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since they are still under review.

Among the papers that are eligible to be included, I selected the
nine papers [P8, P11–P15, P24, P28, P29] (marked in gray hereafter)
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• lattice paths [P11, P12, P14]

All these papers, except for [P24], were joint work with colleagues in
the field. In all these projects it has been a great pleasure for me to
work with brilliant people whom I value a lot. As is often the case in
mathematical research, it is not possible to distinguish each individ-
ual contribution. However, I am happy to say that we discussed and
developed everything together and always contributed equally to all
parts.
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1
I N T R O D U C T I O N

This thesis belongs to the fields of enumerative and analytic combi-
natorics with special emphasis on the the large-scale behavior of ran-
dom discrete structures, where we will focus on directed acyclic graphs,
Young tableaux, and lattice paths. These objects appear in numerous
scientific fields, ranging from computer science [117] to evolutionary
biology [89] and from statistical mechanics [99] to queuing theory [81].
Our primary interest are universal phenomena in large random struc-
tures. Examples for such phenomena include specific terms in the
asymptotic growth (e.g., n�3{2 or µn1{3

), families of limit laws (e.g.,
normal or Mittag–Leffler distributions), or necessary rescaling of ran-
dom variables (e.g., Xn{

?
n). They describe the observation that many

combinatorial structures are influenced by only a few global proper-
ties and do not depend on concrete and local details. This combinato-
rial analysis is the central theme of this thesis and will be presented
in many new and old models of the three objects mentioned above.
Thereby, we will answer some old conjectures, discover new (interdis-
ciplinary) applications, and open the way for much further research.

From a technical point of view, before one can tackle the analysis
of structures and limit laws, one has to solve the basic counting prob-
lem: How many objects of size n are there? There are several possible
answers to this question, which all have different advantages and are
also of different difficulty to obtain. First, a closed-form expression is
probably most desirable, yet often quite complicated (if it even exists).
Second, a recursive description gives a computational answer and al-
lows, e.g., random generation. Third, an asymptotic answer helps to
compare the growth rate and often fast approximate computation.
Fourth, a generating function expression captures the nature (e.g., ra-
tional, algebraic, D-finite) and gives access to other solutions. In this
thesis, we present solutions of all these types and use them in a next
step to analyze the limiting objects.

In Chapter 2 we analyze two classes of directed acyclic graphs:
compacted trees and minimal deterministic finite automata. For both
classes we solve the asymptotic counting problem and we show the
unexpected appearance of a stretched exponential µnσ

. Moreover, we
present a bijective explanation of a surprisingly simple closed-form
counting formula. In Chapter 3 we introduce the new class of Young
tableaux with walls, in which the order constraints between certain
cells are removed. We present bijections to trees and lattice paths, and
introduce the density method, a method we developed for enumera-
tion and random generation. This method also allows us to derive the
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2 introduction

limit law of the south-east corner in large random triangular Young
tableaux as well as of the composition of black and white balls in
a new class of periodic Pólya urns. In Chapter 4 we present several
new results on lattice paths and associated limit laws. First, we show
new connections with symmetric functions. Second, we introduce a
new variant of paths that model the encapsulation and decapsulation
in networks. Third, we solve the two-dimensional counting problem
of walks in non-convex cones and prove the D-finiteness of the un-
derlying generating function. At the end, in Appendix A I include
my CV and in Appendix B a summary of my teaching experience.
Finally, since this thesis is cumulative, Appendix C contains the full
manuscripts of the published papers this thesis draws from.

1.1 notation and definitions

We let N � t0, 1, 2, . . . u denote the set of nonnegative integers, and
N� or Z� the set of positive integers. Throughout this thesis, we as-
sume that all random variables are defined on a common probability
space whose measure is denoted by P.

Let A be a commutative ring and x an indeterminate. We denote
by Arxs (resp. Arrxss) the ring of polynomials (resp. formal power
series) in x with coefficients in A. If A is a field, then Apxq denotes
the field of rational functions in x, and Appxqq the field of Laurent
series in x, i.e., series of the form

°
n¥n0

anxn, with n0 P Z and an P A.
The coefficient of xn in a series Fpxq is denoted by rxnsFpxq.

If A is a field, a power series Fpxq P Arrxss is rational if it is
the ratio of two polynomials. It is algebraic (over Apxq) if it satis-
fies a non-trivial polynomial equation Ppx, Fpxqq � 0 with coeffi-
cients in A. It is differentially finite (or D-finite) if it satisfies a non-
trivial linear differential equation with coefficients in Apxq. It is D-
algebraic if it satisfies a non-trivial polynomial differential equation
Ppx, Fpxq, F1pxq, . . . , Fpkqpxqq � 0 with coefficients in Apxq. For mul-
tivariate series, D-finiteness requires the existence of a differential
equation in each variable. This hierarchy is summarized by the follow-
ing sequence of strict inclusions:

rational � algebraic � D-finite � D-algebraic.

A sequence sequence p fnqnPN is called P-recursive if it satisfies a non-
trivial linear recurrence with polynomial coefficients in n. This defini-
tion is equivalent to the power series Fpzq � °

n¥0 fnzn being D-finite.
Such functions and sequences are also sometimes called holonomic. D-
finite functions satisfy many closure properties (sum, product, deriva-
tive, etc.) and they exist many efficient algorithms to manipulate
them [34, 151] implemented in most computer algebra software. For
more details on this important concept we refer to [27, 85, 113, 171].



2
D I R E C T E D A C Y C L I C G R A P H S

2.1 Introduction to compacted binary trees . . . . . . . . . 3
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Directed acyclic graphs are much studied and extensively used, for
example in computer science [117] and evolutionary biology [89], yet
many of their properties still remain unknown. Often not even the
basic counting problem has been solved and only crude bounds ex-
ist. This chapter presents solutions for some of these problems and
thereby shows my development since my PhD [T4] together with new
collaborators and alone. We developed new tools, found links with
other fields such as automata theory and phylogeny, and discovered
a completely new and unexpected phenomenon: the appearance of a
stretched exponential µnσ

in the asymptotics.
In Section 2.1, we introduce compacted binary trees, the main class

of directed acyclic graphs we will work with, and recall previous
results.

In Section 2.2, we solve the unbounded counting problem of com-
pacted binary trees and show that they admit a stretched exponential.
This answers an open question from [90], which was part of my PhD,
and requires completely new tools such as bijections to special lattice
paths, and the analysis of a class of two-variate recurrence relations.

In Section 2.3, we extend these methods and solve the counting
problem of minimal deterministic finite automata. Again, this shows
the appearance of a stretched exponential, which partly explains why
this problem remained open for so long.

In Section 2.4, we solve another open problem from [90] by present-
ing a bijection between relaxed compacted binary trees and plane in-
creasing trees. Additionally, we show how this bijection can be used
to generate these objects uniformly at random.

2.1 introduction to compacted binary trees

Compacted binary trees are a special class of directed acyclic graphs
that appear as a model for data structures in the compression of XML
documents [39]; see Figure 1. Given a rooted binary tree of size n, its
compacted form can be computed in expected and worst-case time

3



4 directed acyclic graphs

Opnq with expected compacted size Θpn{alog nq [86]. Previously, to-
gether with Genitrini, Gittenberger, and Kauers, we solved the re-
versed question on the asymptotic number of compacted trees under
certain height restrictions [90]; however the asymptotic number in the
unrestricted case remained elusive. We also solved this problem for a
simpler class of trees known as relaxed trees under the same height
restrictions.

x x

×

x x

×

y y

×

×

y y

×

×

−

x

×

×

−

y

×

×

Figure 1: Example of a tree and its compacted tree associated with x4 � y4.

Before we define compacted and relaxed binary trees, let us re-
call some basic definitions. A rooted tree is a connected undirected
acyclic graph with a distinguished node called the root. All trees in
this chapter will be rooted and we omit this term in the future. The
root introduces an order in the tree given by generations. The root is
in generation 0. All neighbors of the root are in generation 1, and in
general, nodes at distance k from the root are in generation k. For an
arbitrary node of generation k ¡ 0 its unique neighbor in generation
k � 1 is called its parent. All other neighbors (which are necessarily
in generation k � 1) are called its children. A tree is called binary, if
all nodes have out-degree either 0 or 2 and all nodes other than the
root have in-degree 1, while the root has in-degree 0. For each ver-
tex with out-degree 2, the out-going edges are distinguished as a left
edge and a right edge. Nodes with out-degree 0 are called leaves, and
nodes with out-degree 2 are called internal nodes. The size of a tree is
equal to the number of its internal nodes. For more details we refer
to the excellent book [70].

Originally, compacted trees arose in a compression procedure in [86]
which computes the number of unique fringe subtrees. Relaxed trees
are then defined by relaxing the uniqueness condition. As we will
not need this algorithmic point of view, we directly give the follow-
ing definition adapted from [90, Definition 3.1 and Proposition 4.3].

Definition 2.1.1 (Relaxed binary tree). A relaxed binary tree (or simply
relaxed tree) of size n is a directed acyclic graph obtained from a binary
tree with n internal nodes, called its spine, by keeping the left-most leaf and
turning other leaves into pointers, with each one pointing to a node (internal
ones or the left-most leaf) preceding it in postorder.

The counting sequence prnqnPN of relaxed binary trees of size n
starts as follows:

prnqnPN � p1, 1, 3, 16, 127, 1363, 18628, 311250, 6173791, . . .q .



2.1 introduction to compacted binary trees 5

It corresponds to OEIS A082161 in the On-line Encyclopedia of In-
teger Sequences [167]. There, it first appeared as the counting se-
quence of the number of deterministic, completely defined, initially
connected, acyclic automata with 2 inputs and n transient, unlabeled
states and a unique absorbing state, yet without specified final states.
This is a direct rephrasing of Definition 2.1.1 in the language of au-
tomata theory. Liskovets [131] provided (probably) the first recur-
rence relations (C2pnq used for rn) and later Callan [52] showed that
they are counted by determinants of Stirling cycle numbers. However,
the asymptotics remained an open problem.

Figure 2: All relaxed (and also compacted) binary trees of size 0, 1, 2, where
internal nodes are shown by circles and the unique leaf is drawn
as a square.

Using the class of relaxed trees, it is then easy to define the set of
compacted trees by requiring the uniqueness of subtrees.

Definition 2.1.2 (Compacted binary tree). Given a relaxed binary tree,
we associate to each node u a binary tree Bpuq. We proceed by postorder. If u
is the left-most leaf, we define Bpuq � u. Otherwise, u has two children v, w,
then Bpuq is the binary tree with Bpvq and Bpwq as left and right sub-trees,
respectively.

A compacted binary tree, or simply compacted tree of size n is a
relaxed tree with Bpuq � Bpvq (i.e., Bpuq not isomorphic to Bpvq) for all
pairs of distinct nodes u, v.

Figure 2 shows all relaxed (and compacted) trees of size n � 0, 1, 2
and Figure 3 gives the smallest relaxed tree that is not a compacted
tree. The counting sequence pcnqnPN of compacted binary trees of
size n is OEIS A254789 and starts as follows:

pcnqnPN � p1, 1, 3, 15, 111, 1119, 14487, 230943, 4395855, . . .q .

=

Figure 3: (Left) The smallest relaxed binary tree that is not a compacted
binary tree, as the two gray subtrees correspond to the same (clas-
sical) binary tree. (Right) A valid compacted binary tree of size 3
with the same spine.

http://oeis.org/A082161
http://oeis.org/A254789
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2.2 compacted binary trees admit a stretched exponen-
tial [p29]

In this section, we present and summarize the results of [P29], in
which we showed that the counting sequences pcnqnPN of (unrestricted)
compacted binary trees and prnqnPN of (unrestricted) relaxed binary
trees both admit a stretched exponential:

Theorem 2.2.1. The number of compacted and relaxed binary trees satisfy
for n Ñ8

cn � Θ
�

n! 4ne3a1n1{3
n3{4

	
and

rn � Θ
�

n! 4ne3a1n1{3
n
	

,

where a1 � �2.338 is the largest root of the Airy function Aipxq defined as
the unique function satisfying Ai2pxq � xAipxq and limnÑ8 Aipxq � 0.

We believe that there are constants γc and γr such that

cn � γcn!4ne3a1n1{3
n3{4 and rn � γrn!4ne3a1n1{3

n,

however, we have been unable to find the exact values of these con-
stants or even prove their existence. Nevertheless, our empirical anal-
ysis yields what we believe to be very accurate estimates for γc and
γr, namely γc � 173.12670485 and γr � 166.95208957.

The presence of a stretched exponential term in a sequence count-
ing combinatorial objects is not common, although there are quite
a few precedents. One simple example is that of pushed Dyck paths,
where Dyck paths of maximum height h are given a weight y�h for
some y ¡ 1. In this case McKay and Beaton determined the weighted
number dn of paths of length 2n up to and including the constant term
to be asymptotically given by

dn � Aypy� 1qplog yq1{34n exp
�
�Cplog yq2{3n1{3

	
n�5{6,

where A � 25{3π5{6{?3 and C � 3pπ{2q2{3; see [96]. For the analogous
problem of counting pushed self avoiding walks, Beaton et al. [24]
gave a (non-rigorous) probabilistic argument for the presence of a
stretched exponential of the form e�cn3{7

for some c ¡ 0. In each of
these cases, a stretched exponential appears as part of a compromise
between the large height regime in which most paths occur and the
small height regime in which the weight is maximized. We will see
that a similar compromise occurs here.

Another situation in which stretched exponentials have appeared is
in cogrowth sequences in groups [79], that is, paths on Cayley graphs
which start and end at the same point. In particular, Revelle [159]
showed that in the lamplighter group the number cn of these paths
of length 2n behaves like

cn � C 9nκn1{3
n1{6.
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In the group Z ≀ Z, Pittet and Saloff-Coste [155] showed that the
asymptotics of the cogrowth series contains the slightly more com-
plicated term κ

?
n log n. Another example comes from the study of

pattern avoiding permutations, where Conway, Guttmann, and Zinn-
Justin [59, 60] have given compelling numerical evidence that the
number pn of 1324-avoiding permutations of length n behaves like

pn � Bµnµ
?

n
1 ng,

with µ � 11.600, µ1 � 0.0400, g � �1.1.
As seen by these examples, it is generally quite difficult to prove

that a sequence has a stretched exponential in its asymptotics. Part
of the difficulty is that a sequence which has a stretched exponential
cannot be “very nice”. In particular, the generating function cannot
be algebraic, and can only be D-finite if it has an irregular singular-
ity [85].

Some explicit examples of D-finite generating functions with a
stretched exponential are known; see, e.g., [179, 180, 181]. In these
cases Wright uses a saddle-point method to prove the presence of
the stretched exponential. To apply this method, one needs to metic-
ulously check various analytic conditions on the generating function,
or to bound related integrals in a delicate way. These tasks can be
highly non-trivial and require a precise knowledge of the analytic
properties of the generating function. For more detail on how to use
the saddle-point method to prove stretched exponentials, and further
examples; see [85, Chapter VIII].

In lieu of detailed information on the generating function, we find
and analyze the following recurrence relation

rn,m � rn,m�1 � pm� 1qrn�1,m,

corresponding to a partial differential equation to which the saddle
point method cannot be readily applied. The number of relaxed trees
of size n is then rn,n. We present a method that works directly with a
transformed sequence dn,k and the respective recurrence relation. We
find two explicit sequences An,k and Bn,k with the same asymptotic
form, such that

An,k ¤ dn,k ¤ Bn,k, (1)

for all k and all n large enough. The idea is that An,k and Bn,k sat-
isfy the recurrence of dn,k with the equalities replaced by inequalities,
allowing us to prove (1) by induction. In order to find appropriate
sequences An,k and Bn,k, we start by performing a heuristic analysis
to conjecture the asymptotic shape of dn,k for large n. We then prove
that the required recursive inequalities hold for sufficiently large n
using adapted Newton polygons.

The inductive step in the method described above requires that all
coefficients in the recurrence be positive. This occurs in the case of
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relaxed binary trees but not for compacted binary trees. In the latter
case, we construct a sandwiching pair of sequences, each determined
by a recurrence with positive coefficients, to which our method ap-
plies.

As an application, we use our results on relaxed and compacted
trees to give new asymptotic upper and lower bounds for the num-
ber of minimal deterministic finite automata with n states recognizing
a finite language on a binary alphabet. These automata are studied in
the context of the complexity of regular languages; see [65, 66, 131].
To our knowledge no upper or lower bounds capturing even the expo-
nential term had been proven for this problem. Our bounds are much
more accurate, only differing by a polynomial factor, and thereby
proving the presence of a stretched exponential term. We solved this
asymptotic counting problem in [P13], which will be presented in
Section 2.3.

In its simplest form, our method applies to two parameter linear
recurrences with positive coefficients which may depend on both pa-
rameters. We expect, however, that our method could be adapted to
handle a much wider range of recurrence relations, potentially in-
volving more than two parameters, negative coefficients, and perhaps
even some non-linear recurrences. Indeed, we have already seen that
it can be adapted to at least one case involving negative coefficients,
namely that of counting compacted binary trees.

2.2.1 A two-parameter recurrence relation

In [90, Theorem 5.1 and Corollary 5.4] the so-far most efficient re-
currences are given for the number of compacted and relaxed binary
trees, respectively. Computing the first n terms using these requires
Opn3q arithmetic operations. In this section, we give an alternative
recurrence with only one auxiliary parameter (instead of two) other
than the size n, which leads to an algorithm of arithmetic complexity
Opn2q to compute the first n terms of the sequence. The construction
is motivated by the recent bijection [P24], which will be presented in
Section 2.4.

As a corollary of Theorem 2.2.1, we directly get an estimate of the
asymptotic proportion of compacted trees among relaxed trees:

cn

rn
� Θpn�1{4q.

An analogous result for compacted and relaxed trees of bounded
right height was shown in [90, Corollary 3.5]. The right height is the
maximal number of right edges to internal nodes on a path in the
spine from the root to a leaf. Let ck,n (resp. rk,n) be the number of
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compacted (resp. relaxed) trees of right height at most k. Then, [90,
Corrollary 3.5] states that for fixed k,

ck,n

rk,n
� λkn

� 1
k�3�p 1

4� 1
k�3q 1

cos2p π
k�3q � o

�
n�1{4

	
,

for a constant λk independent of n. As k Ñ 8, we see that the expo-
nent of n approaches �1{4. It is thus not surprising that the exponent
in the unbounded case is also �1{4.

2.2.1.1 Relaxed binary trees and horizontally decorated paths

For the subsequent construction, we need the following type of lattice
paths.

Definition 2.2.2. A horizontally decorated path P is a lattice path start-
ing from p0, 0q with steps H � p1, 0q and V � p0, 1q confined to the region
0 ¤ y ¤ x, where each horizontal step H is decorated by a number in
t1, . . . , k� 1u with k its y-coordinate. If P ends at pn, nq, we call it a hori-
zontally decorated Dyck path.

We denote by Dn the set of horizontally decorated Dyck paths of
length 2n.

Remark 2.2.3. Horizontally decorated Dyck paths can also be inter-
preted as classical Dyck paths, where below every horizontal step a
box given by a unit square between the horizontal step and the line
y � �1 is marked; see Figure 4. This gives an interpretation con-
necting these paths with the heights of Dyck paths, which we will
exploit later. Independently, Callan gave in [52] a more general bijec-
tion in which he called the paths column-marked subdiagonal paths, and
Bassino and Nicaud studied in [23] a variation when counting some
automata, where the paths stay above the diagonal, which they called
k-Dyck boxed diagrams.

Theorem 2.2.4. There exists a bijection Dyck between relaxed binary trees
of size n and the set Dn of horizontally decorated Dyck paths of length 2n.

7

5

2

6

4

31
1

12

1

5 3

1

1 2 1

5 3

Figure 4: Example of the bijection Dyck between relaxed trees and horizon-
tally decorated Dyck paths. It transforms internal nodes into verti-
cal steps and pointers into horizontal steps.

We omit a precise description of the bijection here and refer to the
example in Figure 4. In Section 2.3.2 we will describe a more general
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version, which allows to count minimal deterministic finite automata.
The following result gives the claimed algorithm with quadratic arith-
metic complexity to count such paths, which can also be used as a
precomputation step of an algorithm that randomly generates these
paths using a linear number of arithmetic operations for each path.
These algorithms are also applicable to relaxed binary trees via the
bijection Dyck.

Proposition 2.2.5. Let rn,m be the number of horizontally decorated paths
ending at pn, mq. Then,

rn,m � rn,m�1 � pm� 1qrn�1,m, for n, m ¥ 1 and n ¥ m,

rn,m � 0, for n   m,

rn,0 � 1, for n ¥ 0.

The number of relaxed binary trees of size n is equal to rn,n.

Remark 2.2.6 (Compacted trees of bounded right height). This restric-
tion naturally translates relaxed binary trees of right height at most
k from [90] into horizontally decorated Dyck paths of height at most
k � 1, where height is the maximal normal distance rescaled by

?
2

from a lattice point on the path to the diagonal. In other words, these
paths are constrained to remain between the diagonal and a line trans-
lated to the right parallel to the diagonal by k� 1 unit steps.

2.2.1.2 Compacted binary trees

Given a relaxed tree C, an internal node u is called a cherry if its
children in the spine are both leaves and none of them is the left-
most one. According to the discussion at the end of Section 4 in [90],
the only obstacle for a relaxed tree to be a compacted tree is a cherry
with badly chosen pointers.

Proposition 2.2.7. A relaxed tree C is a compacted tree if and only if there
are no two nodes u � v in C which share the same left child uℓ and the
same right child ur. Moreover, if C is not a compacted tree, such a pair exists
where v is a cherry and u precedes v in postorder.

The restriction described in Proposition 2.2.7 has an analogue in
the class of horizontally decorated paths: We label every step V with
its final altitude plus one, which corresponds to its row number in the
interpretation with marked boxes, and which also corresponds to the
traversal/process order in postorder of its internal node in the relaxed
tree; compare Figure 4. Note that each step H is already labeled. For
any step S, let LpSq be its label. We associate to every step V a pair of
integers pv1, v2q, which corresponds to the labels of its left and right
children. First, let S1 be the step before V and set v2 � LpS1q. Next,
draw a line from the ending point of V in the southwest direction
parallel to the diagonal, and stop upon touching the path again. Let
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S2 be the last step before V that ends on this line (if there is no such
step, set v1 � 1). Then set v1 � LpS2q.
Definition 2.2.8. A C-decorated path P is a horizontally decorated path
where the decorations h1 and h2 of each pattern of consecutive steps HHV
fulfill ph1, h2q � pv1, v2q for all preceding steps V.

Proposition 2.2.9. The map Dyck bijectively sends the set of compacted
trees of size n to the set of C-decorated Dyck paths of length 2n.

The key observation for the counting result is that exactly one pair
of labels ph1, h2q is avoided for each preceding step V of a consecutive
pattern HHV. Applying this classification to the previous result we
get a similar quadratic-time recurrence for compacted binary trees.

Proposition 2.2.10. Let cn,m be the number of C-decorated paths ending at
pn, mq. Then,

cn,m � cn,m�1 � pm� 1qcn�1,m � pm� 1qcn�2,m�1, for n ¥ m ¥ 1,

cn,m � 0, for n   m,

cn,0 � 1, for n ¥ 0.

The number of compacted binary trees of size n is equal to cn,n.

Note that one might also count the following simpler class which is
in bijection with C-decorated paths, albeit without a natural bijection.

Definition 2.2.11. A H-decorated path P is a horizontally decorated path
where the decorations h1 and h2 of each pattern of consecutive steps HHV
fulfill h1 � h2 except for h1 � h2 � 1.

In terms of marked boxes, this constraint translates to the fact that,
below the horizontal steps in each consecutive pattern HHV, the
marks must be in different rows except possibly for the lowest one.

2.2.2 Heuristic analysis

In this section, we will explain briefly our heuristics and ansatz that
are used to get the asymptotic behavior of rn and cn. These heuristics
are closely related to the asymptotic behavior of Dyck paths and the
Airy function.

2.2.2.1 An intuitive explanation of the stretched exponential

We can consider rn as a weighted sum of Dyck paths, where each
Dyck path P has a weight wpPq that is the number of horizontally
decorated Dyck paths that it gives rise to. There is thus a balance of
the number of total paths and their weights for the weighted sum rn,n.
On the one hand, most paths have an (average) height of Op?nq (i.e.,
mean distance to the diagonal). On the other hand, their weight is
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maximal if their height is Op1q, i.e., they are close to the diagonal. In
other words, typical Dyck paths are numerous but with small weight,
and Dyck paths atypically close to the diagonal are few but with enor-
mous weight. The asymptotic behavior of the weighted sum of Dyck
paths that we consider should be a result of a compromise between
these two forces. We will now make this more explicit by analyzing
Dyck paths with height approximately nα for some α P p0, 1{2q.

Given a Dyck path P with steps H � p1, 0q and V � p0, 1q as in
Definition 2.2.2, let mi be the y-coordinate of the ith step H. The num-
ber of Dyck paths with mi bounded uniformly satisfy the following
property.

Proposition 2.2.12 ([121, Theorem 3.3]). For a Dyck path P of length 2n
chosen uniformly at random, let mi be the y-coordinate of the ith step H. For
α   1{2, we have

log P

�
max
1¤i¤n

pi�miq   nα



� �π2n1�2α.

Let wpPq be the number of horizontally decorated Dyck paths whose
unlabeled version is the Dyck path P. For a randomly chosen Dyck
path P of length 2n with i�mi bounded uniformly by nα, we heuris-
tically expect most values of i�mi to be of the order Θpnαq, with i of
order Θpnq. This leads to the following approximation:

log
wpPq

n!
�

¸
1¤i¤n

log
�

mi � 1
i



�

¸
1¤i¤n

log
�

1� i�mi � 1
i




� cn �
�
�nα

n



� �cnα.

Here, c ¡ 0 is some constant depending on α. This approximation is
only heuristically justified and very hard to prove. The contribution of
Dyck paths with i�mi uniformly bounded by nα should thus roughly
be n!4n expp�p1� op1qqc1nppαqq, with ppαq � minpα, 1� 2αq and c1 ¡ 0
a constant depending on α. Here, 4n comes from the growth constant
of Dyck paths. The function ppαq is minimal at α � 1{3, which max-
imizes the contribution, leading to the following heuristic guess that
the number of relaxed binary trees rn should satisfy

log
rn

n!4n �
nÑ8 �an1{3,

for some constant a ¡ 0. Furthermore, we anticipate that the main
contribution should come from horizontally decorated Dyck paths
with i�mi mostly of order Θpn1{3q. Since most such i’s should be of
order Θpnq, we can even state the condition above as x� y � Θpy1{3q
for most endpoints px, yq of horizontal steps. This heuristic is the start-
ing point of our analysis.



2.2 compacted binary trees [p29] 13

2.2.2.2 Weighted Dyck meanders

The heuristics of the previous section suggest that the mean distance
to the diagonal will play an important role. Therefore, we propose
another model of lattice paths emphasizing this distance. A Dyck me-
ander (or simply a meander) M is a lattice path consisting of up steps
U � p1, 1q and down steps D � p1,�1q while never falling below
y � 0. It is clear that Dyck paths of length 2n are in bijection with
Dyck meanders of length 2n ending on y � 0 with the transcription
H Ñ U, V Ñ D. This bijection can also be viewed geometrically as
the linear transformation x1 � x � y, y1 � x � y. This transformation
will simplify the following analysis. We can consider Dyck meanders
as initial segments of Dyck paths.

Furthermore, we have seen that a rescaling by n! seems practical.
So we consider the following weight on steps U in a meander M. If
U starts from pa, bq, then its weight is pa� b� 2q{pa� b� 2q, and the
weight of M is the product of the weights of its steps U. Let dn,m

denote the weighted sum of meanders ending at pn, mq. We get the
following recurrence for dn,m.

Proposition 2.2.13. The weighted sum dn,m defined above for meanders
ending at pn, mq satisfies the recurrence

$''''&
''''%

dn,m � n�m�2
n�m dn�1,m�1 � dn�1,m�1, for n ¡ 0, m ¥ 0,

d0,m � 0, for m ¡ 0,

dn,�1 � 0, for n ¥ 0,

d0,0 � 1.

Corollary 2.2.14. For integers m, n of the same parity, we have

dn,m � 1
ppn�mq{2q! rpn�mq{2,pn�mq{2.

When m, n are not of the same parity, we have dn,m � 0.
In particular, the number of relaxed trees of size n is given by n!d2n,0.

For some simple cases of dn,m, elementary computations show that
dn,m � 0 for m ¡ n, dn,n � 1

n! , dn,n�2 � 2n�1�1
pn�1q! and dn,n�4 � 7�3n�3�2n�1

2pn�2q! .

2.2.2.3 Analytic approximation of weighted Dyck meanders

The heuristic in Section 2.2.2.1 suggests that the main weight of dn,m

comes from the region m � Θpn1{3q. It thus suggests an approxima-
tion of dn,m of the form

dn,m � f pn�1{3pm� 1qqhpnq, (2)

for some functions f and h, where we expect hpnq � 2nρn1{3
for some

ρ. The idea is that hpnq describes how the total weight for a fixed
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n grows, and f pκq describes the rescaled weight distribution in the
main region m � Θpn1{3q.

Let spnq be the ratio hpnq
hpn�1q . Suppose that m � κn1{3 � 1, the recur-

rence relation becomes

f pκqspnq � n� κn1{3 � 3
n� κn1{3 � 1

f
�
pn� 1q�1{3pκn1{3 � 1q

	
� f

�
pn� 1q�1{3pκn1{3 � 1q

	
.

(3)

Now, since we expect hpnq � 2nρn1{3
, we postulate that the ratio spnq

behaves like

spnq � 2� cn�2{3 �Opn�1q, (4)

and that f pκq is analytic. Using these assumptions, we can expand (3)
as a Puiseux series in 1{n. Moving all terms to the right-hand side
yields

0 � �pc� 2κq f pκq � f 2pκq� n�2{3 �Opn�1q.

Solving the differential equation pc� 2κq f pκq � f 2pκq � 0 under the
condition f pκq Ñ 0 when κ Ñ 8 yields the unique solution (up to
multiplication by a constant)

f pκq � bAi
�

c� 2κ

22{3



.

The condition on the behavior of f pκq near 8 is motivated by the
experimental observation that dn,m is quickly decaying for m close
to n. We also insist that f p0q � 0 as dn,�1 � 0, which implies that
c � 22{3a1 where a1 � �2.338 is the largest root of the Airy function
Aipxq; see [1, p. 450]. Now, using this conjectural value of c, it follows
that (ignoring polynomial terms)

hpnq � 2n exp
�

3a1pn{2q1{3
	

.

This suggests that the number of relaxed trees rn � n!d2n,0 satisfies

rn � n!4n exp
�

3a1n1{3
	

,

which is compatible with what we want to prove.
We observe that (3) can be expanded into a Puiseux series of n1{3 by

taking appropriate series expansions of f pκq and spnq. Therefore, to
refine the analysis above, it is natural to look at the expansion of spnq
in (4) to more subdominant terms, and to postulate a more refined
ansatz of dn,m than (2), probably as a series in n1{3. Indeed, if we take

dn,m �
�

f pn�1{3pm� 1qq � n�1{3gpn�1{3pm� 1qq
	

hpnq
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and

spnq � 2� cn�2{3 � dn�1 �Opn�4{3q,

then using the same method we can reach the polynomial part of the
asymptotic behavior of rn as

rn � n!4n exp
�

3a1n1{3
	

n.

In general, we can postulate

dn,m � hpnq
ķ

j�0

f jpn�1{3pm� 1qqn�j{3,

and

spnq � 2� γ2n�2{3 � γ3n�1 � . . .� γkn�k{3 � opn�k{3q.

The proof of our main result on relaxed binary trees is based on choos-
ing the cutoff appropriately, and using perturbations of that trunca-
tion to bound rn.

2.3 asymptotics of minimal deterministic finite automata
recognizing a finite binary language [p13]

In this section, we present the results of [P13], which extend the meth-
ods for counting relaxed and compacted trees from the previous Sec-
tion 2.2. We show show that the counting sequence pm2,nqnPN of mini-
mal deterministic finite automata of size n recognizing a finite binary
language admits a stretched exponential. Until now, the problem of
counting these automata, even asymptotically, was widely open; see
for example [65].

2.3.1 Counting minimal deterministic finite automata

A deterministic finite automaton (DFA) A is a 5-tuple pΣ, Q, δ, q0, Fq,
where Σ is a finite set of letters called the alphabet, Q is a finite set
of states, δ : Q� Σ Ñ Q is the transition function, q0 is the initial state,
and F � Q is the set of final states (sometimes called accept states).
States not in F are called non-final or reject states. A DFA can be rep-
resented by a directed graph with one vertex vs for each state s P Q,
with the vertices corresponding to final states being highlighted, and
for every transition δps, wq � ŝ, there is an edge from s to ŝ labeled w
(see Figure 5).

A word w � w1w2 � � �wℓ P Σ� is accepted by A if the sequence of
states ps0, s1, . . . , sℓq P Qℓ�1 defined by s0 � q0 and si�1 � δpsi, wiq
for i � 0, . . . , ℓ � 1 ends with sℓ P F a final state. The set of words
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q0

q1

q2

q3

q4

b
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a a
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Figure 5: The unique minimal DFA for the language ta, b, bb, babu. The initial
state is q0, the final states are q1 and q3, and the unique sink is q4.

accepted by A is called the language LpAq recognized by A. It is well-
known that DFAs recognize exactly the set of regular languages. Note
that every DFA recognizes a unique language, but a language can be
recognized by several different DFAs. A DFA is called minimal if no
DFA with fewer states recognizes the same language. The Myhill–
Nerode Theorem states that every regular language is recognized by
a unique minimal DFA (up to isomorphism) [97, Theorem 3.10]. For
more details on automata see [97].

Since every regular language defines a unique minimal automa-
ton, one may define the (space) complexity of the language to be
the number of states in this corresponding automaton. Defining space
complexity in this way, the number m2,n is simply the number of finite
languages over a binary alphabet of space complexity n� 1.

The asymptotic proportion of minimal DFAs in the class of (not
necessarily acyclic) automata was solved by Bassino, Nicaud, and
Sportiello in [22], building on enumeration results by Korshunov [119,
120] and Bassino and Nicaud [23]. This result also exploits an under-
lying tree structure of the automata, but this tree structure comes
from a different traversal than what we use. In that case, no stretched
exponential appears in the asymptotic enumeration, and the minimal
automata account for a constant fraction of all automata.

Now using our asymptotic results on compacted and relaxed trees
from Section 2.2, we directly get the following new bounds on the
asymptotic number of such automata, determining their asymptotics
up to a polynomial multiplicative term.

Corollary 2.3.1. Let m2,n be the number of minimal DFAs over a binary
alphabet with n transient states (and a unique sink) that recognize a finite
language. Then,

2n�1cn ¤ m2,n ¤ 2n�1rn.

As a consequence, there exist positive constants κ1 and κ2 such that

κ1n3{4 ¤ m2,n

n!8ne3a1n1{3 ¤ κ2n.

Extending the method for relaxed and compacted trees we will get
the following result.
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Theorem 2.3.2. The number m2,n of non-isomorphic minimal DFAs on a
binary alphabet recognizing a finite language with n� 1 states satisfies for
n Ñ8

m2,n � Θ
�

n! 8ne3a1n1{3
n7{8

	
,

where a1 � �2.338 is the largest root of the Airy function.

This disproves the conjecture m2,n � K 2n�1rn for some K ¡ 0 of
Liskovets based on numerical data; see [131, Equation (16)].

Previously, Domaratzki derived in [64] the lower bound

m2,n ¥ p2n� 1q!
pn� 1q! cn�1

1 ,

with c1 � 1.0669467, which implies the asymptotic bound m2,n ¥
n!p4c1qn

2c1
?

πn (note that m2,n � f 12pn � 1q in his results). Furthermore, Do-
maratzki showed in [63] the upper bound

m2,n ¤ 2n�1G2n�2,

where G2n are the Genocchi numbers, which are defined by the se-
ries expansion of 2t

et�1 � t �°
n¥1p�1qnG2n

t2n

p2nq! . This then gives the
asymptotic bound m2,n ¤ 4p2nq!p 2

π2 qn�1n2, which is, however, much
larger than the superexponential growth given by n!.

While not explicitly formulated in the literature, it is possible to
bound the number of acyclic DFAs by general DFAs using the results
by Korshunov [119, 120] (see also [23, Theorem 18]). Thereby, we get
the upper bound

m2,n � O
�
n!p2e2νqn� ,

where ν � ααp1� αq1�α � 0.8359 with α being the solution of 1� x �
xe2{p1�xq, and therefore 2e2ν � 12.3531, which is significantly larger
than the actual exponential growth.

2.3.2 Recurrence relation

To derive a recurrence for automata recognizing a finite binary lan-
guage, we need the following lemma. It builds on the result from [131,
Lemma 2.3] (see also [97, Section 3.4]) and includes state uniqueness.

Lemma 2.3.3. A DFA A is the minimal automaton for some finite language
if and only if it has the following properties:

1. There is a unique sink s. That is, a state which is not a final state such
that all transitions from s end at s that is, δps, wq � s.

2. A is acyclic: the underlying directed graph has no cycles except for
the loops at the sink.
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3. A is initially connected: for any state p there exists a word w P Σ�

such that A reaches the state p upon reading w.

4. State uniqueness: there are no two distinct states q and q1 with
δpq, aq � δpq1, aq and δpq, bq � δpq1, bq such that both q and q1, or
neither q nor q1, are accept states.

q0

a

a

a

a
a

a

a

b

b b

b

b

b

b

a, b

Figure 6: An acyclic DFA with its spanning subtree in black and all other
edges in red. The initial state is q0 and the finial states are green.

Now consider two sets of DFAs: the set F of minimal DFAs rec-
ognizing finite languages, and the set G of acyclic and initially con-
nected DFAs with a unique sink. By Lemma 2.3.3, F consists of pre-
cisely the automata in G that also satisfy state uniqueness.

Next, we transform DFAs in G into decorated lattice paths that we
call B-paths. For a given A P G, our first step is to construct a spanning
subtree of A (excluding the sink) using a depth-first search (DFS)
from the initial state q0 as shown in Figure 6. This DFS is uniquely
defined by taking edges marked by a before edges marked by b. Since
A is initially connected, the tree obtained is a spanning tree.

Using the same DFS, we construct a path P starting at the point
p�1, 0q and illustrated by a blue line in Figure 7 as follows:

• Whenever the directed blue line around the tree in Figure 7 goes
up we add a vertical step V � p0, 1q to the path. We say that the
state we just quit corresponds to this step.

• Whenever the directed blue line crosses an outgoing edge (in-
cluding the edge leading to the sink), which is not part of the
tree, we add a horizontal step H � p1, 0q.

The order of states corresponding to V-steps is called the postorder
of states. It is clear that the first step of P is a H-step, and removing it
from P gives a Dyck path under the main diagonal. We now decorate
P with spots and crosses. Each step V is decorated by a green or
white spot, according to whether the corresponding state is accepting
or rejecting.
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Figure 7: The transformation from an acyclic DFA to a B-path. In the DFA,
the states are numbered in postorder and the outgoing external
edges with the number of the states they point to.

Since A is acyclic, during the DFS, for an edge e pointing from the
current state q to an already visited state q1, the state q1 must not be
an ancestor of q in the constructed tree, meaning that q1 must either
come before q in postorder or be the sink. In the former case, we
put a cross in the cell at the intersection between the column of the
H-step corresponding to e, and the row of the V-step corresponding
to q1, while in the latter case we put the cross in the row below y � 0.
Clearly the crosses are under P and above y � �1. We thus obtain
a path B with decorations, which we call the B-path of the automa-
ton A. Note that B-paths without spots and without the first H-step
are horizontally decorated paths from Definition 2.2.2.

To characterize B-paths obtained from DFAs in G, we propose the
following definition. An automatic B-path P of size n is defined as a
lattice path consisting of up steps and horizontal steps from p�1, 0q
to pn, nq with decorations such that

• the first step is an H-step, and its removal leaves a Dyck path
below the main diagonal;

• each H-step has a cross in its column between P and y � �1;

• every V-step has a white or green spot.

It is not difficult to see that automatic B-paths are in bijection with
G, with the size preserved, since a B-path P obtained from a DFA
A P G is clearly automatic, and the construction of B-paths can be
easily reversed to obtain a DFA in G from an automatic B-path.

Now we examine automatic B-paths corresponding to DFAs in F.
By definition, we only need to add state uniqueness. Given A P G, let
T be its depth-first search tree and B its corresponding automatic B-
path. A state q P A is called a cherry if it is a leaf of T but not the sink.
Seen on B, a cherry state corresponds to a sequence HHV of steps. We
now propose a seemingly weaker notion of state uniqueness called
cherry-state uniqueness, which is in fact equivalent in our case.
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Lemma 2.3.4. Suppose that A P G, then A has state uniqueness if and
only if it has cherry-state uniqueness, i.e., any two states q, q1 such that q
comes before q1 in postorder, and q1 is a cherry state, satisfy the conditions
in the definition of state uniqueness.

The big advantage of this characterization is that it transforms state
uniqueness into a local property depending only on HHV steps. In
other words, for paths ending at pn, mq we need to take paths ending
at pn � 2, m � 1q into account. With this last ingredient we get the
following recursive description of automatic B-paths.

Proposition 2.3.5. Let bn,m be the number of initial segments of automatic
B-paths corresponding to DFAs in F ending at pn, mq. Then$''&

''%
bn,m � 2bn,m�1 � pm� 1qbn�1,m �mbn�2,m�1, for n ¥ m ¥ 1,

bn,m � 0, for n   m,

bn,0 � 1, for n ¥ �1.

The number m2,n of minimal binary DFAs of size n recognizing a finite
language is equal to bn,n.

This recurrence relation can be directly used to compute all ele-
ments of the sequence pm2,nqn¥0 up to size n � N with OpN2q arith-
metic operations. The first few numbers of this sequence read

pm2,nqn¥0 � p1, 1, 6, 60, 900, 18480, 487560, 15824880, 612504240, . . .q.

We have added it as sequence OEIS A331120 in the Online Ency-
clopedia of Integer Sequences [167]. Previously, the first 7 elements
were computed in [66, Section 6]. In addition, observe that this recur-
rence is very similar to the one of compacted binary trees in Propo-
sition 2.2.10. Let as shortly discuss the differences and give combina-
torial interpretations. Firstly, the factor 2 of bn,m�1 corresponds to the
fact that states are either accepting or not. Secondly, the factor m of
bn�2,m�1 corresponds to the fact that all previous states (in postorder)
are removed, i.e. also the unique sink/leaf with label 1, which was
ignored in the case of compacted trees as it has no children; compare
Definitions 2.2.8 and 2.2.11.

2.4 a bijection of plane increasing trees with relaxed
binary trees of right height at most one [p24]

In this section, we present the bijection from [P24] between relaxed
binary trees of right height at most one shown in Figure 2 on page 5,
and plane increasing trees shown in Figure 8. This solves an open
problem of [90] about the miraculously simple counting formula given
by the odd double factorials p2n � 1q!! :� p2n � 1qp2n � 3q � � � 1 for
such trees with n nodes.

http://oeis.org/A331120
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Figure 8: Left: All plane increasing trees of size 0, 1, 2. Right: An increasing
tree of size 11 with young leaves 3, 5, 7 and maximal young leaf 7.

An increasing tree is a labeled rooted tree in which labels along
any path from the root to the leaves are in increasing order. For no-
tational convenience we label the nodes of a tree from 0 to n and
define its size to be n. This concept was first introduced and inten-
sively investigated by Bergeron, Flajolet, and Salvy [25]. These trees
have found vast applications as data structures in computer science,
as models in genealogy, and as representations of permutations, to
name a few [70, 168].

Recall, that a tree is called plane (or ordered) if the children are
equipped with a left-to-right order. For example the two trees in the
center of Figure 8 whose roots have two children with labels 1 and 2
are considered to be different trees. This defines the classical family
of rooted plane increasing trees, which can be generated uniformly
at random by a growth process: start with the root and label 0. At
step i there are 2i � 1 possible places to insert node i. Choose one
uniformly at random. Note that at a node with out-degree d there
are d� 1 possible places to insert a new child. This idea is known as
the Albert–Barabási model [2]. Note that this method gives a way to
generate these trees uniformly at random in linear time.

1
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2

0 0 0 0 0

2

1 1 1

Figure 9: Left: A compacted binary tree with right height 2. The labels give
the level of the node. Right: The same tree rotated by 45 degrees.
The unique leaf is marked by a square.

The second family we are interested in are relaxed trees from Defin-
tion 2.1.1. In Figure 2 we see all relaxed binary trees of size 0, 1, and
2. The right height is the maximal number of right edges (or right chil-
dren) on all paths from the root to any leaf after deleting all pointers.
The level of a node is the number of right edges on the path from the
root to this node; see Figure 9. The asymptotic counting problem for
relaxed (and the more restrictive class of compacted) binary trees of
finite right height was solved in [90].
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Figure 10: The structure of a relaxed binary tree with right height at most
one. For clarity the pointers are only attached to their source. In
a specific relaxed tree the pointers are fixed and point to specific
nodes seen before the source node in postorder traversal.

The general structure of relaxed binary trees of right height at most
one is shown in Figure 10. In [90, Theorem 7.3] it was shown that they
admit the exponential generating function

Rpzq � 1?
1� 2z

�
¸
n¥0

p2n� 1q!! zn

n!
.

In other words, the number of relaxed binary trees of right height at
most one of size n is equal to the number of increasing plane trees
of size n and is equal to p2n� 1q!!. These numbers count more than
a dozen labeled objects (see OEIS A001147), yet the class of DAGs
is to our knowledge the first not labeled one. Bijections appear re-
peatedly in the literature: See for example Janson [106] for a bijection
between plane increasing trees and Stirling permutations, or Janson,
Kuba, and Panholzer [108] for a bijection between plane increasing
trees and ternary increasing trees.

2.4.1 Bijection

We will need the following concepts: A branch node is a node on level 0
without pointers to which a branch of nodes on level 1 is attached.
We say that this is the branch node of the nodes in this branch. In
the Figures 10 and 11 we see three branch nodes each. As before, a
cherry is a node with 2 pointers and we will speak of relaxed trees
always meaning relaxed binary trees. For a plane increasing tree T
we denote by Tk the tree restricted to the labels 0, . . . , k.

The bijection stated below is shown on an example in Figure 11.
From top to bottom and left to right a relaxed binary tree of right
height at most one is transformed into a plane increasing tree. Re-
versing these steps gives the inverse bijection.

Algorithm 1 presents a formal description of the transformation
from relaxed binary trees to plane increasing trees. Let us start with
an arbitrary relaxed binary tree of size n. First, we label the nodes
from 0 to n according to an inorder traversal. We use vi to reference
the node with label i. In the labeling process we ignore pointers. Start
at the leaf and label it with 0. Then, move to the parent. Whenever we
see a node for the first time we attach a label incremented by one. If
we meet a branch node we traverse its right branch starting from the
cherry from left to right. Then we continue on level 0.

http://oeis.org/A001147
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Algorithm 1 Relaxed binary tree R Ñ Plane Increasing Tree T
1: Label nodes of R inorder v0, v1, . . . , vn

2: For each cherry vi move left pointer to vi�1 � vi�1 is vi’s branch
node

3: For each node set pi :� target of pointer of vi
4: if levelpviq � 1 and pi � v0 then
5: ppviq :� Branch node of branch of vi
6: end if
7: Leaf v0 Ñ Root of T
8: for i from 1 to n do
9: if levelpviq � 0 then � Parent-pointer

10: Attach vi as first child to pi
11: else � Sibling-pointer
12: Attach vi as direct sibling right of pi
13: end if
14: end for

Next, we move the first (or left) pointer of each cherry vi (which has
to be on level 1) to vi�1 which is its branch node due to the previous
labeling operation. This operation attaches to each node, except the
leaf, a unique pointer.

Then, we separate the pointers into two sets: parent- and sibling-
pointers. A parent-pointer is any pointer starting on level 0, and a
sibling-pointer is any pointer starting on level 1. Next, every sibling-
pointer that points to the leaf v0 is changed to point to its branch
node. This is shown for node 8 in Figure 11.

Finally, we consider the nodes in the order of their labels and build
a plane increasing tree. The leaf with label 0 becomes the root. If the
node has a parent-pointer, we attach it as a first child (very left) of
the node it is pointing to. If the node has a sibling-pointer, we attach
it as a direct sibling on the right of the node it is pointing to.

For the reverse bijection we need the notion of young leaves.A
young leaf is a leaf without left sibling. A maximal young leaf is a young
leaf with maximal label; see Figure 8 (see [53, Section 4.3] for a recur-
rence relation of plane increasing trees built on this parameter). Note
that from the previous algorithm, the maximal young leaves are the
nodes of level 0. Its formal description is given in Algorithm 2.

Let us start with an arbitrary plane increasing tree of size n. The
tree is traversed iteratively in the order of its labels. The algorithm
builds the relaxed tree and an auxiliary structure called the branch. At
every step we either extend the tree or the branch, which is on some
point attached as right child to a node at level 0. At the beginning this
branch is empty.

For a label k we distinguish now two rules, depending on whether
it is a maximal young leaf or not. First, if the current node k is a
maximal young leaf of Tk then attach the branch to the last node on
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Algorithm 2 Plane Increasing Tree T Ñ Relaxed binary tree R
1: B :� H
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach B to current root and move its pointer to last node

of B as left pointer
5: Attach vk as new root with a pointer to the parent of vk in

Tk
6: B :� H
7: else
8: Attach vk as root to B with a pointer to the left sibling of

vk in Tk
9: end if

10: end for
11: Perform 4-5

level 0, move the pointer of this level 0 node as left pointer to the last
node of the branch, and set the branch to be empty. Then, attach the
node k as new root node on level 0. For the pointer apply the parent
rule and set its pointer to the parent of node k in Tk.

Second, if the current node is not a maximal young leaf of Tk then
attach the node k as new root to the branch. For the pointer the sibling
rule applies: set the pointer to the direct left sibling of node k in Tk.
In the case that this is the current root at level 0, set the node to the
leaf 0.

At the end attach the branch to the current root of level 0 and move
its pointer to the last node in the branch as left pointer.

Theorem 2.4.1. The procedure above is a bijection between relaxed binary
trees of right height at most one of size n and plane increasing trees of size n.
It maps nodes of level 0 to maximal young leaves in the growth process of
the plane increasing tree.

Corollary 2.4.2. Relaxed binary trees of size n of right height at most
one can be generated uniformly at random in linear time and with a lin-
ear amount of memory.

Remark 2.4.3. It is possible to directly generate relaxed trees of size
n by using a growth process with the ideas of Algorithm 2. At ev-
ery point one decides to either attach a new root at level 0 or in the
branch B (which corresponds to level 1). In the first case one performs
operations 4-6, and in the second case operation 8.

Note that generalizing this method with nested branches it may be
used to generate relaxed binary trees with arbitrary or even without
height restrictions. However, for the cases of right height larger than 1
this does not generate them uniformly at random.
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Figure 11: The bijection of Theorem 2.4.1 applied step by step. Parent-
pointers are black, and sibling-pointers are gray. The leaf of the
relaxed tree marked by a square is transformed into the root of
the increasing plane tree. For the reverse bijection the maximal
young leaves are shaded in gray.

Plane increasing trees are well-studied objects and many statistics
exist on their parameters. This bijection transforms some of them into
interesting quantities on relaxed binary trees of right height at most
one. But vice versa it also leads to interesting results on plane in-
creasing trees. In the next subsection we consider parameters which
are easy to analyze on relaxed trees, and in the subsection thereafter
we look at known results for plane increasing trees. For more more
details and an additional discussion of subclasses with many connec-
tions to the OEIS [167] see [P24].

2.4.2 Parameters of relaxed binary trees

From the bijection we have seen that the number of internal nodes
on level 0 in relaxed binary trees of right height at most one is equal
to the number of maximal young leaves in the growth process of a
plane increasing tree. Using the theory from [90], it is now easy to
analyze the number of nodes on level 0. Let Xn be the corresponding
random variable in such a uniformly random tree of size n. Then, the
following result follows using bivariate generating functions.
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Theorem 2.4.4. The standardized random variable

Xn � µ1n
σ1
?

n
,

with

µ1 � 1
2
� logpnq

4n
�O

�
1
n



and σ2

1 �
1
4
� π2

32n
�O

�
1
n2



,

converges in law to a standard normal distribution N p0, 1q.
Next, observe that a branch in a relaxed tree is a sequence of nodes

on level 1. By the bijection these correspond to maximal young leaves,
which are not immediately replaced in the growth process by a new
young leaf in the next step. We call these dominating young leaves. Let
Yn be the random variable giving the number of branches of relaxed
binary trees with right height at most one of size n drawn uniformly
at random among all such trees of size n.

Theorem 2.4.5. The standardized random variable

Yn � µ2n
σ2
?

n
,

with

µ2 � 1
4
� 1

8n
�O

�
1
n2



and σ2

2 �
1

16
� 1

32n
�O

�
1
n2



,

converges in law to a standard normal distribution N p0, 1q.

2.4.3 Parameters of plane increasing trees

Several parameters of plane increasing trees are well-understood. In
order to understand their connection with respect to the stated bi-
jection we introduce the concept of a pointer-path. This is a path fol-
lowing only pointers from an arbitrary node to the leaf 0 with two
special rules: First, due to the transformation of the left cherry point-
ers to branch nodes, every internal node has exactly one outgoing
pointer. Second, if a sibling-pointer points to the leaf it is interpreted
as pointing to its branch node, compare node 8 in Figure 12. The
length of a pointer-path is given by the number of parent-pointers in
it. The results for our stated example are shown in Figure 12.

These pointer-paths also have an interpretation on the level of in-
creasing trees. Starting from any node, one jumps to its left sibling
as long as its label is decreasing. This corresponds to sibling-pointers.
If this is not possible any more one moves up to its parent which
corresponds to a parent-pointer. The length of the pointer-path is the
depth of the node. In particular, this gives for every node a “maximal”
decreasing sequence of labels encoded in the tree.
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Pointer-path Length

1 Ñ 0 1

2 Ñ 1 Ñ 0 2

3 Ñ 1 Ñ 0 2

4 � 1 Ñ 0 1

5 Ñ 0 1

6 Ñ 5 Ñ 0 2

7 Ñ 2 Ñ 1 Ñ 0 3

8 � 7 Ñ 2 Ñ 1 Ñ 0 3

9 � 5 Ñ 0 1

10 Ñ 2 Ñ 1 Ñ 0 3

11 � 6 Ñ 5 Ñ 0 2
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Figure 12: Pointer-paths of the example in Figure 11. Parent-pointers are
marked by Ñ (or black arrows), sibling-pointers are marked
by � (or gray arrows).

There is rich literature on parameters of plane increasing trees; see,
e.g., [25, 70, 108, 124, 135, 137, 153]. We have summarized four inter-
esting parameters and their counterparts in relaxed binary trees of
right height at most one in Table 1. In the first two cases the stan-
dardized random variables Xn�EXn?

vmXn
converge in distribution to a stan-

dard normal distribution, whereas in the third case the normalized
random variable Xn?

2n
converges in law to a standard Rayleigh distri-

bution given by the density function xe�x2{2. For details on the distri-
bution of the height see [70, Section 6.4] and [49, 69].

