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Abstract. This paper studies tilings related to the β-transformation when β is a Pisot number
(that is not supposed to be a unit). Then it applies the obtained results to study the set of rational
numbers having a purely periodic β-expansion. Secial focus is given to some quadratic examples.

1. Introduction

Beta-numeration generalises usual binary and decimal numeration. Taking any real number
β > 1, it consists in expanding numbers x ∈ [0, 1] as power series in base β−1 with digits in
D = {0, . . . , ⌈β⌉ − 1}. As for β ∈ N, the digits are obtained with the so-called greedy algorithm:
the β-transformation Tβ : x 7→ βx (mod 1) computes the digits ui = ⌊βT i−1

β (x)⌋, which yield the

expansion x =
∑

i≥1 uiβ
−i. The sequence of digits is denoted by dβ(x) = (ui)i≥1.

The set of expansions (ui)i≥1 has been characterised by Parry in [Par60]) (see Theorem 2.1 be-
low). In case β is a Pisot number, Bertrand [Ber77] and Schmidt [Sch80] proved independently
that the β-expansion dβ(x) of a real number x ∈ [0, 1] is ultimately periodic if and only if x belongs
to Q(β)∩ [0, 1]. A further natural question was to identify the set of numbers with purely periodic
expansions. For β ∈ N, it is known for a long time that rational numbers a/b with purely periodic
β-expansion are exactly those such that b and β are coprime, the length of the period being the order
of β in (Z/bZ)∗. Using an approximation and renormalisation technique, Schmidt proved in [Sch80]
that when β2 = nβ + 1 and n ∈ N∗, then all rational numbers less than 1 have a purely periodic
β-expansion. This result was completed in [HI97], to β2 = nβ − 1, n ≥ 3, with respect to which no
rational number has purely periodic β-expansion. More generally, the latter result is satisfied by all
β’s admitting at least one positive real Galois conjugate in [0, 1] [Aki98][Proposition 5]. Ito and Rao
characterised the real numbers having purely periodic β-expansion in terms of the associated Rauzy
fractal for any Pisot unit β [IR04], whereas the non-unit case has been handled in [BS07]. The
length of the periodic expansions with respect to quadratic Pisot units were investigated in [QRY05].

Another natural question is to determinate the real numbers with finite expansion. According
to [FS92], we say that β satisfies the finiteness property (F) if the positive elements of Z[1/β] all
have a finite β-expansion (the converse is clear). A complete characterisation of β satisfying the
finiteness property (F) is known when β is a Pisot number of degree 2 or 3 [Aki00]. It turns out
that those numbers β also play a role in the question of purely periodic expansions. Indeed, if β is a
unit Pisot number and satisfies the finiteness property (F), then there exists a neighbourhood of 0

Date: October 2, 2007.
2000 Mathematics Subject Classification. Primary 11A63; Secondary 03D45, 11S99, 28A75, 52C23.
Key words and phrases. Beta-numeration, tilings, periodic expansions.
The second author was supported by the Austrian Science Foundation FWF, project S9605, that is part of the

Austrian National Research Network “Analytic Combinatorics and Probabilistic Number Theory”.

1



in Q+ whose elements all have purely periodic β-expansion [Aki98]. This result is quite unexpected
since there is no reason a priori for obtaining only purely periodic expansion around zero.

The present paper investigates the case when β is still a Pisot number, but not necessarily a
unit. We make use of the connection between pure periodicity and a compact self-similar represen-
tation of numbers having no fractional part in their β-expansion, similarly as in [IR04, BS07]. This
representation is called the central tile associated with β (Rauzy fractal, or atomic surface may also
be encountered in the literature, see e.g. the survey [BS05]). For elements x of the ring Z[1/β],
so-called x-tiles are introduced, so that the central tile is a finite union of x-tiles up to translation.
Those x-tiles provide a covering of the space we are working in. We first discuss the topological and
metric properties of the central tile in the flavor of [Aki02, Pra99, Sie03] and the relations between
the tiles.

In the unit case, the covering by x-tiles is defined in a Euclidean space K∞ ≃ Rr−1 × Cs, where
d = r+2s is the degree of the extension [Q(β) : Q] and r the number of real roots of beta’s minimal
polynomial. The space K∞ can be interpreted as the product of all Archimedean completions
of Q(β) distinct from the usual one. It turns out that this is not enough in general: in order
to have suitable measure-preserving properties, one has to take into account the non-Archimedean
completions associated with the principal ideal (β). Therefore, everything takes place in the product
Kβ = K∞×Kf , where the latter is a finite product of local fields. In the framework of substitutions,
this approach has been already used in [Sie03], and was inspired by [Rau88]. See also [Sin06].
Completions and (complete) tiles are introduced in Section 3. We discuss why taking into account
non-Archimedean completions is suitable from a tiling point of view: when the finiteness property
(F) holds, we prove that the x-tiles are disjoint if the non-Archimedean completions are considered,
which was not the case when only taking into account Archimedean completions. Our principal
result in that context is Theorem 3.18.

Our main goal is the study of the set of rational numbers having purely periodic beta-expansion,
for which we introduce the following notation.

Notation 1.1. Πβ denotes the set of those real numbers x ∈ [0, 1) having purely periodic beta-

expansion. We also note Π
(r)
β = Πβ ∩ Q.

The study of those sets begins in Section 4. After having recalled the characterisation of purely
periodic expansions in terms of the complete tiles due to [BS07] (see [IR04] for the unit case), we
apply it to gain results on the periodic expansions of the rational integers.

Theorem 1.2. Let β be a Pisot number that satisfies the property (F ). Then there exist ε and D
such that for every x = p

q ∈ Q ∩ [0, 1), if x ≤ ε, gcd(N(β), q) = 1 and N(β)D divides p, then x has

a purely periodic expansion in base β.

Definition 1.3 (Function gamma). The function γ is defined on the set of Pisot numbers and
takes its values in [0, 1]. Let β be a Pisot number. Let N(β) denote the norm of β. Then, γ(β) is
defined as

γ(β) = sup

{
v ∈ [0, 1]; ∀x =

p

q
∈ Q∩]0, v] with gcd(q,N(β)) = 1, then x ∈ Π

(r)
β

}
.

The reasons of the condition gcd(q,N(β)) = 1 will be given in Lemma 4.1. We also use the
central tile and its tiling properties to obtain in Section 5 an explicit computation of the quantity
γ(β) for two quadratic Pisot numbers, that is,

Theorem 1.4. γ(2 +
√

7) = 0 and γ(5 + 2
√

7) = (7 −
√

7)/12.
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The second example shows that the behaviour of γ(β) in the non-unit case is slightly different
from its behaviour in the unit case.

This paper is organised as follows. Section 2 recalls terminology and results necessary to state
and to prove the results, including Euclidean tiles and the unit case. Section 3 goes beyond the
unit case and extends the previous concepts including non-Archimedean components. This section
starts with a short compendium on what we need from algebraic number theory. Section 4 studies
purely periodic expansions and the Section 5 is devoted to examples in quadratic fields.

Since we work with Pisot numbers and in order to avoid the introduction of plethoric vocabulary,
we will always assume in this section that β is a Pisot number, even if the result is more general.
The reader interested in generalities concerning beta-numeration could have a look to [Bla89, BS05,
BBLT06].

2. Beta-numeration, automata, and tiles

2.1. Beta-numeration. We assume that β be a Pisot number. Since 1 ∈ Q, dβ(1) is ultimately
periodic by [Ber77, Sch80] and we have the following (see e.g. [Par60, Bla89, Fro00, Lot02]):

Theorem and Definition 2.1. Let β be a Pisot number. Let D = {0, 1, · · · , ⌈β⌉ − 1}. Let
d∗β(1) = dβ(1) if dβ(1) is infinite and d∗β(1) = (t1 . . . tn−1tn)∞, if dβ(1) = t1 . . . tn−1(tn +1)0∞, with

ti ∈ D for all i. Then the set of β-expansions of real numbers in [0, 1) is exactly the set of sequences
(ui)i≥1 in DN that satisfy the so-called admissibility condition

(2.1) ∀k ≥ 1, (ui)i≥k <lex d∗β(1).

A finite string w is said to be admissible if the sequence w · 0∞ satisfies the condition (2.1), where
A · B denotes the concatenation of the words A and B. The set of admissible strings is denoted
by Lβ; the set of admissible sequences by L∞

β . The map x 7→ dβ(x) realises an increasing bijection

from [0, 1) onto Lβ, endowed with the lexicographical order.

Notation 2.2. From now on, β will be a Pisot number of degree d, with

d∗β(1) = t1 · · · tm(tm+1 · · · tn)∞,

that is, n is the sum of the lengths of the preperiod and of the period; in particular, m = 0 if and
only if d∗β(1) is purely periodic .

The Pisot number β is said to be a simple Parry number if dβ(1) is finite, it is said to be a
non-simple Parry number, otherwise. One has m = 0 if and only if β is a simple Parry number:
indeed, dβ(1) is never purely periodic according to Remark 7.2.5 in [Lot02]). We will denote by A
the alphabet {1, . . . , n}.

Expansion of the non-negative real numbers. The β-expansion of any x ∈ R+ is deduced by
rescaling from the expansion of β−px, where p is the smallest integer such that β−px ∈ [0, 1):
(2.2)
∀x ∈ R+, x = wpβ

p + · · · + w0︸ ︷︷ ︸
integer part

+ u1β
−1 + · · · + ui

iβ
−i + · · ·︸ ︷︷ ︸

fractional part

, wp · · ·w0u1 · · · ui · · · satisfies (2.1).

In this case, we call [x]β = wpβ
p+· · ·+w0 the integer part of x and {x}β = u1β

−1+· · ·+ui
iβ

−i+· · ·
the fractional part of x. We extend the notation dβ and write dβ(x) = wp · · ·w0.u1 · · · ui · · · .
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Integers in base β. We define the set of integers in base β as the set of positive real numbers
with no fractional part:

Int(β) = {wpβ
p + · · · + w0; wp . . . w0 ∈ Lβ}(2.3)

= {[x]β ; x ∈ R+} ⊂ Z[β].

The set Int(β) builds a discrete subset of R+. It has some regularity: two consecutive points in
Int(β) differ by a finite number of values, namely, the positive numbers T a−1

β (1), a ∈ {1, · · · , n}
(see [Thu89, Aki07]). It can even be shown that it is a Meyer set [BFGK98].

2.2. Admissibility graph. The set of admissible sequences described by (2.1) is the set of infinite

labellings of an explicit finite graph with nodes in A = {1, . . . , n} and edges b
ε−→ a, with a, b ∈ A

labelled by digits ε ∈ D = {0, 1, · · · , ⌈β⌉ − 1}. This so-called admissibility graph is depicted in
Figure 1.

. . . . . . 

t1 tn−1tm+1

tn

tm−1 tm

0, · · · , tm − 1

0, · · · , tm+2 − 1

0, · · · , tn − 1

0, · · · ,

t2 − 1

0, · · · , tm+1 − 1

0, · · · , t1 − 1

m + 2 nm + 1m1 2

Figure 1. The graph describes admissible sequences for the β-shift. The num-
ber n of nodes is given by the sum of the preperiod and the period of d∗β(1) =

t1 · · · tm(tm+1 · · · tn)∞. From each node a to the node 1, there are ta edges labelled
by 0, . . . , ta − 1. From each node a to the node a + 1, there is one edge labelled
by ta. Let m denote the length of the preperiod of d∗β(1) (it can possibly be zero).
From the node n to the node m + 1 there is an edge labelled by tn.

For a ∈ A, define L(a)
β as the set of admissible strings w (see Definition 2.1) that the graph of

admissibility conducts from the initial node 1 to the node a. In other words, for a 6= 1, L(a)
β is

the set of admissible strings having t1 · · · ta−1 as a suffix. Clearly, according to the form of the

admissibility graph, one has Lβ =
⋃

a∈A L(a)
β .

Denote by S the shift operator on the set of sequences in the set of digits {0, . . . , ⌈β⌉−1}N = DN.
The beta-expansion of T k

β (1) is dβ(T k
β (1)) = Sk(dβ(1)). By increasingness of the map dβ, it follows

that for any x ∈ [0, 1):

t1t2 · · · ta−1dβ(x) ∈ L∞
β ⇐⇒ dβ(x) <lex Sa−1(d∗β(1))(2.4)

⇐⇒ x ∈ [0, T a−1(1)).

Notice that if β is a simple Parry number (that is, if m = 0) and k ∈ N, then the sequence Sk(d∗β(1))
is not admissible.

2.3. Central tiles. The central tile associated with a Pisot number is a compact geometric repre-
sentation of the set Int(β) of integers in base β. It is defined as follows.
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Galois conjugates of β and euclidean completions. Let β2, . . . , βr be the real conjugates of
β = β1; they all have modulus strictly smaller than 1, since β is a Pisot number. Let βr+1, βr+1,
. . . , βr+s, βr+s stand for its complex conjugates. For 2 ≤ i ≤ r, let Kβi

be equal to R, and for
r + 1 ≤ i ≤ r + s, let Kβi

be equal to C. The fields R and C are endowed with the normalised
absolute value |x|Kβi

= |x| if Kβi
= R and |x|Kβi

= |x|2 if Kβi
= C. Those absolute values induce

the usual topologies on R (resp. C). For any i = 2 to r + s, the Q-homomorphism defined on Q(β)
by τi(β) = βi realises a Q-isomorphism between Q(β) and Kβi

= Q(βi) →֒ R, C.

Euclidean β-representation space. We obtain a Euclidean representation Q-vector space K∞
by gathering the fields Kβi

:

K∞ = Kβ2 × · · · × Kβr
× Kβr+1 × Kβr+2 × · · · × Kβr+s

≃ Rr−1 × Cs.

We denote by ‖ · ‖∞ the maximum norm on K∞. We have a natural embedding

φ∞ : Q(β) −→ K∞
x 7−→ (τi(x))2≤i≤r+s

Euclidean central tile. We are now able to define the central tiles and its associated subtiles:

Definition 2.3 (Central tile). Let β be a Pisot number with degree d. The Euclidean central tile
of β is the representation of the set of integers in base β:

T = φ∞(Int(β)) ⊂ Q(β2) × · · · × Q(βr+s) ⊂ K∞.

