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Kurzfassung

Die zentralen mathematischen Objekte in der Analyse von Gitternetzpfaden sind die erzeu-
genden Funktionen. Wir führen sie zunächst als formale Potenzreihen ein, deren algebrai-
sche Struktur unmittelbar die Struktur der zugrundeliegenden kombinatorischen Klassen
widerspiegelt. Der logische erste Schritt zur Analyse einer beliebigen Familie von Gitter-
netzpfaden liegt in der Herleitung ihrer erzeugenden Funktion. Nach der Identifizierung
einer formalen Spezifikation dieser Familie, in Form grundlegender mengentheoretischer
Konstruktionen, liefert die sogenannte symbolische Methode eine Funktionalgleichung für
die erzeugende Funktion. Darauf aufbauend, liefert uns schließlich die sogenannte kernel
method ein leistungsfähiges Werkzeug zur Lösung solcher, oftmals scheinbar unterbestimm-
ten, Gleichungen. Sobald wir die erzeugende Funktion endlich in der Hand haben, schreiten
wir in drei mögliche Richtungen voran. Erstens ist es in einfachen Fällen möglich, durch
eine Kombination von Newtons verallgemeinertem binomischem Lehrsatz mit der Lagran-
geschen Inversionsformel, eine geschlossene Formel für die entsprechende Zählsequenz zu
erhalten. Zweitens gewährt eine Untersuchung der Lage und des Typs der dominanten
Singularitäten der erzeugenden Funktion tiefe Einblicke in die asymptotischen Wachstums-
raten ihrer Koeffizienten, selbst wenn eine geschlossene Formel nicht mehr in Reichweite
ist. Schließlich verwenden wir die erzeugenden Funktionen, um mit Hilfe der On-Line En-
cyclopedia of Integer Sequences (OEIS) Verbindungen zu verwandten kombinatorischen
Strukturen zu entdecken, welche dieselbe Zählsequenz aufweisen. Die Gleichheit dieser Se-
quenzen garantiert zwar die Existenz eines kombinatorischen Isomorphismus, allerdings ist
die tatsächliche Konstruktion einer solchen Bijektion oft alles andere als offensichtlich.





Abstract

The central mathematical objects of lattice path combinatorics are generating functions.
Initially, we introduce them as formal power series, whose algebraic structure directly re-
flects the structure of combinatorial classes. Hence, the logical first step for analyzing any
family of lattice paths lies in the derivation of its generating function. After identifying a
formal specification of this family in terms of basic set-theoretic constructions, the sym-
bolic method provides us with a functional equation satisfied by our generating function.
Next, the so-called kernel method serves as a powerful tool to solve this often seemingly
underdetermined functional equation. Once the generating function has been derived, we
may continue in three possible directions. Firstly, in simple cases, it is possible to ob-
tain a closed-form expression for the corresponding counting sequence via a combination
of Newton’s generalized binomial theorem and Lagrange’s inversion formula. Secondly, an
investigation into the nature and location of the complex singularities of the generating
function provides vital insights into the asymptotic growth rates of their coefficients, even
if a closed-form formula is no longer feasible. Finally, we use the generating functions in
conjunction with the On-Line Encyclopedia of Integer Sequences (OEIS) to discover con-
nections to related combinatorial structures and construct explicit bijections between them.
While the equality of the counting sequences guarantees the existence of such a function,
the actual construction is often far from obvious.





Preface

Historical developments and motivation

The topic of lattice path combinatorics is a rich and active field of research. Its origins can
be traced back as early as 1878, when the earliest known drawing of a lattice path is used
by Whitworth1 [31] to help picture a combinatorial problem. He uses a two-dimensional
lattice path with steps in S = {(1, 0), (0, 1)} to solve a counting problem involving urns
containing m black and n white balls, where the number of white balls drawn must never
exceed the number of black balls. Today this problem is commonly known as Bertrand’s
ballot problem, as Betrand2 rediscovered the result nine years later in 1887 and published
his answer in the Comptes Rendus de l’Academie des Sciences: The probability is simply
(m − n + 1)/(m + 1), provided that m ≥ n. However, it was not until the start of the
second half of the 20th century, when the study of lattice path combinatorics really took off.
Around this time the first papers appeared to study lattice path enumeration for the sake
of counting lattice paths, see for example Bizley’s work on the number of minimal lattice
paths from (0, 0) to (km, kn) having just t contacts with the line my = nx [7]. After this
the scientific interest for this field has been steadily growing. In fact, Humphreys studied
the counting sequence of the number of papers, pertaining to lattice path enumeration,
published by decade, noting that the number of such papers more than doubled each
decade from 1960 to 2010. For more details and a deep dive into the history of lattice path
enumeration, the author recommends her thorough survey [16].

Consequently, it is fair to say that the study of lattice path combinatorics has eman-
cipated itself from its parental roots in probability and statistics. Today, its applications
reach far into fields like cryptanalysis, crystallography and sphere packing [21]. Further-
more, lattice paths can be used to encode a variety of combinatorial objects, such as trees,
maps, permutations, polyominoes, Young tableaux, queues and many, many more [8].

Goals and contributions

Goals. Firstly, the necessary groundwork for the analysis of directed lattice paths shall
be thoroughly presented, with all necessary derivations made explicit. This includes a de-
tailed treatment of the central kernel method, as well as the process of singularity analysis.
Secondly, the general formulae and techniques are then applied to specific classes of lattice
paths, in particular, basketball walks and directed lattice paths with catastrophes. Wher-
ever possible, we make lateral connections to different combinatorial objects explicit, by
constructing vivid bijections between them.

1William Allen Whitworth (1840–1905)
2Joseph Louis François Bertrand (1822–1900)



Contributions. In Chapter 2, we collect the often scattered properties of the kernel
method, along with their theoretical underpinnings, in the concise Proposition 2.1.4. In
Chapter 3, we augment the article by Banderier, Krattenthaler, Krinik, D. Kruchinin, V.
Kruchinin, Nguyen and Wallner [2] with a novel, combinatorial derivation of a generating
function (Proposition 3.1.5) and correct several typos in the paper. In Chapter 4, we expand
on the work by Banderier and Wallner [3], by contrasting their model of catastrophes with
a similar alternative suggested in the paper. In this context, we provide multiple new bijec-
tions between related families of lattice paths arising from this alternative model in Section
4.1 and prove a general result pertaining to the asymptotic growth rates of the number of
k-Motzkin excursions with alternative catastrophes (Theorem 4.2.11). Finally, in Chapter
5, we link the theory of lattice path combinatorics to the field of counting animals via a
novel bijective procedure (Theorem 5.1.16) mapping Motzkin excursions with alternative
catastrophes to the class of stacked directed animals, introduced by Bousquet-Mélou and
Rechnitzer in [10].

Thesis structure

In Chapter 1 we provide the necessary framework with the basics of combinatorial structures
and complex analysis, along with a perspective on the historical developments of this field.
In Chapter 2 we study directed lattice paths and give a thorough introduction to the kernel
method, essential for deriving their generating functions. In Chapter 3 we specialize the
general formulae derived in the previous chapter to a subclass of directed lattice paths,
called basketball walks, after the evolution of the score of a basketball game before the
introduction of the 3-point rule. Next, in Chapter 4 we study an extension of the theory
of directed lattice paths, where we allow additional steps, so-called catastrophes that reset
the lattice path back to the x-axis. We compare and contrast two different models of
catastrophes in terms of their generating functions and the asymptotic growth rates of the
respective counting sequences. Finally, in Chapter 5 we provide bijections between lattice
paths with catastrophes and directed animals.
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1 Introduction

1.1 Lattice paths

In this section we will build up the basic framework necessary for the study of lattice paths,
where the notations and definitions are mostly based on the introduction of Wallner’s
master thesis [30]. We will breathe life into these definitions with classical examples that
have been studied since the earliest days of lattice path enumeration.

(a) Lattice path on a square lat-
tice.

(b) Lattice path on a triangular
lattice.

(c) Lattice path on a hexagonal
lattice.

Figure 1.1: Examples of lattices.

Definition 1.1.1 (Lattice path). A lattice Λ = (V,E) is a mathematical model of a
discrete space. It consists of a set V ⊂ Rn of vertices and a set E ⊂ V 2 of directed edges.
An n-step lattice path or lattice walk or walk in Λ from s ∈ V to t ∈ V is a sequence
ω = (ω0, ω1, . . . , ωn) of elements in V such that

• ω0 = s, ωn = t and

• (ωi, ωi+1) ∈ E for i = 0, . . . , n− 1.

The length |ω| of a lattice path is the number of edges in the sequence ω. A lattice Λ is
called homogenous, if the number of n-step walks starting from s ∈ V is independent from
the starting point s for all values of n.

In Figure 1.1 we illustrate a few common examples of lattices. The most important
lattice for this thesis will be the Euclidean or square lattice. In this case, the infinite edge
set can be induced by a finite set of steps or jumps, which describe how a path may move
from one vertex to the next.

1



1 Introduction

Definition 1.1.2 (Euclidean lattice). The Euclidean lattice consists of the vertices Zd. The
edges are defined indirectly via the step set S ⊂ Zd. Two vertices v, w ∈ Zd are connected
by an edge (v, w) ∈ E iff1 w− v ∈ S. An n-step lattice path on the Euclidean lattice from
s ∈ Zd to t ∈ Zd is consequently equivalently characterized by a sequence ω = (ω0, . . . , ωn)
of elements in Zd such that

• ω0 = s, ωn = t and

• ωi+1 − ωi ∈ S for i = 0, . . . , n− 1.

A fascinating part of lattice path combinatorics is the fact that despite their easily
accessible definitions, most of their properties still remain unproven or unknown. Hence,
most step sets of lattice paths analyzed in this thesis satisfy further restrictions.

Definition 1.1.3 (Directed paths). Directed paths are lattice paths on the two-dimensional
Euclidean lattice with a fixed direction of increase which we choose to be the positive
horizontal axis. This is described by the allowed steps: If (i, j) ∈ S, then i > 0. This
implies that the geometric realization of the path always lives in the right half-plane Z+×Z.
Further, for any given step set S we commonly distinguish four subclasses of directed paths.

• Walks/paths are directed paths that

– are not constrained to stay above the x-axis,

– may end at any altitude.

• Bridges are directed paths

– that are not constrained to stay above the x-axis,

– whose endpoint ωn lies on the x-axis.

• Meanders are directed paths that

– are constrained to stay above the x-axis,

– may end at any altitude.

• Excursions are directed paths

– that are constrained to stay above the x-axis,

– whose endpoint ωn lies on the x-axis.

Definition 1.1.4 (Simple paths). We call a family of directed paths or a set of steps simple,
if the step set satisfies S = {(1, b1), . . . , (1, bk)} with bi ∈ Z. In this case, we shorten the
notation to S = {b1, . . . , bk}.

Since the steps in simple paths are always of the form (1, b), simple paths are essentially
one-dimensional objects. This stands in contrast to step sets including generic steps of
the form (x, y), where we do need the whole two-dimensional plane to represent such
paths. This reduction in dimensionality allows us to understand simple lattice paths in
much greater detail. In many applications, step sets may be augmented with a system of
weights.

1“iff” is Paul Halmos’ convenient abbreviation for “if and only if”.
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1.1 Lattice paths

Definition 1.1.5 (System of weights). For a given step set S we define the respective
system of weights as Π = { ps | s ∈ S }, where ps > 0 is the weight associated to step s ∈ S.
The weight of a lattice path is then defined as the product of the weights of its individual
steps. Some useful choices are:

• ∀ s ∈ S : ps = 1, representing combinatorial paths in the standard sense.

• ∀ s ∈ S : ps ∈ N, representing paths with colored steps, for example, ps = 2 means
that the associated step has two possible colors.

•
∑

s∈S ps = 1, representing a probabilistic model of paths, where step s is chosen with
probability ps.

With this definition, a central concept in the analysis of linear recurrences can be adapted
to the theory of lattice paths.

Definition 1.1.6 (Characteristic polynomial). The characteristic polynomial or jump poly-
nomial of a simple step set S ⊂ Z is defined as the Laurent polynomial

P (u) =
∑
s∈S

psu
s,

where ps > 0 is the weight associated to the step s ∈ S. If we define c = −min(S) and
d = max(S) as the two extremal vertical amplitudes of any jump, it is often convenient to
rewrite the jump polynomial to

P (u) =
d∑

k=−c

pku
k,

with the convention that pk = 0 if k /∈ S.

The field of lattice path enumeration allows for countless connections to other areas of
combinatorics. In particular, plane trees are closely related to lattice paths. Any plane
tree can be traversed starting from the root, proceeding depth-first and left-to-right, and
backtracking upwards once a subtree has been completely traversed. This order is known
as a preorder or prefix order, since a node is preferentially visited before its children.
Given a tree, the listing of the outdegrees of nodes in prefix order is called the preorder
degree sequence. Note that a plane tree can be uniquely determined by its preorder degree
sequence. For the example tree depicted in Figure 1.2a, the preorder degree sequence reads

σ = (3, 1, 2, 0, 0, 1, 0, 2, 0, 0).

This degree sequence can then be interpreted as a word over a finite alphabet. Each value j
for the outdegree of a node is represented by a symbol fj . Then, after adding parentheses,
the word can be interpreted as a functional term, where fj represents a function of arity
j. In our example this yields the functional term

f3(f1(f2(f0, f0)), f1(f0), f2(f0, f0)).

3



1 Introduction

Such codes are known as  Lukasiewicz codes after the polish logician2 with the same name.
Finally, we make the connection to lattice paths by associating any symbol fj to the simple
step (1, j − 1). Then, by starting at the origin and adding steps according to the preorder
degree sequence we get a lattice path, associated with a simple step set S ⊂ {−1, 0, 1, 2, . . . },
also known as a  Lukasiewicz walk. Further, since every tree satisfies |E| = |V | − 1, the
lattice path never crosses below the x-axis except at the very last step; see Figure 1.2b.
Thus, by omitting the last step we get a correspondence between plane trees with n + 1
nodes and  Lukasiewicz excursions of length n [14, p. 74–75].

1

2 6 8

3 7 9 10

4 5

(a) A plane tree, with its vertices labeled ac-
cording to their prefix order.

(b) The corresponding  Lukasiewicz excur-
sion.

Figure 1.2: The bijection between plane trees and  Lukasiewicz excursions.

In particular, binary trees are associated in this way to the possibly most famous example
of a family of directed lattice paths, named after the German mathematician Dyck3.

Definition 1.1.7 (Dyck walks). Dyck walks are lattice paths associated with the simple
step set S = {−1, 1}. Throughout this thesis we will denote these steps with NE := (1, 1)
and SE := (1,−1).

We now present an elementary counting argument to derive the number of Dyck excur-
sions of length 2n.

Example 1.1.8 (André’s reflection principle). The formula for the number d2n of Dyck
excursions consisting of 2n steps can be derived using a counting argument that is now
referred to as André’s reflection principle, even though André himself never employed the
method [25]. The idea is the following: We count lattice paths consisting of n NE-steps
and n SE-steps and then subtract the number of such paths that are not Dyck paths.

A lattice path consisting of n NE-steps and n SE-steps can be uniquely identified by the
position of the NE-steps, which yields

(
2n
n

)
possible such lattice paths. Hence, the number

of Dyck bridges of length 2n is given by
(
2n
n

)
. Now we subtract all paths that go below the

x-axis at some point.

Let p be a lattice path with n NE-steps and n SE-steps that is not a Dyck path. Then
pick the first step that lies beneath the x-axis and change all NE-steps occurring afterwards
into SE-steps and vice-versa. These reflected paths must all end at (2n,−2) since we reflect

2Jan  Lukasiewicz (1878–1956)
3Walther Franz Anton von Dyck (1856–1934)

4



1.1 Lattice paths

Figure 1.3: A Dyck excursion reflected after the first step that crosses below the x-axis.

the path after the point when it hits y = −1 for the first time; see Figure 1.3. This means
that one net NE-step gets flipped to one net SE-step. The number of paths consisting of
(n − 1) NE-steps and (n + 1) SE-steps can be counted via

(
2n
n−1

)
. By subtracting these

unwanted reflected paths we see that the number of Dyck excursions with 2n steps satisfies

d2n =

(
2n

n

)
−
(

2n

n− 1

)
=

(
2n

n

)
− n

n+ 1

(
2n

n

)
=

1

n+ 1

(
2n

n

)
.

In addition, if we interpret a NE-step as a vote for candidate A and a SE-step as a vote
for candidate B we see that we rederived the solution to Bertrand’s ballot problem for the
special case that the total number of votes for candidate A equals the number of votes for
candidate B. △

As the prime example of lattice path enumeration, it is perhaps not surprising that the
enumeration of Dyck paths is intimately connected to the most ubiquitous sequence in
combinatorics: the Catalan numbers. They are named after the Belgian mathematician
Catalan4 , who was the first to obtain today’s standard formulae

Cn =
(2n)!

n!(n+ 1)!
=

(
2n

n

)
−
(

2n

n− 1

)
=

1

n+ 1

(
2n

n

)
.

The origins of the sequence, however, reach back even further than this. They first appeared
in the works of the Mongolian astronomer and mathematician Minggatu5. In his book Quick
Methods for Accurate Values of Circle Segments [23], he already obtained the recurrence
formula

C1 = 1, C2 = 2, Cn+1 =
n∑

k=0

(−1)k
(
n+ 1 − k

k + 1

)
Cn−k.

In European mathematical circles, Euler6 was the first one to obtain a closed formula

Cn−2 =
2 · 6 · 10 · · · (4n− 10)

2 · 3 · 4 · (n− 1)
(1.1)

4Eugène Charles Catalan (1814–1894)
5Sharabiin Myangat (1692–1763)
6Leonhard Euler (1707–1783)

5



1 Introduction

for the Catalan numbers in 1751. A complete proof of this formula, however, was not
achieved until 1759 with substantial assistance by Goldbach7 and Segner8, the latter of
which provided the final missing piece with the recurrence relation

Cn+1 =

n∑
k=0

CkCn−k. (1.2)

The study of this sequence then really kicked off with the French School between 1838
and 1843, as Liouville9 used his large mailing list of mathematicians to communicate the
problem of deriving Euler’s product formula (1.1) from Segner’s recurrence (1.2) to “various
geometers”, among them the aforementioned Catalan. This fascinating digression into
the history of mathematics and many more details can be found in Appendix B of the
monograph on the Catalan numbers [28], contributed by Igor Pak.

For more combinatorial interpretations, the monograph [28] from Richard Stanley lists
214 different kinds of combinatorial objects counted by the Catalan numbers, some of which
will reappear at various points throughout this thesis.

1.2 Formal power series

As generating functions of counting sequences are the central mathematical object of com-
binatorial analysis, we need to introduce a few basic concepts about polynomial rings from
algebra.

Definition 1.2.1 (Formal power series [30, Definition 1.8]). Let R be a ring with unity.
The ring of formal power series R[[z]] consists of all formal sums of the form∑

n≥0

anz
n = a0 + a1z + a2z

2 + · · · ,

with coefficients an ∈ R. The sum of two formal power series
∑

n≥0 anz
n,
∑

n≥0 bnz
n is

defined by ∑
n≥0

anz
n +

∑
n≥0

bnz
n =

∑
n≥0

(an + bn)zn

and their product by ∑
n≥0

anz
n ·
∑
n≥0

bnz
n =

∑
n≥0

(
n∑

k=0

akbn−k

)
zn.

Definition 1.2.2 (Formal topology [14, p. 731]). We define the valuation of a non-zero
formal power series f(z) =

∑∞
n=0 fnz

n as the smallest r ∈ N such that fr ̸= 0 and denote
it by val(f). Further, we set val(0) = ∞. Then, one defines a metric on R[[z]] via

d(f, g) = 2−val(f−g).

With this distance, the space of all formal power series becomes a complete metric space.

7Christian Goldbach (1690–1754)
8Johann Andreas von Segner (1704–1777)
9Joseph Liouville (1809–1882)

6



1.3 Combinatorial structures

The formal topology is a useful tool to analyze the convergence of some combinatorial
constructions that go beyond a finite number of arithmetic operations.

Example 1.2.3. Let f ∈ R[[z]] be a formal power series with f0 = 0. Then, the infinite
sum Q(f) :=

∑∞
k=0 f

k converges in the formal topology. Let Qn(f) =
∑n

k=0 f
k be the

partial sum terminating at index n. We notice that val(fk) ≥ k and thus we have

d(Qn, Qm) = 2−(min(n,m)+1).

Hence, (Qn)n∈N is a Cauchy sequence and consequently converges. △

1.3 Combinatorial structures

A generating function is a clothesline on which we hang up a sequence of numbers for display.
What that means is this: suppose we have a problem whose answer is a sequence of numbers,
a0, a1, a2, . . . . We want to ‘know’ what the sequence is. What kind of an answer might we
expect?

Herbert Wilf [32, p. 1]

In this section we introduce the notion of a combinatorial class, together with the power-
ful symbolic method, based on Chapter I of [14]. Many general set-theoretic constructions
are built directly in terms of simpler classes by means of a collection of elementary combi-
natorial constructions, namely the operations of union, Cartesian product, sequence, set,
multiset and cycle. The symbolic method then provides a dictionary translating these set-
theoretic operations into algebraic operations on generating functions. Hence, the task of
constructing a generating function of a combinatorial structure reduces to the identification
of a formal specification in terms of basic constructions. After this, the translation into
generating functions becomes a purely mechanical process.

The fundamental object studied by symbolic enumeration methods is the combinatorial
class. It serves as a model of sets of discrete objects, like words, trees, graphs, permutations
or lattice paths.

Definition 1.3.1 (Combinatorial class). A combinatorial class A, or simply a class, is
a finite or denumerable set on which a size function is defined, satisfying the following
conditions:

1. The size of an element is a non-negative integer.

2. The number of elements of any given size is finite.

The size of an element α ∈ A is denoted by |α|, or |α|A and we define

An := {α ∈ A : |α| = n }.

We denote the cardinality of these subsets by an := card(An) and call (an)n∈N the counting
sequence of A. Further, we define two elementary combinatorial classes:

• The neutral class E consists of a single object of size 0.

7



1 Introduction

• The atomic class Z consists of a single object of size 1.

They form the basis from which all combinatorial structures are constructed.

Example 1.3.2 (Number of Dyck walks). Consider the set WD of unconstrained Dyck
walks. Since there two possible steps available at every point on the lattice path, the
number of Dyck walks of length n satisfies wn = 2n. △

Next, for combinatorial enumeration purposes, it proves convenient to identify combina-
torial classes that are merely variants of each other.

Definition 1.3.3 (Combinatorial isomorphism). Two combinatorial classes A and B are
said to be combinatorically isomorphic, iff their counting sequences are identical. In this
case, we also write A ∼= B. This condition is equivalent to the existence of a bijection from
A to B that preserves size. Hence, one also says that A and B are bijectively equivalent.

Next we introduce the central mathematical object of combinatorial analysis.

Definition 1.3.4 (Ordinary generating function). The ordinary generating function (OGF)
of a sequence (an)n∈N is the formal power series

A(z) =

∞∑
n=0

anz
n.

The OGF of a combinatorial class A is the generating function for the counting sequence
an = card(An), n ≥ 0. Equivalently, the combinatorial form

A(z) =
∑
α∈A

z|α|,

is employed. We say the variable z marks the size in the generating function. Further, we
introduce the coefficient extraction operator [zn] : R[[z]] → C, defined via

[zn]

∑
n≥0

fnz
n

 = fn.

Example 1.3.5 (Generating function of Dyck walks). The OGF corresponding to unre-
stricted Dyck walks considered in Example 1.3.2 henceforth satisfies

WD(z) =

∞∑
n=0

2nzn =
1

1 − 2z
.

Note that at this point 1
1−2z is just a shorthand notation for the corresponding formal power

series and we are not yet concerned with its analytic properties like convergence. △

The symbolic method for describing set-theoretic construction closely resembles the de-
scription of formal languages by means of grammars. Specifically, it is based on so-called
admissible constructions that permit direct translations into generating functions.

8



1.3 Combinatorial structures

In lattice path combinatorics we are often interested in precise quantitative information
on probabilistic properties of parameters defined for combinatorial objects. In this case,
ordinary generating function are no longer sufficient to keep track of the additional infor-
mation gained by the introduction of these parameters. Hence, just like the formal variable
z marks the size of a combinatorial object, we will introduce an additional formal variable
for each of the new parameters to fulfill just this role.

Definition 1.3.6 (Multivariate generating function). Let A be a combinatorial class
equipped with a (multidimensional) parameter χ = (χ1, . . . , χd) : A → Nd. Let u =
(u1, . . . , ud) denote a vector of d formal variables and let k = (k1, . . . , kd) ∈ Nd denote
an integer-valued vector of parameters. We make use of the multi-index convention and
introduce the shorthand notation uk for the multipower

uk := uk11 u
k2
2 · · ·ukdd .

The counting sequence of A with respect to size and the parameter χ is then defined by

an,k =
∣∣{α ∈ An | χ1(α) = k1, . . . , χd(α) = kd }

∣∣.
Further, the multivariate generating function (MGF) of the sequence (an,k)n∈N,k∈Nd is
defined as the formal power series

A(z,u) =
∑
n,k

an,ku
kzn.

One also says that A(z,u) is the MGF of the combinatorial class A, with the formal variable
uj marking the parameter χj and z marking size. This function can formally be interpreted
as a formal power series in z with coefficients in Q[u]. In addition, one easily recovers the
ordinary generating function of the combinatorial class A by setting A(z) = A(z,1).

Remark 1.3.7. In most cases pertaining to lattice path combinatorics it suffices to consider
a single scalar parameter χ, usually encoding the final height of a lattice path. This way,
we obtain a bivariate generating function (BGF)

A(z, u) =
∞∑

n,k=0

an,ku
kzn,

with z marking the length of the path and u marking the final height (or an alternative
parameter).

Definition 1.3.8 (Admissible construction). Let Φ : Ck → C for a family of combi-
natorial classes C. We call Φ an admissible construction if the counting sequence for
A = Φ(B1, . . . ,Bk) depends only on the counting sequences for B1, . . . ,Bk. Then there
exists a well-defined operator Ψ such that A(x) = Ψ(B1(x), . . . , Bk(x)).

We now give a quick overview of all the basic constructions commonly used within the
symbolic framework and how they are translated into the language of generating functions.

9



1 Introduction

Definition 1.3.9 (Basic constructions). Here we introduce formally the basic constructions
that form the core of a specification language for combinatorial structures. Let B and C be
two combinatorial classes. For the combinatorial sum we assume B and C to be disjoint.

• Combinatorial sum (disjoint union) A = B + C:

A := B ∪ C, |α|A =

{
|α|B if α ∈ B
|α|C if α ∈ C

.

• Cartesian product A = B × C:

A := {α = (β, γ) | β ∈ B, γ ∈ C }, |(β, γ)|A = |β|B + |γ|C .

• Sequence construction A = Seq(B):

A := { (β1, . . . , βn) | n ≥ 0, βj ∈ B }, |(β1, . . . , βn)|A =

n∑
k=1

|βk|B.

• Cycle construction A = Cyc(B):

A := (Seq(B) \ {ε})/S,

where S is the equivalence relation between sequences defined by

(α1, . . . , αr)S (β1, . . . , βr)

iff there exists a circular shift τ such that for all j : αj = βτ(j). The size function
carries over from Seq(B).

• Multiset construction A = MSet(B):

A := Seq(B)/R,

where R is the equivalence relation between sequences defined by

(α1, . . . , αr)R (β1, . . . , βr)

iff there exists an arbitrary permutation σ such that for all j : αj = βσ(j). The size
function carries over from Seq(B).

• Powerset construction A = PSet(B):

A := {B | B ⊂ B }.

