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1 Introduction

In order to compute a multidimensional integral I(f) =
∫
[0,1]s f(x)dx one

often uses the mean of function evaluations

Q(f) =
1

N

∑

x∈P

f(x)

as an approximation for I(f). Here P is some random or deterministic sam-
ple of N points in the s-dimensional unit cube [0, 1]s. The integration rule
Q(f) is often called a Monte Carlo (MC) or a quasi-Monte Carlo (QMC) al-
gorithm, depending on whether the sample points P are chosen randomly or
deterministically. Many integration error bounds take the form

|I(f) −Q(f)| ≤ V (f)D(P ), (1)

where V (f) is a measure for the variation of the integrand f and D(P ) is a
measure for the non-uniformity for the sample points P . (For example in the
classical Koksma-Hlawka inequality V (f) is the variation of f in the sense of
Hardy and Krause and D(P ) is the star discrepancy of the point set P , see
[5,6,12].)

One very popular measure for the non-uniformity of point sets in the unit cube
is the so-called L2 discrepancy which is in the classical case the L2 norm of the
discrepancy function. Nowadays many error bounds (1) use generalizations of
this classical case. In this paper we consider the weighted L2 discrepancy. This
discrepancy was introduced by Sloan and Woźniakowski [18] with the aim to
give an error estimate of the form (1) which takes imbalances in the “impor-
tance” of the projections of the integrand into account. Before we give the
definition of the weighted L2 discrepancy we have to introduce some notation.

Let D denote the index set D = {1, . . . , s}. For u ⊆ D let γu be a non-negative
real number, |u| the cardinality of u and for a vector x ∈ [0, 1)s let xu denote
the vector from [0, 1)|u| containing all components of x whose indices are in
u. Further let dxu =

∏
j∈u

dxj and let (xu, 1) be the vector from [0, 1)s with
all components whose indices are not in u replaced by 1. For any N points
x0, . . . ,xN−1 in [0, 1)s and any z = (z1, . . . , zs) in [0, 1]s let

disc(z) :=
#{i : xi ∈ [0, z)}

N
− z1 · · · zs.

Then the weighted L2 discrepancy L2,N,γ of the point set PN = {x0, . . . ,xN−1}
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is defined as (see [18])

L2,N,γ(PN) =



∑

u⊆D
u6=∅

γu

∫

[0,1]|u|
disc((xu, 1))2dxu




1/2

. (2)

Note that for γD = 1 and γu = 0 for all u ⊂ D we obtain the classical L2

discrepancy. The weighted L2 discrepancy is intimately related to the worst
case error of multivariate integration in weighted Sobolev spaces of functions
on [0, 1]s. For more information in this direction we refer to the paper of Sloan
and Woźniakowski [18].

There is a well known formula for the classical L2 discrepancy due to Warnock
[20], which can easily be generalized to obtain a formula for the weighted L2

discrepancy (see [9] or [10]).

Proposition 1 Let PN = {x0, . . . ,xN−1} be a point set in [0, 1)s. Then we
have

L2
2,N,γ(PN) =

∑

u⊆D
u 6=∅

γu


 1

3|u|
− 2

N

N−1∑

n=0

∏

j∈u

1 − x2
n,j

2
+

1

N2

N−1∑

n,h=0

∏

j∈u

min(1 − xn,j, 1 − xh,j)


 ,

where xn,j is the j-th component of the point xn.

Currently the most effective constructions of point sets with good equidistri-
bution properties are based on the concept of (t,m, s)-nets in a base b, see
[11,12]. In practise all concrete constructions of (t,m, s)-nets in a base b are
based on a general construction scheme which is the concept of digital nets,
see [7,8,11,12]. See also [13] for a very recent survey article. Here in this paper
we only deal with the case where b = p is a prime number. In the following
let Zp denote the finite field with p elements, p ≥ 2 a prime number.

Definition 1 Let s ≥ 1, m ≥ 1 and 0 ≤ t ≤ m be integers. Choose s
m×m matrices C1, . . . , Cs over Zp with the following property: for any integers
d1, . . . , ds ≥ 0 with d1 + · · ·+ ds = m− t the system of the

first d1 rows of C1, together with the
...

first ds−1 rows of Cs−1, together with the
first ds rows of Cs

is linearly independent over Zp. Consider the following construction principle
for point sets consisting of pm points in [0, 1)s: represent n, 0 ≤ n < pm, in
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base p, n = n0 +n1p+ · · ·+nm−1p
m−1, and multiply the matrix Cj, 1 ≤ j ≤ s,

with the vector ~n = (n0, . . . , nm−1)
> of digits of n in Zp,

Cj~n =: (y
(j)
1 (n), . . . , y(j)

m (n))> ∈ Z
m
p .

Now we set

x(j)
n :=

y
(j)
1 (n)

p
+ · · ·+ y(j)

m (n)

pm
and xn = (x(1)

n , . . . , x(s)
n ).

The point set {x0, . . . ,xpm−1} is called a digital (t,m, s)-net over Zp and the
matrices C1, . . . , Cs are called the generating matrices of the digital net.

The quality of a (digital) (t,m, s)-net is expressed by the so-called quality
parameter t ∈ {0, 1, . . . , m}. Small values of t imply strong distribution prop-
erties of the net. However, the optimal value t = 0 is not possible for arbi-
trary choices of m, p and s. Note that it follows from Definition 1 that any
d-dimensional projection, 1 ≤ d ≤ s, of a digital (t,m, s)-net over Zp is a
digital (t,m, d)-net over Zp.

For practical applications it is often useful to have a random element in the
point set used (see [10]). On the other hand we wish to preserve the struc-
ture and distribution properties which a point set already has. That is in this
case, we wish to randomize a (t,m, s)-net such that the resulting point set
is again a (t,m, s)-net with the same quality parameter t. Several random-
ization methods for (t,m, s)-nets have been introduced (see [10,14,21]). The
randomization method considered in this paper is a digital shift of depth m
(see also [4,10]) and a simplified version of such a shift which is more useful
for practical applications. Previously, the expected value of the weighted L2

discrepancy of digitally shifted digital (t,m, s)-nets over Z2 has been analyzed
in [4].