Since the roots βi have modulus smaller than one, T is a compact subset of K∞.

2.4. Property (F) and tilings. More generally, to each x ∈ Z[1/β]∩[0, 1) we associate a geometric
representation of points that admit w as fractional part.

Definition 2.4 (x-tile). Let x ∈ Z[1/β] ∩ [0, 1). The tile associated with x is

T (x) = φ∞({y ∈ R+; {y}β = x}) ⊂ φ∞(x) + T .

It is proved in [Aki02] that the tiles T (x) provide a covering of K∞, i.e.,

(2.5) K∞ =
⋃

x∈Z[1/β]∩[0,1)

T (x).

Since we know that the tiles T (x) cover the space K∞, a natural question is whether this covering
is a tiling (up to sets of zero measure).

Definition 2.5 (Exclusive points). We say that a point z ∈ K∞ is exclusive in the tile T (x) if z
is contained in no other tile T (x′) with x′ ∈ Z[1/β] ∩ [0, 1), and x′ 6= x.

Definition 2.6 (Finiteness property). The Pisot number β satisfies the finiteness property (F) if
and only if every x ∈ Z[1/β] ∩ [0, 1) has a finite β-expansion.

If the finiteness property is satisfied, a sufficient tiling condition is known when β is a unit.

Theorem 2.7 (Tiling property). Let β be a unit Pisot number. The number β satisfies the finite-
ness property (F) if and only if 0 is an exclusive inner point of the central tile of β. In this latter
case, every tile T (x), for x ∈ Z[1/β] ∩ [0, 1] has a non-empty interior, and all its inner points are
exclusive. In other words, the tiles T (x) provide a tiling of K∞.

Proof. The proof is done in [Aki02]. In [ST07], this property is restated in a discrete geometry
framework. �
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2.5. Purely periodic points. In [IR04], Ito and Rao establish a relation between the central tile
and purely periodic β-expansions. For that purpose, a geometric realisation of the natural extension
of the beta-transformation is built using the central tile. More precisely, the central tile represents
by construction (up to closure) the strings wn . . . w0 that can be read in the admissibility graph
shown in Figure 1. We gather strings wm . . . w0 depending on the nodes of the graph to which the
string wm . . . w0 arrives.

Definition 2.8 (Central subtiles). Let a ∈ A = {1, · · · , n}. The central a-subtile is defined as

T (a) = φ∞
({

x ∈ Int(β); dβ(x) ∈ L(a)
β

})
.

Theorem 2.9 ([IR04]). Let β be a Pisot unit. We recall that A = {1, · · · , n}. Let x ∈ Q(β)∩ [0, 1).
The β-expansion of x is purely periodic if and only if

(−φ∞(x), x) ∈
⋃

a∈A
T (a) × [0, T a−1

β (1)).

As soon as 0 is an inner point of the central tile, we deduce that small rational numbers have a
purely periodic expansion.

Corollary 2.10 ([Aki98]). Let β be a Pisot unit. If β satisfies the finiteness property (F), then
there exists a constant c > 0 such that every x ∈ Q ∩ [0, c) has a purely periodic expansion in base
β.

Proof. Since 0 is an inner point of T and A is finite, there exists c > 0 such that 0 < c ≤
min{T (a−1)

β (1); a ∈ A} and B∞(0, c) ⊂ T . For x ∈ [0, c), we have φ∞(x) = (x, x, . . . , x) and

(−φ∞(x), x) ∈ T × [0, c) ⊂
⋃

a∈A

(
T (a) ×

[
0, T

(a−1)
β (1)

))
.

Then the periodicity follows from Theorem 2.9. �

This result was first proved directly by Akiyama [Aki98]. Recall that γ(β) is the supremum
of such c’s according to Definition 1.3. As soon as one of the conjugates of β is positive, then
γ(β) = 0. The quadractic unit case is completely understood: in this case Ito and Rao proved
that γ(β) equals 0 or 1 ([IR04]). Examples of computations of γ(β) for higher degrees are also
performed by Akiyama in the unit case in [Aki98].

Algebraic natural extension. By abuse of language, one may say that Theorem 2.9 implies
that

⋃
a∈A(T (a) ×

[
0, T a−1

β (1)
)

is a fundamental domain for an algebraic realisation of the natural
extension of the β-transformation Tβ , though it does not satisfy Rohklin’s minimality condition for
natural extensions (see [Roh61] and also [CFS82]). We wish to explain shortly this reason in the
sequel.

In [DKS96], Dajani et al. provide an explicit construction of the natural extension of the β-
transformation for any β > 1 in dimension three, the third dimension being given by the height in
a stacking structure. This construction is minimal in the above sense. As a by-product, one can
retrieve the invariant measure of the system as an induced measure. However, this natural extention
provides no information on the purely periodic orbits under the action of the β-transformation Tβ .
The essential reason is that the geometric realisation map which plays the role of our φ∞ is not
an additive homomorphism. And therefore, this embedding destroys the algebraic structure of
the β-transformation. Our construction, which was originated by Thurston in the Pisot unit case
[Thu89], only works for restricted cases but it has the advantage that we can use the conjugate
maps which are additive homomorphisms. This is the clue used by Ito and Rao in [IR04] for the
description of purely periodic orbits. Summing up, we need a more geometric natural extension
than that of Rohklin to answer number theoretical questions like periodicity issues.
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Let us note that in the non-unit case, measure-preserving properties are no more satisfied by
the embedding φ∞. Indeed, it is clear that Tβ is an expanding map with ratio β. By involving
only Archimedean embeddings as in the unit case, we will only take into account φ∞ which is
a contracting map with ratio N(β)/β and we won’t be able to get a measure-preserving natural
extension. This is the essential reason why we introduce now non-Archimedean embeddings.

3. Complete tilings

Thanks to the non-Archimedean part, we will show that we obtain a map φβ which is a con-
tracting map with ratio 1/β. Let us recall that Tβ is an expanding map with ratio β. We thus
will recover a realisation of the natural extension via a measure-preserving map. Moreover, the
extended map acting on the fundamental domain of the natural extension will be almost one-to-one
(being a kind of variant of Baker’s transform). Therefore we have good chances to have a one-to-one
map on the lattice points for this algebraic natural extension. Considering that a bijection on a
finite set yields purely periodic expansions, we will obtain a description of purely periodic elements
of this system. This heuristics will be in fact realised in Proposition 3.15 and Theorem 3.18 below.

3.1. Algebraic framework. In order to extend the results above to the case where β is not a unit,
we follow the idea of [Sie03] and embed the central tile in a larger space including local components.
To avoid confusion, the central tile T ⊂ Rr−1 × Cs will be called the Euclidean central tile. The

large tile will be called complete tile and denoted as T̃ .

Let us briefly recall some facts and set notation. The results can be found for instance in the
first two chapters of [CF86]. Let O be the ring of integers of the field Q(β). If P is a prime
ideal in O such that P ∩ Z = pZ, with relative degree f(P) = [O/P : Z/pZ] and ramification
index e(P), then KP stands for the completion of Q(β) with respect to the P-adic topology. It is
an extension of Qp of degree e(P)f(P). The corresponding normalised absolute value is given by

|x|P =
∣∣∣NKP/Qp

(y)
∣∣∣
1/e(P)f(P)

p
= p−f(P)vP (y). We denote OP its ring of integers and pP its maximal

ideal; then

OP = {y ∈ KP ; vP(y) ≥ 0} = {y ∈ KP ; |y|P ≤ 1}.
pP = {y ∈ KP ; vP(y) ≥ 1} = {y ∈ KP ; |y|P < 1}.

The normalised Haar measure on KP is µP(a + pm
P) = pmf(P). In particular: µP(OP) = 1.

Lemma 3.1. Let V be the set of places in Q(β). For any place v ∈ V, the associated normalised
absolute value is denoted | · |v. If v is Archimedean, we make the usual convention Ov = Kv.
(1) Let S ⊂ V a finite set of places. Let (av)v∈S ∈ ∏

v∈S Kv. Then, for any ε > 0, there exists
x ∈ K such that |x − av|v ≤ ε for all v ∈ S.
(2) Let S ⊂ V a finite set of places and v0 ∈ V \ S. Let (av)v∈S ∈ ∏

v∈S Kv. Then, for any ε > 0,
there exists x ∈ K such that |x−av|v ≤ ε for all v ∈ S and v ∈ Os for all v 6∈ S∪{v0}. Furthermore,
if v0 is an Archimedean place and (av)v∈S ∈ ∏

v∈S Ov, then x ∈ O.

Proof. (1) (resp. the first part of (2)) are widely known as the weak (resp. strong) approximation
theorems. Concerning the last sentence, let x ∈ Q(β) given by (2). By assumption, x ∈ Ov for
all v, therefore x ∈ O, since O is the intersection of the local rings Ov, where v runs along the
non-Archimedean places. �

3.2. Complete representation space.
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Notation 3.2. Let P1, . . . , Pν be the prime ideals in the ring of integers O that contain β, that
is,

(β) = βO =
ν∏

i=1

Pi
ni .

For x ∈ Q(β), N(x) shortly denotes the norm NQ(β)/Q(x). We have N(βO) = |N(β)|; the prime
numbers p arising from Pi ∩ Z = pZ are the prime factors of N(β). Let Sβ be the set containing
the Archimedean places corresponding to βi, 2 ≤ i ≤ r + s and the ν non-Archimedean places
corresponding to the Pi.

The complete representation space Kβ is obtained by adjoining to the Euclidean representation
the product of local fields Kf =

∏ν
i=1 KPi

, that is Kβ = K∞ × Kf =
∏

v∈Sβ
Kv. The field Q(β)

naturally embeds in Kβ:

φβ : Q(β) −→ K∞ ×
ν∏

i=1

KPi

x 7−→ (φ∞(x), x, . . . , x)

The complete representation space is endowed with the product topology, and with coordinatewise
addition and multiplication. This makes it a locally compact abelian ring. Then the approximation
theorems yield the following:

Lemma 3.3. With the previous notation, we have that φβ(Q(β)) is dense in Kβ, and that φβ(O)
is dense in

∏
v∈Sβ

Ov.

Proof. The first assertion follows from the first part of Lemma 3.1 with S = Sβ. The second
assertion follows from its second part with S = Sβ and v0 being the Archimedean valuation corre-
sponding to the trivial embedding τ(β) = β. �

The normalised Haar measure µβ of the additive group (Kβ,+) is the product measure of the
normalised Haar measures on the complete fields Kβi

(Lebesgue measure) and KPi
(Haar measure

µPi
). By a standard measure-theoretical argument, if α ∈ Q(β) and if B is a borelian subset of

Kβ, then

(3.1) µβ(α · B) = µβ(B)
∏

v∈Sβ

|α|v .

Consequently, if α ∈ Q(β) is a Sβ-unit (that is, if |α|v = 1 for all v 6∈ Sβ), then µβ(α · B) =
|α|−1µβ(B) by the product formula (| · | is there the usual real absolute value). This holds in
particular for α = β.

At last, we also denote by ‖ · ‖ the maximum norm on Kβ, that is ‖x‖ = max
v∈Sβ

|x|v . The following

finiteness remark will be used several times.

Lemma 3.4. If B ⊂ Kβ is bounded with respect to ‖ · ‖, then φ−1
β (B) ∩ Z[1/β] is locally finite.

Proof. Let B be a bounded subset of Kβ, and x ∈ Q(β) such that φβ(x) ∈ B. In particular, for
every i, 1 ≤ i ≤ ν, there exists a rational integer mi, such that the embedding of x in KPi

has
valuation at most mi. For m = max1≤i≤ν mi, we get βmx ∈ ∏

v∈Sβ
Ov. On the other hand, β is

a Sβ-unit, so that βmZ[1/β] = Z[1/β] ⊂ OP for any P coprime with (β). Therefore, βmx ∈ O.
Furthermore, the Archimedean absolute values |βmx|βi

are bounded as well for i = 2, . . . , r + s. If
we assume further that x belongs to some bounded subset of Q(β) (w.r.t. the usual metric), then
all the conjugates of βmx are bounded. Since these numbers belong to O, there are only a finite
number of them. �
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3.3. Complete tiles and an Iterated Function system.

Definition 3.5 (Complete tiles). The complete tiles are the analogues in Kβ of the Euclidean tiles:

• Complete central tile

T̃ = φβ(Int(β)) ⊂
∏

v∈Sβ

Ov.

• Complete x-tiles. For every x ∈ Z[1/β] ∩ [0, 1),

T̃ (x) = φβ({y ∈ R+; {y}β = x}) ⊂ φβ(x) + T̃ . In particular, T̃ = T̃ (0).

• Complete central subtiles. For every a ∈ {1, . . . , n},

T̃ (a) = φβ

({
x ∈ Int(β); dβ(x) ∈ L(a)

β

})
.

Using (2.4), we get:

T̃ (x) = φβ(x) + φβ

({
y ∈ Int(β); dβ(y) · dβ(x) ∈ L∞

β

})

= φβ(x) +
⋃

a; t1···ta−1·dβ(x)∈L∞

β

φβ

({
y ∈ Int(β); dβ(y) ∈ L(a)

β

})
(3.2)

= φβ(x) +
⋃

a; x<T
(a−1)
β

(1)

T̃ (a).

Hence, any complete x-tile is a finite union of translates of complete central subtiles.
We now consider the following self-similarity property satisfied by the complete central subtiles:

Proposition 3.6. Let β be a Pisot number. The complete central subtiles satisfy an Iterated
Function System equation (IFS) directed by the admissibility graph (drawn in Figure 1) in which
the direction of edges is reversed:

(3.3) T̃ (a) =
⋃

b
ε−→a

(
φβ(β)T̃ (b) + φβ(ε)

)
.

We use here Notation 2.2 and we recall that the digits ε belong to D = {0, . . . , ⌈β⌉ − 1}, and that
the nodes a, b belong to A = {0, 1, · · · , n}.