As PSet(B) ⊂ MSet(B), the size function carries over from Seq(B) as well.

10



1.3 Combinatorial structures

Theorem 1.3.10 (Basic admissibilty [14, Theorem I.1, p. 27]). The constructions of union,
Cartesian product, sequence, powerset, multiset and cycle are all admissible. The associated
operators are as follows:

Combinatorial sum: A = B + C =⇒ A(z) = B(z) + C(z),

Cartesian product: A = B × C =⇒ A(z) = B(z) · C(z),

Sequence: A = Seq(B) =⇒ A(z) = (1 −B(z))−1,

Powerset: A = PSet(B) =⇒ A(z) = exp
(∑∞

k=1
(−1)k−1

k B(zk)
)
,

Multiset: A = MSet(B) =⇒ A(z) = exp
(∑∞

k=1
1
kB(zk)

)
,

Cycle: A = Cyc(B) =⇒ A(z) =
∑∞

k=1
ϕ(k)
k log 1

1−B(zk)
,

where ϕ denotes Euler’s totient function. For the sequence, powerset, multiset and cycle
translations, it is assumed that b0 = 0.

Proof. We will provide the proof regarding the sequence construction as an example. The
admissibility of this construction follows from the admissibility of the union and product
constructions. One has

A = {ε} + B + (B × B) + · · · ,

which implies

A(z) = 1 +B(z) +B(z)2 + · · · =
1

1 −B(z)
,

where the final equality is to be interpreted as convergence in the formal topology, which we
have shown in Example 1.2.3. For a thorough treatment of these combinatorial construc-
tions, the author recommends the treatise in [14, Section I.2] by Flajolet and Sedgewick.

Example 1.3.11 (Counting sequence of Dyck excursions [14, pp. 318–321]). In Exam-
ple 1.1.8 we already derived the counting sequence of Dyck excursions to be d2n = 1

n+1

(
2n
n

)
,

also known as the Catalan numbers. Now we will present an alternative way to derive this
result, using the symbolic method:

Let D denote the combinatorial class of Dyck excursions, let ω0 ∈ D be an arbitrary
Dyck excursion and let D(z) be the corresponding generating function. We now partition
ω0 into two (possibly empty) shorter Dyck excursions via a technique called a first passage
decomposition. If ω is not the empty path, there exists a second point of contact x0 with
the x-axis. Now we decompose ω into the path ω1 starting from the origin and ending at
x0 and the (possibly empty) path ω2 from x0 to the endpoint of ω. Since the first passage
ω1 is non-empty, we can describe it as a sequence of an initial NE-step, a (possibly empty)
Dyck excursion starting and ending at altitude one, and a final SE-step back down to the
x-axis. Hence, the formal symbolic specification for the class of Dyck excursions D reads

D = E ∪ (ZNE ×D ×ZSE) ×D.

Using the translation schemes of Theorem 1.3.10 we obtain the functional equation

D(z) = 1 + z2D(z)2.

11



1 Introduction

This quadratic equation admits the two possible solutions

D±(z) =
1 ±

√
1 − 4z2

2z2
.

An expansion of the square root term around zero shows that only D−(z) admits a power
series expansion around zero, with D+(z) possessing a polar singularity at zero. Hence, we
conclude

D(z) =

∞∑
n=0

dnz
n =

1 −
√

1 − 4z2

2z2

= 1 + z2 + 2z4 + 5z6 + 14z8 + 42z10 + 132z12 + 429z14 + O(z16).

In order to extract the coefficients of D(z), we use the double factorial notation n!! to
denote the product of all positive integers up to n that have the same parity as n. Then,
using Newton’s generalized binomial theorem 1.4.9, we rederive the formula

d2n = [z2n]

(
1 −

√
1 − 4z2

2z2

)
= −1

2
[z2n+2]

∑
k≥0

(1
2

k

)
(−4z)2k


= (−1)n

1

2

(1/2) · (−1/2) · (−3/2) · · · (−(2n− 1)/2)

(n+ 1)!
4n+1

=
1

4
· 1

2n
· (2n− 1)!!

(n+ 1)!
· 4n+1 =

1

4n
· (2n)!

(n+ 1)!n!
· 4n =

1

n+ 1

(
2n

n

)
. △

In simple cases like this it is possible to get a closed-form expression for the counting se-
quence. With increasing complexity in the combinatorial structures, the challenge of finding
closed-form expressions decreases in feasibility, and thus results pertaining the asymptotic
growth rates of coefficients gain in importance. To compare the growth rates of sequences,
we use the classic Landau (or Big O) notation, invented by the German mathematicians
Bachmann10 and Landau11.

Definition 1.3.12 (Asymptotic notation). Let S be a set equipped with a neighborhood
topology N and let s0 ∈ S. Further, two functions ϕ, g : S \ {s0} → C are given. Then we
write

• f(s) = O(g(s)), if |f(s)| ≤ C · |g(s)| for all s ̸= s0 in a neighborhood V ∈ N (s0),

• f(s) ∼ g(s), if lims→s0 f(s)/g(s) = 1 and

• f(s) = o(g(s)), if lims→s0 f(s)/g(s) = 0.

10Paul Gustav Heinrich Bachmann (1837–1920)
11Edmund Georg Hermann Landau (1877–1938)
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1.4 Complex analysis

1.4 Complex analysis

Combinatorialists use recurrence, generating functions, and such transformations as the
Vandermonde convolution; others, to my horror, use contour integrals, differential equations,
and other resources of mathematical analysis.

John Riordan [26, Preface]

So far we have introduced generating functions as purely formal objects and demonstrated
how its algebraic structure directly reflects the structure of combinatorial classes. However,
to uncover the true power of this central concept in lattice path enumeration, we need to
examine it in the light of analysis. Hence, in this section we will introduce the basic
concepts and theorems that form the framework of this complex-analytic examination.
Unless otherwise stated, the definitions and theorems introduced in this section can be
found in the book [17] by Jänich.

Definition 1.4.1 (Analytic function). A function f(z) defined over a region Ω is analytic
at a point z0 ∈ Ω iff, for z in some open disc centered at z0 and contained in Ω, it is
representable by a convergent power series expansion

f(z) =
∞∑
n=0

cn(z − z0)
n.

A function is analytic in a region Ω iff it is analytic at every point of Ω.

Definition 1.4.2 (Holomorphic function). A function f : Ω → C, defined on an open set
Ω ⊂ C is complex differentiable at z0 ∈ U iff the limit

f ′(z0) := lim
z→z0

f(z) − f(z0)

z − z0

exists. The function f is called holomorphic in Ω iff it is complex differentiable at every
point of Ω.

An important property of holomorphic functions is that not a lot of information about
them is necessary in order to uniquely characterize them, as the following theorem demon-
strates.

Theorem 1.4.3 (Identity theorem [17, Satz 12]). Let G be a region in C and f, g : G→ C
be two holomorphic functions. Let D := { z ∈ G | f(z) = g(z) } have an accumulation
point in G. Then it holds that f ≡ g on G.

Further, it should be noted that the notions of analyticity and holomorphy are equivalent.
One direction of this equivalence can be demonstrated via Cauchy’s12 coefficient formula.

Theorem 1.4.4 (Cauchy’s coefficient formula [17, Satz 3]). Let f : U → C be a holomor-
phic function and let z0 ∈ U . Then there exists exactly one power series

∑∞
n=0 cn(z − z0)

n

12Augustin-Louis Cauchy (1789–1857)
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1 Introduction

with positive radius of convergence that represents f in a neighborhood of z0. Further, the
coefficients cn are given via

cn =
1

2πi

∫
|z−z0|=r

f(z)

(z − z0)n+1
dz,

with r > 0 sufficiently small such that { z : |z − z0| ≤ r } ⊂ U . The power series converges
for every open disk fully contained in U and represents the function f(z). In particular,
this shows that every holomorphic function is also analytic.

Even though all the series expansions at 0 of the generating functions we study in this
thesis will not contain any terms with negative exponents, the theory of power series alone
cannot yet suffice, if we want to derive asymptotic results about the growth of the series
coefficients. In Section 2.3 we will present an introduction into singularity analysis, where
we will show how the location and nature of a generating functions dominant singularity
determines the asymptotic growth of its corresponding counting sequence. The simplest
case to analyze is a generating function with exactly one simple pole on its radius of con-
vergence. If we want to observe the behavior of the function around this polar singularity,
a Laurent13 series expansion is the method of choice.

Definition 1.4.5 (Laurent series). Let z0 ∈ C. A Laurent series around z0 is a series of
the form

∞∑
n=−∞

cn(z − z0)
n,

consisting of the principal part
∑∞

n=1 c−n(z − z0)
−n and the Taylor part

∑∞
n=0 cn(z − z0)

n

of the Laurent series. For the principal part we introduce the convenient notation

{u<0}

( ∞∑
n=−∞

cn(z − z0)
n

)
:=

∞∑
n=1

c−n(z − z0)
−n.

A Laurent series converges iff both subseries converge. In this case, the limit is defined
as the sum of the limits of the two subseries. Let 1/r be the radius of convergence of∑∞

n=1 c−n(z−z0)n and R be the radius of convergence of the Taylor part. Then, the Laurent
series converges on the open annulus { z : r < |z| < R } and for all r < ρ1 < ρ2 < R it
converges uniformly on { z : ρ1 < |z| < ρ2 }.

As power series correspond to local expansions of holomorphic functions, Laurent series
are similarly local expansions of meromorphic function.

Definition 1.4.6 (Meromorphic function). A function h(z) is meromorphic at z0 iff, for z
in a neighborhood of z0 with z ̸= z0 it can be represented as a quotient f(z)/g(z) of two
analytic functions. In that case, it admits near z0 a Laurent series expansion of the form

h(z) =
∑
n≥n0

hn(z − z0)
n.

If hn0 ̸= 0 and n0 ≤ −1, then h(z) is said to have a pole of order n0 at z = z0. A function
is meromorphic in a region iff it is meromorphic at every point of the region.

13Pierre Alphonse Laurent (1813–1854)
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1.4 Complex analysis

Cauchy’s coefficient formula can then be extended to Laurent series.

Theorem 1.4.7 (Laurent coefficient formula [17, Satz 16]). Let f(z) =
∑∞

n=−∞ cnz
n be a

convergent Laurent series on a open annulus

{ z : r < |z| < R }.

Then the coefficients cn are given via

cn =
1

2πi

∫
|z|=ρ

f(z)

zn+1
dz

for all n ∈ Z and r < ρ < R.

Finally, the theory of coefficient extraction using contour integrals culminates in the
famous residue theorem named after Cauchy.

Theorem 1.4.8 (Cauchy’s residue theorem [14, Theorem IV.3, p. 234]). Let h(z) be
meromorphic in the region Ω, let S ⊂ Ω be the set of isolated singularities of h(z) and
let γ be a positively oriented simple loop in Ω along which h(z) is analytic. Then it holds
that

1

2πi

∫
γ
h(z) dz =

∑
s∈S

Resz=sh(z),

with

Resz=sh(z) :=
1

2πi

∫
|z−s|=ε

h(z) dz = [z−1]h(z).

The cornerstone on which we will build the important theorems of singularity analysis
is Newton’s generalized binomial theorem that generalizes the classical binomial theorem
to arbitrary complex exponents.

Theorem 1.4.9 (Newton’s generalized binomial theorem). We extend the definition of the
binomial coefficient to (

α

n

)
=
α · (α− 1) · · · (α− n+ 1)

n!

for any α ∈ C and n ∈ N. Then, there holds a generalized version of the binomial theorem,
stating

(1 + z)α =
∞∑
n=0

(
α

n

)
zn.

Further, we will need a complex version of a well known result in real analysis.

Theorem 1.4.10 (Implicit function theorem [14, Appendix B.5]). Let F (z, u) be bivariate
analytic in two complex variables (z.u) near (0, 0) in the sense that it admits a convergent
power series in a polydisk

F (z, u) =
∑
n,k≥0

fn,kz
nuk, |z| < R, |u| < S.

Further, assume that F (0, 0) = 0 and ∂F
∂u (0, 0) ̸= 0. Then there exists a unique function

f(z) analytic in a neighborhood of zero such that f(0) = 0 and

F (z, f(z)) = 0, |z| < ρ.
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We close this synopsis over the complex-analytic methods used throughout this thesis
with an important algebraic elimination technique. In many cases, generating functions
are only accessible as solutions to algebraic equations. For higher degrees this means that
closed-form solutions are often infeasible, if not straight-up impossible. Say we derived a
formula for a generating function like E(z) = −u1(z)u2(z)

z , with u1(z), u2(z) being solutions
of an algebraic equation K(z, u). Can we derive an algebraic equation satisfied by F (z)?

This question can be positively answered with the help of resultants, as they provide a
way to eliminate auxiliary quantities from systems of polynomial equations.

Definition 1.4.11 (Resultant [14, p. 739]). Consider a field of coefficients K and two
polynomials

P (x) =
ℓ∑

j=0

ajx
ℓ−j , Q(x) =

m∑
k=0

bkx
m−k,

in K[X]. We define their resultant with respect to the variable x as the determinant of
order (ℓ+m),

R(P (x), Q(x), x) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 · · · 0 0
0 a0 a1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · aℓ−1 aℓ
b0 b1 b2 · · · 0 0

0 b0 b1
. . .

...
...

...
...

...
. . .

...
...

0 0 0 · · · bm−1 bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

also called the Sylvester determinant. By its definition, the resultant is a polynomial in the
coefficients of P and Q.

Proposition 1.4.12 ([14, pp. 739-740]). Let R = R(P (x), Q(x), x) be the resultant of
P (x), Q(x) ∈ K[x] and let K be the algebraic closure of K. Then the following statements
hold:

• If P (x) and Q(x) have a common root in K, then R(P (x), Q(x), x) = 0.

• If R(P (x), Q(x), x) = 0, then either a0 = b0 = 0, or else P (x) and Q(x) have a
common root in K.

Proof. We only prove the relevant direction for the thesis here. In particular, we only
need to know that all common roots of P (x) and Q(x) can be found as zeroes of the
resultants. Let ξ be a common root of P (x) and Q(x). Then w = (ξl+m−1, . . . , ξ, 1) solves
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1.4 Complex analysis

the homogenous linear system S · w = 0, since

S ·


ξl+m−1

...
ξ
1

 =



ξm−1P (ξ)
...

P (ξ)
ξl−1Q(ξ)

...
Q(ξ)


.

This implies that ker(S) ̸= {0} and hence R(P (x), Q(x), x) = det(S) = 0. The other
direction can be found for example in [22, V. 10].

Remark 1.4.13 (Elimination of auxiliary variables [14, p. 740]). Given a system of poly-
nomial equations

Pj(z, y1, . . . , ym) = 0, j = 1, . . . ,m,

defining an algebraic curve we can systematically eliminate one of the auxiliary variables
yi until we are left with a single equation in z. We start by taking resultants with Pm and
eliminate all occurrences of the variable ym from the first m− 1 equations by replacing Pj

with R(Pj , Pm, ym). Then, we repeat this process until all auxiliary variables have been
eliminated and we are left with a single polynomial equation over z. The resulting polyno-
mial is in general not minimal, in fact, the complexity of elimination is exponential in the
resulting degree, in the worst-case. Hence, additional polynomial factorization techniques
are required, when dealing with a large system of equations.

Example 1.4.14. Consider again the function E(z) defined via

E(z) = −u1(z)u2(z)

z

and let K(z, u) = z(1 + u+ u3 + u4). In this case, the system of polynomial equations can
be defined as

P1(E, z, u1, u2) := zE + u1(z)u2(z),

P2(E, z, u1, u2) := K(z, u1),

P3(E, z, u1, u2) := K(z, u2).

We begin by eliminating u2:

Q(E, z, u1) := R(P1, P3, u2) = −z
(
E4z4 − E3u1z

3 − E2u21z − E u31z + u41
)
.

Next, we eliminate u1 and obtain the desired polynomial equation in E and z:

P (E, z) := R(Q,P2, u2) = z8 (zE + 1)4
(
E4z4 + E3z3 + 2E3z2 + E2 + zE + 2E + 1

)(
E4z4 − 2E3z3 − E3z2 + 3E2z2 + 2E2z − 2zE − E + 1

)2
. △
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2 Directed lattice paths and the kernel
method

This chapter is devoted to the analysis of the four basic types of simple lattice paths; see
Table 2.1. We begin in Section 2.1 with providing a thorough treatment, including its
historical developments, of the central technique in the theory of lattice path enumeration:
the kernel method. Following up, in Section 2.2 we apply this method to derive general
formulae for the generating functions of the four basic types for arbitrary simple step sets.
The first two sections are mainly based on the seminal article Basic analytic combinatorics
of directed lattice paths by Banderier and Flajolet [1]. Further, in Section 2.3 we present an
introduction into the theory of singularity analysis and their application for determining the
asymptotic behavior of the counting sequences for directed lattice paths. For this part we
follow closely the clear presentation in the definite treatment on the topic: The monograph
Analytic Combinatorics by Flajolet and Sedgewick [14].

ending anywhere ending at 0

unconstrained
(on Z)

walk/path (W)

W (z) = 1
1−zP (1)

bridge (B)

B(z) = z
∑c

i=1
u′
i(z)

ui(z)

constrained
(on Z+)

meander (M)

M(z) = 1
1−zP (1)

∏c
i=1(1 − ui(z))

excursion (E)

E(z) = (−1)c−1

p−cz

∏c
i=1 ui(z)

Table 2.1: The four types of directed paths: walks, bridges, meanders and excursions and
the corresponding generating functions [1, Fig. 1].

Definition 2.0.1 (Common families of lattice paths). In this definition we give an overview
over all the families of lattice paths used in this thesis. We state the specific simple
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2 Directed lattice paths and the kernel method

step set and the corresponding kernel equation, which will be defined in the next section,
respectively.

• Dyck walks: The step set is given by D := {−1, 1} and the kernel equation reads

K(z, u) = u− z(1 + u2).

• Motzkin walks: The step set is given by M := {−1, 0, 1} and the kernel equation
reads

K(z, u) = u− z(1 + u+ u2).

• k-Motzkin walks: The step multiset is given by Mk := {−1, 0, . . . , 0︸ ︷︷ ︸
k times

, 1} and the kernel

equation reads
K(z, u) = u− z(1 + ku+ u2).

They are commonly interpreted as lattice paths with k different colors for the hori-
zontal step. Hence, we model them as simple lattice paths with a horizontal step of
weight p0 = k.

• Basketball walks: The step set is given by B := {−2,−1, 1, 2} and the kernel equation
reads

K(z, u) = u2 − z(1 + u+ u3 + u4).

Throughout this thesis, we will use the following notation rules for generating functions:

1. W (z), B(z),M(z) and E(z) denote the generating functions for walks, bridges, me-
anders and excursions, respectively.

2. The subscript encodes the corresponding step set.

3. Additional extensions, like catastrophes, will be noted in the superscript.

For example, M cat
D (z, u) will denote the bivariate generating function of Dyck meanders

with catastrophes.

2.1 Kernel method

To derive most of these general formulae for the generating functions, the technique of
choice will be the so-called kernel method. As Banderier and Flajolet note in [1, p. 55],
this method has been part of the folklore of combinatorialists for some time. It deals with
a functional equation of the form

K(z, u)F (z, u) = A(z, u) +B(z, u)G(z),

with F (z, u) and G(z) being the unknown functions. The core idea is now to solve the
kernel equation K(z, u) = 0 for u. In its simplest form, the equation admits exactly one
small branch u1(z) that is characterized by the property that limz→0 u1(z) = 0. In that
case, a single substitution does the job, and we get

G(z) = −A(z, u1(z))

B(z, u1(z))
, F (z, u) =

1

K(z, u)

(
A(z, u) − B(z, u) ·A(z, u1(z))

B(z, u1(z))

)
.
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2.1 Kernel method

Example 2.1.1 (Origin of the kernel method). One of the first known applications of this
technique appears in Knuth’s The Art of Computer Programming [18, Answer to Exercise
2.2.1.4, pp. 536–537], where he counts permutations obtainable via admissible sequences of
operations on stacks. The two operations on a stack are to move an element from the input
into the stack and to move an element from the stack into the output. We note that this
counting problem is equivalent to counting the number of Dyck meanders, as the number
of removals from the stack may never exceed the number of insertions. The special case
that the total number of insertions equals the total number of removals then fits neatly
into the long list of objects counted by the Catalan numbers, as we have shown in 1.1.8.
To address the general case, Knuth introduces a new technique that we now call the kernel
method.

Let gn,k be the number of admissible sequences of stack operations of length n, with
k more insertions than removals and define the bivariate generating function G(z, u) :=∑∞

n,k=0 gn,ku
kzn. By partitioning these sequences based on whether their last operation is

an insertion or a removal, we see that the counting sequence satisfies, for n,m ≥ 0,

gn+1,m = gn,m−1 + gn,m+1, g0,m = δ0,m, gn,−1 := 0,

where δ0,m denotes the Kronecker1 symbol defined via

δi,j =

{
1, i = j,

0, i ̸= j.

We multiply the recurrence relation with znuk and sum over n and k. This yields the
functional equation

1

z
(G(z, u) − 1) = u ·G(z, u) +

1

u
(G(z, u) −G(z, 0)).

Rearranging the terms of this equation and multiplying to get rid of the denominators, the
kernel structure of this equation becomes apparent, as

(z(u2 + 1) − u)︸ ︷︷ ︸
=:K(z,u)

G(z, u) = zG(z, 0) − u. (2.1)

We are now looking to find an expression for G(z, 0) such that G(z, u) admits a power
series expansion in z and u at (z, u) = (0, 0). The most straightforward ansatz is to set the
kernel K(z, u) = 0. Solving this equation for u yields two conjugated solutions

u1(z) =
1 −

√
1 − 4z2

2z
, v1(z) =

1 +
√

1 − 4z2

2z
.

Plugging them into the functional equation (2.1) we get the two candidate solutions u1(z)/z
and u2(z)/z for G(z, 0). By expanding√

1 − 4z2 = 1 − 2z2 + O(z4)

1Leopold Kronecker (1823–1891)
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2 Directed lattice paths and the kernel method

we see that only u1(z)/z admits a proper power series expansion at z = 0. Hence, only
G(z, 0) = u1(z)/z conforms with the fact that G(z, 0) is a generating function of a combi-
natorial class. Further, we observe that

u1(z) + u2(z) =
1

z
, u1(z) · u2(z) = 1.

Thus, together with G(z, 0) = u1(z)/z, we find

G(z, u) =
zu1(z) − u

z(u2 + 1) − u
=

zu1(z) − u

z(1 − u1(z) · u)(1 − u2(z) · u)
=

u1(z)

z(1 − u1(z) · u)
,

which can then be used in conjunction with the expansion

u1(z) =

∞∑
n=0

1

2n+ 1

(
2n+ 1

n

)
z2n+1

to determine the general solution

g2n,2k =
2k + 1

2n+ 1

(
2n+ 1

n− k

)
=

(
2n

n− k

)
−
(

2n

n− k − 1

)
,

g2n+1,2k+1 =

(
2k + 2

2n+ 2

)
=

(
2n+ 1

n−m

)
−
(

2n+ 1

n− k − 1

)
. △

Further developments pertaining the kernel method can be found in the article by
Bousquet-Mélou and Petkovšek [9], concerned with the subject of multi-dimensional walks,
linear recurrences and kernels. Let us now provide a formal definition for the kernel equa-
tion and analyze a few basic properties regarding its solutions.

Definition 2.1.2 (Kernel equation). Let S = {s1, . . . , sm} be a simple step set with a
corresponding system of weights Π = { ps | s ∈ S } and let c = −minj sj and d = maxj sj
be the two extreme vertical amplitudes of any jump. Throughout this section we will
assume c, d > 0, as well as ps > 0, for s ∈ S. Further, let

P (u) =

d∑
k=−c

pku
k

be the matching jump polynomial. Then we define the kernel equation for (S,Π) as

K(z, u) := 1 − zP (u) = 0,

where K(z, u), or equivalently uc − z(ucP (u)) = 0 (as an entire function without negative
powers) is called the kernel. The kernel equation then defines the so-called characteristic
curve of the family of lattice paths with step set S.

Before we proceed with analyzing the most important properties of this characteristic
curve, we interject a useful little lemma for Laurent series with non-negative coefficients.
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2.1 Kernel method

Lemma 2.1.3 (Strong triangle inequality). Let Q(z) be an aperiodic Laurent series with
non-negative coefficients that is not a monomial. Then, by the strong form of the triangle
inequality it holds that

|Q(z)| < Q(|z|) for all u ∈ C \ R≥0.

Proof. Firstly we note that

|Q(z)| =
∣∣∣∑
n≥0

qnz
n
∣∣∣ ≤∑

n≥0

|qnzn| =
∑
n≥0

qn|z|n = Q(|z|).

The strict version of this inequality clearly holds for any z such that z/|z| is not a root of
unity since no two summands can be collinear in this case. Now assume that (z/|z|)k = 1
and suppose that |Q(z)| = Q(|z|). Hence the equality condition of the triangle inequality
tells us that all summands must be collinear, i.e. there must be an i < k with qn = 0 for
all n ∈ N : n ̸≡ j mod k. However, that would imply

Q(z) = zj
∑
n∈N

qkn+jz
kn = zjH(zk),

contradicting the aperiodicity of Q(z).

In the following proposition we collect a handful of useful results from [1] by Banderier
and Flajolet pertaining the kernel equation.

Proposition 2.1.4 (Properties of the characteristic curve). Let K(z, u) be the kernel
equation corresponding to a simple step set S = {s1, . . . , sm} augmented with a system of
weights Π = { ps | s ∈ S } and let c = −minj sj and d = maxj sj denote the two extremal
vertical amplitudes of any jump. Further, let ωc = exp (2πi/c) and ωd = exp (2πi/d) denote
the respective roots of unity. Then, the following statements hold:

1. The kernel equation K(z, u) = 0 defines c+d branches of a single algebraic curve. Of
these branches, there are c distinct small roots u1, . . . , uc, conjugated to each other
at zero, satisfying

uj(z) ∼ ωj−1
c (p−c)

1/cz1/c as z → 0.

More precisely, this means that there exists a function A analytic at zero, such that,
in a neighborhood of zero, one has

uj(z) = ωj−1
c z1/cA

(
ωj−1
c z1/c

)
, j = 1, . . . , c.

The remaining d distinct large roots are conjugated to each other at ∞ and satisfy

vk(z) ∼ ω1−k
d (pd)−1/dz−1/d as z → 0.

More precisely, there exists an analytic function B, such that, in a neighborhood of
zero, one has

vk(z) = ω1−k
d z−1/dB

(
ω1−k
d z1/d

)
, k = 1, . . . , d.

In summary, the uj and vk organize themselves into two cycles of c and d elements;
see Figure 2.1 for an example. For determinacy, one restricts attention to the complex
plane slit along the negative real axis, which allows us to talk freely of the individual
branches in the sequel.
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2 Directed lattice paths and the kernel method

2. The characteristic polynomial P (u) admits a unique positive minimum at a real
number τ > 0, called the structural constant. This value then defines the structural
radius ρ := 1/P (τ).

3. There is a dominant small root u1(z) and a dominant large root v1(z), determined
by the reality conditions

u1(z) ∼ γz1/c, v1(z) ∼ δz−1/d, (z → 0+)

with γ := (p−c)
1/c, δ := (pd)−1/d ∈ R>0, such that, for |z| < ρ, i = 2, . . . , c and

j = 2, . . . , d, one has

|ui(z)| < u1(|z|) < v1(|z|) < |vj(z)|.

Further, on the circle of convergence |z| = ρ we have

|ui(z)| < u1(ρ) = v1(ρ) < |vj(z)|.