Plane incr. tree Relaxed binary tree EXn VXn

Depth of Length pointer-path � 1
2 log n � 1

2 log n
node n [135] from node n

Number of # nodes without � 2
3 n� 1

3 � n
9� 1

18� 1{6
2n�1leaves [137] ingoing parent-pointer

Root degree [25]
# pointer-paths � ?

πn � p4� πqn
of length 1

Height [70, 153] Longest pointer-path � 1
2s log n � Op1q

Table 1: Parameters of plane increasing trees and the corresponding parame-
ters in relaxed binary trees of right height at most one. The constant
s � 0.27846 is the positive solution of ses�1 � 1.
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The enumeration of Young tableaux is a subject I started after my
PhD, working with my colleagues in France, Cyril Banderier and
Phillipe Marchal. Most of the work was started during my time as
a postdoc at the Université Sorbonne Paris Nord in 2017. All these
results are fully independent of my PhD and demonstrate my ability
to dive into new research areas.

In Section 3.1, we introduce the new model of Young tableaux with
walls, in which some neighboring cells may not have to obey any
order constraints. We present several bijections to trees and lattice
paths, and we introduce the main tool of this chapter: the density
method. We developed it to efficiently count and sample uniformly
at random any given partially ordered set.

In Section 3.2, we present the solution of the enumeration problem
for further families of Young tableaux with walls focusing on peri-
odically repeating patterns using again the density method. We use
these results to prove that the corresponding generating functions are
either algebraic, hypergeometric, D-finite, or D-algebraic.

In Section 3.3, we introduce the new model of periodic Pólya urns
and derive limit laws for its evolution. This urn model allows us to
derive the limit law of the south-east corner in a random periodic
triangular Young tableau, which we then use to analyze random sur-
faces arsing from Young tableaux.

3.1 rectangular young tableaux with local decreases
and the density method for uniform random gener-
ation [p8]

In this section, we present the results from [P8] and partly from [P15]
on a generalization of Young tableaux. As predicted by Anatoly Ver-
shik in [174], the twenty-first century should see a lot of challenges
and advances on the links between probability theory and (algebraic)
combinatorics. A key role is played here by Young tableaux, because
of their ubiquity in representation theory [134] and in algebraic com-
binatorics, as well as their relevance in many other different fields;
see, e.g., [173].

29
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Definition 3.1.1 (Young tableau). A Young tableau of size n is an array
with columns of (weakly) decreasing height, in which each cell is labelled,
and where the labels run from 1 to n and are strictly increasing along rows
from left to right and columns from bottom to top.

In other words, we use the French convention of drawing tableau.
This basic definition is all we will need and we refer to [134] for more
details. Our generalization is motivated by the following questions:
What happens if we allow exceptionally some consecutive cells with
decreasing labels? Does this variant lead to nice formulas if these local
decreases are regularly placed? Is it related to other mathematical
objects or theorems? How to generate them uniformly at random?

As illustrated in Figure 13, we put a bold red edge between the cells
which are allowed to be decreasing. Therefore these two adjacent cells
can have decreasing labels (like 19 and 12 in the top row of Figure 13,
or 11 and 10 in the untrustable Fifth column), or as usual increasing
labels (like 13 and 15 in the bottom row of Figure 13). We call these
bold red edges “walls”.

7 18 19 12 21 20 17

2 6 8 9 10 14 16

1 3 4 5 11 13 15

Figure 13: We consider Young tableaux in which some pairs of (horizontally
or vertically) consecutive cells are allowed to have decreasing la-
bels. Such places where a decrease is allowed (but not compul-
sory) are drawn by a bold red edge, which we call a “wall”.

For Young tableaux of shape n� 2 several cases lead directly to nice
enumerative formulas for the total number of tableaux with 2n cells:

1. Walls everywhere: p2nq!
2. Horizontal walls everywhere: p2nq!

2n

3. Horizontal walls everywhere in left column: p2n� 1q!! � p2nq!
2nn!

4. Vertical walls everywhere:
�2n

n

� � p2nq!
pn!q2

5. No walls: 1
n�1

�2n
n

� � p2nq!
pn�1qpn!q2

3.1.1 Young tableaux of shape n� 2 and binary trees

We now consider Young tableaux of shape n� 2, allowing some walls
between their two columns; see Figure 14. They nicely illustrate the
diversity of combinatorial objects which can be related to tableaux
with walls. We will show two different bijections both proving the
following enumeration result.



3.1 rectangular young tableaux with local decreases [p8] 31

Theorem 3.1.2. The number of n� 2 Young tableaux with k vertical walls
is equal to

vn,k �
1

n� 1� k

�
n
k


�
2n
n



.

14 12

10 13

9 11

8 7

4 6

3 5

2 1

Figure 14: A n�2 Young
tab. with walls.

Let us present the bijection involved in
proof of the previous theorem. It maps
two-column Young tableaux of size 2n
with k walls to Dyck paths without the
positivity constraint of length 2n and k
coloured down steps. These paths start at
the origin, end on the x-axis and are com-
posed out of up steps p1, 1q, and coloured
down steps p1,�1q which are either red
or blue. Now, given an arbitrary two-
column Young tableau, the mth step of
the associated path is an up step if the
entry m appears in the left column, while
the mth step is a down step, if the mth en-
try appears in the right column. Further-
more, we associate colours to the down
steps: If the mth down step is in a row with a wall we colour it red,
and blue otherwise. Thus, vn,k counts the number of paths with ex-
actly k red down steps, which we then count using the Chung–Feller
Theorem [57].

As a simple consequence, we get the following result.

Corollary 3.1.3. The average number of linear extensions of a random n�
2 Young tableau with k walls, where the location of these walls is chosen
uniformly at random, is

1
n� 1� k

�
2n
n



.

This gives us immediately the following limit law.

Theorem 3.1.4. Let Xn be the random variable for the number of walls in a
random n� 2 Young tableau chosen uniformly at random. The rescaled ran-
dom variable Xn�n{2?

n{4 converges to the standard normal distribution N p0, 1q.
The further analysis of these tableaux draws from [P15] and is

included here as it nicely continues the analysis of n � 2 tableaux.
First, the following proposition gives a new combinatorial meaning to
some entries in the OEIS [167], such as OEIS A000108, OEIS A000984,
OEIS A002457, OEIS A002802, and OEIS A020918.

Proposition 3.1.5. The generating function of n� 2 Young tableaux with
k walls is equal to

Vkpzq :�
¸
n¥0

vn,kzn� Catpk� 1qzk�1

p1� 4zqp2k�1q{2 with Catpnq� 1
n� 1

�
2n
n



.

http://oeis.org/A000108
http://oeis.org/A000984
http://oeis.org/A002457
http://oeis.org/A002802
http://oeis.org/A020918
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The generating polynomial with respect to the number of walls is

vnpuq :�
ņ

k�0

vn,kuk � Catpnqpp1� uqn�1 � un�1q. (5)

It is noteworthy that vn,k is at the same time divisible by Catpnq
and Catpk� 1q, and, obviously, (5) demands a simple combinatorial
explanation. The following classical lemma will allow us to give a
bijective explanation of all these facts. The key observation is that
every element in the first column corresponds to an internal node
and every element in the second column to a leaf.

Lemma 3.1.6. Young tableaux of shape n� 2 are in bijection with binary
trees that have n internal nodes.

2

1

4

3

13

1412

10

11

9

7

8

5

6

2

1

4

3

13

1412

10

11

9

7

8

5

6

2

1

13

9

8

Pushing &
SwappingLemma 3.1.6

Marking &
Sorting

1

1

2

3 4

5

6 9

11

12

7 10

1413

8

Figure 15: The bijection between n� 2 Young tableaux with k walls and bi-
nary trees with k marked leaves from Theorem 3.1.7. Here n � 14
and k � 5.

The following bijection consists of (possibly) 3 steps and is shown
on an example in Figure 15. First, we mark every entry in the second
column that is in a row with a wall and remove the wall. Then, we sort
each row to get a standard n� 2 Young tableau (yet, with k markers).

Second, we transform this tableau together with its markers into
a binary tree using Lemma 3.1.6. If no internal nodes are marked,
then we are finished; yet if some internal nodes are marked, then we
perform the following step.

Third, we inductively transform this binary tree into a binary tree
with marked leaves. Start from the right-most leaf in the right branch
of the root and move upwards. If an internal node is marked, push
all markers to the leaves of the left subtree and thereafter swap the
left and right subtree. Continue until you reach the root.

For the reverse bijection, we distinguish two cases: Either the right-
most leaf is marked or not. If it is not marked we reverse only steps 1
and 2, while if it is marked, we reverse all three steps. Let us summa-
rize this result in the following theorem.

Theorem 3.1.7. Young tableaux of shape n� 2 with k walls are in bijection
with binary trees with n internal nodes and k marked leaves.
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3.1.2 Horizontal walls and the hook-length formula

The hook-length formula is a well-known formula to enumerate stan-
dard Young tableaux of a given shape (see, e.g., [134, 173]). What hap-
pens if we add walls in these tableaux? Let us first consider the case
of a Young tableau of size n such that its walls cut the corresponding
tableau into m disconnected parts without walls of size k1, . . . , km (e.g.,
some walls form a full horizontal or vertical line). Then, the number
of fillings of such a tableau is trivially:

n!
k1! . . . km!

m¹
i�1

HookLengthFormula(subtableau of size ki).

So in the remainder of this section, we focus on walls which are not
trivially splitting the problem into subproblems: They are the only
cases for which the enumeration (or the random generation) is indeed
challenging.

We continue our study with families of Young tableaux of shape
m� n having some local decreases at places indicated by horizontal
walls in the left column. We will need the following lemma counting
special fillings of Young tableaux.

Lemma 3.1.8. The number of n� 2 “Young tableaux” with 2λ cells filled
with the numbers 1, 2, . . . , 2n for n ¥ λ such that (the number 2n is used
and) all consecutive numbers between the minimum of the second column
and 2n are used is equal to�

2n
λ



�
�

2n
λ� 1



.

This result is the key ingredient to enumerate tableaux with hori-
zontal walls.

Theorem 3.1.9. The number of n � 2 Young tableaux of size 2n with k
walls in the first column at heights 0   hi   n, i � 1, . . . , k with hi   hi�1

is equal to

1
2n� 1

k�1¹
i�1

�
2hi � 1

hi � hi�1



,

with h0 :� 0 and hk�1 :� n.

Remark 3.1.10. Denoting consecutive relative distances of the walls by
λi :� hi � hi�1 for i � 1, . . . , k� 1 the previous result can be stated as

1
2n� 1

k�1¹
i�1

�
2pλ1 � . . .� λiq � 1

λi



.

Let us now also give the general formula for n�m Young tableaux
with walls of lengths m � 1 from columns 1 to m � 1, i.e., a hole in
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column m and nowhere else in a row with walls. Before we state
the result, let us define for integers n, k the falling factorial pnqk :�
npn � 1q � � � pn � k � 1q and for integers n, m1, . . . , mk such that n ¥
m1 � � � � � mk the (shortened) multinomial coefficient

� n
m1,m2,...,mk

�
:�

n!
m1!m2!���mk !pn�m1�...�mkq! .

Theorem 3.1.11. The number of n�m Young tableaux of size mn with k
walls from column 1 to m � 1 at heights 0   hi   n, i � 1, . . . , k with
hi   hi�1 is equal to

pm�1q!
pmn�m�1qm�1

�
�k�1¹

i�1

m�2¹
j�1

�
λi�j

j


�1
�
�

k�1¹
i�1

�
m
°i

ℓ�1 λℓ �m� 1
λi, . . . , λi


�
,

where λi :� hi � hi�1 and the λi’s in the multinomial coefficients appear
m� 1 times.

As a special case, consider tableaux with walls between every row
and a hole in the last column, i.e., λi � 1 for all i. This gives the
general formula pmnq!

n!pm!qn , for n � m tableaux; see OEIS A001147 for
m � 2 and OEIS A025035 to OEIS A025042 for the special cases
m � 3, . . . , 10.

Now that we gave several examples of closed-form formulas enu-
merating some families of Young tableaux with local decreases, we
go to harder families which do not necessarily lead to a closed-form
result. However, we shall see that we have a generic method to get
useful alternative formulas (based on recurrences), also leading to an
efficient uniform random generation algorithm.

3.1.3 The density method, D-finiteness, random generation

In this section, we present a generic approach which allows us to
enumerate and generate any shape involving some walls located at
periodic positions. To keep it readable, we illustrate it with a specific
example (without loss of generality).

So, we now illustrate the method on the case of a 2n � 3 tableau
where we put walls on the right and on the left column at height 2k
(for 1 ¤ k ¤ n� 1); see the leftmost tableau in Figure 16. In order to
have an easier description of the algorithm (and more compact formu-
las), we generate/enumerate first similar tableaux with an additional
cell at the bottom of the middle column, see the middle tableau in Fig-
ure 16: It is a polyomino Polyon with 6n� 1 cells. There are trivially
p6n�1q! fillings of this polyomino with the numbers 1 to 6n�1. Some
of these fillings are additionally satisfying the classical constraints of
Young tableaux (i.e., the labels are increasing in each row and each
column), with some local decreases allowed between cells separated
by a wall. Let fn be the number of such constrained fillings.

To compute fn we use a generic method which we call the density
method. It relies on a geometric point of view of the problem: Let

http://oeis.org/A001147
http://oeis.org/A025035
http://oeis.org/A025042
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N :� 6n� 1 be the total number of cells and consider the hypercube
r0, 1sN in which we associate to each coordinate a cell of Polyon. To al-
most every element α P r0, 1sN (more precisely, every element with all
coordinates distinct) we can associate a filling of Polyon: Put 1 into the
cell of Polyon corresponding to the smallest coordinate of α, 2 into the
cell of Polyon corresponding to the second smallest coordinate of α

and so on. In other words, if the jth coordinate of α is the ith biggest
element, then we assign the value i to the cell j. This filling is not
necessarily respecting all increasing constraints, but this operation is
readily reversed by associating to every legitimate filling of Polyon a
region of r0, 1s6n�1 which corresponds to a polytope. The key obser-
vation now is that the volume of this polytope is equal to 1{N!. Let P
be the set of all polytopes corresponding to correct fillings of Polyon
(i.e., respecting the order constraints). Then, a uniformly random ele-
ment P corresponds to a uniformly random filling of Polyon. This P
is also known as the order polytope in poset theory.

What we call the density method is an appropriate combination of
recurrences and integral representations of order polytope volumes
in order to enumerate poset structures. For this reason, it could also
be called the polytope volume method. Some ancestors of this natural
idea can be found in [20, 29, 77, 149]. It should also be mentioned
that several works by Stanley (see for example his nice survey [172])
contributed to propagating interest in this idea, e.g., in connection
with variants of the enumeration of zig-zag permutations (permuta-
tions which have a periodic succession of rises and falls [4, 32]); this
led to the articles [21, 133, 139]. Together with Philippe Marchal, we
further developed this density method in [15, 16, 138, 140], as a way to
analyse structures like permutations, trees, Young tableaux, all with
additional order constraints on their labels.

Let us explain how the density method works. It requires two more
ingredients. The first one is illustrated in Figure 16: It is a generic
building block with 7 cells with names X,Y,Z,R,S,V,W. We put into
each of these cells a number from r0, 1s, which we call x, y, z, r, s, v, w,
respectively. The second ingredient is the sequence of polynomials
pnpxq, defined by the following recurrence:

pn�1pzq �
» z

0

» z

x

» y

0

» z

r

» 1

z

» w

y
pnpvq dv dw ds dr dy dx,

with p0 � 1. These nested integrals encode the full structure of the
problem (i.e. all the inequalities): each integral corresponds to one
cell, and the range corresponds to the inequalities. For example, the
innermost integral with respect to v is associated with the cell V and
the constraint that Y   V   W.

Let us now give a more algorithmic presentation of our method:



36 young tableaux

6 15 16

1 13 14

8 10 18

3 9 12

4 7 17

2 5 11

7 16 17

2 14 15

9 11 19

4 10 13

5 8 18

3 6 12

1

S Z W

R Y V

X

Figure 16: Left: A 2n � 3 Young tableau with walls. Centre: Our algorithm
first generates a related labelled shape, Polyon, with one more cell
in its bottom. (removing this cell and relabelling the remaining
cells gives the left tableau). Right: The “building block” of 7 cells.
Each polyomino Polyon is made of n overlapping building blocks.

Density method algorithm

1 Initialization: Order the building blocks from k � n� 1 (top)
to k � 0 (bottom). Start with k :� n� 1 and put into its cell
Z a random number z with density pnpzq{

³1
0 pnptq dt. Repeat

the following process until k � 0:

2 Filling: Put into the cells X, Y, R, S, V, W random numbers
x, y, r, s, v, w with conditional density

gk,zpx, y, r, s, v, wq :� 1
pk�1pzq

pkpxq1P z,

where 1P z is the indicator function of the kth building block
(with value z in cell Z):

1P z :� 1t0¤x¤y¤z,0¤r¤y,r¤s¤z,z¤w¤1,y¤v¤wu.

3 Iteration: Consider X as a the Z of the next building block.
Set k :� k� 1 and go to step 2.

Theorem 3.1.12. The density method algorithm is a uniform random gener-
ation algorithm with quadratic time complexity and linear space complexity.

Remark 3.1.13. If one wants to generate many diagrams and not just
one, then it is valuable to make a precomputation phase computing
and storing all the polynomials pn. The rest of the algorithm is the
same. For each new object generated, this is saving Opn2q time, to the
price of Opn2q memory. The algorithm is globally still of quadratic
time complexity (because of the evaluation at each step of pkpxq, while
pk�1pzq was already evaluated).
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Remark 3.1.14. If one directly wants to generate 2n� 3 Young tableaux
with decreases instead of our strange polyomino shapes Polyon, then
one still uses the same relation between pn�1 and pn but p0 is not
defined and p1 has a more complicated form. Another way is to gen-
erate Polyon, and to reject all the ones not having a 1 in the bottom
cell, then to remove this bottom cell and to relabel the remaining cells
from 1 to 6n (see Figure 16). This still gives a fast algorithm of Opn2q
time complexity (the only difference being the cost of the initial algo-
rithm which is the multiplicative constant included in the big-O).

Using dynamic programming or clever backtracking algorithms al-
lows hardly to compute the sequence fn (the number of fillings of
the diagram) for n ¥ 3. In the same amount of time, the density
method allows us to compute thousands of coefficients via the rela-
tion fn � p6n� 1q! ³1

0 pnpzq, where the polynomial pnpzq is computed
via the recurrence

pn�1pzq �
» z

0

1
24
pz� 1qpx� zqp3x3 � 7x2z� xz2 � z3

� 2x2 � 4xz� 4z2qpnpxq dx.

This gives the sequence

p fnqn¥0 �p1, 12, 8550, 39235950, 629738299350, 26095645151941500,

2323497950101372223250, 392833430654718548673344250,

115375222087417545717234273063750, . . . q.

As far as we know, there is no further simple expression for this se-
quence. This concludes our analysis of the model given by Figure 16.

We can additionally mention that the generating function associ-
ated to the sequence of polynomials pnpxq has a striking property:

Theorem 3.1.15. The generating function Gpt, zq :� °
n¥0 pnpzqtn is D-

finite in z.

Note that Gpt, zq is D-finite in z, but in general not D-finite in t.
When it is D-finite in t, our algorithm has a better complexity (namely,
a Opn3{2q time complexity), because it is then possible to evaluate
pnpzq in time Op?n ln nq instead of Opnq; see [34, Chapter 15].

3.2 young tableaux with periodic walls : counting with
the density method [p15]

In the previous Section 3.1, we introduced rectangular Young tableaux
with walls and explored their links with binary trees, hook-length-
like formulas, and studied their uniform random generation. In this
section, we present the results from [P15], and we will consider struc-
tures where the location of the walls obey some periodicity rules. This
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will nicely illustrate the rich diversity of the corresponding generat-
ing functions and some of their unexpected closure properties. More
precisely, let a tableau Y with periodic walls be the concatenation
(as shown in Figure 17) of n copies of a building block B of cells (i.e.,
Y � Bn) and then filled with all integers from t1, . . . , |B|nu respecting
the induced order constraints.

B =
3 10 5 6 12 16 13 14

1 2 4 7 8 9 11 15
B4 =

Figure 17: Left: example of a block B of shape 2� 2. Right: a Young tableau
with periodic walls at positions imposed by concatenations of B.

Counting the number of linear extensions of a poset is known to be
a hard problem; it was even proven to be #P-complete by Brightwell
and Winkler [48]. The enumeration is even still #P-complete when re-
stricted to posets of height 2; see Dittmer and Pak [62]. This enumer-
ation challenge is also strongly connected to the question of uniform
random generation. While there exist thousands of ad hoc approaches to
generate combinatorial structures (see, e.g., [118, 148]), there are few
generic methods for their uniform random generation: one could name
rejection algorithms and Markov chain sampling [109], the recursive
method [87, 148], generating trees [11], and Boltzmann sampling [72].
Another important method that we want to promote and to add to
this list is the density method. We will again illustrate its power and its
flexibility in this section by applying it to many different posets.

3.2.1 Jenga tableaux and the density method

The towers of the game Jenga inspired the following fruitful gener-
alization of Young tableaux. Consider a column of n cells to which
one attaches at row i, ℓi cells to the left and ri cells to the right. The
N :� n �°n

i ℓi � ri cells of this structure are then filled with the
integers 1 to N under the constraint that each row and the middle
column have increasing labels, and each label appears only once; see
Figure 18.

The density method is the key to enumerate such objects and was
introduced it in detail in Section 3.1.3. For our current problem, con-
sider the generic building block of a row shown in Figure 18. It con-
sists of the ℓ cells U1, . . . , Uℓ, the r cells V1, . . . , Vr, one cell Z, and one
cell X. To each of these cells we assign a random number from r0, 1s.
Then, we define a sequence of polynomials fnpzq which encode the
order constraints satisfied by these cells up to row n:

fnpzq :�
»

z v1 1

. . .
»

vr�1 vr 1

»
0 uℓ z

. . .
»

0 u1 u2

»
0 x z

fn�1pxq dx du1 . . . dv1.



3.2 young tableaux with periodic walls [p15] 39

16 17 19 21

1 5 15 20 22

11 14

10 18

8

3 6 7 9 13

2 4 12

`1 r1

`7 r7

U1 · · · U` Z V1 · · · Vr

X` r

Figure 18: Left: a Jenga tableau with n � 7 rows and the left and right sub-
sequences pliq7i�1 � p1, 2, 0, 0, 1, 2, 0q and priq7i�1 � p1, 2, 0, 1, 0, 2, 3q,
respectively. Right: the building block used here in the density
method to generate each row iteratively.

Now, the simple block structure of the rows leads to

fnpzq � zℓnp1� zqrn

ℓn!rn!

» z

0
fn�1pxq dx,

f1pzq :� zℓ1p1� zqr1

ℓ1!r1!
.

The crucial observation is now the following: The value
³1

0 fnpzq dz is
equal to the volume of the order polytope P associated to the correct
fillings of Yn. Thus, N!

³1
0 fnpzq dz is equal to the number of legitimate

fillings. For more details see Section 3.1.3.
We thus get that the number yn of Jenga tableaux with n rows is

yn �
� ņ

i�1

pℓi � ri � 1q
	

!
» 1

0
fnpxq dx. (6)

We now continue with some periodic patterns, that is if there exists
an integer p ¡ 0 such that ℓi�p � ℓi and ri�p � ri for all i ¥ 1. The
smallest such p is called the period. The simplest possible period is
p � 1; this case leads to a noteworthy generating function.

Theorem 3.2.1 (D-finiteness of periodic Jenga tableaux with p � 1).
The bivariate generating function Fpt, zq � °

n¥1 fnpzqtn is D-finite in t
and z. Accordingly, the counting sequence pynqn¥1 given by Equation (6) of
Jenga tableaux with n rows is P-recursive.

Note that set partitions of equal set sizes fall into the class of The-
orem 3.2.1 as ℓi � m� 1 and ri � 0 for all i ¥ 0. Let us also mention
the following unexpected link.

As further examples of Jenga shapes, the density method also gives:
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Proposition 3.2.2. For ri � 0 for all i ¥ 1 (see Figure 18), the number yn

of Jenga tableaux satisfies

yn � p°n
i�1pℓi � 1qq!±n

i�1 ℓi!p
°i

j�1pℓj � 1qq
.

Specializing these tableaux to periodic cases leads to some hyper-
geometric formulas.

Proposition 3.2.3. Consider Jenga tableaux with period p, arbitrary left
sequence pℓiqp

i�0, and right sequence priqp
i�0 � p0, . . . , 0q (see Figure 18).

Define L :� °p
i�1 ℓi. Then, the number yn of such tableaux satisfies

ykp�m � ym

�pL� pqL±p
i�1 ℓi!


k L�p¹
j�1

j�ℓ1�����ℓi�i

Γ
�

k� j�m
L�p

	
Γ
�

j�m
L�p

	 .

Accordingly, the generating function of such tableaux is the sum of p hyper-
geometric functions.

Figure 19: The building block of width 4 (left) is repeated k times and each
time shifted up by one cell to form a Young tableau with periodic
walls in a diagonal strip (centre). These tableaux are in bijection
with periodic Jenga tableaux with period p � 2, left sequence
pℓiq2i�1 � p2, 0q, and right sequence priq2i�1 � p0, 0q (right).

It is also possible to consider other shapes, such as skew Young
tableaux. Finally, we give such an example and thus add walls to a
model analysed in [20].

Proposition 3.2.4. Consider tableaux with periodic walls in a diagonal strip
of width w between each column in all but the top cell; see Figure 19. Let
bw,n be the number of such tableaux with n columns; one has

bw,n �
�

ww�2

pw� 2q!

n w�2¹

j�1

Γ
�

n� j
w

	
Γ
�

j
w

	 .
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3.2.2 Some unusual asymptotics

The density method can also be used to count and generate objects
which do not have simple counting formulas. We now present such
a class, which is a priori quite simple, but which however leads to
rather surprising asymptotics. Thus, this class illustrates well the non-
intuitive asymptotic behaviour of our objects.

6 10 14 15 17 18

3 5 9 12 13 16

2 1 7 4 11 8

S Y

R X

Figure 20: A 3 � n Young tableau with walls in its first row, and the cor-
responding building block for each column used in the density
method.

The increasing label constraints encoded in the building block of
Figure 20 directly translate to the following densities

fn�1px, yq :� x
» x

0

» y

x
fnpr, sq ds dr,

f1px, yq :� xpy� xq.

Then, the number of such tableaux is

an � p3n� 1q!
» 1

0

» y

0
fnpx, yq dx dy.

We multiply with p3n� 1q! as the final shape includes a single cell Y
on the top right with the maximum, which can therefore be simply re-
moved to create a 3� n shape. This gives the sequence OEIS A213863:

panqn¥1 � p1, 7, 106, 2575, 87595, 3864040, 210455470, . . . q.

It counts words where each letter ℓ of an n-ary alphabet occurs 3
times and for each prefix p one has |p|ℓ � 0 or |p|ℓ ¥ |p|j for all
j ¡ ℓ, where |p|ℓ counts occurrences of ℓ in p. The bijection with our
tableaux follows by mapping letters to columns; see [89] and [P16].

The following result is then obtained by using the methods intro-
duced in Section 2.2.

Theorem 3.2.5. The number an of Young tableaux of length n with shape
given by Figure 20 has the following asymptotics

an � Θ
�

n! 12nea1p3nq1{3
n�2{3

	
,

where a1 � �2.338 is the largest root of the Airy function of the first kind.

http://oeis.org/A213863
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3.2.3 A classification of 2� 2 periodic shapes

We now consider Young tableaux made of the concatenation of 2� 2
blocks with walls; see Figure 17. This model is interesting as it leads
to rather different natures of generating functions. Indeed, Table 2
hereafter summarizes the main results and groups them into four
classes according to their counting sequences: simple products, al-
gebraic, hypergeometric, or D-algebraic. Surprisingly, some of these
sequences connect with classical combinatorial objects!

There are 6 possible non-trivial locations for walls in a 2� 2 block
(due to possible coincidences of the walls on the right when the blocks
are concatenated). Thus, there are in total 26 � 64 different types of
building blocks. Most of these blocks come in pairs, as rotating a
tableau by 180 degrees and reversing the labels gives a bijection.

First, one gets 40 blocks for which the walls create independent
regions. This leads to 19 distinct sequences P1–P19, all having a simple
product formula.

Second, we consider the 4 blocks without vertical walls. They lead
to 3 distinct sequences A1–A3, which all have an algebraic generating
function. For A1 and A2 the proof uses a bijection to Dyck paths. For
A3 we decompose at the first wall that cannot be removed and get the
recurrence an � Catp2nq �°n

i�1 Catp2i� 1qan�i, which we then solve
with generating functions.

Third, we consider 14 blocks with a uniquely determined minimum
or maximum. They lead to 7 distinct sequences H1–H7, all hypergeo-
metric. The models H1–H5 are Jenga-like tableaux from Section 3.2.1
that satisfy li � 0 for all i. For the models H6 and H7 we use a re-
cursive approach, decomposing with respect to the location of the
unique minimum or maximum.

Fourth, there are three blocks which show a zig-zag-like pattern.
By analogy to the known zig-zag permutations, we conjecture Z2 and
Z3 to be non-D-finite. For Z1 we are able to prove that the exponential
generating function is D-algebraic, and not D-finite, i.e., it satisfies a
non-linear differential equation and no linear one. For this purpose
we use Carlitz’ theory [55] of generalized alternating permutations.

A pleasant feature of the density method approach is that it is au-
tomatable. See https://dmg.tuwien.ac.at/mwallner/Jenga/ for our
Maple package dedicated to the enumeration of tableaux with walls.

In conclusion, we have seen that Young tableaux with walls are a
rich model, leading (via the density method) to new varieties of re-
currences, interesting per se, mixing finite differences and differential
operators (challenging the current state of the art in computer algebra
and holonomy theory!), and surprising asymptotics (challenging the
current state of the art in analytic combinatorics!).

https://dmg.tuwien.ac.at/mwallner/Jenga/
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Class Shape Formula

P1 , 4
p4nq!
24n

P2
p4nq!
12n

P3 3
p4nq!
12n

P4

, ,

,

p4nq!
8n

P5

, ,

,

4
p4nq!

8n

Class Shape Formula

P6 ,
p4nq!

6n

P7 , 3
p4nq!

6n

P8 ,
8
5
p4nq!

�
5
24


n

P9 ,
p4nq!

4n

P10 , 2
p4nq!

4n

P11 4
p4nq!

4n

P12 ,
p4nq!

3n

Class Shape Formula

P13 , 6
p4nq!

3n

P14

, ,

,

p4nq!
2n

P15 , 2
p4nq!

2n

P16 ,
p4nq!
p2nq!2n

P17 , 2
p4nq!
p2nq!2n

P18 ,
p4nq!
p2nq!

P19 p4nq!

Class Shape Sequence OEIS

A1 Catp2nq � 1
2n� 1

�
4n
2n



A048990

A2
�

4n
2n



A001448

A3 , 22n�1 Catpnq �Catp2n� 1q A079489

H1 ,
n¹

i�1

p4i� 1qp4i� 3q A101485

H2 ,
n¹

i�1

p2i� 1qp4i� 1q A159605

H3 , 2n�1n!
n¹

i�1

p4i� 3q 2n�1�A084943

H4 ,
�

4n
n


 n¹
i�1

p3i� 1q �4n
n

��A008544

H5 ,
�

4n
n


 n¹
i�1

p3i� 2q �4n
n

��A007559

H6 , 2nn!
n¹

i�1

p4i� 3q n!�A084948

H7 ,
n¹

i�1

p2i� 1qp4i� 1q A159605

Z1 ,
cospt{?2q2 � coshpt{?2q2

2 cospt{?2q coshpt{?2q related to A211212

Z2 , ? ???

Z3 , ? ???

Table 2: The 64 different models of 2� 2 blocks for tableaux with periodic
walls grouped into 4 different classes: (P) simple products, (A) alge-
braic, (H) hypergeometric, (Z) zig-zag. The length n is equal to the
number of repeated blocks. The model Z1 is D-algebraic and not
D-finite, which is what we conjecture for the models Z2 and Z3.

http://oeis.org/A048990
http://oeis.org/A001448
http://oeis.org/A079489
http://oeis.org/A101485
http://oeis.org/A159605
http://oeis.org/A084943
http://oeis.org/A008544
http://oeis.org/A007559
http://oeis.org/A084948
http://oeis.org/A159605
http://oeis.org/A211212
https://oeis.org/search?q=3%2C119%2C13761%2C3178785%2C1226341035%2C711310157271%2C578808021857625%2C+629094292867153665%2C880420061542046903955%2C1542142783860061524297975%2C3305066423033878298552132145%2C8507914454392557998456492959905&sort=&language=english&go=Search
https://oeis.org/search?q=8%2C416%2C56136%2C14433600%2C6042488040%2C3743684613216%2C3219214017819240%2C3668912290108229760%2C5352687624294728270280%2C9729190960995966590426400%2C21557816749990824984425855880%2C57201801255727138416863255878080&sort=&language=english&go=Search
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3.3 periodic pólya urns , the density method and asymp-
totics of young tableaux [p28]

In this section, we present the results of [P28]. We first introduce a
new class of Pólya urns for which we solve the enumeration problem
and derive limit laws for its evolution. Then, we show how this urn
is connected to triangular Young tableaux and give some of the first
results on its limit shape.

Pólya urns were introduced in a simplified version by George Pólya
and his PhD student, Florian Eggenberger, in [75, 76, 156], with ap-
plications to disease spreading and conflagrations. They constitute a
powerful model, which regularly finds new applications: see, for ex-
ample, Rivest’s recent work on auditing elections [160], or the analysis
of deanonymization in Bitcoin’s peer-to-peer network [80]. They are
well-studied objects in combinatorial and probabilistic literature [9,
83, 136], because they offer fascinatingly rich links with numerous
objects like random recursive trees, m-ary search trees, and branch-
ing random walks (see, e.g., [10, 56, 102, 103]).

In the Pólya urn model, one starts with an urn with b0 black balls
and w0 white balls at time 0. At every discrete time step, one ball
is drawn uniformly at random. After inspecting its colour, this ball
is returned to the urn. If the ball is black, a black balls and b white
balls are added; if the ball is white, c black balls and d white balls are
added (where a, b, c, d P N are nonnegative integers). This process
can be described by the so-called replacement matrix:

M �
�

a b

c d

�
, a, b, c, d P N.

We call an urn balanced if a � b � c � d. In other words, in every
step the same number of balls is added to the urn. This results in a
deterministic number of balls after n steps: b0 � w0 � pa � bqn balls.
Let us now introduce a more general model.

Definition 3.3.1. A periodic Pólya urn of period p with replacement ma-
trices M1, M2, . . . , Mp is a variant of a Pólya urn in which the replacement
matrix Mk is used at steps np� k. Such a model is called balanced if each
of its replacement matrices is balanced.

For p � 1, this model reduces to the classical model of Pólya urns
with one replacement matrix.

Definition 3.3.2. Let p, ℓ P N. We call a Young–Pólya urn of period p
and parameter ℓ the periodic Pólya urn of period p (with b0 ¥ 1 to avoid
degenerate cases) and replacement matrices

M1 � M2 � � � � � Mp�1 �
�

1 0

0 1

�
and Mp �

�
1 ℓ

0 1� ℓ

�
.
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Example 3.3.3. Consider a Young–Pólya urn with parameters p � 2,
ℓ � 1, and initial conditions b0 � w0 � 1. The replacement matrices

are M1 :�
�

1 0

0 1

�
for every odd and M2 :�

�
1 1

0 2

�
for every even

step. For more details on this model see [14]. In the sequel, we will
use it as a running example to explain our results.

Figure 21 illustrates the evolution of this urn. Each node of the tree
corresponds to the current composition of the urn (number of black
and white balls). At the beginning, one starts with b0 � 1 black ball
and w0 � 1 white. In the first step, the matrix M1 is used and leads
to two different compositions. In the second step, matrix M2 is used,
in the third step, matrix M1 is used again, in the fourth step, matrix
M2, etc. Therefore, this leads to the following compositions: p2, 1q and
p1, 2q at time 1, p3, 2q, p2, 3q and p1, 4q at time 2, p4, 2q, p3, 3q, p2, 4q and
p1, 5q at time 3.

M1

M2

M1

6

2

1 1

2 2

1

8 8 8

Figure 21: The evolution of the Young–Pólya urn with period p � 2 and
parameter ℓ � 1 with one initial black and one initial white ball.
Black arrows mark that a black ball was drawn, dashed arrows
mark that a white ball was drawn. Straight arrows indicate that
the replacement matrix M1 was used, curly arrows show that the
replacement matrix M2 was used. The number below each node
is the number of possible transitions to reach this state.

In fact, each of these states may be reached in different ways, and
such a sequence of transitions is called a history. (Some authors also
call it a scenario, an evolution, or a trajectory.) Each history comes with
weight one. Implicitly, they induce a probability measure on the states
at step n. So, let Bn and Wn be random variables for the number
of black and white balls after n steps, respectively. As our model is
balanced, Bn �Wn is a deterministic process, reflecting the identity

Bn �Wn � b0 �w0 � n� ℓ

Z
n
p

^
. (7)

So, from now on, we concentrate our analysis on Bn.
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3.3.1 The generalized gamma product distribution

For the classical model of a single balanced Pólya urn, the limit law of
the random variable Bn is fully known and consists of a rich variety
of distributions. To name a few, let us mention the uniform [82], the
normal [10], and the beta and Mittag-Leffler distributions [102, 104].
Periodic Pólya urns lead to an even larger variety of distributions
involving a product of generalized gamma distributions [170].

Definition 3.3.4. The generalized gamma distribution GenGammapα, βq
with real parameters α, β ¡ 0 is defined on p0,�8q by the density function

f pt; α, βq :� β tα�1 expp�tβq
Γ pα{βq ,

where Γ is the classical gamma function Γpzq :� ³8
0 tz�1 expp�tq dt.

Remark 3.3.5. Let Γpαq be the gamma distribution1 of parameter α ¡ 0,
given on p0,�8q by

gpt; αq � tα�1 expp�tq
Γpαq .

Then one has Γpαq L= GenGammapα, 1q and, for r ¡ 0, the distribution
of the rth power of a random variable distributed like Γpαq is

Γpαqr L= GenGammapα{r, 1{rq.
Our main results also include the beta distribution Betapp, qq with

parameters p, q ¡ 0. It is defined by the density Γpp�qq
ΓppqΓpqqxp�1p1� xqq�1

on r0, 1s. We also introduce the convention that Betapp, qq � 1 when
either p � 0 or q � 0. The limit distribution of our urns is then ex-
pressed as a product of a beta and generalized gamma distributions.

Theorem 3.3.6 (Young–Pólya urns). The renormalized distribution of
black balls in a Young–Pólya urn of period p and parameter ℓ is asymp-
totically for n Ñ8 given by the following product of distributions:

pδ

p�ℓ
Bn

nδ

LÝÑ Betapb0, w0q
ℓ�1¹
i�0

GenGammapb0�w0�p�i, p�ℓq, (8)

with δ � p{pp� ℓq, and Betapb0, w0q � 1 when w0 � 0.

Example 3.3.7. In the case of the Young–Pólya urn with p � 2, ℓ � 1,
and w0 � b0 � 1, one has δ � 2{3. Thus, the previous result shows
that the number of black balls converges in law to a generalized
gamma distribution:

22{3

3
Bn

n2{3
LÝÑ Unifp0, 1q �GenGammap4, 3q � GenGamma p1, 3q .

1It is traditional to use the same letter for the Γ function and the Γ distribution.
Some authors add a second parameter to the Γ distribution, which is set to 1 here.



3.3 periodic pólya urns and triangular young tableaux 47

An extension of the used methods then allows us to obtain the
following much more general version.

Theorem 3.3.8 (Triangular balanced urns). Let p ¥ 1 and ℓ1, . . . , ℓp ¥ 0
be nonnegative integers. Consider a periodic Pólya urn of period p with

replacement matrices M1, . . . , Mp given by Mj :�
�
�1 ℓj

0 1� ℓj

�
. Then the

renormalized distribution of black balls is asymptotically for n Ñ 8 given
by the following product of distributions:

pδ

p�ℓ
Bn

nδ

LÝÑ Betapb0, w0q
p�ℓ�1¹

i�1
i�ℓ1�����ℓj�j
with 1¤j¤p�1

GenGammapb0�w0�i, p�ℓq.

with ℓ � ℓ1 � � � � � ℓp, δ � p{pp� ℓq, and Betapb0, w0q � 1 when w0 � 0.

In the sequel, we call this distribution the generalized gamma prod-
uct distribution and denote it either by GenGammaProdpp, ℓ, b0, w0q
or, in the more general case, by GenGammaProdprℓ1, . . . , ℓps; b0, w0q.
We will see in Section 3.3.4 that this distribution is characterized by
its moments, which have a nice factorial shape given in Formula (12).

Example 3.3.9 (Staircase periodic Pólya urn). The number Bn of black
balls in the Pólya urn of period 3 with replacement matrices

M1 :�
�

1 0

0 1

�
, M2 :�

�
1 1

0 2

�
, and M3 :�

�
1 2

0 3

�
,

has the limit law GenGammaProdpr0, 1, 2s; b0, w0q:
?

3
6

Bn?
n

LÝÑ Betapb0, w0q
¹

i�2,4,5

GenGammapb0 �w0 � i, 6q.

3.3.2 Connection with previous results

By [104, Theorem 1.3], the renormalization for the limit distribution of

Bn in an urn with replacement matrix

�
1 ℓ

0 1� ℓ

�
is equal to n�1{p1�ℓq.

For ℓ � 0 the limit distribution is the uniform distribution, whereas
for ℓ � 1 it is a Mittag-Leffler distribution (see [104, Example 3.1],
[82, Example 7]), which simplifies to a half-normal distribution [177]
when b0 � w0 � 1. Thus, using this replacement matrix periodically
only every pth round and otherwise Pólya’s replacement matrix with
ℓ � 0 changes the renormalization to n�p{pp�ℓq.

The rescaling factor n�δ with δ � p{pp� ℓq can also be obtained via
a martingale computation. The true challenge is to get exact enumer-
ation and the limit law. It is interesting that there exist other families
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of urn models exhibiting the same rescaling factor, however, these
alternative models lead to different limit laws.

A first natural alternative model consists in averaging the p replace-
ment matrices. This gives a classical triangular Pólya urn satisfying

Bn

nδ

LÝÑ B, (9)

where the distribution of B is, e.g., analysed by Flajolet et al. [82] via
an analytic combinatorics approach, or by Janson [104] and Chauvin
et al. [56] via a probabilistic approach relying on a continuous-time
embedding introduced by Athreya and Karlin [8]. For example, aver-
aging the Young–Pólya urn with p � 2, ℓ � 1, and b0 � w0 � 1 leads

to the replacement matrix

�
1 1{2
0 3{2

�
.

The corresponding classical urn model leads to a limit distribution
with moments given, e.g., by Janson in [104, Theorem 1.7]:

EpBrq � Γp4{3q r!
Γp2r{3� 4{3q .

Comparing these moments with the moments of our distribution
(Equation (12) hereafter) proves that these two distributions are dis-
tinct. However, it is noteworthy that they have similar tails: we discuss
this universality phenomenon in Section 3.3.24.

Another interesting alternative model, called multi-drawing Pólya
urn model, consists in drawing multiple balls at once; see Lasmar
et al. [129] or Kuba and Sulzbach [125]. Grouping p units of time into
one drawing leads to a new replacement matrix. For example, for
p � 2 and ℓ � 1 we can approximate a Young–Pólya urn by an urn
where at each unit of time 2 balls are drawn uniformly at random. If
both of them are black we add 2 black balls and 1 white ball, if one is
black and one is white we add 1 black and 2 white ball, and if both of
them are white we add 3 white balls. Then the same convergence as
in Equation (9) holds, yet again with a different limit distribution, as
can be seen by comparing the means and variances; compare Kuba
and Mahmoud [123, Theorem 1] with our Example 3.3.16.

Figure 22 shows that the distribution of Bn is spread. This is consis-
tent with our result that the standard deviation and the mean EpBnq
(blue) have the same order of magnitude. Note that the same hap-
pens for classical urn models with replacement matrices being either
M1 or M2; see [82, Figure 1]. In our case, the fluctuations around this
mean are given by the generalized gamma product limit law from
Equation (8). Previously, this distribution has appeared, e.g., in [107],
as an instance of distributions with moments of gamma type (com-
pare the supremum process of the Brownian motion); in [150], as
distributions of processes on walks/trees/urns/preferential attach-
ments in graphs; or in [116], as a generalization of several other dis-
tributions.
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Figure 22: Left: 20 simulations (red) of the number Bn of black balls in the
Young–Pólya urn with period p � 2 and parameter ℓ � 1 with
initially b0 � 1 black and w0 � 1 white balls, and the mean EpBnq
(blue). Right: the average (red) of the 20 simulations, fitting al-
most indistinguishably the limit curve EpBnq � Θpn2{3q (blue).

3.3.3 A functional equation for periodic Pólya urns

3.3.3.1 Urn histories and differential operators

Let hn,b,w be the number of histories of a periodic Pólya urn after n
steps with b black balls and w white balls, with an initial state of b0

black and w0 white balls. We define the polynomials

hnpx, yq :�
¸

b,w¥0

hn,b,wxbyw.

Note that these are indeed polynomials as there is just a finite num-
ber of histories after n steps. Due to the balanced urn model these
polynomials are homogeneous. We collect all these histories in the
trivariate exponential generating function

Hpx, y, zq :�
¸
n¥0

hnpx, yqzn

n!
.

Example 3.3.10. For the Young–Pólya urn with p � 2, ℓ � 1, and
b0 � w0 � 1 (compare Figure 21), we get for the first three terms

Hpx, y, zq � xy� �
xy2 � x2y

�
z�

�
2xy4 � 2x2y3 � 2x3y2

	 z2

2
� . . .

The periodic nature of the problem motivates to split the num-
ber of histories into p residue classes. Let H0px, y, zq, H1px, y, zq, . . .,
Hp�1px, y, zq be the generating functions of histories after 0, 1, . . . , p�
1 draws modulo p, respectively. In particular, we have

Hipx, y, zq :�
¸
n¥0

hpn�ipx, yq zpn�i

ppn� iq! ,
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for i � 0, 1, . . . , p� 1 such that

Hpx, y, zq � H0px, y, zq � H1px, y, zq � � � � � Hp�1px, y, zq.
As our urns are balanced there is the deterministic link (7) between

the number of black and white balls after n drawings. Thus it is nat-
ural to introduce the two shorthands

Hpx, zq :� Hpx, 1, zq and Hipx, zq :� Hipx, 1, zq.
What is the nature of these functions? This is what we tackle now.

3.3.3.2 D-finiteness of history generating functions

The dynamics of urns are intrinsically related to partial differential
equations (mixing Bx, By, and Bz); see, e.g., [83]. It is a nice surprise
that it is also possible to describe their evolution in many cases with
ordinary differential equations (i.e., involving only Bz).

Theorem 3.3.11 (Differential equations for histories). The generating
functions describing a Young–Pólya urn of period p and parameter ℓ with
initially s0 � b0 �w0 balls, where b0 are black and w0 are white, satisfy the
following system of p partial differential equations:

BzHi�1px, zq � xpx� 1qBx Hipx, zq � p1� ℓ{pq zBzHipx, zq
� ps0 � iℓ{pqHipx, zq, (10)

for i � 0, . . . , p� 1 with Hppx, zq :� H0px, zq. Moreover, if any of the corre-
sponding generating functions (ordinary, exponential, ordinary probability,
or exponential probability) is D-finite in z, then all of them are D-finite in z.

Experimentally, in most cases a few terms suffice to guess a holo-
nomic sequence in z. We believe that this sequence is always holo-
nomic, yet we were not able to prove it in full generality.

Example 3.3.12. In the case of the Young–Pólya urn with p � 2, ℓ � 1,
and b0 � w0 � 1, the differential equations for histories (10) are$'&

'%
BzH0px, zq � xpx� 1qBx H1px, zq � 3

2
zBzH1px, zq � 3

2
H1px, zq,

BzH1px, zq � xpx� 1qBx H0px, zq � 3
2

zBzH0px, zq � 2H0px, zq.
In addition to this system of partial differential equations, there

exist also two ordinary linear differential equations in z for H0 and
H1, and therefore for their sum H :� H0�H1, the generating function
of all histories.

Note that such D-finite equations lead under “generic” conditions
to a Gaussian limit law; see [84, Theorem 7] and [85, Chapter IX.7]. It
is interesting that these conditions are not fulfilled in our case. Thus,
the model of periodic Pólya urns leads to an original analytic situa-
tion, which offers a new (non-Gaussian) limit law.

We thus need another strategy to determine the limit law, which
we present now in the next section.
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3.3.4 Moments of periodic Pólya urns

Let us introduce mrpnq, the rth factorial moment of the distribution
of black balls after n steps, i.e.

mrpnq :� E pBnpBn � 1q � � � pBn � r� 1qq .

Expressing them in terms of the generating function Hpx, zq, we have

mrpnq �
rzns Br

Bxr Hpx, zq
���
x�1

rznsHp1, zq , (11)

where rzns°n fnzn :� fn is the coefficient extraction operator. We will
compute the sequences of the numerator and denominator separately.

3.3.4.1 Number of histories: a hypergeometric closed form

We show that Hp1, zq has a miraculous property which does not hold
for Hpx, zq: it is a sum of generalized hypergeometric functions [5].

Theorem 3.3.13 (Hypergeometric closed forms). Let hn :�n!rznsHp1, zq
be the number of histories after n steps in a Young–Pólya urn of period p and
parameter ℓ with initially s0 � b0 �w0 balls, where b0 are black and w0 are
white. Then, for each i, phpm�iqmPN is a hypergeometric sequence, satisfying

hppm�1q�i � hpm�ipp� ℓqp
i�1¹
j�0

�
m� 1� s0 � j

p� ℓ


 p�1¹
j�i

�
m� s0 � j

p� ℓ



.

Example 3.3.14. For the Young–Pólya urn with p � 2, ℓ � 1, and
b0 � w0 � 1, one has for hn :� n!rznsHp1, zq:

hn �
$&
%3n Γp n

2�1qΓp n
2� 2

3q
Γp2{3q if n is even,

3n Γp n
2� 1

2qΓp n
2� 7

6q
Γp2{3q if n is odd.

Alternatively, this sequence satisfies hpn� 2q � 3
2 hpn� 1q � 1

4p9 n2 �
21 n� 12qhpnq. We added this sequence as OEIS A293653 in the On-
Line Encyclopedia of Integer Sequences [167]: 1, 2, 6, 30, 180, 1440,
12960, 142560, . . . The exponential generating function can be written
as the sum of two hypergeometric functions:

Hp1, zq � 2F1

�� 2
3 , 1

�
,
� 1

2

�
,
� 3z

2

�2
	
� 2z 2F1

�� 5
3 , 1

�
,
� 3

2

�
,
� 3z

2

�2
	

.

3.3.4.2 Method of moments

We proceed with the computation of the moments. By (11) we need to
compute the derivatives of Hipx, zq with respect to x evaluated at x �
1. For this purpose we use the differential equations for histories (10).
The key observation is that the derivative of Hipx, zq with respect

http://oeis.org/A293653
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to x has a factor px � 1q, which makes it possible to compute the
derivatives iteratively by taking the rth derivative with respect to x
and substituting x � 1. This leads to the following proposition.

Proposition 3.3.15. The rth (factorial) moment of Bn (number of black
balls after n draws in a Young–Pólya urn of period p and parameter ℓ with
initially s0 � b0 �w0 balls, b0 black and w0 white) satisfies (δ � p

p�ℓ )

mrpnq � γr nδr
�

1�O
�

1
n




, with γr � b0

r

pδr

p�1¹
j�0

Γ
�

s0�j
p�ℓ

	
Γ
�

s0�r�j
p�ℓ

	 .

Example 3.3.16. For the Young–Pólya urn with p � 2, ℓ � 1, and
b0 � w0 � 1, we get for the mean and the variance of Bn

EBn � 3
?

3 21{3Γ p2{3q2
4π

n2{3 � 0.9552 n2{3,

VBn � 27
8

Γ p2{3q2
�

3Γ p4{3q � Γ p2{3q2
	

21{3π2 n4{3 � 0.42068 n4{3.

Now we have all ingredients to use the method of moments to
prove Theorem 3.3.6. The natural factors occurring in the constant
γr of Proposition 3.3.15, may they be 1{Γp s�r�j

p�ℓ q or pb0
rq1{p{Γp s�r�j

p�ℓ q,
do not satisfy the determinant/finite difference positivity tests for
the Stieltjes/Hamburger/Hausdorff moment problems, therefore no
continuous distribution has such moments; see [176]. However, the
full product does correspond to moments of a distribution which is
easier to identify if we start by transforming the constant γr by the
Gauss multiplication formula of the gamma function; this gives

γr � pp� ℓqr
pδr mr, with

mr :� Γ pb0 � rq Γ ps0q
Γ pb0q Γ ps0 � rq

ℓ�1¹
j�0

Γ
�

s0�r�p�j
p�ℓ

	
Γ
�

s0�p�j
p�ℓ

	 . (12)

Combining this result with the rth (factorial) moment mrpnq from
Proposition 3.3.15, we see that the moments E pB�n rq of the rescaled

random variable B�n :� pδ

p�ℓ
Bn
nδ converge for n Ñ 8 to the limit mr, a

simple formula involving the parameters pp, ℓ, b0, w0q of the model.
Now note that the following sum diverges (recall 0 ¤ p1� δq   1):¸
r¡0

m�1{p2rq
r � C

¸
r¡0

r�p1�δq{2p1� op1qq � �8 .

Therefore, a result by Carleman (see [54, pp. 189–220]) implies that
there exists a unique distribution D with such moments mr. Then,
by Fréchet and Shohat [88, p. 536], B�n converges to D. Finally, we
identify the involved distributions and get Theorem 3.3.6.

In the next section, we will see what are the implications of our
results for urns on an apparently unrelated topic: Young tableaux.
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3.3.5 Periodic Young tableaux

Many results on the asymptotic shape of Young tableaux have been
collected, but very few results are known on their asymptotic con-
tent when the shape is fixed (see, e.g., the works by Pittel and Romik,
Angel et al., Marchal [6, 138, 154, 163], who have studied the distri-
bution of the values of the cells in random rectangular or staircase
Young tableaux, while the case of Young tableaux with a more gen-
eral shape seems to be very intricate). It is therefore pleasant that our
work on periodic Pólya urns allows us to get advances on the case of
a triangular shape, with any rational slope.

Definition 3.3.17. For integers n, ℓ, p ¥ 1, a triangular Young tableau
of parameters pℓ, p, nq is a classical Young tableau with N :� pℓnpn� 1q{2
cells, with length nℓ, and height np such that the first ℓ columns have np
cells, the next ℓ columns have pn� 1qp cells, etc.; see Figure 23.

43 55 61 72

31 44 60 71

22 25 32 39

18 24 27 35 41 58 59 68

17 19 26 30 40 52 56 63

12 14 20 29 38 49 51 62

6 8 10 21 28 46 50 53 57 65 67 70

3 5 7 13 15 45 47 48 54 64 66 69

1 2 4 9 11 16 23 33 34 36 37 42

` ` `

p

p

p

Figure 23: A triangular Young tableau (i.e., a given periodic shape). The
south-east cell v (in black) of this Young tableau follows the same
distribution we proved for urns (gen. gamma product dis.).