Proof. The following decomposition of the languages L(a)
β can be read off from the admissibility

graph 1

(3.4) L(a)
β =

⋃

b
ε−→a

L(b)
β · {ε}.

That decomposition yields a similar IFS as in (3.3) where the complete central subtiles T̃ (a) are

replaced by the images φβ({x ∈ Int(β); dβ(x) ∈ L(a)
β }) of the languages L(a)

β into Kβ. Lastly, one

gets (3.3) by taking the closure (the unions are finite). It should be noted that this argument does
not depend on the embedding; it is therefore the same as in the unit case, that can be found e.g.
in [SW02, Sie03, BS05]. �

Remark 3.7. If one details the IFS given by (3.3), this gives (with m defined in Notation 2.2):

(3.5)





T̃ (1) =
⋃

a∈A
⋃

ε<ta

(
φβ(β)T̃ (a) + φβ(ε)

)

T̃ (r+1) =
(
φβ(β)T̃ (m) + φβ(tm)

) ⋃ (
φβ(β)T̃ (n) + φβ(tn)

)

T̃ (k+1) = φβ(β)T̃ (k) + φβ(tk), k ∈ {1, . . . , n − 1} \ {m}.
9



3.4. Boundary graph. The aim of this section is to introduce the notion of boundary graph which
will be a crucial tool for our estimations of the function γ in Section 5. This graph is based on the
self-similarity properties of the boundary of the central tile, in the spirit of the those defined in
[Sie03, Thu06, ST07]. The idea is the following: in order to understand better the covering (2.5), we

need to exhibit which points belong to the intersections between the central tile T̃ and the x-tiles

T̃ (x). To do this, we first decompose T̃ and T̃ (x) into subtiles: we know that T̃ = ∪a∈AT̃ (a) and

Eq. (3.2) gives T̃ (x) = ∪b∈A,T b−1(1)>xT̃ (b) + φβ(x). Then the intersection between T̃ and T̃ (x) is

the union of intersections between T̃ (a) and T̃ (b) + φβ(x) for T b−1(1) > x. We build a graph whose
nodes stand for each intersection of that type, hence the nodes are labelled by triplets [a, x, b]. To

avoid the non-significant intersection T̃ (a) ∩ T̃ (a), we will have to exclude the case x = 0 and a = b.

Then we use the self-similar equation Eq. (3.3) to decompose the intersection T̃ (a) ∩ (T̃ (b) + φβ(x))
into new intersections of the same nature (Eq. (3.6)). An edge is labelled with couple of digits, so
that a jump from one node to an another one acts as a magnifier of size β−1, the label of the edge
sorting one digit of the element in the intersection we are describing.

By applying this process, we show below that we obtain a graph that describes the intersections

T̃ (a) ∩ (T̃ (b) +φβ(x)) (Theorem 3.11). It can be used to check whether the covering (2.5) is a tiling,
as was done in [Sie03, ST07] but this is not the purpose of the present paper. It the last section,
we will use this graph to deduce information on pure periodic expansions.

Definition 3.8. The nodes of the boundary graph are the triplets [a, x, b] ∈ A × Z[1/β] ×A such
that:

(N1) −T
(a−1)
β (1) < x < T

(b−1)
β (1) and a 6= b if x = 0.

(N2) φβ(x) ∈ T̃ (a) − T̃ (b).

The labels of the edges of the boundary graph belong to D2. There exists an edge [a, x, b]
(p1,q1)−−−−→

[a1, x1, b1] if and only if:

(E1) x1 = β−1(x + q1 − p1),

(E2) a1
p1−→ a and b1

q1−→ b are edges of the admissibility graph.

We first deduce from the definition that the boundary graph is finite and the Archimedean norms
of its nodes are explicitly bounded:

Proposition 3.9. The boundary graph is finite. If [a, x, b] is a node of the boundary graph, then
we have:

(N3) x ∈ O;

(N4) for every conjugate βi of β, |τi(x)| ≤ [β]
1−|βi| .

Proof. Let [a, x, b] is a node of the graph. By definition, φβ(x) ∈ T̃ (a) − T̃ (b), which implies

|τi(x)| ≤ [β]
1−|βi| .

Let P be a prime ideal in O. If P | (β), then x ∈ OP - since φβ(x) ∈ T̃ (a) − T̃ (b). Otherwise, if
P is coprime with β, we use the fact that x ∈ Z[1/β] to deduce that x ∈ OP. We thus have x ∈ O.
It directly follows from Lemma 3.4 that the boundary graph is finite. �

Proposition 3.9 will be used in Section 5 to explicitely compute the boundary graph in some
specific cases: let us stress the fact that condition (N2) in Definition 3.8 cannot be directly checked
algorithmically, whereas numbers satisfying condition (N3) and (N4) are explicitely computable.
Nevertheless, conditions (N3) and (N4) are only necessary conditions for a triplet to belong to the
graph. Theorem 3.11 below has two ambitions: it first details how the boundary graph indeed
describes the boundary of the graph, as intersections between the central tile and its neighbours.
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Secondly, we will decuce from this theorem an explicit way of computation for the boundary graph
in Corollary 3.13.

The following lemma shows that Condition (N1) in Definition 3.8 automatically holds for a node
[a1, x1, b1] ∈ A×Z[1/β]×A as soon as one has the edge conditions between [a, x, b] ∈ A×Z[1/β]×A
and [a1, x1, b1].

Lemma 3.10. Let x ∈
(
−T

(a−1)
β (1), T

(b−1)
β (1)

)
∩Z[1/β]. Let a1

p1−→ a and b1
q1−→ b be two edges in

the admissibility graph. Let x1 = β−1(x + q1 − p1). One has x1 ∈
(
−T

(a1−1)
β (1), T

(b1−1)
β (1)

)
.

Proof. Assume that x is non-negative (otherwise, the same argument applies to −x). We thus

have −p1

β ≤ x1 ≤ x+q1

β . Since a1
p1−→ a, we have that p1 ≤ ta1 , hence p1 0∞ <lex Sa1−1(d∗β(1))

(the strict inequality comes from the fact that d∗β(1)) does not ultimately end in 0∞). Therefore,

x1 ≥ −p1

β > −T
(a1−1)
β (1) by (2.4).

On the other hand, since x < T
(b−1)
β (1), then the sequence t1 · · · tb−1 dβ(x) is admissible, again

by (2.4). We thus deduce from b1
q1−→ b that t1 · · · tb1−1 (q1 dβ(x)) is admissible. We thus get

x1 ≤ x+q1

β < T
(b1−1)
β (1). �

However, if β is not a unit, it does not follow from Lemma 3.10 that if [a, x, b] is a node of the

boundary graph, a1
p1−→ a and b1

q1−→ b are edges of the admissibility graph, and x1 = β−1(x+q1−p1),
then [a1, x1, b1] is a node (we have also to check Condition (N2) or (N3)): for instance, consider

the two edges of the admissibility graph 1
0−→ 1 and 1

t1−→ 2. Starting from the note [1, 0, 2], the
edges above would yield x1 = − t1

β 6∈ O. Hence [1, x1, 1] is not a node of the boundary graph by

Proposition 3.9.

We now prove that the boundary graph is indeed a good description of the boundary of the
central tile, by relating it with intersections between translates of the complete central subtiles.

Theorem 3.11. Let z ∈ Kβ. The point z belongs to the intersection T̃ (a) ∩ (T̃ (b) + φβ(x)), for
x ∈ Z[1/β], with a 6= b if x = 0, if and only if [a, x, b] is a node of the graph and there exists an
infinite path in the boundary graph, starting from the node [a, x, b] and labeled by (pi, qi)i≥0 such
that

z =
∞∑

i=0

φβ(piβ
i).

Proof. Let x ∈ (−T
(a−1)
β (1), T

(b−1)
β (1)) ∩ Z[1/β]. The complete central subtiles satisfy a graph-

directed self-affine equation detailed in Proposition 3.6 that yields the decomposition

(3.6) T̃ (a) ∩
(
T̃ (b) + φβ(x)

)
=

⋃

a1

p1−→a

b1
q1−→b

[(
φβ(β)T̃ (a1) + φβ(p1)

)
∩

(
φβ(β)T̃ (b1) + φβ(q1) + φβ(x)

)]
.

Let z ∈ T̃ (a) ∩ (T̃ (b) + φβ(x)). Then there exist two edges a1
p1−→ a and b1

q1−→ b such that the
corresponding intersection in the right-hand side of (3.6) contains z. Setting x1 = β−1(x + q1 − p1)

and z1 = φβ(β)−1(z − φβ(p1)), we get z1 ∈ T̃ (a1) ∩
(
T̃ (b1) + φβ(x1)

)
. By construction, x1 ∈ Z[1/β]

and belongs to the interval (−T
(a1−1)
β (1), T

(b1−1)
β (1)) by Lemma 3.10. Then, by definition, [a1, x1, b1]
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is a node of the boundary graph, and we may iterate the above procedure. After n steps, we have

z − φβ

(∑n
i=1 piβ

i−1
)

φβ(βn)
∈ T̃ (an) ∩

(
T̃ (bn) + φβ(xn)

)
.

It follows that ‖z − φβ

(∑n
i=1 piβ

i−1
)
‖ ≪ ‖φβ(β)‖n for n tending to infinity; therefore z =∑∞

i=1 φβ(piβ
i−1).

Conversely, let z such that z =
∑

i≥1 φβ(βi−1pi) with (pi, qi)i≥1 the labeling of a path on the

boundary graph starting from [a, x, b]. By the definition of the edges of the graph, one checks
that t1 · · · ta−1 is a suffix of t1 · · · ta1−1p1, which is itself suffix of t1 · · · ta2−1p2p1, and so on. Hence

z ∈ T̃ (a). Let y =
∑

i≥1 φβ(βi−1qi). By construction, we also have y ∈ T̃ (b). Furthermore, the
recursive definition of the xi’s gives

x +
n∑

i=1

qiβ
i−1 =

n∑

i=1

piβ
i−1 + βnxn.

The sequence (xn)n takes only finitely many values by Proposition 3.9, hence φβ(βnxn) tends to 0,

which yields φβ(x) + y = z. Therefore z ∈ T̃ (a) ∩
(
T̃ (b) + φβ(x)

)
. �

Corollary 3.12. Let x ∈ Z[1/β] and a 6= b if x = 0. The intersection T̃ (a) ∩ (T̃ (b) + φβ(x)) is
non-empty if and only if [a, x, b] is a node of the boudary graph and there exists at least an infinite
path in the boudary graph starting from [a, x, b].

We deduce a procedure for the computation of the boundary graph.

Corollary 3.13. The boundary graph can be obtained as follows:

• Compute the set of triplets [a, x, b] that satisfy conditions (N1), (N3) and (N4);
• Put edges between two triplets if conditions (E1) and (E2) are satisfied;
• Recursively remove nodes that have no outging edges.

Proof. The particularity of this graph is that any node belongs to an infinite path. Proposition 3.9
and Theorem 3.11 show that this graph is bigger than (or equal to) the boundary graph. Nev-
ertheless, the converse part of the proof of Theorem 3.11 ensures that if an infinite path of the

latter graph starts from [a, x, b], then this path produces an element z in T̃ (a) ∩ (T̃ (b) + φβ(x)).

Therefore, φβ(x) ∈ T̃ (a) − T̃ (b), and [a, x, b] is indeed a node of the boundary graph. Finally, even
if the procedure described in the statement of the corollary mentions infinite paths, it needs only
finitely many operations, since the number of nodes is finite: it has been proved in Proposition 3.9
for the boundary graph; it is an immediate consequence of Lemma 3.4 for triplets satisfying (N1),
(N3) and (N4). �

3.5. Covering of the complete representation space. In order to generalise the tiling property
stated in Theorem 2.7 to the non-unit case, we need to understand better what is the complete
representation of Z[1/β] ∩ R+. We first prove the following lemma, that makes Lemma 3.3 more
precise.

Lemma 3.14. We have that φβ (O ∩ R+) is dense in
∏

v∈Sβ
Ov and that φβ (Z[1/β] ∩ R+) is dense

in Kβ. Those density results remain true if one replaces R+ by any neighbourhood of +∞.

Proof. We already know by Lemma 3.3 that φβ(O) is dense in
∏

v∈Sβ
Ov. Let U ≥ 0. For any

x ∈ O, we have x + βn > U if n is sufficiently large. Since βn tends to 0 in Kβ, φβ(x + βn) tends
to φ(x); hence φβ (O ∩ [U,+∞)) is dense in

∏
v∈Sβ

Ov.
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Let Z = (z, y1, . . . , yν) ∈ Kβ. Since Kβ is built from the prime divisors of β, there exists a
natural integer n such that βnyi ∈ OPi

for every i = 1, ..., ν. Moreover, there exists an integer A

such that AO ⊂ Z[β] (for instance, the discriminant of (1, β, . . . , βd−1)). Split A into A = A1A2, so
that A1 is coprime with β and the prime divisors of A2 are also divisors of N(β). Then A1 is a unit
in each OPi

so that yi/A1 ∈ OPi
for 1 ≤ i ≤ ν. By the definition of A2, there exists m such that

βm/A2 ∈ O. Therefore, βmax(n,m)Z/A2 ∈ ∏
v∈Sβ

Ov. Applying the first part of the lemma, there

exists a sequence (xl)l in Z[β−1] ∩ [Uβmax(n,m),+∞) such that (φβ(xl))l tends to βmax(n,m)Z/A2.

Then, (φβ(β−max(n,m)A2xm))l tends to Z. Since β−max(n,m)A2xl ∈ Z[1/β] ∩ [U,+∞), the proof is
complete. �

Proposition 3.15. The complete central tile T̃ is compact. The x-tiles T̃ (x) provide a covering
of the β-representation space:

(3.7)
⋃

x∈Z[1/β]∩[0,1)

T̃ (x) = Kβ.

Moreover, this covering is uniformly locally finite: for any R > 0, there exists κ(R) ∈ R+ such
that, for all z ∈ Kβ, one has

#
{
x ∈ Z[1/β] ∩ [0, 1); T̃ (x) ∩ B(z,R) 6= ∅

}
≤ κ(R).