4. The dominant small root u1(z) and the dominant large root v1(z) are conjugated to
each other at their dominant singularity occuring at the structural radius ρ:

u1(z) ∼ τ +

∞∑
n=1

an(ρ− z)n/2, v1(z) ∼ τ +

∞∑
n=1

(−1)nan(ρ− z)n/2.

5. The product

Y1(z) :=
c∏

i=2

ui(z)

of the non-dominant small roots, as well as the product

Y1(z, u) :=

d∏
j=2

1

u− vj(z)

of the non-dominant large roots, is analytic in the closed disk including the structural
radius |z| ≤ ρ.

Proof.

1. As the characteristic equation is a polynomial of degree c + d (in its entire form) it
generically admits c+d roots that constitute the branches of a single algebraic curve.
We will now provide an argument from [2, Proposition 6.9, p. 104] that shows this
conjugation principle for small roots. The case of large roots can then be handled
analogously. The kernel equation yields

u = X(p−c + p−c+1u+ · · · + pd−1u
c+d−1 + pdu

c+d)1/c

with X = ωj
cz1/c for j = 0, . . . , c − 1. In this form, we see that the Lagrange

inversion formula (Theorem 3.2.1) guarantees a unique power series solution u(X) to
this equation. Substituting X = ωj

cz1/c into this power series yields the claim.
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2.1 Kernel method

(a) Graph of P (u). (b) Graph of 1/P (u).

(c) Graph of the two small branches u1, u2 of
order ±z1/2 and the only real large branch
v1 of order z−1/3 of the characteristic curve.

Figure 2.1: Graphs of P (u) = u−2 +u−1 +1+u+u2 +u3, the inverse 1/P (u) and the three
real branches of the characteristic curve 1 − zP (u) associated with the set of
jumps S = {−2,−1, 0, 1, 2, 3} [1, Figure 3].
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2 Directed lattice paths and the kernel method

2. Since we assumed all weights to be positive, we have

P ′′(u) =
d∑

k=−c

k(k − 1)pku
k−2 > 0

for u > 0. As limu→0 P (u) = limu→+∞ P (u) = ∞ it must admit a unique real,
positive minimum attained at some τ > 0.

3. The proof given here follows the lines of [1, Lemma 2, pp. 59–60]. As P (τ) is the
unique positive minimum of P (u), it follows immediately that 1/P (u) is monotonically
increasing for u ∈ [0, τ ]. Hence, there exists a unique function u+(z) : [0, ρ] → [0, τ ]
satisfying

z =
1

P (u+(z))
for z ∈ [0, ρ].

Due to the reality condition on u1(z) we see that this positive solution u+(z) must
coincide with the branch u1(z) of the characteristic curve for z → 0+. Further, the
implicit function theorem 1.4.10 guarantees the analyticity of u+(z) in the interval
(0, ρ) and with the identity theorem 1.4.3 we obtain u+ ≡ u1 in (0, ρ). Next, we
use the fact that P (u) is an aperiodic Laurent polynomial with positive coefficients,
which according to Lemma 2.1.3 leads to the strict inequality

|P (r · exp(iθ))| < P (r) for all θ ̸≡ 0 mod 2π. (2.2)

Let x ≤ ρ be a real positive number and fix z = x. Then, let w be an arbitrary
solution of the kernel equation 1 − xP (w) = 0 that is at most τ in modulus and not
equal to u1(x). Hence w /∈ R>0 and by (2.2) one has

x =
1

P (u1(x))
=

1

P (w)
>

1

P (|w|)
,

implying |w| < u1(x), since 1/P (u) monotonically increases in the interval [0, τ ].
Further, by construction all non-dominant small branches are majorized by τ for
x → 0+. Thus, they must satisfy |ui(x)| < u1(x) for x sufficiently close to zero. By
continuity of the modulus of any branch the domination property cannot cease to
hold on (0, ρ), as otherwise that would imply u1(x) reaches τ for some x < ρ, yielding
a clear contradiction. Then, for x = ρ we can apply (2.2) again to see that the
strict domination must continue to hold at ρ. Similar arguments can then be used to
demonstrate |vj(z)| > v1(|z|) for |z| < ρ. Finally, we observe |u1(z)| < |v1(z)|, except
for z = ρ, closing our chain of inequalities.

4. A part of the proof to [1, Theorem 3] gives insight into the conjugation principle for
the dominant small and large root. We start by considering the kernel equation

z =
1

P (u)
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2.1 Kernel method

at the structural constant τ . By construction one has P ′(τ) = 0 and P ′′(τ) > 0.
Then, the local expansion at u = τ reads2

z = ρ− ρ2

2
P ′′(τ)(u− τ)2 + O

(
(u− τ)3

)
.

Solving above equation for u yields two local solutions

u1(z) = τ −

√
2
P (τ)

P ′′(τ)

√
1 − z/ρ+ O(1 − z/ρ),

v1(z) = τ +

√
2
P (τ)

P ′′(τ)

√
1 − z/ρ+ O(1 − z/ρ),

z → ρ−,

corresponding to the dominant small root u1 and the dominant large root v1. In
order to expand this informal discussion into a full proof, we refer to the theory of
Newton-Puiseux expansions presented in Theorem 2.1.5.

5. See [1, Theorem 3, p. 61–64] and [1, Theorem 6, pp. 72–75].

These properties are vindicated by the classical theory of Newton-Puiseux expansions.
For completeness sake, we will state and prove this fundamental result in the elementary
theory of algebraic curves that determines constructively all the possible behaviors of so-
lutions of polynomial equations.

Theorem 2.1.5 (Newton-Puiseux theorem [14, Theorem VII.7, p. 498]). Let f(z) be a
branch of an algebraic function P (z, f(z)) = 0. In a circular neighborhood of a singularity
ζ, slit along a ray emanating from ζ, the function f(z) admits a fractional series expansion,
called a Puiseux series, that is locally convergent and of the form

f(z) =
∑
k≥k0

ck(z − ζ)k/κ,

for a fixed determination of (z − ζ)1/κ, where k0 ∈ Z and κ ∈ N≥1.

Proof. Let P (z, y) be an irreducible polynomial of degree d in y with

P (z, y) = p0(z)yd + p1(z)yd−1 + · · · + pd(z).

For each z there are exactly d distinct values for y such that P (z, y) = 0 except for two
cases:

• Firstly, if p0(z0) = 0, then there is a reduction in the degree of y and hence a reduction
in the number of finite y-solutions for that particular value.

• Secondly, P (z0, y) may have a multiple root in y and some of the values of y will
coalesce.

2The formula in the proof of [1, Theorem 3, p. 62] is missing the factor ρ2.
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2 Directed lattice paths and the kernel method

Hence, we define the exceptional set Ξ[P ] of P as

Ξ[P ] := { z | p0(z) = 0 ∨ ∃y : P (z, y) = ∂yP (z, y) = 0 }.

For each z /∈ Ξ[P ] the implicit function theorem 1.4.10 guarantees that each of the solutions
yj lifts into a locally analytic function yj(z). The exceptional set thus provides a set of
possible candidates for the singularities of an algebraic function. Any y(z), analytic at
the origin, satisfying P (z, y) = 0, can be analytically continued along any simple path
emanating from the origin that does not cross any point of Ξ[P ]. Consider an exceptional
point at the origin and assume that P (0, y) has k equal roots y1, . . . , yk at y = 0. Consider
a punctured disk |z| < r that does not include any other exceptional point relative to P .
Continue y1(z) analytically along a curve starting from an arbitrary value z in the interior
of (0, r), encircling the origin and returning to z. By permanence of analytic relations y1(z)
will be taken into another root. Repeat this process until one has obtained a collection of

roots y1(z) = y
(0)
1 (z), y

(1)
1 (z), . . . , y

(κ)
1 (z) = y1(z). In this case, y1(t

κ) is an analytic function
in t except possibly at zero where it is continuous and has value zero. By general principles
(Morera’s theorem) it is in fact analytic at zero. This implies the existence of a convergent
power series expansion at zero:

y1(t
κ) =

∞∑
n=1

cnt
n.

Each determination of z1/κ yields one of the branches of the multivalued analytic function:

y
(j)
1 (z) =

∞∑
n=1

cnω
nzn/κ, j = 0, . . . , κ− 1,

with ω = exp(2πi/κ). If κ = k, then the cycle accounts for all the roots which tend to
zero. Otherwise, we repeat the process with another root and, in this fashion, eventually
exhaust all roots that tend to zero. Thus, all the k roots that have value zero at z = 0 are
grouped into cycles of size κ1, . . . , κℓ. Finally, values of y at infinity are brought to zero by
means of the change of variables y = 1/u, leading to negative exponents in the expansion
of y.

2.2 Generating functions

The aim of this section is to present the derivations of the generating functions depicted
in Table 2.1 in a manner that is easily accessible. Hence, we will present the proofs in
the seminal work [1] by Banderier and Flajolet with all necessary calculations being made
explicit. We begin with the easiest class of lattice paths to analyze. Walks or paths are
lattice paths not confined to the upper-right quadrant that may end anywhere. Hence they
are only restricted by their step set.

Theorem 2.2.1 (Generating function of walks [1, Theorem 1, p. 45]). The bivariate gen-
erating function of directed paths (z marking size and u marking final altitude) relative to
a simple step set S with characteristic polynomial P (u) is a rational function. It is given
by

W (z, u) =
1

1 − zP (u)
.
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2.2 Generating functions

Proof. Let wn(u) = [zn]W (z, u) count the number of paths ending at altitude k after a
total of n steps. By decomposing a path before its very last step, we find the recursive
description

w0(u) = 1, w1(u) = P (u), wn+1(u) = wn(u) · P (u).

Hence, we have wn(u) = P (u)n for all n. Therefore it holds that

W (z, u) =
∞∑
n=0

znwn(u) =
∞∑
n=0

znP (u)n =
1

1 − zP (u)
,

converging for |z| < 1/P (|u|).

Next, we want to determine the generating function of walks ending at a particular
altitude k, and in particular, the generating function of bridges. In this proof we will
initiate the demonstration on how the complex-analytic framework proves crucially useful
to the theory of lattice path enumeration.

Theorem 2.2.2 (Generating function of bridges and walks ending at altitude k [1, Theo-
rem 1, p. 45]). Let

P (u) =
d∑

k=−c

pku
k

be the characteristic polynomial of a simple set of jumps. The generating function of
bridges is an algebraic function given by

B(z) = z
c∑

j=1

u′j(z)

uj(z)
= z

d

dz
log(u1(z) · · ·uc(z)),

where u1(z), . . . , uc(z) are the small branches of the characteristic curve. Generally, the
generating function Wk(z) of paths ending at altitude k for −∞ < k < c is given by,

Wk(z) = z

c∑
j=1

u′j(z)

uj(z)k+1
= −z

k

d

dz

 c∑
j=1

uj(z)−k


and for −d < k <∞,

Wk(z) = −z
d∑

ℓ=1

v′ℓ(z)

vℓ(z)k+1
=
z

k

(
d∑

ℓ=1

vℓ(z)−k

)
, (2.3)

where v1, . . . , vd are the large branches of the characteristic curve.

Proof. As the number of bridges is trivially upper-bounded by the number of walks, we see
that the radius of convergence of B(z) is at least 1/P (1). Further, in Proposition 2.1.4 we
observed that the jump polynomial P (u) is a convex function for u > 0 and that

lim
u→0

1

P (u)
= lim

u→∞

1

P (u)
= 0.
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2 Directed lattice paths and the kernel method

Hence, 1/P (u) attains its unique positive maximum at τ and we can find an interval such
that for all u ∈ [α, β] it holds that r := 1

2P (1) <
1

P (u) . Then, for |z| < r, one finds

|z · P (u)| ≤ |z|P (|u|) ≤ 1.

Thus we observe that W (z, u) is analytic in

{ z : |z| < r } × {u : α < |u| < β }.

Now choose z sufficiently small such that all large branches lie outside and all small branches
remain inside the circle |u| ≤ (α+ β)/2. Note that due to

W (z, u) =
1

1 − zP (u)
=

uc

−zpd
∏c+d

i=1 (u− ui(z))
= O(uc), u→ 0,

we see that W (z, u)/u does not possess a singularity at u = 0 for any fixed z ̸= 0. Then,
applying Cauchy’s coefficient formula to W (z, u) as a Laurent series in u yields

B(z) = [u0]W (z, u) =
1

2πi

∫
|u|=(α+β)/2

W (z, u)
du

u
=

c∑
j=1

Resu=uj(z)

(
1

u(1 − zP (u))

)
.

To calculate the residue, we factor the characteristic curve

uc(1 − zP (u)) = −zpd
c+d∏
i=1

(u− ui(z)).

Since the small branches only contribute simple poles, we obtain

Resu=uj(z)

(
1

u(1 − zP (u))

)
= −uj(z)c−1

pdz

1∏
i ̸=j(uj(z) − ui(z))

.

Next, we recognize that

∏
i ̸=j

(uj(z) − ui(z)) =

c+d∑
k=1

∏
i ̸=k

(uj(z) − ui(z)) =
∂

∂u

(
c+d∏
i=1

(u− ui(z))

)∣∣∣∣∣
u=uj(z)

=
1

pd

∂

∂u

(
ucP (u) − uc

z

)∣∣∣∣
u=uj(z)

=
1

pd

(
cuj(z)c−1P (uj(z)) + uj(z)cP ′(uj(z)) − uj(z)c−1 c

z

)
.

Using the kernel equation we further simplify∏
i ̸=j

(uj(z) − ui(z)) =
1

pd

(
uj(z)cP ′(uj(z)) − cuj(z)c−1

z
(1 − zP (uj(z)))

)
=

1

pd
uj(z)cP ′(uj(z)).
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2.2 Generating functions

Thus, our residue works out to be

Resu=uj(z)

(
1

u(1 − zP (u))

)
= − 1

zuj(z)P ′(uj(z))
.

Differentiating the characteristic equation we can further simplify

0 =
d

dz
(1 − zP (u(z))) = −P (u(z)) − zP ′(u(z))u′(z) ⇐⇒ P ′(u(z)) = − 1

z2u′(z)
.

This finally yields

B(z) =

c∑
j=1

Resu=uj(z)

(
1

u(1 − zP (u))

)
= z

c∑
j=1

u′j(z)

uj(z)
.

The same procedure is applicable to

Wk(z) = [uk]W (z, u) =
1

2πi

∫
|u|=(α+β)/2

W (z, u)
du

uk+1
,

where the additional factor u−k can simply be treated as a constant in the residue cal-
culation as long as k < c. For k ≥ c, Cauchy’s residue theorem would need to account
the additional polar singularity at zero, messing up our formula. For that reason, when
k > −d, the residue calculation is completed by performing a change of variables; in this
case, the large branches contribute. We note that W (z, u) satisfies

W (z, u) =
1

1 − zP (u)
=

uc

−zpd
∏c+d

i=1 (u− ui(z))
= O(u−d), u→ ∞.

Hence, applying Cauchy’s residue theorem for k > −d to W (z, u) := W (z, 1/u) and per-
forming an analogous residue calculation yields

Wk(z) = [u−k]W (z, u) =
1

2πi

∫
|u|=2/(α+β)

W (z, u) · uk+1 du

=
d∑

ℓ=1

Resu=vℓ(z)−1

(
uk+1

1 − zP (u−1)

)

=
d∑

ℓ=1

v′ℓ(z)

vℓ(z)k+1
,

as W (z, u)·uk+1 does not possess a singularity at u = 0. This argument shows the formulae
to be valid in a small neighborhood of the origin, which then implies the identities between
the formal Laurent series a posteriori. The algebraic character of B(z) and the Wk(z)
finally results from the well-known fact that algebraic functions are closed under sums,
products and multiplicative inverses.
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2 Directed lattice paths and the kernel method

Corollary 2.2.3 (Dyck bridges). The generating function BD(z) =
∑∞

n=0 bnz
n for Dyck

bridges satisfies

BD(z) =
1√

1 − 4z2
=

∞∑
n=0

(
2n

n

)
z2n.

Its coefficients bn are also known as the central binomial numbers, see OEIS A0009843.

Proof. The characteristic polynomial of Dyck bridges is given by P (u) = 1/u+u and hence
the kernel equation reads

K(z, u) = 1 − z

(
1

u
+ u

)
= 0.

There exists one small and one large branch of the characteristic curve:

u1(z) =
1 −

√
1 − 4z2

2z
∼z→0 z, u2(z) =

1 +
√

1 − 4z2

2z
∼z→0

1

z
,

since √
1 − 4z2 =

∑
n≥0

(
1/2

n

)
(−4)nz2n = 1 − 2z2 + O(z4).

After applying Theorem 2.2.2 we get

BD(z) = z
u′1(z)

u1(z)
=

1√
1 − 4z2

= 1 + 2z2 + 6z4 + 20z6 + 70z8 + 252z10 + 924z12 + 3432z14 + O(z16).

Using Newton’s generalized binomial theorem 1.4.9 we extract

[zn]
1√

1 − 4z
= [zn]

∑
k≥0

(
−1/2

k

)
(−4z)k

 =
(−1/2) · (−3/2) · · · (−(2n− 1)/2)

n!
(−4)n

= 2n
(2n− 1)!!

n!
= 2n

(2n)!

n!(2n)!!
=

(
2n

n

)
= [tn](1 + t2)n.

The coefficients are called the central binomial numbers and are closely related to the
Catalan numbers. This result can be explained very easily: In order to uniquely charac-
terize a Dyck bridge consisting of n NE-steps and n SE-steps, we simply need to choose
the positions of the NE-steps (or equivalently of the SE-steps). For this, there are

(
2n
n

)
possibilities.

Corollary 2.2.4 (Motzkin bridges). The generating function BM(z) =
∑∞

n=0 bnz
n for

Motzkin bridges satisfies

BM(z) =
1√

1 − 2z − 3z2
= 1 + z + 3z2 + 7z3 + 19z4 + 51z5 + 141z6 + 393z7 + O(z8)

and its coefficients bn = [un](1 +u+u2)n are also known as the central trinomial numbers;
see OEIS A002426.
3Such references are links to the web-page by N. J. A. Sloane dedicated to the corresponding sequence in

the On-Line Encyclopedia of Integer Sequences, https://oeis.org.
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2.2 Generating functions

Proof. The characteristic curve of Motzkin paths reads u− z − zu− zu2 = 0. Solving this
quadratic function for u yields the two branches

u1(z) =
1

2z

(
1 − z −

√
1 − 2z − 3z2

)
, u2(z) =

1

2z

(
1 − z +

√
1 − 2z − 3z2

)
.

Due to
√

1 − 2z − 3z2 = 1 − z + O(z2), we conclude that u1(z) is the only small branch
of the characteristic curve. Now we may apply Theorem 2.2.2 to obtain the generating
function

BM(z) = z
u′1(z)

u1(z)
= z

1 − z −
√

1 − 2z − 3z2

2z2
√

1 − 2z − 3z2
2z

1 − z −
√

1 − 2z − 3z2
=

1√
1 − 2z − 3z2

.

Further, recalling that the generating function for bridges is simply the coefficient of u0 in
the generating function of all walks WM(z, u), we see that

bn = [znu0]W (z, u) = [znu0]
1

1 − z(1/u+ 1 + u)
= [un](1 + u+ u2)n.

Theorem 2.2.5 (Generating function of meanders and excursions [1, Theorem 2, p. 49]).
The bivariate generating function of meanders (z marking size and u marking final altitude)
relative to a simple step set S with characteristic polynomial P (u), is an algebraic function.
It is given by

M(z, u) =

∏c
j=1(u− uj(z))

uc(1 − zP (u))
= − 1

pdz

d∏
ℓ=1

1

u− vℓ(z)
. (2.4)

In particular, the generating function of excursions, E(z) = M(z, 0) satisfies

E(z) =
(−1)c−1

p−cz

c∏
j=1

uj(z) =
(−1)d−1

pdz

d∏
ℓ=1

1

vℓ(z)
. (2.5)

Proof. Let mn,k be the number of meanders of size n that end at altitude k. By the
combinatorial origin of the problem, M(z, u) =

∑
n,k∈Nmn,ku

kzn is bivariate analytic for
|u| ≤ 1 and z < 1/P (1). Decomposing a path based on the last step added yields the
recurrence

m0(u) = 1, mn+1(u) = P (u)mn(u) − {u<0}P (u)mn(u).

Multiplying both sides by zn+1 and summing over n then leads to the fundamental func-
tional equation defining meanders:∑

n≥0

mn+1(u)zn+1 = zP (u)
∑
n≥0

mn(u)zn − z{u<0}P (u)
∑
n≥0

znmn(u)

⇐⇒ M(z, u) − 1 = zP (u)M(z, u) − z{u<0}(P (u)M(z, u)).

(2.6)

Since the characteristic polynomial P (u) involves only a finite number of negative powers
it can be rewritten to

M(z, u)(1 − zP (u)) = 1 − z

c−1∑
k=0

rk(u)Mk(z).
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2 Directed lattice paths and the kernel method

The Laurent polynomials rk(u) are immediately computable from P (u) via

rk(u) := {u<0}(ukP (u)) =
−k−1∑
j=−c

pju
j+k.

For instance, if P (u) = p−2u
−2 + p−1u

−1 + O(1), one has

r0(u) =
p−2

u2
+
p−1

u
, r1(u) =

p−2

u
.

The fundamental functional equation (2.6) appears to be grossly underdetermined with
one unknown bivariate generating function and c unknown ordinary generating functions
involved. Luckily, the kernel method comes to the rescue. In order to substitute the small
branches into the functional equation we choose |z| < 1/P (1) sufficiently small such that

• all small branches are distinct and

• all small branches satisfy |ui(z)| ≤ 1.

Under these conditions it is analytically legitimate to substitute any small branch of the
characteristic equation in the fundamental functional equation in (2.6) to reduce the number
of unknowns. The substitution yields the following system of c equations for the c unknown
functions M0, . . . ,Mc−1:

z ·

u1(z)cr0(u1(z)) · · · u1(z)crc−1(u1(z))
...

. . .
...

uc(z)cr0(uc(z)) · · · uc(z)crc−1(uc(z))


︸ ︷︷ ︸

:=A

 M0(z)
...

Mc−1(z)

 =

u1(z)c

...
uc(z)c

 .

If we expand the Laurent polynomials rk(u) in the matrix A we get a clearer picture of its
structure, as

A =

p−c + p−c+1u1(z) + · · · + p−2u1(z)c−2 + p−1u1(z)c−1 · · · p−cu1(z)c−1

...
. . .

...
p−c + p−c+1uc(z) + · · · + p−2uc(z)c−2 + p−1uc(z)c−1 · · · p−cuc(z)c−1

 .

In this form, we can see that the matrix A can be transformed into a Vandermonde matrix
by iteratively adding −p−c+(j−k)/p−c times the j-th column to the k-th column, starting
from the rightmost column. Since the determinant is invariant under these elementary
column operations and we have chosen z such that all small branches are distinct, we find
that

det(A) = pc−c

∏
1≤i≤j≤c

(uj(z) − ui(z)) ̸= 0.

Thus, the system is non-singular and admits a unique solution. To avoid further deter-
minantal calculation, we make use of a cute observation by Bousquet-Mélou, introduced
in [9], and define

N(z, u) = uc − z
c−1∑
k=0

ucrk(u)Mk(z). (2.7)
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2.2 Generating functions

We observe that the roots of N(z, u) are precisely u1, . . . , uc and the leading monomial of
N(z, u) is uc, hence we obtain the alternative expression of

N(z, u) =

c∏
j=1

(u− uj(z)). (2.8)

Now we compare the constant terms in both equations. Due to (2.8) the constant term
of N(z, u) equals

∏c
j=1(−uj(z)). On the other hand, (2.7) implies that the constant term

equals −zp−cM0(z). Hence, we find that M0(z) satisfies

M0(z) =
(−1)c−1

zp−c

c∏
j=1

uj(z)

and finally we get

M(z, u) =
N(z, u)

uc(1 − zP (u))
.

Corollary 2.2.6 (Generating function for walks with non-negative final altitude [1, p. 51]).
Let W+(z, u) =

∑∞
k,n=0wn,kz

nuk denote the bivariate generating function of paths, whose
intermediate steps may be negative, but that end at a non-negative final altitude k ≥ 0.
Then W+(z) satisfies

W+(z, u) = z
d∑

ℓ=1

v′ℓ(z)

u− vℓ(z)
= 1 + z

d

dz
(logM(z, u)),

where v1, . . . , vd are the large branches of the characteristic curve.

Proof. We start with the formula (2.3) for the generating function for walks ending at
altitude −d < k <∞ and derive

W+(z, u) =
∞∑
k=0

Wk(z)uk = −z
∞∑
k=0

(
d∑

ℓ=1

v′ℓ(z)

vℓ(z)k+1

)
uk

= −z
d∑

ℓ=1

(
v′ℓ(z)

vℓ(z)

∞∑
k=0

uk

vj(z)k

)
= −z

d∑
ℓ=1

v′ℓ(z)

vℓ(z)

1

1 − u/vℓ(z)

= z

d∑
ℓ=1

v′ℓ(z)

u− vℓ(z)
.

Further, using formula (2.4), we note that

d

dz
M(z, u) =

(
1

pdz2
− 1

pdz

d∑
ℓ=1

v′ℓ(z)

u− vℓ(z)

)
d∏

ℓ=1

1

u− vℓ(z)

= −1

z

(
1 −

d∑
ℓ=1

v′ℓ(z)

u− vℓ(z)

)
M(z, u)
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2 Directed lattice paths and the kernel method

and thus

1 + z
d

dz
(logM(z, u)) = z

d∑
j=1

v′j(z)

u− vj(z)
.

Corollary 2.2.7. [1, Corollary 3, p. 51] The generating function of meanders terminating
at altitude k is given by

Mk(z) =
1

pdz

d∑
ℓ=1

ξdℓ (z)v−k−1
ℓ (z), ξdℓ (z) :=

d∏
j=1
j ̸=l

1

vℓ(z) − vj(z)
.

Proof. Since M(z, u) is a rational function in u with a simple product expression in terms
of the large branches in (2.4), its expansion with respect to u is accessible via a partial
fraction decomposition. Starting with the generating function

M(z, u) = − 1

pdz

d∏
ℓ=1

1

u− vℓ(z)

from (2.4), we claim the following partial fraction decomposition via induction over d:

d∏
ℓ=1

1

u− vℓ(z)
=

d∑
ℓ=1

ξdℓ (z)

u− vℓ(z)
.

A single partial fraction decomposition shows the claim to be true for d = 2, as

1

(u− v1(z))(u− v2(z))
=

1

v1(z) − v2(z)
· 1

u− v1(z)
+

1

v2(z) − v1(z)
· 1

u− v2(z)
.

For the induction step, let the claimed formula hold for d. Then we have

d+1∏
ℓ=1

1

u− vℓ(z)
=

(
d∑

ℓ=1

ξdℓ (z)

u− vℓ(z)

)
1

u− vd+1(z)

=
d∑

ℓ=1

ξdℓ (z)

(
1

vℓ(z) − vd+1(z)

1

u− vℓ(z)
+

1

vd+1(z) − vℓ(z)

1

u− vd+1(z)

)

=

d∑
ℓ=1

(
ξd+1
ℓ (z)

u− vℓ(z)
+

ξdℓ (z)

vd+1(z) − vℓ(z)
· 1

u− vd+1(z)

)
.