The aim of this paper is to generalize the results from [4] to digital nets
over Zp, where p is a prime number and to show that similar results hold
for the simplified digital shift. We succeed in generalizing the formula for the
mean square weighted L2 discrepancy in [4] to arbitrary prime bases p (see
Theorem 1) and to show that an analogous formula holds for the simplified
version of a shift of depth m. We then use these results to obtain an upper
bound on the mean square weighted L2 discrepancy (see Theorem 2). Note
that by a lower bound on the L2 discrepancy of Roth [17] it follows that the
L2 discrepancy of any point set in the s dimensional unit cube must be at least
of order (logN)(s−1)/2N−1, where N is the number of points. As in [4] we also
obtain this convergence rate for digital (t,m, s)-nets over Zp. On the other
hand we are also interested in how the constant A(p) of the leading term, that
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is,

A(p) := lim sup
m→∞

pm
√

E(|L2
2,pm(Ppm)|)

(log pm)(s−1)/2
(3)

behaves for various choices of p. This is investigated in Section 4. It is generally
believed that using p = 2 yields the best results. This is also verified by our
calculations here. In particular we consider the Hammersley net. In this special
case we are able to calculate A(p) exactly which shows that the constant in
the leading term is of order O(p(log p)−1/2) and hence we obtain the smallest
constant when p = 2. For the general case we can only obtain an upper
bound, again with the constant of the leading term growing in p and with the
smallest value obtained for p = 2. On the other hand it is conceivable that
smaller constants can be obtained using digital nets with higher bases, but
until now no such bound has been proven.

In the following we introduce the digital shift of depth m for the one dimen-
sional case. For higher dimensions each coordinate is randomized indepen-
dently and therefore one just needs to apply the one dimensional randomiza-
tion method to each coordinate independently.

Let the point set Ppm = {x0, . . . , xpm−1} be a digital (t,m, 1)-net over Zp

generated by the matrix C. Let

xn =
xn,1

p
+
xn,2

p2
+ · · ·+ xn,m

pm

be the p-adic digit expansion of xn.

Now we choose the digits σ1, . . . , σm ∈ {0, 1, . . . , p− 1} i.i.d.. Then we define

zn,i ≡ xn,i + σi (mod p) for i = 1, . . . , m

with zn,i ∈ {0, 1, . . . , p − 1}. Further, for n = 0, . . . , pm − 1, we choose δn ∈
[0, 1

pm ) i.i.d.. Then the randomized point set P̃pm = {z0, . . . , zpm−1} is given by

zn =
zn,1

p
+ · · · + zn,m

pm
+ δn.

This means that we apply the same digital shift to the first m digits, whereas
the following digits are shifted independently for each xn. Therefore we call it
a digital shift of depth m (see again [10]).

Sometimes we will write digital shift or simply shift instead of digital shift of
depth m. When we use a digital shift of depth m′ in conjunction with digital
(t,m, s)-nets we always assume that m′ = m.

Further we introduce the simplified version of a digital shift of depth m. With
the notations from above the randomized point set P̂pm = {z0, . . . , zpm−1} is
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given by

zn =
zn,1

p
+ · · · + zn,m

pm
+

1

2pm
.

This means we apply the same digital shift to the first m digits and then we
add to each point the quantity 1/(2pm). Geometrically this means that the
randomized points are no longer on the left boundary of intervals [a/pm, (a+
1)/pm) but they are moved to the midpoints of such intervals. Note that for
the simplified digital shift we only have pm possibilities which means a very
strong de-randomization compared to the shift of depth m.

For arbitrary s ≥ 1 it can be shown that a (t,m, s)-net in base p randomized
by a digital shift of depth m or a simplified digital shift independently in each
coordinate is again a (t,m, s)-net in base p with the same quality parameter
t. As the result is not essential for the following we omit the proof. Similar
results have been shown before (see for example [3,14]).

2 Walsh functions and their connection to digital nets

In this section we recall the definition of Walsh functions, which will be the
main tool in our analysis of the mean square weighted L2 discrepancy. We
confine ourselves to prime-base p. In the following let N0 denote the set of
non-negative integers and T = {z ∈ C : |z| = 1} the unit circle in the complex
plane.

Definition 2 For a non-negative integer k with base p representation

k = κa−1p
a−1 + · · ·+ κ1p+ κ0,

with κi ∈ {0, 1, . . . , p − 1}, we define the Walsh function pwalk : [0, 1) −→ T

by

pwalk(x) := e
2πi
p

(x1κ0+···+xaκa−1),

for x ∈ [0, 1) with base p representation x = x1

p
+ x2

p2 + · · · (unique in the sense

that infinitely many of the xi must be different from p− 1).

Definition 3 For dimension s ≥ 2, x1, . . . , xs ∈ [0, 1) and k1, . . . , ks ∈ N0 we
define pwalk1,...,ks : [0, 1)s −→ T by

pwalk1,...,ks(x1, . . . , xs) :=
s∏

j=1

pwalkj
(xj).

For vectors k = (k1, . . . , ks) ∈ Ns
0 and x = (x1, . . . , xs) ∈ [0, 1)s we write

pwalk(x) :=p walk1,...,ks(x1, . . . , xs).
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Throughout the paper we will use Walsh functions in base p, hence we shall
often write wal instead of pwal.

We introduce some notations. By ⊕ we denote the digit-wise addition modulo
p and by 	 the digit-wise subtraction modulo p , i.e., for x =

∑∞
i=w

xi

pi and
y =

∑∞
i=w

yi

pi for some integer w we have

x⊕ y :=
∞∑

i=w

zi

pi
, where zi ≡ xi + yi (mod p),

x	 y :=
∞∑

i=w

zi

pi
, where zi ≡ xi − yi (mod p).

Correspondingly we define 	y :=
∑∞

i=w
zi

pi , where zi ≡ −yi (mod p).

In the following proposition we summarize some basic properties of Walsh
functions. For more information see [2,15,16,19].

Proposition 2 (1) For all k, l ∈ N0 and all x, y ∈ [0, 1), with the restriction
that if x, y are not p-adic rationals then x⊕y is not allowed to be a p-adic
rational, we have

walk(x) · wall(x) = walk⊕l(x), walk(x) · walk(y) = walk(x⊕ y),

walk(x) · wall(x) = walk	l(x), walk(x) · walk(y) = walk(x	 y).

(2) We have

∫ 1

0
wal0(x)dx = 1 and

∫ 1

0
walk(x)dx = 0 if k > 0.

(3) For all k, l ∈ Ns
0 we have the following orthogonality properties:

∫

[0,1]s
walk(x)wall(x)dx =





1 if k = l,

0 otherwise.

(4) For any f ∈ L2([0, 1)s) and any σ ∈ [0, 1)s we have

∫

[0,1]s
f(x)dx =

∫

[0,1]s
f(x ⊕ σ)dx.

(5) For any integer s ≥ 1 the system {walk1,...,ks : k1, . . . , ks ≥ 0} is a complete
orthonormal system in L2([0, 1]s).

Proof. The proofs of (1)-(3) are straightforward, or see [15]. For item (4) see
[2, Lemma 1] or [15, Corollary 4] and for item (5) see [2] or [15, Satz 1]. 2
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Let {x0, . . . ,xpm−1} be a digital net over Zp generated by the m×m matrices
C1, . . . , Cs over Zp. For xn = (xn,1, . . . , xn,s) and xn,j = xn,j,1

p
+ · · · + xn,j,m

pm ,
1 ≤ j ≤ s, 0 ≤ n < pm, we identify xn with

(xn,1,1, . . . , xn,1,m, . . . , xn,s,1, . . . , xn,s,m) ∈ Z
ms
p

and define

xn ⊕ xh := (xn,1,1 + xh,1,1, . . . , xn,s,m + xh,s,m) ∈ Z
ms
p . (4)

The subsequent lemma follows easily from the construction of digital nets.