Proof. The projection of T̃ on Kf is compact since the local rings Ov are. Its projection on K∞
is bounded because β is a Pisot number. Since T̃ is obviously closed, it is therefore compact.
Explicitly, we have by construction that ‖φβ(β)‖ < 1. Since ‖n‖ = n for each n ∈ Z, it follows that

T̃ ⊂ B(0,M1) with M1 = (⌊β⌋)/(1 − ‖φβ(β)‖).
Since β is an integer, we have Int(β) ⊂ Z[1/β]. Therefore, for y ∈ R+, y belongs to Z[1/β] if and

only if {y}β belongs to Z[1/β]. In other words,
⋃

x∈Z[1/β]∩[0,1)

{
y ∈ R+; {y}β = x

}
= Z[1/β] ∩ R+,

and, by Lemma 3.14, we have that

(3.8) Kβ = φβ(Z[1/β] ∩ R+) =
⋃

x∈Z[1/β]∩[0,1)

φβ

({
y ∈ R+; {y}β = x

})
.

Let us fix z ∈ Kβ and R > 0. We consider the ball B(z,R) in Kβ. Assume that x ∈ Z[1/β]∩ [0, 1)]

is such that T̃ (x) ∩ B(z,R) 6= ∅. By T̃ (x) ⊂ φβ(x) + T̃ ⊂ φβ(x) + B(0,M1). Hence φβ(x) ∈
B(z,R + M1). Then, Lemma 3.4 ensures that there exists only finitely many such x.

It certainly remains to prove that the number of those x is bounded independently of z, but it
already shows that the union in the right-hand side of (3.8) is finite, which allows to permute the
union and the closure operations and proves (3.7).

We then use (3.7) to prove the existence of some x0 ∈ Z[1/β]∩ [0, 1] such that ‖φβ(x0)− z‖ < 1.

Therefore, any x ∈ Z[1/β] ∩ [0, 1) satisfying T̃ (x) ∩ B(z,R) 6= ∅ can be written as x = x0 + x1,
where x1 ∈ Z[1/β]∩ [−2, 1) and φβ(x1) ∈ B(0, R+M1 +1). Lemma 3.4 gives an upper bound κ(R)
for the number of such x1, and the lemma is proved. �

Corollary 3.16. The complete central tile T̃ has non-empty interior in the representation space
Kβ, hence non-zero Haar measure.

Proof. The property concerning the complete central tile has already been proved in [BS07], The-
orem 2-(2), by geometrical considerations. However, most of this proposition is now an immediate

consequence of (3.7): since Kβ is locally compact, it is a Baire space. Therefore, some T̃ (x) must
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have non-empty interior, hence the central tile itself, by T̃ (x) ⊂ φβ(x) + T̃ . Thus it has pos-
itive measure. By the way, (3.7) gives also a direct proof of that fact without any topological

consideration, by using the σ-additivity of the measure and µβ(T̃ (x)) ≤ µβ(T̃ ). �

3.6. Inner points. We use the covering property to express the complete central tile as the closure
of its exclusive inner points (see Definition 2.5). Since we will use it extensively, we introduce the
notation cβ = ‖φβ(β)‖. We have seen that 0 < cβ < 1.

Proposition 3.17. Let β be a Pisot number. If β satisfies the property (F), then 0 is an exclusive

inner point of the complete central tile T̃ . Indeed, it is an inner point of the complete central subtile

T̃ (1).

Proof. By Lemma 3.4, there exist finitely many x ∈ Z[1/β]∩ [0, 1) such that ‖φβ(x)‖ ≤ 2M1, where
the constant M1 is taken from the proof of Proposition 3.15. According to property (F), all those
x have finite β-expansion. Let p be the maximal length of those expansions.

Let m be a non-negative integer and x ∈ (Z[1/β] ∩ R+) \ βmInt(β). Set x1 = ⌊β−p−mx⌋β and
x2 = {β−p−mx}β. By construction, we have ‖φβ(x1)‖ ≤ M1 and ‖φβ(x2)‖ > 2M1, the latter
because dβ(x2) has length greater than p. Set M2 = M1c

p
β .Therefore, we have that

‖φβ(x)‖ = cp+m
β ‖φβ(x1) + φβ(x2)‖ > M1c

p+m
β = cm

β M2.

Hence, we have φ−1
β

(
B(0, cm

β M2)
)
∩ Z[1/β] ∩ R+ ⊂ βmInt(β). Taking m = 0, this shows that the

origin is exclusive. Moreover, since B(0, cm
β M2) is open, and since φβ(βmInt(β)) ⊂ T̃ (1) for m

sufficiently large, Lemma 3.14 ensures that B(0, cm
β M2) ⊂ T̃ (1). �

Theorem 3.18. Let β be a Pisot number. Assume that β satisfies the finiteness property (F).

Then each tile T̃ (x), x ∈ Z[1/β] ∩ [0, 1) is the closure of its interior, and each inner point of T̃ (x)

is exclusive. Hence, for every x 6= x′ ∈ Z[1/β]∩ [0, 1), T̃ (x′) does not intersect the interior of T̃ (x).

The tiles T̃ (x) are measurably disjoint in Kβ. Moreover, their boundary has zero measure.

The same properties hold for the translates of complete central subtiles T̃ (a) + φβ(x), for a ∈ A
and x ∈ Z[1/β] ∩ [0, 1).

Proof. The proof of the unit case can be found in [Aki02](Theorem 2, Corollary 1) and could have
been adapted. We follow here a slightly different approach. For x ∈ Z[1/β] ∩ R+, let Y (x) =

{y ∈ R+; {y}β = x} ⊂ Z[1/β] ∩ R+. By definition, T̃ (x) = φβ(Y (x)). According to the proof of
Proposition 3.17, we have

(3.9) φβ
−1(B(0, cm

β M2)) ∩ Z[1/β] ∩ R+ ⊂ βmInt(β) & B(0, cm
β M2) ⊂ φβ(βmInt(β)).

Recall that n is the length of dβ(1). Therefore, if w1 and w2 are admissible, so is w1 · 0n ·w2. Now,
for any given y ∈ Y (x), we have y + βmInt(β) ⊂ Y (x) for any m ≥ m(y) = n + ⌈(log y)/(log β)⌉.
Therefore,

(3.10) T̃ (x) =
⋃

y∈Y (x)

φβ

(
y + βm(y)Int(β)

)
=

⋃

y∈Y (x)

B
(
φβ(y), c

m(y)
β M2

)
,

and T̃ (x) is the closure of an open set, hence of its interior.

Therefore, in order to prove the exclusivity, we only have to show that two different x-tiles
have disjoint interiors. Let x, x′ in Z[1/β] ∩ [0, 1). According to (3.10), any non-empty open

subset of T̃ (x) ∩ T̃ (x′) contains some ball B = B(φβ(y), cm
β M2), with y ∈ Y (x) and m =

m(y) chosen as above. Since φβ is a ring homomorphism, the first part of (3.9) implies that

φβ
−1(B)∩Z[1/β]∩ [y,+∞) ⊂ y + βmInt(β). But there also exists y′ ∈ Y (x′) and a natural integer
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m′ such that φβ(y′ + βm′

Int(β)) ⊂ B. Since y′ + βm′

Int(β) contains arbitrary large real numbers,
this shows that Y (x) ∩ Y (x′) 6= ∅. Hence x = x′ and the exclusivity follows.

The proof for the subtiles T̃ (a) works exactly in the same way, because of the key property

dβ(x) ∈ L(a)
β =⇒ ∀y ∈ Int(β) : dβ(x + βmy) ∈ L(a)

β

for m sufficiently large (depending on x).

It is possible to prove directly that the subtiles T̃ (a) are measurably disjoint (for an efficient proof
based on the IFS (3.3) and Perron-Frobenius Theorem, see [SW02, BS05][Theorem 2]). However,
it follows directly from the fact that the boundary of the subtiles have zero-measure, since two
different subtiles have disjoint interiors.

To prove the latter, we follow [Pra99] [Proposition 1.1]. Since A is finite, there exist δ and a ∈ A
such that µβ(∂T̃ (a)) = δµβ(T̃ (a)) and µβ(∂T̃ (b)) ≤ δµβ(T̃ (b)) for all b ∈ A. Let k ≥ n be a rational
integer. Then, by (3.2), we have

φβ(β)−kT̃ (a) =
{
φβ(β−kx); x ∈ Int(β), dβ(x) ∈ L(1)

β

}

=
⋃

x∈Λk

T̃ (x) =
⋃

x∈Λk

⋃

b; x<T (b−1)(1)

(
φβ(x) + T̃ (b)

)
,(3.11)

where Λk =

{
k∑

i=1

ωiβ
−i; ω1 · · ·ωk ∈ L(a)

β

}
. The x-tiles (resp. the subtiles) having disjoint interiors,

the family of tiles φβ(x)+T̃ (b) occurring in (3.11) has the same property. Then, for a subfamily (Ti)i
of those tiles, we have Ti∩Tj = ∂Ti∩∂Tj, and a simple argument gives µβ(∂(∪Ti)) ≤ δµβ(∪Ti). Let

us split the union (3.11) as φβ(β)−kT̃ (a) = U1 ∪U2, where U1 is the union of those tiles intersecting

the boundary of φβ(β)−kT̃ (a) and U2 the union of those tiles included in its interior. If k is large,

φβ(β)−kT̃ (a) contains open balls of sufficiently large size to contain some of the tiles, whose diameter

are at most maxb∈A diam(T̃ (b)). Hence U2 is not empty, and has actually positive measure. Finally,
since the multiplication by φβ(β) preserves the boundary, we have

δµβ

(
φβ(β)−kT̃ (a)

)
= µβ

(
∂(φβ(β)−kT̃ (a))

)
≤ µβ(U2) < δµβ

(
φβ(β)−kT̃ (a)

)
,

if δ 6= 0, which would yield a contradiction. The metric disjointness follows for the tiles T̃ (a), hence

for the T̃ (x) too by (3.2). �

We can project this relation on the Euclidean space.

Corollary 3.19. Let β be a Pisot number. If β satisfies the finiteness property (F), then 0 is an
inner point of the central tile T and each tile T (x) is the closure of its interior.

Proof. If 0 in an inner point of T̃ in the field Kβ, then 0 is also an inner point in its projection on
K∞. �

This corollary is the most extended generalisation of Theorem 2.7 to the non-unit case: if we
only consider Archimedean embeddings to build the central tile, the finiteness property still implies
that 0 is an inner point of the central tile. Nevertheless, inner points are no more exclusive, hence
the tiling property is not satisfied.
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Choosing the suitable non-Archimedean embedding. We already explained that the Archim-
edean embedding was not suitable for building a measure-preserving algebraic extension. We shall
comment now why the choice of the beta-adic representation space Kβ is suitable from the tiling
viewpoint. It is a general fact read only from the admissibility graph that the (complete) sub-

tiles T̃ (a) satisfy an Iterated Function System (IFS). Thanks to the introduction of the beta-
representation space, the action of the multiplication by φβ(β) in Kβ acts on the measure as a
multiplication by a ratio 1/β according to (3.1). That property allows to deduce from the IFS that

the (complete) subtiles are measurably disjoint in Kβ - whereas their projection T (a) on K∞ are
not (Theorem 3.18 below). More geometrically, the space Kβ is chosen so that:

• the tiles are big enough to cover it (covering property, first part of Proposition 3.15), and
• they are small enough, so that they do not overlap much - neither combinatorically (locally

finitely many overlaps - second part of Proposition 3.15) nor topologically (disjoint interi-
ors), nor metrically (measurable disjointness) - as shows Theorem 3.18 (tiling property).

If β is not a unit, the space K∞ is too small to ensure the tiling property. On the opposite, the
restricted topological product of the Kv with respect for the Ov for all places v but the Archimedean
one given by the identity embedding (in other words, the projection of the adèle group AQ(β)

obtained by canceling the coordinate corresponding to that Archimedean valuation) would have
satisfied the tiling property and given an interesting algebraical framework, but would have been
too big for the covering property - since the principal adèles build a discrete subset in the adèle
group.

4. Purely periodic expansions

The elements with a purely periodic expansion, denoted by Πβ (see Notation 1.1), belong to Q(β)

and as explained in the introduction, there are numbers β for which Π
(r)
β = [0, 1) ∩ Q. However,

Lemma 4.1 below shows that if β is a Pisot number, but not a unit, there exist arbitrary small

rational numbers that do not belong to Π
(r)
β . This justifies the restriction in the definition of γ(β),

that only takes into account rational numbers whose denominator is coprime with the norm of β.

Lemma 4.1. Let β be a non-unit Pisot number. Let x = a
b ∈ Q ∩ [0, 1) with gcd(b,N(β)) > 1.

Then dβ(x) is not purely periodic.

Proof. Suppose that the β-expansion of x ∈ Q ∩ [0, 1) is purely periodic with period l. Then we
can write:

x =
a

b
=

∑

k≥0

β−kℓ(a1β
−1 + · · · + aℓβ

−ℓ) =
a1β

ℓ−1 + · · · + aℓ

βℓ − 1
.

Hence x = A
βℓ−1

with A ∈ O. Since the principal ideals (β) and (βℓ − 1) are coprime, we get

φβ(x) ∈ ∏
v Ov. On the other hand, if p | gcd(b,N(β), then φβ(a/b) contains a component in

Qp \ Zp. Hence a/b 6= A/(βℓ − 1). �

4.1. Pure periodicity and complete tiles. Using and adapting ideas from [Pra99, IR04, San02],
one obtains the following characterisation of real numbers having a purely periodic β-expansion;
this result can be considered as a first step towards the realisation of an algebraic natural extension
of the β-transformation. Notice that Theorem 4.2 is naturally stated in [BS07] with compact
intervals, which obliges to take in account the periodic points and to distinguish whenever dβ(1) is
finite or infinite. Our point of view simplifies the proof; for that reason, we give it.