For such a tableau, we study the typical value of its south-east cor-
ner. It could be expected (e.g., via the Greene–Nijenhuis–Wilf hook
walk algorithm for generating Young tableaux [95]) that the entries
near the hypotenuse should be N� opNq. Our result on periodic urns
enables us to describe these opNq fluctuations including the right crit-
ical exponent and the limit law in the corner:

Theorem 3.3.18. Choose a uniform random triangular Young tableau of pa-
rameters pℓ, p, nq and of size N � pℓnpn� 1q{2 and put δ � p{pp� ℓq. Let
Xn be the entry of the south-east corner. Then pN � Xnq{n1�δ converges in
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law to the same limiting distribution as the number of black balls in the pe-
riodic Young–Pólya urn with initial conditions b0 � p, w0 � ℓ and with re-

placement matrices M1 � � � � � Mp�1 �
�

1 0

0 1

�
and Mp �

�
1 ℓ

0 1� ℓ

�
,

that is, we have the convergence in law, as n goes to infinity, towards
GenGammaProd (the distribution defined by Formula (8), page 46):

2
pℓ

N � Xn

n1�δ

LÝÑ GenGammaProdpp, ℓ, p, ℓq.

Remark 3.3.19. If we replace the parameters pℓ, p, nq by pKℓ, Kp, nq for
some integer K ¡ 1, we are basically modelling the same triangle, yet
the limit law is GenGammaProdpKp, Kℓ, Kp, Kℓq, which differs from
GenGammaProdpp, ℓ, p, ℓq. However, there is still some universality:
the critical exponent δ remains the same and the limit laws are closely
related in the sense that they have similar tails; see Section 3.3.6.2.

As in the case of Pólya urns, our result generalizes to a much bigger
class of triangular Young tableaux: those with any periodic shape. Let
us first specify what we mean by shape:

Definition 3.3.20 (The shape of a tableau2). We say that a tableau has
shape λi1

1 � � �λin
n (with λ1 ¡ � � � ¡ λn) if it has (from left to right) first i1

columns of height λ1, etc., and ends with in columns of height λn.
Moreover, let b0, w0 ¡ 0. A tableau of shape λi1

1 � � �λin
n shifted by a block

bw0
0 is a tableau of shape pλ1 � b0qi1 � � � pλn � b0qin bw0

0 .

As an illustration, the tableau on the top of Figure 23 has shape
946434. Now we can define periodic tableaux.

Definition 3.3.21 (Periodic tableaux). For any tuple of nonnegative inte-
gers pℓ1, . . . , ℓpq, a tableau with periodic pattern shape pℓ1, . . . , ℓp; nq is a
tableau with shape (recall Definition 3.3.20)�pnpqℓppnp� 1qℓp�1 � � � pnp� p� 1qℓ1

�
� �ppn� 1qpqℓp � � � ppn� 1qp� p� 1qℓ1

�� � � � � �
pℓp � � � 1ℓ1

�
.

A uniform random Young tableau with periodic pattern shape pℓ1, . . . , ℓp; nq
is a uniform random filling of a tableau with such a periodic pattern shape.

Let us put the previous pattern in words: we have a tableau made
of n blocks, each of these blocks consisting of p smaller blocks of
length ℓp, . . . , ℓ1, and the height decreases by 1 between each of these
smaller blocks. This leads to a tableau length pℓ1 � � � � � ℓpqn, which
repeats periodically the same subshape along its hypotenuse.

Note that the triangular Young tableau of parameters pℓ, p, nq from
Definition 3.3.17 corresponds to Definition 3.3.21 for the pp� 1q-tuple
p0, . . . , 0, ℓ; nq.

We can now state the main theorem for periodic Young tableaux:
2Some authors define the shape of a tableau as its row lengths from bottom to

top. Here we use the list of column lengths, as it directly gives the natural quantities
to state our results in terms of trees and urns.
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Theorem 3.3.22 (The distribution of the south-east entry in periodic
Young tableaux). Choose a uniform random Young tableau with periodic
pattern shape pℓ1, . . . , ℓp; nq shifted by a block bw0

0 . Let N be its size, set ℓ :�
ℓ1�� � �� ℓp and δ :� p{pp� ℓq. Let Xn be the entry of the south-east corner.
Then pN � Xnq{n1�δ converges in law to the same limiting distribution
as the number of black balls in the periodic Young–Pólya urn with initial

conditions pb0, w0q and with replacement matrices Mi �
�

1 ℓi

0 1� ℓi

�
:

2
pℓ

N�Xn

n1�δ

LÝÑ Betapb0, w0q
p�ℓ�1¹

i�1
i�ℓ1�����ℓj�j
with 1¤j¤p�1

GenGammapb0�w0�i, p�ℓq.

The proofs of these results build on the density method that we
explained in the Sections 3.1 and 3.2. Let us now discuss some conse-
quences of our results for the limit shapes of random Young tableaux.

3.3.6 Random Young tableaux and random surfaces

There is a vast and fascinating literature related to the asymptotics of
Young tableaux when their shape is free, but the number of cells is
going to infinity: it even originates from the considerations of Erdős,
Szekeres, and Ulam on longest increasing subsequences in permuta-
tions (see [3, 163] for a nice presentation of these fascinating aspects).
There, algebraic combinatorics and variational calculus appear to play
a key rôle, as became obvious with the seminal works of Vershik
and Kerov, Logan and Shepp [132, 175]. The asymptotics of Young
tableaux when the shape is constrained is harder to handle, and this
section tackles some of these aspects.

3.3.6.1 Random surfaces

Figure 24 illustrates some known results and some conjectures on
“the continuous” limit of Young tableaux (see also the notion of con-
tinual Young tableaux in [115]). Let us now explain a little bit what is
summarized by this figure, which, in fact, refers to different levels of
renormalization in order to catch the right fluctuations. It should also
be pinpointed that some results are established under the Plancherel
distribution, while some others are established under the uniform
distribution (like in the present work).

First, our Theorem 3.3.18 can be seen as a result on random sur-
faces arising from Young tableaux with a fixed shape. Let us be more
specific. Consider a fixed rectangular triangle Tr where the size of the
edges meeting at the right angle are p and q, respectively, where p
and q are integers. One can approximate Tr by a sequence of triangu-
lar Young tableaux pYnqn¥0 from Definition 3.3.17, where the size of
the sides meeting at the right angle are pn and qn.
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Gaussian free field?
proven in [114] for random tilings,

Generalized gamma product distribution
local limit law proven here,

Airy ensemble?
proven in [138] for square shapes
(includes Tracy-Widom distribution),

Unknown

Local limit laws
see, e.g., [33, 141]

& Gaussian for rectangular shapes [138],
see also [110] for some special cases

see also [94]

see also [30, 152, 154]

Figure 24: Known and conjectured limit laws of random Young tableaux.

For each of these tableaux, one can pick a random standard filling
and one can interpret it as a random discretized surface. More pre-
cisely, if 0 ¤ x ¤ p and 0 ¤ y ¤ q are two reals and if the entry of
the cell ptxnu , tynuq is z, then we set fnpx, yq :� 2z{ppqn2q. Thereby, we
construct a random function fn : Tr Ñ r0, 1s which is discontinuous
but it is to be expected that, in the limit, the functions fn converge in
probability to a deterministic, continuous function f (see Figure 25).
Intuitively, for every point px, yq on the hypotenuse, one will have
f px, yq � 1 and this is the case in particular for the south-east corner,
that is, the point pp, 0q. Then, one can view Theorem 3.3.18 as a re-
sult on the fluctuations of the random quantity fnpp, 0q away from its
deterministic limit, which is 1.

As a matter of fact, the convergence of fn to f has only been stud-
ied when the shape of the tableau is fixed. The convergence towards
a limiting surface was first proven when the limit shape is a finite
union of rectangles; see Biane [30]. There, the limiting surface can be
interpreted in terms of characters of the symmetric group and free
probability but this leads to complicated computations from which it
is difficult to extract explicit expressions.

For rectangular Young tableaux, the limiting surface is described
more precisely by Pittel and Romik [154]. A limiting surface also ex-
ists for staircase tableaux: it can be obtained by taking the limiting sur-
face of a square tableau and cutting it along the diagonal; see [6, 130].
This idea does not work for rectangular (nonsquare) Young tableaux:
if one cuts such tableaux along the diagonal, one does not get the limit-
ing surface of triangular Young tableaux (the hypotenuse would have
been the level line 1, but the diagonal is in fact not even a level line,
as visible in Figure 25 and proven in [154]).

Apart from the particular cases mentioned above, convergence re-
sults for surfaces arising from Young tableau seem to be lacking.
There are also very few results about the fluctuations away from
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Figure 25: Random generation of Young tableaux, seen as random surfaces
(the colours correspond to level lines). Top: triangular Young
tableaux (size 60 � 60, seen as histogram, and 200 � 200); Bot-
tom: rectangular and triangular Young tableaux (400 � 200 and
410� 20). The images are generated via our own Maple package
available at https://lipn.fr/~cb/YoungTableaux, relying on a
variant of the hook-length walk of [95].

the limiting surface. For rectangular shapes, these fluctuations were
studied by Marchal [138]: they are Gaussian in the south-east and
north-west corner, while the fluctuations on each edge follow a Tracy–
Widom limit law, at least when the rectangle is a square (for general
rectangles, there remain some technicalities, although the expected
behaviour is the same). For staircase triangles, Gorin and Rahman [94]
use a sorting network representation to obtain asymptotic formulas
using double integrals. In particular, they find the limit law on the
edge. Their approach may be generalizable to other triangular shapes.
Also, instead of renormalized limits, one may be interested in local
limits, there are then nice links with the famous jeu de taquin [169]
and characters of symmetric groups [33].

There is another framework where random surfaces naturally arise,
namely random tilings and related structures (see, e.g., [166]). In-
deed, one can associate a height function with a tiling: this gives
an interpretation as a surface. In this framework, there are results
on the fluctuations of these surfaces, which are similar to the ones
on Young tableaux. In the case of the Aztec diamond shape, Johans-
son and Nordenstam [110] proved that the fluctuations of the Ar-
tic curve are related to eigenvalues of GUE minors (and are there-

https://lipn.fr/~cb/YoungTableaux
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fore Gaussian near the places where the curve is touching the edges,
whereas they are Tracy–Widomian when the curve is far away from
the edges). Note that this gives the same limit laws as for the Ar-
tic curve of a TASEP jump process associated to rectangular Young
tableaux [138, 162]. Similar results were also obtained for pyramid
partitions [45, 46]. Moreover, in other models of lozenge tilings, it is
proven that for some singular points, other limit laws appear: they are
called cusp-Airy distributions, and are related to the Airy kernel [74].
It has to be noticed that, up to our knowledge, the generalized gamma
distributions, which appear in our results, have not been found in the
framework of random tilings.

A major challenge would be to capture the fluctuations of the sur-
face in the interior of the domain. For Young tableaux, it is reason-
able to conjecture that these fluctuations could be similar to those
observed for random tilings: in this framework, Kenyon [114] and
Petrov [152] proved that the fluctuations are given by the Gaussian
free field (see also [51]).

Finally, a dual question would be: in which cell does a given entry
lie in a random filling of the tableau? In the case of triangular shapes
like ours, if we look at the largest entry, we get:

Proposition 3.3.23 (Location of the maximum). Choose a uniform ran-
dom triangular Young tableau of parameters pℓ, p, nq (see Definition 3.3.17).
Let Posin P t1, . . . , ℓnu be the x-coordinate of the cell containing the largest
entry. Then one has

Posin

ℓn
LÝÑ Arcsinepδq, where δ :� p{pp� ℓq.

So, if we compare models with different p and ℓ, then the largest en-
try will have the tendency to be on the top of the hypotenuse when ℓ

is much larger than p, while it will be on its bottom if p is much larger
than ℓ (and on the bottom or the top with equally high probabilities
when p � ℓ); see Figure 25. This is in sharp contrast with the case
of an n � n square tableau where, for t P p0, 1q, the cell containing
the entry tn2 is asymptotically distributed according to the Wigner
semicircle law on its level line; see [154]. We also refer to Romik [161]
for further discussions on Young tableau landscapes and to Morales,
Pak, and Panova [146] for recent results on skew-shaped tableaux.

3.3.6.2 From microscopic to macroscopic models: universality of the tails

What happens if we use different tableaux of parameters pKℓ, Kp, nq
for any “zoom factor” K P N, as shown in Figure 26? In the first
case, we obtain the limit law GenGammaProdpp, ℓ, p, ℓq for the south-
east corner, whereas in the second case, we get the different law
GenGammaProdpKp, Kℓ, Kp, Kℓq.

In fact, we could even imagine more general periodic patterns as
in Theorem 3.3.22 corresponding to the same macroscopic object. All
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` ` ` ` ` `
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2` 2` 2`

2p

2p
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3` 3`
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3p

Figure 26: Different discrete models converge towards a tableau of slope
�p{ℓ. As usual for problems related to urns, many statistics have
a sensibility to the initial conditions; it is therefore nice that some
universality holds: the distributions (depending on p, ℓ, and the
“zoom factor” K) of our statistics have similar tails compared to
Mittag-Leffler distributions.

these models lead to different asymptotic distributions. However, we
partially have some universal phenomenon in the sense that, although
these limit distributions are different, they are closely related by the
fact that their tails are similar to the tail of a Mittag-Leffler distribu-
tion.

Definition 3.3.24 (Similar tails). One says that two random variables X
and Y have similar tails and one writes X � Y if

log EpXrq
EpYrq
r

Ñ 0, as r Ñ8.

This definition has the advantage to induce an equivalence relation
between random variables which have moments of all orders: if X, Y
are in the same equivalence class, then for every ε P p0, 1q, for r large
enough, one has

Eppp1� εqXqrq ¤ EpYrq ¤ Eppp1� εqXqrq .

In the following theorem, we give much finer asymptotics than the
above bounds. Recall from, e.g., [93, page 8] that the Mittag-Leffler
distribution MLpα, βq (0   α   1 and β ¡ �α) is determined by its
moments. Its rth moment has two equally useful closed forms:

mML,r � ΓpβqΓpβ{α� rq
Γpβ{αqΓpβ� αrq �

Γpβ� 1qΓpβ{α� r� 1q
Γpβ{α� 1qΓpβ� αr� 1q .

Theorem 3.3.25 (Similarity with the tail of a Mittag-Leffler distribu-
tion). Let X � GenGammaProdprℓ1, . . . , ℓps; b0, w0q and put ℓ � ℓ1 �
� � � � ℓp, δ � p{pp � ℓq. Let Y :� MLpδ, βq with β ¡ �δ. Then X and
δpδ�1Y have similar tails in the sense of Definition 3.3.24.

Remark 3.3.26. The tails of this distribution are universal: they depend
only on the slope δ and the period length p. They depend neither on
the initial conditions b0 and w0, nor on further details of the geometry
of the periodic pattern (the ℓi’s).
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One more universal property which holds for some families of urn
distributions is that they possess sub-Gaussian tails, a notion intro-
duced by Kahane in [111] (see also [125] for some urn models):

Definition 3.3.27 (Sub-Gaussian tails). A random variable X has sub-
Gaussian tails if there exist two constants c, C ¡ 0, such that

Pp|X| ¥ tq ¤ Ce�ct2
, t ¡ 0.

Proposition 3.3.28. The GenGammaProdpp, ℓ, b0, w0q distributions have
sub-Gaussian tails if and only if p ¥ ℓ.

Another useful notion which helps to gain insight into the limit
of Young tableaux is the notion of a level line: let Cv be the curve
separating the cells with an entry bigger than v and the cells with an
entry smaller than v (and to get a continuous curve, one follows the
border of the Young tableau if needed; see Figure 27).

44 55 61 72

31 43 60 71

22 25 32 39

18 24 27 35 41 58 59 68

17 19 26 30 40 52 56 63

12 14 20 29 38 49 51 62

6 8 10 21 28 46 50 53 57 65 67 70

3 5 7 13 15 45 47 48 54 64 66 69

1 2 4 9 11 16 23 33 34 36 37 42

Figure 27: The level line (in red) of the south-east corner Xn: it separates all
the entries smaller than Xn from the other ones. Left: one example
with the level line of Xn � 42; right: the level line of Xn, for a
very large Young tableau of size N of triangular shape. The area
between this level line and the hypotenuse is the quantity N�Xn
from Theorem 3.3.22.

When n Ñ 8, one may ask whether the level line CXn converges
in distribution to some limiting random curve C. If so, the limit laws
we computed in Theorem 3.3.18 would give the (renormalized) area
between the macroscopic curve C and the hypotenuse. In particu-
lar, the law of C would depend on the microscopic details of the
model, since we find for the renormalized area a whole family of dis-
tributions GenGammaProdpp, ℓ, b0, w0q depending on 4 parameters.
Besides, note that we could imagine even more general microscopic
models for the same macroscopic triangle. For instance, for a slope
�1, starting from the south-east corner we could have a periodic pat-
tern (1 step north, 2 steps west, 2 steps north, 1 step west). All shapes
leading to the same slope are covered by Theorem 3.3.8 (see also Ex-
ample 3.3.9), and our method then gives similar, but distinct, limit
laws. Such models thus yield another limit law for the area, and thus
another limiting random curve C.
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Note that the renormalized area between C and the hypotenuse
does not have the same distribution as the area below the positive
part of a Brownian meander [105]. Funnily, Brownian motion theory
is cocking a snook at us: another one of Janson’s papers [107] studies
the area below curves which are related to the Brownian supremum
process and, here, one observes more similarities with our problem,
as the moments of the corresponding distribution involve the gamma
function. However, these moments grow faster than in the limit laws
found in Theorem 3.3.18. It is widely open if there is some framework
unifying all these points of view.

3.3.6.3 Factorizations of gamma distributions

With respect to the asymptotic landscape of random Young tableaux,
let us add one last result: our results on the south-east corner directly
imply similar results on the north-west corner. In particular, the crit-
ical exponent for the upper left corner is 1 � δ. In fact, it is a nice
surprise that there is even more structure: any periodic pattern shape
is naturally associated with a family of patterns such that the limit
laws of the south-east corners of the corresponding Young tableaux
are related to each other.

Let us describe the periodic pattern via a shape path pi1, j1; . . . ; im, jmq:
it starts at the north-west corner of the tableau described by the pat-
tern with i1 right steps, followed by j1 down steps, etc.; see Figure 28.
Then its cyclic shift is defined by pjm, i1; . . . ; jm�1, imq. Furthermore,
this notion is equivalent to Definition 3.3.21 of a periodic tableau via

pℓ1, . . . , ℓpq � p0, . . . , 0, jmlooooomooooon
im elements

, 0, . . . , 0, jm�1loooooomoooooon
im�1 elements

, . . . , 0, . . . , 0, j1loooomoooon
i1 elements

q.

Then the cyclic shift is given by

pℓ11, . . . , ℓ1p1q :� p 0, . . . , 0, imlooooomooooon
jm�1 elements

, . . . , 0, . . . , 0, i2loooomoooon
j1 elements

, 0, . . . , 0, i1loooomoooon
jm elements

q.

In particular we have p1 � ℓ and ℓ1 � p. Appending now n copies
of the shape path pi1, j1; . . . ; im, jmq to each other corresponds to n
repetitions of the pattern and, therefore, gives a periodic tableau.

Proposition 3.3.29. Let pℓ1, . . . , ℓpq and pℓ11, . . . , ℓ1p1q be two sequences as
defined above and let jm be the smallest index such that ℓjm ¡ 0. Let b0, w0

be two positive integers, and Y and Y1 be independent random variables with
respective distribution

GenGammaProdprℓ1, . . . , ℓps; b0, w0q and

GenGammaProdprℓ11, . . . , ℓ1p1s; b0 �w0, jmq
from Theorem 3.3.8. Then we have the factorization

YY1 L=
1

p� ℓ
Γpb0q. (13)
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` = 9 `′ = 8

p = 8
p′ = 9

(i1, j1; . . . ; i4, j4) = (3, 2; 1, 3; 2, 2; 3, 1)

`′3`′5`′6`′9

(j4, i1; . . . ; j3, i4) = (1, 3; 2, 1; 3, 2; 2, 3)

3× 1

2× 2

3× 2

1
×
3 3× 2

2× 1

2× 3

1
×
3

cyclic shift

`1`3`6`8

Figure 28: Example of a cyclic shift on a periodic pattern. On the left:
one sees the shape path (3,2;1,3;2,2;3,1), it corresponds to the
pattern pℓ1, . . . , ℓ8q � p3, 0, 2, 0, 0, 1, 0, 3q (as sequence of consec-
utive heights, from right to left). On the right: one sees its
cyclic shift, which corresponds to the pattern pℓ11, . . . , ℓ19q �
p0, 0, 2, 0, 3, 2, 0, 0, 1q. In grey we see the size of the sub-rectangles
described by the shape path, i.e., the kth rectangle has size ik � jk.

Remark 3.3.30 (A duality between corners). One case of special in-
terest is the case of Young tableaux having the mirror symmetry
pℓjm , . . . , ℓpq � pℓp, . . . , ℓjmq, where jm is again the smallest index such
that ℓjm ¡ 0. Indeed, Y and Y1 then correspond to the limit laws for
the south-east (respectively north-west) corner of the same tableau. In
this case, we can think of (13) as expressing a kind of duality between
the corners of the tableau.

Similar factorizations of the exponential law, which is a particular
case of the gamma distribution, have appeared recently in relation
with functionals of Lévy processes, following [28]. These formulas
are also some probabilistic echoes of identities satisfied by the gamma
function.
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The combinatorics of lattice paths has been a major theme of my
research since my graduate studies. In my master’s thesis [T3] I sur-
veyed three major breakthroughs in the theory of one-dimensional
and two-dimensional walks. Then, in my PhD thesis [T4] I added
my own humble contributions to the field of one-dimensional walks.
Now, in the current habilitation thesis I want to present my develop-
ments since, which have led in completely new directions.

In Section 4.1, we introduce different models and definitions.
In Section 4.2, we present new links between one-dimensional walks

and symmetric functions. We show that each of the fundamental
families of symmetric polynomials (elementary, complete, and power
sum homogeneous) corresponds to a lattice path generating function,
which then allows the analysis of parameters and limit laws.

In Section 4.3, we analyze a new variant of one-dimensional walks
arising in networking and queueing theory: the so-called “nondeter-
ministic walks”. In such a model, the steps may consist of multiple
paths explored in parallel. We derive closed forms for the generating
functions and asymptotic counting formulas, which we then use to
determine their nature.

In Section 4.4, we analyze a new two-dimensional model of walks
confined to non-convex cones: the king model of all nearest neighbor
steps confined to the three-quarter plane. We show that the gener-
ating function is D-finite and uncover an algebraicity phenomenon
linking it with the well-understood walks confined to a quadrant.

4.1 introduction and definitions

In recent years lattice paths have received a lot of attention in different
fields, such as probability theory, computer science, biology, chem-
istry, physics, and much more [18, 42, 47, 73, 98, 101, 117, 122]. One
reason for that is their versatility as models like, e.g., the up-to-date
model of certain polymers in chemistry [100]. For more information
and especially historical notes see [98, 122] and [T3,T4].

A key feature of lattice paths is their inherent recursive nature, gov-
erned by the predefined set of steps.

63
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Definition 4.1.1 (Steps and lattice paths). A step set S is a finite sub-
set of Zd where d P Z� is called the dimension. The elements of S are
called steps or jumps. An n-step lattice path or walk w is a sequence
pj1, . . . , jnq P Sn. Its length |w| is the number n of jumps.

Let us focus now on dimension d � 1; these paths are also called
directed lattice paths. Although such sequences are one-dimensional
objects, it is often more insightful to embed them into two dimensions,
by keeping track of the length in x-direction and of the height in y-
direction. Indeed, pj1, . . . , jnq may be seen as a sequence of points w �
pw0, w1, . . . , wnq, where w0 is the starting point and wi �wi�1 � p1, jiq
for i � 1, . . . , n. Unless otherwise specified, the starting point w0 of
these lattice paths is always the origin.

Let σk :� °k
i�1 ji be the partial sum of the first k steps w. We define

the height or maximum of w as maxk σk, and the final altitude of w as σn.
For example, the first walk in Table 3 has height 3 and final altitude 1.
Table 3 also illustrates the following classical types of paths:

Definition 4.1.2 (Excursions, meanders, bridges). We define the follow-
ing classes of one-dimensional lattice paths of length n:

• excursions satisfy σk ¥ 0 for all k � 1, . . . , n and σn � 0;

• meanders satisfy σk ¥ 0 for all k � 1, . . . , n;

• bridges satisfy σn � 0.

In other words, excursions always stay weakly above the x-axis and
end on it; meanders as well, but may end anywhere; and bridges only
need to end on the x-axis, yet may cross it any number of times. Let
c :� �minS be the maximal negative step, and d :� maxS be the
maximal positive step. To avoid trivial cases we assume minS   0  
maxS . Furthermore we associate to each step i P S a weight si. They
typically model probabilities si P R� or multiplicities si P Z�. The
weight of a lattice path is the product of the weights of its steps. Then
we associate to this set of steps the following step polynomial:

Spuq �
ḑ

i��c

siui.

Banderier and Flajolet [12] showed that the generating functions of
directed lattice paths can be expressed in terms of the roots of the
kernel equation

1� zSpuq � 0. (14)

More precisely, this equation has c� d solutions in u. The small roots
uipzq, for i � 1, . . . , c, are the c solutions with the property uipzq � 0
for z � 0. The remaining d solutions are called large roots as they
satisfy |vipzq| � �8 for z � 0. The generating functions of the classical
types of lattice paths introduced above are shown in Table 3.
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ending anywhere ending at 0

unconstr.

(on Z)
walk/path (W) bridge (B)

Wpzq � 1
1�zSp1q Bpzq � z

c°
i�1

u1ipzq
uipzq

constrained

(on Z�)
meander (M) excursion (E )

Mpzq �
±c

i�1p1�uipzqq
1�zSp1q Epzq � p�1qc�1

s�cz

c±
i�1

uipzq

Table 3: Four types of paths: walks, bridges, meanders, and excursions, and
the corresponding generating functions for directed lattice paths.
The functions uipzq for i � 1, . . . , c are the roots of the kernel equa-
tion 1� zSpuq � 0 such that limz�0 uipzq � 0; see [12].

It should be stressed that the closed forms of Table 3 grant easy
access to the asymptotics of all these classes of paths after the local-
ization of the dominant singularities:

Lemma 4.1.3 (Radius of convergence of excursions, bridges, and me-
anders [12]). The radius of convergence of excursions Epzq and of bridges
Bpzq is given by ρ � 1{Spτq, where τ is the smallest positive real number
such that S1pτq � 0. For meanders Mpzq, the radius depends on the drift
δ :� S1p1q: It is ρ if δ   0 and it is 1{Sp1q if δ ¥ 0.

4.2 latticepathology and symmetric functions [p12]

In this section, we present the results from [P12], focusing on the re-
sults about symmetric functions to remain consistent with the main
theme of this thesis: universal properties such as asymptotics and
limit laws. Note that in the mentioned paper additional result are de-
rived on context-free grammar decompositions and on Spitzer and
Wiener–Hopf identities. The properties of lattice paths may be ana-
lyzed in several different ways. Their recursive nature makes them
amenable to context-free grammar techniques; their geometric nature
makes them amenable to cut-and-paste bijections; their step-by-step
construction makes them amenable to functional equations solvable
by the kernel method; see, e.g., [7, 12, 17, 31, 37, 41, 42, 71, 122, 127,
143] for many applications of these ideas.
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4.2.1 Lattice paths and symmetric functions

We now show that three fundamental classes of symmetric polynomi-
als evaluated at the small roots uipzq of the kernel (14) have a natural
combinatorial interpretation in terms of directed lattice paths. We first
recall the definitions of these symmetric polynomials (see, e.g., [171]
for more on these objects).

Definition 4.2.1. The complete homogeneous symmetric polynomials
hk of degree k in the d variables x1, . . . , xd are defined as

hkpx1, . . . , xdq �
¸

1¤i1¤���¤ik¤d

xi1 � � � xik .

The elementary homogeneous symmetric polynomials ek of degree k in
the d variables x1, . . . , xd are defined as

ekpx1, . . . , xdq �
¸

1¤i1 ��� ik¤d

xi1 � � � xik .

The power sum homogeneous symmetric polynomials pk of degree k in
the d variables x1, . . . , xd are defined as

pkpx1, . . . , xdq �
ḑ

i�1

xk
i .

Many variants of directed lattice paths satisfy functional equations
which are solvable by the kernel method and lead to formulas involv-
ing a quotient of Vandermonde-like determinants; see, e.g., Table 3
and [12]. It is thus natural that Schur polynomials intervene, they,
e.g., play an important role for lattice paths in a strip; see [17, 37]. It
is nice that the other symmetric polynomials also have a combinato-
rial interpretation, as presented in Table 4. All of them belong to the
following class of lattice paths.

Definition 4.2.2. A positive meander is a path from ℓ ¥ 0 to k ¥ 0
staying strictly above the x-axis (and possibly touching it at one of its end
points). The generating function is denoted by M�

ℓ,kpzq. Negative mean-
ders are defined analogously, with the condition to stay strictly below the
x-axis.

In Table 4, we focus on positive meanders from 0 to k and from
k to 0. Note that it suffices to consider the paths from 0 to k as by
time-reversion they are mapped to each other. In particular, let uipzq
and vjpzq be the small and large roots of the initial model. Then, after
time-reversion the small roots are 1

vjpzq and the large roots are 1
uipzq .

Theorem 4.2.3 (Generating function of positive meanders).

M�
0,kpzq � hk

�
1

v1pzq , . . . ,
1

vdpzq



.
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from 0 to k from k to 0

k k
positive

meander

M�
0,k�hk

�
1
v1

, . . . , 1
vd

	
M�

k,0�hk pu1, . . . , ucq

k k

positive

meander

avoiding

p0, kq M¥
0,k�p�1qk�1ek

�
1
v1

, . . . , 1
vd

	
M¥

k,0�p�1qk�1ek pu1, . . . , ucq

}
}
}

k

}
}

k

positive

meander

marked

below the

minimum M 
0,k� pk

�
1
v1

, . . . , 1
vd

	
M 

k,0� pk pu1, . . . , ucq

Table 4: For clarity we omit the dependencies of each function on z. We show
that the fundamental symmetric polynomials (of the complete ho-
mogeneous, elementary, and power sum type) are counting families
of positive meanders (walks touching the x-axis only at one of the
end points and staying always above the x-axis). The functions vjpzq
for j � 1, . . . , d are the roots of the kernel equation 1� zSpuq � 0
with limz�0 |vjpzq| � �8, whereas the functions uipzq for i � 1, . . . , c
are the roots such that limz�0 uipzq � 0.

This theorem gives a shorter proof of [12, Corollary 3]:

Corollary 4.2.4. The generating function Mkpzq of meanders ending at
altitude k are given by

Mkpzq � Epzqhk

�
1

v1pzq , . . . ,
1

vdpzq



� 1
sdz

ḑ

ℓ�1

�¹
j�ℓ

1
vjpzq � vℓpzq

	 1
vℓpzqk�1 .

The next class we consider is the one of elementary symmetric poly-
nomials. These are associated to a decorated class of paths.

Definition 4.2.5. A positive meander avoiding a strip of width k is a
positive meander from 0 to k that always stays above any point of altitude j  
k except for its start point. The generating function is denoted by M¥

0,kpzq.
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Theorem 4.2.6 (Positive meanders avoiding the strip r0, ks).

M¥
0,kpzq � p�1qk�1ek

�
1

v1pzq , . . . ,
1

vdpzq



.

We end our discussion with a third class of positive meanders.

Definition 4.2.7. A positive meanders marked below the minimum is
a positive meander with an additional marker in t1, . . . , mu where m is its
minimal positive altitude. The generating function for such paths from 0 to
k is denoted by M 

0,kpzq.
For example it is immediate that M 

0,1pzq � M¥
0,1pzq � M�

0,1pzq as the
only restriction is to avoid the x-axis. Furthermore, M 

0,0pzq � 0 while
M¥

0,0pzq � M�
0,0pzq � 1.

Theorem 4.2.8 (Positive meanders marked below the minimum).

M 
0,kpzq � pk

�
1

v1pzq , . . . ,
1

vdpzq



.

4.2.2 Asymptotics and limit laws

We now use the closed forms of the generating functions to derive
the asymptotics of the corresponding counting formulas. This allows
us to revisit some limit laws in which the appearance of symmetric
polynomials was so far unrecognized.

Here, we only consider aperiodic step sets S , which are defined by
gcdt|i � j| : i, j P Su � 1. For the treatment of periodic step sets
see [19]. Moreover, we focus on paths from k to 0, as the formulas
are a bit simpler. The results for paths from 0 to k follow in an anal-
ogous fashion. The principal small branch u1pzq and the principal
large branch v1pzq are defined by the property that they are real pos-
itive for z near 0� and meet at the dominant singularity z � ρ; see
Lemma 4.1.3 and [12]. In particular, let τ be the structural constant
determined by S1pτq � 0, τ ¡ 0. Then, u1pρq � v1pρq � τ. In the
next theorem we state the asymptotics of our three classes of positive
meanders.

Theorem 4.2.9. Consider an aperiodic step set S and the variants of paths
from Table 4. The number of positive meanders from k to 0 of size n satisfies

rznsM�
k,0pzq � α1

Spτqn
2
?

πn3

�
1�O

�
1
n




, α1 � Bek

Bx1
pu1pρq, . . . , ucpρqq.

The number of positive meanders avoiding p0, kq from k to 0 of size n satisfies

rznsM¥
k,0pzq � α2

Spτqn
2
?

πn3

�
1�O

�
1
n




, α2 � Bhk

Bx1
pu1pρq, . . . , ucpρqq.

The number of positive meanders marked below the minimum from k to 0 of
size n satisfies

rznsM 
k,0pzq � α3

Spτqn
2
?

πn3

�
1�O

�
1
n




, α3 � Bpk

Bx1
pu1pρq, . . . , ucpρqq.
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Many theorems leading to a Gaussian distribution require that a
key quantity (let us call it σ) is nonzero. In [85], this nonzero as-
sumption is called “variability condition”; see therein Theorem IX.8
(Quasi-power theorem), Theorem IX.9 (Meromorphic schema), Theo-
rem IX.10 (Positive rational systems). Now, many lattice path statistics
have a variance with an expansion σn� opnq, where σ is defined as in
the following lemma, and is therefore nonzero.

Lemma 4.2.10 (Universal positivity of the variability condition). For
any Laurent series Spuq � °

i¥�c siui, with si ¥ 0 (at least two si ¡ 0), one
has σ :� S2p1qSp1q � S1p1qSp1q � S1p1q2 ¡ 0.

As a consequence, Lemma 4.2.10 guarantees that we can apply the
quasi-power theorem [85, Theorem IX.8], and obtain a Gaussian limit
theorem. This explains why many statistics related to lattice paths
are Gaussian. For paths with positive or zero drift, it furnishes a Gaus-
sian theorem, like, e.g., for statistics like the final altitude of meanders
or for the height of walks. When the drift is negative, one gets some
discrete limit laws of parameter given by our symmetric polynomial
expressions:

Theorem 4.2.11 ([12, Theorem 6] and [178, Theorem 4.7]; negative
drift cases). Assume a negative drift δ � S1p1q   0 and let ρ � 1{Ppτq
and ρ1 � 1{Pp1q.

1. Let Xn be the random variable of the final altitude of a meander of
length n. Then, the limit law is discrete and given by

lim
nÑ8PpXn � kq � p1� τ�1q

°k
i�0 τi�khipv1pρq�1, . . . , vdpρq�1q°

i¥0 hipv1pρq�1, . . . , vdpρq�1q .

2. Let Yn be the random variable of the height of a walk of length n. Then,
the limit law is discrete and given by

lim
nÑ8PpYn � kq � hkpv1pρ1q�1, . . . , vdpρ1q�1q°

i¥0 hipv1pρ1q�1, . . . , vdpρ1q�1q .

4.3 combinatorics of nondeterministic walks of the
dyck and motzkin type [p11]

In this section, we present the results from [P11] about a new applica-
tion of lattice paths: the encapsulation of protocols over networks. To
achieve this goal we generalize the class of lattice paths to so called
nondeterministic lattice paths, or N-walks. In our context, this word does
not mean “random”. Instead it is understood in the same sense as for
automata and Turing machines. A process is nondeterministic if sev-
eral branches are explored in parallel, and the process is said to end
in an accepting state if one of those branches ends in an accepting
state. Let us now give a precise definition of these walks.
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Definition 4.3.1 (Nondeterministic walks). An N-step is a nonempty set
of integers. Given an N-step set S, an N-walk w is a sequence of N-steps.
Its length |w| is equal to the number of its N-steps.

As for classical walks we always assume that they start at the origin
and we distinguish different types.

Definition 4.3.2 (Types of N-walks). An N-walk w � pw1, . . . , wnq and
a classical walk v � pv1, . . . , vnq are compatible if they have the same
length n, the same starting point, and for each 1 ¤ i ¤ n, the ith step is
included in the ith N-step, i.e. vi P wi. An N-bridge (resp. N-meander,
resp. N-excursion) is an N-walk compatible with at least one bridge (resp.
meander, resp. excursion).

The endpoints of classical walks are central to their analysis. We de-
fine their nondeterministic analogues.

Definition 4.3.3 (Reachable points). The reachable points of a general
N-walk are the endpoints of all walks compatible with it. For N-meanders,
the reachable points are defined as the set of endpoints of compatible mean-
ders. In particular, all reachable endpoints of an N-meander are nonnegative.
The minimum (resp. maximum) reachable point of an N-walk w is denoted
by minpwq (resp. maxpwq). The minimum (resp. maximum) reachable point
of an N-meander w is denoted by min�pwq (resp. max�pwq).

The geometric realization of an N-walk is the sequence, for j from
0 to n, of its reachable points after j steps. Figure 29 illustrates the
geometric realization of a walk v � p2,�1, 0, 1q in (29a), of an N-walk
w � pt2u, t�1, 1u, t�2, 0u, t0, 1, 2uq in (29b), and of the classical mean-
ders compatible with w in (29c). Note that the walk v (highlighted in
red) is compatible with the N-walk w.

-2
-1
0
1
2
3
4
5
6

0 1 2 3 4 5

(a) A classical walk.

-2
-1
0
1
2
3
4
5
6

0 1 2 3 4 5

(b) An N-walk.

-2
-1
0
1
2
3
4
5
6

0 1 2 3 4 5

(c) Meanders compatible
with the N-walk.

Figure 29: Geometric realization of a walk, an N-walk, and its compatible
meanders.

Any set of weights, and in particular any probability distribution
on the set of steps or N-steps, induces a probability distribution on
walks or N-walks. The probability associated to the walk or N-walk
w � pw1, . . . , wnq is then the product

±n
i�1 Ppwiq of the probabilities

of its steps or N-steps.
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4.3.1 Main results and models

Our main results are the analysis of the asymptotic number of non-
deterministic walks of the Dyck type with step set

tt�1u, t1u, t�1, 1uu

and Motzkin type with step set

tt�1u, t0u, t1u, t�1, 0u, t�1, 1u, t0, 1u, t�1, 0, 1uu .

Table 5 shows the results for the unweighted case, where all weights
are set equal to one. These results are derived using generating func-
tions and singularity analysis. The reappearing phenomenon is the
one of a simple dominating polar singularity arising from the large
redundancy in the steps. The type of N-walk only influences the con-
stant or the proportion among all N-walks. The lower order terms are
exponentially smaller and of the square root type. These are much
more influenced by the types. From a combinatorial point of view,
we see a quite different behavior compared with classical paths. In
particular, the limit probabilities for a Dyck N-walk of even length to
be an N-bridge, an N-meander, or an N-excursion, are 1, 1{2, or 1{4,
and for Motzkin N-walks 1, 3{4, or 9{16, resp., and thus do not tend
to zero as it is the case for classical walks.

Next to the results on nondeterministic walks of Dyck and Motzkin
type, we show the following result for arbitrary step sets.

Theorem 4.3.4. For any N-step set S, the generating function of N-bridges
is algebraic.

Type Dyck N-steps Motzkin N-steps

N-Walk 3n 7n

N-Bridge 3n � 2
?

2?
π

8n{2?
n �O

�
8n{2

n3{2

	
7n �

b
3
π

6n?
n �O

�
6n

n3{2

	
N-Meander 3n

2 � 6
?

2?
π

8n{2?
n3 �O

�
8n{2

n5{2

	
3
4 7n � 3

?
3

2
?

π
6n?
n3 �O

�
6n

n5{2

	
N-Excursion 3n

4 � 4
?

2 8n{2?
πn3 �O

�
8n{2

n5{2

	
9

16 7n � γ 6n?
πn3 �O

�
6n

n5{2

	

Table 5: Asymptotic number of nondeterministic unweighted (all weights
equal to 1) Dyck and Motzkin N-walks with even number n � 2k of
steps. For odd number n � 2k� 1 of steps, the formulas for Motzkin
N-steps stay the same, while the ones for Dyck N-steps partly
change: N-Walk: 3n; N-Bridge and N-Excursion: 0; N-Meander: con-
stant of 8n{2{

?
n3 becomes 8{?π. The constant γ � 0.6183 is the

positive real solution of 1024γ4 � 8019γ2 � 2916 � 0.
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4.3.2 Motivation and related work

Let us start with a vivid motivation of the model using Russian dolls.
Suppose we have a set of n� 1 people arranged in a line. There are
three kinds of people. A person of the first kind is only able to put a
received doll in a bigger one. A person of the second kind is only able
to extract a smaller doll (if any) from a bigger one. If she receives the
smallest doll, then she throws it away. Finally, a person of the third
kind can either put a doll in a bigger one or extract a smaller doll if
any. We want to know if it is possible for the last person to receive
the smallest doll after it has been given to the first person and then,
consecutively, handed from person to person while performing their
respective operations. This is equivalent to asking if a given N-walk
with each N-step in tt1u, t�1u, t�1, 1uu is an N-excursion, i.e., if the
N-walk is compatible with at least one excursion. The probabilistic
version of this question is: What is the probability that the last person
can receive the smallest doll according to some distribution on the set
of people over the three kinds?

4.3.2.1 Networks and encapsulations

The original motivation of this work comes from networking. In a
network, some nodes are able to encapsulate protocols (put a packet
of a protocol inside a packet of another one), decapsulate protocols
(extract a nested packet from another one), or perform any of these
two operations. Additionally, most nodes are able to transmit packets
as they receive them. A tunnel is a subpath starting with an encapsu-
lation and ending with the corresponding decapsulation. Tunnels are
very useful for achieving several goals in networking (e.g., interop-
erability: connecting IPv6 networks across IPv4 ones [182]; security
and privacy: securing IP connections [165], establishing Virtual Pri-
vate Networks [164], etc.). Moreover, tunnels can be nested to achieve
several goals. Replacing the Russian dolls by packets, it is easy to see
that an encapsulation can be modeled by a t1u step, a decapsulation
by a t�1u, and a passive transmission by a t0u step.

Given a network with some nodes that are able to encapsulate or
decapsulate protocols, a path from a sender to a receiver is feasible if
it allows the latter to retrieve a packet exactly as dispatched by the
sender. Computing the shortest feasible path between two nodes is
polynomial [128] if cycles are allowed without restriction. In contrast,
the problem is NP-hard if cycles are forbidden or arbitrarily limited.
In [128], the algorithms are compared through worst-case complexity
analysis and simulation. The simulation methodology for a fixed net-
work topology is to make encapsulation (resp. decapsulation) capa-
bilities available with some probability p and observe the processing
time of the different algorithms. It would be interesting, for simula-
tion purposes, to generate random networks with a given probability
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of existence of a feasible path between two nodes. This work is the
first step towards achieving this goal, since our results give the prob-
ability that any path is feasible (i.e., is a N-excursion) according to a
probability distribution of encapsulation and decapsulation capabili-
ties over the nodes.

4.3.2.2 Lattice paths

Nondeterministic walks naturally connect between lattice paths and
branching processes. This is underlined by our usage of many well-
established analytic and algebraic tools previously used to study lat-
tice paths. In particular, those are the robustness of D-finite func-
tions with respect to the Hadamard product, and the kernel method
[12, 13, 19, 40, 85].

The N-walks are nondeterministic one-dimensional discrete walks.
We will see that their generating functions require three variables:
one marking the lowest point minpwq that can be reached by the N-
walk w, another one marking the highest point maxpwq, and the last
one marking its length |w|. Hence, they are also closely related to
two-dimensional lattice paths, if we interpret pminpwq, maxpwqq as
coordinates in the plane.

4.3.3 Dyck N-walks

The step set of classical Dyck paths is t�1, 1u. The N-step set of all
nonempty subsets is

S �  t�1u, t1u, t�1, 1u(,

and we call the corresponding N-walks Dyck N-walks. To every step
we associate a weight or probability p�1, p1, and p�1,1, respectively.

Example 4.3.5 (Dyck N-walks). Let us consider the Dyck N-walk
w � pt1u, t�1, 1u, t�1, 1u, t�1uq. The sequence of its reachable points
is pt0u, t1u, t0, 2u, t�1, 1, 3u, t�2, 0, 2uq. There are 4 classical walks com-
patible with it:

Classical walk (steps) Geometric realization (ordinates)

p1,�1,�1,�1q p0, 1, 0,�1,�2q
p1,�1, 1,�1q p0, 1, 0, 1, 0q
p1, 1,�1,�1q p0, 1, 2, 1, 0q
p1, 1, 1,�1q p0, 1, 2, 3, 2q

There are two bridges, which happen to be excursions. Thus, w is an
N-bridge and an N-excursion.

The set of reachable points of a Dyck N-walk or N-meander has the
following particular structure.
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Lemma 4.3.6. The reachable points of a Dyck N-walk w are

tminpwq � 2i | 0 ¤ minpwq � 2i ¤ maxpwqu ,

where minpwq, maxpwq, and the length of w have the same parity. The same
result holds for Dyck N-meanders, with minpwq and maxpwq replaced by
min�pwq and max�pwq (see Definition 4.3.3).

We define the generating functions Dpx, y; tq, D�px, y; tq, of Dyck
N-walks and Dyck N-meanders as

¸
Dyck N-walk w

�¹
sPw

ps



xminpwqymaxpwqt|w|,

¸
Dyck N-meander w

�¹
sPw

ps



xmin�pwqymax�pwqt|w|.

Note that by construction these are power series in t with Laurent
polynomials in x and y, as each of the finitely many N-walks of length
n has a finite minimum and maximum reachable point.

4.3.3.1 Dyck N-meanders and N-excursions

As a direct corollary of Lemma 4.3.6, all N-bridges and N-excursions
have even length. The total number of Dyck N-bridges and Dyck N-
excursions are then, respectively, given by

rx¤0y¥0t2nsDpx, y; tq and D�p0, 1; tq,

where the nonpositive part extraction operator rx¤0s is defined as
rx¤0s°kPZ gkxk :� °

k¤0 gkxk (and analogously for ry¥0s).
Proposition 4.3.7. The generating function of Dyck N-meanders is charac-
terized by the relation

D�px, y; tq � 1� t pp1 � p�1,1q xyD�p0, 0; tq
� t

�
p�1xy�1 � pp1 � p�1,1qxy

	
pD�p0, y; tq �D�p0, 0; tqq

� t
�

p�1x�1y�1 � p1xy� p�1,1x�1y
	
pD�px, y; tq �D�p0, y; tqq.

Let us introduce the min-max-change polynomial Spx, yq and the ker-
nel Kpx, yq as

Spx, yq :� p�1

xy
� p1xy� p�1,1

y
x

,

Kpx, yq :� xyp1� tSpx, yqq.

The generating function of Dyck N-walks has now the compact form
1{p1� tSpx, yqq. A key role in the following result on the closed form
of Dyck N-meanders is played by Yptq and Xpy, tq, the unique power
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series solutions satisfying Kp1, Yptqq � 0, and KpXpy, tq, yq � 0 which
are given by

Yptq � 1�
a

1� 4p�1pp1 � p�1,1qt2

2pp1 � p�1,1qt ,

Xpy, tq � 1�
a

1� 4p1pp�1 � p�1,1y2qt2

2p1yt
.

Theorem 4.3.8. The generating function D�px, y; tq of Dyck N-meanders
is algebraic of degree 4, and equal to

x� Xpy, tq
1� Xpy, tq2

y� xYptq � Xpy, tqYptq � xyXpy, tq
xyp1� tSpx, yqq .

The generating function of Dyck N-excursions is symmetric in p�1 and p1,
and equal to

D�p0, 1; tq � Xp1, tq
1� Xp1, tq2

1� Xp1, tqYptq
pp�1 � p�1,1qt .

With this result, we can easily answer the counting problem in
which all weights are set equal to one.

Corollary 4.3.9. For p�1 � p1 � p�1,1 � 1 the generating function of
unweighted Dyck N-meanders is

D�p1, 1, tq � �1� 4t�
?

1� 8t2

4tp1� 3tq ,

and their number rtnsD�p1, 1, tq is asymptotically equal to

3n

2
�
�

3
?

2p1� p�1qnq � 4p1� p�1qnq
	 8n{2
?

πn3
�O

�
8n{2

n5{2



.

These N-walks are in bijection with walks in the first quadrant Z2
¥0 starting

at p0, 0q and consisting of steps tp�1, 0q, p1, 0q, p1, 1qu; see OEIS A151281.
For p�1 � p1 � p�1,1 � 1 the complete generating function of un-

weighted Dyck N-excursions is

D�p0, 1, tq � 1� 8t2 � p1� 12t2q
?

1� 8t2

8t2p1� 9t2q ,

and their number rtnsD�p0, 1, tq is asymptotically equal to

p1� p�1qnq
�

3n

8
�
?

8
8n{2
?

πn3
�O

�
8n{2

n5{2




.

We are now able to answer one of the starting questions from the
networking motivation.

Theorem 4.3.10. The probability for a random Dyck N-walk of length 2n
to be an N-excursion has for n Ñ 8 the following asymptotic form where
the roles of p�1 and p1 are interchangeable:

http://oeis.org/A151281
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• p1�2p1qp1�2p�1q
p1�p1qp1�p�1q �O

� p4p�1p1�p�1qqn

n3{2

	
if 0   p1 ¤ p�1   1

2 ,

• 1�2p1
p1�p1q

?
πn �O

�
1

n3{2

	
if 0   p1   1

2 and p�1 � 1
2 ,

• 1?
πn3 �O

�
1

n5{2

	
if p1 � p�1 � 1

2 ,

• O
� p4p�1p1�p�1qqn

n3{2

	
if 0   p1   1

2   p�1   1 and p�1 � p1 ¤ 1.

The (huge) formula for the constant in the last case can be made
explicit in terms of p�1 and p1. However, it is of different shape for
p�1 � p1 � 1, and p�1 � p1   1. In Figure 30 we compare the theoret-
ical results with simulations for three different probability distribu-
tions. These nicely exemplify three of the four possible regimes.
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Figure 30: Comparison of theoretical expectation and averaged simulation
(over 105 runs) of the proportion of Dyck N-excursions among
Dyck N-walks.

4.3.3.2 Dyck N-bridges

We now turn our attention to Dyck N-bridges. Their generating func-
tion is defined as

Bpx, y, tq �
¸

n,k,ℓ¥0

b2n,k,ℓx�kyℓt2n.

Recall the following relation with all N-walks (note that bridges have
to be of even length): rt2nsBpx, y, tq � rx¤0y¥0t2nsDpx, y; tq. In the fol-
lowing theorem we discover a great contrast to classical walks: nearly
all N-walks are N-bridges.

Theorem 4.3.11. The generating function of Dyck N-bridges Bpx, y, tq is
algebraic of degree 4. For p�1 � p1 � p�1,1 � 1 the generating function of
unweighted Dyck N-bridges is algebraic of degree 2:

Bp1, 1, tq � 1� 6t2
?

1� 8t2p1� 9t2q ,

and their number rtnsBp1, 1, tq is asymptotically equal to

1� p�1qn
2

�
3n � 2

?
2?

π

8n{2
?

n
�O

�
8n{2

n3{2

��
.
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4.3.4 Motzkin N-walks

The step set of classical Motzkin paths is t�1, 0, 1u. The N-step set of
all nonempty subsets is

S �  t�1u, t0u, t1u, t�1, 0u, t�1, 1u, t0, 1u, t�1, 0, 1u(,

and we call the corresponding N-walks Motzkin N-walks. A Motzkin
N-walk w is said to be

• of type 1 if reachpwq � tminpwq, minpwq � 2, . . . , maxpwqu,
• of type 2 if reachpwq � tminpwq, minpwq � 1, . . . , maxpwqu and

maxpwq �minpwq ¥ 1.

The following proposition explains how these two types are sufficient
to characterize the structure of Motzkin N-walks.

Proposition 4.3.12. A Motzkin N-walk is of type 1 if and only if it consists
only of the N-steps t�1u, t0u, t1u, and t�1, 1u. Otherwise, it is of type 2.

The set of Motzkin N-walks of type 1 (resp. 2) is denoted by M1

(resp. M2), and their generating functions are defined as

M1px, y; tq �
¸

wPM1

xminpwqymaxpwqt|w|,

M2px, y; tq �
¸

wPM2

xminpwqymaxpwq�1t|w|.

Theorem 4.3.13. The generating functions M1px, y, tq and M2px, y, tq of
Motzkin N-walks of type 1 and 2 are rational. The generating function of
Motzkin N-bridges is algebraic and equal to

rx¤0y¥0s
�

M1px, y; tq � M1p�x, y; tq
2

� M2px, y; tq.



.

Remark 4.3.14. Using a computer algebra system it is easy to get
closed forms and asymptotics for specific weights. We do not give
these closed forms, as they are quite large and do not shed new light
on the problem. It is however interesting to compute the asymptotic
proportion of N-bridges among all N-walks. For example, when all
weights are set to 1, it is equal to

1�
c

3
π

p6{7qn?
n

�O
�p6{7qn

n3{2



.

Hence, again nearly all N-walks are N-bridges.

Next we consider Motzkin N-meanders and N-excursions.

Theorem 4.3.15. The generating functions of Motzkin N-meanders and N-
excursions are algebraic.
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Remark 4.3.16. We omit the technical construction of the generating
functions and refer to [P11] for the full details. Instead, we state the
simpler results for the unweighted case with pi � 1 for all i. First, the
generating function of N-meanders is algebraic of degree 2 and equal
to

10t� 1�
a
p1� 2tqp1� 6tq

8tp1� 7tq .

Therefore, the total number of N-meanders is asymptotically equal to

3
4

7n � 3
?

3
2
?

π

6n
?

n3
�O

�
6n

n5{2



.

Second, the generating function of N-excursions is algebraic of de-
gree 4. Their asymptotic number is

9
16

7n � γ
6n

?
πn3

�O
�

6n

n5{2



,

where γ � 0.6183 is the positive real solution of 1024γ4 � 8019γ2 �
2916 � 0. This means that for large n approximately 75% of all N-
walks are N-meanders and 56.25% of all N-walks are N-excursions.