Lemma 1 Any digital net {x0, . . . ,xpm−1} over Zp is a subgroup of (Zms
p ,⊕).

The following lemma will be very useful for our investigation.

Lemma 2 Let {x0, . . . ,xpm−1} be a digital (t,m, s)-net over Zp generated by
the m×m matrices C1, . . . , Cs over Zp. Then for all integers 0 ≤ k1, . . . , ks <
pm we have

pm−1∑

n=0

walk1,...,ks(xn) =




pm if C>

1
~k1 + · · · + C>

s
~ks = ~0,

0 otherwise,

where for 0 ≤ k < pm with k = κ0 + κ1p + · · · + κm−1p
m−1 we write ~k =

(κ0, . . . , κm−1)
> ∈ Zm

p and ~0 denotes the zero vector in Zm
p .

Proof. See [3, Lemma 2]. 2

3 On the mean square weighted L2 discrepancy of randomized nets

In the following subsection we prove a formula for the mean square weighted
L2 discrepancy of randomized digital nets. This formula depends on the gen-
erating matrices of the digital net. We remark that it is possible to prove a
similar formula for more general L2 discrepancies as for example the weighted
anchored L2 discrepancy with anchor c ∈ [0, 1]s. But for simplicity we restrict
ourselves to the case c = (1, . . . , 1) here.

3.1 A formula for the mean square weighted L2 discrepancy of randomized
nets

The aim of this subsection is to prove the following theorem.
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Theorem 1 Let Ppm be a digital (t,m, s)-net over Zp with generating matrices
C1, . . . , Cs.

(i) Let P̃pm be the point set obtained after applying an i.i.d. random digital
shift of depth m independently to each coordinate of each point of Ppm.
Then the mean square weighted L2 discrepancy of P̃pm is given by

E[L2
2,pm,γ(P̃pm)] =

∑

u⊆D

u6=∅

γu


 1

pm · 2|u|


1 −

(
1 − 1

3 · pm

)|u|

+

1

3|u|
∑

v⊆u

v6=∅

(
3

2

)|v|

B(v)


,

where for v = {v1, . . . , ve} we have

B(v) =
pm−1∑

k1,...,ke=1

C>
v1

~k1+···+C>
ve

~ke=~0

e∏

j=1

ψ(kj),

with

ψ(k) = − 1

p2(r+1)

(
1

3
− 1

sin2(κrπ/p)

)

and r = r(k) is such that pr(k) ≤ k < pr(k)+1 and κr is the most significant
bit in the p-adic representation of k.

(ii) Let P̂pm be the point set obtained after applying a simplified i.i.d. random
digital shift independently to each coordinate of each point of Ppm . Then
the mean square weighted L2 discrepancy of P̂pm is given by

E[L2
2,pm,γ(P̂pm)] =

∑

u⊆D
u6=∅

γu


2


 1

3|u|
−
(

1

3
+

1

24 · p2m

)|u|



+
1

pm · 2|u|


1 −

(
1 − 1

3 · pm

)|u|

+

1

3|u|
∑

v⊆u

v6=∅

(
3

2

)|v|

B(v)


,

where B(v) is as in (i).

From this theorem we immediately obtain

Corollary 1 Let Ppm be a digital (t,m, s)-net over Zp. Let P̃pm be the point set
obtained after applying an i.i.d. random digital shift of depth m independently
to each coordinate of each point of Ppm and let P̂pm be the point set obtained
after applying an simplified i.i.d. random digital shift independently to each
coordinate of each point of Ppm. Then we have

E[L2
2,pm,γ(P̂pm)] ≤ E[L2

2,pm,γ(P̃pm)].
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The proof of Theorem 1 is based on the Walsh series representation of the
formula for the L2 discrepancy given in Proposition 1. As we shall see later,
the function ψ in the theorem above is related to Walsh coefficients of a
certain function appearing in the formula for the L2 discrepancy. We need
several lemmas.

Lemma 3 Let x1, x2 ∈ [0, 1) and let z1, z2 ∈ [0, 1) be the points obtained after
applying an i.i.d. random digital shift of depth m to x1 and x2. Then we have

E[walk(z1)wall(z2)] =





walk(x1 	 x2) if 0 ≤ k = l < pm,

0 otherwise.

Proof. The proof follows exactly the lines of the proof of [4, Lemma 3] with
the dyadic expansions replaced by p-adic expansions. 2

In the following lemma we calculate Walsh coefficients of the function |z1 −
z2|. This function appears in the formula for the L2 discrepancy through the
equation min(z1, z2) = 1

2
(z1 + z2 − |z1 − z2|).

Lemma 4 Let z1, z2 ∈ [0, 1). We have

|z1 − z2| =
∞∑

k,l=0

τ(k, l)walk(z1)wall(z2),

where τ(0) := τ(0, 0) = 1
3

and τ(k) := τ(k, k) = 1
p2(r+1)

(
1
3
− 1

sin2(κrπ/p)

)
for

k > 0. For k > 0, r(k) denotes the unique integer r such that pr ≤ k < pr+1.

Proof. As |z1−z2| ∈ L2([0, 1]2) it follows from Proposition 2 that the function
|z1 − z2| can be represented by its Walsh series. We have

τ(k, l) =
∫ 1

0

∫ 1

0
|z1 − z2|walk(z1)wall(z2)dz1dz2.

For the evaluation of this integral for k = l see [3, Appendix A]. 2

Lemma 5 Let x1, x2 ∈ [0, 1) and let z1, z2 ∈ [0, 1) be the points obtained after
applying an i.i.d. random digital shift of depth m to x1 and x2.

(1) We have

E[z1] =
1

2
and E[z2

1 ] =
1

3
.

(2) We have

E[|z1 − z2|] =
pm−1∑

k=0

τ(k)walk(x1 	 x2),

where τ(0) = 1
3

and τ(k) = 1
p2(r+1)

(
1
3
− 1

sin2(κrπ/p)

)
for k > 0. For k > 0,

r(k) denotes the unique integer r such that pr ≤ k < pr+1.
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(3) We have

E[min(1 − z1, 1 − z2)] =
1

2


1 −

pm−1∑

k=0

τ(k)walk(x1 	 x2)


 .