Theorem 4.2 ([BS07], Theorem 3). Let x ∈ [0, 1). Then, x belongs to Πβ if and only if

(4.1) (−φβ(x), x) ∈
⋃

a∈A
(T̃ (a)) ×

[
0, T a−1

β (1)
)
.
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Proof. Let x ∈ [0, 1)Πβ with purely periodic beta-expansion dβ(x) = (a1 · · · aℓ)
ω. Obviously, x ∈

Q(β). A geometric summation gives

x =
1

1 − β−ℓ

ℓ∑

k=1

akβ
−k = − 1

1 − βℓ

ℓ−1∑

j=0

aℓ−jβ
j.

Applying −φβ to the latter and going the geometric summation backwards yields

(4.2) −φβ(x) =

∞∑

j=0

ãjφβ(β)j = lim
n→∞

φβ




n∑

j=0

ãjβ
j


 , with ãj = aℓ−j (mod ℓ).

It is obvious that the sum
∑n

j=0 ãjβ
j is a beta-expansion, since we have by construction ãℓ−1 · · · ã0 =

a1 · · · aℓ. Therefore, −φβ(x) ∈ T̃ . Moreover, the admissibility of the concatenation ãn · · · ã0 dβ(x) =

ãn · · · ã0ã−1ã−2 · · · is the exact translation of the condition (−φβ(x), x) ∈ T̃ (a)×[0, T a−1(1)). Hence
the condition is necessary.

Let us prove that the condition is sufficient, and let z ∈ Q(β) ∩ [0, 1) such that (−φβ(z), z) ∈
T̃ (a) × [0, T a−1(1)) for some a ∈ A. By compactness, there exists a sequence of digits (wn)n such
that φβ(z) = limn→∞ φβ(

∑n
j=0 wjβ

j), the latter sums being beta-expansions for all n. Moreover,

the bi-infinite word · · ·wnwn−1 · · ·w0 · dβ(z) is admissible. Define a sequence (zk)k by dβ(zk) =
wk−1wk−2 · · ·w0 · dβ(z). Write z0 = z = a/b, with b ∈ N∗ and a ∈ Z[1/β]. Then,

(4.3) zk = β−k


z +

k−1∑

j=0

wjβ
j


 ∈ b−1Z[1/β].

Applying −φβ to (4.3) gives −φβ(zk) = lim
n→∞

φβ




n∑

j=0

wk+jβ
j


. In particular, −φβ(zk) ∈ T̃ for

any k, which ensures that the sequence (φβ(zk))k is bounded too. So is the sequence (φβ(bzk))k,
which is hence finite by Lemma 3.4. Thus zj = zj+s for some j and s 6= 0. This shows that
dβ(z) = (ws−1ws−2 · · ·w0)

∞ and concludes the proof. �

As shows Theorem [BS07], the points of the orbit of 1 under the action of Tβ play a special role.
They have to be treated separately.

Lemma 4.3. We have either T k
β (1) = 0, or T k

β (1) ∈ Q(β)\Q, but if it is 0. Moreover, T k
β (1) ∈ Πβ

if and only if β is a non-simple Parry number (that is m 6= 0) and k ≥ m.

Proof. The transformation Tβ preserves O. Hence T k
β (1) ∈ O for all k. Since Q is integrally closed,

if T k
β (1) ∈ Q, then T k

β (1) ∈ Z. HEnce he only possibility is T k
β (1) = 0. This happens exactly if β

is a simple Parry number (that is if m = 0) and k ≥ n. We have mentionned in Section 2.2 that
dβ(T k

β (1)) = Sk(dβ(1)). Therefore, T k
β (1) ∈ Πβ if and only if β is a non-simple Parry number and

k ≥ m. According to d∗β(1) = dβ(1) = (t1 · · · tm)(tm+1 · · · tn)∞, the orbit possesses n elements, m
of them having purely periodic beta-expansion. �

Application to the function γ. We use Theorem 4.2 to deduce several conditions for pure

periodicity in Q(β). That 0 is an inner point of the complete central tile T̃ yields a first sufficient
condition for a rational number to have purely periodic expansion. We can see this property as a
generalisation of Corollary 2.10.

Corollary 4.4. Let β be a Pisot number that satisfies the finiteness property (F). There exist m

and v such that for every x = N(β)mp
q ∈ Q, with gcd(N(β), q) = 1, and x ≤ v, then x ∈ Π

(r)
β .
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Proof. Let M be the maximum of the |N(β)|v , for v ∈ Sβ, v non-Archimedean. We have M < 1.

Therefore, for x = N(β)mp
q ∈ Q, with gcd(N(β), q) = 1 and x ≤ v, we have ‖x‖ ≤ max(v,Mm).

Since 0 is an inner point of T̃ - actually an inner point of T̃ (1) by (3.9) - it follows that (−φβ(x), x) ∈
T̃ (1) × [0, 1) if m is big enough, and v small enough. �

4.2. From the topology of the central tile to that of Π
(r)
β . We begin with completing the

notation introduced in Sections 3.1 and 3.2.

Notation 4.5. Recall that (β) =
∏ν

i=1 Pni

i , and that Kf is the product of the corresponding local
fields. We denote by φf the associated embedding, so that

φβ(x) = (φ∞(x), φf (x)) ∈ K∞ × Kf .

We also write Of =
∏ν

i=1 OPi
and we denote by O(β) its reciprocal image by φf , that is,

O(β) = {x ∈ Q(β); ∀i, 1 ≤ i ≤ ν : vPi
(x) ≥ 0} ⊃ O.

There are primes pi such that Pi ∩Z = piZ. We write kf =
∏ν

i=1 Qpi
and of =

∏ν
i=1 Zpi

. We also
introduce

Z(N(β)) =

{
p

q
; gcd(q,N(β)) = 1

}
.

If N(β) is prime, this notation coincides with the usual one concerned with localisation. Let us
finally introduce the canonical projections

π∞ : Kβ → K∞ and πf : Kβ → Kf .

Most of this notation is summarised in the commutative diagrams below:

(4.4)

Q(β)
φf−−−−→

ν∏

i=1

KPi
= Kf

i1

x
xi2

Q
φf−−−−→

ν∏

i=1

Qpi
= kf

O(β)
φf−−−−→

ν∏

i=1

OPi
= Of

i1

x
xi2

Z(N(β))
φf−−−−→

ν∏

i=1

Zpi
= of

We want to generalise the idea of the proof of Corollary 2.10. Since we are from now one
interested in the beta-expansion of rational integers, our first goal is to understand how they imbed
into Kβ. The Archimedean embedding is trivial: φ∞(x) = (x, x, . . . , x).

Notation 4.6 (Diagonal sets). Let A ⊂ R. Then

∆∞(A) := {(x, . . . , x); x ∈ A} ⊂ K∞

stands for the set of (r + s − 1)-uples of elements of A whose coordinates are all equal.
By an abuse of language, when A is reduced to a single point A = {a}, we will use the notation

∆∞(a) for the point φ∞(a, . . . , a) ∈ K∞.

We now need to understand the non-Archimedean embedding of Z(N(β)): this is the object of
Lemma 4.7 and Proposition 4.9 below.

Lemma 4.7. Let V be a non-empty open subset of Z(N(β)). Then

φf (V ) = φf (Z(N(β))) and φβ(V ) = ∆∞(V ) × φf (Z(N(β))).

Furthermore, for any non-empty interval I in [0, 1], we have

(4.5) φβ(I ∩ Z(N(β))) = ∆∞(Ī) × φf (Z(N(β))).

The same results hold if one replaces Z(N(β)) by Q, Q(β), or O(β).
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Proof. We only prove the result for Z(N(β)) - the other cases being similar. Let V be a non-empty

open subset of Z(N(β)) and u ∈ V . For y ∈ φf (Z(N(β))), there exists a sequence (xn)n in Z(N(β)) such
that lim φf (xn) = y − φf (u) (using that φf is an additive group homomorphism). Let us introduce
ϑn = (1 + N(β)n)−1. Then ϑn ∈ Z(N(β)), and we have both limϑn = 0 and lim φf (ϑn) = 1. Then
we can choose a subsequence (σ(n))n such that u + xnϑσ(n) ∈ V and lim φf (u + xnϑσ(n)) = y.
Finally, φβ(xn) converges to (φ∞(u), y).

This means that ∆∞(V )×φf (Z(N(β))) ⊂ φβ(V ); taking the closure yields ∆∞(V )×φf (Z(N(β))) ⊂
φβ(V ). We conclude by noticing that the definition of φβ directly ensures that φβ(V ) ⊂ ∆∞(V )×
φf (Z(N(β))). Hence we have proved φβ(V ) = ∆∞(V ) × φf (Z(N(β))). The equality φf (V ) =

φf (Z(N(β))) follows by applying the projection πf .
Equation (4.5) is clearly satisfied if I is open. In general, it follows from

∆∞(Ī) × φf (Z(N(β))) = φβ(I̊ ∩ Z(N(β))) ⊂ φβ(I ∩ Z(N(β))) ⊂ ∆∞(Ī) × φf (Z(N(β))).

�

We deduce from Lemma 4.7 and Theorem 4.2:

Corollary 4.8. Let 0 < ε ≤ min{T a−1
β (1), a ∈ {1, . . . , n}}. Then γ(β) ≥ ε if ∆∞([0, ε]) ×

φf (Z(N(β))) ⊂ −T̃ .

Let us stress the fact that there is no reason here for φβ(Q) to be dense in Kβ, contrarily to what
happens for the Archimedean part.

Proposition 4.9. The following propositions are equivalent:

(1) Let 0 ≤ u < v < ∞. Then φf (Z(N(β)) ∩ (u, v)) = Of ;
(2) The set φf (Q) is dense in Kf ;
(3) For all i, 1 ≤ i ≤ ν, we have e(Pi) = f(Pi) = 1, and the prime numbers pi are all distinct.
(4) The norm N(β) is square-free and none of its prime divisors ramifies.

Proof. For given i, one has [KPi
: Qpi

] = e(Pi)f(Pi). By completeness of the p-adic fields (resp.
p-adic rings) the image by i2 of kf (resp. of ) in the commutative diagram (4.4) is closed in Kf (resp.
Of ). Hence, these images are dense if and only if those products are equal, that is if KPi

= Qpi
for

all i, i.e., e(Pi) = f(Pi) = 1.
Moreover, by the Chinese remainder theorem, the image by φf of Q (resp. Z(N(β))) is dense in

kf (resp. o) if and only if the pi are distincts. Hence we have proved that (2), as (1) for κ = +∞,
are equivalent to (3). The equivalence with (1) with an arbitrary non-empty open interval (u, v) is
given by Lemma 4.7.

Finally, the equivalence of (3) and (4) follows from

N(β) = N((β)) =

ν∏

i=1

N(Pi) =

ν∏

i=1

p
f(Pi)
i .

�

Remark 4.10. If the prime numbers pi are not distinct, there is a partition of ν, ν = µ1 + · · ·+µℓ

and a suitable reordering of the prime ideals P1, . . . ,Pν containing β, such that one has the equality
of multisets

{p1, p2, . . . , pν} = {p1, . . . , p1︸ ︷︷ ︸
#µ1

, p2, . . . , p2︸ ︷︷ ︸
#µ2

, . . . , pℓ, . . . , pℓ︸ ︷︷ ︸
#µℓ

}.

Then, φf (Q) (resp. φf (Z(N(β)))) is equal to
∏ℓ

j=1 ∆(Q
µj
pj ) (resp.

∏ℓ
j=1 ∆(Z

µj
pj )), where ∆(Mµ)

denotes the set of µ-uples of elements of M whose coordinates are all equal.

19



4.3. Topological properties of Π
(r)
β . Before being able to deduce bounds on γ(β) from Corol-

lary 4.8, we need to preliminary investigate the topological structure of Π
(r)
β .

We already know that Π
(r)
β ⊂ Z(N(β)) by Lemma 4.1. We endow Π

(r)
β with the induced topology of

R on Z(N(β)). The following proposition investigates the extremities of Πβ’s connected components.
An example of such a component is of course [0, γ(β)] (or [0, γ(β))).

Theorem 4.11. Let (u, v) be a non-empty open interval with (u, v) ∩ Z(N(β)) ⊂ Π
(r)
β .

If v ∈ Z(N(β)), then v ∈ Π
(r)
β . If the assumptions of Proposition 4.9 are satisfied and v ∈ Q, then

the same conclusion v ∈ Π
(r)
β holds.

If (u, v) as above is maximal and v < 1, then there are three possibilities for v, namely:

(A) There exists a ∈ A such that

∆∞(v) ∈ π∞
(
−T̃ (a) ∩

(
∆∞(T

(a−1)
β (1)) × φf (Z(N(β)))

))
.

In particular, v = T
(a−1)
β (1).

(B) There exist a and b in A such that

∆∞(v) ∈ π∞
(
−T̃ (a) ∩ −T̃ (b) ∩

(
∆∞([T

(b−1)
β (1), T

(a−1)
β (1))) × φf (Z(N(β)))

))
.

In particular, T
(b−1)
β (1) ≤ v < T

(a−1)
β (1).

(C) There exist a ∈ A and x ∈ Z[1/β] ∩ (0, 1) such that

∆∞(v) ∈ π∞
(
−T̃ (a) ∩ −T̃ (x) ∩

(
∆∞((0, T

(a−1)
β (1))) × φf (Z(N(β)))

))
.

In particular, v < T
(a−1)
β (1).

Cases (B) and (C) are not exclusive of each other. The same results hold for u, u > 0.

Proof. Let (u, v) be a non-empty open interval with (u, v)∩Z(N(β)) ⊂ Π
(r)
β . Assume that v ∈ Z(N(β)).

Then, by Lemma 4.7, one can construct a sequence (zn)n in (u, v) such that lim zn = v and
lim φf (zn) = φf (v). Furthermore, lim zn = v is equivalent to lim φ∞(zn) = φ∞(v). Hence, we have
lim φβ(zn) = φβ(v). Moreover, by taking a subsequence, we may assume that for some a ∈ A, one

has (−φβ(zn), zn) ∈ T̃ (a) × [0, T
(a−1)
β (1)) for all n. Then (−φβ(v), v) ∈ T̃ (a) × [0, T

(a−1)
β (1)]. By

Lemma 4.3, the assumption v ∈ Z(N(β)) ⊂ Q guarantees that v 6= T
(a−1)
β (1). Therefore, we have

that (−φβ(v), v) ∈ T̃ (a) × [0, T
(a−1)
β (1)) and v ∈ Πβ . The same argument applies to v ∈ Q under

the assumptions of Proposition 4.9. The case of u is similar.