4.4 more models of walks avoiding a quadrant [p14]

In this section, we present the results from [P14] on a new model of
walks confined to a non-convex cone. Over the last two decades, the
enumeration of walks in the non-negative quadrant

Q :� tpi, jq : i ¥ 0 and j ¥ 0u
has attracted a lot of attention and established its own scientific com-
munity with close to a hundred research papers; see, e.g., [40] and
citing papers. One of its attractive features is the diversity of the
used tools, such as algebra on formal power series [40, 144], bijec-
tive approaches [26, 58], computer algebra [35, 112], complex anal-
ysis [27, 157], probability theory [36, 61], and difference Galois the-
ory [67]. Most of the attention has focused on walks with small steps,
that is, taking their steps in a fixed subset S of t�1, 0, 1u2zp0, 0q. For
each such step set S (often called a model henceforth), one considers
a trivariate generating function Qpx, y; tq defined by

Qpx, y; tq �
¸
n¥0

¸
i,jPQ

qi,jpnqxiyjtn, (15)

where qi,jpnq is the number of quadrant walks with steps in S , starting
from p0, 0q, ending at pi, jq, and having in total n steps. For each S ,
one now knows whether and where this series fits in the following
classical hierarchy of series:

rational � algebraic � D-finite � D-algebraic.
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Recall that a series (say Qpx, y; tq in our case) is rational if it is the
ratio of two polynomials, algebraic if it satisfies a polynomial equation
(with coefficients that are polynomials in the variables), D-finite if
it satisfies three linear differential equations (one in each variable),
again with polynomial coefficients, and finally D-algebraic if it satisfies
three polynomial differential equations. It has been known since the
1980s [91] that the generating function of walks confined to a half-
plane is algebraic. This explains why Qpx, y; tq is algebraic in some
cases, for instance when S � tÑ, Ò,Ðu: indeed, confining walks to
the first quadrant is then equivalent to confining them to the right
half-plane i ¥ 0. It was shown in [40] that exactly 79 (essentially
distinct) quadrant problems with small steps are not equivalent to any
half-plane problem. One central result in the classification of these 79
models is that Qpx, y; tq is D-finite if and only if a certain group, which
is easy to construct from the step set S , is finite [35, 36, 40, 126, 142,
145].

Since any strictly convex closed cone can be deformed into the first
quadrant, the enumeration of walks confined to Q captures all such
counting problems (provided we consider all possible step sets S ,
not only small steps). Similarly, any non-convex closed cone in two
dimensions can be deformed into the three-quadrant plane

C :� tpi, jq : i ¥ 0 or j ¥ 0u.

The enumeration of lattice paths confined to C was initiated in 2016
by Bousquet-Mélou [38]. Therein, the two most natural models of
walks were studied: simple walks with steps in tÑ, Ò,Ð, Óu, and diag-
onal walks with steps in tÕ,Ô,Ö,×u. In both cases, the generating
function

Cpx, y; tq �
¸
n¥0

¸
i,jPC

ci,jpnqxiyjtn

defined analogously to Qpx, y; tq (see (15)) was proved to differ from
the series

1
3

�
Q px, y; tq � 1

x2 Q
�

1
x

, y; t


� 1

y2 Q
�

x,
1
y

; t




(16)

by an algebraic one. In both cases, the underlying group is finite, hence
Qpx, y; tq is D-finite and Cpx, y; tq is D-finite as well.

It became then natural to explore more three-quadrant problems,
in particular to understand whether the D-finiteness of Cpx, y; tq was
again related to the finiteness of the associated group – at least for
the 74 three-quadrant problems that are not equivalent to a half-plane
problem; see Section 4.4.1. Using an asymptotic argument, Mustapha
quickly proved that the 51 three-quadrant problems associated with
an infinite group have, like their quadrant counterparts, a non-D-
finite solution [147]. Regarding exact solutions, Raschel and Trotignon
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Figure 31: A king walk in the three-quadrant plane C. The associated gener-
ating function is D-finite and transcendental (i.e., non-algebraic).

obtained in [158] sophisticated integral expressions for eight step
sets. Four of them have a finite group (namely tÑ, Ò,Ð, Óu, tÕ,Ð, Óu,
tÑ, Ò,Öu, and tÑ,Õ, Ò,Ð,Ö, Óu), and these expressions imply that
they are D-finite (at least in x and y). In fact, the latter three are now
known to be algebraic [44]. The other four have an infinite group and
have been further studied by Dreyfus and Trotignon: one of them is
D-algebraic, the other three are not [68]. Furthermore, the remark-
able results of Budd [50] and Elvey Price [78] on the winding num-
ber of various families of plane walks provide explicit D-finite ex-
pressions for several generating functions of three-quadrant walks
starting and ending close to the origin, in particular for step sets
tÑ,Õ,Ð,Öu and tÑ,Ô,Ð,×u in Budd’s paper, as well as tÒ,Ð,×u
and tÑ, Ò,Ô,Ð, Ó,×u in Elvey Price’s. In both papers, when steps Ô
or × are allowed, one includes in the enumeration walks using jumps
from p�1, 0q to p0,�1q and vice-versa. Such jumps are forbidden in
this section, but we show in [P32] that allowing them in king walks
does not significantly modify the form of our results.

4.4.1 Interesting step sets

We fix a subset S of t�1, 0, 1u2ztp0, 0qu and we want to count walks
with steps in S that start from the origin p0, 0q of Z2 and remain in
the cone C :� tpx, yq : x ¥ 0 or y ¥ 0u. By this, we mean that not
only must every vertex of the walk lie in C, but also every edge: a
walk containing a step from p�1, 0q to p0,�1q (or vice versa) is not
considered as lying in C. We often say for short that our walks avoid
the negative quadrant. The step polynomial of S is defined by

Spx, yq �
¸

pi,jqPS
xiyj

� ȳH�pxq � H0pxq � yH�pxq � x̄V�pyq �V0pyq � xV�pyq,
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for some Laurent polynomials H�, H0, H� and V�, V0, V� (of degree
at most 1 and valuation at least �1) recording horizontal and vertical
displacements, respectively. We denote by Cpx, y; tq � Cpx, yq the gen-
erating function of walks confined to C, where the variable t records
the length of the walk, and x and y the coordinates of its endpoints:

Cpx, yq �
¸

pi,jqPC

¸
n¥0

ci,jpnqxiyjtn �
¸

pi,jqPC
xiyjCi,jptq.

Here, ci,jpnq is the number of walks of length n that go from p0, 0q to
pi, jq and that are confined to C.

As in the quadrant case [40], we can decrease the number of step
sets that are worth being considered thanks to a few simple observa-
tions (a priori, there are 28 of them):

• As the cone C (as well as the quarter plane Q) is x{y-symmetric,
the counting problems defined by S and by its mirror image
S :� tpj, iq : pi, jq P Su are equivalent; the associated generating
functions are related by Cpx, yq � Cpy, xq.

• If all steps of S are contained in the right half-plane tpi, jq :
i ¥ 0u, then all walks with steps in S lie in C, and the series
Cpx, yq � 1{p1� tSpx, yqq is simply rational. The series Qpx, yq is
known to be algebraic in this case [12, 41, 71, 91].

• If all steps of S are contained in the left half-plane tpi, jq : i ¤
0u, then confining a walk to C is equivalent to confining it to
the upper half-plane: the associated generating function is then
algebraic, and so is Qpx, yq.

• If all steps of S lie (weakly) above the first diagonal (i � j),
then confining a walk to C is again equivalent to confining it to
the upper half-plane: the associated generating function is then
algebraic, and so is Qpx, yq.

• If all steps of S lie (weakly) above the second diagonal (i �
j � 0), then all walks with steps in S lie in C, and Cpx, yq �
1{p1� tSpx, yqq is simply rational. In this case however, the series
Qpx, yq is not at all trivial [40, 145]. Such step sets are sometimes
called singular in the framework of quadrant walks.

• Finally, if all steps of S lie (weakly) below the second diagonal,
then a walk confined to C moves for a while along the second
diagonal, and then either stops there or leaves it into the NW or
SE quadrant using a South, South-West, or West step. It cannot
leave the chosen quadrant anymore and behaves therein like a
half-plane walk. By polishing this observation, one can prove
that Cpx, yq is algebraic (while Qpx, yq � 1).
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By combining these arguments, one finds that there are 74 essen-
tially distinct models of walks avoiding the negative quadrant that
are worth studying: the 79 models considered for quadrant walks
(see [40, Tables 1–4]) except the 5 “singular” models for which all
steps of S lie weakly above the diagonal i� j � 0.1

4.4.2 The king walks

We enrich the collection of completely solved cases with the the so-
called king walks, which take their steps from tÑ,Õ, Ò,Ô,Ð,Ö, Ó,×u;
see Figure 31. This is again a finite group model, and the series
Qpx, y; tq is a well-understood D-finite series [40]. Here we determine
Cpx, y; tq, and show that the algebraicity phenomenon of [38] persists:
the series Cpx, y; tq differs from the linear combination (16) by an al-
gebraic series, this time of degree 216. For the simple and diagonal
walks of [38] this algebraic series was of degree 72 “only”. The gener-
ating function Ci,j of walks ending at a prescribed position pi, jq differs
from a series of the form �Qk,ℓ{3 by an algebraic series of degree at
most 24 (while this degree was bounded by 8 in the models of [38]).

Moreover, we expect a similar property to hold (with variations on
the above linear combination of the series Q) for the 7 step sets of
Figure 32, related to reflection groups, and for which the quadrant
problem can be solved using the reflection principle [92]. However,
we also expect the effective solution of these models to be extremely
challenging in computational terms, mostly, because the relevant alge-
braic series have very large degree. This is illustrated by our main the-
orem below. There, and in the sequel, we use the shorthand x̄ � 1{x,
ȳ � 1{y, and omit in the notation the dependencies on t, writing for
instance Qpx, yq instead of Qpx, y; tq.
Theorem 4.4.1. Take the step set t�1, 0, 1u2ztp0, 0qu and let Qpx, yq be the
generating function of lattice walks starting from p0, 0q that are confined to
the first quadrant Q (this series is D-finite and given in [40]). Then, the
generating function of walks starting from p0, 0q, confined to C, and ending
in the first quadrant (resp. at a negative abscissa) is

1
3

Qpx, yq � Ppx, yq, presp.� x̄2

3
Qpx̄, yq � x̄Mpx̄, yqq, (17)

where Ppx, yq and Mpx, yq are algebraic of degree 216 over Qpx, y, tq. Of
course, the generating function of walks ending at a negative ordinate fol-
lows, using the x{y-symmetry.

The series P is expressed in terms of M by:

Ppx, yq � x̄
�

Mpx, yq � Mp0, yq�� ȳ
�

Mpy, xq � Mp0, xq�, (18)

1This corrects two typos in [43, Section 2.1], where 51 distinct models as well as
56 quadrant models were wrongly mentioned.
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and M is defined by the following equation:

Kpx, yq p2Mpx, yq � Mp0, yqq � 2x
3
� 2tȳpx� 1� x̄qMpx, 0q

� tȳpy� 1� ȳqMpy, 0q � tpx� x̄qpy� 1� ȳqMp0, yq
� t

�
1� ȳ2 � 2x̄ȳ

�
Mp0, 0q � tȳMxp0, 0q,

(19)

where Kpx, yq � 1� tpx� xy� y� x̄y� x̄� x̄ȳ� ȳ� xȳq. The specializa-
tions Mpx, 0q and Mp0, yq are algebraic each of degree 72 over Qpx, tq and
Qpy, tq, respectively, and Mp0, 0q and Mxp0, 0q have degree 24 over Qptq.

simple diagonal
simple

king double-tandem tandemdiabolo Gouyou-
Beauchamps

Figure 32: The seven step sets to which the strategy of this section should
apply. The first two are solved in [38], the third one in this section.

We have moreover a complete algebraic description of all the series
needed to reconstruct Ppx, yq and Mpx, yq from (18) and (19), namely
the univariate series Mp0, 0q and Mxp0, 0q, and the bivariate series
Mpx, 0q and Mp0, yq. In particular, both univariate series lie in the ex-
tension of Qptq (the field of rational functions in t) generated in 3
steps as follows: first, u � t� t2 �Opt3q is the only series in t satisfy-
ing

p1� 3uq3p1� uqt2 � p1� 18u2 � 27u4qt� u � 0,

then v � t � 3t2 �Opt3q is the only series with constant term zero
satisfying

p1� 3v� v3qu� vpv2 � v� 1q � 0,

and finally

w �
a

1� 4v� 4v3 � 4v4 � 1� 2t� 4t2 �Opt3q.

Schematically, Qptq 4
ãÑ Qpt, uq 3

ãÑ Qpt, vq 2
ãÑ Qpt, wq. Of particular

interest is the series Mp0, 0q: by (17), this is also the series C�1,0 that
counts by the length walks in C ending at p�1, 0q. It is algebraic, as
conjectured in [158], and given by

Mp0, 0q � C�1,0 � 1
2t

�
wp1� 2vq

1� 4v� 2v3 � 1



� t� 2t2 � 17t3 � 80t4 � 536t5 �Opt6q.
Once the series Cpx, yq is determined, we are able to derive detailed

asymptotic results, which refine general universal results of Denisov
and Wachtel [61] and Mustapha [147] (who obtained the following
estimates up to a multiplicative factor).
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Corollary 4.4.2. The number c0,0pnq of n-step king walks confined to C and
ending at the origin, and the number cpnq of walks of C ending anywhere
satisfy for n Ñ8:

c0,0pnq �
�

229K
37


1{3 Γp2{3q
π

8n

n5{3 ,

cpnq �
�

232K
37


1{6 1
Γp2{3q

8n

n1{3 ,

where K is the unique real root of 1016K3 � 601275603K2 � 92811K� 1.
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B
T E A C H I N G E X P E R I E N C E

I have acquired teaching experience at TU Wien, FH Campus Wien1,
and as invited speaker at international conferences. Already during
my master’s degree I gained experience as a teaching assistant (TA)
and later in my PhD as a university assistant coordinating up to 10
TAs at a time for more than 400 students. These courses were aimed
at mathematicians, computer scientists, and electrical engineers at the
bachelor’s and master’s levels. Between 2017 and 2020 I was working
abroad as a postdoc on different research projects, yet without any
teaching duties.

Table 6 gives a detailed summary of my experience in teaching and
the supervision of teaching assistants. I have gathered considerable
experience in teaching exercise classes (German: Übungen) and I have
recently started to be responsible for lectures as well. In the last win-
ter term 2021, I co-taught the lecture Discrete Mathematics for mas-
ter’s students in computer science at TU Wien together with Bernhard
Gittenberger. In the upcoming summer term 2022, I will co-teach the
lecture and exercise class Discrete Methods (German: Diskrete Metho-
den) for master’s students in mathematics at TU Wien again together
with Bernhard Gittenberger. In the following years, I plan to teach at
least one lecture per term, as I really enjoy the personal contact with
students.

Additionally, I have taught a mini-course for PhD students with
the title “An Invitation to Analytic Combinatorics and Lattice Path
Counting” at the ALEA in Europe Young Researchers’ Workshop2 at
the University of Bath, UK, 2015 and repeatedly substituted lectures
in Analysis for Computer Science, Algebra and Discrete Mathematics,
Discrete Methods, and Analysis for Electronics.

For more details I refer to my CV in Appendix A.

1FH Campus Wien (University of applied sciences): https:

//www.fh-campuswien.ac.at/en/studies/study-courses/detail/

angewandte-elektronik-bachelor.html
2http://people.bath.ac.uk/cdm37/AE-YRW.html
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b.1 student feedback

In the following I state the totality of the feedback that was given to
me by students after the end of each course through the anonymous
evaluation survey in TISS (TU Wien Information Systems & Services).
This feedback is left in the original form and hence mostly in German,
as nearly all course were taught in German.

Diskrete Methoden

Algebra und Diskrete Mathematik

Analysis

Numerische Mathematik 

Discrete  Mathematics
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A compacted binary tree is a directed acyclic graph encoding 
a binary tree in which common subtrees are factored and 
shared, such that they are represented only once. We show 
that the number of compacted binary trees of size n grows 
asymptotically like

Θ
(

n! 4ne3a1n1/3
n3/4

)
,

where a1 ≈ −2.338 is the largest root of the Airy function. 
Our method involves a new two parameter recurrence which 
yields an algorithm of quadratic arithmetic complexity for 
computing the number of compacted trees up to a given 
size. We use empirical methods to estimate the values of all 
terms defined by the recurrence, then we prove by induction 
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that these estimates are sufficiently accurate for large n to 
determine the asymptotic form. Our results also lead to new 
bounds on the number of minimal finite automata recognizing 
a finite language on a binary alphabet. As a consequence, 
these also exhibit a stretched exponential.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Compacted binary trees are a special class of directed acyclic graphs that appear as 
a model for data structures in the compression of XML documents [5]. Given a rooted 
binary tree of size n, its compacted form can be computed in expected and worst-case 
time O(n) with expected compacted size Θ(n/

√
log n) [16]. Recently, Genitrini, Gitten-

berger, Kauers, and Wallner solved the reversed question on the asymptotic number of 
compacted trees under certain height restrictions [17]; however the asymptotic number 
in the unrestricted case remained elusive. They also solved this problem for a simpler 
class of trees known as relaxed trees under the same height restrictions. In this paper we 
show that the counting sequences (cn)n∈N of (unrestricted) compacted binary trees and 
(rn)n∈N of (unrestricted) relaxed binary trees both admit a stretched exponential:

Theorem 1.1. The number of compacted and relaxed binary trees satisfy for n → ∞

cn = Θ
(
n! 4ne3a1n

1/3
n3/4

)
and rn = Θ

(
n! 4ne3a1n

1/3
n
)
,

where a1 ≈ −2.338 is the largest root of the Airy function Ai(x) defined as the unique 
function satisfying Ai′′(x) = xAi(x) and limn→∞ Ai(x) = 0.

We believe that there are constants γc and γr such that

cn ∼ γcn!4ne3a1n
1/3

n3/4 and rn ∼ γrn!4ne3a1n
1/3

n,

however, we have been unable to find the exact values of these constants or even prove 
their existence. Nevertheless, our empirical analysis yields what we believe to be very 
accurate estimates for γc and γr, namely γc ≈ 173.12670485 and γr ≈ 166.95208957.

The presence of a stretched exponential term in a sequence counting combinatorial 
objects is not common, although there are quite a few precedents. One simple example 
is that of pushed Dyck paths, where Dyck paths of maximum height h are given a weight 
y−h for some y > 1. In this case McKay and Beaton determined the weighted number dn

of paths of length 2n up to and including the constant term to be asymptotically given 
by

dn ∼ Ay(y − 1)(log y)1/34n exp
(
−C(log y)2/3n1/3

)
n−5/6,
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where A = 25/3π5/6/
√

3 and C = 3(π/2)2/3; see [18]. For the analogous problem of 
counting pushed self avoiding walks, Beaton et al. [4] gave a (non-rigorous) probabilistic 
argument for the presence of a stretched exponential of the form e−cn3/7 for some c > 0. In 
each of these cases, a stretched exponential appears as part of a compromise between the 
large height regime in which most paths occur and the small height regime in which the 
weight is maximized. We will see that a similar compromise occurs in this paper. Another 
situation in which stretched exponentials have appeared is in cogrowth sequences in 
groups [14], that is, paths on Cayley graphs which start and end at the same point. In 
particular, Revelle [25] showed that in the lamplighter group the number cn of these 
paths of length 2n behaves like

cn ∼ C 9nκn1/3
n1/6.

In the group Z �Z, Pittet and Saloff-Coste showed that the asymptotics of the cogrowth 
series contains the slightly more complicated term κ

√
n log n [24]. Another example 

comes from the study of pattern avoiding permutations, where Conway, Guttmann, and 
Zinn-Justin [7,8] have given compelling numerical evidence that the number pn of 1324-
avoiding permutations of length n behaves like

pn ∼ B μnμ
√

n
1 ng,

with μ ≈ 11.600, μ1 ≈ 0.0400, g ≈ −1.1.
As seen by these examples, it is generally quite difficult to prove that a sequence has 

a stretched exponential in its asymptotics. Part of the difficulty is that a sequence which 
has a stretched exponential cannot be “very nice”. In particular, the generating function 
cannot be algebraic, and can only be D-finite if it has an irregular singularity [15].

Some explicit examples of D-finite generating series with a stretched exponential are 
known; see e.g. [28–30]. In these cases Wright uses a saddle-point method to prove the 
presence of the stretched exponential. To apply this method, one needs to meticulously 
check various analytic conditions on the generating function, or to bound related integrals 
in a delicate way. These tasks can be highly non-trivial and require a precise knowledge 
of the analytic properties of the generating function. For more detail on how to use 
the saddle-point method to prove stretched exponentials, and further examples, see [15, 
Chapter VIII].

In lieu of detailed information on the generating function, we find and analyze the 
following recurrence relation

rn,m = rn,m−1 + (m + 1)rn−1,m,

corresponding to a partial differential equation to which the saddle point method cannot 
be readily applied. The number of relaxed trees of size n is then rn,n. We present a 
method that works directly with a transformed sequence dn,k and the respective recur-
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rence relation. We find two explicit sequences An,k and Bn,k with the same asymptotic 
form, such that

An,k ≤ dn,k ≤ Bn,k, (1)

for all k and all n large enough. The idea is that An,k and Bn,k satisfy the recurrence of 
dn,k with the equalities replaced by inequalities, allowing us to prove (1) by induction. 
In order to find appropriate sequences An,k and Bn,k, we start by performing a heuristic 
analysis to conjecture the asymptotic shape of dn,k for large n. We then prove that 
the required recursive inequalities hold for sufficiently large n using adapted Newton 
polygons.

The inductive step in the method described above requires that all coefficients in 
the recurrence be positive. This occurs in the case of relaxed binary trees but not for 
compacted binary trees. In the latter case, we construct a sandwiching pair of sequences, 
each determined by a recurrence with positive coefficients, to which our method applies.

As an application, we use our results on relaxed and compacted trees to give new 
asymptotic upper and lower bounds for the number of minimal deterministic finite au-
tomata with n states recognizing a finite language on a binary alphabet. These automata 
are studied in the context of the complexity of regular languages; see [11,12,23]. To our 
knowledge no upper or lower bounds capturing even the exponential term had been 
proven for this problem. Our bounds are much more accurate, only differing by a poly-
nomial factor, and thereby proving the presence of a stretched exponential term.

As a further extension of our method, some preliminary results show that our approach 
can be generalized to a k-ary version of compacted trees, which in turn settles the 
enumeration of minimal finite automata recognizing finite languages for an arbitrary 
alphabet. A follow-up paper in this direction is underway.

In its simplest form, our method applies to two parameter linear recurrences with 
positive coefficients which may depend on both parameters. We expect, however, that 
our method could be adapted to handle a much wider range of recurrence relations, 
potentially involving more than two parameters, negative coefficients and perhaps even 
some non-linear recurrences. Indeed, we have already seen that it can be adapted to at 
least one case involving negative coefficients, namely that of counting compacted binary 
trees.

Plan of the article In Section 2 we introduce compacted binary trees and the related 
relaxed binary trees, and then derive a bijection to Dyck paths with weights on their 
horizontal steps. In Section 3 we show a heuristic method of how to conjecture the 
asymptotics and in particular the appearance of a stretched exponential term. Building 
on these heuristics, we prove exponentially and polynomially tight bounds for the recur-
rence of relaxed binary trees in Section 4 and of compacted binary trees in Section 5. In 
Section 6 we show how our results lead to new bounds on minimal acyclic automata on 
a binary alphabet.
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2. A two-parameter recurrence relation

Originally, compacted binary trees arose in a compression procedure in [16] which 
computes the number of unique fringe subtrees. Relaxed binary trees are then defined 
by relaxing the uniqueness conditions on compacted binary trees. As we will not need 
this algorithmic point of view, we directly give the following definition adapted from [17, 
Definition 3.1 and Proposition 4.3].

Before we define compacted and relaxed binary trees, let us recall some basic defi-
nitions. A rooted binary tree is a plane directed connected graph with a distinguished 
node called the root, in which all nodes have out-degree either 0 or 2 and all nodes other 
than the root have in-degree 1, while the root has in-degree 0. For each vertex with 
out-degree 2, the out-going edges are distinguished as a left edge and a right edge. Nodes 
with out-degree 0 are called leaves, and nodes with out-degree 2 are called internal nodes. 
All trees in this paper will be rooted and we omit this term in the future.

Definition 2.1 (Relaxed binary tree). A relaxed binary tree (or simply relaxed tree) of 
size n is a directed acyclic graph obtained from a binary tree with n internal nodes, 
called its spine, by keeping the left-most leaf and turning other leaves into pointers, with 
each one pointing to a node (internal ones or the left-most leaf) preceding it in postorder.

The counting sequence (rn)n∈N of relaxed binary trees of size n starts as follows:

(rn)n∈N = (1, 1, 3, 16, 127, 1363, 18628, 311250, 6173791, 142190703, . . .) .

It corresponds to OEIS A082161 in the On-line Encyclopedia of Integer Sequences.4
There, it first appeared as the counting sequence of the number of deterministic, com-
pletely defined, initially connected, acyclic automata with 2 inputs and n transient, 
unlabeled states and a unique absorbing state, yet without specified final states. This 
is a direct rephrasing of Definition 2.1 in the language of automata theory; for more 
details see Section 6. Liskovets [23] provided (probably) the first recurrence relations 
(C2(n) used for rn) and later Callan [6] showed that they are counted by determinants 
of Stirling cycle numbers. However, the asymptotics remained an open problem, which 
we will solve in the present paper.

Using the class of relaxed trees, it is then easy to define the set of compacted trees by 
requiring the uniqueness of subtrees.

Definition 2.2 (Compacted binary tree). Given a relaxed tree, to each node u we can 
associate a binary tree B(u). We proceed by postorder. If u is the left-most leaf, we 
define B(u) = u. Otherwise, u has two children v, w, then B(u) is the binary tree with 
B(v) and B(w) as left and right sub-trees, respectively. A compacted binary tree, or 

4 https://oeis .org.
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Fig. 1. All relaxed (and also compacted) binary trees of size 0, 1, 2, where internal nodes are shown by circles 
and the unique leaf is drawn as a square.

Fig. 2. (Left) The smallest relaxed binary tree that is not a compacted binary tree, as the two gray subtrees 
correspond to the same (classical) binary tree. (Right) A valid compacted binary tree of size 3 with the 
same spine.

simply compacted tree of size n is a relaxed tree with B(u) 	= B(v) (i.e., B(u) not 
isomorphic to B(v)) for all pairs of distinct nodes u, v.

Fig. 1 shows all relaxed (and compacted) trees of size n = 0, 1, 2 and Fig. 2 gives the 
smallest relaxed tree that is not a compacted tree. The counting sequence (cn)n∈N of 
compacted binary trees of size n is OEIS A254789 and starts as follows:

(cn)n∈N = (1, 1, 3, 15, 111, 1119, 14487, 230943, 4395855, 97608831, . . .) .

In [17, Theorem 5.1 and Corollary 5.4] the so-far most efficient recurrences are given 
for the number of compacted and relaxed binary trees, respectively. Computing the first 
n terms using these requires O(n3) arithmetic operations. In this section we give an 
alternative recurrence with only one auxiliary parameter (instead of two) other than the 
size n, which leads to an algorithm of arithmetic complexity O(n2) to compute the first 
n terms of the sequence. The construction is motivated by the recent bijection [26].

As a corollary of our main result Theorem 1.1, we directly get an estimate of the 
asymptotic proportion of compacted trees among relaxed trees:

cn
rn

= Θ(n−1/4).

An analogous result for compacted and relaxed trees of bounded right height was shown 
in [17, Corollary 3.5]. The right height is the maximal number of right edges to internal 
nodes on a path in the spine from the root to a leaf. Let ck,n (resp. rk,n) be the number 
of compacted (resp. relaxed) trees of right height at most k. Then, for fixed k,

ck,n

rk,n
∼ λkn

− 1
k+3 −

(
1
4 − 1

k+3

)
1

cos2
(

π
k+3

)

= o
(
n−1/4

)
,
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Fig. 3. Example of the bijection Dyck between relaxed trees and horizontally decorated Dyck paths. It 
transforms internal nodes into vertical steps and pointers into horizontal steps.

for a constant λk independent of n. As k → ∞, we see that the exponent of n ap-
proaches −1/4. It is thus not surprising that the exponent in the unbounded case is 
also −1/4.

2.1. Relaxed binary trees and horizontally decorated paths

For the subsequent construction, we need the following type of lattice paths.

Definition 2.3. A horizontally decorated path P is a lattice path starting from (0, 0) with 
steps H = (1, 0) and V = (0, 1) confined to the region 0 ≤ y ≤ x, where each horizontal 
step H is decorated by a number in {1, . . . , k + 1} with k its y-coordinate. If P ends at 
(n, n), we call it a horizontally decorated Dyck path.

We denote by Dn the set of horizontally decorated Dyck paths of length 2n.

Remark 2.4. Horizontally decorated Dyck paths can also be interpreted as classical Dyck 
paths, where below every horizontal step a box given by a unit square between the 
horizontal step and the line y = −1 is marked, see Fig. 3. This gives an interpretation 
connecting these paths with the heights of Dyck paths, which we will exploit later. 
Independently, Callan gave in [6] a more general bijection in which he called the paths 
column-marked subdiagonal paths, and Bassino and Nicaud studied in [3] a variation 
when counting some automata, where the paths stay above the diagonal, which they 
called k-Dyck boxed diagrams.

Theorem 2.5. There exists a bijection Dyck between relaxed binary trees of size n and 
the set Dn of horizontally decorated Dyck paths of length 2n.

Proof. Let C be a relaxed binary tree of size n, and C∗ its spine. For convenience, we 
identify the internal nodes in C and C∗, and pointers in C with leaves (not the left-most 
one) in C∗.

We now give a recursive procedure transforming C into a horizontally decorated Dyck 
path P . First, we take C∗ and label its internal nodes and the left-most leaf in postorder 
from 1 to n + 1. Next, we define the following function Path that transforms C∗ into 
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a lattice path in H and V . Given a binary tree T , it either consists of two sub-trees 
(T1, T2), or it is a leaf ε. We thus define Path recursively by

Path((T1, T2)) = Path(T1)Path(T2)V, Path(ε) = H.

It is clear that Path(C∗) starts with H for the left-most leaf. Let P0 be Path(C∗) with its 
starting H removed. Note that Path performs a postorder traversal on C∗ where leaves 
are matched with H and internal nodes with V . Then, Path(C∗) ends at (n + 1, n)
and stays always strictly below y = x because every binary (sub-)tree has one more leaf 
than internal nodes, and each initial segment of Path(C∗) corresponds to a collection of 
subtrees of C∗. Hence, P0 is a Dyck path. Observe that the i-th step V in P0 corresponds 
to the (i +1)-st node in postorder, as the left-most leaf is labeled 1. Finally, for each step 
H in P0, we label it by the label of the internal node (or the left-most leaf) to which its 
corresponding leaf in C∗ points in C. We thus obtain a Dyck path P with labels on the 
horizontal steps, and we define Dyck(C∗) = P .

We have seen that the Dyck path P0 is in bijection with the spine C∗. To see that the 
labeling condition on horizontally decorated Dyck paths is equivalent to the condition 
on relaxed binary trees, we take a pointer p pointing to a node u with label � that 
corresponds to a step H with a certain coordinate k. By construction of the Dyck path, 
p comes after u in postorder if and only if the step H from p comes after the step V
from u, which is equivalent to � ≤ k + 1, as the node with label 1 is the left-most leaf 
and is not recorded as a step H. We thus have the equivalence of the two conditions, so 
Dyck is indeed a bijection as claimed. �

The following result gives the claimed algorithm with quadratic arithmetic complexity 
to count such paths, which can also be used as a precomputation step of an algorithm 
that randomly generates these paths using a linear number of arithmetic operations for 
each path. These algorithms are also applicable to relaxed binary trees via the bijection 
Dyck.

Proposition 2.6. Let rn,m be the number of horizontally decorated paths ending at (n, m). 
Then,

rn,m = rn,m−1 + (m + 1)rn−1,m, for n,m ≥ 1 and n ≥ m,

rn,m = 0, for n < m,

rn,0 = 1, for n ≥ 0.

The number of relaxed binary trees of size n is equal to rn,n.

Proof. Let us start with the boundary conditions. First of all, no such path is allowed 
to cross the diagonal y = x, thus rn,m = 0 for n < m. Second, the paths consisting only 
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of horizontal steps stay at altitude 0 and admit therefore just one possible label for each 
step, i.e., rn,0 = 1 for n ≥ 0.

For the recursion we consider how a path can jump to (n, m). It either uses a step V

from (n, m − 1) or it uses a step H from (n − 1, m). In the second case, there are m + 1
possible decorations as the path is currently at altitude m. �
Remark 2.7 (Compacted trees of bounded right height). This restriction naturally trans-
lates relaxed binary trees of right height at most k from [17] into horizontally decorated 
Dyck paths of height at most k+1, where height is the maximal normal distance rescaled 
by 

√
2 from a lattice point on the path to the diagonal. In other words, these paths are 

constrained to remain between the diagonal and a line translated to the right parallel to 
the diagonal by k + 1 unit steps.

2.2. Compacted binary trees

Given a relaxed tree C, an internal node u is called a cherry if its children in the spine 
are both leaves and none of them is the left-most one. According to the discussion at the 
end of Section 4 in [17], the only obstacle for a relaxed tree to be a compacted tree is a 
cherry with badly chosen pointers. For the convenience of the reader, we now recall and 
formalize this observation in the following proposition.

Proposition 2.8. A relaxed tree C is a compacted tree if and only if there are no two nodes 
u 	= v in C which share the same left child u� and the same right child ur. Moreover, 
if C is not a compacted tree, such a pair exists where v is a cherry and u precedes v in 
postorder.

Proof. The “only if” part follows directly from Definition 2.2. We now focus on the “if” 
part. Suppose that C is not a compacted tree, which means there is at least a pair 
of internal nodes u, v such that u precedes v and B(u) = B(v), with B(u) defined in 
Definition 2.2. Now we want to show that there is one such pair with v being a cherry. 
We take such a pair (u, v). If v is a cherry, the claim holds. Otherwise, without loss of 
generality, we suppose that the left child v′ of v is not a leaf. Let u� be the left child of u. 
If u� is an internal node, we take u′ = u�. Otherwise, we take u′ to be the internal node 
pointed to by u�. By definition, we have B(u′) = B(v′), and clearly u′ precedes v′ in 
postorder. We thus obtain a new pair with the same conditions but of greater depth in 
the spine. However, since the spine has finite depth, this process cannot continue forever. 
As it only stops when v is a cherry, we have the existence of such a pair (u, v) with v a 
cherry. �

The restriction described in Proposition 2.8 has an analogue in the class of horizontally 
decorated paths: We label every step V with its final altitude plus one, which corresponds 
to its row number in the interpretation with marked boxes, and which also corresponds to 
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the traversal/process order in postorder of its internal node in the relaxed tree; compare 
Fig. 3. Recall that each step H is already labeled. For any step S, let L(S) be its label. 
We associate to every step V a pair of integers (v1, v2), which correspond to the labels 
of its left and right children. First, let S′ be the step before V and set v2 = L(S′). 
Next, draw a line from the ending point of V in the southwest direction parallel to the 
diagonal, and stop upon touching the path again. Let S′′ be the last step before V that 
ends on this line (if there is no such step, set v1 = 1). Then set v1 = L(S′′).

Definition 2.9. A C-decorated path P is a horizontally decorated path where the decora-
tions h1 and h2 of each pattern of consecutive steps HHV fulfill (h1, h2) 	= (v1, v2) for 
all preceding steps V .

Proposition 2.10. The map Dyck bijectively sends the set of compacted trees of size n to 
the set of C-decorated Dyck paths of length 2n.

Proof. Recall from Theorem 2.5 that the map Dyck is a bijection sending relaxed trees 
of size n to the set of horizontally decorated Dyck paths of size 2n. C-decorated paths are 
defined precisely so that their corresponding relaxed trees satisfy the condition of Propo-
sition 2.8. Therefore, Dyck forms a bijection between C-decorated paths and compacted 
trees. �

The key observation for the counting result is that exactly one pair of labels (h1, h2)
is avoided for each preceding step V of a consecutive pattern HHV . Applying this clas-
sification to the previous result we get a similar quadratic-time recurrence for compacted 
binary trees.

Proposition 2.11. Let cn,m be the number of C-decorated paths ending at (n, m). Then,

cn,m = cn,m−1 + (m + 1)cn−1,m − (m − 1)cn−2,m−1, for n ≥ m ≥ 1,

cn,m = 0, for n < m,

cn,0 = 1, for n ≥ 0.

The number of compacted binary trees of size n is equal to cn,n.

Proof. In the first case, the term (m + 1)cn−1,m counts the paths ending with a H-
step while cn,m−1 − (m − 1)cn−2,m−1 counts the paths ending with a V -step. The term 
−(m − 1)cn−2,m−1 occurs because, for each C-decorated path ending at (n − 2, m − 1), 
there are exactly m − 1 paths formed by adding an additional HHV that are not C-
decorated paths. �

Note that one might also count the following simpler class which is in bijection with 
C-decorated paths, albeit without a natural bijection.
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Definition 2.12. A H-decorated path P is a horizontally decorated path where the deco-
rations h1 and h2 of each pattern of consecutive steps HHV fulfill h1 	= h2 except for 
h1 = h2 = 1.

In terms of marked boxes, this constraint translates to the fact that, below the hor-
izontal steps in each consecutive pattern HHV , the marks must be in different rows 
except possibly for the lowest one.

3. Heuristic analysis

In this section, we will explain briefly some heuristics and an ansatz that we will apply 
later to get the asymptotic behavior of rn and cn. These heuristics are closely related to 
the asymptotic behavior of Dyck paths and the Airy function.

3.1. An intuitive explanation of the stretched exponential

We can consider rn as a weighted sum of Dyck paths, where each Dyck path P has 
a weight w(P ) that is the number of horizontally decorated Dyck paths that it gives 
rise to. There is thus a balance of the number of total paths and their weights for the 
weighted sum rn,n. On the one hand, most paths have an (average) height of O(

√
n)

(i.e., mean distance to the diagonal). On the other hand, their weight is maximal if their 
height is O(1), i.e., they are close to the diagonal. In other words, typical Dyck paths 
are numerous but with small weight, and Dyck paths atypically close to the diagonal are 
few but with enormous weight. The asymptotic behavior of the weighted sum of Dyck 
paths that we consider should be a result of a compromise between these two forces. We 
will now make this more explicit by analyzing Dyck paths with height approximately nα

for some α ∈ (0, 1/2).
Given a Dyck path P with steps H = (1, 0) and V = (0, 1) as in Definition 2.3, let 

mi be the y-coordinate of the i-th step H. The number of Dyck paths with mi bounded 
uniformly satisfy the following property.

Proposition 3.1 ([22, Theorem 3.3]). For a Dyck path P of length 2n chosen uniformly 
at random, let mi be the y-coordinate of the i-th step H. For α < 1/2, we have

logP
(

max
1≤i≤n

(i − mi) < nα

)
∼ −π2n1−2α.

Let w(P ) the number of horizontally decorated Dyck paths whose unlabeled version is 
the Dyck path P . For a randomly chosen Dyck path P of length 2n with i −mi bounded 
uniformly by nα, we heuristically expect most values of i −mi to be of the order Θ(nα), 
with i of order Θ(n). This leads to the following approximation:
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log w(P )
n! =

∑

1≤i≤n

log
(

mi + 1
i

)
=
∑

1≤i≤n

log
(

1 − i − mi − 1
i

)
≈ cn ·

(
−nα

n

)
= −cnα.

Here, c > 0 is some constant depending on α. This approximation is only heuristi-
cally justified and very hard to prove. The contribution of Dyck paths with i − mi

uniformly bounded by nα should thus roughly be n!4n exp(−(1 + o(1))c′np(α)), with 
p(α) = min(α, 1 − 2α) and c′ > 0 a constant depending on α. Here, 4n comes from 
the growth constant of Dyck paths. The function p(α) is minimal at α = 1/3, which 
maximizes the contribution, leading to the following heuristic guess that the number of 
relaxed binary trees rn should satisfy

log rn

n!4n
∼

n→∞
−an1/3,

for some constant a > 0. Furthermore, we anticipate that the main contribution should 
come from horizontally decorated Dyck paths with i − mi mostly of order Θ(n1/3). 
Since most such i’s should be of order Θ(n), we can even state the condition above 
as x − y = Θ(y1/3) for most endpoints (x, y) of horizontal steps. This heuristic is the 
starting point of our analysis.

3.2. Weighted Dyck meanders

The heuristics of the previous section suggest that the mean distance to the diago-
nal will play an important role. Therefore, we propose another model of lattice paths 
emphasizing this distance. A Dyck meander (or simply a meander) M is a lattice path 
consisting of up steps U = (1, 1) and down steps D = (1, −1) while never falling below 
y = 0. It is clear that Dyck paths of length 2n are in bijection with Dyck meanders of 
length 2n ending on y = 0 with the transcription H → U, V → D. This bijection can 
also be viewed geometrically as the linear transformation x′ = x + y, y′ = x − y. This 
transformation will simplify the following analysis. We can consider Dyck meanders as 
initial segments of Dyck paths.

Furthermore, we have seen that a rescaling by n! seems practical. So we consider the 
following weight on steps U in a meander M . If U starts from (a, b), then its weight is 
(a − b + 2)/(a + b + 2), and the weight of M is the product of the weights of its steps U . 
Let dn,m denote the weighted sum of meanders ending at (n, m). We get the following 
recurrence for dn,m.

Proposition 3.2. The weighted sum dn,m defined above for meanders ending at (n, m)
satisfies the recurrence

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

dn,m = n−m+2
n+m dn−1,m−1 + dn−1,m+1, for n > 0,m ≥ 0,

d0,m = 0, for m > 0,
dn,−1 = 0, for n ≥ 0,
d0,0 = 1.

(2)
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Proof. We concentrate on the first case, as the boundary cases follow directly from the 
definition of meanders. Given a meander ending at (n, m) with n > 0, the last step may 
be an up step or a down step. The contribution of the former case is n−m+2

n+m dn−1,m−1, 
with the weight of the last up step taken into account. The contribution of the latter 
case is simply dn−1,m+1. We thus get the claimed recurrence. �
Corollary 3.3. For integers m, n of the same parity, we have

dn,m = 1
((n + m)/2)!r(n+m)/2,(n−m)/2.

When m, n are not of the same parity, we have dn,m = 0.
In particular, the number of relaxed trees of size n is given by n!d2n,0.

Proof. It is clear that meanders can only end on points (n, m) for n, m of the same 
parity. In this case, it suffices to compare Proposition 2.6 with Proposition 3.2 under the 
proposed equality. �

For some simple cases of dn,m, elementary computations show that dn,m = 0 for 
m > n, dn,n = 1

n! , dn,n−2 = 2n−1−1
(n−1)! and dn,n−4 = 7·3n−3−2n+1

2(n−2)! .

3.3. Analytic approximation of weighted Dyck meanders

The heuristic in Section 3.1 suggests that the main weight of dn,m comes from the 
region m = Θ(n1/3). It thus suggests an approximation of dn,m of the form

dn,m ∼ f(n−1/3(m + 1))h(n), (3)

for some functions f and h, where we expect h(n) ≈ 2nρn1/3 for some ρ. The idea is that 
h(n) describes how the total weight for a fixed n grows, and f(κ) describes the rescaled 
weight distribution in the main region m = Θ(n1/3).

Let s(n) be the ratio h(n)
h(n−1) . Suppose that m = κn1/3 − 1, the recurrence becomes

f(κ)s(n) = n − κn1/3 + 3
n + κn1/3 − 1f

(
κn1/3 − 1
(n − 1)1/3

)
+ f

(
κn1/3 + 1
(n − 1)1/3

)
. (4)

Now, since we expect h(n) ≈ 2nρn1/3 , we postulate that the ratio s(n) behaves like

s(n) = 2 + cn−2/3 + O(n−1), (5)

and that f(κ) is analytic. Using these assumptions, we can expand (4) as a Puiseux 
series in 1/n. Moving all terms to the right-hand side yields

0 = ((c + 2κ)f(κ) − f ′′(κ))n−2/3 + O(n−1).
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Solving the differential equation (c + 2κ)f(κ) − f ′′(κ) = 0 under the condition f(κ) → 0
when κ → ∞ yields the unique solution (up to multiplication by a constant)

f(κ) = bAi
(

c + 2κ
22/3

)
. (6)

The condition on the behavior of f(κ) near ∞ is motivated by the experimental obser-
vation that dn,m is quickly decaying for m close to n. We also insist that f(0) = 0 as 
dn,−1 = 0, which implies that c = 22/3a1 where a1 ≈ −2.338 is the first root of the Airy 
function Ai(x), i.e. the largest one as all roots are on the real negative axis; see [1, p. 450]. 
Now, using this conjectural value of c, it follows that (ignoring polynomial terms)

h(n) ≈ 2n exp
(
3a1(n/2)1/3

)
.

This suggests that the number of relaxed trees rn = n!d2n,0 behaves like

rn ≈ n!4n exp
(
3a1n

1/3
)
,

which is compatible with what we want to prove.
We observe that (4) can be expanded into a Puiseux series of n1/3 by taking appropri-

ate series expansions of f(κ) and s(n). Hence, to refine the analysis above, it is natural 
to look at the expansion of s(n) in (5) to more subdominant terms, and to postulate a 
more refined ansatz of dn,m than (3), probably as a series in n1/3. Indeed, if we take

dn,m ∼
(
f(n−1/3(m + 1)) + n−1/3g(n−1/3(m + 1))

)
h(n)

and

s(n) = 2 + cn−2/3 + dn−1 + O(n−4/3),

then using the same method we can reach the polynomial part of the asymptotic behavior 
of rn as

rn ≈ n!4n exp
(
3a1n

1/3
)
n.

In general, we can postulate

dn,m ≈ h(n)
k∑

j=0
fj(n−1/3(m + 1))n−j/3,

and

s(n) = 2 + γ2n
−2/3 + γ3n

−1 + . . . + γkn
−k/3 + o(n−k/3).



A. Elvey Price et al. / Journal of Combinatorial Theory, Series A 177 (2021) 105306 15

The proof of our main result on relaxed binary trees is based on choosing the cutoff 
appropriately, and using perturbations of that truncation to bound rn.

3.4. Discussion on the constants

One of the first steps in our method involves taking ratios h(n)/h(n − 1) (or equiv-
alently rn/rn−1) of successive terms. From the leading asymptotic behavior of these 
ratios we can deduce the exact asymptotic form up to the constant term. Unfortunately, 
however, this method makes it impossible to exactly determine the constant term γr. In 
this section we give estimates of the constant terms: we believe that there are constants 
γr ≈ 166.95208957 and γc ≈ 173.12670485 such that

cn ∼ γcn!4ne3a1n
1/3

n3/4 and rn ∼ γrn!4ne3a1n
1/3

n.

Based on the analysis in Section 3.3, we expect the ratios rn/rn−1 to behave like

rn

rn−1
=

k−1∑

j=0
βjn

1−j/3 + O(n1−k/3),

for any positive integer k, with the sequence β0, β1, . . . beginning with the terms 
4, 0, 4a1, 4. This is equivalent to the existence of a sequence δ0, δ1, . . . such that rn behaves 
like

rn = n!4n exp(3a1n
1/3)n

⎛
⎝

k−1∑

j=0
δjn

−j/3 + O(n−k/3)

⎞
⎠ ,

for any positive integer k. In this equation, δ0 = γr is the constant term that we aim to 
approximate. A simple way to approximate γr is to write

un = rn

n!4n exp(3a1n1/3)n.

Then the graph of the values of un plotted against 10n−1/3 (because n is close to 1000) 
should be roughly linear (see Fig. 4a), and the point where it crosses the y-axis can be 
taken as an approximation for γr. This yields γr ≈ 160. We get a more precise estimate 
as follows: Fix k to be some positive integer. Then, for each n, consider the integers 
m ∈ [n, n + k). For each such m we expect the equation

um ≈
k−1∑

j=0
δjm

−j/3

to be approximately true. We then solve this system of equations for δ0, . . . , δk−1 as 
though the equations were exact, using known, exact values of um. This yields ap-
proximations for δ0, . . . , δk−1. Denote the approximation thus obtained for δ0 = γr
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Fig. 4. Plots for 800 ≤ n ≤ 1000 visualizing the numerical approximation of the leading constants γr and 
γc of relaxed and compacted trees, respectively. Note that the scalings on the x-axes with 10n−1/3 and 
1018n−6 are chosen because n is close to 1000.

by vn. Note that this is equivalent to writing vn as a weighted sum of the num-
bers um, which cancels the terms n−j/3 for 1 ≤ j < k. For example, if k = 2 then 
vn = ((n +1)1/3un −n1/3un+1)/((n +1)1/3 −n1/3). Hence, if our assumptions are correct 
then vn = γr + O(n−k/3). Taking k = 18 and plotting vn against 1018n−6 (because n is 
close to 1000) as in Fig. 4b yields the approximation γr ≈ 166.95208957, where we ex-
pect the quoted digits to be correct. In Figs. 4c and 4d we show a similar analysis of the 
counting sequence for compacted trees, yielding the approximation γc ≈ 173.12670485.
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4. Proof of stretched exponential for relaxed trees

In this section we prove upper and lower bounds for the number of relaxed trees. These 
bounds differ only in the constant term, so they completely determine both the stretched 
exponential factor and the polynomial factor in the asymptotic number of relaxed trees 
for large n.

Recall from Corollary 3.3 that the number of relaxed trees rn of size n is given by 
rn = n!d2n,0, where the terms dn,m are given by the recurrence relation (2) which we 
repeat here for the convenience of the reader:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

dn,m = n−m+2
n+m dn−1,m−1 + dn−1,m+1, for n > 0,m ≥ 0,

d0,m = 0, for m > 0,
dn,−1 = 0, for n ≥ 0,
d0,0 = 1.

Our proofs of the upper and lower bounds for relaxed trees come from more general 
bounds for the numbers dn,m, which we prove by induction. Suppose that (Xn,m)n≥m≥0
and (sn)n≥1 are sequences of non-negative real numbers satisfying

Xn,msn ≤ n − m + 2
n + m

Xn−1,m−1 + Xn−1,m+1, (7)

for all sufficiently large n and all integers m ∈ [0, n]. We define the sequence (hn)n≥0
by h0 = 1 and hn = snhn−1. By induction on n, for some constant b0, the following 
inequality holds for all sufficiently large n and all m ≥ 0:

Xn,mhn

(7)
≤ n − m + 2

n + m
Xn−1,m−1hn−1 + Xn−1,m+1hn−1

(IS)
≤ n − m + 2

n + m
b0dn−1,m−1 + b0dn−1,m+1 (8)

(2)= b0dn,m.

Here (IS) marks the “Induction Step”. Similarly, if we can show the opposite of (7), it 
will imply that

Xn,mhn ≥ b1 · dn,m,

for all sufficiently large n and all integers m ∈ [0, n].
Comparing to the heuristic analysis in Section 3.3, we see that Xn,m acts as the 

function f(κ), and sn as s(n). Therefore, we should expect Xn,m to be close to (6), and 
sn to be a slight deviation of (5).

In Lemma 4.2 we will prove that certain explicit sequences X̃n,m and s̃n satisfy (7), 
which will lead to a lower bound on the numbers dn,m. Similarly, in Lemma 4.4 we will 
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Fig. 5. (Left) The Airy function Ai(a1 + x), (Centre) its derivative Ai′(a1 + x), and (Right) the quotient 
Φ(x) = xAi′(a1+x)

Ai(a1+x) on the positive real line.

show that other explicit sequences X̂n,m and ŝn satisfy the opposite of (7), which there-
fore yields an upper bound on the numbers dn,m. Together, these two bounds determine 
the exact asymptotic form of the numbers d2n,0 up to the constant term.

In order to prove these bounds with the explicit expressions of Xn,m and sn, we will 
consider the difference between the right- and the left-hand side of (7). Then we will show 
that this difference is non-negative. We start by expanding the involved Airy function 
and its derivative in the neighborhood of an appropriate point α, leading to a sum of 
the form

pn,mAi(α) + p′
n,mAi′(α),

where pn,m and p′
n,m can be expressed as Puiseux series in n whose coefficients are 

fractional polynomials in m. By looking at the “Newton polygon” of these Puiseux series, 
we can pick out the dominant term at different regimes of n and m, leading to a proof 
of (7) (or the reverse direction).

The following Lemma summarizes some elementary results on the relation between 
the Airy function Ai and its derivative Ai′. We will use these results in Lemmas 4.2 and 
4.4 to bound the subsequently defined auxiliary sequence X̃n,m.

Lemma 4.1. The functions

Φ(x) = x
Ai′(a1 + x)
Ai(a1 + x) and Ψ(x) = Ai′(a1 + x)

Ai(a1 + x)

are infinitely differentiable and monotonically decreasing on x > 0 with Φ(0) = 1.

Proof. First, by l’Hospital’s rule it is easy to see that Φ(0) = 1. Second, as a1 is the largest 
root of Ai(x), the functions Φ(x) and Ψ(x) are infinitely differentiable as compositions 
of differentiable functions. It remains to prove the monotonicity; see Fig. 5. A local 
expansion at x = 0 shows that the functions are initially decreasing. The same holds for 

large x due to the approximation Ai(x) ∼ exp
(
− 2

3x3/2
)

2
√

πx1/4 , see [1, Equation 10.5.49], giving
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Ψ(x) ∼ −√
a1 + x, (9)

for x → ∞. We will show that Φ′(x) and Ψ′(x) are always negative for x > 0. Note that 
Φ(x) and Ψ(x) will change sign only once at x0 ≈ 0.91.

We present the following argument for the monotonicity of Φ(x). Assume that there 
exists an x+ such that Φ′(x+) > 0. Then, as Φ(x) is initially and finally decreasing, there 
must exist y1 < x+ < y2 such that Φ′(y1) = Φ′(y2) = 0 and Φ′′(y1) ≥ 0 ≥ Φ′′(y2).

The second derivatives are equal to

Φ′′(x) = 2a1 + 3x − 2
x

Φ(x)Φ′(x).

These lead to 2a1 + 3y1 ≥ 0 ≥ 2a1 + 3y2, thus also the contradiction y1 ≥ y2. The 
argument for the monotonicity of Ψ(x) is analogous, except that the second derivative 
is now

Ψ′′(x) = 1 − 2Ψ(x)Ψ′(x),

leading to the contradiction Ψ′′(y1) = Ψ′′(y2) = 1. �
Later we will use the value x0 which is the unique root of Φ(x) and Ψ(x) to determine 

the dominant term in the expansion of our series in Ai(x) and Ai′(x).

4.1. Lower bound

Lemma 4.2. For all n, m ≥ 0 let

X̃n,m :=
(

1 − 2m2

3n + m

2n

)
Ai
(
a1 + 21/3(m + 1)

n1/3

)
and

s̃n := 2 + 22/3a1
n2/3 + 8

3n − 1
n7/6 .

Then, for any ε > 0, there exists an ñ0 such that

X̃n,ms̃n ≤ n − m + 2
n + m

X̃n−1,m−1 + X̃n−1,m+1, (10)

for all n ≥ ñ0 and for all 0 ≤ m < n2/3−ε.