Proof. (1) The proof of these two formulae is straightforward.
(2) In Lemma 4 it was shown that

|z1 − z2| =
∞∑

k,l=0

τ(k, l)walk(z1)wall(z2),

where

τ(k) = τ(k, k) =
1

p2(r+1)

(
1

3
− 1

sin2(κrπ/p)

)
,

for k > 0 and τ(0, 0) = 1
3
. (We do not need to know τ(k, l) for k 6= l

for our purposes here.) The result now follows from the linearity of the
expectation value and Lemma 3.

(3) This result follows from items (1) and (2) together with the formula

min(z1, z2) =
1

2
(z1 + z2 − |z1 − z2|).

2

We are now ready to prove Theorem 1.

Proof of Theorem 1. First we prove the formula for the case that the ran-
domization method is the digital shift of depth m. Let P̃pm = {z0, . . . , zpm−1}
and zn = (zn,1, . . . , zn,s). From Proposition 1, Lemma 5 and the linearity of
expectation we get

E[L2
2,pm,γ(P̃pm)]=

∑

u⊆D
u6=∅

γu


 1

3|u|
− 2

pm

pm−1∑

n=0

∏

j∈u

1 − E[z2
n,j]

2

+
1

p2m

pm−1∑

n,h=0

∏

j∈u

E[min(1 − zn,j, 1 − zh,j)]




=
∑

u⊆D

u6=∅

γu

[
− 1

3|u|
+

1

p2m

pm−1∑

n=0

∏

j∈u

E[1 − zn,j]

+
1

p2m

pm−1∑

n,h=0
n6=h

∏

j∈u

E[min(1 − zn,j, 1 − zh,j)]

]
.

Now we use Lemma 5 again to obtain
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E[L2
2,pm,γ(P̃pm)]=

∑

u⊆D
u6=∅

γu


− 1

3|u|
+

1

pm

1

2|u|

+
1

p2m

pm−1∑

n,h=0
n6=h

∏

j∈u

1

2


1 −

pm−1∑

k=0

τ(k)walk(xn,j 	 xh,j)




.

We have

∏

j∈u


1 −

pm−1∑

k=0

τ(k)walk(xn,j 	 xh,j)


 = 1 +

∑

w⊆u

w6=∅
w={w1,...,wd}

(−1)|w|×

pm−1∑

k1=0

· · ·
pm−1∑

kd=0

τ(k1) · · · τ(kd)walk1,...,kd
(xn,w1 	 xh,w1, . . . , xn,wd

	 xh,wd
).

Thus

E[L2
2,pm,γ(P̃pm)]=

∑

u⊆D

u6=∅

γu

[
− 1

3|u|
+

1

pm

1

2|u|
+

1

p2m

pm−1∑

n,h=0
n6=h

1

2|u|

+
1

2|u|
1

p2m

pm−1∑

n,h=0
n6=h

∑

w⊆u

w6=∅
w={w1,...,wd}

(−1)d ×

pm−1∑

k1=0

· · ·
pm−1∑

kd=0

d∏

i=1

τ(ki)walki
(xn,wi

	 xh,wi
)

]
.

We have

pm−1∑

k=0

τ(k) =
1

3
+

m−1∑

r=0

pr+1−1∑

k=pr

1

p2(r+1)

(
1

3
− 1

sin2(κrπ/p)

)

=
1

3
+

m−1∑

r=0

1

pr+2

p−1∑

a=1

(
1

3
− 1

sin2(aπ/p)

)
.

We evaluate the second sum in the above expression. In [3, Appendix C] it
was shown that

p−1∑

a=1

1

sin2(aπ/p)
=
p2 − 1

3
.

Hence we get
pm−1∑

k=0

τ(k) =
1

3 · pm
.

Therefore,

12



∑

w⊆u

w6=∅

(−1)|w|
pm−1∑

k1,...,k|w|=0

|w|∏

i=1

τ(ki) =
∑

w⊆u

w6=∅

(
− 1

3 · pm

)|w|

=
|u|∑

r=1

(
|u|
r

)(
− 1

3 · pm

)r

=

(
1 − 1

3 · pm

)|u|

− 1.

Now we add and substract this in the above expression in order to obtain

E[L2
2,pm,γ(P̃pm)]

=
∑

u⊆D

u6=∅

γu

[
1

2|u|
− 1

3|u|
+


1 −

(
1 − 1

3 · pm

)|u|

 1

pm

1

2|u|

+
1

2|u|
1

p2m

pm−1∑

n,h=0

∑

w⊆u

w6=∅
w={w1,...,wd}

(−1)d
pm−1∑

k1,...,kd=0

d∏

i=1

τ(ki)walki
(xn,wi

	 xh,wi
)

]
.

Since τ(0) = 1
3

we have

1

p2m

1

2|u|

pm−1∑

n,h=0

∑

w⊆u

w6=∅

(−1)|w|τ(0)|w| =
1

3|u|
− 1

2|u|
.

Hence

E[L2
2,pm,γ(P̃pm)]

=
∑

u⊆D
u6=∅

γu

[
1

2|u|
− 1

3|u|
+


1 −

(
1 − 1

3 · pm

)|u|

 1

pm

1

2|u|
+

1

3|u|
− 1

2|u|

+
1

2|u|
1

p2m

∑

w⊆u

w6=∅
w={w1,...,wd}

(−1)d
pm−1∑

k1,...,kd=0

(k1,...,kd)6=(0,...,0)

pm−1∑

n,h=0

d∏

i=1

τ(ki)walki
(xn,wi

	 xh,wi
)

]
.

From the group structure of digital nets (see Lemma 1) and from Lemma 2
it follows that for any digital net {x0, . . . ,xpm−1} generated by the m × m
matrices C1, . . . , Cs, we have

1

p2m

pm−1∑

n,h=0

walk1,...,ks(xn 	 xh) =
1

pm

pm−1∑

n=0

walk1,...,ks(xn)

=





1 if C>
1
~k1 + · · ·+ C>

s
~ks = ~0,

0 otherwise.
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Since we have that the d-dimensional projection of a digital (t,m, s)-net is
again a digital (t,m, d)-net (see Introduction) we get (with w = {w1, . . . , wd})

pm−1∑

k1,...,kd=0

(k1,...,kd)6=(0,...,0)

pm−1∑

n,h=0

d∏

j=1

τ(kj)walkj
(xn,wj

	 xh,wj
)

= p2m
pm−1∑

k1,...,kd=0

(k1,...,kd)6=(0,...,0)

C>
w1

~k1+···+C>
wd

~kd=~0

d∏

i=1

τ(ki)

= p2m
∑

v⊆w

v6=∅
v={v1,...,ve}

1

3|w|−|v|

pm−1∑

k1,...,ke=1

C>
v1

~k1+···+C>
ve

~ke=~0

e∏

j=1

τ(kj).

As
∏e

j=1 τ(kj) = (−1)e∏e
j=1 ψ(kj) we have

pm−1∑

k1,...,kd=0

(k1,...,kd)6=(0,...,0)

pm−1∑

n,h=0

d∏

j=1

τ(kj)walkj
(xn,wj

	 xh,wj
) =

p2m

3|w|

∑

v⊆w

v6=∅

(−3)|v|B(v).