We now assume that the interval (u, v) is maximal and v 6= 1. We first claim that there exists

a sequence (yn)n in Z(N(β)) \ Π
(r)
β with lim yn = v. By the maximality of (u, v), it is trivial, but if

there exists w > v such that (u,w) ∩ Z(N(β)) ⊂ Π
(r)
β and v ∈ Z(N(β)) \Π

(r)
β . By the first part of the

theorem, this cannot happen, and our claim is proved.
Let us then start with a sequence (yn)n with v < yn, lim yn = v and yn 6∈ Πβ . By compacity, one

may assume that (φβ(yn))n converges, to (∆∞(v), z), say, with z ∈ φf (Z(N(β)))). By Lemma 4.7,
there exists a sequence (zn)n with u < zn < v, lim zn = v and lim φβ(zn) = (∆∞(v), z). By

extracting a subsequence, we also may assume that there exists a ∈ A with (φβ(zn), zn) ∈ −T̃ (a) ×
[0, T

(a−1)
β (1)) for all n. The first possibility to take in account is v = T

(a−1)
β (1). Since T̃ (a) is closed,
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we then have (∆∞(v), z, v) ∈ −T̃ (a) × {T (a−1)
β (1)}. In other words, one gets the possibility (A) of

the theorem:

∆∞(v) ∈ π∞
(
−T̃ (a) ∩

(
∆∞(T

(a−1)
β (1)) × φf (Z(N(β)))

))
.

From now on, we may assume that v 6= T
(a−1)
β (1) (that does not mean that v could not be equal

to an other element of the Tβ-orbit of 1). We then have (∆∞(v), y) ∈ −T̃ (a) × [0, T
(a−1)
β (1)). Since

yn 6∈ Πβ, we get φβ(yn) 6∈ −T̃ (a). For fixed n, there are two possibilities:

(i) φβ(zn) ∈ −T̃ . Since zn 6∈ Πβ, we have that φβ(zn) ∈ −T̃ (b) for some b ∈ A such that

T
(b−1)
β (1) ≤ v.

(ii) φβ(zn) 6∈ −T̃ . Then, by Proposition 3.15, there exists xn ∈ Z[1/β] ∩ (0, 1) such that

φβ(zn) ∈ −T̃ (xn).

At least one of the properties (i) of (ii) has to be satisfied for infinitely many n’s.
If that is the case for (i), since A is finite, there is a b corresponding to a further subsequence of

(zn)n. Taking the limit, we get φβ(v) ∈ −T̃ (b). Hence case (B) of the theorem:

∆∞(v) ∈ π∞
(
−T̃ (a) ∩ −T̃ (b) ∩

(
∆∞([T

(b−1)
β (1), T

(a−1)
β (1))) × φf (Z(N(β)))

))
.

If there are infinitely many n’s satisfying (ii), Proposition 3.15 shows that the family {xn, n ∈ N}
is finite. Hence, by extracting a subsequence, there is some x 6= 0 with φβ(zn) ∈ −T̃ (x). Taking
the limit, we get case (C):

∆∞(v) ∈ π∞
(
−T̃ (a) ∩ −T̃ (x) ∩

(
∆∞((0, T

(a−1)
β (1))) × φf (Z(N(β)))

))
.

�

Proposition 4.12. If the finitess property (F) is satisfied, then Πβ is dense in Z(N(β)).

Proof. If the property (F) is satisfied, then T̃ (1) contains a neighbourhood of the origin, hence

φf (Int(β)) contains N(β)mφf (Z(N(β))) for some m ≥ 0. Then

φ−1
β

(
∆∞([0, 1)) × N(β)mφf (Z(N(β)))

)
⊂ Πβ ,

and is dense by Lemma 4.7. �

4.4. Upper and lower bounds for γ(β). We now have collected all the required material to be
able to deduce upper and lower bounds for γ(β). The present section collects results that may be
of some interest in every dimension, whereas Section 4.5 is devoted to the quadratic case.

A first upper bound for γ(β) can be directly deduced from Theorem 4.2. We consider the inter-
section between the complete central subtiles and the set of points whose canonical Archimedean

projection by π∞ belong to the diagonal sets of the form ∆∞([0, T
(a−1)
β (1))).

Proposition 4.13. Let β be a Pisot number. One has:

γ(β) ≤ max
{

T
(a−1)
β (1); a ∈ A, (−T̃ (a)) ∩ π−1

∞ ∆∞([0, T
(a−1)
β (1))) 6= ∅

}
.

Proof. Let x ∈ Q ∩ [0, 1). If (φβ(x), x) belongs to
⋃

a∈A(−T̃ (a)) × [0, T a−1
β (1)), then there exists

a ∈ A such that π∞ ◦ φβ(x) ∈ −T̃ (a) ∩ ∆∞([0, T
(a−1)
β (1)). Hence if

x > max
{
T a−1

β (1); a ∈ A, (−T̃ (a)) ∩ π−1
∞ ∆∞([0, T

(a−1)
β (1))) 6= ∅

}
,
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then (φβ(x), x) does not belong to
⋃

a∈A(−T̃ (a))× [0, T a−1
β (1)). We deduce from Theorem 4.2 that

its β-expansion is not purely periodic. �

Let us stress the point that this upper bound is quite rough: if the finiteness property (F) is
satisfied, then the inequality yields the trivial bound γ(β) ≤ 1. Indeed Proposition 3.17 says that

T̃ (1) contains a neighbourhood of the origin. Hence the intersection (−T̃ (1)) ∩ π−1
∞ ∆∞([0, Tβ(1)))

is not empty, which yields γ(β) ≤ 1.

However, Theorem 4.2 states that real numbers have a purely periodic expansion if their em-

bedding is included in the representation
⋃

a∈A(−T̃ (a)) × [0, T a−1
β (1)) of the natural extension of

Tβ. From Lemma 4.7, we know that an interval of rationals (η, ν) ∩ Z(N(β)) embeds in Kβ as the
product of a diagonal set with a local part whose closure is independant of (η, ν). We deduce below
a recursive characterisation for γ(β).

Notation 4.14. Let us order and relabel the elements in A as follows: we set A = {a1, . . . , an}
with

T a1−1
β (1) < T a2−1

β (1) < · · · < T
an−1−1
β (1) < T an−1

β (1) = 1.

Clearly, an = 1. For notational convenience, we state T a0−1
β (1) = 0.

Proposition 4.15. Let β be a Pisot number.

• γ(β) ≥ T ak−1
β (1) if and only if:

γ(β) ≥ T
ak−1−1
β (1) and ∆∞([T

ak−1−1
β (1), T ak−1

β (1)]) × φf (Z(N(β))) ⊂
n⋃

j=k

(−T̃ (aj )).

• If T
ak−1−1
β (1) < γ(β) ≤ T ak−1

β (1), then

(4.6) γ(β) = sup



η ≥ T

ak−1−1
β (1); ∆∞([T

ak−1−1
β (1), η]) × φf (Z(N(β))) ⊂

n⋃

j=k

(−T̃ (aj ))



 .

In particular, if T̃ does not contain ∆∞([0, η]) × φf (Z(N(β))) for any positive η, then γ(β) = 0.

Proof. Let I a non-empty open interval in [0, 1]. By Lemma 4.7, I ∩ Z(N(β)) ⊂ Πβ if and only if

∆∞(Ī) × φf (Z(N(β))) ⊂
n⋃

j=k

(−T̃ (aj )).

Equation (4.6) follows from (4.5) and Theorem 4.2 too. The last assertion is a particular case
of (4.6) when k = 1 and of the observation that φf (Z(N(β))) = −φf (Z(N(β))). �

This result has a geometric interpretation related to the natural extension of Tβ . Denote by ∆
the diagonal line in K∞×R, that is, the Euclidean component of the natural extension. Proposition
4.15 means that γ(β) is the largest part of ∆ starting from 0 such that its product with the full non-

Archimedean component φf (Z(N(β))) is totally included in the natural extension
⋃

a∈A(−T̃ (a)) ×
[0, T a−1

β (1)).

In the unit case, since the representation contains only Archimedean components, Proposition
4.15 simply means that γ(β) is the length of the largest diagonal interval that is fully included in
the natural extension (see an illustration in Fig. 2).

Theorem 4.11 offhands yields lower and upper bounds for γ(β).
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Figure 2. Illustration of the three cases of Theorem 4.11 and Proposition 4.15. We
have chosen a unit Pisot number for the illustration of these three cases for the sake
of clarity. By Proposition 4.15, γ(β) is given by the largest part of the diagonal

line to be fully included in the natural extension
⋃

a∈A(−T̃ (a))× [0, T
(a−1)
β (1)). The

natural extension is represented with subtiles −T̃ (a) in the horizontal direction, and
the interval [0, 1) in the vertical axis. Then, the natural extension consists in union of
cylinders with fractal horizontal base and vertical height. The height of the cylinder

with basis −T̃ (a) is T
(a−1)
β (1). Depending on the location of the point where the

diagonal first goes out from the natural extension, we get the different situations
unearthed in Theorem 4.11.
Situation (A) means that γ(β) belongs to the orbit of 1 under the action of Tβ and
that its Euclidean embedding φ∞(γ(β)) simultaneously is the Euclidean part of a
point of the corresponding subtile. Then, the diagonal starts from 0 and exits from

the natural extension on a plateau with height T
(a−1)
β (1).

Situation (B) involves the intersection between two complete central subtiles tiles

(−T̃ (a)) ∩ (−T̃ (b)). The diagonal line goes out from the natural extension on a
vertical line above the intersection between two subtiles. The main point is that the
plateau of the lowest cylinder (T (b−1)(1)) lies below the diagonal line whereas the

plateau of the upper cylinder (T (a−1)(1)) lies above it.
Situation (C) means that the diagonal line completely crosses the natural extension
and exits above a new x-tile.

Proposition 4.16. We introduce some local notation. For a and b in A such that T
(b−1)
β (1) ≤

T
(a−1)
β (1), let

Aa,b = π∞
(
−T̃ (a) ∩ −T̃ (b) ∩

(
∆∞([T

(b−1)
β (1), T

(a−1)
β (1)]) × φf (Z(N(β)))

))
⊂ K∞.

For a ∈ A and x ∈ Z[1/β], let

Ba,x = π∞
(
−T̃ (a) ∩ −T̃ (x) ∩

(
∆∞((0, T

(a−1)
β (1))) × φf (Z(N(β)))

))
⊂ K∞.

Finally, let

A =
⋃

(a,b)∈A2

T
(b−1)
β

(1)≤T
(a−1)
β

(1)

Aa,b and B =
⋃

a∈A
x∈Z[1/β]∩(0,1)

Ba,x
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Then, an upper bound for γ(β) is given by

(4.7) γ(β) ≥ min




min
(a,b)∈A2

T
(b−1)
β

(1)≤T
(a−1)
β

(1)

Aa,b 6=∅

min
x∈Aa,b

‖π∞(x)‖∞, min
a∈A

x∈Z[1/β]∩(0,1)
Ba,x 6=∅

inf
x∈Ba,x

‖π∞(x)‖∞




.

A lower bound for γ(β) is the following:

(4.8) γ(β) ≤ max {η; [0, η] ⊂ A ∪ B} .

Proof. First note that the infimum in (4.7) is due to the fact that Ba,x does not need to be compact.
We use Theorem 4.11 and the fact, that, by definition, γ(β) is the largest number ג such that

(0, (ג ∩ Z(N(β)) ⊂ Π
(r)
β . Situation (A) in Theorem 4.11 implies that there exists a ∈ A such that

γ(β) = T
(a−1)
β (1) and γ(β) ∈ π∞(−T̃ (a)); it reads off that γ(β) ∈ Aa,a. Situation (B) implies that

there exist a, b ∈ A with T b−1
β (1) < T a−1

β (a) such that γ(β) ∈ Aa,b. However, the interval is closed

in the present proposition, as it is half-closed in Theorem 4.11. Nevertheless, by continuity of π∞,
taking open or closed intervals in Ba,x or Aa,b has no influence on the infimum we are interested in.
Situation (C) reads off that there exist a ∈ A and x ∈ Z[1/β] ∩ (0, 1) such that γ(β) ∈ Ba,x. Since
one the 3 situations must occur, we deduce that γ(β) is greater than the smallest of the infimum
of all these sets. Formulas (4.8) hold for the same reasons.

The three cases are illustrated in Fig. 2. �

4.5. Quadratic Pisot numbers. Let us now consider the particular case of quadratic Pisot num-
bers of degree 2, for which many things can be done explicitely. For instance, Q(β) is an extension
of degree two, and then the algebraic conditions (3) or (4) of Proposition 4.9 can be easily tested.

Indeed, let d be the square-free positive rational integer such that Q(β) = Q(
√

d). Then the
discriminant δQ(β) of the quadratic field is d if d ≡ 1 (mod 4) and 4d if d ≡ 2, 3 (mod 4).

Corollary 4.17. If β2 = aβ+b, with (a, b) ∈ Z2, b 6= 0, the equivalent conditions of Proposition 4.9
are satisfied if and only if:

(1) b is square free,
(2) b is coprime with δQ(β),
(3) d is a quadratic residue with respect to all odd prime divisors of b,
(4) d ≡ 1 (mod 8) if b is even.

The Euclidean representation space K∞ is a one-dimensional line. Consequently, the diagonal
∆∞([0, ε]) is indeed the interval [0, ε] ⊂ K∞ = R. This allows us to use graphical representation of
the complete central tile to conjecture lower bounds for γ(β).