Proof. First, define the following sequence

Pn,m := −Zn,msn + n − m + 2
n + m

Zn−1,m−1 + Zn−1,m+1,

where
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sn := σ0 + σ1
n1/3 + σ2

n2/3 + σ3
n

+ σ4
n7/6 ,

Zn,m :=
(

1 + τ2m
2 + τ1m

n

)
Ai
(
a1 + 21/3(m + 1)

n1/3

)
,

with σi, τj ∈ R. Then the inequality (10) is equivalent to Pn,m ≥ 0 with σ0 = 2, σ1 = 0, 
σ2 = 22/3a1, σ3 = 8/3, and σ4 = −1 as well as τ0 = 0, τ1 = 1/2, and τ2 = −2/3. Next, 
we expand Ai(z) in a neighborhood of

α = a1 + 21/3m

n1/3 , (11)

and we get the following expansion

Pn,m = pn,mAi(α) + p′
n,mAi′(α),

where pn,m and p′
n,m are functions of m and n−1 and may be expanded as power series 

in n−1/6 with coefficients polynomial in m. As long as n > 1 and n > m, this series 
converges absolutely because the Airy function is entire and so all functions expanded 
are analytic in the region defined by |n| > 1 and |n| > |m|.

As a first step we compute the possible range of the powers in m and n. We will 
start by showing that [minj ]Pn,m = 0 for i + j > 1, i, j ∈ Q. The expansions of the 
three involved Airy functions only give terms of the form O(mjn−j(n−1/3)k)Ai(k)(α), 
with j, k ≥ 0. Due to the differential equation Ai′′(α) = αAi(α), the term Ai(k)(α) takes 
the form O(α
k/2�)Ai(α) +O(α
(k−1)/2�)Ai′(α). Hence, all terms in the expansion of the 
Airy function are of the form O(mjn−j)Ai(α) or O(mjn−j−1/3)Ai′(α) for some j ≥ 0. 
Due to the factor m2n−1 in the definition of X̃n,m, this implies that [minj ]Pn,m = 0 for 
i + j > 1. Additionally, it also implies that the coefficients of Ai′(α) are equal to 0 for 
i + j > 2/3.

Next, we strengthen this result by choosing suitable values σi for 0 ≤ i ≤ 4 in the 
definition of sn in order to eliminate more initial coefficients. Then, we will show that 
the remaining terms satisfy Pn,m ≥ 0. We performed this tedious task in Maple and we 
refer to the accompanying worksheet [27] for more details. The results are summarized in 
Fig. 6 where the initial non-zero coefficients are shown. A diamond at (i, j) is drawn if and 
only if the coefficient [minj ]Pn,m is non-zero. It is an empty diamond if the given choice 
of σi and τj makes it disappear, whereas it is a solid diamond if it remains non-zero. The 
convex hull is formed by the following three lines

L1 : j = −7
6 − 7i

18 ,

L2 : j = −1
3 − 2i

3 ,

L3 : j = 1 − i.
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Fig. 6. (Left) Non-zero coefficients of Pn,m =
∑

ai,jm
inj shown by diamonds for sn := σ0 + σ1

n1/3 + σ2
n2/3 +

σ3
n + σ4

n7/6 and Zn,m :=
(
1 + τ2m2+τ1m

n

)
Ai
(
a1 + 21/3(m+1)

n1/3

)
. There are no terms in the blue dashed area. 

The blue terms vanish for σ0 = 2, the red terms vanish for σ1 = 0, the green terms vanish for σ2 = 22/3a1, 
and the yellow terms vanish for σ3 = 8/3 and τ2 = −2/3. The black and red lines represent the two parts 
L1 and L2, respectively, of the convex hull. (Right) The solid gray diamonds are decomposed into the 
coefficients pn,m of Ai(α) (red boxes) and p′

n,m of Ai′(α) (blue diamonds). (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

Next, we distinguish between the contributions arising from pn,m and p′
n,m. The ex-

pansions for n tending to infinity start as follows, where the elements on the convex hull 
are written in color:

Pn,m = Ai(α)
(

− σ4
n7/6 − 25/3a1m

3n5/3 −41m2

9n2 − 28/3a1m
3

3n8/3 −34m4

9n3 − 62m5

135n4 + . . .

)
+

Ai′(α)
(

21/3(2τ1 − 1)
n4/3 + 21/3

n3/2 − 8a1m

9n2 + 21/3(24τ1 − 31)m2

9n7/3 −213/3m3

9n7/3

−525/3m4

9n10/3 − 89 24/3m5

135n13/3 + . . .

)
.

We now choose σ4 = −1 which leads to a positive term Ai(α)n−7/6 and set τ1 = 1/2 to 
eliminate the term of order n−4/3 from the convex hull (it is replaced by 21/3

n3/2 ). Then, the 
non-zero coefficients are shown in Fig. 7. Next, for fixed (large) n we prove that for all m
the dominant contributions in Pn,m are positive. Therefore, we consider three different 
regimes. Let x0 be the unique positive root of Ψ(x) from Lemma 4.1.

1. Consider the range of small values of m given by m ≤ x0(n/2)1/3. In this range Ai(α)
and Ai′(α) are both positive. Moreover, the (red) coefficients of Ai(α) are dominated 
by n−7/6 for large n, while the (blue) coefficients of Ai′(α) apart from the term 
ν = −213/3m3

9n7/3 Ai′(α) are dominated by 21/3

n3/2 . By Lemma 4.1 we have

21/3m

n1/3 Ai′(α) − Ai(α) < 0.
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Fig. 7. Non-zero coefficients pn,m =
∑

ãi,jm
inj (red, left) and p′

n,m =
∑

ã′
i,jm

inj (blue, right) of the ex-
pansion (11) for Pn,m. The coefficient of n−4/3 in the right picture depicted as a solid blue circle disappears 
for τ1 = 1/2.

Hence, ν > −16m2

9n2 Ai(α), and it can therefore be treated as if it belonged to the 
coefficients of Ai(α). Thus, as the dominating terms are positive, there exists some 
N0 such that Pn,m > 0 whenever n > N0 and m ≤ x0(n/2)1/3.

2. Next, consider the central range x0(n/2)1/3 < m ≤ n7/18. Here, we have Ai′(α) < 0. 
On the one hand, as seen in the left part of Fig. 7, the (red) coefficients of Ai(α)
are still dominated by n−7/6 (which holds up to m = Θ(n5/12)). On the other hand, 
in this range the term ν = −213/3m3

9n7/3 Ai′(α) dominates all other (blue) coefficients of 
Ai′(α) (due to τ1 = 1/2). Since ν > 0 in this range, this implies that there exists 
some (sufficiently large) N1 such that Pn,m > 0 whenever n > N1 and x0(n/2)1/3 <

m ≤ n7/18.
3. Finally, consider the range of large values n7/18 < m < n2/3−ε. By the reasoning 

on Ψ(x) in Lemma 4.1 we see that −Ai′(α) > Ai(α) > 0. Therefore, the (blue) 
term ν dominates all of the (red) terms of Ai(α) as well as all other (blue) terms 
of Ai′(α). Hence there exists some N2 such that Pn,m > 0 whenever n > N2 and 
n7/18 < m < n2/3−ε.

Choosing ñ0 = max{N0, N1, N2} completes the proof. �
Remark 4.3. The previous result could be strengthened to hold up to m ≤ n1−ε by (9)
as will be shown in the proof of Lemma 4.4. However, we will not need this result in the 
sequel.

Now, to complete the lower bound we define the sequence Xn,m := max{X̃n,m, 0}, 
i.e.,

Xn,m :=
{

X̃n,m, if m <
√

96n+9+3
8 ,

0, if m ≥
√

96n+9+3
8 .
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Then, in the first case we get the following inequality for all sufficiently large n

Xn,ms̃n ≤ n − m + 2
n + m

X̃n−1,m−1 + X̃n−1,m+1 ≤ n − m + 2
n + m

Xn−1,m−1 + Xn−1,m+1,

using Lemma 4.2 with ε = 1
12 . Note that we could choose any ε ∈ (0, 16 ), as we just need 

n2/3−ε >
√

96n+9+3
8 for large n. In the second case we have

Xn,ms̃n = 0 ≤ n − m + 2
n + m

Xn−1,m−1 + Xn−1,m+1.

Finally, we write h̃n = s̃nh̃n−1 and we deduce by induction that dn,m ≥ bh̃nXn,m for 
some constant b > 0, all sufficiently large n and all m ∈ [0, n]. In particular, it follows 
from (8) that the number rn = n!d2n,0 of relaxed trees of size n is bounded below by

rn ≥ γ n!4ne3a1n
1/3

n, (12)

for some constant γ > 0. In the next section we will show an upper bound with the same 
asymptotic form, but with a different constant γ.

4.2. Upper bound

Next, we consider a similar auxiliary sequence X̂n,m which will give rise to an upper 
bound on the number of relaxed binary trees.

Lemma 4.4. Choose η > 2/9 fixed and for all n, m ≥ 0 let

X̂n,m :=
(

1 − 2m2

3n + m

2n + η
m4

n2

)
Ai
(
a1 + 21/3(m + 1)

n1/3

)
and

ŝn := 2 + 22/3a1
n2/3 + 8

3n + 1
n7/6 .

Then, for any ε > 0, there exists a constant n̂0 such that

X̂n,mŝn ≥ n − m + 2
n + m

X̂n−1,m−1 + X̂n−1,m+1, (13)

for all n ≥ n̂0 and all 0 ≤ m < n1−ε.

Proof. The proof follows the same lines as that of Lemma 4.2. Therefore we only focus 
on the needed modifications. As a first step we define the following sequence

Qn,m := X̂n,mŝn − n − m + 2
n + m

X̂n−1,m−1 − X̂n−1,m+1.
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Fig. 8. (Left) Non-zero coefficients of Qn,m =
∑

bi,jm
inj shown in solid gray diamonds for sn := σ0+ σ1

n1/3 +
σ2

n2/3 + σ3
n + σ4

n7/6 and Xn,m :=
(
1 + τ2m2+τ1m

n + η m4

n2

)
Ai
(
a1 + 21/3(m+1)

n1/3

)
. There are no terms in the blue 

dashed area. The blue terms vanish for σ0 = 2, the red terms vanish for σ1 = 0, the green terms vanish for 
σ2 = 22/3a1, and the yellow term vanishes for σ3 = 8/3 and τ2 = −2/3. The black, red, and green lines 
represent the three parts L̂1, L̂2 and L̂3, respectively, of the convex hull. (Right) The solid gray diamonds 
are decomposed into the coefficients qn,m of Ai(α) (red boxes) and q′

n,m of Ai′(α) (blue diamonds).

Then the inequality (13) is equivalent to Qn,m ≥ 0. Again, we expand Ai(z) in a neigh-
borhood of α = a1 + 21/3m

n1/3 , and we get (see [27] for more details)

Qn,m = qn,mAi(α) + q′
n,mAi′(α),

where qn,m and q′
n,m are functions of m and n−1 and may again be expanded as power 

series in n−1/6 with coefficients polynomial in m. Now, it is easy to see that [minj ]Qn,m =
0 for i + j > 2, where the shift by 1 compared to the lower bound is due to the factor 
ηm4n−2. The initial non-zero coefficients are shown in Fig. 8. The four lines (black, red, 
green, blue) of the convex hull are

L̂1 : j = −7
6 − 7i

18 ,

L̂2 : j = −5
6 − i

2 ,

L̂3 : j = −2i
3 ,

L̂4 : j = 2 − i.

Next, we distinguish between the contributions arising from qn,m and q′
n,m. The non-

zero coefficients are shown in Fig. 9. The expansions for n tending to infinity start as 
follows, where the elements on the convex hull are written in color.

Qn,m = Ai(α)
(

σ4
n7/6 + 25/3a1m

3n5/3 +m2(41 − 108η)
9n2 + 28/3a1m

3(1 − 6η)
3n8/3

+2m4(17 − 132η)
9n3 − 25/3a1m

5η

n11/3 −17m6η

3n4 −31m7η

45n5 + . . .

)
+
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Fig. 9. Non-zero coefficients qk,l =
∑

b̃i,jm
inj (red, left) and q′

k,� =
∑

b̃′
i,jm

inj (blue, right) of the expansion 
for Qn,m. The coefficient of n−4/3 in the right picture depicted as a solid blue circle disappears for τ1 = 1/2.

Ai′(α)
(

21/3

n3/2 + 8a1m

9n2 + 21/3m2(19 − 108η)
9n7/3 +210/3m3(2 − 9η)

9n7/3

+5m421/3(2 − 27η)
9n10/3 −210/3m5η

3n10/3 − 5m621/3η

3n13/3 − 89m721/3η

45n16/3 + . . .

)
.

Let x0 be again the unique positive root of Ψ(x) from Lemma 4.1. In order to prove that 
Qn,m ≥ 0 for m ≤ n1−ε, we consider the following four regions:

1. m ≤ x0(n/2)1/3,
2. x0(n/2)1/3 < m ≤ n7/18,
3. n7/18 < m ≤ n1/2,
4. n1/2 < m ≤ n1−ε.

Recall that in the proof that Pn,m ≥ 0 in Lemma 4.2, we considered almost the same 
first 3 regions, except that in that case the upper bound on the third region was slightly 
larger (n2/3−ε). So the main difference here is the addition of the fourth region, which is 
required for this lemma to apply up to m = n1−ε.

The treatments of the first 3 regions are analogous to those in Lemma 4.2 except for 2 
minor changes. First, in the second and third regime we include the additional variable 

η to make the dominant term 210/3m3(2−9η)
9n7/3 Ai′(α) positive. Second, in the third regime 

an additional dominant term −210/3m5η
3n10/3 Ai′(α) appears for m = Θ(n1/2) which is positive 

anyway.
Finally, in the fourth regime, the aforementioned term −210/3m5η

3n10/3 Ai′(α) is positive 

and dominates all other blue terms. However, the dominant red term is −17m6η
3n4 Ai(z), 

which is negative, so it suffices to show that this is dominated by the blue term. Indeed, 
due to (9) we know that as m/n1/3 tends to infinity, Ai′(α) ∼ −21/6 m1/2

n1/6 Ai(α). Hence, 
the blue term −210/3m5η

3n10/3 Ai′(α) dominates in this entire region n1/2 < m ≤ n1−ε. �
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Fig. 10. Proportion of weighted Dyck paths of length 2n passing through the point (2x, 2y) showing one 
example path contributing to sx,y,n.

To finish the proof of the upper bound, we will choose some constant N > 0 and define 
a sequence d̃n,m by the same rules as dn,m except that d̃n,m = 0 whenever m > n3/4 and 
n > N . Then, writing ĥn = ŝnĥn−1, we can use the lemma above to show by induction 
that the numbers d̃n,m satisfy the inequality.

b0d̃n,m ≤ ĥnXn,m,

for some constant b0 and all sufficiently large n; compare (8). In particular, the numbers 
d̃2n,0 are bounded above by

d̃2n,0 ≤ γ4ne3a1n
1/3

n,

for some constant γ > 0. The rest of this section is dedicated to proving that there is 
some choice of N such that d̃2n,0 ≥ d2n,0/2 for all n.

In order to finish our proof of the upper bound for the numbers d2n,0, we will use 
the interpretation of these numbers as weighted Dyck paths, described in Section 3.2. 
It will be useful to have an upper bound on the number of these paths which pass 
through a certain point (2x, 2y) as a proportion of the total weighted number of paths. 
Let p�,m,2n denote the weighted number of paths from (�, m) to (2n, 0); see Fig. 10. Then 
the proportion sx,y,n of the d2n,0 weighted Dyck paths that pass through (2x, 2y) is

sx,y,n = d2x,2yp2x,2y,2n
d2n,0

.

The following lemma yields an upper bound on the number p2x,2y,2n.

Lemma 4.5. The numbers p�,m,2n satisfy the inequality

p�,j,2n
j + 1 ≥ p�,k,2n

k + 1 ,

for integers 0 ≤ j < k ≤ � ≤ 2n satisfying 2 | k − j.
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Proof. First we note that the numbers p�,m,2n are determined by the recurrence relation

p�,m,2n = p�+1,m−1,2n + � − m + 2
� + m + 2p�+1,m+1,2n

along with the initial conditions p2n,m,2n = δm,0 and pl,−1,2n = 0. We will now prove the 
statement of the lemma by reverse induction on �. Our base case is � = 2n, for which the 
inequality clearly holds. For the inductive step, we assume that the inequality holds for 
� + 1 and all m, and we will prove that it holds for �. It suffices to prove that for m ≥ 1
the following inequality holds

p�,m−1,2n
m

− p�,m+1,2n
m + 2 ≥ 0.

Let L denote the left-hand side of this inequality. Using the recurrence relation, we can 
rewrite L as

L = p�+1,m−2,2n
m

+ (� − m + 3)p�+1,m,2n
(� + m + 1)m − p�+1,m,2n

m + 2 − (� − m + 1)p�+1,m+2,2n
(� + m + 3)(m + 2) .

Now, by the inductive assumption we get the inequalities p�+1,m+2,2n ≤ m+3
m+1p�+1,m,2n

and p�+1,m−2,2n ≥ m−1
m+1p�+1,m,2n, where the latter even holds for m = 1 as then both 

sides are 0. It follows that

L ≥ (m − 1)pl+1,m,2n
(m + 1)m + (� − m + 3)p�+1,m,2n

(� + m + 1)m − p�+1,m,2n
m + 2

− (m + 3)(� − m + 1)p�+1,m,2n
(m + 1)(� + m + 3)(m + 2)

= 4(3 + m + � + m�)p�+1,m,2n
m(m + 2)(1 + m + �)(3 + m + �) ≥ 0

as desired. This completes the induction, which proves the inequality for � ∈ [0, 2n]. We 
refer to the accompanying worksheet [27] for more details. �

In particular, it follows from this lemma that

p2x,2y,2n ≤ (2y + 1)p2x,0,2n.

Moreover, note that the proportion sx,0,n of weighted paths passing through (2x, 0)
satisfies sx,0,n ≤ 1. Hence, the proportion sx,y,n satisfies

sx,y,n = p2x,2y,2nd2x,2y
d2n,0

≤ (2y + 1)p2x,0,2nd2x,2y
d2n,0sx,0,n

= (2y + 1)d2x,2y
d2x,0

. (14)

From the lower bound (12) we have
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d2x,0 ≥ γ4xe3a1x
1/3

x,

so we now desire an upper bound for d2x,2y. It will suffice to use the upper bound

d2x,2y ≤
(

2x
x + y

)
,

which holds because the right-hand side is the number of (unweighted) paths from (0, 0)
to (2x, 2y), and all weights on our weighted paths are smaller than 1. We are now ready 
to prove the following lemma

Lemma 4.6. For all ε > 0 there exists a constant Nε > 0 with the following property: 
Recall that dn,m is the weighted number of paths ending at (n, m). Let d̃n,m be the number 
of these paths such that no intermediate point (2x, 2y) on the path satisfies x > Nε and 
y > x3/4. Then d2n,0 ≤ (1 + ε)d̃2n,0 for all n > 0.

Proof. We can rewrite the desired inequality as

1 − d̃2n,0
d2n,0

≤ ε

1 + ε
.

Note that the left-hand side is equal to the proportion of weighted paths with at least 
one intermediate point (2x, 2y) satisfying x > Nε and y > x3/4. The proportion sx,y,n

of weighted paths which go through any such point (2x, 2y) is bounded above by

sx,y,n

(14)
≤ (2y + 1)d2x,2y

d2x,0

(12)
≤ 2y + 1

γ4xe3a1x1/3x

(
2x

x + y

)

≤ γ−14−xe−3a1x
1/3

x−1 (2y + 1)Γ(2x + 1)
Γ(x + x3/4 + 1)Γ(x − x3/4 + 1) .

The right-hand side of this inequality behaves like

Θ
(
e−x1/2+O(x1/3)

)
(15)

for large x. Hence, there is some constant c such that

sx,y,n ≤ c · 2−x1/2

for all x, y, n satisfying y > x3/4. Now, the proportion 1 − d̃2n,0/d2n,0 of weighted paths 
passing through at least one point (2x, 2y) is no greater than the sum of the proportions 
of paths going through each such point. Hence
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1 − d̃2n,0
d2n,0

≤
∑

x≥Nε+1

∑

x≥y>x3/4

sx,y,n ≤
∑

x≥Nε+1

∑

x≥y>x3/4

c · 2−x1/2 ≤
∑

x≥Nε+1

cx · 2−x1/2
.

The sum on the right converges to a value less than ε/(1 + ε) for sufficiently large Nε. 
This completes the proof of the lemma. �
Remark 4.7. Choosing y > xβ instead of y > x3/4 one can show that (15) behaves like 

O
(
e−x2β−1−3a1x

1/3
)
. Hence, any β > 2/3 gives the same result, yet β = 2/3 is not 

sufficient.

Finally, we define d̃n,m as in Lemma 4.6 with some fixed ε > 0. Then it follows from 
Lemma 4.4 that there is some constant γ′ > 0 such that

d̃2n,0 ≤ γ′4ne3a1n
1/3

n,

for all n. Hence

rn = n!d2n,0 ≤ 2γ′n!4ne3a1n
1/3

n,

completing the proof of the upper bound. We have now proven upper and lower bounds 
for the number rn of relaxed trees, which differ only in the constant term. Therefore,

rn = Θ
(
n!4ne3a1n

1/3
n
)
.

5. Proof of stretched exponential for compacted trees

We will now deal with compacted binary trees, whose recurrence as in Proposition 2.11
has negative terms. We start by transforming the terms cn,m counting compacted trees 
to a sequence en,m using the equation

en,m = 1
((n + m)/2)!c(n+m)/2,(n−m)/2,

for n − m even. Then, the terms en,m are determined by the recurrence
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

en,m = n−m+2
n+m en−1,m−1 + en−1,m+1 − 2(n−m−2)

(n+m)(n+m−2)en−3,m−1, for n ≥ m > 0,
en,m = en−1,m+1, for n > 0,m = 0,
en,m = 1, for n = m = 0,
en,m = 0, for m > n,

and the number of compacted trees of size n is equal to n!e2n,0.
The method that we applied to (2) in the relaxed case does not directly apply to this 

recurrence, as there is a negative term on the right-hand side. We solve this problem 
using the following lemma:
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Lemma 5.1. For n ≥ 3 and n > m ≥ 0, the term en,m for compacted binary trees is 
bounded below by

Le = n − m + 2
n + m

en−1,m−1 + n − m − 2
n − m

en−1,m+1

+ n − m − 4
n − m − 2

(
2

n − m
en−2,m+2 + 2

n + m
en−3,m+1

)

and bounded above by

Ue = n − m + 2
n + m

en−1,m−1 + n − m − 2
n − m

en−1,m+1 + 2
n − m

en−2,m+2

+ 2
n + m

en−3,m+1 + 4
(n + m)(n + m − 2)en−3,m−1.

That is, Le ≤ en,m ≤ Ue. Furthermore, Ue ≤ Ud ≤ dn,m where Ud is defined by the same 
expression as Ue but with each e replaced by d.

Proof. We start with the upper bound of en,m. In order to prove that, we will compute 
successively stronger upper bounds. We start with the trivial upper bound

en,m ≤ n − m + 2
n + m

en−1,m−1 + en−1,m+1. (16)

Applying this bound to en−1,m+1 then en−2,m we find that

en−1,m+1 ≤ n − m

n + m

(
n − m

n + m − 2en−3,m−1 + en−3,m+1

)
+ en−2,m+2. (17)

Adding 2/(n − m) times this inequality to the defining equation of en,m yields

en,m ≤ n − m + 2
n + m

en−1,m−1 + n − m − 2
n − m

en−1,m+1

+ 2
n − m

en−2,m+2 + 2
n + m

en−3,m+1 + 4
(n + m)(n + m − 2)en−3,m−1.

Now we will prove that Ud ≤ dn,m. Note that the first two inequalities (16) and (17)
in this proof become equalities when each e is replaced by d. Adding 2/(n − m) times 
the latter (now) equality (17) to the defining equation (2) of dn,m yields

Ud = dn,m − 2(n − m − 2)
(n + m)(n + m − 2)dn−3,m−1 ≤ dn,m.

We then see that en,m ≤ Ue ≤ Ud ≤ dn,m through induction on n.



A. Elvey Price et al. / Journal of Combinatorial Theory, Series A 177 (2021) 105306 31

For the lower bound on en,m, we start with the inequality

en,m ≥ n − m + 2
n + m

en−1,m−1. (18)

This is clear for m = 0, and for m ≥ n it is an equality. We can then deduce this 
inequality (18) for all n, m using induction: Assume that the statement is true for all 
n < N and all m ∈ [0, n]. Then, for m ∈ [1, n − 2] and n = N , we have

1
n − m

en−1,m+1 ≥ 1
n + m

en−2,m >
n − m − 2

(n + m)(n + m − 2)en−3,m−1.

Hence,

en,m = n − m + 2
n + m

en−1,m−1 + en−1,m+1 − 2(n − m − 2)
(n + m)(n + m − 2)en−3,m−1

≥ n − m + 2
n + m

en−1,m−1 +
(

1 − 2
n − m

)
en−1,m+1.

≥ n − m + 2
n + m

en−1,m−1.

This completes the induction. Moreover, it shows that

en,m ≥ n − m + 2
n + m

en−1,m−1 +
(

1 − 2
n − m

)
en−1,m+1, (19)

for m ∈ [1, n − 2]. It is easy to see that this stronger inequality (19) also holds for m = 0
and m ≥ n. Applying (19) to en−1,m+1 then en−2,m yields

1
n − m

en−1,m+1 ≥ 1
n + m

en−2,m + n − m − 4
(n − m)(n − m − 2)en−2,m+2

≥ 1
n + m

(
n − m

n + m − 2en−3,m−1 + n − m − 4
n − m − 2en−3,m+1

)

+ n − m − 4
(n − m)(n − m − 2)en−2,m+2.

Finally, combining this with the inequality

en,m ≥ n − m + 2
n + m

en−1,m−1 + en−1,m+1 − 2(n − m)
(n + m)(n + m − 2)en−3,m−1

yields the desired result. �
The advantage of the bounds in the lemma above is that all terms are positive, so we 

can derive the asymptotics using the same techniques as for relaxed binary trees. Note 
that the behavior stays the same in the process of deriving the Newton polygons and 
leads to the same pictures as shown in Figs. 6 and 7.
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5.1. Lower bound

The following result is analogous to Lemma 4.2.

Lemma 5.2. For all n, m ≥ 0 let

Ỹn,m :=
(

1 − 2m2

3n + m

4n

)
Ai
(
a1 + 21/3(m + 1)

n1/3

)
and

s̃n := 2 + 22/3a1
n2/3 + 13

6n − 1
n7/6 .

Then, for any ε > 0, there exists a constant ñ0 such that

Ỹn,ms̃ns̃n−1s̃n−2 ≤ n − m + 2
n + m

Ỹn−1,m−1s̃n−1s̃n−2 + n − m − 2
n − m

Ỹn−1,m+1s̃n−1s̃n−2

+ n − m − 4
n − m − 2

(
2

n − m
Ỹn−2,m+2s̃n−2 + 2

n + m
Ỹn−3,m+1

)
,

for all n ≥ ñ0 and all 0 ≤ m < n2/3−ε.

Proof. The proof is analogous to the case of relaxed trees. In this case, the expansions 
for n → ∞ start as follows, where the elements on the convex hull are written in color:

Pn,m = Ai(α)
(

− 4σ4
n7/6 − 211/3a1m

3n5/3 −164m2

9n2 − 214/3a1m
3

3n8/3 −136m4

9n3 − 248m5

135n4 + . . .

)
+

Ai′(α)
(

27/3

n3/2 − 32a1m

9n2 − 7213/3m2

9n7/3 −219/3m3

9n7/3 − 5m4210/3

9n10/3 − 89m5210/3

135n13/3 + . . .

)
.

In this expansion we choose σ4 = −1, which leads to a positive term Ai(α)n−7/6, and 
we also choose τ1 = 1/4 (instead of 1/2 in the relaxed trees case), which kills the leading 
coefficient of Ai′(α)24/3(4τ1 − 1)n−4/3 for small m = o(n1/3). Then, the behavior and 
thus the pictures are identical to the case of relaxed trees shown in Figs. 6 and 7. Hence, 
the proof follows exactly the same lines as that Lemma 4.2. �

As in the relaxed case, we define a sequence Yn,m := max{Ỹn,m, 0}, i.e.,

Yn,m :=
{

Ỹn,m, if m <
√

384n+9+3
16 ,

0, if m ≥
√

384n+9+3
16 .

Then defining h̃n = s̃nh̃n−1, we get by induction

en,m ≥ κ0h̃nYn,m,
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for some κ0 > 0. In particular, it follows that the number cn = n!e2n,0 of compacted 
trees of size n is bounded below by

cn ≥ γ n!4ne3a1n
1/3

n3/4, (20)

for some constant γ > 0. In the next section we will show an upper bound with the same 
asymptotic form, but with a different constant γ.

5.2. Upper bound

The following result is analogous to Lemma 4.4.

Lemma 5.3. Choose η > 2/9 fixed and for all n, m ≥ 0 let

Ŷn,m :=
(

1 − 2m2

3n + m

4n + η
m4

n2

)
Ai
(
a1 + 21/3(m + 1)

n1/3

)
and

ŝn := 2 + 22/3a1
n2/3 + 13

6n + 1
n7/6 .

Then, for any ε > 0, there exists a constant n̂0 such that

Ŷn,mŝnŝn−1ŝn−2 ≥ n − m + 2
n + m

Ŷn−1,m−1ŝn−1ŝn−2 + n − m − 2
n − m

Ŷn−1,m+1ŝn−1ŝn−2

+ 2
n − m

Ŷn−2,m+2ŝn−2

+ 2
n + m

Ŷn−3,m+1 + 4
(n + m)(n + m − 2) Ŷn−3,m−1,

for all n ≥ n̂0 and all 0 ≤ m < n1−ε.

Proof. The proof is again analogous to the case of relaxed trees. In this case, the expan-
sions for n → ∞ start as follows, where the elements on the convex hull are written in 
color:

Qn,m = Ai(α)
(

4σ4
n7/6 + 211/3a1m

3n5/3 +4m2(41 − 108η)
9n2 + 214/3a1m

3(1 − 6η)
3n8/3

+8m4(17 − 132η)
9n3 − 211/3a1m

5η

n11/3 −68m6η

3n4 −124m7η

45n5 + . . .

)
+

Ai′(α)
(

27/3

n3/2 + 32a1m

9n2 + 213/3m2(7 − 27η)
9n7/3 +216/3m3(2 − 9η)

9n7/3

+24/3m4(20 − 279η)
9n10/3 −216/3m5η

3n10/3 − 5m627/3η

3n13/3 − 89m727/3η

45n16/3 + . . .

)
.
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In this expansion we choose σ4 = 1, which leads to a positive term Ai(α)n−7/6, and 
again τ1 = 1/4. Then, the behavior and therefore the pictures are identical to the case of 
relaxed trees shown in the Figs. 8 and 9; see the proof of Lemma 4.4 for more details. �

As in the relaxed tree case, the inequality of Lemma 5.3 is only proven for m < n1−ε, 
so we need to do more work to handle the m ≥ n1−ε case and deduce the desired upper 
bound. In order to use the lemma, we define a new sequence ên,m by the recurrence 
relation

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ên,m = n−m+2
n+m ên−1,m−1 + n−m−2

n−m ên−1,m+1
+ 2

n−m ên−2,m+2 + 2
n+m ên−3,m+1

+ 4
(n+m)(n+m−2) ên−3,m−1, for n ≥ 3, n > m ≥ 0,

ên,m = en,m, otherwise.

Then it follows from Lemma 5.1 that en,m ≤ ên,m ≤ dn,m for all n, m, as ên,m share the 
same recurrence as Ud in Lemma 5.1. Now consider some large N > 0, to be determined 
later, and define a second sequence ẽn,m by the same rules as ên,m except that ẽn,m = 0
whenever m > n3/4 and n > N . Then, using Lemma 5.3 and defining ĥn = ŝnĥn−1, we 
can show by induction that there is some constant κ1 such that

ẽn,m ≤ κ1ĥnŶn,m.

It follows that there is some constant γ′ > 0 such that

ẽ2n,0 ≤ γ′4ne3a1n
1/3

n3/4.

Hence, it suffices to prove that there is some choice of N and some constant ε > 0 such 
that ê2n,0 ≤ (1 + ε)ẽ2n,0 for all n. Therefore, we first define a class C of weighted paths 
with the step set {(1, 1), (1, −1), (2, −2), (3, −1), (3, 1)} and weights corresponding to the 
recurrence defining ên,m. Then ên,m is the weighted number of paths p ∈ C from (0, 0)
to (n, m). We start with the following lemma, which is analogous to Lemma 4.5.

Lemma 5.4. Let q�,m,2n denote the weighted number of paths p ∈ C from (�, m) to (2n, 0). 
Then the numbers q�,m,2n satisfy the inequality

q�,j,2n
j + 1 ≥ q�,k,2n

k + 1 ,

for integers 0 ≤ j < k ≤ � ≤ 2n satisfying 2|k − j and n ≥ 10.

Proof. The proof is along the same lines as the proof of Lemma 4.5. As in that case, it 
suffices to prove that

q�,m−1,2n
m

− q�,m+1,2n
m + 2 ≥ 0, (21)
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for all m ≥ 1. We proceed by reverse induction on �, with base case � = 2n. For the 
inductive step, note that q satisfies the following recurrence for � < 2n:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

q�,m,2n = 0, for m < 0,
q�,m,2n = �−m

�−m+2q�+1,m−1,2n + �−m+2
�+m+2q�+1,m+1,2n

+ 2
�−m+4q�+2,m−2,2n + 2

�+m+2q�+3,m−1,2n
+ 4

(�+m+4)(�+m+2)q�+3,m+1,2n, for m ≥ 0.

Now in order to prove (21), we expand the left-hand side L(�, m, n) using the recurrence 
relation above. For m ≥ 2, we use the inductive assumption, which says that (21) holds 
for all larger values of � and all m, to show that

L(�,m, n) ≥ R1(�,m)q�+1,m,2n + R2(�,m)q�+2,m−1,2n + R3(�,m)q�+3,m−2,2n,

for some explicit rational functions R1, R2 and R3. Due to the nature of the functions R1, 
R2 and R3, we can prove that the right-hand side above is positive using the inequalities

q�+1,m,2n ≥ � − m + 1
� − m + 3q�+2,m−1,2n and q�+2,m−1,2n ≥ � − m + 3

� − m + 5q�+3,m−2,2n,

which follow directly from the recurrence relation. The case m = 1 is similar, though we 
instead find

L(�, 1, n) ≥ R̃1(�)q�+1,1,2n + R̃2(�)q�+2,0,2n + R̃3(�)q�+3,1,2n,

and we prove that the right hand side is positive using the inequalities

q�+1,1,2n ≥ �

� + 2q�+2,0,2n and q�+2,0,2n ≥ q�+3,1,2n,

which follow directly from the recurrence relation. We refer the accompanying work-
sheet [27] for more details. �

Now, among the ê2n,0 weighted paths starting at (0, 0) and ending at (2n, 0), the 
proportion of those passing through some point (2x, 2y) is

ê2x,2yq2x,2y,2n
ê2n,0

≤ ê2x,2yq2x,2y,2n
ê2x,0q2x,0,2n

≤ (2y + 1) ê2x,2y
ê2x,0

≤ (2y + 1)d2x,2y
e2x,0

≤ 2y + 1
γ4xe3a1x1/3x3/4

(
2x

x + y

)
.

We used the fact that ê2x,2y ≤ d2x,2y which we proved inductively using Lemma 5.1, and 
we also used the lower bound (20) for e2x,0. We can finish in exactly the same way as in 
Lemma 4.6 for relaxed trees, thereby showing that there is some choice for N such that 
ê2n,0 ≤ 2ẽ2n,0 for all n.
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Fig. 11. The unique minimal DFA with 5 states for the language {aa, aab, ab, b, bb}. Here, q0 is the initial 
state, q2 and q3 are the final states, and q4 is the unique dead state.

Recall that e2n,0 ≤ ê2n,0 and there is some constant κ1 such that ẽn,m ≤ κ1ĥnŶn,m. 
This implies that

cn = n!c2n,0 ≤ 2κ1n!ĥ2nŶ2n,0.

The right-hand side behaves asymptotically like Θ(n!4ne3a1n
1/3

n3/4), hence there is some 
constant γ′′ such that

cn ≤ γ′′n!4ne3a1n
1/3

n3/4,

for all n. This completes the upper bound. Indeed, since we have now proven both the 
upper and lower bounds, which differ only in the constant term, they imply that

cn = Θ
(
n!4ne3a1n

1/3
n3/4

)
.

6. Minimal finite automata

In this section we use the results on compacted and relaxed trees to give bounds on the 
enumeration of a certain class of deterministic finite automata considered in [11,12,23]. 
We start with some basic definitions of automata.

A deterministic finite automaton (DFA) A is a 5-tuple (Σ, Q, δ, q0, F ), where Σ is a 
finite set of letters called the alphabet, Q is a finite set of states, δ : Q × Σ → Q is the 
transition function, q0 is the initial state, and F ⊆ Q is the set of final states (sometimes 
called accept states). A DFA can be represented by a directed graph with one vertex vs

for each state s ∈ Q, with the vertices corresponding to final states being highlighted, 
and for every transition δ(s, w) = ŝ, there is an edge from s to ŝ labeled w (see Fig. 11).

A word w = w1w2 · · ·wn ∈ Σ∗ is accepted by A if the sequence of states 
(s0, s1, . . . , sn) ∈ Qn+1 defined by s0 = q0 and si+1 = δ(si, wi) for i = 0, . . . , n − 1
ends with sn ∈ F a final state. The set of words accepted by A is called the language
L(A) recognized by A. It is well-known that DFAs recognize exactly the set of regular 
languages. Note that every DFA recognizes a unique language, but a language can be rec-
ognized by several different DFAs. A DFA is called minimal if no DFA with fewer states 
recognizes the same language. The Myhill-Nerode Theorem states that every regular lan-
guage is recognized by a unique minimal DFA (up to isomorphism) [19, Theorem 3.10]. 
For more details on automata see [19].
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Since every regular language defines a unique minimal automaton, one can define the 
complexity of the language to be the number of states in the corresponding automaton. 
More precisely, this is an interpretation for the space complexity of the language.

The asymptotic proportion of minimal DFAs in the class of (not necessarily acyclic) 
automata was solved by Bassino, Nicaud, and Sportiello in [2], building on enumeration 
results by Korshunov [20,21] and Bassino and Nicaud [3]. This result also exploits an 
underlying tree structure of the automata, but this tree structure comes from a differ-
ent traversal than what we use. In that case, no stretched exponential appears in the 
asymptotic enumeration, and the minimal automata account for a constant fraction of 
all automata.

The analogous problem in the restricted case of automata that recognize a finite lan-
guage is widely open (see for example [11]). This corresponds to counting finite languages 
by their space complexity. To show the relation between these automata and compacted 
and relaxed trees, we need the following lemma from [23, Lemma 2.3] or [19, Section 3.4]. 
For the convenience of the reader, we include a proof of one direction here.

Lemma 6.1. A DFA A is the minimal automaton for some finite language if and only if 
it has the following properties:

• There is a unique sink s. That is, a state which is not a final state and with all 
transitions from s end at s that is, δ(s, w) = s.

• A is acyclic: the corresponding directed graph has no cycles except for the loops at 
the dead state.

• A is initially connected: for any state p there exists a word w ∈ Σ∗ such that A
reaches the state p upon reading w.

• A is reduced: for any two different states q, q′, the two automata with initial state q
and q′ recognize different languages.

Proof. We will show one direction of this proof: that a minimal automaton has the four 
properties. For a proof of the reverse direction see e.g. [23, Lemma 2.3] or [19, Section 3.4].

If A is minimal but not reduced then there are two states q and q′ from which the 
same language is recognized. These two states can be merged into a single state without 
changing the language, contradicting the minimality of A. This implies that there is at 
most one state q from which the empty language is recognized. Moreover, such a state 
must exist for the language to be finite. This state q must therefore be the unique sink.

The fact the A is acyclic follows immediately from the fact that A recognizes a finite 
language. Finally, if we remove from A all states p that cannot be reached, the language 
accepted by the automaton will not be changed, so by the minimality of A, there must 
be no such states and A must be initially connected. �

We note here one consequence of this lemma: since the automaton is acyclic, there 
must be some state q other than the sink s such that all transitions from q end at s. 
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Then since the automaton is reduced, there must be only one such state q, and it must 
be an accept state.

Now using our asymptotic results on compacted and relaxed trees, we give the fol-
lowing new bounds on the asymptotic number of such automata, determining their 
asymptotics up to a polynomial multiplicative term.

Theorem 6.2. Let m2,n be the number of minimal DFAs over a binary alphabet with n
transient states (and a unique sink) that recognize a finite language. Then,

2n−1cn ≤ m2,n ≤ 2n−1rn.

As a consequence, there exist positive constants κ1 and κ2 such that

κ1n
3/4 ≤ m2,n

n!8ne3a1n1/3 ≤ κ2n.

Proof. By the lemma above, a compacted tree C can be transformed into an automaton 
A that recognizes a finite language over the alphabet {a, b} as follows: The states of 
the automaton A correspond to the internal nodes and the leaf of C. The initial state 
corresponds to the root, and at each state, the transition after reading a (resp. b) is given 
by the left (resp. right) child or pointer in C. The leaf is designated as the unique sink, 
and we can choose any subset of internal nodes as final states, with the condition that 
the unique node with two pointers to the sink is always a final state.

To prove the minimality of such automata, we just need to check the four conditions 
of Lemma 6.1. The fact that A is acyclic and has a unique sink follow immediately from 
the fact the C is a DAG. Then A is initially connected because C has a unique source. 
Now we will show that A is reduced. For any state q in A, let L(q) denote the language 
recognized by the automaton with initial state q. Now suppose that A is not reduced 
and let q and q′ be different states of A satisfying L(q) = L(q′). We also assume that 
amongst all such pairs (q, q′), the length of the longest word in L(q) is minimized. Since 
the unique node with both pointers to the sink is a final state, the language L(q) can 
only be empty if q and q′ are both the final state, which is impossible. Since L(q) = L(q′)
we must have L(δ(q, a)) = L(δ(q′, a)) and L(δ(q, b)) = L(δ(q′, b)). Then, the minimality 
condition on the language L(q) implies that δ(q, a) = δ(q′, a) and δ(q, b) = δ(q′, b). But 
this means that the node u and v in C corresponding to q and q′ have the same left child 
and the same right child, contradicting the fact that C is compacted. This completes the 
proof that A is reduced.

Hence, each of the 2n−1 subsets of the remaining states (not the sink and not the 
node with two pointers to the sink) gives a valid minimal automaton of size n.

Applying the same construction to relaxed trees gives an upper bound, as every min-
imal automaton, after forgetting which states are final, corresponds by construction to 
a relaxed tree. Note that this observation has already been made in [23, Equation (1)], 
yet the asymptotics was not known. �
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Using the methods of the present work, the authors showed in a companion paper [13]
that

m2,n = Θ
(
n! 8ne3a1n

1/3
n7/8

)
.

To our knowledge, our results give the best known bounds on the asymptotic number of 
minimal DFAs on a binary alphabet recognizing a finite language. Note that they disprove 
the conjecture m2,n ∼ K 2n−1rn for some K > 0 of Liskovets based on numerical data; 
see [23, Equation (16)]. Previously, Domaratzki derived in [10] the lower bound

m2,n ≥ (2n − 1)!
(n − 1)! cn−1

1 ,

with c1 ≈ 1.0669467, which implies the asymptotic bound m2,n ≥ n!(4c1)n

2c1
√

πn
(note that 

m2,n = f ′
2(n +1) in his results). Furthermore, Domaratzki showed in [9] the upper bound

m2,n ≤ 2n−1G2n+2,

where G2n are the Genocchi numbers defined by 2t
et+1 = t +

∑
n≥1(−1)nG2n

t2n

(2n)! . This 
gives the asymptotic bound m2,n ≤ 4(2n)!( 2

π2 )n+1n2. This bound, however, is much 
larger than the superexponential growth given by n! in our upper bound. While not 
explicitly formulated in the literature, it is possible to bound the acyclic DFAs by general 
DFAs using the results by Korshunov [20,21] (see also [3, Theorem 18]). Thereby, we get 
the upper bound

m2,n = O
(
n!(2e2ν)n

)
,

where ν = αα(1 + α)1−α ≈ 0.8359 with α being the solution of 1 + x = xe2/(1+x), and 
therefore 2e2ν ≈ 12.3531, which is significantly larger than the exponential growth in 
our upper bound.
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11:2 Asymptotics of Minimal DFAs Recognizing a Finite Binary Language

1 Introduction

A deterministic finite automaton (DFA) A is a 5-tuple (Σ, Q, δ, q0, F ), where Σ is a finite
set of letters called the alphabet, Q is a finite set of states, δ : Q× Σ→ Q is the transition
function, q0 is the initial state, and F ⊆ Q is the set of final states (sometimes called accept
states). States not in F are called non-final or reject states. A DFA can be represented by a
directed graph with one vertex vs for each state s ∈ Q, with the vertices corresponding to
final states being highlighted, and for every transition δ(s, w) = ŝ, there is an edge from s to
ŝ labeled w (see Figure 1).

q0

q1

q2

q3

q4

b
a

a

a a

a

b

b
b b

Figure 1 The unique minimal DFA for the language {a, b, bab, bb}. Here, q0 is the initial state,
q1 and q3 are the final states, and q4 is the unique sink.

A word w = w1w2 · · ·w` ∈ Σ∗ is accepted by A if the sequence of states (s0, s1, . . . , s`) ∈
Q`+1 defined by s0 = q0 and si+1 = δ(si, wi) for i = 0, . . . , ` − 1 ends with s` ∈ F a final
state. The set of words accepted by A is called the language L(A) recognized by A. It is
well-known that DFAs recognize exactly the set of regular languages. Note that every DFA
recognizes a unique language, but a language can be recognized by several different DFAs.
A DFA is called minimal if no DFA with fewer states recognizes the same language. The
Myhill-Nerode Theorem states that every regular language is recognized by a unique minimal
DFA (up to isomorphism) [8, Theorem 3.10]. For more details on automata see [8].

In this paper we show that the counting sequence (m2,n)n∈N of minimal DFAs of size n
recognizing a finite binary language admits a stretched exponential. Until now, the problem
of counting these automata, even asymptotically, was widely open, see for example [4].

I Theorem 1. The number m2,n of non-isomorphic minimal DFAs on a binary alphabet
recognizing a finite language with n+ 1 states satisfies for n→∞

m2,n = Θ
(
n! 8ne3a1n

1/3
n7/8

)
,

where a1 ≈ −2.338 is the largest root of the Airy function.

Since every regular language defines a unique minimal automaton, one may define
the (space) complexity of the language to be the number of states in this corresponding
automaton. Defining space complexity in this way, the number m2,n is simply the number of
finite languages over a binary alphabet of space complexity n+ 1.

In the recent paper [6] we showed lower and upper asymptotic bounds on m2,n by first
establishing a connection between automata counted by m2,n and classes of directed acyclic
graphs (DAGs) and then solving their asymptotic enumeration problem. In particular, we
proved that

2n−1cn ≤ m2,n ≤ 2n−1rn, (1)
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where cn is the number of compacted and rn the number of relaxed binary trees of size n.
These appear naturally in the compression of XML documents [3, 7]. In the same paper, we
showed that as n→∞,

cn = Θ
(
n! 4ne3a1n

1/3
n3/4

)
and rn = Θ

(
n! 4ne3a1n

1/3
n
)
,

leading to asymptotic lower and upper bounds on m2,n. The results of the present work arise
as a further application of the general method from [6] for proving the appearance of such
stretched exponentials. They showcase the strength of our method, and we expect that our
method may be applied to yet other combinatorial objects governed by similar recurrences.

The asymptotic proportion of general minimal DFAs (not necessarily recognizing a finite
language) was solved by Bassino, Nicaud, and Sportiello in [1], building on enumeration
results by Korshunov [9,10] and Bassino and Nicaud [2]. The result in [1] also exploits an
underlying tree structure of the related automata, but from a different traversal than what
we use. In that case, no stretched exponential appears in the asymptotic enumeration, and
the minimal automata account for a constant fraction of all automata.

2 Recurrence relation

To derive a recurrence for automata recognizing a finite language, we need the following
lemma. In the following, we only consider automata on the binary alphabet {a, b}.

I Lemma 2 ([11, Lemma 2.3], [8, Section 3.4]). A DFA A is the minimal automaton for
some finite language if and only if it has the following properties:
(a) There is a unique sink s. That is, a state which is not a final state such that all transitions

from s end at s that is, δ(s, w) = s.
(b) A is acyclic: the underlying directed graph has no cycles except for the loops at the sink.
(c) A is initially connected: for any state p there exists a word w ∈ Σ∗ such that A reaches

the state p upon reading w.
(d) A is reduced: for any two different states q, q′, the two automata with initial state q

and q′ recognize different languages.

Next, we identify a property that can replace the one of being reduced.

I Lemma 3. An acyclic, initially connected DFA A with a unique sink is reduced if and
only if it satisfies the following condition:
(d’) State uniqueness: there are no two distinct states q and q′ with δ(q, a) = δ(q′, a) and

δ(q, b) = δ(q′, b) such that both q and q′, or neither q nor q′, are accept states.

Proof. By definition, being reduced implies state uniqueness. Now suppose that A is not
reduced while state uniqueness holds. Then there are two states q 6= q′ in A such that the
two automata with initial state q and q′ recognize the same language L. As A is acyclic, L
is finite. We define the weight of L to be

∑
w∈L(|w| + 1), and we pick q, q′ such that the

weight of L is minimal.
Suppose that L is not empty. By the state uniqueness, we must have δ(q, a) 6= δ(q′, a) or

δ(q, b) 6= δ(q′, b). Without loss of generality, suppose that r = δ(q, a) 6= δ(q′, a) = r′. The
two automata with initial state r and r′ recognize the same language a−1L = {w | aw ∈ L}.
Since the weights of a−1L are strictly less that that of L, we have r and r′ violating the
minimality of the weight of L. Therefore, L must be empty.

Since L is empty, q and q′ are both rejecting. They cannot both be the sink as the sink
is unique. Suppose that q is not the sink. Then due to state uniqueness, among δ(q, a) and
δ(q, b) there is at least one state q1 that is not the sink. As L is empty, q1 is also rejecting.

AofA 2020
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We can then replace q with q1 and perform the same argument to q1 and q′, repeating ad
infinitum. This creates an infinite sequence of states without repetition since A is acyclic.
This is impossible as A is a DFA. Therefore, the existence of q and q′ is impossible, meaning
that A is reduced. We thus have the desired equivalence. J

q0

a

a

a

a
a

a

a

b

b b

b

b

b

b

a, b

Figure 2 An acyclic DFA with its spanning subtree in black and all other edges in red. The
initial state is q0 and the finial states are colored green.

We now consider two sets of DFAs: the set F of minimal DFAs recognizing finite languages,
and the set G of acyclic and initially connected DFAs with a unique sink. From Lemmas 2
and 3, F consists of precisely the automata in G that also possess the state uniqueness.

In order to derive our recurrence, we first transform DFAs in G into decorated lattice
paths that we call B-paths. For a given A ∈ G, our first step is to construct a spanning
subtree of A (excluding the sink) using a depth-first search (DFS hereinafter) from the initial
state q0 as shown in Figure 2. This DFS is uniquely defined by taking edges marked by a
before edges marked by b. Since A is initially connected, the tree obtained is a spanning tree.

Using the same DFS, we construct a path P starting at the point (−1, 0) and illustrated
by a blue line in Figure 3 as follows:

Whenever the directed blue line around the tree in Figure 3 goes up we add a vertical
step V = (0, 1) to the path. We say that the state we just quit corresponds to this step.
Whenever the directed blue line crosses an outgoing edge (including the edge leading to
the sink), which is not part of the tree, we add a horizontal step H = (1, 0).

The order of states corresponding to V -steps is called the postorder of states. It is clear
that the first step of P is a H-step, and removing it from P gives a Dyck path under the
main diagonal. We now decorate P with spots and crosses. Each step V is decorated by a
green or white spot, according to whether the corresponding state is accepting or rejecting.

Since A is acyclic, during the DFS, for an edge e pointing from the current state q to an
already visited state q′, the state q′ must not be an ancestor of q in the constructed tree,
meaning that q′ must either come before q in postorder or be the sink. In the former case,
we put a cross in the cell at the intersection between the column of the H-step corresponding
to e, and the row of the V -step corresponding to q′, while in the latter case we put the cross
in the row just below y = 0. Clearly the crosses are under P and above y = −1. We thus
obtain a path B with decorations, and we say that B is the B-path of the automaton A.

To characterize B-paths obtained from DFAs in G, we propose the following definition.
An automatic B-path P of size n is defined as a lattice path consisting of up steps and
horizontal steps from (−1, 0) to (n, n) with decorations such that
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Figure 3 The transformation from an acyclic DFA to a B-path. In the DFA, the states are
numbered in order of their corresponding up steps and we have labelled each outgoing edge not in
the tree with the number of the state it points to.

The first step is an H-step, and its removal leaves a Dyck path below the main diagonal;
Each H-step has a cross in its column, under P and above y = −1.
Every V -step has a white or green spot.

It is not difficult to see that automatic B-paths are in bijection with G, with the size preserved,
since a B-path P obtained from a DFA A ∈ G is clearly automatic, and the construction of
B-paths can be easily reversed to obtain a DFA in G from an automatic B-path.

Now we examine automatic B-paths corresponding to DFAs in F. By definition, we only
need to take the state uniqueness into account. Given A ∈ G, let T be its depth-first search
tree and B its corresponding automatic B-path. A state q ∈ A is called a cherry if it is a
leaf of T but not the sink. Seen on B, a cherry state corresponds to a sequence HHV of
steps. We now propose a seemingly weaker notion of state uniqueness called cherry-state
uniqueness, which is in fact equivalent in our case.

I Lemma 4. Suppose that A ∈ G, then A has state uniqueness if and only if it has cherry-
state uniqueness, i.e., any two states q, q′ such that q comes before q′ in postorder, and q′ is
a cherry state, satisfy the conditions in the definition of state uniqueness.

Proof. State uniqueness clearly implies cherry-state uniqueness. For the other direction, let
T be the DFS tree of A. Suppose that we have two states q 6= q′ such that δ(q, a) = δ(q′, a)
and δ(q, b) = δ(q′, b). We suppose that q precedes q′ in postorder. It is clear that q′ is not an
ancestor of q, but q is also not an ancestor of q, or else q would have a transition to itself or
to one of its ancestors, which is impossible as A is acyclic. This implies that both δ(q, a) and
δ(q, b) come before q in postorder, so neither δ(q, a) nor δ(q, b) can be a child of q′. Hence,
q′ is a cherry. Therefore, cherry-state uniqueness implies state uniqueness. J

We now try to construct step by step automatic B-paths corresponding to DFAs in F.
We denote by Bn,m the set of prefixes ending at (n,m) of such paths. We always start
by an H-step from (−1, 0), thus there is exactly one path in B0,0. Suppose that we have
constructed all automatic B-paths ending at 0 ≤ m′ ≤ m and m′ ≤ n′ ≤ n except for (n,m),
and we now construct paths in Bn,m. First, from any path in Bn−1,m, we can construct
a path P ∈ Bn,m by adding an H-step at height m with a cross, and there are (m + 1)
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possibilities for the cross. Second, from any path in Bn,m−1, we can construct a path P by
adding a V -step with a spot that can be green or white. Such a path P ends in a V -step,
thus it is different from paths in the first case. However, it may not be in Bn,m, because it
may end in HHV with H-steps at height m− 1. In such a case it corresponds to a cherry
state that violates the cherry-state uniqueness. Such paths violating the condition for F are
all constructed by adding HHV at the end of paths in Bn−2,m−1, then adding crosses for
the last two H-steps to make the corresponding cherry state “copy” one of the m states
precedng it in postorder. Excluding such paths, we obtain all the paths in Bn,m. In this way,
we construct all automatic B-paths corresponding to DFAs in F. This construction can be
translated into the following recurrence.