Thus we obtain

E[L2
2,pm,γ(P̃pm)]=

∑

u⊆D
u6=∅

γu

[
1

pm · 2|u|


1 −

(
1 − 1

3 · pm

)|u|



+
1

2|u|
∑

w⊆u

w6=∅

(
−1

3

)|w| ∑

v⊆w

v6=∅

(−3)|v|B(v)

]
.

Let now u, v, with ∅ 6= v ⊆ u ⊆ D, be fixed. Then v ⊆ w ⊆ u is equivalent to
(w \ v) ⊆ (u \ v), provided that v ⊆ w. Therefore, for |v| ≤ w ≤ |u|, there are(
|u|−|v|
w−|v|

)
sets w such that |w| = w and v ⊆ w ⊆ u. Hence

∑

w⊆u

w6=∅

(
−1

3

)|w| ∑

v⊆w

v6=∅

(−3)|v|B(v) =
∑

v⊆u

v6=∅

|u|∑

w=|v|

(
|u| − |v|
w − |v|

)(
−1

3

)w

(−3)|v|B(v)

=
∑

v⊆u

v6=∅

|u|−|v|∑

w=0

(
|u| − |v|

w

)(
−1

3

)w

B(v)

=
∑

v⊆u

v6=∅

(
2

3

)|u|−|v|

B(v)

and the first result follows.
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It remains to prove the formula for the mean square weighted L2 discrep-
ancy for the case that the randomization method is a simplified digital shift.
Trivially we have

pm
∫ 1/pm

0
[1 − (xn,j + δn)] dδn = 1 −

(
xn,j +

1

2 · pm

)
.

For 1 ≤ j ≤ s the j-th components of the points xn ∈ Ppm are a 1-dimensional
digital net and hence their base p representation has at most m digits unequal
zero. Therefore if xn,j > xh,j then we have xn,j + δn > xh,j + δh for arbitrary
δn, δh ∈ [0, 1/pm). Hence we obtain

p2m
∫ 1/pm

0

∫ 1/pm

0
min(1 − (xn,j + δn), 1 − (xh,j + δh))dδndδh =

min

(
1 −

(
xn,j +

1

2 · pm

)
, 1 −

(
xh,j +

1

2 · pm

))
.

Further we have

pm
∫ 1/pm

0

1 − (xn,j + δn)2

2
dδn =

1

2


1 −

(
xn,j +

1

2 · pm

)2

− 1

24 · p2m
.

Now the result follows from these considerations together with Proposition 1
and the first part of this proof. 2

3.2 An upper bound on the mean square weighted L2 discrepancy of random-
ized digital (t,m, s)-nets over Zp

In this subsection we derive an upper bound on the formulas shown in The-
orem 1. Due to Corollary 1 it is enough to consider in the following only the
case that the randomization method is a digital shift of depth m. We have the
following theorem.

Theorem 2 Let Ppm be a digital (t,m, s)-net over Zp with t < m. Let P̃pm be
the point set obtained after applying an i.i.d. random digital shift of depth m
independently to each coordinate of each point of Ppm . Then the mean square
weighted L2 discrepancy of P̃pm is bounded by

E[L2
2,pm,γ(P̃pm)]≤ 1

p2m

∑

u⊆D

u6=∅

γu


1

6
+ p2t

(
p2 − p+ 3

6

)|u|

(m− t)|u|−1


 .
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For p = 2 we can recover the result in [4] with the above theorem. Note that
using so-called digital sequences (see [12]) it follows that for fixed s and p there
always exists a digital (t,m, s)-net over Zp, where t ≤ T (s, p) is bounded for
some natural number T (s, p) independent of m, and m can be chosen arbitrar-
ily large. Hence the above theorem shows that we can obtain a convergence
rate of the root mean square L2 discrepancy of O((log pm)(s−1)/2p−m).

Further the upper bound is better for smaller p, hence it is best for p = 2. This
supports the belief that nets in base 2 yield the best distribution properties.

We need two lemmas for the proof of the above theorem.

Lemma 6 For any real number b > 1 and any integers k, t0 > 0, we have

∞∑

t=t0

(
t+ k − 1

k − 1

)
b−t ≤ b−t0

(
t0 + k − 1

k − 1

)(
1 − 1

b

)−k

.

Proof. See [4] or [10]. 2

Lemma 7 Let C1, . . . , Cs be the generating matrices of a digital (t,m, s)-net
over Zp. Further define B as in Theorem 1. Then for any v ⊆ D we have

B(v) ≤ p2t

p2m

(
p3

3(p+ 1)

)|v| (
m− t+

1

p3

)|v|−1

.

Proof. To simplify the notation we show the result only for v = {1, . . . , s}.
The other cases follow by the same arguments. We have, for kj = kj,0 +kj,1p+
· · ·+ kj,rj

prj and kj,rj
6= 0, j = 1, 2, . . . , s,

B({1, . . . , s})

=
pm−1∑

k1=1

. . .
pm−1∑

ks=1︸ ︷︷ ︸
C>

1
~k1+···+C>

s
~ks=~0

s∏

j=1

1

p2(rj+1)

(
1

sin2(kj,rj
π/p)

− 1

3

)

=
1

p2s

m−1∑

r1,...,rs=0

1

p2(r1+···+rs)

pr1+1−1∑

k1=pr1

. . .
prs+1−1∑

ks=prs

︸ ︷︷ ︸
C>

1
~k1+···+C>

s
~ks=~0

s∏

j=1

(
1

sin2(kj,rj
π/p)

− 1

3

)
. (5)

For 1 ≤ j ≤ s and 1 ≤ i ≤ m let ~c >
j,i denote the i-th row vector of the matrix

Cj. Hence the condition in our sum (5) can be written as
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~c1,1k1,0 + · · ·+ ~c1,r1k1,r1−1 + ~c1,r1+1k1,r1+

~c2,1k2,0 + · · ·+ ~c2,r2k2,r2−1 + ~c2,r2+1k2,r2+
... (6)

~cs,1ks,0 + · · ·+ ~cs,rsks,rs−1 + ~cs,rs+1ks,rs =~0.

Since by the digital (t,m, s)-net property (see Definition 1) the vectors

~c1,1, . . . ,~c1,r1+1, . . . ,~cs,1, . . . ,~cs,rs+1

are linearly independent as long as (r1 + 1) + · · ·+ (rs + 1) ≤ m− t, we must
have

r1 + · · ·+ rs ≥ m− t− s+ 1. (7)

Let now A denote the m× (r1 + · · ·+rs) matrix with the column vectors given
by ~c1,1, . . . ,~c1,r1, . . . ,~cs,1, . . . ,~cs,rs, i.e.,

A := (~c1,1, . . . ,~c1,r1, . . . ,~cs,1, . . . ,~cs,rs).

