)

λ

s∑

j=1

γλ
j

)

= δ−1(s + 1)2(1+δλ)µ(αλ)λ−1 ∑s
j=1 γλ

j / ln(s+1).

Let p∗ = 2max(1/α, sγ). When (10) holds we take λ = p∗/2 = 1 if sγ = 1,
and λ = p∗/2 + δ if sγ < 1. In both cases we have sups≥1 C̃s,λ,δ < ∞ and
N = O(ε−p), with p equal to or arbitrarily close to 2p∗ as δ goes to 0. When
(11) holds but not (10), we have sγ = 1 and we take λ = 1. Then N = O(ε−4)
and C̃s,λ,δ = O(sa), with a arbitrarily close to 2µ(α)` as δ goes to 0. We
summarize the analysis in the following theorem.

Theorem 4. (cf. [11, Theorem 3]) Let P ∗PL be a polynomial lattice constructed
component-by-component by Algorithm 1. For ε ∈ (0, 1) set M = 2ε−2. If (10)
holds, then the approximation algorithm AN,s,M using P ∗PL achieves the worst
case error bound ewor−app

N,s,M (P ∗PL) ≤ ε using N = O(ε−p) function values, with
p equal to or arbitrarily close to

2 pwor−app(Λall).

If (10) does not hold but (11) holds, then the error bound ewor−app
N,s,M (P ∗PL) ≤ ε

is achieved using N = O(saε−4) function values, with a arbitrarily close to
2µ(α)`. The implied factors in the big O-notations are independent of ε and s.

Observe that when (10) holds we have pwor−app(Λall) ≤ 2. Therefore
2 pwor−app(Λall) ≤ pwor−app(Λall) + 2, and we have improved the result in
Theorem 1 using a fully constructive argument.

Remark. (cf. Theorem 1) The exponent of strong tractability in the class Λstd

satisfies
pwor−app(Λstd) ∈ [pwor−app(Λall), 2 pwor−app(Λall)].
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