I Proposition 5. Let bn,m be the number of initial segments of automatic B-paths corres-
ponding to DFAs in F ending at (n,m). Then




bn,m = 2bn,m−1 + (m+ 1)bn−1,m −mbn−2,m−1, for n ≥ m ≥ 1,
bn,m = 0, for n < m,

bn,0 = 1, for n ≥ −1.

The number m2,n of minimal binary DFAs of size n recognizing a finite language is equal
to bn,n.

This recurrence relation can be directly used to compute all elements of the sequence
(m2,n)n≥0 up to size n = N with O(N2) arithmetic operations. The first few numbers of
this sequence read

(m2,n)n≥0 = (1, 1, 6, 60, 900, 18480, 487560, 15824880, 612504240, 27619664640, . . .).

We have added it as sequence OEIS A331120 in the Online Encyclopedia of Integer Sequences1.
Previously, the first 7 elements were computed in [5, Section 6].

3 A stretched exponential appears

We now perform an asymptotic analysis of the numbers m2,n using the recurrence derived in
the previous section. As a first step we define an auxiliary sequence, which simplifies the
subsequent analysis by absorbing the leading exponential behaviour:

b̃n,m = bn,m
2m−1 , for m ≥ 1,

b̃n,0 = bn,0 = 1.

This gives




b̃n,m = b̃n,m−1 + (m+ 1)b̃n−1,m − m
2 b̃n−2,m−1, for n ≥ m > 1,

b̃n,m = 0, for n < m,

b̃n,0 = 1, for n ≥ −1.

Next, we transform the sequence (b̃n,m)0≤m≤n into a sequence (en,m) 0≤m≤n
n−m even

using

en,m = 1
((n+m)/2)! b̃(n+m)/2,(n−m)/2,

1 https://oeis.org
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(note that en,m is only defined when n−m is even). Then, the terms en,m are determined
by the following recurrence for n,m ≥ 1




en,m = n−m+2
n+m en−1,m−1 + en−1,m+1 − n−m

(n+m)(n+m−2)en−3,m−1, for n ≥ m ≥ 0,
e0,0 = 1,
en,m = 0, for n < m,

en,−1 = 0, for n ≥ −1.

The number of minimal DFAs of size n is equal to n!2n−1e2n,0. Now, for some simple cases
of en,m, elementary computations show that en,n = 1

n! , en,n−2 = 2n−1−1
(n−1)! , and en,n−4 =

3n−2−3·2n−3

(n−2)! . Comparing the recurrence above with the one of compacted binary trees given
in [6, Section 5] for en,m, we notice only two differences:
1. a slightly different factor 2(n−m−2)

(n+m)(n+m−2) of en−3,m−1 and
2. no special cases for n ≥ m > n− 3.
Therefore, we are anticipating the same method to be applicable. The very basic idea is
that we will prove lower and upper bounds which differ only in the constant term. This
method requires that the recurrence involves only non-negative terms on the right-hand side.
As in the case of compacted binary trees, we solve this problem by finding suitable upper
and lower bounds given in the subsequent Lemma. We omit its technical proof as it follows
exactly the same lines as [6, Lemma 5.1].

I Lemma 6. For n− 3 ≥ m ≥ 2, the term en,m is bounded below by

Le = n−m+ 2
n+m

en−1,m−1+n−m− 1
n−m en−1,m+1+n−m− 3

n−m− 2

( 1
n−men−2,m+2 + 1

n+m
en−3,m+1

)

and for n ≥ 5, n > m ≥ 0 bounded above by

Ue = n−m+ 2
n+m

en−1,m−1 + n−m− 1
n−m en−1,m+1 + 1

n−men−2,m+2 + 1
n+m

en−3,m+1.

That is, Le(n,m) ≤ en,m ≤ Ue(n,m).

3.1 Lower bound
The following technical Lemma is at the heart of the following inductive proof of the lower
bound. It links the recurrence of en,m (or rather its lower bound Le) with two explicit
sequences s̃n and X̃n,m involving the Airy function, shifted to its right-most root a1.

I Lemma 7. For all n,m ≥ 0 let

X̃n,m :=
(

1− 2m2

3n + 3m
8n

)
Ai
(
a1 + 21/3(m+ 1)

n1/3

)
and

s̃n := 2 + 22/3a1
n2/3 + 29

12n −
1

n7/6 .

Then, for any ε > 0, there exists a constant ñ0 such that

X̃n,ms̃ns̃n−1s̃n−2 ≤
n−m+ 2
n+m

X̃n−1,m−1s̃n−1s̃n−2 + n−m− 1
n−m X̃n−1,m+1s̃n−1s̃n−2

+ n−m− 3
n−m− 2

(
1

n−mX̃n−2,m+2s̃n−2 + 1
n+m

X̃n−3,m+1

)
,

for all n ≥ ñ0 and all 0 ≤ m < n2/3−ε.
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Let us show how this Lemma is used before stating its actual proof. First, we define the
sequence Xn,m := max{X̃n,m, 0} (note that the factor 1− 2m2

3n + 3m
8n is negative for large m).

Then, using Lemma 7 we have

Xn,ms̃ns̃n−1s̃n−2 ≤
n−m+ 2
n+m

Xn−1,m−1s̃n−1s̃n−2 + n−m− 1
n−m Xn−1,m+1s̃n−1s̃n−2

+ n−m− 3
n−m− 2

(
1

n−mXn−2,m+2s̃n−2 + 1
n+m

Xn−3,m+1

)
,

for n large enough and all m ≤ n. Finally, we define the sequence h̃n such that h̃n = s̃nh̃n−1
for n > 0 and set h̃0 = s̃0. Then we deduce by induction that en,m ≥ b0h̃nXn,m for some
constant b0 > 0, all sufficiently large n, and all m ∈ [0, n]:

b0Xn,mh̃n ≤ n−m+ 2
n+m

en−1,m−1 + n−m− 1
n−m en−1,m+1 + n−m− 3

n−m− 2

(
en−2,m+2

n−m + en−3,m+1

n+m

)

≤ en,m,

where the first inequality follows by induction and the second one by Lemma 6 for m ≤ n−3.
For m > n− 3 and n large enough the inequality holds trivially as Xn,m = 0. Therefore,

m2,n = n!2n−1e2n,0

≥ b0n!2n−1h̃2nX2n,0

≥ b0n!2n−1
2n∏

i=1

(
2 + 22/3a1

i2/3
+ 29

12i −
1
i7/6

)
Ai
(
a1 + 1

n1/3

)

≥ γLn!8ne3a1n
1/3
n7/8,

(2)

for some constant γL > 0.
I Remark 8. Let us compare the result of Lemma 7 to the respective results for compacted
and relaxed binary trees to which this method was applied first. Recall the lower and
upper bounds (1) which are tight up to the constant and the polynomial term. Indeed, the
corresponding results [6, Lemmas 4.2 and 5.2] possess a very similar structure: First, in X̃n,m

the only difference is in the factor 3m
8n which is m

2n for relaxed trees and m
4n for compacted trees.

The purpose of this term is of technical nature as it simplifies the Newton polygon method,
yet it has no influence on the final asymptotics; compare Figure 5. Second, in s̃n the only
difference is in the term 29

12n which is 8
3n for relaxed trees and 13

6n for compacted trees. Now
this term influences the polynomial factor in the asymptotics (compare with [6, Section 3.3]).
More generally, whenever the third term in the expansion of s̃n has the form α

n , we get in
the enumeration a polynomial factor with exponent α

2 − 1
3 . Finally, the similarity in all

other terms of the expansion for s̃n and X̃n,m is responsible for the fact that m2,n and the
families of trees enumerated in [6] have the same exponential growth, as well as the same
stretched-exponential behaviour.

Proof (Lemma 7). The proof follows nearly verbatim [6, Lemma 4.2], so we will only
introduce the main idea, omitting the technical details. Note that all (often tedious)
computations are available in the accompanying Maple worksheet [12].

We start by defining the following sequence

Pn,m := −Zn,msnsn−1sn−2

+ n−m+ 2
n+m

Zn−1,m−1sn−1sn−2 + n−m− 1
n−m Zn−1,m+1sn−1sn−2

+ n−m− 3
n−m− 2

(
1

n−mZn−2,m+2sn−2 + 1
n+m

Zn−3,m+1

)
,
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where

sn := σ0 + σ1
n1/3 + σ2

n2/3 + σ3
n

+ σ4
n7/6 ,

Zn,m :=
(

1 + τ2m
2 + τ1m

n

)
Ai
(
a1 + 21/3(m+ 1)

n1/3

)
,

with σi, τj ∈ R. Then the inequality is equivalent to Pn,m ≥ 0 with σ0 = 2, σ1 = 0,
σ2 = 22/3a1, σ3 = 29/12, and σ4 = −1 as well as τ1 = 3/8 and τ2 = −2/3. Next, we expand
Ai(z) in a neighborhood of

α = a1 + 21/3m

n1/3 , (3)

and we get

Pn,m = pn,mAi(α) + p′n,mAi′(α),

where pn,m and p′n,m are functions of m and n−1 and may be expanded as power series in
n−1/6 with coefficients polynomial in m. We will see that, as long as n > 1 and n > m, this
series converges absolutely because the Airy function is entire and so all the functions for
which we need to perform a bivariate expansion (in n and m) are indeed are analytic in the
region defined by |n| > 1 and |m| < |n|2/3−ε.

Now we proceed with the technical analysis, which is only performed on a superficial
level here. The first step is to show that [minj ]Pn,m = 0 for i + j > 1, i, j ∈ Q. Then, as
a second step, we strengthen this result by choosing suitable values σi for 0 ≤ i ≤ 4 in the
definition of sn in order to eliminate more terms. The results are summarized in Figure 4
where the initial non-zero coefficients are shown. A diamond at (i, j) is drawn if and only if
the coefficient [minj ]Pn,m is non-zero for generic values of σ and τ . It is an empty diamond
if the given choice of σi and τj makes it vanish, whereas it is a solid diamond if it remains
non-zero. The convex hull is formed by the following three lines

L1 : j = −7
6 −

7i
18 , L2 : j = −1

3 −
2i
3 , L3 : j = 1− i.

From now on, we distinguish between the contributions arising from pn,m and p′n,m. The
non-zero coefficients are shown in Figure 5. For technical reasons we choose at this point
τ1 = 8/3 and thereby reduce the slope of the convex hull of the non-zero coefficients of p′n,m.
The expansions for n tending to infinity start as follows, where the elements on the convex
hull are written in color:

Pn,m = Ai(α)
(
− 4σ4
n7/6 −

211/3a1m

3n5/3 −164m2

9n2 − 214/3a1m
3

3n8/3 −136m4

9n3 − 248m5

135n4 + . . .

)
+

Ai′(α)
(

21/3(8τ1 − 3)
n4/3 + 27/3

n3/2 −
32a1m

9n2 + 24/3m2(48τ1 − 65)
9n7/3 −219/3m3

9n7/3

−5210/3m4

9n10/3 − 89 210/3m5

135n13/3 + . . .

)
.

We now choose σ4 = −1 which leads to a positive term Ai(α)n−7/6. Next, for fixed (large)
n we prove that for all m the dominant contributions in Pn,m are positive. Motivated by
Figures 4 and 5, we consider three different regimes: m ≤ Cn1/3, Cn1/3 < m ≤ n7/18, and
n7/18 < m < n2/3−ε for a suitable constant C > 0. We end the proof by showing that there
exists an N > 0 such that all terms are positive for n > N and all m < n2/3. J

In the next section we will show an upper bound with the same asymptotic form, but
with a different constant γU.
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Figure 4 (Left) Non-zero coefficients of Pn,m =
∑

ai,jm
inj shown by diamonds for sn :=

σ0 + σ1
n1/3 + σ2

n2/3 + σ3
n

+ σ4
n7/6 and Zn,m :=

(
1 + τ2m

2+τ1m
n

)
Ai
(
a1 + 21/3(m+1)

n1/3

)
. There are no

terms in the blue dashed area. The blue terms vanish for σ0 = 2, the red terms vanish for σ1 = 0,
the green terms vanish for σ2 = 22/3a1, and the yellow terms vanish for σ3 = 29/12 and τ2 = −2/3.
The black and red lines represent the two parts L1 and L2, respectively, of the convex hull. (Right)
The solid gray diamonds are decomposed into the coefficients pn,m of Ai(α) (red boxes) and p′n,m of
Ai′(α) (blue diamonds).

3.2 Upper bound
The following lemma links as in the case of the lower bound en,m (and its upper bound Ue)
with two explicit sequences ŝn and X̂n,m involving again the Airy function.

I Lemma 9. Choose η > 2/9 fixed and for all n,m ≥ 0 let

X̂n,m :=
(

1− 2m2

3n + 3m
8n + η

m4

n2

)
Ai
(
a1 + 21/3(m+ 1)

n1/3

)
and

ŝn := 2 + 22/3a1
n2/3 + 29

12n + 1
n7/6 .

Then, for any ε > 0, there exists a constant n̂0 such that

X̂n,mŝnŝn−1ŝn−2 ≥
n−m+ 2
n+m

X̂n−1,m−1s̃n−1s̃n−2 + n−m− 1
n−m X̂n−1,m+1s̃n−1s̃n−2

+ 1
n−mX̂n−2,m+2s̃n−2 + 1

n+m
X̂n−3,m+1,

(4)

for all n ≥ n̂0 and all 0 ≤ m < n1−ε.

Proof (Sketch). The proof follows the same lines as that of Lemma 7, so we will only
elucidate the required modifications. As a first step we define the following sequence

Qn,m := X̂n,mŝnŝn−1ŝn−2 − n−m+ 2
n+m

X̂n−1,m−1s̃n−1s̃n−2 − n−m− 1
n−m X̂n−1,m+1s̃n−1s̃n−2

− 1
n−mX̂n−2,m+2s̃n−2 − 1

n+m
X̂n−3,m+1.

Then the inequality is equivalent to Qn,m ≥ 0. Again, we expand Ai(z) in a neighborhood
of α = a1 + 21/3m

n1/3 , and we get the following expansion (see the accompanying Maple
worksheet [12] for full details). As before, the elements on the convex hull are written
in color.
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Figure 5 Non-zero coefficients pn,m =
∑

ãi,jm
inj (red) and p′n,m =

∑
ã′i,jm

inj (blue) of the
expansion (3) for Pn,m. The coefficient of n−4/3 in the right picture depicted as a solid blue circle
disappears for τ1 = 3/8.

Qn,m = Ai(α)
(

4
n7/6 + 211/3a1m

3n5/3 +4m2(41− 108η)
9n2 + 214/3a1m

3(1− 6η)
3n8/3

+8m4(17− 132η)
9n3 − 211/3a1m

5η

n11/3 −68m6η

3n4 −
124m7η

45n5 + . . .

)
+

Ai′(α)
(

27/3

n3/2 + 32a1m

9n2 + 24/3m2(47− 216η)
9n7/3 +216/3m3(2− 9η)

9n7/3

+21/3m4(40− 549η)
9n10/3 −216/3m5η

3n10/3 − 5m627/3η

3n13/3 − 89m727/3η

45n16/3 + . . .

)
.

Then we can finish in the same way as in the proof of Lemma 7. For the full details we
refer to the proofs of [6, Lemma 4.4 and 5.3] which explains how to deal with the new cases
required in the treatment of the upper bound (that happen to be analogous for the sequence
at hand here, and the ones in that paper). Note that even the final convex hull in the Newton
polygons is the same. J

The idea is now similar to the lower bound, yet a bit more intricate: We want to find
an auxiliary sequence (ẽn,m)n,m≥0 satisfying en,m ≤ Cẽn,m for some constant C > 0, all n
large, and all m ≤ n such that

ẽn,m ≤ κ1ĥnX̂n,m, (5)

where the sequence (ĥn)n≥1 is defined by ĥn = ŝnĥn−1. As shown in (2), this implies that
there is a constant γU > 0 such that

ẽ2n,0 ≤ γU4ne3a1n
1/3
n7/8.

Now, in order to find such a sequence we use Lemma 6 and state the following definition
for (ẽn,m)n,m≥0:




ẽn,m = n−m+2
n+m ẽn−1,m−1 + n−m−1

n−m ẽn−1,m+1
+ 1
n−m ẽn−2,m+2 + 1

n+m ẽn−3,m+1, for n ≥ 5, n3/4 > m ≥ 0,
ẽn,m = en,m, for n < 5, n ≥ m ≥ 0,
ẽn,m = 0, otherwise.

(6)
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There are several ideas in the choice of the sequence (6) which we want to explain now.
Firstly, in order to prove (5), the sequence has to be zero for large values of m. We achieve
this by cutting off the values for m > n3/4. Secondly, it has to have positive coefficients,
because then we can prove (5) by induction as it was done in the lower bound. Thirdly,
it has to be an upper bound of en,m, i.e., en,m ≤ Cên,m for all n,m. Due to the cut off
for m > n3/4 this is, of course, impossible, so we introduce a second auxiliary sequence
(ên,m)n,m≥0 with the same rules as (6) yet with no cut off, i.e., the recurrence holds for n ≥ 5
and n > m ≥ 0. Then, by Lemma 6 we have en,m ≤ ên,m for all n,m.

Hence, it remains to prove that there is a choice of N and a constant C > 0 such that

ê2n,0 ≤ Cẽ2n,0

for all n > N . As a first step, we define a class C of weighted paths with the step set
S := {(1, 1), (1,−1), (2,−2), (3,−1)} and weights corresponding to the recurrence defining
ên,m. Then ên,m can be interpreted as the weighted enumeration of paths p0p1 . . . pk ∈ C
(pi ∈ Z2) from p0 to pk = (n,m) such that pi+1−pi ∈ S for 0 ≤ i ≤ k−1, with the additional
initial condition that p0 = (u0, v0) and p1 = (u1, v1) satisfy v0 ≤ u0 < 5 ≤ u1. In other
words, the first jump p1 − p0 has to exit I := {(i, j) : i < 5}. The weight given to each path
in this enumeration is eu0,v0

I Lemma 10. Let q`,m,2n denote the weighted number of paths p ∈ C from (`,m) to (2n, 0).
Then the numbers q`,m,2n satisfy the inequality

q`,j,2n
j + 1 ≥

q`,k,2n
k + 1 ,

for integers 0 ≤ j < k ≤ ` ≤ 2n satisfying 2|k − j and n ≥ 10.

Proof (Sketch). Reversing the steps in (6) we see that q satisfies the following recurrence
for ` < 2n:




q`,m,2n = 0, for m < 0,
q`,m,2n = `−m+1

`−m+2q`+1,m−1,2n + `−m+2
`+m+2q`+1,m+1,2n

+ 1
`−m+4q`+2,m−2,2n + 1

`+m+2q`+3,m−1,2n for m ≥ 0.

Then we follow nearly verbatim the lines of the proof of [6, Lemma 5.4]. For more details we
refer to the accompanying Maple worksheet [12]. J

The last ingredient we will need is that

ê2x,2y ≤ d2x,2y ≤
(

2x
x+ y

)
,

where the sequence dx,y corresponds to the weighted number of Dyck meanders of length x
ending at y; see [6, Proposition 3.2]. The first inequality is proved by induction using the
recurrence relations of êx,y and dx,y. The second inequality is proved in [6], yet simply a
consequence of the fact that

( 2x
x+y
)
is the (unweighted) number of Dyck meanders from (0, 0)

to (2x, 2y), while the weights of weighted Dyck meanders are always smaller than 1.
Finally, among the ê2n,0 weighted paths ending at (2n, 0), the proportion of those passing

through some point (2x, 2y) is

ê2x,2yq2x,2y,2n
ê2n,0

≤ ê2x,2yq2x,2y,2n
ê2x,0q2x,0,2n

≤ (2y + 1) ê2x,2y
ê2x,0

≤ 2y + 1
γL4xe3a1x1/3x3/4

(
2x
x+ y

)
.
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In the last inequality we used Lemma 10 as well as en,m ≤ ên,m and the lower bound (2)
for ê2x,0. Hence, we can use the same ideas as used in [6, Lemma 4.6] to show that there is
some choice for N such that ê2n,0 ≤ 2ẽ2n,0 for all n.

This proves the missing link and ends the proof of Theorem 1.
To conclude, we observe that all arguments in Section 2 can be extended to any finite

alphabet of any size at least 2. Our analysis may also be extended to this more general case,
but this remains a work in progress.
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Plane increasing trees are rooted labeled trees embedded into the plane such that the 
sequence of labels is increasing on any branch starting at the root. Relaxed binary trees 
are a subclass of unlabeled directed acyclic graphs. We construct a bijection between 
these two combinatorial objects and study the therefrom arising connections of certain 
parameters. Furthermore, we show central limit theorems for two statistics on leaves. We 
end the study by considering more than 20 subclasses and their bijective counterparts. 
Many of these subclasses are enumerated by known counting sequences, and thus enrich 
their combinatorial interpretation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

This paper provides a bijection between a class of directed acyclic graphs (DAGs) shown in Fig. 1, and plane increasing 
trees shown in Fig. 2. The number of elements with n nodes is given by the odd double factorials (OEIS A001147 [18]) 
(2n − 1)!! := (2n − 1)(2n − 3) · · · 3 · 1.

We start with some basic definitions. For more details we refer to the excellent book [7]. A rooted tree of size n is a 
connected undirected acyclic graph with n + 1 nodes, n edges, and a distinguished node called the root. All trees appearing 
in this paper will have a root and we will shortly speak only of trees. The root introduces an order in the tree given by 
generations. The root is in generation 0. All neighbors of the root are in generation 1, and in general, nodes at distance k
from the root are in generation k. For an arbitrary node of generation k > 0 its unique neighbor in generation k − 1 is called 
its parent. All other neighbors (which are necessarily in generation k + 1) are called its children.

An increasing tree is a labeled rooted tree in which labels along any path from the root to the leaves are in increasing 
order. For notational convenience we label the nodes of a tree from 0 to n and define its size to be n. This concept was first 
introduced and intensively investigated by Bergeron, Flajolet, and Salvy [2]. These trees have found vast applications as data 
structures in computer science, as models in genealogy, and as representations of permutations, to name a few [7,19].

A tree is called plane (or sometimes also ordered) if the children are equipped with a left-to-right order. In other words, 
trees with a different order of the children, are considered to be different trees. For example the two trees in the center of 
Fig. 2 whose roots have two children with labels 1 and 2 are considered to be different trees.

✩ This research was partially supported by the Austrian Science Fund (FWF) grant SFB F50-03.
E-mail address: michael.wallner@tuwien.ac.at.
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2 M. Wallner / Theoretical Computer Science 755 (2019) 1–12

Fig. 1. All relaxed binary trees of size 0, 1, 2. Internal nodes are depicted by circles, the unique leaf is depicted by a square. Note that in general these are 
not trees as there appear directed and undirected edges.

This defines the classical family of rooted plane increasing trees, which can be generated uniformly at random by a 
growth process: start with the root and label 0. At step i there are 2i − 1 possible places to insert node i. Choose one 
uniformly at random. Note that at a node with out-degree d there are d + 1 possible places to insert a new child. This idea 
is known as the Albert–Barabási model [1]. Note that this method gives a way to generate these trees uniformly at random 
in linear time.

The degree of a node is the number of its neighbors, whereas the out-degree is the number of its children. Nodes of 
degree 1 (and therefore out-degree 0) are called leaves or external nodes. All other nodes are called internal nodes. A young 
leaf is a leaf without left sibling. A maximal young leaf is a young leaf with maximal label, see Fig. 2 (see [5, Section 4.3] for 
a recurrence relation of plane increasing trees built on this parameter).

Fig. 2. Left: All plane increasing trees of size 0,1,2. Right: An increasing tree of size 11 with the young leaves 3,5,7 and the maximal young leaf 7.

The second family we are interested in are the less known compacted and relaxed trees. Let us start with their origin 
and give a definition thereafter.

In computer science trees are a widely used data structures. Yet real world data often contain vast amount of redundant 
information. A strategy to save memory is to store every distinct subtree only once and to mark repeated appearances. This 
concept finds applications in the efficient storage of XML documents [3], and the design and analysis of algorithms and 
compilers [8]. The gain in memory was studied by Flajolet, Sipala, and Steyaert in [9]. The corresponding procedure defines 
a subclass of DAGs, called compacted trees, which are in bijection with the original trees, see [9,10]. The characterizing 
property of the generated structure is the uniqueness of each subtree which in the end brings savings in memory.

We will not need a precise definition of compacted trees, but of a related class, the one of relaxed binary trees. These 
appear when the uniqueness condition of subtrees is neglected. Let us give a precise definition of this class.

A relaxed tree of size n is a directed acyclic graph with n internal nodes, one leaf, n internal edges, and n pointers which 
is rooted at an internal node. It is constructed from a tree of size n, where the first leaf in a postorder traversal is kept and 
all other leaves are replaced by pointers. These may point to any node that has already been visited in a postorder traversal. 
It is called binary if it was constructed from a binary tree. All relaxed trees considered in this paper will be relaxed binary 
trees

In Fig. 1 we see all relaxed binary trees of size 0, 1, and 2. Note that for this small sizes all relaxed binary trees are also 
compacted binary trees. However, for size 3 there are 16 relaxed binary trees and only 15 compacted binary trees.

The right height is the maximal number of right edges (or right children) on all paths from the root to any leaf after 
deleting all pointers. The level of a node is the number of right edges on the path from the root to this node, see Fig. 3.

The asymptotic counting problem for relaxed (and the more restrictive class of compacted) binary trees when restricted 
to being of finite right height was solved in [10].

Fig. 3. Left: A compacted binary tree with right height 2. The labels give the level of the node. Right: The same tree rotated by 45 degrees. The unique leaf 
is marked by a square.
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Fig. 4. The structure of a relaxed binary tree with right height at most one. For clarity the pointers are only attached to their source. Note that for a specific 
relaxed tree the pointers are fixed and point to specific nodes seen before the source node in postorder traversal.

The general structure of relaxed binary trees of right height at most one is shown in Fig. 4. In [10, Theorem 7.3] it was 
shown that they admit the exponential generating function

R(z) = 1√
1 − 2z

=
∑
n≥0

(2n − 1)!! zn

n! . (1)

In other words, the number of relaxed binary trees of right height at most one of size n is equal to the number of increasing 
plane trees of size n and is equal to (2n − 1)!!. These numbers count more than a dozen labeled objects (see OEIS A001147), 
yet the class of DAGs is to our knowledge the first not labeled one. Bijections appear repeatedly in the literature in order 
to relate properties of different objects to each other. See for example Janson [11] for a bijection between plane increasing 
trees and Stirling permutations, or Janson, Kuba, and Panholzer [12] for a bijection between plane increasing trees and 
ternary increasing trees.

Plan of this article. First, in Section 2, we present our main contribution: a bijection between relaxed binary trees of 
right height at most one and plane increasing trees. As a corollary we get a uniform random sampling algorithm for relaxed 
binary trees of size n of right height at most one requiring O(n) steps and O(n) memory. In Section 3, we consider the 
bijection from the point of view of relaxed trees. We investigate the number of elements on level 0 and the number of 
branches (or, equivalently, leaves on level 1), and map them to parameters of plane increasing trees. Additionally, we show 
that they admit a central limit theorem. In Section 4, we analyze the bijection from the point of view of plane increasing 
trees. We collect known results and relate them to relaxed trees. Finally, in Section 5, we investigate more than 20 subclasses 
of the relaxed trees under consideration. We derive their generating functions and relate their counting sequences to known 
and unknown ones of the OEIS. Thereby we find new interpretations of sequences and discover unexpected connections to 
Fibonacci numbers.

2. Bijection

We will need the following concepts: A branch node is a node on level 0 without pointers to which a branch of nodes 
on level 1 is attached. We say that this is the branch node of the nodes in this branch. In the Figs. 4 and 5 we see three 
branch nodes each. A cherry is a node with 2 pointers. For a plane increasing tree T we denote by Tk the tree restricted to 
the labels 0, . . . , k. For notational convenience, we will speak of relaxed trees always meaning relaxed binary trees.

Algorithm 1 Relaxed binary tree R → Plane Increasing Tree T .
1: Label nodes of R inorder v0, v1, . . . , vn

2: For each cherry vi move left pointer to vi−1 � vi−1 is vi ’s branch node
3: For each node set pi := target of pointer of vi

4: if level(vi) = 1 and pi = v0 then
5: p(vi) := Branch node of branch of vi

6: end if
7: Leaf v0 → Root of T
8: for i from 1 to n do
9: if level(vi) = 0 then � Parent-pointer

10: Attach vi as first child to pi

11: else � Sibling-pointer
12: Attach vi as direct sibling right of pi

13: end if
14: end for

The bijection stated below is shown on an example in Fig. 5. From top to bottom and left to right a relaxed binary tree 
of right height at most one is transformed into a plane increasing tree. Reversing these steps gives the inverse bijection.

Algorithm 1 presents a formal description of the transformation from relaxed binary trees to plane increasing trees. 
Let us start with an arbitrary relaxed binary tree of size n. First, we label the nodes from 0 to n according to an inorder 
traversal. We use vi to reference the node with label i. In the labeling process we ignore pointers. Start at the leaf and label 
it with 0. Then, move to the parent. Whenever we see a node for the first time we attach a label incremented by one. If we 
meet a branch node we traverse its right branch starting from the cherry from left to right. Then we continue on level 0.

Next, we move the first (or left) pointer of each cherry vi (which has to be on level 1) to vi−1 which is its branch node 
due to the previous labeling operation. This operation attaches to each node, except the leaf, a unique pointer.
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Fig. 5. The bijection applied step by step. Parent-pointers are black, and sibling-pointers are gray. The leaf of the relaxed tree marked by a square is 
transformed into the root of the increasing plane tree. For the reverse bijection the maximal young leaves are shaded in gray.

Then, we separate the pointers into two sets: parent- and sibling-pointers. A parent-pointer is any pointer starting on 
level 0, and a sibling-pointer is any pointer starting on level 1.

Moreover, every sibling-pointer that points to the leaf v0 is changed to point to its branch node. This is shown for node 8
in Fig. 5.

Finally, we consider the nodes in the order of their labels and build a plane increasing tree. The leaf with label 0 becomes 
the root. If the node has a parent-pointer, we attach it as a first child (very left) of the node it is pointing to. If the node 
has a sibling-pointer, we attach it as a direct sibling on the right of the node it is pointing to.

Algorithm 2 Plane Increasing Tree T → Relaxed binary tree R.
1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach B to current root and move its pointer to last node of B as left pointer
5: Attach vk as new root with a pointer to the parent of vk in Tk

6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk

9: end if
10: end for
11: Perform 4-5

For the reverse bijection we need the notion of young leaves from the introduction. Note that from the previous algo-
rithm, the maximal young leaves are the nodes of level 0. Its formal description is given in Algorithm 2.

Let us start with an arbitrary plane increasing tree of size n. The tree is traversed iteratively in the order of its labels. 
The algorithm builds the relaxed tree and an auxiliary structure called the branch. At every step we either extend the tree 
or the branch, which is on some point attached as right child to a node at level 0. At the beginning this branch is empty.

For a label k one of the following two rules applies: First, if the current node k is a maximal young leaf of Tk then 
attach the branch to the last node on level 0, move the pointer of this level 0 node as left pointer to the last node of the 
branch, and set the branch to be empty. Then, attach the node k as new root node on level 0. For the pointer the parent 
rule applies: set its pointer to the parent of node k in Tk .
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Fig. 6. The generic structure of a sequence of nodes. Note that the last left edge, which is omitted here, could either be an internal edge or a pointer.

Second, if the current node is not a maximal young leaf of Tk then attach the node k as new root to the branch. For the 
pointer the sibling rule applies: set the pointer to the direct left sibling of node k in Tk . In the case that this is the current 
root at level 0, set the node to the leaf 0.

At the end attach the branch to the current root of level 0 and move its pointer to the last node in the branch as left 
pointer.

Theorem 2.1. The procedure above is a bijection between relaxed binary trees of right height at most one of size n and plane increasing 
trees of size n. It maps nodes of level 0 to maximal young leaves in the growth process of the plane increasing tree.

Proof. The procedure uniquely transforms relaxed binary trees of right height at most one of size n into plane increasing 
trees of size n and vice versa.

The main observation is the following: On the one hand, when inserting a node into Tk there are k + 1 places to insert 
it as maximal young leaf and k not to. On the other hand, when inserting a new node into the relaxed binary tree of size k
there are k + 1 possibilities for the pointer if the node becomes a new root on level 0, while there are only k possibilities 
for the pointer if it becomes a new root in the branch. The latter holds, as the pointer cannot point to its (later) branch 
node. Thus, maximal young leaves correspond to level 0 nodes and non-maximal leaves to level 1 nodes. �
Corollary 2.2. Relaxed binary trees of size n of right height at most one can be generated uniformly at random in linear time and with 
a linear amount of memory.

Proof. The growth process mentioned in the introduction can be used to generate a rooted increasing tree of size n in 
linear time using a linear amount of memory (compare with the Albert–Barabási model [1]). Then, Algorithm 2 transforms 
this tree into a relaxed binary tree of size n with right height at most one in n steps. �
Remark 2.3. Note that it is possible to directly generate the relaxed tree of size n by using a growth process for relaxed 
trees with the ideas of Algorithm 2. Basically, at every point one decides to either attach a new root at level 0 or in the 
branch B (which corresponds to level 1). In the first case one performs operations 4-6, and in the second case operation 8.

We want to point out that generalizing this method with nested branches it may be used to generate relaxed binary 
trees with arbitrary or even without height restrictions. However, for the cases of right height larger than 1 this does not 
generate them uniformly at random.

Plane increasing trees are well-studied objects and many statistics exist on their parameters. This bijection transforms 
some of them into interesting quantities on relaxed binary trees of right height at most one. But vice versa it also leads 
to interesting results on plane increasing trees. In the next section we consider parameters which are easy to analyze on 
relaxed trees, and in the section thereafter we look at known results for plane increasing trees.

3. Parameters of relaxed binary trees

We will use the bivariate generating function R(z, u) = ∑
n,k≥0 rnk

zn

n! uk with rnk ≥ 0. It is connected to the original 
generating function by R(z, 1) = R(z). In particular, for fixed n the sequence (rnk)k≥0 refines the number rn , and we have ∑

k≥0 rnk = rn . The bivariate generating function R(z, u) will be constructed from the functional equation of R(z) by marking 
a parameter of interest by an additional variable u. For more details of this concept we refer to the excellent book [8].

In the sequel we will repeatedly talk about a sequence of nodes. This is the (sub-)graph given by a set of internal nodes 
whose left children are always internal nodes (except maybe the last one) and whose right children are always pointers. Its 
generic structure is shown in Fig. 6.

Let us therefore briefly revisit the combinatorial construction of R(z) given in [10, Corollary 7.2 and Theorem 7.3]. For 
more details we refer to the deduction in there. The functional equation is equal to

R(z) = 1

1 − z
+ 1

1 − z

∫
1

1 − z
z (zR(z))′ dz. (2)

The first term corresponds to the last sequence of nodes on level 0 after the last branch node. It can be interpreted as the 
initial value or boundary case of the combinatorial construction. The factor in front of the integral represents a sequence of 
nodes on level 0 between branch nodes. The integral creates a branch node. The factor 1

1−z under the integral creates the 
nodes of a branch on level 1 except the final cherry. Finally, the operator z (zR(z))′ creates the cherry of the branch.
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Solving this equation, by for example solving the equivalent differential equation, gives the representation of R(z) in (1). 
In the next subsections we will use this equation by marking certain parameters in order to deduce information on their 
distribution. For more information on this concept see e.g., [8,20]. We start with the number of elements on level 0.

3.1. Number of elements on level 0 and number of maximal young leaves

Let rnk be the number of relaxed binary trees of right height at most one with k internal nodes on level 0. This is also 
equal to the number of maximal young leaves in the growth process of a plane increasing tree. Then, the bivariate generating 
function R(z, u) = ∑

n,k≥0 rnk
zn

n! uk can be computed from the functional equation (2) by marking nodes on level 0. This gives

R(z, u) = 1

1 − uz
+ u

1 − uz

∫
z

1 − z

∂

∂z
(zR(z, u)) dz,

which is then solved to give

R(z, u) = 1

(1 − (1 + u)z)
u

1+u
.

Let Xn be the random variable of the number of internal nodes on level 0 of relaxed binary trees with right height at most 
one drawn uniformly at random among all such trees of size n. Then, we have

P(Xn = k) = [znuk]R(z, u)

[zn]R(z,1)
.

Theorem 3.1. The standardized random variable

Xn − μ1n

σ1
√

n
, with μ1 = 1

2
+ log(n)

4n
+ O

(
1

n

)
and σ 2

1 = 1

4
− π2

32n
+ O

(
1

n2

)
,

converges in law to a standard normal distribution N (0, 1).

Proof. The result follows from [17, Theorem 4.2] (see also [8, Theorem IX.13]), a generalized quasi-powers scheme for 
bivariate generating functions. The necessary form is proved by the saddle-point method [8, Chapter VIII]. �
3.2. Number of branches and number of dominating young leaves

Recall that a branch in a relaxed tree is a sequence of nodes on level 1. By the bijection these correspond to maximal 
young leaves, which are not immediately replaced in the growth process by a new young leaf in the next step. We call 
these dominating young leaves. Let snk be the number of relaxed binary trees of right height at most one with k branches. 
Then, the bivariate generating function S(z, u) = ∑

n,k≥0 snk
zn

n! uk can be computed in a similar way as done in Section 3.1
by marking only the branch node given by the integral. We get

S(z, u) = 1√
1 − 2z + (1 − u)z2

.

Let Yn be the random variable giving the number of branches of relaxed binary trees with right height at most one of size n
drawn uniformly at random among all such trees of size n:

P(Yn = k) = [znuk]S(z, u)

[zn]S(z,1)
.

Theorem 3.2. The standardized random variable

Yn − μ2n

σ2
√

n
, with μ2 = 1

4
− 1

8n
+ O

(
1

n2

)
and σ 2

2 = 1

16
+ 1

32n
+ O

(
1

n2

)
,

converges in law to a standard normal distribution N (0, 1).

Proof. The result follows the same lines as the one of Theorem 3.1. �
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Pointer-path Length

1 → 0 1
2 → 1 → 0 2
3 → 1 → 0 2
4 − 1 → 0 1
5 → 0 1
6 → 5 → 0 2
7 → 2 → 1 → 0 3
8 − 7 → 2 → 1 → 0 3
9 − 5 → 0 1

10 → 2 → 1 → 0 3
11 − 6 → 5 → 0 2

Fig. 7. Pointer-paths of the example in Fig. 5. Parent-pointers are marked by → (or black arrows), sibling-pointers are marked by − (or gray arrows).

Table 1
Parameters of plane increasing trees and the corresponding parameters in relaxed binary trees of right height at most one. The con-
stant s ≈ 0.27846 is the positive solution of ses+1 = 1.

Plane increasing tree Relaxed binary tree EXn VXn

Depth of node n [14] Length of pointer-path from node n 1
2 log n + O(1) 1

2 logn + O(1)

Number of leaves [15] Number of nodes without ingoing parent-pointer 2
3 n + 1

3
n
9 + 1

18 − 1
6(2n+1)

Root degree [2] Number of pointer-paths of length 1
√

πn + O(1) (4 − π)n + O(1)

Height [7,16] Longest pointer-path 1
2s logn + o(log n) O(1)

4. Parameters of plane increasing trees

Several parameters of plane increasing trees are well-understood. In order to understand their connection with respect 
to the stated bijection we introduce the concept of a pointer-path. This is a path following only pointers from an arbitrary 
node to the leaf 0 with two special rules: First, due to the transformation of the left cherry pointers to branch nodes, every 
internal node has exactly one outgoing pointer. Second, if a sibling-pointer points to the leaf it is interpreted as pointing to 
its branch node, compare node 8 in Fig. 7. The length of a pointer-path is given by the number of parent-pointers in it. The 
results for our stated example are shown in Fig. 7.

These pointer-paths also have an interpretation on the level of increasing trees. Starting from any node, one jumps to 
its left sibling as long as its label is decreasing. This corresponds to sibling-pointers. If this is not possible any more one 
moves up to its parent which corresponds to a parent-pointer. The length of the pointer-path is the depth of the node. In 
particular, this gives for every node a “maximal” decreasing sequence of labels encoded in the tree.

There is rich literature on parameters of plane increasing trees, see e.g. [2,7,12–16]. We have summarized four interesting 
parameters and their counterparts in relaxed binary trees of right height at most one in Table 1. In the first two cases the 
standardized random variables Xn−EXn√

VXn
converge in distribution to a standard normal distribution, whereas in the third case 

the normalized random variable Xn√
2n

converges in law to a standard Rayleigh distribution given by the density function 

xe−x2/2. For details on the distribution of the height see [7, Section 6.4] and [4,6].

Remark 4.1. The Rayleigh distribution in the third case follows directly from the closed form of the number of increasing 
trees of size n and root degree k given by

k · (2n − 3 − k)!
2n−1−k(n − 1 − k)! .

This was derived in [2, Corollary 5], with a small typo of a missing factor k.

A final interesting parameter is the distribution of out-degrees. Similar to the root degree, the out-degree of a node i
corresponds to the number of pointer-paths of length 1 ending with a parent-pointer in i. Note that by definition all 
pointer-paths ending in 0 end with a parent-pointer. Let λd be the limiting probability that a random node has out-degree d. 
Then, in [2] it was shown that

λd = 4

(d + 1)(d + 2)(d + 3)
.

Thus, the probability that a random node has no ingoing parent-pointer is 2
3 , conforming the proportion of number of leaves 

above. The probability for one ingoing parent-pointer is 1
6 . The case λ2 = 1

15 corresponds to either two parent-pointers 
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whose source nodes do not have sibling-pointers, or one parent-pointer whose source node has exactly one sibling-pointer 
and this source node has no sibling-pointer.

5. Subclasses

At the end we want to consider some subclasses of relaxed binary trees of right height at most one. We will show 
connections with certain sequences in the OEIS [18] and solve some open conjectures therein. This adds new combinatorial 
interpretations to several of them. We start with subclasses that have no initial and/or final sequence of nodes.

5.1. Variations of the initial and final sequences

Fig. 8. Left: Subclass R1 without initial sequence; Center: R2 without final sequence; Right: R3 without initial and final sequence.

First, we consider the case of an empty initial sequence, see Fig. 8. In other words all such relaxed trees start with a 
branch node. By [10, Proposition 6.4] a multiplication by 1 − z of the generating function R(z) gives the generating function 
of this class:

R1(z) := 1 − z√
1 − 2z

= 1 +
∑
n≥2

(n − 1)(2n − 3)!! zn

n!

= 1 + z2

2! + 6
z3

3! + 45
z4

4! + 420
z5

5! + 4725
z6

6! + . . . .

The sequence of coefficients is OEIS A001879 and counts the number of descents in all fixed-point-free involutions of 
{1, 2, ..., 2(n − 1)} (we have a shift of minus two). Comparing these numbers to the total number (2n − 1)!! of relaxed 
binary trees of right height at most one, we see that for large n half of all trees fall into this class.

The bijection transforms this class into the one of plane increasing trees where the leaf with the highest label is not a 
maximal young leaf, except for the tree of size 0. Considering these trees we can give an alternative proof of the counting 
sequence (n − 1)(2n − 3)!!, n ≥ 2: There are (2n − 3)!! trees of size n − 1 in which we may insert the leaf with label n at 
n − 1 out of the 2n − 1 possible places in order not to create a maximal young leaf.

Second, we consider the related subclass of relaxed binary trees of right height at most one where the final sequence 
on level 0 after the last branch node consists of only a single leaf, see Fig. 8. If there is no branch node then only the leaf 
belongs to this class. From the explanations at the beginning of Section 3 we know that the final sequence corresponds to 
the first term 1

1−z in the functional equation (2). Thus, omitting this one and solving the corresponding equation gives the 
generating function

R2(z) := 1

3
√

1 − 2z
+ 2

3
− z

3
=

∑
n≥0

(2n − 1)!!
3

zn

n!

= 1 + z2

2! + 5
z3

3! + 35
z4

4! + 315
z5

5! + 3465
z6

6! + . . . .

This sequence is OEIS A051577 and has no combinatorial interpretation so far. Note that for the second derivative we have 
R ′′

2(z) = (1 − 2z)−5/2. We see that exactly one third of all trees have an empty final sequence.
Trees of this class correspond to plane increasing trees where node 2 is at depth 1 and right of node 1. As above, we can 

give an alternative proof of the counting sequence. In particular, after 2 steps of the growth process we have a tree with 
root 0 and a single child 1. Among the three possible places to insert node 2 only one puts it right of node 1. Inserting 
more nodes will not change the relative position of nodes 1 and 2 at depth 1.

As a third class, we look at the combination of the last two classes. It is given by

R3(z) := (1 − z) (R2(z) − 1) + 1 = 1 + z2

2! + 2
z3

3! + 15
z4

4! + 140
z5

5! + 1575
z6

6! + . . . .

The sequence of coefficients gives the new entry OEIS A288950.
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Fig. 9. Left: Subclass R4 with at most one node per branch (i.e., on level 1); Center: R5 without sequences on level 0; Right: R6 is the intersection of R4

and R5.

5.2. Trees without sequences – connections with Fibonacci numbers

Fourth, let us consider relaxed trees where every sequence on level 1 consists of only one element, see Fig. 9. Adapting 
the functional equation (2) we see that the corresponding generating function R4(z) satisfies

R4(z) = 1

1 − z
+ 1

1 − z

∫
z (zR(z))′ dz, (3)

because the factor 1
1−z under the integral would create these sequences. Solving this equation with e.g., a computer algebra 

system like Maple gives

R4(z) =
exp

(
1√
5

artanh
(√

5z
2−z

))
√

1 − z − z2
= 1√

1 − z − z2

(√
5 + 1 + 2z√
5 − 1 − 2z

)√
5

10

= 1 + z + 3
z2

2! + 13
z3

3! + 79
z4

4! + 603
z5

5! + 5593
z6

6! + . . . .

The second expression is computed by the expression of the artanh function in terms of logarithms. This sequence 
is OEIS A213527. It implies a different representation.

Lemma 5.1. Let Fn be the n-th Fibonacci number, given by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2. Then, we have

R4(z) = exp

⎛
⎝∑

n≥1

Fn+1zn

n

⎞
⎠ = 1

1 − z − z2
exp

⎛
⎝−

∑
n≥1

Fn−1zn

n

⎞
⎠ .

Proof. On the one hand we differentiate G(z) := ∑
n≥1

Fn+1zn

n and get G ′(z) = 1+z
1−z−z2 . On the other hand we get from (3)

that the logarithmic derivative of R4(z) is also equal to the same expression. Comparing the initial conditions we deduce 
that R4(z) = exp(G(z)).

For the second expression note that Fn−1 + Fn+1 = Ln which is the n-th Lucas number, OEIS A000032. They are defined 
by L0 = 2, L1 = 1 and Ln = Ln−1 + Ln−2 for n ≥ 2. Furthermore, integrating the known representation 

∑
n≥0 Ln+1zn = 1+2z

1−z−z2

gives 
∑

n≥1
Ln zn

n zn = log
(

1
1−z−z2

)
. This proves the claim. �

These relaxed trees correspond bijectively to plane increasing trees where during the growth process never two non-
maximal young leaves are inserted after each other. In other words, if k was not a maximal young leaf, then k + 1 has to be 
one.

Finally, note that adding constraints like not allowing an initial sequence, not allowing a final sequence, and the combi-
nation of both does not lead to any known sequences in the OEIS nor to nice expressions for the generating functions.

As a fifth class, we consider the conjugate class with no sequences between branch nodes on level 0, see Fig. 9. These 
objects are strongly related to the previous ones. We get

R5(z) =
exp

(
− 1√

5
artanh

(√
5z

2−z

))
√

1 − z − z2
= 1√

1 − z − z2

(√
5 − 1 − 2z√
5 + 1 + 2z

)√
5

10

= 1 + z2

2! + 2
z3

3! + 15
z4

4! + 92
z5

5! + 835
z6

6! + . . . .

This sequence was so far not known in the OEIS. It is now given by OEIS A288952.

Lemma 5.2. Let Fn be the Fibonacci number defined as in Lemma 5.1. Then, we have

R5(z) = exp

⎛
⎝−

∑
n≥1

Fn−1zn

n

⎞
⎠ .
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Proof. From the closed-form expressions we get the relation R4(z)R5(z) = 1
1−z−z2 . Together with the second representation 

of R4(z) in Lemma 5.1 this proves the claim. �
The corresponding plane increasing trees are such that a maximal young leaf has to be followed by a non-maximal young 

leaf.
Sixth, let us consider a further restriction of the previous class by also not allowing any sequences on level 0, see Fig. 9. 

This class can be considered maximal with respect to its branches per node. Its functional equation is obtained from (3) by 
replacing both terms 1

1−z by 1. Then, we get

R6(z) := 1√
1 − z2

=
∑
n≥0

((2n − 1)!!)2 z2n

(2n)!

= 1 + z2

2! + 9
z4

4! + 225
z6

6! + 11025
z8

8! + . . . .

This sequence is OEIS A177145. We have R6(z) = ∑
n≥0 r6,n

zn

n! = arcsin′(z). Here it is easy to derive the counting formula 
directly: The only element of size 0 is the leaf, r6,0 = 1. To an element of size 2n (which has to be even), we append a 
branch node connected with a node on level 1 which has two pointers. These may point to all elements of the existing tree 
which gives (2n + 1)2 possibilities. This gives r6,2n+2 = (2n + 1)2 · r6,2n .

From the previous consideration it is easy to identify the corresponding plane increasing trees. Their growth process 
consists of alternating insertions of maximal and non-maximal young leaves.

Fig. 10. Left: Subclass R7 is like R6 with a possible initial sequence on level 0; Center: R8 is like R6 with a possible final sequence on level 0; Right: 
R9 is like R6 with a possible initial and final sequence on level 0.

Seventh, we consider a variation of the previous class by allowing an initial sequence on level 0, see Fig. 10. This 
corresponds to a multiplication of R6(z) by 1

1−z and we get

R7(z) := 1

1 − z

1√
1 − z2

= 1 + z + 3
z2

2! + 9
z3

3! + 45
z4

4! + 225
z5

5! + 1575
z6

6! + . . . .

This sequence is OEIS A000246 and counts the number of permutations in the symmetric group Sn that have odd order. 
The equivalent class of plane increasing trees is like the previous one except that we allow a sequence of maximal young 
leaves at the end of the growth process. In other words the consecutive labels k, . . . , n may be maximal young leaves.

Eighth, we consider the analogous variation of allowing a sequence only at the end of level 0, see Fig. 10. The generating 
function R8(z) of this class is obtained by omitting only the factor 1

1−z in front of the integral in (3). This gives

R8(z) := 1

3
√

1 − z2
− z − 2

3(1 − z)2
= 1 + z + 3

z2

2! + 10
z3

3! + 51
z4

4! + 280
z5

5! + 1995
z6

6! + . . . .

This sequence gives rise to the new entry OEIS A288953. Again, the equivalent plane increasing trees are like the one of 
case 6 but with a possible sequence of maximal young leaves at the beginning of the growth process, i.e., the consecutive 
labels 1, . . . , k may be maximal young leaves.

Ninth, we consider the combination of the previous two, i.e., allowing sequences at the beginning and at the end only 
on level 0, see Fig. 10. This gives

R9(z) := 1

3(1 − z)
√

1 − z2
+ 3z3 − z2 − 2z + 2

3(1 + z)(1 − z)3

= 1 + z + 3
z2

2! + 13
z3

3! + 79
z4

4! + 555
z5

5! + 4605
z6

6! + . . . .

This sequence corresponds to the new entry OEIS A288954. The corresponding plane increasing trees may have consecutive 
nodes of maximal young leaves 1, . . . , k at the beginning and �, . . . , n at the end. Otherwise maximal and non-maximal 
leaves alternate.
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Table 2
Variations of case 10 where each cherry has only one pointer. The comment “Long” marks generating functions 
which do not have a closed form or are too long to state. The sequence A316666 is a new entry.

Subclass EGF Sequence OEIS

One cherry pointer exp
(

z
1−z

)
1,1,3,13,73,501,4051, . . . A000262

No final sequence Long 1,0,1,5,29,201,1631, . . . A201203

No initial sequence (1 − z)exp
(

z
1−z

)
1,0,1,4,21,136,1045, . . . A052852

No sequence on level 0 e−z

1−z 1,0,1,2,9,44,265,1854, . . . A000166

No sequence on level 1 e−z

(1−z)2 1,1,3,11,53,309,2119, . . . A000255

+ no initial sequence e−z

1−z 1,0,1,2,9,44,265,1854, . . . A000166

+ no final sequence 3e−z+z−2
(1−z)2 1,0,1,3,15,87,597,4701, . . . A316666

+ no initial and final seq. 3e−z−z2

1−z − 2 1,0,1,0,3,12,75,522, . . . A176408

No seq. on level 0 and 1 e
z2
2 1,0,1,0,3,0,15,0,105,0, . . . A123023

+ initial sequence e
z2
2

1−z 1,1,3,9,39,195,1185, . . . A130905

+ final sequence Long 1,1,3,8,33,152,885,5952, . . . —
+ initial and final seq. Long 1,1,3,11,53,297,1947, . . . —

5.3. Simplifying the pointer structure

Tenth, consider the adaption of relaxed trees where both pointers of a cherry are forced to point to the same node (or 
alternatively the second one is fixed). The corresponding generating function R10(z) satisfies a functional equation given 
by (2) where (zR(z))′ is replaced by R(z). The reason is that at the end of the sequence on level 1 we create only one 
pointer and let the second one point to the same place. Thus, this subclass is best pictured as the one where cherries have 
just one pointer. This gives

R10(z) := exp

(
1

1 − z

)
= 1 + z + 3

z2

2! + 13
z3

3! + 73
z4

4! + 501
z5

5! + 4051
z6

6! + . . . .

This sequence is OEIS A000262 and counts the number of sets of lists and many other combinatorial objects.
There are many interpretations of the corresponding plane increasing trees. For example a non-maximal young leaf 

following a maximal young leaf has to be inserted immediately right of it. Or alternatively, as last child of the root. In 
particular the place of this non-maximal leaf can be chosen uniformly for the class and is fully determined.

Obviously the same subclasses as before can be considered for this class. The 11 additional results are summarized in 
Table 2.