Now we apply the induction hypothesis a second time with vd+1(z) replacing u and obtain

d+1∏
ℓ=1

1

u− vℓ(z)
=

d∑
ℓ=1

(
ξd+1
ℓ (z)

u− vℓ(z)
+

ξdℓ (z)

vd+1(z) − vℓ(z)
· 1

u− vd+1(z)

)

=

(
d∑

ℓ=1

ξd+1
ℓ (z)

u− vℓ(z)

)
+

(
d∏

ℓ=1

1

vd+1(z) − vℓ(z)

)
1

u− vd+1(z)

=

d+1∑
ℓ=1

ξd+1
ℓ (z)

u− vℓ(z)
.
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2.2 Generating functions

Finally, we extract the coefficient of uk in this newly derived expression:

Mk(z) = [uk]M(z, u) = − 1

pdz
[uk]

(
d∑

ℓ=1

ξdℓ (z)

u− vℓ

)
=

1

pdz

d∑
ℓ=1

ξdℓ (z)[uk]

(
1

vℓ(1 − u
vℓ

)

)

=
1

pdz

d∑
ℓ=1

ξdℓ (z)v−k−1
ℓ (z).

Corollary 2.2.8 (Dyck meanders). The bivariate generating function MD(z, u) for Dyck
meanders satisfies

MD(z, u) =
1 − 2zu−

√
1 − 4z2

2z(z(1 + u2) − u)
.

Further, the generating functionMD(z, 1) =
∑∞

n=0mnz
n of meanders ending at any altitude

satisfies

MD(z, 1) =
1 − 2z −

√
1 − 4z2

4z2 − 2z
= 1 + z + 2z2 + 3z3 + 6z4 + 10z5 + 20z6 + 35z7 + O(z8).

and its coefficients mn =
(

n
⌊n/2⌋

)
correspond to OEIS A001405. Even further, the generating

functions

GD(z) =
∞∑
n=0

m2nz
n, UD(z) =

∞∑
n=0

m2n+1z
n

of even and odd meanders, respectively, satisfy

GD(z) =
1√

1 − 4z2
, UD(z) =

1

2z

(
1√

1 − 4z2
− 1

)
.

Proof. The kernel equation for Dyck walks reads 1 − z
(
1
u + u

)
= 0. Solving this equation

for u yields the unique small branch

u1 =
1 −

√
1 − 4z2

2z
.

Applying Theorem 2.2.5 we find the generating function for Dyck meanders to be

MD(z, u) =
u− u1(z)

u(1 − zP (u))
=

1 − 2zu−
√

1 − 4z2

2z(z(1 + u2) − u)
.

Setting u = 1 then yields

MD(z, 1) =
1 − 2z −

√
1 − 4z2

4z2 − 2z
.

To obtain the generating function for meanders of even length, we apply a last passage
decomposition. Let ω0 be an arbitrary meander of even length. Hence, it must end at
an even altitude. Now we split ω0 every time it leaves altitude 2k for a last time. That
means, ω0 is composed of a Dyck excursion, followed by a sequence of subpaths, starting at
altitude k and ending at k+ 2 without returning to altitude k at any point after the start.
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Each of these subpaths can thus be described as a NE-step up to altitude k + 1, followed
by an excursion and finally another NE-step up to altitude k + 2. Considering that the
variable z counts twice the length of a meander (or equivalently the number of NE-steps
of a meander) the generating function for one of these subpaths reads z(uD(z))2. Thus,
we obtain the generating function

G(z, u) =
D(z)

1 − z(uD(z))2
.

Setting u = 1 yields

G(z, 1) =
D(z)

1 − zD(z)2
=

D(z)

2 −D(z)
=

1 −
√

1 − 4z√
1 − 4z − (1 − 4z)

=
1√

1 − 4z
=

∞∑
n=0

(
2n

n

)
zn.

Further, a last passage decomposition on Dyck meanders of odd length splits ω0 into a
Dyck excursion, followed by the last NE-step to leave from altitude 0 and a final Dyck
meander of even length. This translates to the formula

U(z, u) = uD(z)G(z, u).

Setting u = 1 yields

U(z, 1) =
D(z)√
1 − 4z

=
1

2z

(
1√

1 − 4z
− 1

)
=

∞∑
n=0

1

2

(
2n+ 2

n+ 1

)
zn =

∞∑
n=0

(
2n+ 1

n

)
zn.

Corollary 2.2.9 (Motzkin meanders). The bivariate generating function MM(z, u) for
Motzkin meanders satisfies

MM(z, u) =
2z(u+ 1) − 1 +

√
1 − 2z − 3z2

2z (u− z (u2 + u+ 1))
.

Further, the generating function MM(z, 1) of meanders ending at any altitude satisfies

MM(z, 1) =
1 − 3z −

√
1 − 2z − 3z2

6z2 − 2z

= 1 + 2z + 5z2 + 13z3 + 35z3 + 96z5 + 267z6 + 750z7 + O(z8).

This counting sequence corresponds to OEIS A005773, which tells us that it also counts
the number of directed animals of size n. We will explore this connection further in the
last chapter of this thesis.

Proof. Solving the kernel equation

1 − z(1 + u+ u2) = 0

for the Motzkin family of directed lattice paths yields the unique small branch

u1(z) =
1 − z −

√
1 − 2z − 3z2

2z
.
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Now, all that remains is to plug u1(z) into Equation (2.4) and we obtain

MM(z, u) =
u− u1(z)

u(1 − zP (u))
=

2z(u+ 1) − 1 +
√

1 − 2z − 3z2

2z (u− z (u2 + u+ 1))
.

Setting u = 1 then yields

MM(z, 1) =
1 − 3z −

√
1 − 2z − 3z2

6z2 − 2z
.

We conclude this section with the two short applications of the formula (2.5) for the
generating function of excursions. In particular, after Example 1.1.8 and Example 1.3.11,
we now give a third distinct derivation of the fact that the number of Dyck excursions of
length 2n equals the n-th Catalan number Cn.

Corollary 2.2.10 (Dyck excursions). The generating function ED(z) for Dyck excursions
satisfies

ED(z) =
u1(z)

z
=

1 −
√

1 − 4z2

2z2
=

∞∑
n=0

1

n+ 1

(
2n

n

)
z2n.

Corollary 2.2.11 (Motzkin excursions). The generating function EM(z, 1) for Motzkin
excursions satisfies

EM(z, 1) =
u1(z)

z
=

1 − z −
√

1 − 2z − 3z2

2z2

= 1 + z + 2z2 + 4z3 + 9z4 + 21z5 + 51z6 + 127z7 + O(z8)

and its coefficients are known as the Motzkin numbers; see OEIS A001006

2.3 Singularity analysis

First Principle of Coefficient Asymptotics. The location of a function’s singularities
dictates the exponential growth (An) of its coefficients.
Second Principle of Coefficient Asymptotics. The nature of a function’s singularities
determines the associate subexponential factor (θ(n)).

Philippe Flajolet and Robert Sedgewick [14, p. 227]

In this section, we present a concise introduction to the general approach to the anal-
ysis of coefficients of generating functions. We will base our exposition on the excellent
presentation on this topic by Flajolet and Sedgewick in [14, Chapter VI].

Through the lens of complex analysis a generating function becomes a geometric trans-
formation of the complex plane. While this transformation is very regular at the origin,
when we move away from it, singularities start to appear that distort this smooth picture.
As it turns out, the nature and the location of a function’s singularities hold the key for
determining the asymptotic growth rates of the coefficients. Precisely, the method of singu-
larity analysis applies to functions, whose singular expansion involves fractional powers and
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logarithms. In order not to clutter the important conceptual points with tedious technical
details, we will restrict our attention to only fractional powers and give notice whenever the
results may be generalized to so-called “algebraic-logarithmic” singularities. The process
relies on two central ingredients:

1. A catalogue of asymptotic expansions for coefficients of the standard functions that
occur in such singular expansions.

2. Transfer theorems, which allow us to extract the asymptotic order of coefficients of
error terms in singular expansions.

Before we introduce the catalogue known as the standard function scale, let us return to
the basics for a second. Remember the Newton expansion

(1 − z)−α =

∞∑
n=0

(
n+ α− 1

n

)
zn.

For α = r ∈ Z≥1 this quickly leads to the asymptotic formula

[zn](1 − z)−r =
(n+ 1)(n+ 2) · · · (n+ r − 1)

(r − 1)!
=

nr−1

(r − 1)!

(
1 + O

(
1

n

))
.

The standard function scale will generalize this result to arbitrary complex α with the
help of special contours of integration, known as Hankel contours. The motivation behind
them is to come very close to the singularities, but to steer away at the last moment, thus
capturing the essential asymptotic information contained in the functions’ singularities.

0
1

R

CR(n) 2/n
0

1 2/nH◦

H−

H+

Figure 2.2: The contours CR(n) and H(n) used for estimating the coefficients of functions
from the standard function scale [14, Figure VI.2, p. 381].

Theorem 2.3.1 (Standard function scale [14, Theorem VI.1, p. 381]). Let α be an arbitrary
complex number in C \Z≤0. The coefficient of zn in f(z) = (1 − z)−α admits for large n a
complete asymptotic expansion in descending powers of n:

[zn]f(z) ∼ nα−1

Γ(α)

(
1 +

∞∑
k=1

ek
nk

)
,
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where ek is a polynomial in α of degree 2k. In particular:

[zn]f(z) ∼ nα−1

Γ(α)

(
1 +

α(α− 1)

2n
+
α(α− 1)(α− 2)(3α− 1)

24n2

+
α2(α− 1)2(α− 2)(α− 3)

48n3
+ O

(
1

n4

))
.

The quantity ek is a polynomial in α that is divisible by α(α− 1) · · · (α− k), in accordance
with the fact that the asymptotic expansion terminates when α ∈ Z≥0. The formula is
even valid (but not very meaningful) for α ∈ Z≤0, as 1/Γ(α) = 0 and the coefficients
[zn](1 − z)−α are zero for n > −α.

Proof. We start by applying Cauchy’s coefficient formula, with a sufficiently small contour
C0 encircling the origin, to obtain

fn =
1

2πi

∫
C0

(1 − z)−α dz

zn+1
.

We now deform C0 to a large circle with radius R > 1 that does not cross the half-line [1,∞[.
More precisely, the new contour CR(n) consists of the following parts (see Figure 2.2):

1. C◦
R(n) := { z ∈ C : |z| = R } \ { z ∈ C : (I(z) < 1/n) ∧ (R(z) > 0) }

2. H+
R(n) := { z ∈ C : z = x+ i/n, x ∈ [1, R] }

3. H−
R(n) := { z ∈ C : z = x− i/n, x ∈ [1, R] }

4. H◦(n) := { z ∈ C : z = 1 − (1/n) · exp(iφ), φ ∈ [−π/2, π/2] }

As R tends to infinity the integrand along C◦
R(n) decreases as O(R−n−1−α). Hence the

limit process produces the Hankel contour H(n) consisting of

1. H+(n) := { z ∈ C : z = x+ i/n, x ≥ 1 }

2. H−(n) := { z ∈ C : z = x− i/n, x ≥ 1 }

3. H◦(n) := { z ∈ C : z = 1 − (1/n) · exp(iφ), φ ∈ [−π/2, π/2] }

We apply a change of variables by introducing z = 1 + t/n. This leads to

fn =
nα−1

2πi

∫
H(n)

(−t)−α

(
1 +

t

n

)−n−1

dt.

Next we calculate the asymptotic estimate(
1 +

t

n

)−n−1

= exp

(
−(n+ 1) log

(
1 +

t

n

))
= exp(−t)

(
1 +

t2 − 2t

2n
+

3t4 − 20t3 + 24t2

24n2
+ O

(
1

n3

))
.

(2.9)
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2 Directed lattice paths and the kernel method

Hence, we can see that the integrand converges pointwise to exp(−t) and even uniformly
in any bounded domain. Applying Hankel’s formula for the Gamma function [14, Theorem
B.1, p. 745] yields

1

Γ(α)
=

1

2πi

∫
H(n)

(−t)−α exp(−t) dt.

Hence, it only remains to argue that integration and limit can be interchanged. For that
purpose we split the contour at the half-line R(z) = log2(n). Firstly, we establish that the
part corresponding to R(z) ≥ log2(n) is indeed negligible in the scale of the problem. After
substituting u = t+ log2 n and observing

exp(log2 n)

(
1 +

u+ log2 n

n

)−n−1

= exp

(
log2 n− (n+ 1) log

(
1 +

u+ log2 n

n

))
= exp

(
log2 n− (n+ 1)

(
u+ log2 n

n
+ O

(
log4 n

n2

)))
= exp

(
−u+ O

(
log4 n

n

))
−−−→
n→∞

exp(−u),

we may apply the dominated convergence theorem. This yields, for α < 0,

lim
n→∞

∣∣∣∣∣ exp(log2 n) log2α n

∫ ∞

log2 n
(−t)−α

(
1 +

t

n

)−n−1

dt

∣∣∣∣∣
≤ lim

n→∞

(∫ ∞

0
u−α exp(log2 n)

(
1 +

u+ log2 n

n

)−n−1

du

)

=

∫ ∞

0
u−α exp(−u) du = Γ(1 − α) <∞.

For α ≥ 0, we have

lim
n→∞

∣∣∣∣∣ exp(log2 n)

∫ ∞

log2 n
(−t)−α

(
1 +

t

n

)−n−1

dt

∣∣∣∣∣
≤ lim

n→∞

(∫ ∞

0
exp(log2 n)

(
1 +

u+ log2 n

n

)−n−1

du

)

=

∫ ∞

0
exp(−u) du = 1 <∞.

Finally, we observe that

exp
(
− log2 n

)
= o(exp(−k log n)) = o

(
n−k

)
for any fixed k. Further, fn(t) converges uniformly to (−t)−α exp(−t) for |t| ≤ log2(n) and
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2.3 Singularity analysis

thus we have the asymptotic estimate

fn =
nα−1

2πi

(∫
H(n)<log2 n

(−t)−α

(
1 +

t

n

)−n−1

dt+

∫
H(n)≥log2 n

(−t)−α

(
1 +

t

n

)−n−1

dt

)

=
nα−1

2πi

((
1 + O

(
log2 n

n

))(∫
H(n)<log2 n

(−t)−α exp(−t) dt

)
+ o

(
n−k log2|α| n

))

−−−→
n→∞

nα−1

Γ(α)

(
1 + O

(
log2 n

n

))
.

Now we can use a terminating form of the asymptotic expansion in (2.9) to develop an
expansion to any predetermined order. This is possible because t/n = O((log2 n)/n) is
small. To simplify the expansion we make use of the property of the Gamma function that

1

Γ(α− k)
=

1

Γ(α)
(α− 1) · · · (α− k).

We develop it as an example up to O
(
n−2

)
:

fn ∼ nα−1

2πi

∫
H

(−t)−α exp(−t)
(

1 +
t2 − 2t

2n

)
dt

=
nα−1

Γ(α)

(
1 +

1

2n
(α− 1) (α− 2) +

1

n
(α− 1)

)
=
nα−1

Γ(α)

(
1 +

α(α− 1)

2n

)
.

As indicated in the beginning of the section, the standard function scale can be extended
to a wider class of functions. We state the corresponding result here without proof and
refer the inclined reader to [13] for a thorough treatment.

Theorem 2.3.2 (Standard function scale, logarithms [14, Theorem VI.2, p. 385]). Let
α ∈ C \ Z≤0. Then, the coefficient of zn in the function

f(z) = (1 − z)−α

(
1

z
log

1

1 − z

)β

admits for large n a full asymptotic expansion in descending powers of log n with

fn = [zn]f(z) ∼ nα−1

Γ(α)
(log n)β

(
1 +

C1

log n
+

C2

log2 n
+ · · ·

)
,

where

Ck =

(
β

k

)
Γ(α)

(
dk

dsk
1

Γ(s)

)∣∣∣∣
s=α

.

In Table 2.2 we illustrate the asymptotic form of coefficients of the most commonly
encountered functions belonging to the standard function scale.

A technical aid to establish the transfer theorems necessary to bound the perturbation
in the asymptotics of the coefficients, introduced by error terms in the singular expansions,
is the concept of a ∆-domain.
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2 Directed lattice paths and the kernel method

Function Coefficients

(1 − z)3/2 1√
πn5

(
3
4 + 45

32n + 1155
512n2 + O

(
1
n3

))
(1 − z) (0)

(1 − z)1/2 − 1√
πn3

(
1
2 + 3

16n + 25
256n2 + O

(
1
n3

))
1 (0)

(1 − z)−1/2 1√
πn

(
1 − 1

8n + 1
128n2 + 5

1024n3 + O
(

1
n4

))
(1 − z)−1 1

(1 − z)−3/2
√

n
π

(
2 + 3

4n − 7
64n2 + O

(
1
n3

))
(1 − z)−2 n+ 1

(1 − z)−3 n2

2 + 3n
2 + 1

Table 2.2: Table of commonly encountered functions within the standard function scale [14,
Figure VI.5, p. 388].

Definition 2.3.3 (∆-domain). Given two numbers ϕ,R with R > 1 and 0 < ϕ < π
2 , the

open ∆-domain ∆(ϕ,R) at one is defined as

∆(ϕ,R) = { z : |z| < R, z ̸= 1, | arg(z − 1)| > ϕ }.

For a complex number ζ ̸= 0, a ∆-domain at ζ is the image by the mapping z 7→ ζz of a
∆-domain at 1. A function is ∆-analytic if it is analytic in some ∆-domain.

Theorem 2.3.4 (O-Transfer [14, Theorem VI.3, p. 390]). Let α ∈ R be an arbitrary real
number and let f(z) be a function that is ∆-analytic. Assume that f(z) satisfies in the
intersection of a neighborhood of one with its ∆-domain the condition

f(z) = O
(
(1 − z)−α

)
.

Then it holds that [zn]f(z) = O(nα−1).

Proof. Assume that f is analytic in the domain ∆(ϕ,R), let 1 < r < R and ϕ < θ < π/2.
Then we define the contour γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4 (see Figure 2.3) through

γ1 = { z : |z − 1| = 1/n, | arg(z − 1)| ≥ θ } ,
γ2 = { z : 1/n ≤ |z − 1|, |z| ≤ r, arg(z − 1) = θ } ,
γ3 = { z : |z| = r, | arg(z − 1)| = θ },
γ4 = { z : 1/n ≤ |z − 1|, |z| ≤ r, arg(z − 1) = −θ } .
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2.3 Singularity analysis

1

R

1/n

r

ϕ
θ

γ3

γ2

γ4

γ1

Figure 2.3: The integration contour γ in the domain ∆(ϕ,R).

Under these assumption, the contour γ lies entirely inside the domain of analyticity of f .
Now we apply Cauchy’s coefficient formula to obtain

fn = [zn]f(z) =
1

2πi

∫
γ
f(z)

dz

zn+1
.

Next, we proceed by bounding the absolute value of the integral along each of the four
partial contours seperately. For that purpose we define

f (j)n =
1

2πi

∫
γj

f(z)
dz

zn+1
.

By assumption, there exists a K > 0 such that |f(z)| < K · |1 − z|−α in the intersection of
a neighborhood of one with ∆(ϕ,R).

1. We start by considering the inner circle γ1. Since the integrand is bounded by K ·nα

we obtain the simple estimate
∣∣f (1)n

∣∣ ≤ K · nα−1.

2. Next, we bound the rectilinear parts along γ2 and γ4. Setting ω = exp(iθ) and
performing the change of variable z = 1 + ωt/n, we find∣∣f (2)n

∣∣ ≤ n

2π

∫ ∞

1
K ·

(
t

n

)−α ∣∣∣∣1 +
ωt

n

∣∣∣∣−n−1

dt.

From the relation ∣∣∣∣1 +
ωt

n

∣∣∣∣ ≥ 1 + R

(
ωt

n

)
= 1 +

t

n
cos θ,
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2 Directed lattice paths and the kernel method

there results the inequality

∣∣f (2)n

∣∣ ≤ K · nα−1

2π
Jn, with Jn =

∫ ∞

1
t−α

(
1 +

t cos θ

n

)−n−1

dt.

For any given α, the integrals Jn are all bounded above by some constant since they
admit the limit

Jn −−−→
n→∞

∫ ∞

1
t−α exp(−t cos θ) dt <∞,

where the condition 0 < θ < π/2 ensures convergence of the integral. Thus, we obtain
the bound ∣∣f (2)n

∣∣ = O(nα−1)

and similar arguments show the same bound for f
(4)
n .

3. Finally we consider the contribution from the integral along the outer circle γ3. There

the integrand remains bounded while z−n is of order O(r−n). Hence, f
(3)
n is expo-

nentially small and negligible in the scale of the problem.

In summary, each of the four integrals of the split contour are bounded by O
(
nα−1

)
and

thus the statement of the theorem follows.

As we indicated at the start of this section, this theorem even holds for a larger class of
functions, which the theorem below captures.

Theorem 2.3.5 (O-Transfer, logarithms [14, Theorem VI.3, p. 390]). Let α, β ∈ R be
arbitrary real numbers and let f(z) be a function that is ∆-analytic. Assume that f(z)
satisfies in the intersection of a neighborhood of one with its ∆-domain the condition

f(z) = O

(
(1 − z)−α

(
log

1

1 − z

)β
)
.

Then it holds that [zn]f(z) = O(nα−1(log n)β).

A similar proof also shows another variant of the Transfer Theorem.

Theorem 2.3.6 (o-Transfer, logarithms [14, Theorem VI.3, p. 390]). Let α, β ∈ R be
arbitrary real numbers and let f(z) be a function that is ∆-analytic. Assume that f(z)
satisfies in the intersection of a neighborhood of one with its ∆-domain the condition

f(z) = o

(
(1 − z)−α

(
log

1

1 − z

)β
)

Then it holds that [zn]f(z) = o(nα−1(log n)β).

An immediately corollary of the O- and the o-transfer combined is the transfer of asymp-
totic equivalence from singular forms to coefficients.
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Corollary 2.3.7 (∼-Transfer [14, Corollary VI.1, p. 392]). Assume that f(z) is ∆-analytic
and

f(z) ∼ (1 − z)−α

for z → 1, z ∈ ∆1 with α /∈ Z≤0. Then, the coefficients of f satisfy

[zn]f(z) ∼ nα−1

Γ(α)
.

Proof. It suffices to observe that, with g(z) = (1 − z)−α, one has

f(z) ∼ g(z) ⇐⇒ f(z) = g(z) + o(g(z)).

Then we apply the O-Transfer Theorem 2.3.4 to the first term and the o-Transfer Theo-
rem 2.3.6 to the remainder, yielding the claim.

We summarize these finding in the following proposition, which describes a procedural
approach for applying singularity analysis to a function with a single dominant singularity.

Proposition 2.3.8 (Process of singularity analysis [14, Figure VI.7, p. 394]). Let f(z) be
a function, analytic at zero, whose coefficients are to be analyzed.

1. Determine the dominant singularity ρ of f(z) and check that f(z) has no other
singularities on its circle of convergence.

2. Establish that f(z) is analytic in a ∆-domain ∆ρ around ρ.

3. Analyze the function f(z) as z → ρ in ∆ρ and determine a singular expansion of the
form

f(z) = σ(z/ρ) + O(τ(z/ρ)) with τ(z) = o(σ(z)), as z → ρ.

In order to proceed to the next step, the functions σ and τ should belong to the
standard scale of functions.

4. Translate the main term σ(z) using the standard function scale (Theorem 2.3.1),
transfer the error term using the Transfer Theorem 2.3.4 and conclude that

[zn]f(z) = ρ−nσn + O(ρ−nτn),

where σn = [zn]σ(z) and τn = [zn]τ(z).

As a first application of the process of singularity analysis we derive the asymptotic
behavior of the most famous sequence in combinatorics, the Catalan numbers.

Corollary 2.3.9. The Catalan numbers satisfy the following asymptotic expansion:

Cn =
1

n+ 1

(
2n

n

)
=

4n√
πn3

(
1 + O

(
1

n

))
.
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Proof. Due to Example 1.3.11 we know the generating function of the Catalan numbers to
be

C(z) =
∞∑
n=0

1

n+ 1

(
2n

n

)
zn =

1 −
√

1 − 4z

2z
.

Due to its simple form, we immediately recognize its dominant singularity at ρ = 1/4. Using
the functional equation C(z) − C2(z) − 1 = 0 we can now derive an asymptotic expansion
at the singularity. Substituting z = 1/4 − Z and C(z) = 2 + Y we shift the singularity to
zero and eliminate the constant term in the expansion. The functional equation now reads

Q(Z, Y ) = −1

4
Y 2 + 4Z + 4ZY + ZY 2.

The theory of Puiseux expansions now gives us a priori the existence of solutions of the
type

Y = cZα(1 + o(1))

for some c ̸= 0, α ∈ Q. Plugging this asymptotic estimate into our functional equation
yields

Q(Z, Y ) ∼ −c
2

4
Z2α + 4Z + 4cZ1+α + cZ1+2α.

To satisfy this equation identically, two exponents need to coincide and the corresponding
monomials need to cancel each other. This is only possible for 2α = 1 and c2 = 16. Hence,
Q(Z, Y ) = 0 is asymptotically consistent with

Y ∼ 4Z1/2, Y ∼ −4Z1/2,

corresponding to the two branches of the algebraic equation. Reversing the substitutions
we thus obtain the asymptotic expansion

C(z) = 2 − 2
√

1 − 4z + O(1 − 4z).

This process can be iterated upon subtracting dominant terms to obtain a complete asymp-
totic expansion. For that we take the ansatz Y ∼ −4Z1/2 + cZ. Plugging this asymptotic
estimate into Q(Z, Y ) we obtain

Q(Z, Y ) ∼ −1

4

(
−4Z1/2 + cZ

)2
+ 4Z + 4Z

(
−4Z1/2 + cZ

)
+ Z

(
−4Z1/2 + cZ

)2

= −1

4

(
16Z + c2Z2 − 8cZ3/2

)
+ 4Z − 16Z3/2 + 4cZ2 + Z

(
16Z + c2Z2 − 8cZ3/2

)

= (2c− 16)Z3/2 −
(
c2

4
+ 4c+ 16

)
Z2 − 8cZ5/2 + c2Z3.

This then immediately yields c = 8. One more:

Y ∼ −4Z1/2 + 8Z + cZ3/2.
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We get

Q(Z, Y ) ∼ (2c+ 32)Z2 + O
(
Z3/2

)
.

Finally, we get c = −16 and

C(z) = 2 − 2
√

1 − 4z + 2(1 − 4z) − 2(1 − 4z)3/2 + O((1 − 4z)2).

Define σ(u) = 2− 2
√

1 − u+ 2(1− u)− 2(1− u)3/2 + 2(1− u)2 and τ(u) = (1− u)5/2. Now
that we have expanded C(z) into the form

C(z) = σ(4z) + O(τ(4z)),

we can start translating via the standard function scale (Theorem 2.3.1):

σn = [zn]σ(z) = −2[zn]
(√

1 − 4z + (1 − 4z)3/2
)

∼ −2
n−3/2

Γ(−1/2)

1 +
∑
k≥0

ek
(
−1

2

)
nk

− 2
n−5/2

Γ(−3/2)

1 +
∑
k≥0

ek
(
−3

2

)
nk


=

1√
πn3

(
1 +

3

8n
+ O

(
1

n2

))
− 3

2
√
πn5

(
1 + O

(
1

n

))
.

=
1√
πn3

(
1 − 9

8n
+ O

(
1

n2

))
.

Similarly, we have

τn = [zn]τ(z) ∼ n−7/2

Γ(−3/2)

1 +
∑
k≥0

ek
nk

 = O
(

3

4
√
πn7

)
.

After translating the error via the Transfer Theorem 2.3.4, we thus get

[zn]D(z) = 4nσn + 4n · O(τn) =
4n√
πn3

(
1 − 9

8n
+ O

(
1

n2

))
.

We conclude this section with a helpful tool for the identification of dominant singu-
larities, which was originally formulated by Giulio Vivanti in 1893 and proved by Alfred
Pringsheim in 1894. The proof of the so-called Pringsheim Theorem is based on the follow-
ing lemma, which guarantees the existence of a singular point on the circle of convergence.