Further let

~fk1,r1 ,...,ks,rs
:= −(~c1,r1+1k1,r1 + . . .+ ~cs,rs+1ks,rs) ∈ Z

m
p

and
~k := (k1,0, . . . , k1,r1−1, . . . , ks,0, . . . , ks,rs−1)

> ∈ Z
r1+···+rs
p .

Then the linear equation system (6) can be written as

A~k = ~fk1,r1 ,...,ks,rs
(8)

and hence

pr1+1−1∑

k1=pr1

. . .
prs+1−1∑

ks=prs

︸ ︷︷ ︸
C>

1
~k1+···+C>

s
~ks=~0

s∏

j=1

(
1

sin2(kj,rj
π/p)

− 1

3

)

=
p−1∑

k1,r1 ,...,ks,rs=1

s∏

j=1

(
1

sin2(kj,rj
π/p)

− 1

3

) ∑

~k∈Z
r1+···+rs
p

A~k=~fk1,r1
,...,ks,rs

1

=
p−1∑

k1,r1 ,...,ks,rs=1

s∏

j=1

(
1

sin2(kj,rj
π/p)

− 1

3

)
#{~k ∈ Z

r1+···+rs

p : A~k = ~fk1,r1 ,...,ks,rs
}.

By the definition of the matrix A and since C1, . . . , Cs are the generating
matrices of a digital (t,m, s)-net over Zp we have

rank(A) =




r1 + · · · + rs if r1 + · · ·+ rs ≤ m− t,

≥ m− t else.
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Let L denote the linear space of solutions of the homogeneous system A~k = ~0
and let dim(L) denote the dimension of L. Then it follows that

dim(L) =





0 if r1 + · · ·+ rs ≤ m− t,

≤ r1 + · · · + rs −m + t else.

Hence if r1+· · ·+rs ≤ m−t we find that the system (8) has at most 1 solution
and if r1 + · · ·+ rs > m− t the system (8) has at most pr1+···+rs−m+t solutions,
i.e.,

pr1+1−1∑

k1=pr1

. . .
prs+1−1∑

ks=prs

︸ ︷︷ ︸
C>

1
~k1+···+C>

s
~ks=~0

s∏

j=1

(
1

sin2(kj,rj
π/p)

− 1

3

)

≤
p−1∑

k1,r1 ,...,ks,rs=1

s∏

j=1

(
1

sin2(kj,rj
π/p)

− 1

3

)

×





1 if r1 + · · · + rs ≤ m− t,

pr1+···+rs−m+t if r1 + · · · + rs > m− t.

In [3, Appendix C] it is shown that
∑p−1

k=1
1

sin2(kπ/p)
= p2−1

3
. Therefore together

with condition (7) we obtain

B({1, . . . , s}) ≤ 1

p2s

(
p2 − p

3

)s m−1∑

r1,...,rs=0
m−t−s+1≤r1+···+rs≤m−t

1

p2(r1+···+rs)
+

+
1

p2s

(
p2 − p

3

)s m−1∑

r1,...,rs=0
r1+···+rs>m−t

1

p2(r1+···+rs)
pr1+···+rs−m+t

=: Σ1 + Σ2. (9)

Now we have to estimate the sums Σ1 and Σ2. First we have

Σ2 =

(
p− 1

3p

)s
pt

pm

s(m−1)∑

l=m−t+1

1

pl

m−1∑

r1,...,rs=0
r1+···+rs=l

1

≤
(
p− 1

3p

)s
pt

pm

∞∑

l=m−t+1

(
l + s− 1

s− 1

)
1

pl
,

where we used the fact that for fixed l the number of non-negative integer
solutions of r1 + · · ·+ rs = l is given by

(
l+s−1
s−1

)
. Now we apply Lemma 6 and

obtain
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Σ2 ≤
(
p− 1

3p

)s
pt

pm

1

pm−t+1

(
m− t + s

s− 1

)(
p− 1

p

)−s

=
1

3s

p2t

p2m

1

p

(
m− t+ s

s− 1

)
. (10)

Finally, since

(
m− t + s

s− 1

)
=

(m− t + 2)(m− t+ 3) · · · (m− t + s)

1 · 2 · · · (s− 1)
≤ (m− t + 2)s−1,

we obtain

Σ2 ≤
1

3s

p2t

p2m

1

p
(m− t + 2)s−1.

Now we estimate Σ1. If m−t ≥ s−1 we proceed similarly to above and obtain

Σ1 =

(
p− 1

3p

)s m−t∑

l=m−t−s+1

(
l + s− 1

s− 1

)
1

p2l

≤
(
p− 1

3p

)s
1

p2(m−t−s+1)

(
m− t

s− 1

)(
1 − 1

p2

)−s

=
1

3s

p3s

(p+ 1)s

p2t

p2m

1

p2

(
m− t

s− 1

)
(11)

≤ 1

3s

p3s

(p+ 1)s

p2t

p2m

1

p2

(m− t)s−1

(s− 1)!
.

For this case we obtain

B({1, . . . , s})

≤
(

p3

3(p+ 1)

)s
p2t

p2m

(
1

p2

(m− t)s−1

(s− 1)!
+

1

p

(p+ 1)s

p3s
(m− t+ 2)s−1

)

=
p3s

3s(p+ 1)s

p2t

p2m


 1

p2

(m− t)s−1

(s− 1)!
+
p+ 1

p4

(
p + 1

p3
(m− t) +

2(p+ 1)

p3

)s−1

 .

As p+1
p3 (m− t) + 2(p+1)

p3 ≤ m− t+ 1
p3 provided that m− t > 0 we have

B({1, . . . , s}) ≤ p2t

p2m
· p3s

3s (p+ 1)s

(
m− t+

1

p3

)s−1

which is the desired bound.

Now we consider the case where m− t < s− 1. We have
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Σ1 =

(
p− 1

3p

)s m−t∑

l=0

(
l + s− 1

s− 1

)
1

p2l

≤
(
p− 1

3p

)s ∞∑

l=0

(
l + s− 1

s− 1

)
1

p2l

=
1

3s

ps

(p+ 1)s
≤ 1

p4

p3s

3s(p+ 1)s

p2t

p2m
. (12)

Thus we obtain

B({1, . . . , s})

≤ 1

p4

p3s

3s(p+ 1)s

p2t

p2m
+

1

3s

p2t

p2m

1

p
(m− t + 2)s−1

=
p3s

3s(p+ 1)s

p2t

p2m


 1

p4
+
p+ 1

p4

(
p + 1

p3
(m− t) +

2(p+ 1)

p3

)s−1

 .