A particularly manageable case is the following: (β) = βO is a prime ideal lying above a
prime number p, that splits. Hence (β) has inertia degree 1, we have N((β)) = |N(β)| = p, and
Kβ = R × Qp (that is a special case of Corolary 4.17). We can represent Zp by the Mona map
Zp ∋ x =

∑
aip

i 7→ ∑
aip

−i ∈ [0, 1]. This mapping is onto, continuous and preserves the Haar
measure, but is it not a morphism for the addition. Corollary 4.8 implies that γ(β) ≥ ε if and only
if a stripe of length ε is totally included in the representation of the central tile, as illustrated by
Fig. 3 and Fig. 4 below.

Let us recall ([FS92], Proposition 1 and Lemma 3) that the finitenes property (F) holds for
any quadratic Pisot number β, and that those numbers are exactly the dominant root of the
polynomials X2 − aX − b with a ≥ b ≥ 1 or q ≥ 3 and −a + 2 ≤ b ≤ −1. Consequently, we
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Figure 3. A representation of the complete central tile for β = 5 + 2
√

7. Then
β has minimum polynomial X2 − 10X − 3 and N((β)) = −3. The quadratic field

Q(β) = Q(
√

7) has discriminant 28, hence
(

28
3

)
=

(
1
3

)
= 1: the discriminant is a

quadratic residue modulo 3 and Corollary 4.17 shows that the complete central tile
is a subset of R×Z3. The vertical axis stands for a representation of Z3 as embedded
in [0, 1). The horizontal axis stands for the real line. Since dβ(1) = 1030∞, there
are two complete central subtiles (green and red). The right figure depicts a zoom
along the vertical axis. This zoom seems to suggest that the central tile contains a
full stripe of the form [−ε, ε] × Z3, so that γ(β) > 0.

Figure 4. A representation of the complete central tile for the Pisot number satis-
fying β2 = 4β+3. As in the previous case, we have Q(β) = Q(

√
7) and N((β)) = −3.

Thus the complete central tile is again a subset of R × Z3. Since dβ(1) = 430∞,
there are two complete central subtiles (green and red). The zoom suggests that the
complete central tile contains no stripe of the form [−ε, ε] × Z3, so that γ(β) = 0.

may apply Theorem 3.18, and the intersections between complete x-tiles determine their boundary,
which have zero measure. The same property holds for the subtiles. We then use the fact that
inner points of x-tiles and subtiles are exclusive to deduce an explicit formula for γ(β).

Theorem 4.18. If β is quadratic, then γ(β) is given by the formula (4.7), that is in that case an
equality.

Proof. First recall that since K∞ is one-dimensional, one has ∆(x) = x for all x ∈ [0, 1]. We use
the notation introduced in Proposition 4.16. We have to show that the lower bound is an upper
bound too. We will show the following:

If x ∈ Z[1/β] ∩ (0, 1) with −T̃ (x) ∩ (0, 1) × φf (Z(N(β))) 6= ∅, then

(4.9a) γ(β) ≤ inf
{
π∞

(
−T̃ (x) ∩ (0, 1) × φf (Z(N(β)))

)}
.

If a ∈ A with −T̃ (a) ∩ [T
(a−1)
β , 1) × φf (Z(N(β))) 6= ∅, then

(4.9b) γ(β) ≤ inf
{

π∞
(
−T̃ (a) ∩ (T

(a−1)
β , 1) × φf (Z(N(β)))

)}
.
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Since −T̃ (x)∩(0, 1)×φf (Z(N(β))) ⊃ Ba,x for every a ∈ A and −T̃ (a)∩[T
(a−1)
β , 1)×φf (Z(N(β))) ⊃ Aa,b

for every b with T
(b−1)
β (1) ≤ T

(a−1)
β (1), the theorem will follow from (4.9). Notice that by continu-

ity of π∞, taking open or closed intervals in Ba,x or Aa,b has no influence on the infimum we are
interested in.

We begin with (4.9a). Let x ∈ Z[1/β] ∩ (0, 1). Let z ∈ −T̃ (x)∩ (0, 1)× φf (Z(N(β))). Since β has

degree 2, the property (F) is satisfied, and T̃ (x) is the closure of its subset of exclusive inner points
by Proposition 3.17.

Let us fix ε > 0. There exists an exclusive inner point y ∈ −T̃ (x)\(−T̃ ) such that ‖y−z‖ ≤ ε/2.
Since y is an inner point and all inner points are exclusive, there exists ν < ε/2 such that the ball

B(y, ν) is contained in −T̃ (x) \ (−T̃ ). By Lemma 4.7, the set φβ((π∞(y)− ν, π∞(y)+ ν)∩Z(N(β)))

is dense in [π∞(y) − ν, π∞(y) + ν] × φf (Z(N(β))). Therefore, it intersects B(y, ν), and there exists

w ∈ (π∞(y) − ν, π∞(y) + ν) ∩ Z(N(β)) such that φβ(w) ∈ −T̃ (x) \ (−T̃ ). For w ≤ π∞(z) + ε, we
know by Theorem 4.2 that the β-expansion of w is not purely periodic. Hence γ(β) ≤ π∞(z) + ε.
Finally, γ(β) ≤ π∞(z) and (4.9a) is proved.

The proof for the upper bound (4.9b) follows the same lines. Let z ∈ −T̃ (a) ∩ (T
(a−1)
β , 1) ×

φf (Z(N(β))). Then T̃ (a) is the closure of its set of exclusive inner points (with respect to T̃ (b), b 6= a).

For ε > 0, there exists an exclusive inner point y and ν > 0 such that B(y, ν) ⊂ −T̃ (a)\⋃b∈A\{a} T̃ (b)

and (π∞(y)− ν, π∞(y) + ν) ⊂ (T
(a−1)
β , 1) (this second condition is the reason for which we take an

open intervall in (4.9b)). By Lemma 4.7, there exists w ∈ (π∞(y)−ν, π∞(y)+ν)∩Z(N(β)) such that

φβ(w) ∈ −T̃ (a) \ ⋃
b∈A\{a} T̃ (b). Since π∞(w) > T

(a−1)
β , w 6∈ Π

(r)
β . Therefore, γ(β) ≤ π∞(z) + ε.

Finally, γ(β) ≤ π∞(z) and (4.9b) is proved. �

Suppose that the degree of β is larger than 2. We know that π∞(φβ(Q ∩ [0, 1])) ⊂ ∆∞([0, 1]).
However, the diagonal set ∆∞([0,∞)) has empty interior in K∞. Consequently, it may happen that

π∞(−T̃ (x)) is tangent to the diagonal ∆∞([0,∞)); in this latter case, −T̃ (x) provides no point
with a non-periodic beta-expansion and the conclusion of Theorem 4.18 may fail.

5. Two quadratic examples

In the previous section, we have proved that γ(β) is deeply related with the intersections between
subtiles and x-tiles. In this section, we will detail on two examples how γ(β) can be explicitely
computed. To achieve this task, we will use the boundary graph defined in Section 3.4. In Corol-
lary 3.13, we have proved that the boundary graph can be computed by three conditions (N1), (N3)
and (N4). Conditions (N1) and (N4) are simple numerical conditions. On the contrary, condition
(N3) implies the integer ring O. In order to check this condition, we need to find an explicit basis
of O ∩ Z[1/β]. We thus introduce below a sufficient condition that reduces O ∩ Z[1/β] to Z[β].

Lemma 5.1. Let β be such that βO has only divisors of degree 1, and with inertia degree 1. Let
x ∈ Z[1/β]. If βkx ∈ O, then βkx ∈ Z[β].

Proof. Let us expand x as x = ad−1β
d−1 + · · · + a0 + · · · + a−Nβ−N , with ai ∈ Z (it is not the β-

expansion). If N > k, then βNx = βN−k(βkx) ∈ βN−kO. We deduce that a−N ∈ βN−kO+βZ[β] ⊂
βO. Hence a−N ∈ βO∩Z. Since βO has only divisors of degree 1 and with inertia degree 1, N(β)
divides a−N . From N(β)/β ∈ Z[β], we deduce that a−N/β ∈ Z[β]. Then x admits an expansion of
size at most β−N+1: x = bd−1β

d−1 + · · · b0 + · · · + b−N+1β
−N+1. We conclude by induction that

βkx ∈ Z[β]. �
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Let us stress the fact that if β is a quadratic number that satisfies the conditions of Propo-
sition 4.9, then Lemma 5.1 holds. In this case, Corollary 3.13 reads as follows to compute the
boundary graph.

Corollary 5.2. Suppose that β is a quadratic number such that βO has only divisors of degree 1
and inertia degree 1. Let β2 = aβ + b be its minimal polynomial. The boundary graph of β can be
explicitely computed as follows.

(1) Consider all triplets [a, x, b] such that x = K + βL, (K,L) ∈ Z2, with

• K ≤ β−a+3aβ−β2−a2

(2β−a)(1+a−β) and L ≤ 1+2a−β
(2β−a)(1+a−β) .

• −T
(a−1)
β (1) < x < T

(b−1)
β (1) and a 6= b if x = 0.

(2) Put an edge betwenn two triplets [a, x, b] and [a1, x1, b1] if there exists q1 and p1 such that
• x1 = β−1(x + q1 − p1),

• a1
p1−→ a and b1

q1−→ b are edges of the admissibility graph.
(3) Recursively remove edges that have no outgoing edge.

Proof. From the proof of Corollary 3.13, it is sufficient to exhibit a set that contains all the triplets
[a, x, b] satisfying conditions (N1), (N3) and (N4). Then the recursive deletion of edges will reduce
the graph to the exact boundary graph. In this case, condition (N3) implies that x ∈ Z[β]. Then
we are looking for all x’s such that x = Kβ + L, with K,L ∈ Z, and such that conditions (N1)
and (N4) are satisfied. let x2 denote the conjugate of x and β2 = a − β denote the conjugate
of β. We obtain K = (β2x − βx2)/(β − β2) and L = (x − x2)/(β − β2). Condition (N1) means

that x ≤ 1, and condition (N4) implies that |x2| ≤ ⌊β⌋
1−|β2| = a

1+a−β . We deduce that if [a, x, b]

satisfies the three conditions (N1), (N3) and (N4), then x = Kβ + L with K ≤ β−a+3aβ−β2−a2

(2β−a)(1+a−β) and

L ≤ 1+2a−β
(2β−a)(1+a−β) . �

When β2 = 4β + 3 the bounds are K ≤ 11 and L ≤ 3. We deduce that the boundary graph
contains 18 nodes (Fig. 5). If [a, x, b] is a node of the boundary graph, we have x ∈ ±{0, β − 4, 5−
β, 2β − 10, 2β − 9}. When β > 1 defined by β2 = 10β + 3, the bounds are K ≤ 14 and L ≤ 2.
The boundary graph contains 8 nodes (see left side of Fig. 7). If [a, x, b] is a node of the boundary
graph, we have x ∈ ±{0, 11 − β, β − 10}.
Proposition 5.3. Let β > 1 defined by β2 = 4β + 3. There are 9 non-empty intersections between

the central subtiles and the neighbouring x-tiles, namely T̃ (1) ∩ T̃ (2), T̃ (1) ∩ (T̃ (1) + φβ(2β − 9)),

T̃ (1)∩(T̃ (2)+φβ(2β−9)), T̃ (1)∩(T̃ (1)+φβ(β−4)), T̃ (2)∩(T̃ (1)+φβ(β−4)), T̃ (1)∩(T̃ (1)+φβ(5−β)),

T̃ (2) ∩ (T̃ (1) + φβ(5 − β)), T̃ (1) ∩ (T̃ (2) + φβ(5 − β)) T̃ (2) ∩ (T̃ (1) + φβ(10 − 2β)). The expansions
of the points lying in one of those intersections are constrained by the graph depicted in Fig. 6.

Proof. In order to obtain the interesting intersections, we consider in the boundary graph the

subgraph of paths starting from [a, x, b] with x ∈ [0, T
(b−1)
β (1)[ and a < b if x = 0. In the boundary

graph, there are 9 nodes which satisfy these conditions: [1, 0, 2], [1, 2β−9, 1], [1, 2β−9, 2], [1, β−4, 1],
[2, β − 4, 1], [1,−β + 5, 1], [1,−β + 5, 2], [2,−β + 5, 1], [2,−2β + 10, 1]. From these nodes, infinite
paths span a subgraph with 15 nodes, depicted in Fig. 6. �

We obtain another graph for β2 = 10β + 3.

Proposition 5.4. Let β > 1 defined by β2 = 10β + 3. There are exactly 4 non-empty intersection

between the central subtiles and x-tiles, namely T̃ (1) ∩ T̃ (2), T̃ (1) ∩ (T̃ (1) + φβ(β − 10)), T̃ (1) ∩
(T̃ (1) + φβ(−β + 11)), T̃ (2) ∩ (T̃ (1) + φβ(−β + 11)). The expansions of the points lying in one of
those intersections are constrained by the graph depicted in Fig. 7.
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(1,0,2)

(1,B-4,1)

(1,4)

(2,B-4,1)

(1,4)

(2,0,1)

(1,-B+4,1)

(4,1)

(1,-B+4,2)

(4,1)

(1,2B-10,2)

(2,-2B+10,1)

(0,4)

(1,2B-9,1)

(0,3)

(1,2B-9,2)

(1,4)

(1,B-5,1)

(1,-B+5,1)

(0,2),(1,3)

(1,-B+5,2)

(0,2)

(2,-B+5,1)

(0,2),(1,3)

(1,-2B+9,1)

(1,0),(2,1),(3,2)

(2,-2B+9,1)

(1,0),(2,1)

(1,B-5,2)

(2,4)

(2,4)

(2,B-5,1)

(4,3)

(0,1),(1,2),(2,3)

(0,1),(1,2) (0,1),(1,2),(2,3) (2,0),(3,1)(2,0) (2,0)

(0,2),(1,3)

(0,2) (1,0),(2,1),(3,2)

(1,0),(2,1),(3,2)

(1,0),(2,1)

(2,4) (0,1),(1,2),(2,3)

(0,1),(1,2) (2,0),(3,1)

(2,0),(3,1)

(2,0)

(3,4)

(4,2)

(4,2)

(3,0),(4,1)

(4,0)

Figure 5. The boundary graph for β2 = 4β + 3.