Lemma 2.3.10 (Existence of singular points [24, p. 234]). On the boundary of the disk of
convergence of a power series f(z) =

∑∞
n=0 fn(z− z0)n there is always at least one singular

point of f .

Proof. Let the radius of convergence be bounded and let B := BR(z0) be the disk of
convergence. Assume that there are no singular points of f on B. For every w ∈ ∂B there
is a disc Br(w) of positive radius r(w) and a holomorphic function g in Br(w) such that
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f and g coincide in B ∩ Br(w). Choose a finite cover Br(w1) ∪ · · · ∪ Br(wn) ⊇ ∂B of the
compact boundary of the disk. There exists an R̃ > R such that

B̃ := BR̃(z0) ⊆ B ∪Br(w1) ∪ · · · ∪Br(wn).

Let gj be holomorphic in Br(wj) with

f |(B ∩Br(wj)) = g|(B ∩Br(wj)).

Now we define f̃ : B̃ → C as an extension of f . If z ∈ B̃ \B, choose a disk Br(wj) ∋ z and
set f̃(z) = gj(z). This function is well-defined, because for Br(wj) ∩ Br(wk) ̸= ∅ there is
also

D := Br(wj) ∩Br(wk) ∩B ̸= ∅.

By definition both gj and gk must coincide with f in D and due to the Identity Theo-
rem 1.4.3 they must also coincide in Br(wj) ∩ Br(wk). Now f̃ is a holomorphic function
in B̃ coinciding with f in B with a larger radius of convergence than f contradicting our
assumption.

Theorem 2.3.11 (Pringsheim’s theorem [24, p. 235]). Let f(z) =
∑∞

n=0 fnz
n be a power

series with positive finite radius of convergence R and suppose that all but finitely many
of its coefficients fn are non-negative real numbers. Then z = R is a singularity of f(z).

Proof. Without loss of generality we assume R = 1. Suppose f were not singular at z = 1.
Then its Taylor series centered at 1/2 would be holomorphic at one. Hence, by Lemma
2.3.10 its radius of convergence would be r > 1/2. Further, for every ζ with |ζ| = 1/2 we
have:∣∣∣∣ 1

n!
f (n)(ζ)

∣∣∣∣ =
1

n!

dn

dζn

∣∣∣∣∣
∞∑
k=0

akζ
k

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=n

(
k

n

)
akζ

k−n

∣∣∣∣∣ ≤
∞∑
k=n

(
k

n

)
ak

(
1

2

)k−n

=
1

n!
f (n)

(
1

2

)
.

Hence, for every ζ with |ζ| = 1/2 the radius of convergence of the Taylor series centered
at ζ would be at least r > 1/2. As a result there would be no singular point of f on ∂E
contradicting the previous Lemma 2.3.10.
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3 Basketball walks

This chapter is based on and extends the work by Banderier, Krattenthaler, Krinik, D.
Kruchinin, V. Kruchinin, Nguyen and Wallner in [2]. In this article, the authors investigate
a wide class of lattice paths with symmetric step sets {−h, . . . ,−1, 1, . . . , h}. For h = 1,
this corresponds to the classical Dyck paths and h = 2 yields the eponymous basketball
walks, which will be the main focus of this chapter. We derive their generating functions,
as well as closed form formulae for the coefficients of the counting sequences and their
corresponding asymptotic growth rates. In addition, we present a novel combinatorial
derivation of a generating function (Proposition 3.1.5) that was previously only accessible
via contour integrals and residue calculations. Further, we will correct some typos in the
original paper, which will be highlighted with a footnote.

Definition 3.0.1. Basketball walks are simple lattice paths constructed from the step set
{−2,−1, 1, 2}. The name refers to the evolution of the score during a basketball game before
the introduction of the 3-point rule. Positive basketball walks are basketball meanders
staying strictly above the x-axis, possibly touching it at the first or last step.

3.1 Generating functions

Let Gj,n,k be the number of positive basketball walks starting at (0, j) and ending at (n, k)
for j, k ≥ 0 and define

Gj(z, u) :=

∞∑
n,k=0

Gj,n,kz
nuk =

∞∑
n=0

gj,n(u)zn =

∞∑
k=0

Gj,k(z)uk.

We note that this bivariate generating function is analytic for |z| < 1/P (1) and |u| ≤ 1.
Further, the characteristic polynomial is given by

P (u) = u−2 + u−1 + u+ u2

and thus the kernel equation

K(z, u) = u2 − z(1 + u+ u3 + u4) (3.1)

admits two small roots, u1(z) and u2(z), as well as two large roots, v1(z) and v2(z).

Remark 3.1.1 (Time reversal). Due to the symmetry of the step set, we observe that
mirroring a basketball walk across the y-axis yields another valid basketball walk. Hence,
we have the time reversal equality

Gj,k(z) = Gk,j(z). (3.2)
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Equipped with those basic properties we are now ready to apply the kernel method to
yet another lattice path enumeration problem.

Lemma 3.1.2 ([2, pp. 88-89]). Let u1(z) and u2(z) be the small roots of the kernel equation
(3.1). Then, for j > 0, we have

Gj,1(z) = −u1u2(u
j
1 − uj2)

z(u1 − u2)
, (3.3)

Gj,2(z) =
u1u2(u

j
1 − uj2) + uj+1

1 − uj+1
2

z(u1 − u2)
=
uj+1
1 − uj+1

2

z(u1 − u2)
−Gj,1(z), (3.4)

Gj(z, u) =
uj − z (Gj,1(z) +Gj,2(z) +Gj,1(z)/u)

1 − zP (u)
. (3.5)

Proof. To derive a functional equation for the generating function of all positive basketball
walks starting at (0, j), we split them before their last step. A positive basketball walk is
then either the single initial point at altitude j, or a positive basketball walk followed by a
step not reaching altitude 0 or below. This leads to the functional equation

(1 − zP (u))Gj(z, u) = uj − z

(
Gj,1(z) +Gj,2(z) +

Gj,1(z)

u

)
, j > 0, (3.6)

which already implies (3.5). To solve for the remaining unknowns Gj,1 and Gj,2 we sub-
stitute the small roots u1(z) and u2(z) of the kernel equation into (3.6) and get the linear
system

uj1(z) = z

(
Gj,1(z) +Gj,2(z) +

Gj,1(z)

u1(z)

)
,

uj2(z) = z

(
Gj,1(z) +Gj,2(z) +

Gj,1(z)

u2(z)

)
.

Solving this system for j > 0 immediately yields the formulae (3.3) and (3.4).

Theorem 3.1.3 ([2, Proposition 6.3]). Let u1(z) and u2(z) be the small roots of the kernel
equation. Then, for k ≥ j > 0, we have1

G0,k(z) =
uk+1
1 (z) − uk+1

2 (z)

u1(z) − u2(z)
, (3.7)

Gj,k(z) = −u1(z)u2(z)

z

j∑
i=1

G0,j−i(z) ·G0,k−i(z). (3.8)

Proof. Since positive basketball walks must stay strictly above the x-axis, the first step of
a walk can only go up. Thus, removing this first step and shifting the origin, we have

G0,k(z) = z(G1,k(z) +G2,k(z)).

1The formula in [2, Proposition 6.3] incorrectly includes the summand corresponding to i = 0.
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k

j

i

G0,j−i G1,1 G0,k−i

Figure 3.1: The decomposition of a basketball walk counted by Gj,k(z).

We can rewrite this equation using the time reversal equation (3.2) to obtain

G0,k(z) = z(Gk,1(z) +Gk,2(z)).

In this form, plugging in the formulae (3.3) and (3.4) derived in the preceding lemma
instantly yields

G0,k(z) =
uk+1
1 (z) − uk+1

2 (z)

u1(z) − u2(z)
.

To derive the formula for Gj,k(z) for general j > 0 we make use of a first passage decompo-
sition with respect to the minimal altitude of the walk. By time reversal, we have G0,m(z)
as the generating function for basketball walks starting at (0,m), staying strictly above the
x-axis, but ending on the x-axis. Furthermore, we recognize

E(z) = G1,1(z) = −u1(z)u2(z)

z

as the generating function of basketball excursions. Note that in contrast to the positive
basketball walks counted by G0,0(z), basketball excursions are allowed to touch the x-axis
at any point. Positive basketball walks starting from height j and ending at height k can
then be decomposed into three parts; see Figure 3.1:

1. The walk starts at altitude j and continues until it hits the lowest altitude of the
entire walk i for the first time. This part is counted by G0,j−i(z).

2. The second part then continues to the last time the path reaches altitude i. Conse-
quently, this part is counted by E(z).

3. The last part runs from altitude i to altitude k without ever returning to altitude i.
By time reversal, this part is counted by G0,k−i(z).

Summing over all possible values for i then yields (3.8).

Example 3.1.4 ([2, p. 92]). We use the general formula (3.7) to compute explicit expres-
sions for G0,1(z) and G0,2(z). By substituting k = 1, 2 we get

G0,1(z) = u1(z) + u2(z),

G0,2(z) = u1(z)2 + u1(z)u2(z) + u2(z)2.
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We defer the remaining mechanical calculations to our favorite computer algebra system
and see that

G0,1(z) = −1

2
+

1

2

√
2 − 3z − 2

√
1 − 4z

z

= z + z2 + 3z3 + 7z4 + 22z5 + 65z6 + 213z7 + O(z8).

This corresponds to the sequence OEIS A166135. Furthermore G0,1(z) is uniquely deter-
mined as the only solution having a power series expansion with non-negative coefficients
at z0 = 0 of

zu4 + 2zu3 + (3z − 1)u2 + (2z − 1)u+ z = 0.

For G0,2(z), the computer tells us that

G0,2(z) =
3 −

√
1 − 4z −

√
2 + 12z + 2

√
1 − 4z

4z
= z + z2 + 4z3 + 9z4 + 31z5 + 91z6 + 309z7 + O(z8).

This corresponds to the sequence OEIS A111160. Furthermore, G0,2(z) is uniquely deter-
mined as the only solution of

z3u4 − 3z2u3 − (z2 − 3z)u2 + (z − 1)u+ z = 0,

having a power series expansion with non-negative coefficients at z0 = 0. △

Proposition 3.1.5 ([2, Proposition 6.4]). Let Gj,k(z) be the generating function for posi-
tive basketball walks starting at altitude j > 0 and ending at altitude k > 0. Then2

Gj,k(z) = Wj−k(z) −G0,j(z)W−k(z) − zG1,1(z)G0,j−1(z)W−k−1(z), (3.9)

where

Wi(z) = z

(
u′1
ui+1
1

+
u′2
ui+1
2

)
is the generating function of unconstrained walks starting at the origin and ending at
altitude i derived in Theorem 2.2.1.

We will present two proofs of this proposition. The first one, introduced in [2], uses con-
tour integrals and a residue calculation. Our new, second proof, will present a combinatorial
argument that does not require any complex analysis.

Proof. In Lemma 3.1.2 we derived the formula

Gj(z, u) =
uj − z

(
Gj,1(z) +Gj,2(z) +

Gj,1(z)
u

)
1 − zP (u)

for the bivariate generating function of positive basketball walks starting at (0, j). To
obtain an expression for Gj,k(z) we extract the coefficient of uk in the left-hand side of this

2The formula in [2, Proposition 6.4] contains some typos, as some signs are incorrectly flipped.
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equation. After simplifying the numerator using equations (3.3), (3.4) and (3.7), together
with the linearity of the coefficient extraction operator, we are left with

Gj,k(z) = [uk]
uj

1 − zP (u)
−G0,j(z) · [uk]

1

1 − zP (u)
− zG1,1(z)G0,j−1(z) · [uk]

u−1

1 − zP (u)
.

Next we can recognize W (z, u) = 1
1−zP (u) . Together with the time reversal identity Wℓ =

W−ℓ, we obtain the formula

Gj,k(z) = Wj−k −
uj+1
1 − uj+1

2

u1 − u2
W−k +

u1u2(u
j
1 − uj2)

u1 − u2
W−k−1.

Now it only remains to derive the desired expression for Wℓ. For this we apply Cauchy’s
coefficient formula with a curve γ encircling the origin, shrunk sufficiently such that only
the small roots remain inside. Cauchy’s residue theorem then yields

Wℓ(z) = [uℓ]
1

1 − zP (u)
=

1

2πi

∫
γ

du

uℓ+1(1 − zP (u))

= Resu=u1(z)

(
1

uℓ+1(1 − zP (u))

)
+ Resu=u2(z)

(
1

uℓ+1(1 − zP (u))

)
.

To calculate these residues, we make use of the identities 1/z = P (ui(z)), as well as
zP ′(ui(z)) = −P (ui(z))/u′i(z), which are immediate consequences of the kernel equation
and its derivative. With that in mind we compute

Resu=ui(z)

(
1

uℓ+1(1 − zP (u))

)
=

ui(z)ℓ+1

(
d

du
(1 − zP (u))

) ∣∣∣∣∣
u=ui(z)

−1

= − 1

ui(z)ℓ+1zP ′(ui(z))

=
u′i(z)

ui(z)ℓ+1P (ui(z))
= z

u′i(z)

ui(z)ℓ+1
.

Another way to prove this result without needing to dive into complex analysis is to use
the symbolic method to translate equation (3.9) into a specification for the class of general
basketball walks.

Proof. First, we isolate Wj−k(z) from equation (3.9) and substitute j = k + ℓ to obtain

Wℓ(z) = Gk,k+ℓ(z) +W−k(z)G0,k+ℓ(z) +W−k−1(z)zG1,1(z)G0,k+ℓ−1(z).

To prove this formula using the symbolic method we thus need to show that any basketball
walk starting from (0, 0) and ending at altitude ℓ falls into one of three categories:

1. Gk,k+ℓ(z): A walk that never touches nor crosses altitude −k.

2. W−k(z) · G0,k+ℓ(z): A walk to altitude −k, followed by a walk from altitude −k to
altitude ℓ that never returns to altitude −k.
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−k

ℓ Gk,k+ℓ

(a) Case 1: ω ∈ Gk,k+ℓ

−k

ℓ

W−k

G0,k+ℓ

(b) Case 2: ω ∈ W−k × G0,k+ℓ

−k

ℓ

W−k−1

G1,1 G0,k+ℓ−1

(c) Case 3: ω ∈ W−k−1 ×Z+2 ×G1,1 ×G0,k+ℓ−1

Figure 3.2: The three possible decompositions of a basketball walk ending at altitude ℓ.

3. W−k−1(z) · z ·G1,1(z) ·G0,k+ℓ−1(z): A walk to altitude −k − 1, followed by a step to
altitude −k+ 1, then an excursion at altitude −k+ 1, until it ends with a walk from
altitude −k + 1 to altitude ℓ that never returns to altitude −k + 1.

We argue this with a modified last passage decomposition of Wℓ(z). We define the last
traversal of an altitude j as the last step that either leaves from altitude j or crosses from
altitude j − 1 to j + 1. Let ω be an arbitrary basketball walk ending at altitude ℓ. We
split ω at its last traversal of altitude −k. If this traversal does not exist, then ω falls into
the first category. Otherwise, if the last traversal of altitude −k leaves from altitude −k,
ω falls into the second category. Finally, in the case that the last traversal crosses over
altitude −k we need to be a little more delicate. Since the final part is forced to start with
a +2 step, we cannot simply describe it as a positive basketball walk from altitude 0 to
altitude k + ℓ + 1. Hence, we need to split off the first +2 step. Now the remaining part
is still not yet a positive basketball walk, as it still may return to the line y = −k + 1.
Hence, we apply a second last passage decomposition to partition the remaining part into
an excursion at altitude (−k + 1), followed by a walk from altitude −k + 1 to altitude ℓ
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that never returns to altitude −k + 1. For a visual representation of these three cases, we
refer to Figure 3.2.

3.2 Closed-form expressions for coefficients

In this section we will present closed form expressions for the coefficients of G0,1(z), G0,2(z)
and G1,1(z). To derive these formulae we will make use of a variant of the classical Lagrange
inversion formula.

Theorem 3.2.1 (Lagrange inversion formula [14, Appendix A.6., p. 732]). Let F (z) be
a formal power series which satisfies F (z) = zϕ(F (z)), where ϕ(z) is a power series with
ϕ(0) ̸= 0. Then, for any Laurent series H(z) =

∑
n≥aHnz

n and for all non-zero integers n,
we have

[zn]H(F (z)) =
1

n
[zn−1]H ′(z)ϕn(z).

Lemma 3.2.2 (Variant of Lagrange inversion formula [2, Lemma 6.1]). Let F (z) and H(z)
be two formal power series satisfying the equations

F (z) = zϕ(F (z)), H(z) = zψ(H(z)),

where ϕ(z) and ψ(z) are formal power series such that ϕ(0) ̸= 0 and ψ(0) ̸= 0. Then,

[zn]H(F (z)) =
1

n

n∑
k=1

(
[zk−1]ψk(z)

)(
[zn−k](ϕn(z)

)
.

Proof. The classical Lagrange inversion formula of Theorem 3.2.1 yields

[zn]H(F (z)) =
1

n
[zn−1]H ′(z)ϕn(z).

Applying the Cauchy product formula allows us to apply Lagrange’s inversion formula a
second time:

[zn]H(F (z)) =
1

n

n−1∑
k=0

(
[zk]H ′(z)

)(
[zn−1−k]ϕn(z)

)
=

1

n

n∑
k=1

(
k[zk]H(z)

)(
[zn−k]ϕn(z)

)
=

1

n

n∑
k=1

(
[zk−1]ψk(z)

)(
[zn−k]ϕn(z)

)
.

Proposition 3.2.3 (Closed-form expression for the coefficients of G0,1(z) [2, Proposition
6.5]). The number of basketball walks G0,n,1 of length n from the origin to altitude one
and never returning to the x-axis equals

G0,n,1 =
1

n

n∑
k=1

(−1)k−1

(
2k − 2

k − 1

)(
2n

n− k

)
=

1

n

n∑
i=0

(
n

i

)(
n

2n+ 1 − 3i

)
.
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Proof. In Example 3.1.4 we derived the functional equation

zG4
0,1(z) + 2zG3

0,1(z) + (3z − 1)G2
0,1(z) + (2z − 1)G0,1(z) + z = 0.

We rewrite the equation to

z(1 +G0,1(z) +G2
0,1(z))2 −G0,1(z) −G2

0,1(z) = 0.

Comparing with the functional equation C(z) = 1+zC(z)2 for the Catalan numbers yields
the striking identity

G0,1(z) +G2
0,1(z) = C(z) − 1.

Define H(z) implicitly as the functional inverse of H +H2. Then we have

G0,1(z) = H(C(z) − 1).

Since H(z) = z/(1 +H) and C̃(z) := C(z) − 1 satisfies C̃(z) = z(1 + C̃(z))2 we can apply
Lemma 3.2.2 and obtain

[zn]G0,1(z) =
1

n

n∑
k=1

(
[zk−1]

1

(1 + z)k

)(
[zn−k](1 + z)2n

)
=

1

n

n∑
k=1

(
−k
k − 1

)(
2n

n− k

)

=
1

n

n∑
k=1

(−1)k−1

(
2k − 2

k − 1

)(
2n

n− k

)
.

The alternative expression without the (−1)k−1 factors comes from the Lagrange inversion
formula for u1 applied to the equation G0,1(z) = u1(z) + u2(z), using the fact that

u1(z)2 = zu1(z)2P (u1(z))

in conjunction with the conjugation property of the small roots. By the properties of the
kernel method 2.1.4 we know that u1(z) admits an expansion of the form

u1(z) =
∞∑
n=0

anz
n/2.

In order to apply Lagrange’s inversion formula to u1(z) we thus define

U(x) := u1
(
x2
)

=

∞∑
n=0

anx
n

Thus, U is a power series in x and satisfies the equation

U(x) = x
√
U(x)2P (U(x)).

58



3.2 Closed-form expressions for coefficients

This leads to

[zn]G0,1(z) = [zn](u1(z) + u2(z)) = 2[x2n]U(x)

=
1

n
[t2n−1](t2P (t))n

=
1

n
[t2n−1]((1 + t)(1 + t3))n

=
1

n

n∑
k=0

(
n

k

)(
n

2n+ 1 − 3k

)
.

The last closed-form expression can also be explained indirectly via counting the number
of unrestricted basketball walks from altitude zero to altitude one in n steps. We simply
extract the coefficient of [u1] in the generating function W (z, u) and obtain

[u1zn]W (z, u) = [u1]P (u)n = [u1]

(
(1 + u3)(1 + u)

u2

)n

=
n∑

k=0

(
n

k

)(
n

2n+ 1 − 3k

)
.

Now we establish a 1-to-n correspondence between walks of length n counted by G0,1(z)
and those counted by W0,1(z). Each walk ω counted by G0,1(z) can be decomposed into
ω = ωℓBωr with B being any point in the walk. Now we obtain a new unconstrained walk
by ω′ = Bωrωℓ. If ω is of length n there are n choices for B. Finally we remark that all
new walks obtained in this way are in fact different walks. This is due to the fact that
there are no walks from altitude zero to altitude one, which are formed as concatenation
of several copies of one and the same walk. Conversely, given a walk τ of length n counted
by W0,1(z), we decompose τ into τ = τℓBτr with B being the right-most lowest point of τ .
Then, τ ′ = Bτrτℓ is a walk of length n counted by G0,1(z).

Proposition 3.2.4 (Closed-form expression for the coefficients of G0,2(z) [2, Proposition
6.6]). The number G0,n,2 of basketball walks of length n from the origin to altitude two
and never returning to the x-axis equals

G0,n,2 =
1

2n+ 1

n+1∑
k=0

(−1)n+k+1

(
2n+ 1

n+ k

)(
n+ 2k − 1

k

)
.

Proof. The idea of the proof is the build up a chain of dependencies between the actual series
of interest, G0,2(z), and several auxiliary series, so that repeated application of Lagrange
inversion formula can be applied to provide an explicit expression for the coefficients of the
series of interest. As the first auxiliary series we define F (z) by

− 1

F (z)
= G0,2(z) − 1

z
.

Substituting F (z) into the functional equation

z3G4
0,2(z) − 3z2G3

0,2(z) − (z2 − 3z)G2
0,2(z) + (z − 1)G0,2(z) + z = 0

yields
(F 3(z) − zF (z))(1 + F (z)) + z2 = 0.
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We rewrite this equation further to

(
F 2(z) − z

2

)2
=
z2(1 − 3F (z))

4(1 + F (z))
.

Next, we take the square root on both sides. The sign is decided by observing the first
terms in the counting sequence associated with G0,2(z) and concluding F 2(z) = z2+O(z3).
Hence, we have

F 2(z) − z

2
= −z

2

√
1 − 3F (z)

1 + F (z)
.

We define

B(z) =
1

2

(
1 −

√
1 − 3z

1 + z

)

and finally obtain an equation suitable for the application of Lagrange inversion formula:

F (z) = z
B(F (z))

F (z)
.

Hence, for n ≥ 1 we have

[zn]G0,2(z) = −[zn]
1

F (z)
=

1

n
[zn−1]z−2

(
B(z)

z

)n

=
1

n
[z2n+1]Bn(z).

To proceed, we derive an equation amenable to Lagrange’s inversion formula for B(z).
Firstly, we note that B(z) solves the quadratic equation

(z + 1)B2(z) − (z + 1)B(z) + z = 0,

which can be rewritten to

B(z) = z

(
1

1 −B(z)
−B(z)

)
= zϕ(B(z)).

Now, we apply Lagrange’s inversion formula again with H(z) = zn and obtain

[zn]G0,2(z) =
1

n
[z2n+1]Bn(z) =

1

n(2n+ 1)
[z2n]

(
nzn−1

(
1

1 − z
− z

)2n+1
)

=
1

2n+ 1
[zn+1]

(
1

1 − z
− z

)2n+1

.
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Finally, all that remains is to apply Newton’s generalized binomial theorem to calculate

[zn]G0,2(z) =
1

2n+ 1
[zn+1]

2n+1∑
k=0

(−1)k+1

(
2n+ 1

k

)
z2n+1−k

(
1

1 − z

)k

=
1

2n+ 1
[zn+1]

∞∑
ℓ=0

2n+1∑
k=0

(−1)k+1

(
2n+ 1

k

)(
k + ℓ− 1

ℓ

)
z2n+1−k+ℓ

=
1

2n+ 1

2n+1∑
k=n

(−1)k+1

(
2n+ 1

k

)(
2k − n− 1

k − n

)

=
1

2n+ 1

n+1∑
k=0

(−1)n+k+1

(
2n+ 1

k + n

)(
2k − 1

k

)
.

Proposition 3.2.5 (Closed-form expression for the coefficients of G1,1(z) [2, Proposition
6.7]). The number G1,n,1 of basketball excursions of length n (allowed to return to altitude
0 anywhere) is given by

G1,n,1 =
1

n+ 1

n∑
k=0

(−1)n+k

(
2n+ 2

n− k

)(
n+ 2k + 1

k

)
=

1

n+ 1

⌊n/2⌋∑
i=0

(
2n+ 2

i

)(
n− i− 1

n− 2i

)
.

Proof. By Theorem 2.2.5 we know the generating function for excursions to be

E(z) = −u1(z)u2(z)

z
.

Further, we can generate an algebraic equation satisfied by E(z) via computer algebra:

z4E4 − (2z3 + z2)E3 + (3z2 + 2z)E2 − (2z + 1)E + 1 = 0.

We rewrite this equation in order to be amenable to Lagrange’s inversion formula:

zE(z) = z

(
1

1 − zE(z)
− zE(z)

)2

= zϕ(zE(z)).

Hence we have

[zn]E(z) =
1

n+ 1
[zn]

(
1

1 − z
− z

)2n+2

=
1

n+ 1
[zn]

2n+2∑
k=0

(
2n+ 2

k

)
(−z)k

(
1

1 − z

)2n+2−k

=
1

n+ 1

n∑
k=0

(−1)n−k

(
2n+ 2

n− k

)
[zk]

(
1

1 − z

)n+k+2

=
1

n+ 1

n∑
k=0

(−1)n+k

(
2n+ 2

n− k

)(
n+ 2k + 1

k

)
.

The second expression can be derived by rewriting ϕ(z) =
(

1 + z2

1−z

)2
.
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3.3 Asymptotic number of basketball walks

In this section we analyze the asymptotic behavior of the exactly enumerated sequences
from the previous sections.

Theorem 3.3.1 (Asymptotics of [zn]G0,1(z) and [zn]G0,2(z) [2, Theorem 6.3]). Let G0,1(z)
and G0,2(z) be the generating functions for positive basketball walks starting at the origin
and ending at altitude one, respectively, at two. Then, as n → ∞ the coefficients are
asymptotically equal to

[zn]G0,1(z) =
1√
5π

4n√
n3

(
1 − 81

200n
+ O

(
1

n2

))
,

[zn]G0,2(z) =
5 +

√
5

10
√
π

4n√
n3

(
1 − 201 + 24

√
5

200n
+ O

(
1

n2

))
,

with C1 := 1√
5π

≈ 0.25231 and C2 := 5+
√
5

10
√
π
≈ 0.40825.

Proof. In Example 3.1.4 we derived the expressions

G0,1(z) = −1

2
+

1

2

√
2 − 3z − 2

√
1 − 4z

z
,

G0,2(z) =
3 −

√
1 − 4z −

√
2 + 12z + 2

√
1 − 4z

4z
.

The dominant singularity of both of these functions is at ρ0 = 1/4. Computing the Puiseux
series at ρ0 yields

G0,1(z) = −1 −
√

5

2
− 2√

5
(1 − 4z)1/2 +

6

5
√

5
(1 − 4z) − 26

25
√

5
(1 − 4z)3/2 + O((1 − 4z)2),

G0,2(z) =
(

3 −
√

5
)
− 5 +

√
5

5
(1 − 4z)1/2 +

75 − 17
√

5

25
(1 − 4z)

− 125 + 33
√

5

125
(1 − 4z)3/2 + O

(
(1 − 4z)2

)
.