The result now follows using the same arguments as above. 2

Proof of Theorem 2. We use the formula of Theorem 1 together with Lemma 7
to obtain

E[L2
2,pm,γ(P̃pm)]≤

∑

u⊆D

u6=∅

γu


 1

pm
· 1

2|u|


1 −

(
1 − 1

3 · pm

)|u|



+
1

3|u|
∑

v⊆u

v6=∅

(
3

2

)|v| p2t

p2m
· 1

3|v|

(
p3

p+ 1

)|v| (
m− t+

1

p3

)|v|−1

.

We have

1

3|u|
∑

v⊆u

v6=∅

(
p3

2(p+ 1)

)|v| (
m− t+

1

p3

)|v|−1

≤ (m− t)−1

(
1

3
+

p3

6(p+ 1)

(
m− t +

1

p3

))|u|

≤
(
p2 − p+ 3

6

)|u|

(m− t)|u|−1,

provided that m− t > 0. Since for x < y we have ys − xs = sζs−1(y− x) for a
x < ζ < y we have

1 −
(

1 − 1

3 · pm

)|u|

≤ |u|
3 · pm

.
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As |u|
2|u|

≤ 1
2

for |u| ≥ 1 we obtain

1

pm · 2|u|


1 −

(
1 − 1

3 · pm

)|u|



+
1

3|u|
p2t

p2m

∑

v⊆u

v6=∅

1

2|v|

(
p3

p+ 1

)|v| (
m− t+

1

p3

)|v|−1

≤ 1

p2m


1

6
+ p2t

(
p2 − p+ 3

6

)|u|

(m− t)|u|−1


 (13)

and the result follows. 2

In the following corollary we refine the bound in Theorem 2 by including the t-
values of the lower dimensional projections. Observe that it follows easily from
Definition 1 that any projection of a digital (t,m, s)-net on the coordinates
of ∅ 6= u ⊆ D is again a digital (tu, m, |u|)-net with some tu ≤ t. In the
following we write digital ((tu), m, s)-net to denote a digital (t,m, s)-net where
the projections on ∅ 6= u ⊆ D have quality parameter tu. The subsequent
corollary can by obtained by using (13).

Corollary 2 Let Ppm be a digital ((tu), m, s)-net over Zp with max∅6=u⊆D tu <

m. Let P̃pm be the point set obtained after applying an i.i.d. random digital
shift of depth m independently to each coordinate of each point of Ppm. Then
the mean square weighted L2 discrepancy of P̃pm is bounded by

E[L2
2,pm,γ(P̃pm)]≤ 1

p2m

∑

u⊆D

u6=∅

γu


1

6
+ p2tu

(
p2 − p+ 3

6

)|u|

(m− tu)
|u|−1


 .

We close this subsection with a result concerning the proportion of shifts of
depth m which yield a digitally shifted net with weighted L2 discrepancy
bounded above by a constant times the bound from Theorem 2. The result
follows from Markov’s inequality.

Corollary 3 Let Ppm be a digital (t,m, s)-net over Zp with t < m. Let P̃pm,σm

be the point set obtained after applying the digital shift σm of depth m to each
point of Ppm. Let

fγ(t,m, s, p) :=
1

p2m

∑

u⊆D

u6=∅

γu


1

6
+ p2t

(
p2 − p+ 3

6

)|u|

(m− t)|u|−1




and let µ be the equiprobable measure on the set of all digital shifts of depth
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m. For c ≥ 1 let Λc(Ppm) =
{
σm : L2,pm,γ(P̃pm,σm) ≤ c

√
fγ(t,m, s, p)

}
. Then,

for any c ≥ 1 we have

µ (Λc(Ppm)) > 1 − 1

c2
.

Proof. The result follows from Theorem 2 together with

E[L2
2,pm,γ(P̃pm,σm)]

>c2fγ(t,m, s, p) µ
({

σm : L2,pm,γ(P̃pm,σm) > c
√
fγ(t,m, s, p)

})
.

2

3.3 The Hammersley Net

In this section we compute the mean square weighted L2 discrepancy of the
Hammersley net over Zp. The Hammersley net over Zp is a digital (0, m, 2)-net
over Zp generated by the matrices

C1 =




1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 1




and C2 =




0 . . . 0 1
... . .

.
. .

.
0

0 . .
.

. .
. ...

1 0 . . . 0




. (14)

The following theorem gives an exact formula for the mean square weighted
L2 discrepancy of the Hammersley net over Zp.

Theorem 3 Let Hpm be the Hammersley net over Zp with pm points.

(1) Let H̃pm be the point set obtained after applying an i.i.d. random digital
shift of depth m independently to each coordinate of each point of Hpm.

Then the mean square weighted L2 discrepancy of H̃pm is given by

E[L2
2,pm,γ(H̃pm)] = γ{1,2}

p4 + 5p2 − 6

180p2
· m
p2m

+
1

p2m

(
γ{1}
6

+
γ{2}
6

+
5γ{1,2}

36

)
.

(2) Let Ĥpm be the point set obtained after applying an simplified i.i.d. random
digital shift independently to each coordinate of each point of Hpm. Then

the mean square weighted L2 discrepancy of Ĥpm is given by

E[L2
2,pm,γ(Ĥpm)] = γ{1,2}

p4 + 5p2 − 6

180p2
· m
p2m

+
γ{1} + γ{2} + γ{1,2}

12 · p2m
− γ{1,2}

24 · p4m
.
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Remark 1 For p = 2 the above formulas are true for all digital (0, m, 2)-nets
over Z2 and not only for the Hammersley net over Z2. This was shown in [4,
Theorem 2].

Proof. We only prove the first formula. The second one follows from the first
one together with Theorem 1. From Theorem 1 we obtain

E[L2
2,pm,γ(H̃pm)] =

∑

u⊆D

u 6=∅

γu


 1

pm · 2|u|


1 −

(
1 − 1

3 · pm

)|u|

+

1

3|u|
∑

v⊆u

v6=∅

(
3

2

)|v|

B(v)


,

where for v = {v1, . . . , ve} we have

B(v) =
pm−1∑

k1,...,ke=1

C>
v1

~k1+···+C>
ve

~ke=~0

e∏

j=1

ψ(kj),

with

ψ(k) = − 1

p2(r+1)

(
1

3
− 1

sin2(κrπ/p)

)

and r = r(k) is such that pr(k) ≤ k < pr(k)+1.

Since the matrices C1 and C2 are both regular it follows that B(v) = 0 if
|v| = 1. Therefore we have

E[L2
2,pm,γ(H̃pm)] =

γ{1} + γ{2}
6 · p2m

+
γ{1,2}

6 · p2m
− γ{1,2}

36 · p3m
+
γ{1,2}

4
B({1, 2}).

We consider

B({1, 2}) =

1

p4

m−1∑

u,v=0

1

p2(u+v)

pu+1−1∑

k=pu

pv+1−1∑

l=pv

︸ ︷︷ ︸
C>

1
~k+C>

2
~l=~0

(
1

sin2(κuπ/p)
− 1

3

)(
1

sin2(λvπ/p)
− 1

3

)
.