6. Conclusion

In this paper we provided a bijection between relaxed binary trees (a subclass of directed acyclic graphs arising in the 
compactification of binary trees) with plane increasing trees. With the latter being well-studied objects, we had access to a 
vast amount of results on shape parameters which gave us interesting results on the class of relaxed binary trees. Vice versa 
we were also able to study new parameters on plane increasing trees, by the corresponding parameters on relaxed binary 
trees. Furthermore, this bijection gave a way to generate relaxed binary trees of size n of right height at most 1 uniformly 
at random in linear time using a linear amount of memory. Finally, we considered more than 20 subclasses and showed 
that most of them also enumerate other combinatorial structures. We want to point out that in many cases these are the 
first non labeled structures.
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1 Introduction

As predicted by Anatoly Vershik in [Ver01], the 21st century should see a lot of challenges and advances on the
links of probability theory with (algebraic) combinatorics. A key role is played here by Young tableaux, because
of their ubiquity in representation theory [Mac15] and in algebraic combinatorics, as well as their relevance in
many other different fields (see e.g. [Sta11]).

Young tableaux are tableaux with n cells labelled from 1 to n, with the additional constraint that these labels
increase among each row and each column (starting from the lower left cell). Here we consider the following
variant: What happens if we allow exceptionally some consecutive cells with decreasing labels? Does this variant
lead to nice formulas if these local decreases are regularly placed? Is it related to other mathematical objects or
theorems? How to generate them? This article gives some answers to these questions.

As illustrated in Figure 1, we put a bold red edge between the cells which are allowed to be decreasing.
Therefore these two adjacent cells can have decreasing labels (like 19 and 12 in the top row of Figure 1, or 11 and
10 in the untrustable Fifth column), or as usual increasing labels (like 13 and 15 in the bottom row of Figure 1).
We call these bold red edges “walls”.

7 18 19 12 21 20 17

2 6 8 9 10 14 16

1 3 4 5 11 13 15

Figure 1: We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are
allowed to have decreasing labels. Such places where a decrease is allowed (but not compulsory) are drawn by a
bold red edge, which we call a “wall”.

For Young tableaux of shape1 n × 2 several cases lead directly to nice enumerative formulas for the total
number of specific tableaux with 2n cells:

1. Walls everywhere: (2n)!

2. Horizontal walls everywhere: (2n)!
2n

3. Horizontal walls everywhere in left (or right) column: (2n− 1)!! = (2n)!
2nn!

4. Vertical walls everywhere:
(
2n
n

)
= (2n)!

(n!)2

5. No walls: 1
n+1

(
2n
n

)
= (2n)!

(n+1)(n!)2

In this article we are interested in the enumeration and the generation of Young tableaux (of different rect-
angular shapes) with such local decreases, and we investigate to which other mathematical notions they are
related. Section 2 focuses on the case of horizontal walls: We give a link with the Chung–Feller Theorem, bi-
nomial numbers and a Gaussian limit law. Section 3 focuses on the case of vertical walls: We give a link with
hook-length type formulas. Section 4 presents a generic method, which allows us to enumerate many variants
of Young tableaux (or more generally, linear extensions of posets), and which also offers an efficient uniform
random generation algorithm, and links with D-finiteness.

1We will refer to “n × m Young tableaux”, or “Young tableaux of shape n × m”, for rectangular Young tableaux with n rows
and m columns. They are trivially in bijection with m× n Young tableaux.
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2 Vertical walls, Chung–Feller and binomial numbers

In this section we consider a family of Young tableaux having some local decreases at
places indicated by vertical walls, see Figure 2.

Theorem 2.1. The number of n× 2 Young tableaux with k vertical walls is equal to

vn,k =
1

n+ 1− k

(
n

k

)(
2n

n

)
.

Proof. We apply a bijection between two-column Young tableaux of size 2n with k walls
and Dyck paths without the positivity constraint of length 2n and k coloured down steps.
These paths start at the origin, end on the x-axis and are composed out of up steps (1, 1),
and coloured down steps (1,−1) which are either red or blue.
Given an arbitrary two-column Young tableau, the m-th step of the associated path is
an up step if the entry m appears in the left column, while the m-th step is a down step,
if the m-th entry appears in the right column. Furthermore, we associate colours to the
down steps: If the m-th down step is in a row with a wall we colour it red, and blue
otherwise.
Thus, vn,k counts the number of paths with exactly k red down steps. Note that the
down steps of a path below the x-axis are always red because a wall has to be involved,
yet above the x-axis down steps can have any colour. We decompose paths with k
coloured down steps with respect to the number of steps which are below the x-axis. By
the Chung–Feller Theorem [CF49] (see also [Che08] for a bijective proof) the number of
Dyck paths of length 2n with i down steps below the x-axis is independent of i and equal
to the Catalan number Catn = 1

n+1

(
2n
n

)
. When i steps are below the x-axis we have to

colour k − i of the remaining n− i steps above the x-axis red. This gives

vn,k =

k∑

i=0

(
n− i
k − i

)
Catn =

(
n+ 1

k

)
Catn,

and the claim follows.

14 12

10 13

9 11

8 7

4 6

3 5

2 1

Figure 2: Example
of one of our n × 2
Young tableaux with
walls.

As a simple consequence, we get the following result.

Corollary 2.2. The average number of linear extensions of a random n× 2 Young tableau with k walls, where
the location of these walls is chosen uniformly at random, is

1

n+ 1− k

(
2n

n

)
.

Proof. In a two-column Young tableau of size 2n we have
(
n
k

)
possibilities to add k walls.

We now conclude this section with a limit law result.

Theorem 2.3. Let Xn be the random variable for the number of walls in a random n × 2 Young tableau

chosen uniformly at random. The rescaled random variable Xn−n/2√
n/4

converges to the standard normal distribution

N (0, 1).

Proof. We see that the total number of two-column Young tableaux of size n with walls is equal to

n∑

k=0

vn,k = Catn
(
2n+1 − 1

)
.

Then, the previous results show that

P (Xn = k) =

(
n+ 1

k

)
1

2n+1 − 1
,

which is a slight variation of a binomial distribution with parameters n+1 and probability 1/2. By the well-known
convergence of the rescaled binomial distribution to a normal distribution the claim holds (see e.g. [FS09]).
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3 Horizontal walls and the hook-length formula

The hook-length formula is a well-known formula to enumerate standard Young tableaux of a given shape (see
e.g. [Mac15,Sta11]). What happens if we add walls in these tableaux? Let us first consider the case of a Young
tableau of size n such that its walls cut the corresponding tableau into m disconnected parts without walls of
size k1, . . . , km (e.g., some walls form a full horizontal or vertical line). Then, the number of fillings of such a
tableau is trivially:

n!

k1! . . . km!

m∏

i=1

HookLengthFormula(subtableau of size ki).

So in the rest of article, we focus on walls which are not trivially splitting the problem into subproblems: They
are the only cases for which the enumeration (or the random generation) is indeed challenging.

We continue our study with families of Young tableaux of shape m× n having some local decreases at places
indicated by horizontal walls in the left column. We will need the following lemma counting special fillings of
Young tableaux.

Lemma 3.1. The number of n× 2 “Young tableaux” with 2λ cells filled with the numbers 1, 2, . . . , 2n for n ≥ λ
such that (the number 2n is used and) all consecutive numbers between the minimum of the second column and
2n are used is equal to

(
2n

λ

)
−
(

2n

λ− 1

)
. (1)

Proof. The constraint on the maximum implies that all not used numbers are smaller than the number in the
bottom right cell. Therefore it is legitimate to add these numbers to the tableaux. In particular, we create a
standard Young tableau of shape (λ, 2n− λ) (i.e., the first column has λ cells and the second one 2n− λ) which
is in bijection with the previous tableau.

Next we build a bijection between standard Young tableaux of shape (λ, 2n − λ) and Dyck paths with up
steps (1, 1) and down steps (1,−1) starting at (0, 2(n− λ)), always staying above the x-axis and ending on the
x-axis after 2n steps. In particular, if the number i appears in the left column, the i-th step is an up step, and
if it appears in the right column, the i-th step is a down step.

Finally, note that these paths can be counted using the reflection principle [And87]. In particular, there are(
2n
λ

)
possible paths from (0, 2(n−λ)) to (2n, 0). Yet,

(
2n
λ−1
)

“bad” paths cross the x-axis at some point. This can
be seen, by cutting such a path at the first time it reaches altitude −1. The remaining path is reflecting along
the horizontal line y = −1 giving a path ending at (2n,−2). It is easy to see that this is a bijection between bad
paths from (0, 2(n− λ)) to (2n, 0) and all paths from (0, 2(n− λ)) to (2n,−2). The latter is obviously counted
by
(

2n
λ−1
)
, as λ− 1 of the 2n steps have to be up steps.

Theorem 3.2. The number of n × 2 Young tableaux of size 2n with k walls in the first column at heights
0 < hi < n, i = 1, . . . , k with hi < hi+1 is equal to

1

2n+ 1

k+1∏

i=1

(
2hi + 1

hi − hi−1

)
,

with h0 := 0 and hk+1 := n.

Remark 3.3. Denoting consecutive relative distances of the walls by λi := hi − hi−1 for i = 1, . . . , k + 1 the
previous result can also be stated as

1

2n+ 1

k+1∏

i=1

(
2(λ1 + . . .+ λi) + 1

λi

)
.

Proof. We will show this result by induction on the number of walls k. For k = 0 the result is clear as we
are counting two-column standard Young tableaux which are counted by Catalan numbers (for a proof see also
Lemma 3.1 with λ = n).

Next, assume the formula has been shown for k−1 walls and arbitrary n. Choose a proper filling with k walls
and cut the tableau at the last wall at height hk into two parts. The top part is a Young tableau with 2(n− hk)
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elements and no walls, yet labels between 1 and 2n. Furthermore, it has the constraint that all numbers larger
than the element in the bottom right cell have to be present. This is due to the fact that all elements in lower
cells must be smaller. In other words, these are the objects of Lemma 3.1 and counted by (1).

The bottom part is a Young tableau with k − 1 walls and 2hk elements (after proper relabelling). By our
induction hypothesis this number is equal to

1

2hk + 1

k∏

i=1

(
2hi + 1

hi − hi−1

)
.

As a final step, we rewrite Formula (1) into

2(n− λ) + 1

2n+ 1

(
2n+ 1

λ

)
,

and set λ := n− hk. Multiplying the last two expressions then shows the claim.

Remark 3.4. Note that so far we have not found a direct combinatorial interpretation of this formula. However,
note that in general

(
2n+1
λ

)
does not have to be divisible by 2n+ 1.

Let us now also give the general formula for n×m Young tableaux with walls of lengths m− 1 from columns
1 to m − 1, i.e., a hole in column m and nowhere else in a row with walls. Before we state the result, let us
define for integers n, k the falling factorial (n)k := n(n − 1) · · · (n − k + 1) and for integers n,m1, . . . ,mk such
that n ≥ m1 + · · ·+mk the (shortened) multinomial coefficient2

(
n

m1,m2,...,mk

)
:= n!

m1!m2!···mk!(n−m1−...−mk)!
.

Theorem 3.5. The number of n×m Young tableaux of size mn with k walls from column 1 to m− 1 at heights
0 < hi < n, i = 1, . . . , k with hi < hi+1 is equal to

(m− 1)!

(mn+m− 1)m−1



k+1∏

i=1

m−2∏

j=1

(
λi + j

j

)−1


(
k+1∏

i=1

(
m(λ1 + . . . λi) +m− 1

λi, . . . , λi

))
,

where λi := hi − hi−1 and the λi’s in the multinomial coefficients appear m− 1 times.

Proof (Sketch). First derive an extension of Lemma 3.1 proved by the hook-length formula and then compute
the product. Note that this gives a telescoping factor, giving the first factor.

Just as one more example, here is a more explicit example of what it gives.

Corollary 3.6. The number of n × 4 Young tableaux with k walls from column 1 to 3 at heights 0 < hi < n,
i = 1, . . . , k with hi < hi+1 is equal to

6

(4n+ 3)(4n+ 2)(4n+ 1)

(
k+1∏

i=1

2

(λi + 1)2(λi + 2)

)(
k+1∏

i=1

(
4(λ1 + . . . λi) + 3

λi, λi, λi

))
,

with λi := hi − hi−1.

Let us consider some other special cases. For example, consider tableaux with walls between every row and a

hole in the last column. For this case we set λi = 1 for all i. This gives the general formula (mn)!
n!(m!)n , for n ×m

tableaux, see OEIS A001147 for m = 2 and OEIS A025035 to OEIS A025042 for the special cases m = 3, . . . , 10.
Now that we gave several examples of closed-form formulas enumerating some families of Young tableaux with

local decreases, we go to harder families which do not necessarily lead to a closed-form result. However, we shall
see that we have a generic method to get useful alternative formulas (based on recurrences), also leading to an
efficient uniform random generation algorithm.

2In the literature, one more often finds the notation
( n
m1,m2,...,mk,n−m1−...−mk

)
:= n!

m1!m2!···mk!(n−m1−...−mk)!
. But we opted

in this article for a more suitable notation to the eyes of our readers!
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4 The density method, D-finiteness, random generation

In this section, we present a generic approach which allows us to enumerate and generate any shape involving
some walls located at periodic positions. To keep it readable, we illustrate it with a specific example (without
loss of generality).

So, we now illustrate the method on the case of a 2n× 3 tableau where we put walls on the right and on the
left column at height 2k (for 1 ≤ k ≤ n − 1), see the leftmost tableau in Figure 3. In order to have an easier
description of the algorithm (and more compact formulas), we generate/enumerate first similar tableaux with an
additional cell at the bottom of the middle column, see the middle tableau in Figure 3: It is a polyomino Polyon
with 6n+ 1 cells. There are trivially (6n+ 1)! fillings of this polyomino with the numbers 1 to 6n+ 1. Some of
these fillings are additionally satisfying the classical constraints of Young tableaux (i.e., the labels are increasing
in each row and each column), with some local decreases allowed between cells separated by a wall (as shown
with bold red edges in Figure 3). Let fn be the number of such constrained fillings.

To compute fn we use a generic method which we call the density method, which we introduced and used
in [Mar18, Mar16, BMW18]. It relies on a geometric point of view of the problem: Consider the hypercube
[0, 1]6n+1 and associate to each coordinate a cell of Polyon. To almost every element α of [0, 1]6n+1 (more
precisely, every element with all coordinates distinct) we can associate a filling of Polyon: Put 1 into the cell
of Polyon corresponding to the smallest coordinate of α, 2 into the cell of Polyon corresponding to the second
smallest coordinate of α and so on. The reverse operation associates to every filling of Polyon a region of [0, 1]6n+1

(which is actually a polytope). We call P the set of all polytopes corresponding to correct fillings of Polyon (i.e.,
respecting the order constraints). This P is also known as the “order polytope” in poset theory.

Let us explain how the density method works. It requires two more ingredients. The first one is illustrated
in Figure 3: It is a generic building block with 7 cells with names X,Y,Z,R,S,V,W. We put into each of these
cells a number from [0, 1], which we call x, y, z, r, s, v, w, respectively. The second ingredient is the sequence of
polynomials pn(x), defined by the following recurrence (which in fact encodes the full structure of the problem,
building block after building block):

pn+1(z) =

∫ z

0

∫ z

x

∫ y

0

∫ z

r

∫ 1

z

∫ w

y

pn(v) dv dw ds dr dy dx, with p0 = 1. (2)

The fact that this sequence of nested integrals encodes the full structure of the problem (i.e. all the inequalities)
is better stressed with the following writing:

pn+1(z) =

∫

0<x<z

∫

x<y<z

∫

0<r<y

∫

r<s<z

∫

z<w<1

∫

y<v<w

pn(v) dv dw ds dr dy dx, with p0 = 1. (3)

6 15 16

1 13 14

8 10 18

3 9 12

4 7 17

2 5 11

7 16 17

2 14 15

9 11 19

4 10 13

5 8 18

3 6 12

1

S Z W

R Y V

X

Figure 3: Left: A 2n × 3 Young tableau with walls. Centre: Our algorithm first generates a related labelled
shape, Polyon, with one more cell in its bottom (removing this cell and relabelling the remaining cells gives the
left tableau). Right: The “building block” of 7 cells. Each polyomino Polyon is made of the overlapping of n
such building blocks.
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Let us now give a more algorithmic presentation of our method:

Density method algorithm

1 Initialization: We order the building blocks from k = n−1 (the top one) to k = 0 (the bottom
one). We start with the value k := n− 1, i.e. the building block from the top. Put into its cell

Z a random number z with density pn(z)/
∫ 1

0
pn(t) dt. We repeat the following process until

k = 0:

2 Filling: Now that Z is known, put into the cells X,Y,R, S, V,W random numbers x, y, r, s, v, w
with conditional density

gk,z(x, y, r, s, v, w) :=
1

pk+1(z)
pk(x)1Pz,

where 1Pz is the indicator function of the k-th building block (with value z in cell Z):

1Pz := 1{0≤x≤y≤z,0≤r≤y,r≤s≤z,z≤w≤1,y≤v≤w}.

3 Iteration: Consider X as a the Z of the next building block. Set k := k − 1 and go to step 2.

Next we prove that this algorithm generates Young tableaux with walls uniformly and determine its cost.

Theorem 4.1. The density method algorithm is a uniform random generation algorithm with quadratic time
complexity and linear space complexity.

Proof. Let us indeed prove that the algorithm gives a random element of our set of polytopes P with the uniform
measure. Our algorithm yields a (6n+ 1)-tuple x := (xj , yi, ri, si, vi, wi, 0 ≤ j ≤ n, 0 ≤ i ≤ n− 1) whose density
is the product of the conditional densities:

pn(xn)∫ 1

0
pn(t)dt

n∏

i=1

gn−i,xn−i+1
(xn−i, yn−i, rn−i, sn−i, vn−i, wn−i) (4)

The crucial point is that this product is telescopic and equal to

pn(xn)∫ 1

0
pn(t)dt

n−1∏

k=0

pk(xk)1Pxk

pk+1(xk+1)
=

p0(x0)1P∫ 1

0
pn(t) dt

=
1P∫ 1

0
pn(t) dt

(as p0 = 1), (5)

where 1Pxk
is as in the algorithm above the indicator function of the k-th block (where the local variables

x, y, r, s, v, w, z of the algorithm are now xk, yk, rk, sk, vk, wk, zk) and where the product 1P of these indicator

functions is the indicator function of the full polytope (with n blocks): 1P =
∏n−1
k=0 1Pxk

.
Therefore, this density is constant on our set P of polytopes and zero elsewhere, which is exactly what we

wanted. The fact that it is a density implies that its integral is 1, whence

∫

[0,1]6n+1

1P dx =

∫ 1

0

pn(t) dt. (6)

Now if we choose a random uniform element in [0, 1]6n+1, the probability that it belongs to our set P of polytopes
is ∫

[0,1]6n+1

1P dx. (7)

But due to the reasoning above, this is also the probability that a random uniform filling of our building block

is correct (i.e., respects the order constraints). Thus this probability is given by
∫ 1

0
pn(t)dt/(6n+ 1)!.

This implies that fn = (6n+ 1)!
∫ 1

0
pn(t)dt.

Finally, as each step relies on the computation and the evaluation of the associated polynomial pn(z) (of
degree proportional to n), this gives a quadratic time complexity, and takes linear space.
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Remark 4.2. If one wants to generate many diagrams and not just one, then it is valuable to make a precom-
putation phase computing and storing all the polynomials pn. The rest of the algorithm is the same. For each
new object generated, this is saving O(n2) time, to the price of O(n2) memory. The algorithm is globally still of
quadratic time complexity (because of the evaluation at each step of pk(x), while pk+1(z) was already evaluated).

Remark 4.3. If one directly wants to generate 2n × 3 Young tableaux with decreases instead of our strange
polyomino shapes Polyon, then one still uses the same relation between pn+1 and pn but p0 is not defined and p1
has a more complicated form. Another way is to generate Polyon, and to reject all the ones not having a 1 in the
bottom cell, then to remove this bottom cell and to relabel the remaining cells from 1 to 6n (see Figure 3). This
still gives a fast algorithm of O(n2) time complexity (the only difference being the cost of the initial algorithm
which is the multiplicative constant included in the big-O).

Using dynamic programming or clever backtracking algorithms allows hardly to compute the sequence fn
(the number of fillings of the diagram) for n ≥ 3. In the same amount of time, the density method allows us

to compute thousands of coefficients via the relation fn = (6n + 1)!
∫ 1

0
pn(z), where the polynomial pn(z) is

computed via the recurrence

pn+1(z) =

∫ z

0

1

24
(z − 1)(x− z)(3x3 − 7x2z − xz2 − z3 − 2x2 + 4xz + 4z2)pn(x) dx. (8)

This gives the sequence {fn}n≥0:
{1, 12, 8550, 39235950, 629738299350, 26095645151941500, 2323497950101372223250,

392833430654718548673344250, 115375222087417545717234273063750, 55038140590519890608190921051205837500,

40460077456664688766902540022810130044068750, 4393840235884118464495128448703896167747914784375, . . . }.
As far as we know, there is no further simple expression for this sequence. This concludes our analysis of the
model given by Figure 3.

We can additionally mention that the generating function associated to the sequence of polynomials pn(x)
has a striking property:

Theorem 4.4. The generating function G(t, z) :=
∑
n≥0 pn(z)tn is D-finite3 in z.

Proof. The general scheme (whenever one has one hole between the walls) is

pn+1(z) =

∫ z

0

Q(x, z)pn(x) dx, (9)

where Q is a polynomial in x and z, given by Q(x, z) :=
∫
Pz

1. The fact that there is just one hole between
the walls guarantees that all the other variables encoding the faces of the polytope Pz will disappear in this

integration. Let d be the degree of Q in z, applying ∂d+1

∂zd+1 to both sides of Formula 9 leads to a relation between
the (d+ 1)-st derivative of pn+1 and the first (d+ 1) derivatives of pn. Multiplying this new relation by tn+1 and
summing over n ≥ 0 leads to the D-finite equation for G(t, z).

Note that G(t, z) is D-finite in z, but is (in general) not D-finite in t. When it is D-finite in t, our algorithm
has a better complexity (namely, a O(n3/2) time complexity), because it is then possible to evaluate pn(z) in
time O(

√
n lnn) instead of O(n). See [BCGLLSS17, Chapter 15] for more details on these complexity issues.

5 Conclusion

We presented a new way to enumerate and generate Young tableaux with local decreases (and, more generally,
linear extensions of posets). Our approach is different from the classical way to generate Young tableaux (e.g. via
the Greene–Nijenhuis–Wilf algorithm, see [GNW84]), which relies on the existence of an enumeration by a simple
product formula (given by the hook-length formula). As there is no such simple product formula for the more
general cases we considered here, such an approach cannot work anymore. Obviously, in order to generate these
objects, there is the alternative to use some naive “brute-force-like” methods (like e.g. dynamic programming with
backtracking). However this leads to an exponential time algorithm. The density method which we presented
here is the only method we are aware of which leads to a quadratic cost uniform random generation algorithm.

3A function F (z) is D-finite if it satisfies a linear differential equation, with polynomial coefficients in z. See e.g. [FS09] for their
role in enumeration and asymptotics of combinatorial structures.
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It would be a full project to examine many more families of Young tableaux with local decreases, to check
which ones lead to nice generating functions, to give bijections, and so on. This article presented three different
approaches to handle them: bijections, hook-length-like formulas, and the density method. Let us emphasize
again that the last one is of great generality. We will give more examples in the long version of this article.
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Young tableaux with periodic walls:
counting with the density method

Cyril Banderier*1 and Michael Wallner†2

1LIPN, University Sorbonne Paris Nord, Villetaneuse, France
2Institute of Discrete Mathematics and Geometry, TU Wien, Vienna, Austria

Abstract. We consider a generalization of Young tableaux in which we allow some
consecutive pairs of cells with decreasing labels, conveniently visualized by a "wall"
between the corresponding cells. Some shapes can be enumerated by variants of
hook-length type formulas. We focus on families of tableaux (like the so-called "Jenga
tableaux") having some periodic shapes, for which the generating functions are harder
to obtain. We get some interesting new classes of recurrences, and a surprisingly rich
zoo of generating functions (algebraic, hypergeometric, D-finite, differentially-algebraic).
Some patterns lead to nice bijections with trees, lattice paths, or permutations. Our
approach relies on the density method, a powerful way to perform both random
generation and enumeration of linear extensions of posets.

Keywords: Young tableaux, analytic combinatorics, generating functions, D-finite func-
tions, hypergeometric functions, differentially-algebraic functions, random generation,
density method, linear extensions of posets

1 Introduction

Counting the number of linear extensions of a poset is known to be a hard problem; it
was even proven to be #P-complete by Brightwell and Winkler [9]. The enumeration is
even still #P-complete when restricted to posets of height 2; see Dittmer and Pak [11].
This enumeration challenge is also strongly connected to the question of uniform random
generation. While there exist thousands of ad hoc approaches to generate combinatorial
structures (see, e.g., [18, 22]), there are few generic methods for their uniform random
generation: one could name rejection algorithms and Markov chain sampling [17], the
recursive method [15, 22], generating trees [2], and Boltzmann sampling [12]. Another
important method that we want to promote and to add to this list is the density method. We
will illustrate its power and its flexibility in this article by applying it to many different
posets.
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What we call the density method is an appropriate combination of recurrences and
integral representations of order polytope volumes in order to enumerate poset structures.
For this reason, as suggested by one referee, it could also be called the polytope volume
method. Some ancestors of this natural idea can be found in [5, 7, 13, 23]. It should
also be mentioned that several works by Stanley (see for example his nice survey [26])
contributed to propagating interest in this idea, e.g., in connection with variants of the
enumeration of zig-zag permutations (permutations which have a periodic succession of
rises and falls [1, 8]); this led to the articles [6, 19, 21]. Together with Philippe Marchal,
we further developed this density method in [3, 4], as a way to analyse structures like
permutations, trees, Young tableaux, all with additional order constraints on their labels.

In this article, we consider a generalization of Young tableaux by allowing two
consecutive cells to have decreasing values. We put a bold red edge between the cells
which are allowed (but not imposed) to be decreasing (we call these edges "walls"), and
consider structures where the location of the walls obey some periodicity rules. More
precisely, let a tableau Y with periodic walls be the concatenation (as shown in Figure 1)
of n copies of a building block B of cells (i.e., Y = Bn) and then filled with all integers
from {1, . . . , |B|n} respecting the induced order constraints.

B =
3 10 5 6 12 16 13 14

1 2 4 7 8 9 11 15
B4 =

Figure 1: Left: example of a block B of shape 2× 2. Right: a Young tableau with
periodic walls at positions imposed by concatenations of B.

13 14 16 17 19 20 21 25 27

11 2 10 12 15 18 6 23 26

4 1 8 5 7 9 3 22 24

λ1 λ2 λ3 λ4

Some of these tableaux are in bijection with other com-
binatorial structures. Just to give a small example, if all
the λi’s = 1, the tableaux on the left are in bijection with
partitions of {1, . . . , 3n} into n sets of size 3.

In [3], we introduced rectangular Young tableaux with
walls and explored their links with hook-length-like formulas, the Chung–Feller theorem,
and studied their uniform random generation. In this article, we introduce other several
families of tableaux with periodic walls to illustrate the rich diversity of the corresponding
generating functions, and some of their unexpected closure properties.
Plan of the article. In Section 2, we consider the class of Young tableaux of shape n× 2,
where adding walls enrich known bijections with trees and lattice paths. In Section 3, we
use the density method to enumerate certain poset structures (the new Jenga tableaux),
which lead to unexpected closed forms, and sometimes to D-finite generating functions.
In Section 4, we show that some simple classes of Young tableaux with periodic walls
lead to complicated asymptotic formulas. In Section 5, we characterize (except for two
cases) Young tableaux with periodic walls built of 2× 2 blocks with respect to the nature
of their counting sequences: simple product, algebraic, hypergeometric, or D-algebraic.
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2 Young tableaux of shape n× 2 and binary trees

In this section, just to illustrate a little bit more the diversity of combinatorial objects
which can be related to tableaux with walls, we consider Young tableaux of shape n× 2,
allowing some walls between their two columns and map them bijectively to leaf-marked
binary trees; see Figure 2. The following proposition gives a new combinatorial meaning
to several OEIS1 entries, such as A000108, A000984, A002457, A002802, and A020918.

Proposition 2.1. The generating function of n× 2 Young tableaux with k walls is equal to

Vk(z) := ∑
n≥0

vn,kzn =
Cat(k− 1)zk−1

(1− 4z)(2k−1)/2
where Cat(n) =

1
n + 1

(
2n
n

)
,

and the corresponding generating polynomial with respect to the number of walls is

vn(u) :=
n

∑
k=0

vn,kuk = Cat(n)((1 + u)n+1 − un+1). (2.1)

Proof. In [3, Theorem 2.1], using a link with Dyck paths and the Chung–Feller theorem,
we proved that the number vn,k of n× 2 Young tableaux with k vertical walls is equal to

vn,k =
1

n + 1− k

(
n
k

)(
2n
n

)
.

The formula for vn(u) follows by summing vn,k with respect to n. What is more, a simple
rewriting shows that vn,k =

(n)k−1
k! (2n

n ) for k ≥ 1. This shows

∑
n≥0

vn,kzn = ∑
n≥k−1

(n)k−1

k!

(
2n
n

)
zn =

zk−1

k!
dk−1

dzk−1 ∑
n≥0

(
2n
n

)
zn =

zk−1

k!
dk−1

dzk−1
1√

1− 4z
.

It is noteworthy that vn,k is at the same time divisible by Cat(n) and Cat(k− 1), and,
obviously, (2.1) demands a simple combinatorial explanation. The following classical
lemma will allow us to give a bijective explanation of all these facts.

Lemma 2.2. Young tableaux of shape n× 2 are in bijection with binary trees that have n internal
nodes.

Proof. The key observation is that every element in the first column corresponds to an
internal node and every element in the second column to a leaf. For the bijection we
iterate through the cells in increasing order. We start with an internal node for the entry 1.
Depending on the column of m, we add an internal node or a leaf to the next available
empty position in depth-first order. At the end, we add a leaf to the left-most branch of
the root.

1OEIS stands for the On-Line Encyclopedia of Integer Sequences, accessible via https://oeis.org.
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Figure 2: The bijection between n× 2 Young tableaux with k walls and binary trees
with k marked leaves from Theorem 2.3. Here n = 14 and k = 5.

Theorem 2.3. Young tableaux of shape n× 2 with k walls are in bijection with binary trees with
n internal nodes and k marked leaves.

Proof. The following bijection consists of (possibly) 3 steps and is shown on an example
in Figure 2. First, we mark every entry in the second column that is in a row with a wall
and remove the wall. Then, we sort each row to get a standard n× 2 Young tableau (yet,
with k markers).

Second, we transform this tableau together with its markers into a binary tree using
Lemma 2.2. If no internal nodes are marked, then we are finished; yet if some internal
nodes are marked, then we perform the following step.

Third, we inductively transform the binary tree with markers into a binary tree with
marked leaves. Observe that if an internal node on the right-most branch of the root is
marked, all internal nodes in the left subtree are marked as well, but no leaf. Vice versa,
if in such a subtree at least one leaf is marked, no internal node is marked. This follows
from the depth-first traversal of Lemma 2.2 as we only append a new internal node to the
right-most branch of the root if the subtableau corresponding to the previous nodes is a
valid Young tableau. Now, start from the right-most leaf in the right branch of the root
and move upwards to the root. If an internal node is marked, push all markers to the
leaves of the left subtree and thereafter swap the left and right subtree. Continue until
you reach the root.

For the reverse bijection, we distinguish two cases: Either the right-most leaf is marked
or not. If it is not marked we reverse only steps 1 and 2, while if it is marked, we reverse
all three steps.

In the next section, we introduce the main tool of this article: the density method.
We apply it on different variants of tableaux with walls, leading here to unexpectedly
well-structured generating functions (e.g., hypergeometric or D-finite).
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3 Jenga tableaux and the density method

The towers of the game Jenga2 inspired the following fruitful generalization of Young
tableaux. Consider a column of n cells to which one attaches at row i, `i cells to the left
and ri cells to the right. The N := n + ∑n

i `i + ri cells of this structure are then filled
with the integers 1 to N under the constraint that each row and the middle column have
increasing labels, and each label appears only once; see Figure 3.

16 17 19 21

1 5 15 20 22

11 14

10 18

8

3 6 7 9 13

2 4 12

`1 r1

`7 r7

U1 · · · U` Z V1 · · · Vr

X` r

Figure 3: Left: a Jenga tableau with n = 7 rows and the left and right subsequences
(li)7

i=1 = (1, 2, 0, 0, 1, 2, 0) and (ri)
7
i=1 = (1, 2, 0, 1, 0, 2, 3), respectively. Right: the building

block used here in the density method to generate each row iteratively.

The density method is the key to enumerate such objects. We used it in [4, 20, 21] for
other classes of tableaux. Let us sketch its principle on the example of Jenga tableaux.

The density method builds on a geometric interpretation of the problem. Consider an
N-tuple α (with non-equal coordinates) that is an element of the hypercube [0, 1]N . Then,
we associate to each of these N coordinates one of the N cells of Y : if the jth coordinate
of α is the ith biggest element, then we assign the value i to the cell j. This filling is
not (yet) respecting all increasing constraints, but this operation is readily reversed by
associating to every legitimate filling of Y a region of [0, 1]N which corresponds to a
polytope. The key observation now is that the volume of this polytope is equal to 1/N!.
Let P be the set of all polytopes corresponding to correct fillings of Y . Then, a uniformly
random element P corresponds to a uniformly random filling of Y . Note that P is also
known as the “order polytope” in poset theory.

We build now on this geometric viewpoint and describe how the density method
works. Consider the generic building block of a row shown in Figure 3. It consists of the
` cells U1, . . . , U`, the r cells V1, . . . , Vr, one cell Z, and one cell X. To each of these cells
we assign a random number from [0, 1]. Then, we define a sequence of polynomials fn(z)
which encode the order constraints satisfied by these cells up to row n:

2“Jenga!” means “Construct!” in Swahili. It is the name of a game created by Leslie Scott for his children
in the 70s in which one dismantles block by block a tower of small wooden building blocks.
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fn(z) :=
∫

z<v1<1

. . .
∫

vr−1<vr<1

∫

0<u`<z

. . .
∫

0<u1<u2

∫

0<x<z

fn−1(x) dx du1 . . . du` dvr . . . dv1.

Now the simple block structure of each row leads to the following simplification

fn(z) =
z`n(1− z)rn

`n!rn!

∫ z

0
fn−1(x) dx and f1(z) :=

z`1(1− z)r1

`1!r1!
. (3.1)

The crucial observation is now the following: The value
∫ 1

0 fn(z) dz is equal to the volume
of the order polytope P associated to the correct fillings of Yn. Thus, N!

∫ 1
0 fn(z) dz is

equal to the number of legitimate fillings. For more details see [4].
We thus get that the number yn of Jenga tableaux with n rows is

yn =
( n

∑
i=1

(`i + ri + 1)
)

!
∫ 1

0
fn(x) dx. (3.2)

We now continue with some periodic patterns, that is if there exists an integer p > 0 such
that `i+p = `i and ri+p = ri for all i ≥ 1. The smallest such p is called the period. The
simplest possible period is p = 1; this case leads to a noteworthy generating function.

Theorem 3.1 (D-finiteness of periodic Jenga tableaux with p = 1). The bivariate generating
function F(t, z) = ∑n≥1 fn(z)tn is D-finite in t and z. Accordingly, the counting sequence
(yn)n≥1 given by Equation (3.2) of Jenga tableaux with n rows is P-recursive.

Proof. In [3, Theorem 4.4] it was shown that F(t, z) is D-finite in z for any periodic pattern
with one hole. For the D-finiteness in t we use the density relations (3.1) and obtain

F(t, z) = t f1(z) exp
(

t
∫ z

0
f1(u) du

)
. (3.3)

Then, taking the derivative with respect to t, we get that F(t, z) is also D-finite in t:

tFt(t, z)−
(

1 + t
∫ z

0
f1(u) du

)
F(t, z) = 0.

Hence, by closure properties (Hadamard product and integration; see, e.g., [25]), the
corresponding sequence (yn)n≥1 of Jenga tableaux with n rows is P-recursive.

Note that set partitions of equal set sizes fall into the class of Theorem 3.1 as `i = m− 1
and ri = 0 for all i ≥ 0. Let us also mention the following unexpected link.

Remark 3.2 (Link with Sheffer sequences). Considering the series expansion of F(t, z) in z
instead of t, Equation (3.3) shows that we have here some variant of Borel transform3 of Sheffer
sequences. Sheffer sequences are sequences of polynomials f̂n(t) having an exponential generating
function of shape ∑∞

n=0 f̂n(t) zn

n! = A(z) exp(tB(z)). They play an important rôle in umbral
calculus; see [24] and [25, Exercise 5.37].

3The Borel transform (or the “inverse Laplace transform”) of a sequence (an) is the sequence (an/n!).
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As further examples of Jenga shapes, the density method also gives:

Proposition 3.3. For ri = 0 for all i ≥ 1 (see Figure 3), the number yn of Jenga tableaux satisfies

yn =
(∑n

i=1(`i + 1))!

∏n
i=1 `i!(∑i

j=1(`j + 1))
.

Specializing these tableaux to periodic cases leads to some hypergeometric formulas.

Proposition 3.4. Consider Jenga tableaux with period p, arbitrary left sequence (`i)
p
i=0, and right

sequence (ri)
p
i=0 = (0, . . . , 0) (see Figure 3). Define L := ∑

p
i=1 `i. Then, the number yn of such

tableaux satisfies

ykp+m = ym

(
(L + p)L

∏
p
i=1 `i!

)k L+p

∏
j=1

j 6=`1+···+`i+i

Γ
(

k + j+m
L+p

)

Γ
(

j+m
L+p

) .

Accordingly, the generating function of such tableaux is the sum of p hypergeometric functions.

It is also possible to consider other shapes, such as skew Young tableaux. Next, we
give such an example and thus add walls to a model analysed in [5].

Proposition 3.5. Consider tableaux with periodic walls in a diagonal strip of width w between
each column in all but the top cell; see Figure 4. Let bw,n be the number of such tableaux with n
columns; one has

bw,n =

(
ww−2

(w− 2)!

)n w−2

∏
j=1

Γ
(

n + j
w

)

Γ
(

j
w

) .

Proof. The formula is obtained by a bijection (depicted in Figure 4) between this class
and periodic Jenga tableaux of period p = 2, `1 = w− 2, `2 = 0, and ri = 0, such that
bw,n = a2n.

Figure 4: The building block of width 4 (left) is repeated k times and each time shifted
up by one cell to form a Young tableau with periodic walls in a diagonal strip (centre).
These tableaux are in bijection with periodic Jenga tableaux with period p = 2, left
sequence (`i)

2
i=1 = (2, 0), and right sequence (ri)

2
i=1 = (0, 0) (right).
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4 Some unusual asymptotics

The density method can also be used to count and generate objects which do not have
simple counting formulas. We now present such a class, which is a priori quite simple,
but which however leads to rather surprising asymptotics. Thus, this class illustrates well
the non-intuitive asymptotic behaviour of our objects.

6 10 14 15 17 18

3 5 9 12 13 16

2 1 7 4 11 8

S Y

R X

Figure 5: A 3× n Young tableau with walls in its first row, and the corresponding
building block for each column used in the density method.

Theorem 4.1. The number an of Young tableaux of length n with shape given by Figure 5 has the
following asymptotics

an = Θ
(

n! 12nea1(3n)1/3
n−2/3

)
, (4.1)

where a1 ≈ −2.338 is the largest root of the Airy function of the first kind.

Proof (sketch). The increasing label constraints encoded in the building block of Figure 5
directly translate to the following densities

fn+1(x, y) := x
∫ x

0

∫ y

x
fn(r, s) ds dr and f1(x, y) := x(y− x).

Accordingly, as the initial configuration corresponding to f1 consists of a building block
without the cell R, the number of tableaux is

an = (3n + 1)!
∫ 1

0

∫ y

0
fn(x, y) dx dy.

This gives the sequence OEIS A213863: {1, 7, 106, 2575, 87595, 3864040, 210455470, . . . }.
It also counts words where each letter ` of the n-ary alphabet occurs 3 times and for each
prefix p one has |p|` = 0 or |p|` ≥ |p|j for all j > `, where |p|` counts the occurrences of `
in p. The bijection with our tableaux follows by mapping indices to rows. Formula (4.1) is
then obtained by using the methods introduced in [14], i.e., sandwiching an between two
sequences having the same asymptotics dictated by the first zero of a D-finite function
(here, the Airy function satisfying y′′ − xy = 0; see [16]).
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5 A classification of 2× 2 periodic shapes

We now consider Young tableaux made of the concatenation of 2× 2 blocks with walls
(see Figure 1 in Section 1). This model is interesting as it leads to rather different natures
of generating functions. Indeed, Table 1 hereafter summarizes the main results and
groups them into four classes according to their counting sequences: simple products,
algebraic, hypergeometric, or D-algebraic. Surprisingly, some of these sequences connect
with classical combinatorial objects!

There are 6 possible non-trivial locations for walls in a 2× 2 block (due to possible
coincidences of the walls on the right when the blocks are concatenated). Thus, there are
in total 26 = 64 different types of building blocks. Most of these blocks come in pairs, as
rotating a tableau by 180 degrees and reversing the labels gives a bijection.

First, one gets 40 blocks for which the walls create independent regions. This leads to
19 distinct sequences P1–P19, all having a simple product formula.

Second, we consider the 4 blocks without vertical walls. They lead to 3 distinct
sequences A1–A3, which all have an algebraic generating function. For A1 and A2 the
proof uses a bijection to Dyck paths. For A3 we decompose at the first wall that cannot
be removed and get the recurrence an = Cat(2n) + ∑n

i=1 Cat(2i− 1)an−i, which we then
solve with generating functions.

Third, we consider 14 blocks with a uniquely determined minimum or maximum.
They lead to 7 distinct sequences H1–H7, all hypergeometric. The models H1–H5 are
Jenga-like tableaux from Section 3 that satisfy li = 0 for all i. For the models H6 and H7
we use a recursive approach, decomposing with respect to the location of the unique
minimum or maximum.

Fourth, there are three blocks which show a zig-zag-like pattern. By analogy to the
known zig-zag permutations, we conjecture Z2 and Z3 to be non-D-finite. For Z1 we are
able to prove that the exponential generating function is D-algebraic, and not D-finite, i.e.,
it satisfies a non-linear differential equation and no linear one. For this purpose we use
Carlitz’ theory [10] of generalized alternating permutations. Let k1, k2, . . . , km be positive
integers such that k1 + k2 + · · ·+ km = n. Then, a generalized alternating permutation of
type (k1, . . . , km) is an n-tuple (a1, . . . , an) such that ai ∈ {1, . . . , n} and

a1 < · · · < ak1 > ak1+1, ak1+1 < · · · < ak1+k2 > ak1+k2+1, . . . ak1+···+km−1+1 < · · · < an.

The type of a classical alternating permutation is thus k1 = · · · = km = 1, while the type
of a tableau from Z1 with m− 1 blocks is k1 = 3, k2 = · · · = km−1 = 4, and km = 1. Then,
the claimed closed form of A(t) = ∑n≥0 an

tn

n! for Z1 follows from a generalization of [10,
Equation (1.11)] taking into account the different behaviours at the beginning and the end
of the permutation. Thus, we get

A(t) =
F4,3(t)F4,1(t)

F4,0(t)
+ F4,0(t) where Fk,r(t) = ∑

n≥0
(−1)n tnk+r

(nk + r)!
.
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Class Shape Formula

P1 , 4
(4n)!
24n

P2
(4n)!
12n

P3 3
(4n)!
12n

P4
, ,

,

(4n)!
8n

P5
, ,

,
4
(4n)!

8n

Class Shape Formula

P6 ,
(4n)!

6n

P7 , 3
(4n)!

6n

P8 ,
8
5
(4n)!

(
5

24

)n

P9 ,
(4n)!

4n

P10 , 2
(4n)!

4n

P11 4
(4n)!

4n

P12 ,
(4n)!

3n

Class Shape Formula

P13 , 6
(4n)!

3n

P14
, ,

,

(4n)!
2n

P15 , 2
(4n)!

2n

P16 ,
(4n)!
(2n)!2n

P17 , 2
(4n)!
(2n)!2n

P18 ,
(4n)!
(2n)!

P19 (4n)!

Class Shape Sequence OEIS

A1 Cat(2n) =
1

2n + 1

(
4n
2n

)
A048990

A2
(

4n
2n

)
A001448

A3 , 22n+1 Cat(n)−Cat(2n + 1) A079489

H1 ,
n

∏
i=1

(4i− 1)(4i− 3) A101485

H2 ,
n

∏
i=1

(2i− 1)(4i− 1) A159605

H3 , 2n+1n!
n

∏
i=1

(4i− 3) 2n+1·A084943

H4 ,
(

4n
n

) n

∏
i=1

(3i− 1) (4n
n )·A008544

H5 ,
(

4n
n

) n

∏
i=1

(3i− 2) (4n
n )·A007559

H6 , 2nn!
n

∏
i=1

(4i− 3) n!·A084948

H7 ,
n

∏
i=1

(2i− 1)(4i− 1) A159605

Z1 ,
cos(t/

√
2)2 + cosh(t/

√
2)2

2 cos(t/
√

2) cosh(t/
√

2)
related to A211212

Z2 , ? ???

Z3 , ? ???

Table 1: The 64 different models of 2 × 2 blocks for tableaux with periodic walls
grouped into 4 different classes: (P) simple products, (A) algebraic, (H) hypergeometric,
(Z) zig-zag. The length n is equal to the number of repeated blocks. The model Z1 is
D-algebraic and not D-finite, which is what we conjecture for the models Z2 and Z3.
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A pleasant feature of the density method approach is that it is automatable. See our
Jenga Maple package dedicated to the enumeration of tableaux with walls, thus allowing
our readers to play with the examples of their choice!

In conclusion, we have seen that Young tableaux with walls are a rich model, leading
(via the density method) to new varieties of recurrences, interesting per se, mixing finite
differences and differential operators (challenging the current state of the art in computer
algebra and holonomy theory!), and surprising asymptotics (challenging the current state
of the art in analytic combinatorics!).
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Pólya urns are urns where at each unit of time a ball is drawn and re-
placed with some other balls according to its colour. We introduce a more
general model: the replacement rule depends on the colour of the drawn ball
and the value of the time (modp). We extend the work of Flajolet et al.
on Pólya urns: the generating function encoding the evolution of the urn is
studied by methods of analytic combinatorics. We show that the initial par-
tial differential equations lead to ordinary linear differential equations which
are related to hypergeometric functions (giving the exact state of the urns at
time n). When the time goes to infinity, we prove that these periodic Pólya
urns have asymptotic fluctuations which are described by a product of gen-
eralized gamma distributions. With the additional help of what we call the
density method (a method which offers access to enumeration and random
generation of poset structures), we prove that the law of the southeast corner
of a triangular Young tableau follows asymptotically a product of generalized
gamma distributions. This allows us to tackle some questions related to the
continuous limit of random Young tableaux and links with random surfaces.
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1. Introduction.

1.1. Periodic Pólya urns. Pólya urns were introduced in a simplified version by George
Pólya and his PhD student, Florian Eggenberger, in [26, 27, 74], with applications to disease
spreading and conflagrations. They constitute a powerful model, which regularly finds new
applications; see, for example, Rivest’s recent work on auditing elections [78], or the analysis
of deanonymization in Bitcoin’s peer-to-peer network [29]. They are well-studied objects in
combinatorial and probabilistic literature [6, 31, 62], because they offer fascinatingly rich
links with numerous objects like random recursive trees, m-ary search trees and branching
random walks (see, e.g., [7, 22, 43, 44]). In this paper, we introduce a variation which leads
to new links with another important combinatorial structure: Young tableaux. What is more,
we solve the enumeration problem of this new Pólya urn model, derive the limit law for the
evolution of the urn and give some applications to Young tableaux.

In the Pólya urn model, one starts with an urn with b0 black balls and w0 white balls at
time 0. At every discrete time step, one ball is drawn uniformly at random. After inspecting
its colour, this ball is returned to the urn. If the ball is black, a black balls and b white balls
are added; if the ball is white, c black balls and d white balls are added (where a, b, c, d ∈ N
are nonnegative integers). This process can be described by the so-called replacement matrix:

M =
(
a b

c d

)
, a, b, c, d ∈ N.

We call an urn and its associated replacement matrix balanced if a + b = c + d . In other
words, in every step the same number of balls is added to the urn. This results in a determin-
istic number of balls after n steps: b0 + w0 + (a + b)n balls.

Now, we introduce a more general model which has rich combinatorial, probabilistic and
analytic properties.

DEFINITION 1.1. A periodic Pólya urn of period p with replacement matrices M1,M2,

. . . ,Mp is a variant of a Pólya urn in which the replacement matrix Mk is used at steps np+k.
Such a model is called balanced if each of its replacement matrices is balanced.

For p = 1, this model reduces to the classical Pólya urn model with one replacement ma-
trix. In this article, we illustrate the aforementioned rich properties via the following model.

DEFINITION 1.2. Let p,� ∈ N. We call a Young–Pólya urn of period p and parameter �

the periodic Pólya urn of period p (with b0 ≥ 1 to avoid degenerate cases) and replacement
matrices

M1 = M2 = · · · = Mp−1 =
(

1 0
0 1

)
and Mp =

(
1 �

0 1 + �

)
.

EXAMPLE 1.3. Consider a Young–Pólya urn with parameters p = 2, � = 1, and initial
conditions b0 = w0 = 1. The replacement matrices are M1 := ( 1 0

0 1

)
for every odd step, and

M2 := ( 1 1
0 2

)
for every even step. This case was analysed by the authors in the extended

abstract [9]. In the sequel, we will use it as a running example to explain our results.
Let us illustrate the evolution of this urn in Figure 1. Each node of the tree corresponds

to the current composition of the urn (number of black balls, number of white balls). One
starts with b0 = 1 black ball and w0 = 1 white. In the first step, the matrix M1 is used and
leads to two different compositions. In the second step, matrix M2 is used, in the third step,
matrix M1 is used again, in the fourth step, matrix M2, etc. Thus, the possible compositions
are (2,1) and (1,2) at time 1, (3,2), (2,3) and (1,4) at time 2, (4,2), (3,3), (2,4) and (1,5)

at time 3.
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In fact, each of these states may be reached in different ways, and such a sequence of tran-
sitions is called a history. (Some authors also call it a scenario, an evolution or a trajectory.)
Each history comes with weight one. Implicitly, they induce a probability measure on the
states at step n. So, let Bn and Wn be random variables for the number of black and white
balls after n steps, respectively. As our model is balanced, Bn +Wn is a deterministic process,
reflecting the identity

Bn + Wn = b0 + w0 + n + �

⌊
n

p

⌋
.

So, from now on, we concentrate our analysis on Bn.

1.2. The generalized gamma product distribution. For the classical model of a single
balanced Pólya urn, the limit law of the random variable Bn is fully known: the possible
limit laws include a rich variety of distributions. To name a few, let us mention the uniform
distribution [30], the normal distribution [7] and the beta and Mittag-Leffler distributions
[43, 45]. Now, periodic Pólya urns (which include the classical model) lead to an even larger
variety of distributions involving a product of generalized gamma distributions [87].

DEFINITION 1.4. The generalized gamma distribution GenGamma(α,β) with real pa-
rameters α,β > 0 is defined on (0,+∞) by the density function

f (t;α,β) := βtα−1 exp(−tβ)

�(α/β)
,

where � is the classical gamma function �(z) := ∫ ∞
0 tz−1 exp(−t) dt .

The fact that f (t;α,β) is indeed a probability density function can be seen by a change of
variable t �→ tβ in the definition of the � function, or via the following link.

REMARK 1.5. Let �(α) be the gamma distribution1 of parameter α > 0, given on
(0,+∞) by

g(t;α) = tα−1 exp(−t)

�(α)
.

FIG. 1. The evolution of the Young–Pólya urn with period p = 2 and parameter � = 1 with one initial black and
one initial white ball. Black arrows mark that a black ball was drawn, dashed arrows mark that a white ball was
drawn. Straight arrows indicate that the replacement matrix M1 was used, curly arrows show that the replacement
matrix M2 was used. The number below each node is the number of possible transitions to reach this state. In this
article, we give a formula for hn (which encodes all the possible states of the urn at time n) and the corresponding
asymptotic behaviour.

1Caveat: it is traditional to use the same letter for both the � function and the � distribution. Also, some authors
add a second parameter to the � distribution, which is set to 1 here.
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Then one has �(α)
L= GenGamma(α,1), and for r > 0, the distribution of the r th power of a

random variable distributed according to �(α) is

�(α)r
L= GenGamma(α/r,1/r).

The limit distribution of our urn models is then expressed as a product of such generalized
gamma distributions. We prove in Theorem 3.8 a more general version of the following.

THEOREM 1.6 (The generalized gamma product distribution GenGammaProd for Young–
Pólya urns). The renormalized distribution of black balls in a Young–Pólya urn of period p

and parameter � is asymptotically for n → ∞ given by the following product of distributions:

(1)
pδ

p + �

Bn

nδ

L−→ Beta(b0,w0)

�−1∏
i=0

GenGamma(b0 + w0 + p + i, p + �),

with δ = p/(p + �), and Beta(b0,w0) = 1 when w0 = 0 or Beta(b0,w0) is the beta distribu-
tion with support [0,1] and density �(b0+w0)

�(b0)�(w0)
xb0−1(1 − x)w0−1 otherwise.

In the sequel, we call this distribution the generalized gamma product distribution and
denote it by GenGammaProd(p, �, b0,w0). We will see in Section 3 that this distribution is
characterized by its moments, which have a nice factorial shape given in formula (20).

EXAMPLE 1.7. In the case of the Young–Pólya urn with p = 2, � = 1, and w0 = b0 = 1,
one has δ = 2/3. Thus, the previous result shows that the number of black balls converges in
law to a generalized gamma distribution:

22/3

3

Bn

n2/3
L−→ Unif(0,1) · GenGamma(4,3) = GenGamma(1,3).

See Section 5.3 and [24], Proposition 4.2, for more identities of this type.

REMARK 1.8 (Period one). When p = 1, our results recover a classical (nonperiodic)
urn behaviour. By [45], Theorem 1.3, the renormalization for the limit distribution of Bn in
an urn with replacement matrix

( 1 �
0 1+�

)
is equal to n−1/(1+�). For � = 0 the limit distribution

is the uniform distribution, whereas for � = 1 it is a Mittag-Leffler distribution (see [45],
Example 3.1, [30], Example 7), and even simplifies to a half-normal distribution2 when b0 =
w0 = 1. Thus, the added periodicity by using this replacement matrix only every pth round
and otherwise Pólya’s replacement matrix

( 1 0
0 1

)
changes the renormalization to n−p/(p+�).

The rescaling factor n−δ with δ = p/(p + �) on the left-hand side of (1) can also be
obtained via a martingale computation. The true challenge is to get exact enumeration and
the limit law. It is interesting that there exist other families of urn models exhibiting the same
rescaling factor, however, these alternative models lead to different limit laws.