Applying the standard function scale (Theorem 2.3.1) in conjunction with the Transfer
Theorem 2.3.4 we obtain

[zn]G0,1(z) =
4n√
5πn3

(
1 +

3

8n
+ O

(
1

n2

))
− 26

25
√

5

4n√
πn5

(
3

4
+ O

(
1

n

))
+ O

(
4n√
n7

)
=

4n√
5πn3

(
1 − 81

200n
+ O

(
1

n2

))
,
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as well as

[zn]G0,2(z) =
5 +

√
5

10

4n√
πn3

(
1 +

3

8n
+ O

(
1

n2

))
− 125 + 33

√
5

125

4n√
πn5

(
3

4
+ O

(
1

n

))
+ O

(
4n√
n7

)
=

5 +
√

5

10
√
π

4n√
n3

(
1 − 201 + 24

√
5

200n
+ O

(
1

n2

))
.

In addition to the asymptotic results presented in [2], we present the asymptotic growth
rate of the number of basketball excursions and compare them to the previously derived
asymptotics in Table 3.1.

Theorem 3.3.2 (Asymptotics of [zn]G1,1(z)). Let G1,1(z) be the generating function for
positive basketball walks starting and ending at altitude one, also known as basketball
excursions. Then, as n→ ∞ the coefficients are asymptotically equal to

[zn]G1,1(z) =
6
√

5 − 10

5
√
π

4n√
n3

(
1 − 381 − 48

√
5

200n
+ O

(
1

n2

))

with C := 6
√
5−10

5
√
π

≈ 0.38550.

Proof. In Proposition 3.2.5 we derived the algebraic equation

P (z, E) := z4E4 − (2z3 + z2)E3 + (3z2 + 2z)E2 − (2z + 1)E + 1 = 0

for the generating function G1,1(z). The candidates for its singular points are found within
the exceptional set

Ξ[P ] := { z | R(P (z, E), ∂EP (z, E), E) = 0 },

where R(z) is the resultant defined in Definition 1.4.11. Solving the equation R(z) = 0
yields again ρ = 1/4 as the unique dominant singularity. Now we can let our favorite
computer algebra system compute the Puiseux expansion

G1,1(z) = 6 − 2
√

5 +
20 − 12

√
5

5

√
1 − 4z +

250 − 94
√

5

25
(1 − 4z)

+
1000 − 536

√
5

125
(1 − 4z)3/2 + O

(
(1 − 4z)2

)
.

We determine the correct branch of the Puiseux expansion by guessing and checking the
asymptotic approximations against the actual values of the counting sequence. Applying
the standard function scale (Theorem 2.3.1) in conjunction with the Transfer Theorem
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2.3.4 we finally obtain

[zn]G1,1(z) =
6
√

5 − 10

5

4n√
πn3

(
1 +

3

8n
+ O

(
1

n2

))
+

1000 − 536
√

5

125

4n√
πn5

(
3

4
+ O

(
1

n

))
+ O

(
4n√
n5

)
=

6
√

5 − 10

5
√
π

4n√
n3

(
1 +

48
√

5 − 381

200n
+ O

(
1

n2

))
.

OEIS First terms Growth rate

G0,1(z) A166135 z + z2 + 3z3 + 7z4 + 22z5 + 65z6 ≈ 0.25231 · 4n · n−3/2

G1,1(z) A187430 1 + 2z2 + 2z3 + 11z4 + 24z5 + 93z6 ≈ 0.38550 · 4n · n−3/2

G0,2(z) A111160 z + z2 + 4z3 + 9z4 + 31z5 + 91z6 ≈ 0.40825 · 4n · n−3/2

Table 3.1: Table of coefficients of different basketball walks.
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4 Lattice paths with catastrophes

This chapter is rooted in the paper from Banderier and Wallner [3], where the authors
study directed lattice paths, augmented with so-called catastrophes, as a model for queues
with resets. Already in 2005 Krinik et al. [19] used Dyck meanders with catastrophes as a
model for the classical single server queueing system with a finite capacity M/M/1/H, with
a constant catastrophe rate γ. This allowed them to introduce a new method to determine
the transient probability functions of classical queueing theory systems using lattice path
combinatorics. Further, queues with catastrophes also arise as simple, natural models of
the evolution of stock markets [27], or under the name of random walks with resetting in the
field of probability theory and statistical mechanics [20]. Since the differing requirements
of the diverse applications often call for adaptations to the simple model of queues with
resets, we will compare and contrast two different versions of catastrophes in this chapter.
As a baseline, Banderier and Wallner, in their article [3], introduce them as follows:

Definition 4.0.1 (Catastrophe). Consider a simple path with a finite step set S. A
catastrophe is a step of the form (1,−s), with −s /∈ S and s > 0, allowed only at altitude s,
that takes the path immediately down to the x-axis. We denote the weight of a catastrophe
with q. Note that, with this definition catastrophes can never coincide with regular jumps.

However, it might also make sense to allow catastrophes, even when they would coincide
with regular jumps, as well as catastrophes at height zero. This conveniently leads to
a model that is easier to handle, simplifying some of the more tedious calculations. To
distinguish these two models we will refer to catastrophes of the second kind as alternative
catastrophes.

Definition 4.0.2. An alternative catastrophe is a step of the form (1,−s), with s ≥ 0 and
weight q, allowed only at altitude s, that takes the path immediately down to the x-axis.

4.1 Generating functions

We now start by providing a general formula for the generating function of meanders with
(alternative) catastrophes. The structure of the general formula does not change for similar
models of catastrophes and thus only slight modifications are necessary to encompass the
differences in the two models.

Theorem 4.1.1 (Generating function for meanders and excursions with catastrophes [3,
Theorem 2.1]). Let cn,k be the number of meanders with catastrophes of length n end-
ing at altitude k, relative to a simple step set S, with characteristic polynomial P (u) =∑d

k=−c pku
k. Further, let u1, . . . , uc denote the small roots and v1, . . . , vd the large roots of
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4 Lattice paths with catastrophes

the kernel equation. Then the generating function

C(z, u) =
∞∑

n,k=0

cn,ku
kzn

is algebraic and satisfies

C(z, u) = D(z) ·M(z, u) =
1

1 −Q(z)
·
∏c

i=1(u− ui(z))

uc(1 − zP (u))
,

where D(z) denotes the generating function of excursions ending with a catastrophe and
Q(z) counts the number of excursions with exactly one catastrophe occurring as the last
step of the path. In addition, the generating functions for meanders with catastrophes
ending at altitude k satisfy

Ck(z) = D(z) ·Mk(z) =
1

1 −Q(z)
· 1

pdz

d∑
ℓ=1

v−k−1
ℓ

∏
1≤j≤d,
j ̸=ℓ

1

vj − vℓ
, for k ≥ 0.

The generating function Q(z) in both cases depends on the model of catastrophes:

Qcat(z) = qz

M(z) − E(z) −
∑
s>0,
−s∈S

Ms(z)

 , Qalt(z) = qz ·M(z).

Proof. Begin by taking an arbitrary meander with catastrophes of length n. We decompose
the path into a final meander without any catastrophes, counted by M(z, u), and a possibly
empty initial part counted by D(z). The expression for the generating function M(z, u)
of the final meander has already been derived in Theorem 2.2.5. The initial part can then
be further decomposed into a sequence of excursions containing exactly one catastrophe as
their respective last step. The decomposition is illustrated in Figure 4.1. Since each of the
individual excursions are counted by Q(z), we thus have D(z) = 1/(1 −Q(z)). Finally, to
describe Q(z) we note that each of these individual excursions is simply a meander without
any catastrophes, followed by a final catastrophe. In the case of regular catastrophes, we
now need to subtract all heights from which by definition no catastrophe can occur, and
we get

Qcat(z) = qz

M(z) − E(z) −
∑
s>0,
−s∈S

Ms(z)

 ,

with q denoting the weight of a catastrophe. In the model of alternative catastrophes,
catastrophes may occur at any altitude and thus we have

Qalt(z) = qz ·M(z).

For the generating function of meanders with catastrophes ending at a fixed altitude k, it
suffices to replace the bivariate generating function for meanders M(z, u) with the gener-
ating function Mk(z) of meanders ending at altitude k. The expression for Mk(z) has been
derived in Corollary 2.2.7.
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4.1 Generating functions

M(z, u)

D(z)

Q(z)Q(z)

Figure 4.1: The decomposition of a meander with catastrophes.

If we let go of the negative image of a catastrophe that pushes the path down to zero
and adopt the more neutral point of view as a reset to zero, it makes also sense to look at
walks and bridges with resets to zero.

Definition 4.1.2 (Resets to zero). Consider a simple path with a finite step set J . A reset
to zero is a step of the form (1,−s), with −s /∈ S, allowed only at altitude s, that resets
the path to the x-axis. An alternative reset to zero is a step of the form (1,−s), for any
s ∈ Z, allowed only at altitude s, that resets the path to the x-axis.

Together with Theorem 2.2.1 and Theorem 2.2.2 we derive an almost analogous result
for the generating function of unconstrained walks and bridges with resets to zero.

Theorem 4.1.3 (Generating function of walks and bridges with resets to zero). Let rn,k
be the number of walks with resets to zero of length n from altitude 0 to altitude k. Then
the generating function R(z, u) is algebraic and satisfies

R(z, u) = D(z) ·W (z, u) =
1

1 −Q(z)
· 1

1 − zP (u)
,

with Q(z) depending on the model of resets to zero:

Qcat(z) = qz

W (z) −W0(z) −
∑
s>0,
−s∈S

Ws(z)

 , Qalt(z) = qz ·W (z).

In addition, the generating functions for walks with resets to zero, ending at altitude k
satisfy

Rk(z) = D(z)Wk(z) =
1

1 −Q(z)
·

z
∑c

j=1

u′
j(z)

uj(z)k+1 , for −∞ < k < c,

−z
∑c

j=1

v′j(z)

vj(z)k+1 , for −d < k < +∞.

Proof. Again, any arbitrary walk can be decomposed into a final walk without any resets to
zero, which we count via W (z, u) and a possibly empty initial part counted by D(z). The
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4 Lattice paths with catastrophes

formula for the generating function of walks W (z, u) comes from Theorem 2.2.1. The initial
part now consists of a sequence of walks ending with a catastrophe, instead of meanders.
Hence, we simply replace all generating functions for meanders with their corresponding
counterparts for walks and we obtain the claimed formulae. For the generating function of
walks ending at a fixed altitude k, we refer to Theorem 2.2.2.

Example 4.1.4 (Generating function for Dyck bridges with resets to zero). According to
Theorem 4.1.3 we have

Bcat
D (z) =

W0(z)

1 − z(W (z) −W0(z) −W1(z) −W−1(z))
.

With the help of a computer algebra system we calculate

Bcat
D (z) = −

(2z − 1)
(

1 +
√

1 − 4z2
)2

(4z3 − 4z2 − 4z + 2)
√

1 − 4z2 + 8z4 + 12z3 − 8z2 − 4z + 2

= − 2z (2z − 1) v1(z)2

(4z3 − 4z2 − 4z + 2) v1(z) + 4z3 + 4z2 − 2z

= 1 + 2z2 + 2z3 + 8z4 + 14z5 + 40z6 + 84z7 + O(z8).

This sequence was not contained in the OEIS before writing this thesis, but it can now be
found at OEIS A369316. Further, Bcat

D (z) can be characterized as the only solution, having
a power series expansion with non-negative coefficients at zero, of the quadratic equation(

4z3 + 4z2 − 1
)
B2 + 2z (2z + 1)B + 2z + 1.

For comparison, the generating function of Dyck bridges with alternative resets to zero
satisfies

Balt
D (z) =

W0(z)

1 − zW (z)
=

√
1 − 4z2

(1 − 3z)(1 + 2z)

= 1 + z + 5z2 + 11z3 + 39z4 + 105z5 + 335z6 + 965z7 + O(z8).

This sequence was not contained in the OEIS before writing this thesis, but it can now be
found at OEIS A369982. △

In the following subsections we present a number of different step sets paired with al-
ternative catastrophes. We derive their generating functions and provide bijections with
various combinatorial objects that originate from the OEIS entries corresponding to the
respective counting sequences.

4.1.1 Dyck walks

We start with the classical example in lattice path enumeration, the family of Dyck walks
corresponding to the simple step set D = {−1, 1}.

68

https://oeis.org/A369316
https://oeis.org/A369982


4.1 Generating functions

Example 4.1.5. Let Malt
D (z, 1) denote the generating function of Dyck meanders with

alternative catastrophes. According to Theorem 4.1.1 we have

Malt
D (z, 1) = D(z)M(z, 1) = D(z)

1 − u1(z)

1 − zP (1)
=

1 − u1(z)

(1 −Qalt(z))(1 − 2z)
,

with u1(z) = 1−
√
1−4z2

2z being the solution to the kernel equation 1 − z(u−1 + u) = 0.
Plugging in the formula for the generating function M(z, 1), derived in Theorem 2.2.5,
then yields

Qalt(z) = zM(z, 1) = z
1 − u1(z)

1 − zP (1)
= z

1 − 1−
√
1−4z2

2z

1 − 2z
.

With the help of our favorite computer algebra system we finally arrive at

Malt
D (z, 1) =

1 − u1(z)

(1 −Qalt(z))(1 − 2z)
=

1 − u1(z)

1 + (u1(z) − 3)z

= 1 + 2z + 5z2 + 12z3 + 30z4 + 74z5 + 185z6 + 460z7 + O(z8).

This sequence corresponds to OEIS A054341. For the generating function of Dyck meanders
with regular catastrophes, we need to compute

Qcat(z) = z(M(z) − E(z) −M1(z))

instead. The formulae

M(z) =
1 − u1(z)

1 − zP (1)
, E(z) =

u1(z)

z

are already known from Theorem 2.2.5 and the remaining unknown M1(z) can be deter-
mined using a simple last passage decomposition. Let ωM be an arbitrary meander ending
at altitude 1. Split ωM into two parts by cutting at the point when it leaves the x-axis
for the last time. The first part is then simply an excursion counted by E(z). The final
part is also an excursion, if we discard the first up-step. This decomposition shows that
M1(z) = zE(z)2. The remaining calculations remain in the hands of our favorite computer
algebra system, which returns

M cat
D (z, 1) =

z(u1(z) − 1)

z2 + (z2 + z − 1)u1(z)

= 1 + z + 2z2 + 4z3 + 8z4 + 17z5 + 35z6 + 75z7 + O(z8).

This sequence corresponds to OEIS A274115. △

Now we follow these results up with two simple bijections to related classes of lattice
paths listed in the respective OEIS entries.

Theorem 4.1.6. The set of Dyck meanders with alternative catastrophes of length n is
in bijection with the set of 2-Motzkin excursions of length n, with no E-steps at positive
heights h > 0.
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4 Lattice paths with catastrophes

Figure 4.2: Bijection between Dyck meanders with alternative catastrophes and 2-Motzkin
excursions with no E-steps at positive height.

Proof. Let ωM be an arbitrary 2-Motzkin excursion. Start by transforming every blue
E-step in ωM into a NE-step. The NE-step and SE-steps in ωM remain unchanged.
Finally, transform every red E-step in ωM into a catastrophe. This process clearly yields a
valid Dyck meander with alternative catastrophes, since the height at each point may only
increase in this procedure and alternative catastrophes may occur at any height.

For the inverse mapping we consider an arbitrary Dyck meander ωD with alternative
catastrophes. Clearly, every catastrophe in ωD needs to map to a E-step and every SE-
step needs to remain unchanged. Hence, it only remains to determine, which NE-steps
get mapped to a blue E-step and which NE-steps stay unchanged. For that, we first split
ωD into a sequence of meanders without catastrophes, with a catastrophe separating them,
and a final meander without any catastrophes at the end. Then, for each meander in
the sequence, we apply a last passage decomposition and turn the last NE-step to leave
altitude i = 0, . . . , k − 1 into a blue E-step, where k is the final height of the meander.
This procedure ensures that all E-steps occur only at height 0. For an illustration of this
procedure we refer to Figure 4.2.

Theorem 4.1.7. The set of Dyck meanders with alternative catastrophes of length n
is bijectively equivalent to the set of Dyck excursions with symmetric arches of length
2(n+1). In addition, the set of Dyck excursions with alternative catastrophes is bijectively
equivalent to the set of Dyck excursions with symmetric arches of length 2(n + 1), where
the midpoint of the last arch happens to be at height one.

Proof. Consider an arbitrary Dyck meander ωM with alternative catastrophes of length n.
We will now construct a Dyck excursion ωE with symmetric arches of length 2(n+ 1). In
any case we have to draw the first obligatory NE-step in ωE . After that we will identify
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4.1 Generating functions

Figure 4.3: Bijection between Dyck meanders with alternative catastrophes of length n and
Dyck excursions with symmetric arches of length 2(n+ 1).

every step in ωM with the first half of each symmetric arch of ωE . Further, we identify
every catastrophe in ωM with the first NE-step at the start of a new arch. In particular,
if ωM starts with a catastrophe, this translates to ωE starting with the minimal arch of
size two, immediately succeeded by the next arch. Then, after drawing the first NE-step
of the arch, every regular step between two catastrophes gets mapped to the first half of
the symmetric arch. The inverse is easily constructed by reading these steps backwards;
see Figure 4.3

For further bijections, Baril and Kirgizov [5, Theorem 1] have also constructed a bijection
between the set of Dyck meanders of length n with catastrophes and the set of Dyck
excursions of length 2n having no occurrence of the patterns NE-NE-NE and SE-NE-
SE at height h > 0, highlighting the diverse connections between different families of lattice
paths. To conclude this subsection, we present the counting sequences of Dyck excursions
with (alternative) catastrophes.

Example 4.1.8. Let Ealt
D (z) denote the generating function of Dyck excursions with al-

ternative catastrophes. According to Theorem 4.1.1 we have

Ealt
D (z) = D(z)M0(z) =

E(z)

1 −Q(z)
=

u1(z)

z
(

1 − z 1−u1(z)
1−2z

) =
u1(z)(1 − 2z)

z(1 + z(u1(z) − 3))
.

Extracting the first few coefficients then gives

Ealt
D (z) = 1 + z + 3z2 + 6z3 + 16z4 + 37z5 + 95z6 + 230z7 + O(z8).

This sequence was not contained in the OEIS before writing this thesis, but it can now be
found at OEIS A369432. For comparison, the generating function of Dyck excursion with
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catastrophes satisfies

Ecat
D (z) =

(2z − 1)u1(z)

z2 + (z2 + z − 1)u1(z)
= 1 + z2 + z3 + 3z4 + 5z5 + 12z6 + 23z7 + O(z8).

This sequence corresponds to OEIS A224747. △

4.1.2 Motzkin walks

We recall Motzkin walks to be directed lattice paths with the simple step set M =
{−1, 0, 1}. If we use k different colors for the horizontal step, we call the resulting lat-
tice paths k-Motzkin walks. Let us start now with the enumeration of Motzkin meanders
with (alternative) catastrophes.

Example 4.1.9. Let Malt
M (z, 1) denote the generating function of Motzkin meanders with

alternative catastrophes. According to Theorem 4.1.1 we have

Malt
M (z, 1) =

M(z, 1)

(1 − zM(z, 1))
=

1 − u1(z)(
1 − z 1−u1(z)

1−3z

)
(1 − 3z)

=
1 − u1(z)

1 + (u1(z) − 4)z
,

with u1(z) = 1−z−
√
1−2z−3z2

2z being the only small solution to the kernel equation

u− z(1 + u+ u2) = 0.

Furthermore, we can extract the first coefficients to see

Malt
M (z, 1) = 1 + 3z + 10z2 + 34z3 + 117z4 + 405z5 + 1407z6 + 4899z7 + O(z8).

This sequence corresponds to OEIS A059738. For comparison, the generating function of
Motzkin meanders with catastrophes satisfies

M cat
M (z) =

u1(z) − 1

u1(z)2 (3z − 1) + (2z − 1)u1(z) + 4z − 1

= 1 + 2z + 5z2 + 14z3 + 41z4 + 123z5 + 374z6 + 1147z7 + O(z8).

This sequence corresponds to OEIS A054391, which appears as a interpolation between the
famous Catalan and Motzkin numbers. △

Again, we follow these results up with bijections to related families of lattice paths listed
in OEIS A059738.

Theorem 4.1.10. The set of Motzkin meanders with alternative catastrophes of length n
is bijectively equivalent to the set of 3-Motzkin excursions of length n, with no E-steps at
positive height h > 0.

Proof. The proof follows the arguments in Theorem 4.1.7 almost word for word and the
procedure is illustrated in Figure 4.4. Let ωE denote an arbitrary 3-Motzkin excursion.
Simply transform every blue E-step in ωE to a NE-step. Each NE-step, black E-step and
SE-step stays unchanged. Finally, we map every red E-step to a catastrophe.
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Figure 4.4: Bijection between Motzkin meanders with alternative catastrophes and 3-
Motzkin excursions with no E-steps at positive heights.

Hence, for the inverse mapping, it only remains to determine, which NE-steps get
mapped to a blue E-step and which NE-steps stay unchanged. For that, we first split
ωD into a sequence of meanders without catastrophes, with a catastrophe separating them,
and a final meander without any catastrophes at the end. Then, for each meander in the
sequence, we apply a last passage decomposition and turn the last NE-step to leave alti-
tude i = 0, . . . , k − 1 into a blue E-step, where k is the final height of the meander. This
procedure ensures that all E-steps occur only at height zero.

Theorem 4.1.11. The set of Motzkin meanders with alternative catastrophes of length
n−1, starting with a catastrophe, is bijectively equivalent to the set of Motzkin excursions
with symmetric arches of length 2n, with E-steps only at positive heights h > 0.

Proof. Let ωM be a Motzkin meander of length n − 1 with alternative catastrophes. We
now construct a Motzkin excursion ωE with symmetric arches of length 2n. We start by
drawing the first obligatory NE-step of ωE and continue adding the steps of ωM to ωE

until the first catastrophe occurs. Each catastrophe signals the start of a new symmetric
arch. Thus, we complete the current arch by mirroring all previous steps, before we map
the catastrophe to the first NE-step of the new arch. Now we iterate this process until all
arches have been drawn. To construct the inverse mapping we simply take the first halves
of each symmetric arch and replace the first NE-step each with an alternative catastrophe,
except for the first arch, where the alternative catastrophe is omitted. This procedure is
illustrated in Figure 4.5.

Further, for the set Mn of Motzkin meanders of length n with catastrophes, Baril and
Kirgizov [5, Theorem 3] construct a bijection to the set Bn+1 of Dyck excursions of length
2n+ 2 avoiding the patterns NE-NE-NE at height h ≥ 2.
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Figure 4.5: Bijection between Motzkin meanders with alternative catastrophes and Motzkin
excursions with symmetric arches.

Example 4.1.12. Let Ealt
M(z) denote the generating function of Motzkin excursions with

alternative catastrophes. According to Theorem 4.1.1 we have

Ealt
M(z) = D(z)M0(z) =

E(z)

1 −Q(z)
=

u1(z)

z
(

1 − z 1−u1(z)
1−3z

) =
u1(z)(1 − 3z)

z(1 + (u1(z) − 4)z)
.

Extracting the first few coefficients yields

Ealt
M(z) = 1 + 2z + 6z2 + 19z3 + 63z4 + 213z5 + 729z6 + 2513z7 + O(z8).

This sequence corresponds to OEIS A059712. For comparison, the generating function of
Motzkin excursions with catastrophes satisfies

Ecat
M (z) =

3uz − u

(3u2 + 2u+ 4) z2 + (−u2 − u− 1) z

= 1 + z + 2z2 + 5z3 + 14z4 + 41z5 + 123z6 + 374z7 + O(z8).

This sequence corresponds to OEIS A073525. △

4.1.3 2-Motzkin walks

Example 4.1.13. Let Malt
M2

(z) denote the generating function for 2-Motzkin meanders
with alternative catastrophes. According to Theorem 4.1.1 we have

Malt
M2

= D(z)M(z) =
M(z)

1 −Q(z)
=

1 − u1(z)(
1 − z 1−u1(z)

1−4z

)
(1 − 4z)

=
1 − u1(z)

1 + (u1(z) − 5)z
,
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with u1(z) = 1−2z−
√
1−4z

2z being the solution to the kernel equation

u− z(u2 + 2u+ 1) = 0.

Extracting the first few coefficients yields

Malt
M2

(z) = 1 + 4z + 17z2 + 74z3 + 326z4 + 1446z5 + 6441z6 + 28770z7 + O(z8).

This sequence corresponds to OEIS A049027, which appears as a row sum of a generalized
Pascal’s triangle. For comparison, the generating function of 2-Motzkin meanders with
catastrophes satisfies

M cat
M2

(z) =
u1(z) − 1

u1(z)2 (1 − 4z) + (1 − 3z)u1(z) + 5z − 1

= 1 + 3z + 10z2 + 36z3 + 136z4 + 529z5 + 2095z6 + 8393z7 + O(z8).

This sequence was not contained in the OEIS before writing this thesis, but it can now be
found at OEIS A369436. △

Example 4.1.14. Let Ealt
M2

(z) denote the generating function of 2-Motzkin excursions
with alternative catastrophes. According to Theorem 4.1.1 we have

Ealt
M2

(z) = D(z)M0(z) =
E(z)

1 −Q(z)
=

u1(z)

z
(

1 − z 1−u1(z)
1−4z

) =
u1(z)(1 − 4z)

z(1 + (u1(z) − 5)z)
.

Extracting the first few coefficients yields

Ealt
M2

(z) = 1 + 3z + 11z2 + 44z3 + 184z4 + 789z5 + 3435z6 + 15100z7 + O(z8).

This sequence corresponds to OEIS A059714. For comparison, the generating function of
2-Motzkin excursions with catastrophes satisfies

Ecat
M2

(z) =
4u1(z)z − u1(z)

(4u1(z)2 + 3u1(z) + 5) z2 + (−u1(z)2 − u1(z) − 1) z

= 1 + 2z + 5z2 + 15z3 + 51z4 + 187z5 + 716z6 + 2811z7 + O(z8).

This sequence corresponds to OEIS A073525. △

All of these enumeration results are summarized in Table 4.1 and Table 4.2 below.

4.2 Asymptotic number of lattice paths

In this section we work out the asymptotic behavior of the sequences derived in the previous
sections. To derive asymptotics of coefficients of generating functions, singularity analysis is
the way to go. A central theme in this process is the search for singularities of the function.
In the easiest case, there is exactly one singularity on the radius of convergence. However,
when considering periodic step sets, we have to deal with the periodically distributed
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4 Lattice paths with catastrophes

OEIS First terms

Dyck excursions A224747 1 + 0z + z2 + z3 + 3z4 + 5z5

Dyck meanders A274115 1 + z + 2z2 + 4z3 + 8z4 + 17z5

Motzkin excursions A054391 1 + z + 2z2 + 5z3 + 14z4 + 41z5

Motzkin meanders A054391 1 + 2z + 5z2 + 14z3 + 41z4 + 123z5

2-Motzkin excursions A073525 1 + 2z + 5z2 + 15z3 + 51z4 + 187z5

2-Motzkin meanders A369436 1 + 3z + 10z2 + 36z3 + 136z4 + 529z5

Table 4.1: Table of lattice paths with catastrophes.