Denote by e1, . . . , em the row vectors of C1 and by d1, . . . , dm the row vectors of
C2. The condition C>

1
~k+C>

2
~l = ~0 can be rewritten as e1κ0+· · ·+eu+1κu+d1λ0+

· · ·+dv+1λv = ~0, where k = κ0 +κ1p+ · · ·+κup
u and l = λ0 +λ1p+ · · ·+λvp

v.

Since e1, . . . , eu+1, d1, . . . , dv+1 are linearly independent as long as u+1+v+1 ≤
m we must have u+ v ≥ m− 1. Hence
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B({1, 2})=
1

p4

m−1∑

u,v=0
u+v≥m−1

1

p2(u+v)

p−1∑

κu=1

p−1∑

κu−1,...,κ0=0

p−1∑

λv=1

p−1∑

λv−1,...,λ0=0︸ ︷︷ ︸
e1κ0+···+eu+1κu+d1λ0+···+dv+1λv=~0

ρ(κu)ρ(λv),

where we write ρ(κ) := 1
sin2(κπ/p)

− 1
3
.

Assume that u+ v = τ ≥ m− 1. Then we have

e1κ0 + · · ·+ eu+1κu + d1λ0 + · · · + dv+1λv = ~0

iff 


κ0

...

κm−τ+u−2

κm−τ+u−1

...

κu

0
...

0




+




0
...

0

λτ−u

...

λm−u−1

λm−u−2

...

λ0




= ~0,

i.e., iff

• κ0 = · · · = κm−τ+u−2 = 0 and
• λ0 = · · · = λm−u−2 = 0 and
• κm−i−1 = p− λi for i = m− 1 − u, . . . , τ − u.

Therefore we have

B({1, 2})=
1

p4

1

p2(m−1)

m−1∑

u,v=0
u+v=m−1

p−1∑

κu=1

ρ(κu)ρ(p− κu)

+
1

p4

2m−2∑

τ=m

1

p2τ

m−1∑

u,v=0
u+v=τ

p−1∑

κu=1

p−1∑

λv=1

ρ(κu)ρ(λv)p
τ−m.

For m− 1 ≤ τ ≤ 2m− 2 we have

m−1∑

u,v=0
u+v=τ

1 = 2m− τ − 1.

Further we have ρ(p− κu) = ρ(κu) and hence
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B({1, 2})=
m

p2m
· 1

p2

p−1∑

k=1

ρ(k)2 +
1

p4 · pm

(
2m−2∑

τ=m

2m− τ − 1

pτ

)


p−1∑

k=1

ρ(k)




2

.

From
2m−2∑

τ=m

2m− τ − 1

pτ
=

m

pm
· p

p− 1
+

p2(1 − pm)

(p− 1)2p2m

and
p−1∑

k=1

ρ(k) =
p2 − p

3

we obtain

B({1, 2})=
m

p2m
· 1

p2

p−1∑

k=1

ρ(k)2 +
m

p2m
· p− 1

9p
+

1 − pm

9 · p3m
.

In [1, Corollary 5.2] it is shown that

p−1∑

k=1

1

sin4(kπ/p)
=
p4 + 10p2 − 11

45
.

Therefore we have

p−1∑

k=1

ρ(k)2 =
p−1∑

k=1

(
1

sin2(kπ/p)
− 1

3

)2

=
p−1∑

k=1

1

sin4(kπ/p)
− 2

3

p−1∑

k=1

1

sin2(kπ/p)
+
p− 1

9

=
p4 + 10p2 − 11

45
− 2p2 − 2

9
+
p− 1

9
=
p4 + 5p− 6

45
.

Hence

B({1, 2}) =

m

p2m

p4 + 5p− 6

45p2
+

m

p2m
· p− 1

9p
+

1 − pm

9 · p3m
=

m

p2m

p4 + 5p2 − 6

45p2
+

1 − pm

9 · p3m

and the result follows. 2

4 The dependency of the leading constant on the base p

In this section we consider the classical L2 discrepancy, that is, we choose
γD = 1 and γu = 0 for u ⊂ D. We denote this choice of weights by γc. We
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investigate closer how the leading term as defined in (3) in the bounds for the
classical mean square L2 discrepancy depends on the base p. From the previous
section we know that the leading constant for the mean square weighted L2

discrepancy of 2-dimensional Hammersley nets in base p is given by

A(p) =

√
p4 + 5p2 − 6

180p2 log p
.

It can easily be checked that A(p) attains the smallest value by choosing base
p = 2. This supports the generally believed idea that nets in base 2 yield the
smallest discrepancy.

For the general case such a result is difficult to obtain, but the upper bound
in the theorem below shows a similar behaviour of the leading constant also
in the general case.

In the following we consider the general case, that is, we consider arbitrary
digital (t,m, s)-nets over Zp. For an s ∈ N and each m ∈ N let Pp,t,s,2m,σm,s be
a digital (t,m, s)-net over Zp shifted by the digital shift σm,s of depth m. We
obtain the following theorem.

Theorem 4 Let p ≥ 2, s > 3, 0 ≤ t < m and m− t ≥ s be such that a digital
(t,m, s)-net over Zp exists. Then there exists a digital shift σm,s of depth m
such that for the shifted net Pp,t,s,pm,σm,s we have

L2,pm,γc
(Pp,t,s,pm,σm,s) ≤

pt

pm

√√√√
(
m− t+ s

s− 1

)(
p3

6(p+ 1)

)s/2 √
2

p
+O

(
m(s−2)/2

2m

)
.

Proof. We obtain from Theorem 1

E[L2
2,pm,γc

(P̃pm)] =
1

pm2s

(
1 −

(
1 − 1

3pm

)s)
+

1

3s

∑

v⊆D

v6=∅

(
3

2

)|v|

B(v). (15)

Lemma 7 shows that, in order to find the constant of the leading term, we
only need to consider B({1, . . . , s}). From (9), (10) and (11) we obtain

B({1, . . . , s}) ≤ p2t

p2m

1

3sp

((
m− t + s

s− 1

)
+

p3s

p(p+ 1)s

(
m− t

s− 1

))
.

As the bound in Theorem 1 was obtained by averaging over all shifts it follows
that there exists a shift which yields an L2 discrepancy smaller than or equal
to this bound. The result follows. 2

Since
(

m−t+s
s−1

)
= O(ms−1) it follows that the constant in the upper bound

(i.e., the upper bound on A(p)) increases at least with ps(log p)−s/2. It might
be possible to improve this bound for special choices of nets, as shown for the
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case of Hammersley nets above, but in general we expect the constant to grow
with the base p. Hence the best bound can be obtained for p = 2. This special
case, i.e., p = 2, was analyzed in detail in [4].
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