Proof. In the boundary graph, nodes [a, x, b] that satisfy the condition x ∈ [0, T
(b−1)
β (1)[ and a < b

if x = 0 are [1, 0, 2], [1, β − 10, 1], [1, 11 − β, 1] and [2, 11 − β, 1]. In the boundary graph, paths
starting from these nodes cover a subgraph with 5 nodes, shown in Fig. 7. �

We now have the tools to compute γ(β) in some specific cases.

Lemma 5.5. Let β2 = 4β + 3. We recall that π∞ stands for the projection from K∞ to R. Then

π∞
(
T̃ (1) ∩ (T̃ (1) + φβ(β − 4))

)
=

{∑
aiβ2

i | a2i ∈ {0, 1, 2}, a2i+1 ∈ {2, 3, 4}
}

.

Proof. We use the boundary subgraph depicted in Fig. 6. By construction, any point of the intersec-

tion T̃ (1) ∩
(
T̃ (1) + φβ(β − 4)

)
can be expanded as z =

∑
i≥0 piφβ(βi), where (pi) is the first coor-

dinate of the labeling of a path starting in [1, β−4, 1]. By looking at paths starting from [1, β−4, 1]
we check in the graph that such sequences (pi)’s satisfy p2i ∈ {0, 1, 2} and p2i+1 ∈ {2, 3, 4}. Con-
versely, we also check that every sequence of this form is the first coordinate of the labeling of a
path starting in [1, β − 4, 1] in the graph. This yields

π∞(T̃ (1) ∩ (T̃ (1) + φβ(β − 4))) =





∑

i≥0

{0, 1, 2}β2i
2 +

∑

i≥0

{2, 3, 4}β2i+1
2



 .

�

In order to compute γ(β), we use the following folklore lemma.
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(1,0,2)

(1,B-4,1)

(1,4)

(2,B-4,1)

(1,4)

(1,2B-10,2)

(2,-2B+10,1)

(0,4)

(1,2B-9,1)

(0,3)

(1,2B-9,2)

(1,4)

(1,B-5,1)

(1,-B+5,1)

(0,2),(1,3)

(1,-B+5,2)

(0,2)

(2,-B+5,1)

(0,2),(1,3)

(1,-2B+9,1)

(1,0),(2,1),(3,2)

(2,-2B+9,1)

(1,0),(2,1)

(1,B-5,2)

(2,4)

(2,4)

(2,B-5,1)

(4,3)

(0,1),(1,2),(2,3)

(0,1),(1,2)(0,1),(1,2),(2,3) (2,0),(3,1)(2,0) (2,0)

(0,1),(1,2),(2,3)

(0,1),(1,2)(2,0),(3,1)

(2,0),(3,1)

(2,0)

(3,4)

(4,2)

(4,2)

(3,0),(4,1)

(4,0)

Figure 6. Subgraph of the boundary graph for β2 = 4β + 3 that gather infinite
paths starting from a node [a, x, b] with x ∈ Z[1/β], 0 ≤ x < T (b−1)(1) and a < b if
x = 0. These nodes are [1, 0, 2], [1, 2β − 9, 1], [1, 2β − 9, 2], [1, β − 4, 1], [2, β − 4, 1],
[1,−β +5, 1], [1,−β +5, 2], [2,−β +5, 1], [2,−2β +10, 1]. They exacly stand for the
set of intersections that contribute to the computation of γ(β) in Proposition 4.16.

Lemma 5.6 (Cookie Cantor Lemma). Let α < 1 be an integer number

X(α, n) :=





∑

i≥0

aiα
i

∣∣∣∣∣∣
ai ∈ {0, 1, . . . , n − 1}



 ⊂

[
0,

n − 1

1 − α

]

The two end points {0, n−1
1−α} belong to X(α, n). Furthermore, if α > 1/n, then it is a Cantor cookie

cutter set and if α ∈ [1/n, 1), then X(α, n) coincides with the interval [0, (n − 1)/(1 − α)].

Proof. The set X(α, n) is the attractor of the IFS: X =
⋃n−1

i=0 αX +i which has a unique non-empty
compact solution. It is easy to see that the right hand side is a solution if α ∈ [1/n, 1). �

Theorem 5.7. One has
γ(2 +

√
7) = 0.
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(1,0,2)

(1,B-10,1)

(7,10)

(2,0,1)

(1,-B+10,1)

(10,7)

(1,B-11,1)

(1,-B+11,1)

(0,8),(1,9)

(2,-B+11,1)

(0,8),(1,9)

(8,0),(9,1)

(1,B-11,2)

(8,0),(9,1)

(0,7),(1,8),(2,9)

(0,7),(1,8),(2,9)

(2,10)

(2,10)

(10,2)

(10,2)

(7,0),(8,1),(9,2)

(7,0),(8,1),(9,2)

(1,0,2)

(1,B-10,1)

(7,10)

(1,B-11,1)

(1,-B+11,1)

(0,8),(1,9)

(2,-B+11,1)

(0,8),(1,9)

(8,0),(9,1)

(1,B-11,2)

(8,0),(9,1)

(0,7),(1,8),(2,9)

(0,7),(1,8),(2,9)

(2,10)

(2,10)

(10,2)

(10,2)

Figure 7. (Left) The boundary graph for β2 = 10β + 3. The notation B stands
for β.
(Right) Subgraph of the boundary graph that gathers infinite paths starting from a

node [a, x, b] with x ∈ Z[1/β], 0 ≤ x < T (b−1)(1) and a < b if x = 0. These nodes
are [1, 0, 2], [1, β − 10, 1], [1, 11 − β, 1] and [2, 11 − β, 1]. They exacly stand for the
set of intersections that contribute to the computation of γ(β) in Proposition 4.16.

Proof. If β2 = 4β + 3 and β is a Pisot number, then β = 2 +
√

7. We also check that β satisfies
the conditions of Corollary 4.17, hence φf (Z(N(β))) = Z3. In this case, the set Aa,b and Ba,x in
Proposition 4.16 simply correspond to intersections between tiles, with no more diagonal set: Aa,b =

π∞(−T̃ (a)∩−T̃ (b)∩[T
(b−1)
β (1), T

(a−1)
β (1)])×Z3) and Ba,x = π∞(−T̃ (a)∩−T̃ (x)∩(0, T

(a−1)
β (1))×Z3).

Then computing γ(β) reduced to understanding intersections between tiles.
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Let −α denote the conjugate of β, that is, α =
√

7− 2 > 1/3. Lemma 5.5 exhibits a set that we
need to compute explicitly.

π∞
(
T̃ (1) ∩ (T̃ (1) + φβ(β − 4))

)
=

{∑
aiα

2i −
∑

biα
2i+1 | ai ∈ {0, 1, 2}, bi ∈ {2, 3, 4}

}

=
{∑

aiα
2i +

∑
ciα

2i+1 | ai ∈ {0, 1, 2}, ci ∈ {−2,−3,−4}
}

= X(α, 3) − α(4 + 4α2 + 4α4 + . . . )

=

[
− 4α

1 − α2
,− 4α

1 − α2
+

2

1 − α

]

=

[
− 4α

1 − α2
,
2 − 2α

1 − α2

]
∋ 0

Hence zero is the minimum of [0, Tβ(1)] ∩ π∞(−T̃ (1) ∩ (−T̃ (β − 4)) and Theorem 4.18 implies that
γ(β) = 0. �

A completely different behaviour appears when modifying only one digit in the quadratic equation
satisfied by β.

Theorem 5.8. One has

γ(5 + 2
√

7) =
7 −

√
7

12

Proof. The number 5+2
√

7 is the root of β2 − 10β− 3 = 0. As before, conditions of Corollary 4.17
are satisfied hence φf (Z(N(β))) = Z3, and studying intersections between tiles is enough to compute
γ(β).

From the graph depicted in Fig. 7, we deduce that non-empty intersections in the numeration

tiling are given by T̃ (1) ∩ (T̃ (2), T̃ (1) ∩ (T̃ (1) + φβ(11 − β)), T̃ (2) ∩ (T̃ (1) + φβ(11 − β)), and T̃ (1) ∩
(T̃ (1) + φβ(+10 + β)).

We can detail the expansion of the real projection of the three last sets.

π∞(T̃ (1) ∩ (T̃ (1) + φβ(11 − β))) = {8, 9} + β2

∑

i≥0

{0, 1, 2}β2i
2 + {8, 9, 10}β2i+1

2

π∞(T̃ (2) ∩ (T̃ (1) + φβ(11 − β))) = 10 + β2

∑

i≥0

{0; 1, 2}β2i
2 + {8, 9, 10}β2i+1

2

π∞(T̃ (1) ∩ (T̃ (1) + φβ(−10 + β))) = {0, 1, 2} + β2

∑

i≥0

{8, 9, 10}β2i
2 + {0, 1, 2}β2i+1

2

We use the Cookie Cantor Lemma stated above with α = −β(2) = 3β−1 and n = 3 > α−1 to
compute the sum that is involved in each intersection.

∑

i≥1

{0, 1, 2}β2i
2 + {8, 9, 10}β2i+1

2 =
∑

i≥0

{0; 1, 2}α2i − {8, 9, 10}α2i+1

= −10
∑

i≥0

α2i+1 +
∑

j≥0

{0, 1, 2}αj

=
−10α

1 − α2
+

[
0,

2

1 − α

]
=

[ −10α

1 − α2
,
−8α + 2

1 − α2

]
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Similarly, we have
∑

i≥1

{8, 9, 10}β2i
2 + {0, 1, 2}β2i+1

2 = 10
∑

i≥0

α2i −
∑

j≥0

{0, 1, 2}αj

=
10

1 − α2
−

[
0,

2

1 − α

]
=

[
8 − 2α

1 − α2
,

10

1 − α2

]
.

We deduce that

π∞(T̃ (1) ∩ (T̃ (1) + φβ(11 − β))) =

[
8 − α

−8α + 2

1 − α2
, 8 − α

−10α

1 − α2

]
⊂ ]0,∞[ .

Hence −π∞(T̃ ∩ (T̃ (1) + φβ(11 − β))) ∩ [0, 1] = ∅. Similarly, we have −π∞(T̃ ∩ (T̃ (2) + φβ(11 −
β)))∩ [0, 1] = ∅, so that both intersections cannot be taken into account in the computation of γ(β).

This implies that −π∞(T̃ (2)) ∩ [0,∞] does not intersect the projection of any tile −π∞(T̃ (x)).
We also have

π∞(T̃ (1) ∩ (T̃ (1) + φβ(β − 10))) =

[ −10α

1 − α2
,
−8α + 2

1 − α2

]
.

Hence, the minimum of −π∞(T̃ (1) ∩ (T̃ (1) + φβ(β − 10))) is 8α−2
1−α2 .

In order to apply Theorem 4.18, we prove that the infimum of intersections of the form π∞(Aa,b)
(situation (A) or (B)) is strictly larger than the infimum of intersections π∞(Bx,a) (situation (C)).

By definition, we have π∞(T̃ (2)) = {∑i≥0 a2iα
2i − ∑

i≥0 a2i+1α
2i+1} where sequences a1 . . . ai . . .

are sequences starting from 2 in the reverse of the admissibility graph. We deduce that a0 = 10,
a1 ≤ 9, a2 ≥ 0, and then, a2i+2 ≥ 0 and a2i+3 ≤ 10. Hence

min π∞(T̃ (2)) ≥ 10 − 9α + 0α2 − 10α3 + · · · = 10 − 9α + 10
α3

1 − α2
> 0.

Consequently, −π∞(T̃ (2)) ∩ [0,∞] = ∅ and situations (A) or (B) do not contribute to γ(β).

From Theorem 4.18, we deduce that γ(β) = min−π∞(T̃ (1) ∩ (T̃ (1) + φβ(11 − β))) = 8α−2
1−α2 =

7−
√

7
12 . �

6. Perspectives

At least two main directions deserve now to be discussed. In the quadratic case, what is the
structure of the intersection graph allowing to compute γ(β)? The first question is whether we can
obtain an algorithmic way to compute γ(β) for every quadratic β. Then, can we deduce a general
formula for γ(β) for subfamilies of β? The first step would be to describe properly the structure of
the boundary graph, at least for the family β2 = nβ + 3.

Another direction lies in the application of these methods in the three (or more dimensional
case), including the unit case. At the moment we cannot give an explicit formula for γ(β). In
order to generalise the results to higher degrees, an approximation of exclusive inner points by the
diagonal line of Kβ is needed. This seems reasonable at least in the unit case, but requires a precise
study of the topology of the central tile. Examples of computations of intersections between line
and fractals are obtained in [AS05], by numeric approximations. As an example, an intersection is
prove to be approximated by 0.66666666608644067488. Then it is not equal to 2/3, though very
near from it. Theorem 5.8 is an example where we were able to compute explicitely the value of
γ(β) and it turned out that γ(β) ∈ Q(β). The question of the algebraic nature of γ(β) in general
is interesting.
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[BBLT06] G. Barat, V. Berthé, P. Liardet, and J. M. Thuswaldner. Dynamical directions in numeration. Ann. Inst.
Fourier (Grenoble), 56(7):1987–2092, 2006.

[Ber77] A. Bertrand. Développements en base de Pisot et répartition modulo 1. C. R. Acad. Sci. Paris Sér. A-B,
285(6):A419–A421, 1977.
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[CFS82] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinăı. Ergodic theory, volume 245 of Grundlehren der Mathema-

tischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York,
1982. Translated from the Russian by A. B. Sosinskĭı.
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Nombres, 1987–1988 (Talence, 1987–1988). Univ. Bordeaux I, Talence., 1988. Exp. No. 21, 12.
[Roh61] V. A. Rohlin. Exact endomorphisms of a Lebesgue space. Izv. Akad. Nauk SSSR Ser. Mat., 25:499–530,

1961.
[San02] Y. Sano. On purely periodic beta-expansions of Pisot numbers. Nagoya Math. J., 166:183–207, 2002.
[Sch80] K. Schmidt. On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc.,

12(4):269–278, 1980.
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