OEIS First terms

Dyck excursions A369432 1 + z + 3z2 + 6z3 + 16z4 + 37z5

Dyck meanders A054341 1 + 2z + 5z2 + 12z3 + 30z4 + 74z5

Motzkin excursions A059712 1 + 2z + 6z2 + 19z3 + 63z4 + 213z5

Motzkin meanders A059738 1 + 3z + 10z2 + 34z3 + 117z4 + 405z5

2-Motzkin excursions A059714 1 + 3z + 11z2 + 44z3 + 184z4 + 789z5

2-Motzkin meanders A049027 1 + 4z + 17z2 + 74z3 + 326z4 + 1446z5

Table 4.2: Table of lattice paths with alternative catastrophes.

singularities on the circle of convergence. In this case, all of these singularities need to
be handled with care, as cancellations might occur. In this thesis, however, we will not
delve into these technical details and restrict ourselves to the analysis of aperiodic step
sets. For a full treatment on how to deduce the asymptotics of walks having periodic jump
polynomials from the results on aperiodic ones, we refer to [4, Lemma 8.7 and Theorem
8.8] from Banderier and Wallner.

Definition 4.2.1 (Periodic support). We say that a function F (z) has periodic support
of period p or for short F (z) is p-periodic if there exists an integer b and a function H(z)
such that

F (z) = zbH(zp).

The largest such p is called the period of F and is denoted by per(F ). If this holds only
for p = 1, the function is said to be aperiodic. A simple walk defined by the set of jumps
S is said to have period p if the characteristic polynomial P (u) =

∑
s∈S psu

s has period p.
In this case, the period can also be defined via

per(P ) = gcd(b2 − b1, . . . , bm − b1).

Further, a simple walk is said to be reduced, if the greatest common divisor of the jumps is
equal to one. Note that aperiodic walks are by their definition automatically reduced.

These periodicities play a crucial role in the process of singularity analysis, as they
contribute additional singularities periodically distributed on the disk of convergence.
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4.2 Asymptotic number of lattice paths

Example 4.2.2. The generating function for Dyck excursions ED(z) = 1−
√
1−4z2

2z2
is peri-

odic with period per(ED) = 2. This corresponds to the fact there are no Dyck excursions
of odd length; see Figure 4.6. △

Figure 4.6: All vertices accessible from the origin by Dyck excursions of length 10.

As a first step towards deriving the asymptotics of meanders and excursions with catas-
trophes, we start by analyzing the function D(z) = 1/(1 − Q(z)), since it is a crucial
building block in all of the generating functions. For that we need to find its singularities.
They are either zeroes of 1 −Q(z) or singularities of Q(z). Since

Q(z) = qz

(
M(z) − E(z) −

∑
s>0,
−s∈S

Ms(z)

)

we have to analyze the singularities of the components M(z), E(z) and Ms(z). For that,
the results of [1, Theorem 3, Theorem 4] show that the components M(z),Ms(z) and E(z)
have exactly one dominant singularity. However, there is a caveat: Even if we already know
the radii of convergence ρM , ρE , ρMs of M(z), E(z),Ms(z), respectively, it is a priori not
granted that Q(z) does not have a larger radius of convergence, since some cancellations
could occur. Therefore we need to look at the asymptotics of their coefficients and argue
that they make such cancellations impossible. The asymptotics depend on a quantity called
the drift of a walk.

Definition 4.2.3 (Drift). Let P (u) be the characteristic polynomial of a simple step set.
Then we define the drift of the corresponding walk to be δ := P ′(1). The drift models the
expected change in height per step, if we use the probabilistic model of weights.

Firstly we note that, as long as no cancellations occur, the dominant singularity will
be at ρM , as the coefficients of M(z) dominate the coefficients of the functions E(z) and
Ms(z). For a positive drift δ > 0, the results in [1, Theorem 3, Theorem 4] show that

M(z) ∼ C · P (1)n ≫ Ds · P (τ)n ∼ E(z),Ms(z).
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4 Lattice paths with catastrophes

Hence, the dominant singularity at ρM = 1/P (1) cannot be cancelled by the other functions.
For δ ≤ 0 the growth rates of the coefficients are all of the same exponential order P (τ)n. In
particular, the coefficients for all Ms(z), s > 0 are of the same order. Since S is finite, Q(z)
is by definition the sum of an infinite number of Ms(z), and consequently, its coefficients
cannot have a lower exponential growth rate. Thus the dominant singularity has to remain
at ρM = 1/P (τ). Therefore the radius of convergence of Q(z) is given by ρQ = ρM . We
now determine the radius of convergence ρD of D(z).

Lemma 4.2.4 (Radius of convergence of D(z) [3, Lemma 4.2]). Let P (u) be an aperiodic
characteristic polynomial and let ρ = 1/P (τ) be the structural radius defined in Proposition
2.1.4. Further, consider the set

Z := { z ∈ C | 1 −Q(z) = 0, |z| ≤ ρ }.

The set is either empty, or it contains exactly one real positive element, in which case we
denote it with ρ0. In any case, the generating function D(z) of excursions ending with a
catastrophe possesses exactly one dominant singularity on its radius of convergence ρD.
The sign of the drift δ := P ′(1) of the walk then dictates the location ρD:

• If δ ≥ 0, we have ρD = ρ0 < 1/P (1) ≤ ρ.

• If δ < 0, it also depends on the value Q(ρ) :
Q(ρ) > 1 ⇐⇒ ρD = ρ0 < ρ,

Q(ρ) = 1 ⇐⇒ ρD = ρ0 = ρ,

Q(ρ) < 1 ⇐⇒ ρD = ρ and Z is empty.

Proof. Due to its combinatorial origin, D(z) = (1 − Q(z))−1 is a power series with posi-
tive coefficients. Hence, Pringsheim’s theorem applies, which tells us that there exists a
singularity on the intersection of its radius of convergence with the positive real axis. This
singularity has to be either a singularity of Q(z) or the smallest positive zero of 1 −Q(z).
In both cases, it must be the only dominant singularity. In the first case, let ρQ denote
the dominant singularity of Q(z). In this case, the argument above shows that ρQ must
coincide with the unique dominant singularity of M(z) and thus we have ρQ = ρM = ρ.

In the second case, let ρ0 be the smallest positive zero of 1−Q(z). Now the aperiodicity
of Q(z), together with the fact that all its coefficients are positive implies that

∀z ∈ C : (|z| = ρ0, z ̸= ρ0) =⇒ |Q(z)| < Q(|z|) = 1

and therefore the only dominant singularity has to lie on the positive real axis. Now we
will determine the location of the dominant singularity. This will depend on the sign of
the drift δ := P ′(1):

• For a positive drift δ ≥ 0 we observe that the prefactor (1 − zP (1))−1 in

M(z) =

∏c
j=1(1 − uj(z))

1 − zP (1)
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possesses a simple pole at z = 1/P (1). We show now that this pole cannot be
cancelled by the factors (1 − uj(z)). First we want to evaluate u1 at the structural
constant τ . By the definition of the structural radius and the kernel equation, one
has

P (τ) =
1

ρ
= P (u1(ρ))

As P (u) is injective on the interval (0, τ ], this implies u1(ρ) = τ . Next, since P ′(1) ≥ 0
we observe that τ ≤ 1. Further, u1 is monotonically increasing in [0, ρ], so we have

u1 (1/P (1)) < u1(ρ) = τ ≤ 1.

Finally, all other small roots are dominated by u1 and hence cannot reach one either.
Thus, the pole at z = 1/P (1) of the prefactor is in fact also a pole of M(z) and we
have

lim
z→(1/P (1))−

Q(z) = +∞.

However, this pole cannot be the dominant singularity of D(z) = (1−Q(z))−1, since
by the continuity of Q(z), together with Q(0) = 0, there must be a solution ρ0 of
1 −Q(z) = 0 with

0 < ρ0 <
1

P (1)
≤ ρ.

• In the case of a negative drift δ < 0, the pole in the prefactor does cancel out with
1 − u1(z). This is due to the kernel equation for u1, which yields

P (u1 (1/P (1))) = P (1),

and the fact that for u ∈ [0, τ ], with τ > 1, the function 1/P (u) is continuously in-
creasing. Thus the kernel equation admits a unique positive solution, which coincides
with the principal small branch u1(z). Hence, we have that |Q(z)| is bounded for
|z| < ρ. Since u1(z) has a square root singularity at |z| = ρ we also have ρQ = ρ.
Now we only need to compare whether ρ0 or ρQ yields the smaller singularity. Finally,
since Q(z) is monotonically increasing on the real axis, it suffices to compare its value
at its maximum Q(ρ).

The above considerations about periodicity are only necessary when the dominant asymp-
totics come from the singularity ρQ. When ρ0 < ρ, we have a unique dominant simple pole
originating from M(z) and the possibly periodic functions E(z) and Ms(z) cannot con-
tribute additional dominant singularities. This polar behavior occurs for Dyck paths, as
we will see in Corollary 4.2.8.

Further, the results from Theorem 4.2.5 also hold for the generating function of ex-
cursions ending with alternative catastrophes with Q(z) = zM(z), since the now missing
components E(z) and Ms(z) do not contribute relevant singularities in the proof. The
following theorems about the asymptotics of meanders and excursions are thus stated with
a generic function Q(z) and hold both for catastrophes and alternative catastrophes.
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4 Lattice paths with catastrophes

Theorem 4.2.5 (Asymptotics of excursions ending with a catastrophe [3, Theorem 4.3]).
Let dn be the number of excursions ending with a(n alternative) catastrophe. Their asymp-
totics depend on the structural radius ρ = 1/P (τ) and the possible polar singularity ρ0 of
Q(z):

dn =



ρ−n
0

ρ0·Q′(ρ0)
+ O(P (1)n) if ρ0 < ρ and δ > 0,

ρ−n
0

ρ0·Q′(ρ0)
+ O(n−3/2ρ−n) if ρ0 < ρ and δ ≤ 0,

ρ−n

η
√
πn

(1 + O (1/n)) if ρ0 = ρ,

D(ρ)2ηρ−n

2
√
πn3

(1 + O (1/n)) if Z is empty,

where η is given by the Puiseux expansion of

Q(z) = Q(ρ) − η
√

1 − z/ρ+ O(1 − z/ρ)

for z → ρ. The last two cases occur only when δ < 0.

Proof.

1. We start with the case ρ0 < ρ. Expanding the denominator for z → ρ0 yields

1 −Q(z) = (1 −Q(ρ0))︸ ︷︷ ︸
=0

+ρ0Q
′(ρ0) (1 − z/ρ0) + O

(
(1 − z/ρ0)

2
)
.

Next, an elementary coefficient extraction gives

[zn]
1

ρ0Q′(ρ0)
(1 − z/ρ0)

−1 =
ρ−n
0

ρ0Q′(ρ0)
.

We now continue the asymptotic analysis by subtracting the simple pole. For δ ≤ 0
we observe that |Q(z)| is bounded for |z| < ρ and monotonically increasing on the
real axis. This implies that ρ0 is the only zero of 1 −Q(z) with |z| < ρ. Hence, the
new dominant singularity must occur at the structural radius ρ, where the dominant
small root becomes singular. The new square-root singularity at ρ thus contributes
a summand of the type n−3/2ρ−n to the asymptotic growth rate of dn.

For δ > 0 the new dominant singularity instead happens to be a simple pole at
1/P (1) < ρ and thus we have

dn =
ρ−n
0

ρ0Q′(ρ0)
+ O(P (1)n).

2. In the case that ρ0 = ρ, the branching point of u1(z) leads to a square root behavior
in the Puiseux expansion of Q(z) for z → ρ:

1 −Q(z) = (1 −Q(ρ0))︸ ︷︷ ︸
=0

+ η
√

1 − z/ρ+ O(1 − z/ρ).
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Substituting D(z) = (1 −Q(z))−1 then yields

D(z) =
1

η
√

1 − z/ρ+ O(1 − z/ρ)
=

1

η
√

1 − z/ρ

(
1 + O

(√
1 − z/ρ

))
.

Finally, singularity analysis gives us

dn = [zn]
1

η
√

1 − z/ρ

(
1 + O

(√
1 − z/ρ

))
=

ρ−n

η
√
πn

(
1 + O

(
1

n

))
.

3. In the case that Z is empty, the constant term does not vanish. Instead we expand
the right-hand side into a geometric series:

D(z) =
(

1 −
(
Q(ρ) − η

√
1 − z/ρ+ O(1 − z/ρ0)

))−1

=
∞∑
k=0

(
Q(ρ) − η

√
1 − z/ρ+ O(1 − z/ρ0)

)k
=

∞∑
k=0

Q(ρ)k −

( ∞∑
k=1

kQ(ρ)k−1

)
η
√

1 − z/ρ+ O(1 − z/ρ)

= D(ρ) − ηD2(ρ)
√

1 − z/ρ+ O(1 − z/ρ).

Applying singularity analysis then yields

dn = [zn]D(ρ) − ηD2(ρ)
√

1 − z/ρ+ O(1 − z/ρ)

=
D(ρ)2ηρ−n

2
√
πn3

(
1 + O

(
1

n

))
.

Theorem 4.2.6 (Asymptotics of excursions with catastrophes [3, Theorem 4.4]). The
number of excursions with (alternative) catastrophes en is asymptotically equal to

en =



E(ρ0)
ρ0·Q′(ρ0)

ρ−n
0 + O(P (1)n) if ρ0 < ρ and δ > 0,

E(ρ0)
ρ0·Q′(ρ0)

ρ−n
0 + O(n−3/2ρ−n) if ρ0 < ρ and δ ≤ 0,

E(ρ)
η

ρ−n
√
πn

(1 + O (1/n)) if ρ0 = ρ,

C0(ρ)
2

ρ−n
√
πn3

(
1
τ

√
2 P (τ)
P ′′(τ) + ηD(ρ)

)
(1 + O (1/n)) if Z is empty.

Proof. Since the generating function C0(z) of excursions with (alternative) catastrophes
satisfies C0(z) = D(z)E(z), the dominant singularity is either a simple pole of D(z) at ρ0,
or a square root singularity at the structural radius ρ = 1/P (τ). Note that the cases ρ0 = ρ
and Z = ∅ are only possible for δ < 0. In the case of ρ0 < ρ we have

E(z)

1 −Q(z)
=

E(ρ0) + O (1 − z/ρ0)

ρQ′(ρ0) (1 − z/ρ0) + O
(

(1 − z/ρ0)
2
) =

E(ρ0)

ρQ′(ρ0)
(1 − z/ρ0)

−1 + O(1).
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4 Lattice paths with catastrophes

Applying singularity analysis then yields

en =
E(ρ0)ρ

−n
0

ρ0Q′(ρ0)
+ O(ρn).

In the case of ρ0 = ρ we have analogously to the proof of Theorem 4.2.5 that

C0(z) =
E(ρ0)

η
√

1 − z/ρ

(
1 + O

(√
1 − z/ρ

))
.

The process of singularity analysis then gives

en =
E(ρ)

η

ρ−n

√
πn

(
1 + O

(
1

n

))
.

In the final case that Z is empty, the results in the proof of [1, Theorem 3] give us the
asymptotic expansion

E(z) = E(ρ) − (−1)c−1

p−cρ

c∏
j=2

uj(ρ)

√
2
P (τ)

P ′′(τ)

√
1 − z/ρ+ O(1 − z/ρ)

= E(ρ) − E(ρ)

u1(ρ)

√
2
P (τ)

P ′′(τ)

√
1 − z/ρ+ O(1 − z/ρ).

Combined with the results from Theorem 4.2.5 and the fact that u1(ρ) = τ we thus have

C0(z) =
E(z)

1 −Q(z)
=
E(ρ) − E(ρ)

τ

√
2 P (τ)
P ′′(τ)

√
1 − z/ρ+ O(1 − z/ρ)

(1 −Q(ρ0)) + η
√

1 − z/ρ+ O(1 − z/ρ)
.

Like in the previous theorem, we develop the denominator into a geometric series and
obtain

C0(z) =
E(ρ)

1 −Q(ρ)
−

 E(ρ)
τ

√
2 P (τ)
P ′′(τ)

1 −Q(ρ)
+ η

E(ρ)

(1 −Q(ρ))2

√
1 − z/ρ+ O(1 − z/ρ)

 .

= C0(ρ) − C0(ρ)

(
1

τ

√
2
P (τ)

P ′′(τ)
+ ηD(ρ)

)√
1 − z/ρ+ O(1 − z/ρ).

Now the results follow from the standard function scale (Theorem 2.3.1) and the Transfer
Theorem 2.3.4.

Theorem 4.2.7 (Asymptotics of meanders with catastrophes [3, Theorem 4.5]). The num-
ber of meanders with catastrophes mn is asymptotically equal to

en =



M(ρ0)
ρ0·Q′(ρ0)

ρ−n
0 + O(P (1)n) if ρ0 < ρ and δ > 0,

M(ρ0)
ρ0·Q′(ρ0)

ρ−n
0 + O(n−3/2ρ−n) if ρ0 < ρ and δ ≤ 0,

M(ρ)
η

ρ−n
√
πn

(1 + O (1/n)) if ρ0 = ρ,

C(ρ,1)
2

ρ−n
√
πn3

(
1

τ−1

√
2 P (τ)
P ′′(τ) + ηD(ρ)

)
(1 + O (1/n)) if Z is empty.

(4.1)
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4.2 Asymptotic number of lattice paths

Note that the only difference to Theorem 4.2.6 is the appearance of M(z) instead of E(z),
and a factor 1/(τ − 1) instead of 1/τ in the first term, when Z is empty.

Proof. The first three cases can be handled completely analogously to Theorem 4.2.6. For
the final case we again rely on results from [1, Theorem 4]. From there we have the
asymptotic expansion

M(z) = M(ρ) +

√
2
P (τ)3

P ′′(τ)

∏c
j=2(1 − uj(ρ))

P (τ) − P (1)

√
1 − z/ρ+ O(1 − z/ρ)

= M(ρ) +

√
2
P (τ)3

P ′′(τ)

M(ρ)(1 − ρP (1))

(1 − u1(ρ))(P (τ) − P (1))

√
1 − z/ρ+ O(1 − z/ρ)

= M(ρ) −

√
2
P (τ)

P ′′(τ)

M(ρ)

τ − 1

√
1 − z/ρ+ O(1 − z/ρ).

The remaining calculations follow the line of the previous theorems.

Let us now apply the theorems to derive the asymptotics of the families of lattice paths
with alternative catastrophes considered in the previous section.

Corollary 4.2.8. The generating functions Malt
D (z, 1) and Ealt

D (z) of Dyck meanders and
excursions with alternative catastrophes, respectively, admit the following asymptotic ex-
pansions:

[zn]Malt
D (z, 1) =

3

4

(
5

2

)n

+

√
2

π

2n√
n3

(
1 + O

(
1

n

))
,

[zn]Ealt
D (z) =

3

8

(
5

2

)n

+

√
2

π

2n√
n3

(
1 + O

(
1

n

))
.

In particular, this implies that asymptotically every second Dyck meander with alterna-
tive catastrophes turns out to be an excursion. For Dyck walks with catastrophes, this
probability works out to be en/mn ≈ 0.31767 [3, Corollary 4.9].

Proof. Recall the generating function of Dyck meanders with alternative catastrophes

Malt
D (z, 1) =

MD(z, 1)

1 − zMD(z, 1)
=

1 − u1(z)

1 + (u1(z) − 3)z
.

Due to the symmetric step set of Dyck paths we have δ = 0. Hence we already know that
the dominant singularity has to be a simple pole at a point ρ0 < ρ. In fact, by setting the
denominator zero we have ρ0 = 2/5 < 1/2. Plugging these numbers into (4.1) we obtain

MD(ρ0, 1)

ρ0 ·Q′
D(ρ)

=
5/2

2/5 · 25/3
=

3

4
.

Hence, we have

[zn]Malt
D (z, 1) =

3

4

(
5

2

)n

+ O
(

2n√
n3

)
.
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However, to get the full asymptotic expansion we need to dig deeper. We subtract the
simple pole in order to expand the function at the branching point ρ = 1/2. This gives

G(z) := Malt
D (z, 1) +

3

10

(
z − 2

5

)−1

= 1 − 2
√

2
√

1 − 2z + 7 (1 − 2z) + O (1 − 2z)3/2 .

Now we apply the standard function scale (Theorem 2.3.1) to σ(u) = 1 − 2
√

2
√

1 − u +
7(1 − u) and obtain

σn = [un]σ(u) =
2
√

2√
πn3

(
1

2
+ O

(
1

n

))
.

After translating the error τ(u) = (1 − u)3/2 using the Transfer Theorem 2.3.4 we finally
get

[zn]G(z) =
2n+1/2

√
πn3

(
1 + O

(
1

n

))
+ O

(
2n√
n5

)
=

2n+1/2

√
πn3

(
1 + O

(
1

n

))
.

For the asymptotic behavior of Dyck excursions with alternative catastrophes we first
recall their generating function to be

Ealt
D (z) =

ED(z)

1 − zMD(z, 1)
=

u1(z)(1 − 2z)

z(1 + (u− 3)z)
.

We already observed that the dominant singularity is a simple pole at ρ0 = 2/5. Now we
can compute

ED(ρ0)

ρ0Q′
D(ρ0)

=
5/4

2/5 · 25/3
=

3

8
.

and continue by subtracting the pole in order to get to the asymptotic behavior at the
square root singularity at ρ = 1/2. At ρ = 1/2 we develop

G(z) := Ealt
D (z) +

3

20

(
z − 2

5

)−1

into a Puiseux series with critical exponent α = 1/2:

G(z) = 3 − 2
√

2(1 − 2z)1/2 + 13(1 − 2z) + O((1 − 2z)3/2).

Translating this expansion to coefficient asymptotics using the standard function scale
(Theorem 2.3.1) and the Transfer Theorem 2.3.4 yields the claimed result.

Corollary 4.2.9. The generating functions Malt
M (z, 1) and Ealt

M(z) of Motzkin meanders
and excursions with alternative catastrophes, respectively, admit the following asymptotic
expansions:

[zn]Malt
M (z, 1) =

3

4

(
7

2

)n

+

√
27

4π

3n√
n3

(
1 + O

(
1

n

))
,

[zn]Ealt
M(z) =

3

8

(
7

2

)n

+

√
27

4π

3n√
n3

(
1 + O

(
1

n

))
.

In particular, this implies that asymptotically every second Motzkin meander with alter-
native catastrophes turns out to be an excursion.
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4.2 Asymptotic number of lattice paths

Proof. Since we are still dealing with symmetric step sizes, the dominant singularity is still
guaranteed to be a simple pole. In this case, we find ρ0 = 2/7. An application of Theorem
4.2.6 together with some computer algebra yields

[zn]Malt
M (z, 1) =

3

4

(
7

2

)n

+ O
(
P (1)n√
n3

)
.

We continue by subtracting the pole in order to get to the asymptotic behavior at the
square root singularity at ρ = 1/3. At ρ = 1/3 we develop

G(z) := Malt
M (z, 1) +

3

14

(
z − 2

7

)−1

into a Puiseux series with critical exponent α = 1/3:

G(z) =
9

2
− 3

√
3(1 − 3z)1/2 + 27(1 − 3z) + O((1 − 3z)3/2).

Translating this expansion to coefficient asymptotics using the standard function scale
(Theorem 2.3.1) and the Transfer Theorem 2.3.4 yields the claimed result.

For excursions, an application of Theorem 4.2.6 yields

[zn]Ealt
M(z) =

3

8

(
7

2

)n

+ o(Kn)

for some K < 7/2. Now we can continue by subtracting the pole in order to get to the
asymptotic behavior at the square root singularity at ρ = 1/3. At ρ = 1/3 we develop

G(z) := Ealt
M(z) +

3

28

(
z − 2

7

)−1

into a Puiseux series with critical exponent α = 1/3:

G(z) =
9

4
− 3

√
3(1 − 3z)1/2 +

45

4
(1 − 3z) + O((1 − 3z)3/2).

Translating this expansion to coefficient asymptotics using the standard function scale
(Theorem 2.3.1) and the Transfer Theorem 2.3.4 yields the claimed result.

There appears to be a pattern pertaining the asymptotic growth rates of k-Motzkin
walks (with Dyck walks appearing as 0-Motzkin walks) and the results for 2-Motzkin walks
continue to fall in line with it.

Corollary 4.2.10. The generating functions Malt
M2

(z, 1) and Ealt
M2

(z) of 2-Motzkin mean-
ders and excursions with alternative catastrophes, respectively, admit the following asymp-
totic expansions:

[zn]Malt
M2

(z, 1) =
3

4

(
9

2

)n

+
4√
π

4n√
n3

(
1 + O

(
1

n

))
,

[zn]Ealt
M2

(z) =
3

8

(
9

2

)n

+
4√
π

4n√
n3

(
1 + O

(
1

n

))
.

In particular, this implies that asymptotically every second 2-Motzkin meander with alter-
native catastrophes turns out to be an excursion.
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4 Lattice paths with catastrophes

Meanders Excursions Ratio

Dyck ∼ 3/4 · (5/2)n ∼ 3/8 · (5/2)n 1/2

Motzkin ∼ 3/4 · (7/2)n ∼ 3/8 · (7/2)n 1/2

2-Motzkin ∼ 3/4 · (9/2)n ∼ 3/8 · (9/2)n 1/2

Table 4.3: Table of asymptotic growth rates of lattice paths with alternative catastrophes.

As the proof uses exactly the same methods used in the previous corollaries, we will not
repeat it here. Instead, we conclude this section by proving that this pattern, illustrated in
Table 4.3, can in fact be generalized to k-Motzkin walks for arbitrary positive integers k.

Theorem 4.2.11. The generating functions Malt
Mk

(z) and Ealt
Mk

(z) of k-Motzkin excursions
and meanders with alternative catastrophes, respectively, satisfy

[zn]Malt
Mk

(z) ∼ 3

4

(
2k + 5

2

)n

,

[zn]Ealt
Mk

(z) ∼ 3

8

(
2k + 5

2

)n

.

In particular, this implies that asymptotically, every second k-Motzkin meander with al-
ternative catastrophes is in fact an excursion.

Proof. We start with the asymptotic growth rate of [zn]Ealt
Mk

(z). According to Theorem
4.1.1, we have

Ealt
Mk

(z) =
E(z)

1 −Q(z)
=

1

1 − z 1−u1(z)
1−P (1)z

u1(z)

z
.

In order to determine the exponential growth rate of [zn]Ealt
Mk

(z), we need to localize its
dominant singularity. By solving the quadratic kernel equation, one finds a square root
singularity at ρ = 1/(k + 2). However, as it turns out there always exists a smaller, polar
singularity ρ0 < ρ. This is vindicated by the fact that the drift of our step set is zero.
Hence, the dominant singularity can always be found as a zero of the denominator

g(z) := 1 − P (1)z − z(1 − u1(z)).

To find the zero, we use the kernel equation to observe

P

(
1

2

)
=

2k + 5

2
= P

(
u1

(
2

2k + 5

))
.

In particular, since P (u) is injective on the interval (0, τ), with τ = 1, this implies
u1(2/(2k + 5)) = 1/2 and therefore

g

(
2

2k + 5

)
= 1 − 2(k + 2)

2k + 5
− 1

2k + 5
= 0.

Hence Ealt
Mk

(z) has a polar singularity at ρ0 := 2/(2k+5) and, according to Theorem 4.2.6,
admits the asymptotic expansion

[zn]Ealt
Mk

(z) ∼ E(ρ0)

ρ0Q′(ρ0)

(
2k + 5

2

)n

.
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4.2 Asymptotic number of lattice paths

To determine the constant factor, we firstly note that

E(ρ0) =
u1(ρ0)

ρ0
=

1

2ρ0
.

Secondly, we calculate

Q′(ρ0) =
1 − u1(ρ0)

1 − P (1)ρ0
+
P (1)ρ0(1 − u1(ρ0))

(1 − P (1)ρ0)2
− ρ0

1 − P (1)ρ0
u′1(ρ0)

= M(ρ0) +
(k + 2)/(2k + 5)

(1 − (2k + 2)/(2k + 5))2
− 2/(2k + 5)

1/(2k + 5)
u′1(ρ0)

= M(ρ0) + (2k + 4)
1

ρ0
− 2u′1(ρ0).

To compute M(ρ0), we note that

M(ρ0)

E(ρ0)
=

1 − u1(ρ0)

u1(ρ0)
· ρ0

1 − P (1)ρ0
=

2/(2k + 5)

1 − 2(k + 2)/(2k + 5)
= 2

and therefore M(ρ0) = 1/ρ0. Hence, it only remains to determine u′1(ρ0). For that, we use
the derivative of the kernel equation, which yields

u′1(ρ0) = − P (u1(ρ0))

ρ0P ′(u1(ρ0))
=

1

ρ20(u1(ρ0)
−2 − 1)

=
1

3ρ20
.

This implies

Q′(ρ0) =
2k + 5

ρ0
− 2

3ρ20
=

4

3ρ20

and finally we obtain
E(ρ0)

ρ0Q′(ρ0)
=

1

2ρ2
· 3ρ2

4
=

3

8
.

The constant factor for the asymptotic growth of [zn]Malt
Mk

(z) is then, according to Theorem
4.2.7, given by

M(ρ0)

ρ0Q′(ρ0)
= 2

E(ρ0)

ρ0Q′(ρ0)
=

3

4
.
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5 Links to other combinatorial problems

[. . .] a property, which is translated by an equality |A| = |B|, is understood better, when one
constructs a bijection between the two sets A and B, than when one calculates the coefficients
of a polynomial whose variables have no particular meaning.

Claude Berge [6, p. 10], translated in [14, p. 94]

5.1 Stacked directed animals

This section gives an introduction into the theory of counting animals, including the quite
lengthy definition of stacked directed animals, together with their generating functions and
corresponding asymptotic behavior. The presentation of these results follows the excellent
article by Bousquet-Mélou and Rechnitzer [10]. Once we have established the necessary
groundwork to understand these combinatorial objects, we will present a novel bijective
procedure in Subsection 5.1.2, linking this subclass of polyominoes to the class of Motzkin
excursions with alternative catastrophes.

(a) Polyomino with square cells and the cor-
responding lattice animal on the square
lattice.

(b) Polyomino with hexagonal cells and the
corresponding lattice animal on the tri-
angular lattice.

Figure 5.1: Polyominoes and matching lattice animals with square and hexagonal cells.

The motivation behind the enumeration of such lattice animals or polyominoes can be
found in the study of branched polymers [15] and percolation [11]. However, even though
these combinatorial objects have been studied for more than 40 years, exact enumeration
results for general polyominoes are still rare. Thus, one of the main research directions
focuses on the investigation of large subclasses of polyominoes that are exactly enumerable.
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5 Links to other combinatorial problems

This is also the motivating force behind the class of stacked directed animals that we will
define in this section.

Definition 5.1.1 (Lattice animals). A polyomino of area n is a connected union of n cells
on a lattice. The corresponding lattice animal then lives on the dual lattice obtained by
taking the center of each cell.

The polyominoes we care about in this section have square or hexagonal cells, as illus-
trated in Figure 5.1. We start now with the definition of a subclass of polyominoes that
has already been exactly enumerated by Dhar in [12].

Definition 5.1.2 (Directed animals). A directed animal on the square grid is a lattice
animal, where one vertex has been designated the source and all other vertices are connected
to the source via a directed path consisting only of N- and E-steps, and visiting only vertices
belonging to the animal. On the triangular grid, one similarly defines the three possible
directions of increase to be NW, N, and NE.

The easiest description for the class of stacked directed animals, however, does not build
directly upon the above definition. Instead, it defines them indirectly via a one-to-one
correspondence to a natural class of heaps of dimers, which are a powerful tool in the
enumeration of directed animals. These heaps are simple combinatorial structures first
introduced by Viennot [29]. This new approach greatly simplifies the derivation of the
corresponding generating function and also serves as an intermediary step for our bijection
to Motzkin excursions with alternative catastrophes.

(a) A general heap. (b) A strict heap. (c) A pyramid. (d) A half-pyramid.

Figure 5.2: Heaps of dimers.

Definition 5.1.3 (Heaps of dimers). A dimer consists of two adjacent vertices on a lattice.
A heap of dimers is obtained by dropping a finite number of dimers towards a horizontal
axis, where each dimer falls until it either touches the horizontal axis or another dimer.
The width of a heap is the number of non-empty columns. The dimers that touch the x-axis
are called minimal. A heap is called

• strict, if no dimer has another dimer directly above it;

• connected, if its orthogonal projection on the horizontal axis is connected;

• a pyramid, if it has only one minimal dimer;
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5.1 Stacked directed animals

• a half-pyramid, if its only minimal dimer lies in the rightmost non-empty column.

The right width of a pyramid is the number of non-empty columns to the right of the
minimal dimer with the left width being defined symmetrically. Note that pyramids and
half-pyramids are always connected. These definitions are illustrated in Figure 5.2.

Now we will describe a construction from [10, p. 240] that maps directed animals on the
square lattice to strict pyramids of dimers, as well as directed animals on the triangular
lattice to general pyramids of dimers.

(a) A directed lattice animal Ds on the square
grid with its source highlighted in grey. (b) The corresponding strict pyramid V (Ds).

(c) A directed lattice animal Dt on the triangu-
lar grid with its source highlighted in grey. (d) The corresponding general pyramid V (Dt).

Figure 5.3: Constructing the strict (general) pyramid from a directed lattice animal on the
square (triangular) grid.

Definition 5.1.4 (Mapping from directed animals to heaps). Let DA denote the class of
directed lattice animals on the square (triangular) lattice, let P denote the class of strict
(general) pyramids and let D ∈ DA be a directed lattice animal. We now define a mapping
V : DA → P as follows:

1. Rotate D by 45◦ degrees counter-clockwise, if D is an animal on the square grid.

2. Replace each individual cell in D by a dimer.
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5 Links to other combinatorial problems

This results in a pyramid V (D) with the source of the lattice animal being the only minimal
dimer; see Figure 5.3.

Remark 5.1.5. It was observed by Viennot in [29] that this mapping induces a bijection
between directed animals on the square (triangular) lattice and strict (general) pyramids
of dimers and we denote the inverse mapping by V . This can be easily verified by recalling
that any vertex in D lies on a directed path consisting only of N and E steps from the
source, visiting only other vertices in D. Hence, the corresponding dimer in V (D) lies
on a directed path of dimers lying diagonally to the left or the right above each other.
In the case of directed animals on the triangular lattice, the additional possible direction
translates to dimers lying directly above each other. As the next definition will show, it
only takes a small adaptation to extend this mapping to general lattice animals.

(a) A lattice animal on the square grid.
(b) Rotate the animal by 45◦ degrees and re-

place each cell by a dimer.

(c) Let the dimers fall.

Figure 5.4: Constructing the connected heap V (A) from an animal A on the square grid.
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5.1 Stacked directed animals

Definition 5.1.6 (Mapping from lattice animals to heaps). Let A denote the class of
lattice animals on the square (triangular) lattice, H the class of connected heaps and let
A ∈ A be a directed lattice animal. We now define a mapping V : A → H as follows:

1. Rotate A by 45◦ degrees counter-clockwise, if A is an animal on the square grid.

2. Replace each individual cell in A by a dimer.

3. Let the dimers fall.

We call the resulting heap V (A); see Figure 5.4 for an example of this procedure.

Thus, V maps lattice animals to connected heaps and in the case of triangular lattice
animals, the following construction will show that the mapping is even surjective.

Definition 5.1.7 (Multi-directed animals). Let H be an arbitrary connected heap. We
now construct an extension of V to connected heaps via induction over the number of
minimal dimers k of H:

• For k = 1, the heap H reduces to a simple pyramid and thus, according to Re-
mark 5.1.5, V (H) is already well-defined.

• If instead H has k > 1 minimal dimers, we push the (k − 1) leftmost pyramids
upwards, producing a connected heap H ′ with k − 1 minimal dimers, placed far
above the remaining pyramid Pk. Now recursively replace H ′ by V (H ′) and Pk by
V (Pk).

• Finalize the construction by pushing V (H ′) downwards until it connects to V (Pk).

We define V (H) as the resulting animal and call the class of triangular lattice animals
obtainable in this way triangular multi-directed animals. The case of square lattice animals
is a bit more delicate, since V does not necessarily map them to strict heaps, as illustrated
in Figure 5.4. However, the converse is still valid: If we apply V to a strict heap H, we
obtain a square lattice animal. This is guaranteed by the fact that V maps strict pyramids
to directed square animals. Hence, we restrict the above procedure to strict, connected
heaps to obtain the class of square multi-directed animals; see Figure 5.5.

We will now finally define the class of stacked directed animals as a subclass of multi-
directed animals that is easier to enumerate.

Definition 5.1.8 (Stacked directed animals). Take a connected heap H with k minimal
dimers. Let us denote by P1, P2, . . . , Pk, from left to right, the corresponding pyramidal
factors of H from the construction in Definition 5.1.7. Let us call stacked pyramids the
connected heaps such that for 2 ≤ i ≤ k, the horizontal projection of Pi intersects the
horizontal projection of Pi−1. Then, stacked directed animals are defined as the image of
the set of stacked pyramids under V . We define the right width of a stacked pyramid to be
the right width of its rightmost pyramidal factor.

These lattice animals are easier to enumerate due to their recursive description. This
description translates easily into algebraic equations for their generating functions, and
will also prove to be vital for the construction of our correspondence to the set of Motzkin
excursions with alternative catastrophes.
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5 Links to other combinatorial problems

(a) A strict, connected heap H with three min-
imal dimers.

P1

P2

P3

(b) We partition the heap into three pyramids
by iteratively pushing all minimal dimers ex-
cept the rightmost one up.

V (P3)

V (P2)

V (P1)

(c) We construct V (H) by iteratively translating the sepa-
rated pyramids to directed lattice animals and pushing
them together to obtain a connected lattice animal.

Figure 5.5: Constructing the square lattice animal V (H) from a strict, connected heap H.
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5.1 Stacked directed animals

5.1.1 Generating functions

Theorem 5.1.9 (Generating functions of directed animals [10, Proposition 1]). The gen-
erating functions Qs(z) and Qt(z) for strict and general half-pyramids, respectively, are
given by

Qs(z) =
1 − z −

√
(1 + z)(1 − 3z)

2z
,

Qt(z) = Qs

(
z

1 − z

)
=

1 − 2z −
√

1 − 4z

2z
.

The generating function for strict and general pyramids, with z counting their number of
dimers and u counting their right width is

P (z, u) =
Q(z)

1 − uQ(z)
(5.1)

with Q denoting the respective generating function for strict or general half-pyramids. In
particular, the generating functions Ps(z, 1) and Pt(z, 1) for directed animals on the square
and the triangular lattice, respectively, are given by

Ps(z, 1) =
1

2

(√
1 + z

1 − 3z
− 1

)
,

Pt(z, 1) = Ps

(
z

1 − z
, 1

)
=

1

2

(
1√

1 − 4z − 1

)
.

Proof. The factorization of strict half-pyramids, depicted in Figure 5.6a, directly yields the
functional equation Qs(z) = z +Qs(z) +Qs(z)2. Solving this quadratic equation yields

Qs(z) =
1 − z −

√
(1 + z)(1 − 3z)

2z
,

which we recognize as the generating function of the Motzkin numbers; see OEIS A001006.
For the generating function of general heaps we simply note that a general heap can be

built from a strict heap by replacing each dimer with k ≥ 1 dimers lying on top of each
other. This expansion operation does not change the right width and thus preserves the
property of being a half-pyramid. This immediately gives

Qt(z) = Qs

(
z

1 − z

)
=

1 − 2z −
√

1 − 4z

2z
,

which again corresponds to the generating function of a famous combinatorial sequence:
the Catalan numbers, see OEIS A000108.

The factorization of pyramids shown in Figure 5.6b leads us to the functional equation
P (z, u) = Q(z)(1 + uP (z, u)), where we observe that the half-pyramids involved do not
contribute to the right width of the pyramid. Further, the factorization is also valid for
general pyramids, if we exchange strict half-pyramids for general half-pyramids.
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5 Links to other combinatorial problems

(a) The factorization of strict half-pyramids.

(b) The factorization of strict pyramids.

Figure 5.6: The factorizations of strict half-pyramids and pyramids.

For strict pyramids we thus obtain

Ps(z, 1) =
1 − z −

√
−3z2 − 2z + 1

2z + z − 1 +
√
−3z2 − 2z + 1

=

(
z − 1 +

√
−3z2 − 2z + 1

)(
−3z + 1 +

√
−3z2 − 2z + 1

)
4z (3z − 1)

=
1

2

(√
1 + z

1 − 3z
− 1

)
= z + 2z2 + 5z3 + 13z4 + 35z5 + 96z6 + 267z7 + O(z8).

The counting sequence corresponds to OEIS A005773 shifted by one unit. In Corollary 2.2.9
we already observed this sequence to count the number of Motzkin meanders. Hence, the
class of strict pyramids of size n+ 1 corresponds not only to the class of directed animals
of size n+ 1, but also to the class of Motzkin meanders of length n.

Corollary 5.1.10 (Asymptotics of directed animals [10, Proposition 1]). The number of
n-celled directed animals on the square and the triangular lattice, respectively, is asymp-
totically equal to

sn =
1√
3π

3n√
n

(
1 + O

(
1

n

))
, tn =

1√
4π

4n√
n

(
1 + O

(
1

n

))
.
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5.1 Stacked directed animals

Their average width is asymptotically equal to 6
√

3πn and 16
√
πn, respectively.

Proof. The dominant singularity of Ps(z, 1) is a square root singularity at ρ = 1/3, leading
to the asymptotic expansion

sn =
1√
3π

3n√
n

(
1 + O

(
1

n

))
.

To calculate the average right width, we differentiate (5.1) with respect to u and apply
singularity analysis to the function 1

P (z,1)

(
∂
∂uP (z, u)

) ∣∣
u=1

. By symmetry, the average width
is then simply twice the average right width plus one. For general pyramids we have

Pt(z, 1) = Ps

(
z

1 − z
, 1

)
=

1

2

(
1√

1 − 4z
− 1

)
,

and thus a simple application of the standard function scale (Theorem 2.3.1) combined
with the Transfer Theorem 2.3.4 gives the desired result.

Theorem 5.1.11 (Generating functions of stacked directed animals [10, Proposition 2]).
Let Q(z) denote the generating function for strict and general half-pyramids, respectively.
Let P (z, u) denote the bivariate generating function for strict and general pyramids, re-
spectively, with u counting the right width of the pyramid. Then, the generating function
for square and triangular stacked directed animals, respectively, with z enumerating the
number of dimers, u the right width and t the number of minimal dimers, is given by

S(z, u, t) =
tP (z, u)

1 − tP (z, 1)2
=

tQ(1 −Q)2

(1 − uQ)((1 −Q)2 − tQ2)
.

In particular, the generating function for square and triangular stacked directed animals,
respectively, is given by

Ss(z) =
(1 − z)(1 − 3z) − (1 − 4z)

√
(1 − 3z)(1 + z)

2z(2 − 7z)
,

St(z) = Ss

(
z

1 − z

)
=

(1 − 3z)(1 − 4z) − (1 − 5z)
√

1 − 4z

2z(2 − 9z)
.

Proof. Let H be an arbitrary stacked pyramid. Either it has only one minimal piece and
is thus a single pyramid, or it is the product of a pyramid P with a stacked pyramid H ′

placed above P . The number of ways that P can be placed below H ′ equals the right
width of H ′. Further, by definition the right width of P determines the right width of H.
Translating this construction into the language of generating functions yields

S(z, u, t) = tP (z, u)

(
1 +

∂S

∂u
(z, 1, t)

)
.

To compute the derivative ∂S
∂u (z, 1, t), we differentiate the equation with respect to u and

set u to 1:
∂S

∂u
(z, 1, t) = t

∂P

∂u
(z, 1)

(
1 +

∂S

∂u
(z, 1, t)

)
.
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Further, differentiating Equation (5.1) lets us calculate

∂P

∂u
(z, u) =

Q(z)2

(1 − uQ(z))2
= P (z, u)2.

Hence, we obtain

S(z, u, t) = tP (z, u)

(
1 +

t∂P∂u (z, 1)

1 − t∂P∂u (z, 1)

)
=

tP (z, u)

1 − tP (z, 1)2
.

Another standard application of the process of singularity analysis yields the asymptotic
growth rates of stacked directed animals.

Corollary 5.1.12 (Asymptotics of stacked directed animals [10, Proposition 2]). The num-
ber of n-celled stacked directed animals on the square and triangular lattice, respectively,
is asymptotically equal to

sn =
3

28

(
7

2

)n(
1 + O

(
1

n

))
, tn =

1

12

(
9

2

)n(
1 + O

(
1

n

))
.

The number of minimal dimers in the corresponding stacked pyramids, which is a lower
bound on their width, is asymptotically equal to 3

28n and 1
12n, respectively. The width is

trivially bounded above by n.

Theorem 5.1.13. The generating function of stacked directed animals of size n + 1 on
the square lattice coincides with the generating function of Motzkin paths with alternative
catastrophes of length n.

Proof. Let EM(z) be the generating function of Motzkin excursions and Qs(z) be the
generating function of strict half-pyramids. Then, Theorem 5.1.9 shows that

Qs(z) = zEM(z). (5.2)

Furthermore, for the bivariate generating function of strict pyramids Ps(z, u), with u mark-
ing the right width of the pyramid we have

Ps(z, u) =
Qs(z)

1 − uQs(z)
=

zEM(z)

1 − uzEM(z)
.

This generating function also has a lattice path interpretation. Let ω be a Motzkin excur-
sion, with catastrophes only at altitude zero and let u count the number of catastrophes
in ω. We split ω before each catastrophe. This partitions ω into a Motzkin excursion with-
out catastrophes, counted by EM(z), followed by a possibly empty sequence of Motzkin
excursions without catastrophes, each preceded by a catastrophe, counted by uz · EM(z).
Hence, their generating function F (z, u) satisfies

F (z, u) =
EM(z)

1 − uzEM(z)
=
Ps(z, u)

z
. (5.3)
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5.1 Stacked directed animals

Further, the generating function for stacked directed animals reads

S(z, 1, 1) =
P (z, 1)

1 − P (z, 1)2
=

Qs(z)
1−Qs(z)

1 − Q(z)2

(1−Q(z))2

=
Qs(z)

1 −Qs(z) − Qs(z)2

1−Qs(z)

=
Qs(z)

1 − Qs(z)
1−Qs(z)

. (5.4)

Next, we observe that the generating function of Motzkin meanders satisfies

MM(z) =
EM(z)

1 − zEM(z)
. (5.5)

To wit, consider a last passage decomposition of a Motzkin meander ω. This splits ω into an
initial excursion, counted by EM(z), followed by a sequence of paths going from altitude i
to altitude i+1, while staying above the line y = i, counted by zEM(z). Finally, combining
(5.4), (5.2) and (5.5), we obtain

S(z, 1, 1) =
Qs(z)

1 − Qs(z)
1−Qs(z)

=
zEM(z)

1 − z EM(z)
1−zEM(z)

=
zEM(z)

1 − zMM(z)
= zMM(z).

In the following subsection we will present a bijective interpretation of this result.

5.1.2 Bijection to Motzkin excursions with alternative catastrophes

Lemma 5.1.14. The set of strict half-pyramids of size n+ 1 is in bijection with the set of
Motzkin excursions of length n.

Figure 5.7: The factorizations of half-pyramids and Motzkin excursions.

Proof. We already observed in (5.2) that strict half-pyramids are counted by the Motzkin
numbers. Now we will make the combinatorial origin of this connection explicit, by re-
cursively constructing a bijection ω between these combinatorial classes. The recursive
descriptions of both classes are pictured in Figure 5.7.

Let Q be a strict half-pyramid. It is either just a minimal dimer, or it consists of multiple
dimers. In the first case, we set ω(Q) to be the empty path. In the latter case, we further
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5 Links to other combinatorial problems

distinguish whether there is more than one dimer in the rightmost column of the half-
pyramids. If there is just one, then Q is just the product of its minimal dimer and a
half-pyramid Q′ lying above the minimal dimer on its left side. In this case, we define
ω(Q) := Eω(Q′). Otherwise, we push the lowest non-minimal dimer of the rightmost
column upwards to obtain a factorization into the minimal dimer and two half-pyramids
Q1 and Q2. This leads to the recursive rule ω(Q) := NEω(Q1)SEω(Q2).

For the inverse direction, let M be a Motzkin excursion. It is either just the empty
walk or it consists of at least one step. In the first case, we set ω−1(M) to be a single
dimer. In the latter case, we further distinguish by the first step in M . If M = EM ′, we
place a single dimer on the x-axis and recursively build ω−1(M ′) diagonally right above the
minimal dimer. If otherwise M starts with a NE-step, we identify the first SE-step that
returns to the x-axis and partition M = NEM1SEM2. Here we again start by placing a
dimer on the x-axis and recursively building ω−1(M1) diagonally left above it. Once the
construction of ω−1(M1) is complete, we place ω−1(M2) in the same column as the minimal
dimer, diagonally right above ω−1(M1).

Lemma 5.1.15. The set of strict pyramids of size n + 1 is in bijection with the set of
2-Motzkin excursions of length n (with black and red E-steps), such that no red E-step
occurs at positive height h > 0. Equivalently, we could describe it as the set of Motzkin
excursions of length n with catastrophes only occurring at height h = 0.

Figure 5.8: The factorizations of strict pyramids and Motzkin excursions with only hori-
zontal catastrophes.

Proof. We already observed in (5.3) that the generating functions of these two combinato-
rial classes coincide. Now we present a combinatorial argument for this fact, by constructing
an explicit bijection ω. Let P be a strict pyramid. It either has zero right width and is
thus a half-pyramid, or there exists a dimer exactly one step to the right of the minimal
dimer at some height h > 0. In the first case, we already know how to construct ω(P ) from
Lemma 5.1.14. In the second case, we partition P into a lower half-pyramid Q and an upper
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5.1 Stacked directed animals

pyramid P , by pushing the lowest non-minimal dimer in the column of the minimal dimer
upwards; see Figure 5.8. In this case we apply the recursive rule ω(P ) = ω(Q)Eω(P ′).

For the reverse direction, consider a 2-Motzkin excursion M with no red E-steps at
positive height h > 0. If it has no red E-step, it is simply a regular Motzkin excursion and
Lemma 5.1.14 applies. In the other case, we recursively split it at the first red E-step into
an initial Motzkin excursion, followed by a red E-step and a final 2-Motzkin excursion and
apply Lemma 5.1.14 to the first part.

Theorem 5.1.16. The set of Motzkin excursions with alternative catastrophes of length n
is in bijection with the set of stacked directed animals of size n + 1 on the square grid.
Furthermore, the set of 2-Motzkin excursions (with black and blue E-steps) with alternative
catastrophes of length n is in bijection with the set of stacked directed animals of size n+1
on the triangular grid.
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(a) Stacked directed animal of size 18.

(b) Motzkin excursion with alternative catastrophes of length 17.

Figure 5.9: A stacked directed animal and their corresponding Motzkin excursion with al-
ternative catastrophes. The dimers are numbered according to the order of
their corresponding steps in the lattice path.

Proof. Let H be the connected heap of dimers representing a stacked directed animal on
the square grid and denote with P1, P2, . . . , Pk the corresponding pyramidal factors of H.
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5 Links to other combinatorial problems

We start our translation into lattice paths with the rightmost pyramid Pk. If k = 1, we
simply apply Lemma 5.1.15 to translate H into a Motzkin excursion with catastrophes
only occurring at height h = 0. Otherwise, if k > 1, after we have drawn Pk, the so far
unused catastrophes from heights h > 0 will now encode the position where Pk is placed
below Pk−1. Recall that the number of ways that Pk can be placed equals the right width
of Pk−1. We will now define the distance between the two pyramids as the horizontal
distance between the leftmost dimer of Pk and the minimal dimer of Pk−1. Let us denote
this distance with ℓ, which will correspond to the height of the following catastrophe. We
now make the first ℓ recursive factorizations of Pk−1 explicit. This yields ℓ half-pyramids
Qk−1,1, . . . , Qk−1,ℓ stacked diagonally to the right on top of each other and a final pyramid
P ′
k−1 above them as illustrated in Figure 5.10. Note that the minimal dimer of P ′

k−1 is
the first dimer whose horizontal projection intersects with the horizontal projection of Pk,
thus connecting the pyramids. Now we need to deviate from the construction presented in
Lemma 5.1.15, as we need to introduce ℓ additional NE-steps in order to offset the height
lost with the new catastrophe. Hence, the start of each of the half-pyramids Qi will be
marked with a NE-step instead of with a horizontal catastrophe, like in Lemma 5.1.15. In
particular, this means that the start of a new pyramid is always marked with an additional
NE-step. This additional step is important, as otherwise each pyramid consisting of m
dimers would be translated to a lattice path of length m − 1, and the final length of the
lattice path would depend on the number of pyramids. The half-pyramids themselves are
then simply translated according to the recursion rules from Lemma 5.1.14. Note that these
rules remain legitimate on altitude i > 0, as they do not involve horizontal catastrophes,
which may only happen at height 0. Thus, the last half-pyramid Qk−1,ℓ before P ′

k−1 will
be represented by a Motzkin excursion starting and ending at height ℓ. After that, a
catastrophe from height ℓ will usher in the start of the image of P ′

k−1, which can now again
be drawn according to the rules of Lemma 5.1.15, as it no longer starts at a positive height.
This procedure, illustrated in Figure 5.10, can now be iterated over all pyramidal factors
of H to obtain the final lattice path image of H.

For the inverse mapping, let M be a Motzkin excursion with alternative catastrophes.
If M does not contain any non-horizontal catastrophes, we may simply apply Lemma
5.1.15 to translate M to a single pyramid. Otherwise, we split M at every non-horizontal
catastrophe. This yields a set of excursions E1, E2, . . . , Ek, with k > 1, each having exactly
one non-horizontal catastrophe at their very end. Consider the first of these excursions
E1, which will correspond to the rightmost pyramid Pk of H and the start of the next
pyramid Pk−1. To recover Pk, it suffices to apply the procedure described in Lemma 5.1.15.
However, this alone does not yet tell us, at which point we need to start drawing Pk−1.
For that we need to look ahead to the non-horizontal catastrophe, which signals the end of
E1. The start of Pk−1 then corresponds to the last time E1 leaves altitude zero before its
final catastrophe, which can be intuitively described as the first NE-step visible from the
viewpoint of the next catastrophe. The next question we need to answer is where to place
the minimal dimer of Pk−1. For this we start at the horizontal projection of the leftmost
dimer of Pk and move ℓ+ 1 units to the left, where ℓ is the height of the catastrophe at the
end of E1. This is where we place the minimal dimer of Pk−1 and start building the first
half-pyramid Qk−1,1. Similarly, the last time E1 leaves altitude one marks the start of the
next half-pyramid Qk−1,i+1. The minimal dimer of Qk−1,i+1 needs to be placed diagonally
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5.1 Stacked directed animals

Figure 5.10: The recursive constructions of stacked pyramids and Motzkin excursions with
alternative catastrophes.

right above the highest dimer in the rightmost column of Qk−1,i. Now we can iterate this
process until we hit the catastrophe, which marks the start of the pyramid P ′

k−1. Now the
process repeats, as we draw P ′

k−1 until we reach the first NE-step visible from the next
non-horizontal catastrophe; see Figure 5.9 for an example of this correspondence.

In the case of stacked directed animals on the triangular grid, we are now working with
general pyramids. We reduce this case to strict pyramids by simply inserting a blue E-step
for every dimer lying directly above another dimer.
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