• A first natural alternative model consists in averaging the p replacement matrices. This
leads to a classical triangular Pólya urn model. The asymptotics is then

Bn

nδ

L−→ B,(2)

2See [93] for other occurrences of the half-normal distribution in combinatorics.
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FIG. 2. Left: 20 simulations (drawn in red) of the evolution of Bn, the number of black balls in the Young–Pólya
urn with period p = 2 and parameter � = 1 (first 10,000 steps, with initially b0 = 1 black and w0 = 1 white
balls), and the mean E(Bn) (drawn in blue). Right: the average (in red) of the 20 simulations, fitting neatly
(almost indistinguishable!) the limit curve E(Bn) = �(n2/3) (in blue).

where the distribution of B is, for example, analysed by Flajolet et al. [30] via an ana-
lytic combinatorics approach, or by Janson [45] and Chauvin et al. [22] via a probabilistic
approach relying on a continuous-time embedding introduced by Athreya and Karlin [5].
For example, averaging the Young–Pólya urn with p = 2, � = 1 and b0 = w0 = 1 leads
to the replacement matrix

( 1 1/2
0 3/2

)
. The corresponding classical urn model leads to a limit

distribution with moments given, for example, by Janson in [45], Theorem 1.7:

E
(
Br) = �(4/3)r!

�(2r/3 + 4/3)
.

Comparing these moments with the moments of our distribution (equation (20) hereafter)
proves that these two distributions are distinct. However, it is noteworthy that they have
similar tails: we discuss this universality phenomenon in Section 5.2.

• Another interesting alternative model, called multi-drawing Pólya urn model, consists in
drawing multiple balls at once; see Lasmar et al. [58] or Kuba and Sulzbach [56]. Grouping
p units of time into one drawing leads to a new replacement matrix. For example, for p = 2
and � = 1 we can approximate a Young–Pólya urn by an urn where at each unit of time 2
balls are drawn uniformly at random. If both of them are black we add 2 black balls and 1
white ball, if one is black and one is white we add 1 black and 2 white ball, and if both of
them are white we add 3 white balls. Then the same convergence as in equation (2) holds,
yet again with a different limit distribution, as can be seen by comparing the means and
variances; compare Kuba and Mahmoud [54], Theorem 1, with our Example 3.7.

For all these alternative models, the corresponding histories are inherently different: none
of them gives the exact generating function of periodic Pólya urns nor gives the closed form
of the underlying distribution. This also motivates the exact and asymptotic analysis of our
periodic model, which therefore enriches the urn world with new special functions.

Figure 2 shows that the distribution of Bn is spread; this is consistent with our result that the
standard deviation and the mean E(Bn) (drawn in blue) have the same order of magnitude.3

The fluctuations around this mean are given by the generalized gamma product limit law from
equation (1), as proven in Section 3. Let us first mention some articles where this distribution
has already appeared before:

3The classical urn models with replacement matrices being either M1 or M2 also have such a spread; see [30],
Figure 1.
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• in Janson [47], as an instance of distributions with moments of gamma type, like the dis-
tributions occurring for the area of the supremum process of the Brownian motion;

• in Peköz, Röllin and Ross [70], as distributions of processes on walks, trees, urns and
preferential attachments in graphs, where these authors also consider what they call a Pólya
urn with immigration, which is a special case of a periodic Pólya urn (other models or
random graphs have these distributions as limit laws [19, 84]);

• in Khodabin and Ahmadabadi [53] following a tradition to generalize special functions by
adding parameters in order to capture several probability distributions, such as, for exam-
ple, the normal, Rayleigh and half-normal distribution, as well as the MeijerG function (see
also the addendum of [47], mentioning a dozen other generalizations of special functions).

1.3. Plan of the article. Our main results are the explicit enumeration results and links
with hypergeometric functions (Theorems 2.3 and 3.1), and the limit law involving a prod-
uct of generalized gamma distributions (Theorem 3.8, or the simplified version of it given
for readability in Theorem 1.6 above). It is a nice cherry on the cake that this limit law also
describes the fluctuations of the southeast4 corner of a random triangular Young tableau (as
proven in Theorem 4.23). We believe that the methods used, that is, the generating functions
for urns (developed in Section 2), the way to access the moments (developed in Section 3),
and the density method for Young tableaux (developed in Section 4) are an original combi-
nation of tools, which should find many other applications in the future. Finally, Section 5
gives a relation between the southeast and the northwest corners of triangular Young tableaux
(Proposition 5.7) and a link with factorizations of gamma distributions. Additionally, we dis-
cuss some universality properties of random surfaces, and we show to what extent the tails
of our distributions are related to the tails of Mittag-Leffler distributions (Theorem 5.3), and
when they are sub-Gaussian (Proposition 5.6).

In the next section, we translate the evolution of the urn into the language of generating
functions by encoding the dynamics of this process into partial differential equations.

2. A functional equation for periodic Pólya urns.

2.1. Urn histories and differential operators. Let hn,b,w be the number of histories of a
periodic Pólya urn after n steps with b black balls and w white balls, with an initial state of
b0 black and w0 white balls. We define the polynomials

hn(x, y) := ∑
b,w≥0

hn,b,wxbyw.

Note that these are indeed polynomials as there is just a finite number of histories after n

steps. Due to the balanced urn model these polynomials are homogeneous. We collect all
these histories in the trivariate exponential generating function

H(x,y, z) := ∑
n≥0

hn(x, y)
zn

n! .

EXAMPLE 2.1. For the Young–Pólya urn with p = 2, � = 1, and b0 = w0 = 1, we get
for the first three terms of H(x,y, z) the expansion (compare Figure 1)

H(x,y, z) = xy + (
xy2 + x2y

)
z + (

2xy4 + 2x2y3 + 2x3y2)z2

2
+ · · · .

4In this article, we use the French convention to draw the Young tableaux; see Section 4 and [61].
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In this section, our goal is to derive a partial differential equation describing the evolution
of the periodic Pólya urn model.

The periodic nature of the problem motivates to split the number of histories into p residue
classes. Let H0(x, y, z),H1(x, y, z), . . . ,Hp−1(x, y, z) be the generating functions of histo-
ries after 0,1, . . . , p − 1 draws modulo p, respectively. In particular, we have

Hi(x, y, z) := ∑
n≥0

hpn+i (x, y)
zpn+i

(pn + i)! ,

for i = 0,1, . . . , p − 1 such that

H(x,y, z) = H0(x, y, z) + H1(x, y, z) + · · · + Hp−1(x, y, z).

Next, we associate with the two distinct replacement matrices(
1 0
0 1

)
and

(
1 �

0 1 + �

)

from Definition 1.2 the differential operators D1 and D2, respectively. We get

D1 := x2∂x + y2∂y and D2 := y�D1,

where ∂x and ∂y are defined as the partial derivatives ∂
∂x

and ∂
∂y

, respectively. This models

the evolution of the urn. For example, in the term x2∂x , the derivative ∂x represents drawing
a black ball and the multiplication by x2 returning this black ball and an additional black ball
into the urn. The other terms have analogous interpretations.

With these operators, we are able to link the consecutive drawings with the following
system:

(3)

{
∂zHi+1(x, y, z) = D1Hi(x, y, z) for i = 0,1, . . . , p − 2,

∂zH0(x, y, z) = D2Hp−1(x, y, z).

Note that the derivative ∂z models the evolution in time. We see two types of transitions:
in the first p − 1 rounds the urn behaves like a normal Pólya urn, but in the pth round we
additionally add � white balls. The first transition type is modelled by the D1 operator and
the second type by the D2 operator. This system of partial differential equations naturally
corresponds to recurrences on the level of coefficients hn,b,w , and vice versa. This philosophy
is well explained in the symbolic method part of [33] (see also [30, 31, 42, 67] for examples
of applications to urns).

As a next step, we want to eliminate the y variable in these equations. This is possible as
the number of balls in each round and the number of black and white balls are connected due
to the fact that we are dealing with balanced urns. As observed previously, one has

(4) number of balls after n steps = s0 + n + �

⌊
n

p

⌋
,

with s0 := b0 + w0 being the number of initial balls. Therefore, for any xbywzn appearing in
H(x,y, z), we have

b + w = s0 + n + �
n − i

p
if n ≡ i mod p,

which directly translates into the following system of equations (for i = 0, . . . , p − 1):

(5) x∂xHi(x, y, z) + y∂yHi(x, y, z) =
(

1 + �

p

)
z∂zHi(x, y, z) +

(
s0 − i�

p

)
Hi(x, y, z).
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These equations are contractions in the metric space of formal power series in z (see, e.g., [8]
or [33], Section A.5), so, given the initial conditions [z0]Hi(x, y, z), the Banach fixed-point
theorem entails that this system has a unique solution: our set of generating functions. Now,
because of the deterministic link between the number of black balls and the number of white
balls, it is natural to introduce the two shorthands H(x, z) := H(x,1, z) and Hi(x, z) :=
Hi(x,1, z). What is the nature of these functions? This is what we tackle now.

2.2. D-finiteness of history generating functions. Let us first give a formal definition of
the fundamental concept of D-finiteness.

DEFINITION 2.2 (D-finiteness). A power series F(z) = ∑
n≥0 fnz

n with coefficients in
some ring A is called D-finite if it satisfies a linear differential equation L.F (z) = 0, where
L �= 0 is a differential operator, L ∈ A[z, ∂z]. Equivalently, the sequence (fn)n∈N is called
P-recursive: it satisfies a linear recurrence with polynomial coefficients in n. Such functions
and sequences are also sometimes called holonomic.

D-finite functions are ubiquitous in combinatorics, computer science, probability theory,
number theory, physics, etc.; see, for example, [1] or [33], Appendix B.4. They possess clo-
sure properties galore; this provides an ideal framework for handling (via computer algebra)
sums and integrals involving such functions [15, 71]. The same idea applies to a full family
of linear operators (differentiations, recurrences, finite differences, q-shifts) and is unified
by what is called holonomy theory. This theory leads to a fascinating algorithmic universe
to deal with orthogonal polynomials, Laplace and Mellin transforms, and most of the inte-
grals of special functions: it offers powerful tools to prove identities, asymptotic expansions,
numerical values, structural properties; see [50, 68, 76].

We have seen in Section 2.1 that the dynamics of urns is intrinsically related to partial
differential equations (mixing ∂x , ∂y , and ∂z). It is therefore a nice surprise that it is also
possible to describe their evolution in many cases with ordinary differential equations (i.e.,
involving only ∂z).

THEOREM 2.3 (Differential equations for histories). The generating functions describ-
ing a Young–Pólya urn of period p and parameter � with initially s0 = b0 + w0 balls, where
b0 are black and w0 are white, satisfy the following system of p partial differential equations:

(6) ∂zHi+1(x, z) = x(x − 1)∂xHi(x, z) +
(

1 + �

p

)
z∂zHi(x, z) +

(
s0 − i�

p

)
Hi(x, z),

for i = 0, . . . , p − 1 with Hp(x, z) := H0(x, z). Moreover, if any of the corresponding gen-
erating functions (ordinary, exponential, ordinary probability or exponential probability) is
D-finite in z, then all of them are D-finite in z.

PROOF. First, let us prove the system involving ∂z and ∂x only. Combining (3) and (5),
we eliminate ∂y . Then it is legitimate to insert y = 1 as there appears no differentiation with
respect to y anymore. This gives (6).

Now, assume the ordinary generating function is D-finite. Multiplying a holonomic se-
quence by n! (or by 1/n!, or more generally by any holonomic sequence) gives a new se-
quence, which is also holonomic. In other words, the Hadamard product of two holonomic
sequences is still holonomic [89], Chapter 6.4. This proves that the ordinary and exponential
versions of our generating functions H and Hi are D-finite in z.

Finally, for the probability generating function defined as∑
n,b,w

P(Bn = b and Wn = w)xbywzn = ∑
n

hn(x, y)

hn(1,1)
zn,
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TABLE 1
Size of the D-finite equations for the four types of generating functions of histories (for the urn model of

Example 2.4). We use the abbreviations EGF (exponential generating function), OGF (ordinary generating
function), EPGF (exponential probability generating function), OPGF (ordinary probability generating

function). We omit the degree of the variable y, as, for balanced urns, it is trivially related to the degree in x

Type Generating function Order in ∂z Degree in z Degree in x

EGF
∑

n,b,w hn,b,wxbyw zn

n! 5 13 16
OGF

∑
n,b,w hn,b,wxbywzn 7 23 20

EPGF
∑

n,b,w P(Bn = b and Wn = w)xbyw zn

n! 8 4 15
OPGF

∑
n,b,w P(Bn = b and Wn = w)xbywzn 3 13 14

it is in general not the case that it is holonomic if the initial ordinary generating function
is holonomic. But in our case a miracle occurs: in each residue class of n mod p, the se-
quence (hpm+i(1,1))m∈N is hypergeometric (as shown in Theorem 3.1), therefore, the p

subsequences (1/hpm+i(1,1))m∈N are also hypergeometric, and thus the above probabil-
ity generating function (which is the sum of p holonomic functions, each one being the
Hadamard product of two holonomic functions) is holonomic. �

Experimentally, in most cases a few terms suffice to guess a holonomic sequence in z.
We believe that this sequence is always holonomic, yet we were not able to prove it in full
generality. We plan to comment more on this and other related phenomena in a forthcoming
article.

EXAMPLE 2.4. In the case of the Young–Pólya urn with p = 2, � = 1, and b0 = w0 = 1,
the differential equations for histories (6) are⎧⎪⎪⎨

⎪⎪⎩
∂zH0(x, z) = x(x − 1)∂xH1(x, z) + 3

2
z∂zH1(x, z) + 3

2
H1(x, z),

∂zH1(x, z) = x(x − 1)∂xH0(x, z) + 3

2
z∂zH0(x, z) + 2H0(x, z).

In addition to this system of partial differential equations, there exist also two ordinary
linear differential equations in z for H0 and H1 and, therefore, for their sum H := H0 + H1,
the generating function of all histories.

In Table 1, we compare the size of the D-finite equations5 for the different generating
functions. For example, for the ordinary probability generating function one has the equation
L.F (x, z) = 0, where L is the following differential operator of order 3 in ∂z:

L = 9z(z − 1)(z + 1)
(
15x13z10 + · · · + 3

)
∂3
z + 3

(
375x13z12 + · · · − 21

)
∂2
z

+ 2
(
1020x13z11 + · · · + 42

)
∂z + 600x13z10 + · · · + 1.

The singularity at z = 1 of the leading coefficient reflects the fact that F is a probability
generating function (and thus has radius of convergence equal to 1). It is noteworthy that
some roots of the indicial polynomial of L at z = 1 differ by an integer, this phenomenon
is sometimes called resonance, and often occurs in the world of hypergeometric functions;
we will come back to these facts and what they imply for the asymptotics (see also [33],
Chapter IX. 7.4).

5When we say the equation, we mean the linear differential equation of minimal order in ∂z, and then minimal
degrees in z and x, up to a constant factor for its leading term.
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Note that the fact to be D-finite has an unexpected consequence: it allows a surprisingly
fast computation of hn in time O(

√
n log2 n) (see [15], Chapter 15, for a refined complexity

analysis of the corresponding algorithm). Such efficient computations are, for example, im-
plemented in the Maple package gfun (see [83]). This package, together with some packages
for differential elimination (see [16, 35]), allows us to compute the different D-finite equa-
tions from Table 1, via the union of our Theorem 3.1 on the hypergeometric closed forms and
the closure properties mentioned above.

Another important consequence of the D-finiteness is that the type of the singularities
that the function can have is constrained. In particular, the following important subclass of
D-finite functions can be automatically analysed:

REMARK 2.5. Flajolet and Lafforgue have proven that under some “generic” conditions,
such D-finite equations lead to a Gaussian limit law (see [32], Theorem 7, and [33], Chap-
ter IX. 7.4). It is interesting that these generic conditions are not fulfilled in our case: we have
a cancellation of the leading coefficient of L at (x, z) = (1,1), a confluence for the indicial
polynomial, and the resonance phenomenon mentioned above! The natural model of periodic
Pólya urns thus leads to an original analytic situation, which offers a new (non-Gaussian)
limit law.

We thus need another strategy to determine the limit law. In the next section, we use the
system of equations (6) to iteratively derive the moments of the distribution of black balls
after n steps.

3. Moments of periodic Pólya urns. In this section, we give the proof of Theorem 1.6
and a generalization of it. As it will use the method of moments, let us introduce mr(n), the
r th factorial moment of the distribution of black balls after n steps, that is,

mr(n) := E
(
Bn(Bn − 1) · · · (Bn − r + 1)

)
.

Expressing them in terms of the generating function H(x, z), it holds that

mr(n) =
[zn] ∂r

∂xr H(x, z)

∣∣∣∣
x=1

[zn]H(1, z)
,

where [zn]∑n fnz
n := fn is the coefficient extraction operator.

We will compute the sequences of the numerator and denominator separately. We start
with the denominators, the total number of histories after n steps.

3.1. Number of histories: A hypergeometric closed form. We prove that H(1, z) satisfies
a miraculous property which does not hold for H(x, z): it is a sum of generalized hypergeo-
metric functions (see, e.g., [3] for an introduction to this important class of special functions).

THEOREM 3.1 (Hypergeometric closed forms). Let hn := n![zn]H(1, z) be the number
of histories after n steps in a Young–Pólya urn of period p and parameter � with initially
s0 = b0 + w0 balls, where b0 are black and w0 are white. Then, for each i, (hpm+i )m∈N is a
hypergeometric sequence, satisfying the recurrence

(7) hp(m+1)+i =
i−1∏
j=0

(
(p + �)(m + 1) + s0 + j

)p−1∏
j=i

(
(p + �)m + s0 + j

)
hpm+i .

Equivalent closed forms are given in equations (10), (11) and (12).
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PROOF. Substituting x = 1 into (6) and extracting the coefficient of zn for i = 0, . . . ,

p − 1 gives the recurrence

hn+1 =
((

1 + �

p

)
n + bn

)
hn with(8)

bn := s0 − �

p
(n mod p),(9)

where n mod p gives values in {0,1, . . . , p − 1}. Iterating this recurrence relation p times
gives (7). This leads to the following equivalent closed forms:

hpm+i = (p + �)pm+i∏p−1
j=0 �(

s0+j
p+�

)

i−1∏
j=0

�

(
m + 1 + s0 + j

p + �

)p−1∏
j=i

�

(
m + s0 + j

p + �

)
,(10)

hpm+i = (p + �)pm �(s0 + (p + �)m + i)

�(s0 + (p + �)m)

p−1∏
j=0

�(m + s0+j
p+�

)

�(
s0+j
p+�

)
.(11)

Accordingly, the function H(1, z) is the sum of p generalized hypergeometric functions
pFp−1:

H(1, z) =
p−1∑
i=0

(
s0 + i − 1

i

)
zi

pFp−1

(
L1(i),L2(i),

(
(p + l)z

p

)p)
,(12)

where the lists of arguments are given by L1(i) :=
[(

s0+j
p+�

+ 1
)
j=0,...,i−1

,
(

s0+j
p+�

)
j=i,...,p−1

]
and L2(i) :=

[(
j
p

+ 1
)
j=1,...,i

,
(

j
p

)
j=i+1,...,p−1

]
. �

EXAMPLE 3.2. In the case of the Young–Pólya urn with p = 2, � = 1, and b0 = w0 = 1,
one has the hypergeometric closed forms for hn := n![zn]H(1, z):

hn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3n
�(n

2 + 1)�(n
2 + 2

3)

�(2/3)
if n is even,

3n
�(n

2 + 1
2)�(n

2 + 7
6)

�(2/3)
if n is odd.

Alternatively, this sequence satisfies h(n + 2) = 3
2h(n + 1) + 1

4(9n2 + 21n + 12)h(n).
This sequence was not in the On-Line Encyclopedia of Integer Sequences, accessi-
ble at https://oeis.org. We added it there; it is now A293653, and it starts like this:
1,2,6,30,180,1440,12960,142560,1710720, . . . . The exponential generating function can
be written as the sum of two hypergeometric functions:

H(1, z) = 2F1

([
2

3
,1

]
,

[
1

2

]
,

(
3z

2

)2)
+ 2z 2F1

([
5

3
,1

]
,

[
3

2

]
,

(
3z

2

)2)
.

3.2. Mean and critical exponent. Let us proceed with the computation of moments. For
this purpose, define

h(r)
n := n![zn] ∂r

∂xr
H(x, z)

∣∣∣∣
x=1

,

as the coefficient of (x−1)r zn

r!n! of H(x, z). Then the r th moment is obviously computed as

mr(n) = h
(r)
n

hn
. The key idea why to use these quantities comes from the differential equations

for histories (6). The derivative of Hi(x, z) with respect to x has a factor (x − 1), which
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makes it possible to compute h
(r)
n iteratively by taking the r-th derivative with respect to x

and substituting x = 1. Let us define the auxiliary functions

H
(r)
i (z) := ∂r

∂xr
Hi(x, z)

∣∣∣∣
x=1

.

We get for i = 0, . . . , p − 1 (with bi as defined in (9)):

∂zH
(r)
i+1(z) =

(
1 + �

p

)
z∂zH

(r)
i (z) + (bi + r)H

(r)
i (z) + (r − 1)rH

(r−1)
i (z).

From this equation we extract the nth coefficient with respect to z and multiply by n! to get

h
(r)
n+1 =

((
1 + �

p

)
n + bn + r

)
h(r)

n + (r − 1)rh(r−1)
n .(13)

We reveal a perturbed version of (8). In particular, this is a nonhomogeneous linear recurrence
relation. Yet, the inhomogeneity only emerges for r ≥ 2. Thus, the mean is derived directly
with the same approach as hn previously. Note that for r = 1, equation (13) is exactly of the
same type as (8) after replacing s0 by s0 + r and h0 by b0. We get without any further work

h
(1)
pm+i = C1(p + �)pm+i

i−1∏
j=0

�

(
m + 1 + s0 + 1 + j

p + �

)p−1∏
j=i

�

(
m + s0 + 1 + j

p + �

)
,

C1 = b0

p−1∏
j=0

�

(
s0 + 1 + j

p + �

)−1
.

Combining the last two results, we get a (surprisingly) simple expression

EBpm+i = h
(1)
pm+i

hpm+i

= C1

C0

∏i−1
j=0 �(m + 1 + s0+1+j

p+�
)
∏p−1

j=i �(m + s0+1+j
p+�

)∏i−1
j=0 �(m + 1 + s0+j

p+�
)
∏p−1

j=i �(m + s0+j
p+�

)

= b0
�(

s0
p+�

)

�(
s0+p
p+�

)

(
m + s0 + i

p + �

) �(m + s0+p
p+�

)

�(m + 1 + s0
p+�

)
.

In particular, it is straightforward to compute an asymptotic expansion for the mean by Stir-
ling’s approximation. For i = 0,1, . . . , p − 1, we get

EBpm+i = b0
�(

s0
p+�

)

�(
s0+p
p+�

)
m

p
p+�

(
1 + O

(
1

m

))
.

This leads to the following proposition.

PROPOSITION 3.3 (Formula for the mean of Young–Pólya urns). The expected number
of black balls in a Young–Pólya urn of period p and parameter � with initially s0 = b0 + w0
balls, where b0 are black and w0 are white, satisfies for large n

EBn = b0
�(

s0
p+�

)

�(
s0+p
p+�

)

(
n

p

) p
p+�

(
1 + O

(
1

n

))
.

REMARK 3.4 (Critical exponent). As will be more transparent from discussions in the
next sections, the exponent δ := p

p+�
is here the crucial quantity to keep in mind. It is some-

times called “critical exponent” as such exponents can often be captured by ideas from sta-
tistical mechanics, as a signature of a phase transition phenomenon.
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EXAMPLE 3.5. For the Young–Pólya urn with p = 2, � = 1, and b0 = w0 = 1, the ex-
pected number of black balls at time n is thus

EBn = �(2/3)

�(4/3)

(
n

2

) 2
3
(

1 + O

(
1

n

))
≈ 0.9552n2/3

(
1 + O

(
1

n

))
.

This is coherent with the renormalization used for the limit law of Bn in Example 1.7.

3.3. Higher moments. When computing higher moments, the first idea is to transform the
nonhomogeneous recurrence relation (13) into a homogeneous one. To this aim, one rewrites
this equation into

yn+1 − (an + bn + r)yn = (r − 1)rh(r−1)
n and y0 = ∂r

xH(x,0)
∣∣
x=1.(14)

Note that we have yn = h
(r)
n , the r-th moment we want to determine. From now on, we speak

of the homogeneous equation to refer to the left-hand side of equation (14) set equal to 0,
whereas equation (14) itself is called the nonhomogeneous equation. In order to get h

(r)
n , we

proceed by induction on r : we assume that the (r − 1)-st moment is known (thus, we know
the right-hand side of (14)), and we want to express the r th moment h

(r)
n (i.e., we want to

solve the recurrence (14) for yn) in terms of this previously computed quantity.
As for any linear recurrence, its solution is given by a combination of a solution h

(r)
n,hom of

the homogeneous equation and of a particular solution h
(r)
n,par such that

h(r)
n = Crh

(r)
n,hom − h(r)

n,par,(15)

with Cr ∈ R such that the initial condition in (14) is satisfied. We will show that asymptot-
ically only the solution h

(r)
n,hom of the homogeneous equation is dominant. First of all, this

solution is easy to compute, as it is again of the same type as (8). We have

h
(r)
pm+i,hom = (p + �)pm+i

i−1∏
j=0

�

(
m + 1 + s0 + r + j

p + �

)p−1∏
j=i

�

(
m + s0 + r + j

p + �

)
.(16)

The next idea is to find a particular solution of the nonhomogeneous recurrence relation (14).
We will show that the equation exhibits a phenomenon similar to resonance and we will show
that the particular solution is

h(r)
n,par =

r−1∑
j=1

djh
(j)
n for constants dj ∈ R.(17)

We will compute the coefficients dj by induction from r − 1 to 1. First, we observe that

the inhomogeneous part in the r th equation is a multiple of the solution h
(r−1)
n of the (r − 1)-

st equation. This motivates us to set yn = h
(r−1)
n in the homogeneous equation of the r-th

equation. Using (14) then leads to

h
(r−1)
n+1 − (an + bn + r)h(r−1)

n = (r − 1)(r − 2)h(r−2)
n − h(r−1)

n .

Thus, by linearity we choose h
(r)
n,par = zn − (r − 1)rh

(r−1)
n , that is, dr−1 = (r − 1)r , as a first

candidate for a particular solution where zn is (still) an undetermined sequence. Inserting this
into (14), we get a recurrence relation for zn, where we reduced the order of the inhomogene-
ity by one in r (in comparison with (14)):

zn+1 − (an + bn + r)zn = r(r − 1)2(r − 2)h(r−2)
n .
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Continuing this approach, we compute all dj ’s inductively. As the order in r decreases, this
approach terminates at r = 1. One thus identifies the constants dj of formula (17):

dj =
r∏

i=j+1

(i − 1)i

r − i + 1
=

(
r − 1
j − 1

)
r!
j ! = L(r, j),

with L(r, j) being the Lah numbers, which express the rising factorials in terms of falling
factorials6 (see [57] and [77], page 43):

r∑
j=1

L(r, j)xj = xr .(18)

Then, by (15) we get the general solution of the r th moment

h(r)
n = Crh

(r)
n,hom −

r−1∑
j=1

L(r, j)h(j)
n .(19)

For n = 0, equation (19) becomes

h
(r)
0 = ∂r

xH(x,0)
∣∣
x=1 = b0

r = Crh
(r)
0,hom −

r−1∑
j=1

L(r, j)b0
j ,

which gives together with (18) that Crh
(r)
0,hom = b0

r .
Finally, we are now able to compute the asymptotic expansion of the r th (factorial) mo-

ment. Using Stirling’s approximation, the quotient of the quantities given by (19) and (16)

gives that h
(j)
n

h
(r)
n,hom

= O(n
− (r−j)p

p+� ), for j = 1, . . . , r − 1. Hence, for the r th moment given by

(19), we proved that the contribution of h
(r)
n,hom is the asymptotically dominant one. This leads

to the main result on the asymptotics of the moments.

PROPOSITION 3.6 (Moments of Young–Pólya urns). The r th (factorial) moment of Bn

(the number of black balls in the Young–Pólya urn of period p and parameter � with initially
s0 = b0 + w0 balls, where b0 are black and w0 are white) for large n satisfies6

mr(n) = γrn
δr

(
1 + O

(
1

n

))
with γr = b0

r

pδr

p−1∏
j=0

�(
s0+j
p+�

)

�(
s0+r+j

p+�
)

and δ = p

p + �
.

EXAMPLE 3.7. For the Young–Pólya urn with p = 2, � = 1, and b0 = w0 = 1, the vari-
ance of the number of black balls at time n is thus

VBn = 27

8

�(2
3)2(3�(4

3) − �(2
3)2)

21/3π2 n4/3
(

1 + O

(
1

n

))
≈ 0.42068n4/3

(
1 + O

(
1

n

))
.

NOTA BENE. The reasoning following equation (19) shows that these asymptotics are
the same for the moments and the factorial moments, so in the sequel we refer to this result
indifferently from both points of view.

6The falling factorial xr is defined by xr := x(x − 1) · · · (x − r + 1) = �(x + 1)/�(x − r + 1), while the rising

factorial xr is defined by xr := �(x + r)/�(x) = x(x + 1) · · · (x + r − 1). These two notations were introduced
as an alternative to the Pochhammer symbols by Graham, Knuth and Patashnik in [39].
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3.4. Limit distribution for periodic Pólya urns. We use the method of moments to prove
Theorem 1.6 (the generalized gamma product distribution for Young–Pólya urns). The nat-
ural factors occurring in the constant γr of Proposition 3.6, may they be 1/�(

s+r+j
p+�

) or

(b0
r )1/p/�(

s+r+j
p+�

), do not satisfy the determinant/finite difference positivity tests for the
Stieltjes/Hamburger/Hausdorff moment problems, therefore, no continuous distribution has
such moments (see [92]). However, the full product does correspond to moments of a dis-
tribution which is easier to identify if we start by transforming the constant γr by the Gauss
multiplication formula of the gamma function; this gives

γr = (p + �)r

pδr

�(b0 + r)�(s0)

�(b0)�(s0 + r)

�−1∏
j=0

�(
s0+r+p+j

p+�
)

�(
s0+p+j

p+�
)

.

Combining this result with the rth (factorial) moment mr(n) from Proposition 3.6, we see

that the moments E(B∗
n

r) of the rescaled random variable B∗
n := pδ

p+�
Bn

nδ converge for n → ∞
to the limit

mr := �(b0 + r)�(s0)

�(b0)�(s0 + r)

�−1∏
j=0

�(
s0+r+p+j

p+�
)

�(
s0+p+j

p+�
)

,(20)

a simple formula involving the parameters (p, �, b0,w0) of the model (with s0 := b0 + w0).
Next, note that the following sum diverges (recall that 0 ≤ (1 − δ) < 1):

∑
r>0

m−1/(2r)
r = ∑

r>0

(
(p + �)e

r

)(1−δ)/2(
1 + o(1)

) = +∞.

Therefore, a result by Carleman (see [21], pages 189–220) implies that there exists a unique
distribution (let us call it D) with such moments mr . Then, by the limit theorem of Fréchet
and Shohat [34], page 536,7 B∗

n converges to D.
Finally, we use the shape of the moments in (20) in order to express this distribution D

in terms of the main functions defined in Section 1. First, note that if for some independent
random variables X, Y , Z, one has E(Xr) = E(Y r)E(Zr) (and if Y and Z are determined by

their moments), then X
L= YZ. Therefore, we treat the factors independently. The first factor

corresponds to a beta distribution Beta(b0,w0). For the other factors, it is easy to check that
if X ∼ GenGamma(α,β) is a generalized gamma distributed random variable (as defined
in Definition 1.4), then it is a distribution determined by its moments, which are given by

E(Xr) = �(α+r
β

)

�( α
β
)

. Therefore, the expression in (20) characterizes the GenGammaProd distri-

bution. This completes the proof of Theorem 1.6.
For reasons which would be clear in Section 4, it was natural to focus first on Young–Pólya

urns. However, the method presented is this section allows us to handle more general models.
It would have been quite indigestible to present directly the general proof with heavy notation
and many variables but now that the reader got the key steps of the method, she should be
delighted to recycle all of this for free in the following much more general result.

THEOREM 3.8 (The generalized gamma product distribution for triangular balanced urns).
Let p ≥ 1 and �1, . . . , �p ≥ 0 be nonnegative integers. Consider a periodic Pólya urn of pe-

riod p with replacement matrices M1, . . . ,Mp given by Mj := ( 1 �j

0 1+�j

)
. Then the renormal-

ized distribution of black balls is asymptotically for n → ∞ given by the following product

7As a funny coincidence, Fréchet and Shohat mention in [34] that the generalized gamma distribution with
parameter p ≥ 1/2 is uniquely characterized by its moments.
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of distributions:

pδ

p + �

Bn

nδ

L−→ Beta(b0,w0)

p+�−1∏
i=1

i �=�1+···+�j+j with 1≤j≤p−1

GenGamma(b0 + w0 + i, p + �)

with � = �1 + · · · + �p , δ = p/(p + �), and Beta(b0,w0) = 1 when w0 = 0.

In the sequel, we denote this distribution by GenGammaProd([�1, . . . , �p];b0,w0).

PROOF. The proof relies on the same steps as in Sections 2 and 3 with some minor
technical changes, so we only point out the main differences.

The behaviour of the urn is now modeled by the p differential operators Dj = y�j (x2∂x +
y2∂y). As the matrices are balanced, there is (like in equation (4)) a direct link between the
number of black balls and the total number of balls. This allows to eliminate the y variable
and leads to the following system of partial differential equations (which generalizes equation
(6)):

∂zHi+1(x, z) = x(x − 1)∂xHi(x, z) +
(

1 + �

p

)
z∂zHi(x, z) +

(
s0 −

i∑
j=1

�j − i�

p

)
Hi(x, z),

for i = 0, . . . , p − 1 with Hp(x, z) := H0(x, z). Here, one again applies the method of mo-
ments used in this Section 3. In particular, equation (8) remains the same. Only the coeffi-
cients bn in equation (9) change to s0 − ∑i

j=1 �j − �
p
(i mod p).

Hence, we get the following asymptotic result for the moments generalizing Proposi-
tion 3.6:

mr(n) = γrn
δr

(
1 + O

(
1

n

))
with γr = b0

r

pδr

p−1∏
j=0

�(
s0

p+�
+ j+∑j

k=1 �k

p+�
)

�(
s0+r
p+�

+ j+∑j
k=1 �k

p+�
)

.(21)

After rewriting γr via the Gauss multiplication formula, we recognize the product of distri-
butions (characterized by their moments) which we wanted to prove. �

Let us illustrate this theorem with what we call the staircase periodic Pólya urn (this model
will reappear later in the article).

EXAMPLE 3.9 (Staircase periodic Pólya urn). For the Pólya urn of period 3 with replace-
ment matrices

M1 :=
(

1 0
0 1

)
, M2 :=

(
1 1
0 2

)
and M3 :=

(
1 2
0 3

)
,

the number Bn of black balls has the limit law GenGammaProd([0,1,2];b0,w0):
√

3

6

Bn√
n

L−→ Beta(b0,w0)
∏

i=2,4,5

GenGamma(b0 + w0 + i,6).

In the next section, we will see what are the implications of our results for urns on an
apparently unrelated topic: Young tableaux.
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4. Urns, trees and Young tableaux. As predicted by Anatoly Vershik in [90], the
twenty-first century should see a lot of challenges and advances on the links between prob-
ability theory and (algebraic) combinatorics. A key rôle is played here by Young tableaux8

because of their ubiquity in representation theory. Many results on their asymptotic shape
have been collected, but very few results are known on their asymptotic content when the
shape is fixed (see, e.g., the works by Pittel and Romik, Angel et al., Marchal [4, 63, 73, 81],
who have studied the distribution of the values of the cells in random rectangular or staircase
Young tableaux, while the case of Young tableaux with a more general shape seems to be
very intricate). It is therefore pleasant that our work on periodic Pólya urns allows us to get
advances on the case of a triangular shape, with any rational slope.

DEFINITION 4.1. For any fixed integers n, �,p ≥ 1, we define a triangular Young
tableau of parameters (�,p,n) as a classical Young tableau with N := p�n(n + 1)/2 cells,
with length n�, and height np such that the first � columns have np cells, the next � columns
have (n − 1)p cells, and so on (see Figure 3).

For such a tableau, we now study what is the typical value of its southeast corner (with
the French convention of drawing tableaux; see [61] but, however, take care that on page 2
therein, Macdonald advises readers preferring the French convention to “read this book up-
side down in a mirror!” Some French authors quickly propagated the joke that Macdonald
was welcome to apply his own advice while reading their articles!).

It could be expected (e.g., via the Greene–Nijenhuis–Wilf hook walk algorithm for gen-
erating Young tableaux; see [40]) that the entries near the hypotenuse should be N − o(N).
Can we expect a more precise description of these o(N) fluctuations? Our result on periodic
urns enables us to exhibit the right critical exponent, and the limit law in the corner.

THEOREM 4.2. Choose a uniform random triangular Young tableau of parameters
(�,p,n) and of size N = p�n(n + 1)/2 and put δ = p/(p + �). Let Xn be the entry of
the southeast corner. Then (N −Xn)/n1+δ converges in law to the same limiting distribution
as the number of black balls in the periodic Young–Pólya urn with initial conditions b0 = p,
w0 = � and with replacement matrices M1 = · · · = Mp−1 = ( 1 0

0 1

)
and Mp = ( 1 �

0 1+�

)
, that is,

we have the convergence in law, as n goes to infinity, towards GenGammaProd (the distribu-
tion defined by formula (1), page 1924):

2

p�

N − Xn

n1+δ

L−→ GenGammaProd(p, �,p, �).

REMARK 4.3. The case p = 1 corresponds to a classical (nonperiodic) urn; see Re-
mark 1.8. The case p = 2 and � = 1 corresponds to our running example of a Young–Pólya
urn; see Example 1.7.

REMARK 4.4. If we replace the parameters (�,p,n) by (K�,Kp,n) for some integer
K > 1, we are basically modelling the same triangle, yet the limit law is GenGammaProd(Kp,

K�,Kp,K�), which differs from GenGammaProd(p, �,p, �). It is noteworthy that one still
has some universality: the critical exponent δ remains the same and, besides, the limit laws
are closely related in the sense that they have similar tails. We address these questions in
Section 5.2.

8A Young tableau of size n is an array with columns of (weakly) decreasing height, in which each cell is
labelled, and where the labels run from 1 to n and are strictly increasing along rows from left to right and columns
from bottom to top; see Figure 3. We refer to [61] for a thorough discussion on these objects.
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FIG. 3. In this section, we see that there is a relation between Young tableaux with a given periodic shape, some
trees and the periodic Young–Pólya urns. The key observation is that the cells (in grey) in the first row of the
tableaux have the same hook lengths as the nodes (in grey) in the leftmost branch of the tree. The southeast cell
v (in black) of this Young tableau has also the same hook length as the node vm (in black) in the tree, and is
following the same distribution we proved for urns (generalized gamma product distribution).
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PROOF. As this proof involves several technical lemmas (which we prove in the next
subsections), we first present its structure so that the reader gets a better understanding of
the key ideas. Our proof starts by establishing a link between Young tableaux and linear
extensions of trees. After that, we will be able to conclude via a second link between these
trees and periodic Pólya urns.

Let us begin with Figure 3 which describes the link between the main characters of this
proof: the Young tableau Y and the “big” tree T (which contains the “small” tree S). More
precisely, we define the rooted planar tree S as follows:

• The leftmost branch of S is a sequence of vertices which we call v1, v2, . . . .
• Set m := n�. The vertex vm (the one in black in Figure 3) has p − 1 children.
• For 2 ≤ k ≤ n − 1, the vertex vk� has p + 1 children.
• All other vertices vj (for j < m, j �= k�) have exactly one child.

Now, define T as the “big” tree obtained from the “small” tree S by adding a vertex v0
as the parent of v1 and adding a set S ′ of children to v0. The size of S ′ is chosen such that
|T | = 1 + |S| + |S ′| = 1 + N , where N is the number of cells of the Young tableau Y .
Moreover, the hook length of each cell (in grey) in the first row of Y is equal to the hook
length9 of the corresponding vertex (in grey also) in the leftmost branch of S .

Let us now introduce a linear extension ET of T , that is, a bijection from the set of vertices
of T to {1, . . . ,N + 1} such that ET (u) < ET (u′) whenever u is an ancestor of u′. A key
result, which we prove hereafter in Proposition 4.9, is the following: if ET is a uniformly
random linear extension of T , then EY(v) (the entry of the southeast corner v in a uniformly
random Young tableau Y) has the same law as ET (vm):

(22) 1 + EY(v)
L= ET (vm).

Note that in the statement of the theorem, EY(v) is denoted by Xn to initially help the
reader to follow the dependency on n.

Furthermore, recall that T was obtained from S by adding a root and some children to this
root. Therefore, one can obtain a linear extension of the “big” tree T from a linear extension
of the “small” tree S . In Section 4.4, we show that this allows us to construct a uniformly
random linear extension ET of T and a uniformly random linear extension ES of S such that

(23) |T | − ET (vm)
L= n

(|S| − ES(vm) + smaller order error terms
)
.

The last step, which we prove in Proposition 4.17, is that

(24) |S| − ES(vm)
L= distribution of periodic Pólya urn + deterministic quantity.

Indeed, more precisely |S| − ES(vm) has the same law as the number of black balls in a
periodic urn after (n − 1)p steps (an urn with period p, with parameter �, and with initial
conditions b0 = p and w0 = �). Thus, our results on periodic urns from Section 3 and the
conjunction of equations (22), (23) and (24) give the convergence in law for EY(v) which we
wanted to prove. �

The subsequent sections are dedicated to the proofs of the auxiliary propositions that are
crucial for the proof of Theorem 4.2. First, we establish a link between our problem on
Young tableaux and a related problem on trees. Second, we explain the connection between
the related problem on trees and the model of periodic urns.

9The hook length of a vertex in a tree is the size of the subtree rooted at this vertex.
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4.1. The link between Young tableaux and trees. We will need the following definitions.

DEFINITION 4.5 (The shape of a tableau10). We say that a tableau has shape λ
i1
1 · · ·λin

n

(with λ1 > · · · > λn) if it has (from left to right) first i1 columns of height λ1, etc., and ends
with in columns of height λn.

As an illustration, the tableau on the top of Figure 3 has shape 946434.

DEFINITION 4.6 (The shape of a tree). Consider a rooted planar tree T with at least two
vertices and having the shape of a “comb”: at each level only the leftmost node can have
children. It has shape (i0, j0; i1, j1; . . . ; in, jn) if

• when n = 0, then T is the tree with j0 leaves and i0 internal nodes, all of them unary except
for the last one which has j0 children;

• when n ≥ 1, then T is the tree with shape (i0, j0; i1, j1; . . . ; in−1, jn−1) to which we attach
a tree of shape (in, jn) as a new leftmost subtree to the parent of the leftmost leaf.

Figure 4 illustrates the recursive construction of a tree of shape (1,4;1,2;2,2). As another
example, the tree T in Figure 3 has shape (1, |S ′|;4,3;4,3;4,2), where |S ′| stands for the
number of leaves in S ′.

FIG. 4. The recursive construction of a tree of shape (1,4;1,2;2,2). First, a tree of shape (1,4), second, a tree
of shape (1,4;1,2), third, a tree of shape (1,4;1,2;2,2).

Let us end this small collection of definitions with a more classical one.

DEFINITION 4.7 (Linear extension of a poset and of a tree). A linear extension E of a
poset A of size N is a bijection between this poset and {1, . . . ,N} satisfying E(u) ≤ E(v)

whenever u ≤ v. Accordingly, a linear extension of a tree A with N vertices is a bijection E

between the vertices of A and {1, . . . ,N} satisfying E(u) ≤ E(v) whenever u is a child of v.
We denote by ext(A) the number of linear extensions of A.

REMARK 4.8. In combinatorics, a linear extension is also called an increasing labelling.
In the sequel, we will sometimes say “(increasing) labelling” instead of “linear extension”,
hoping that this less precise terminology will help the intuition of the reader.

We are now ready to state the following result.

10Some authors define the shape of a tableau as its row lengths from bottom to top. In this article, we use the list
of column lengths, as it directly gives the natural quantities to state our results in terms of trees and urns.
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PROPOSITION 4.9 (Link between the southeast corner of Young tableaux and linear exten-
sions of trees). Fix a tableau with shape λ

i1
1 · · ·λin

n and consider a random uniform Young
tableau Y with this given shape. Let EY(v) be the entry of the southeast corner of this Young
tableau. Let T be a tree with shape (1,N −m−λ1 +1; i1, λ1 −λ2; i2, λ2 −λ3; . . . ; in, λn−1),
where N = ∑

λkik is the size of the tableau Y and m = i1 + · · · + in is the number of its
columns. Let ET be a random uniform linear extension of T , and vm be the mth vertex in the
leftmost branch of this tree T . Then ET (vm) and 1 + EY(v) have the same law.

PROOF. The proof will be given on page 1948, as it requires two ingredients, which have
their own interest and which are presented in the two next sections (Section 4.2 on the density
method for Young tableaux, and Section 4.3 on the density method for trees). �

EXAMPLE 4.10. Let us apply the previous result to the tree of shape (1,4;1,2;2,2)

from Figure 4. There we have n = 2, m = 3. Then this tree corresponds to a Young tableau
of shape 5132 and size N = 11.

REMARK 4.11. In the simplest case when the tableau is a rectangle (i.e., it has shape
λ

i1
1 ), the associated tree has shape (1, (λ1 − 1)(i1 − 1); i1, λ1 − 1). In that case, the law of

ET (vm) is easy to compute and we get an alternative proof of the following formula, first
established in [63]:

P
(
EY(v) = k

) =
(k−1
i1−1

)(λ1i1−k
λ1−1

)
( λ1i1
λ1+i1−1

) .

The fact that Y and T are related is obvious from the construction of T , but it is not a priori
granted that it will lead to a simple, nice link between the distributions of v and vm (the two

black cells in Figure 3). So, ET (vm)
L= 1+EY(v) deserves a detailed proof: it will be the topic

of the next subsections. The proof has a nice feature: it uses a generic method, which we call
the density method and which was introduced in our articles [10, 64]. In fact, en passant, these
next subsections also illustrate the efficiency of the density method in order to enumerate
(and to perform uniform random generation) of combinatorial structures (like we did in the
two aforementioned articles for permutations with some given pattern, or rectangular Young
tableaux with “local decreases”).

The advantage of Proposition 4.9 is that linear extensions of a tree are easier to study
than Young tableaux and can, in fact, be related to our periodic urn models, as shown in
Section 4.3.

4.2. The density method for Young tableaux. Trees and Young tableaux can be viewed
as posets [88]. We will use this point of view to prove Proposition 4.9. We recall here some
general facts that will be useful in the sequel.

DEFINITION 4.12 (Order polytope of a poset). Let A be a general poset with cardinality
N and order relation ≤. We can associate with A a polytope P ⊂ [0,1]A defined by the
condition (Ye)e∈A ∈ P if and only if Ye ≤ Ye′ whenever e ≤ e′. Then P is called the order
polytope of the poset A.

EXAMPLE 4.13. Let A be the set of subsets of {a, b} ordered by inclusion. Then its
order polytope is given by P = {(Y∅, Y{a}, Y{b}, Y{a,b}) ∈ [0,1]4 : Y∅ ≤ Y{a}, Y∅ ≤ Y{b}, Y∅ ≤
Y{a,b}, Y{a} ≤ Y{a,b}, Y{b} ≤ Y{a,b}}.
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Let Y = (Ye)e∈A ∈ [0,1]A be a tuple of random variables11 chosen according to the uni-
form measure on the polytope P . Then we consider the function X having integer values,
defined by Xe := k if Ye is the kth smallest real in the set of reals {Ye : e ∈ A}. It is some-
times called order statistic. Note that X is a random variable, defined almost surely as we
have a zero probability that some marginals of Y have the same value, and X is uniformly
distributed on the set of all linear extensions of A. The last claim holds because the wedges
of each linear extension have equal size 1/N ! for N = |A| being the size of the poset A.

EXAMPLE 4.14. Continuing Example 4.13, there are two linear extensions of A:
(X∅,X{a},X{b},X{a,b}) = (1,2,3,4) and (X∅,X{a},X{b},X{a,b}) = (1,3,2,4). They cor-
respond to the following two wedges in P : Y∅ ≤ Y{a} ≤ Y{b} ≤ Y{a,b} and Y∅ ≤ Y{b} ≤ Y{a} ≤
Y{a,b}. The volume of each of them is 1/24, while the volume of P is 1/12.

Conversely, if X is a random uniform increasing labelling of A, one gets a random variable
Y on the polytope P via Ye := TXe , where T is a random uniform N -tuple from the set
{(T1, . . . , TN) ∈ [0,1]N : T1 < · · · < TN }. Therefore, Y is uniformly distributed on P . What
is more, Tk is the kth largest uniform random variable among N independent uniform random
variables. Thus, it has density k

(N
k

)
xk−1(1 − x)N−k . As a consequence, for any e ∈ A, Ye has

density

(25) ge(x) =
N∑

k=1

P(Xe = k)k

(
N

k

)
xk−1(1 − x)N−k.

This formula can be read as two different writings of the same polynomial in two different
bases; thus, by elementary linear algebra, it implies that P(Xe = k) can be deduced from the
polynomial ge. In particular, we have the following property.

LEMMA 4.15. Let A, A′ be two posets with the same cardinality, and let P , P ′ be their
respective order polytopes. Let X (resp., X′) be a random linear extension of A (resp., A′).
Let Y (resp., Y ′) be a uniform random variable on P (resp., P ′). Then, for any e ∈ A and
e′ ∈ A′, such that Ye and Y ′

e′ have the same density, Xe and X′
e′ have the same law.

Let Y be a tableau with shape λ
i1
1 . . . λ

in
n and total size N = ∑

k λkik . We view Y as a poset:
Y is a set of N cells equipped with a partial order “≤”, where c ≤ c′ if one can go from c

to c′ with only north and east steps. We denote by P the order polytope of the tableau Y .
We will introduce an algorithm generating a random element of P according to the uniform

measure. In order to do so, we fill the diagonals one by one. Let us introduce some notation.
The tableau Y can be sliced into M = λ1 + i1 +· · ·+ in −1 diagonals D1, . . . ,DM as follows:
D1 is the northwest corner and recursively, Dk+1 is the set of cells which are adjacent to one
of the cells of D1 ∪ · · · ∪ Dk and which are not in D1 ∪ · · · ∪ Dk . In particular, DM is the
southeast corner. For example, Figure 3 has M = 20 such diagonals.

Note that between two consecutive diagonals Dk and Dk+1 (let us denote their cell entries
by y1 < · · · < yj and x1 < · · · < xj ′ ), there exist four different interlocking relations illus-
trated by Figure 5. The shape of the tableau implies that for each k we are in one of these
four possibilities, each of them thus corresponds to a polytope Pk defined as:

case 1: Pk := {y1 < x1 < · · · < yj < xj },(26)

case 2: Pk := {x1 < y1 < · · · < xj < yj },(27)

case 3: Pk := {y1 < x1 < · · · < xj−1 < yj },(28)

case 4: Pk := {x1 < y1 < · · · < xj < yj < xj+1}.(29)

11When the poset is a Young tableau, this corresponds to what is called a Poissonized Young tableau in [37].
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FIG. 5. Young tableaux of any shape can be generated by a sequence of “diagonals,” which interlock according
to the four possibilities above.

Our algorithm will make use of conditional densities along the M diagonals of Y . For this
purpose, for every k ∈ {1, . . . ,M} we define a polynomial gk in |Dk| variables as follows.
First, one sets g1 := 1; the next polynomials are defined by induction. Suppose that 1 ≤ k ≤
M − 1 and Dk = (y1 < · · · < yj). The four above-mentioned possibilities for Dk+1 lead to
the definition of the following polynomials:

1. In the first case (interlocking given by (26)), this gives

gk+1(x1, . . . , xj ) :=
∫ x1

0
dy1

∫ x2

x1

dy2 · · ·
∫ xj

xj−1

dyjgk(y1, . . . , yj ).

2. In the second case (interlocking given by (27)), this gives

gk+1(x1, . . . , xj ) :=
∫ x2

x1

dy1

∫ x3

x2

dy2 · · ·
∫ xj

xj−1

dyj−1

∫ 1

xj

dyjgk(y1, . . . , yj ).

3. In the third case (interlocking given by (28)), this gives

gk+1(x1, . . . , xj−1) :=
∫ x1

0
dy1

∫ x2

x1

dy2 · · ·
∫ 1

xj−1

dyjgk(y1, . . . , yj ).

4. In the fourth case (interlocking given by (29)), this gives

gk+1(x1, . . . , xj+1) :=
∫ x2

x1

dy1

∫ x3

x2

dy2 · · ·
∫ xj+1

xj

dyjgk(y1, . . . , yj ).

Now, we use these polynomials to formulate a random generation algorithm which will
also be able to enumerate the corresponding Young tableaux. Note that faster random gener-
ation algorithms are known (like the hook walk from [40]), but it is striking that the above
polynomials gk will be the key to relate the distributions of different combinatorial structures,
allowing us to capture second order fluctuations in Young tableaux, trees and urns. It is also
noteworthy that our density method is in some cases the most efficient way to enumerate
and generate combinatorial objects (see [10] for applications on variants of Young tableaux,
where the hook length formula is no more available, and see [23] for algorithmic subtleties
related to sampling conditional multivariate densities).

Recall that P is the order polytope of the tableau Y and that we want to generate a random
element of P according to the uniform measure. The algorithm is the following. We generate
by descending induction on k, for each diagonal Dk , a |Dk|-tuple of reals in [0,1] which will
be the entries of the cells of Dk .

First, remark that the functions defined by (30) and (31) in Algorithm 1 are indeed prob-
ability densities. That is, they are measurable, positive functions and their integral is equal
to 1. To prove this, remark first that these functions are polynomials and, therefore, measur-
able. Next, by definition, as integrals of positive functions, they are positive. Finally, the fact
that the integral is equal to 1 follows from their definition.
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ALGORITHM 1 (Output: a random uniform Young tableau Y , via the density method).

Step 1. Recall that DM is the southeast corner. Generate the corresponding cell entry
at random with probability density

(30)
gM(x)∫ 1

0 gM(y)dy
.

Step 2. By descending induction on k from M − 1 down to 1, generate the diagonal Dk

(seen as a tuple of |Dk| reals in [0,1]) according to the density

(31)
gk(x1, . . . , x|Dk |)

gk+1(Dk+1)
1Pk

,

where gk and 1Pk
are chosen according to the cases given by (26), (27), (28), (29).

We then claim that Algorithm 1 yields a random element (D1, . . . ,DM) of P with the uni-
form measure. Indeed, by construction, its density is the product of the conditional densities
of the diagonals D1, . . . ,DM . The crucial observation now is that the product of the condi-
tional densities (31) is a telescopic product, so the algorithm generates each Young tableau
Y with the same “probability” (or more rigorously, as we have continuous variables, with the
same density):

(32)
gM(DM)∫ 1

0 gM(y)dy

M−1∏
k=1

gk(Dk)

gk+1(Dk+1)
1Pk

= 1{Y∈P}∫ 1
0 gM(y)dy

.

This indeed means that our algorithm yields a uniform random variable on the order poly-
tope P . Alternatively, one can say that the Young tableau Y is a random variable on [0,1]N
with density given by (32), therefore,∫

[0,1]N
1{Z∈P} dZ =

∫ 1

0
gM(y)dy.

Now, suppose that we pick uniformly at random an element Z′ of [0,1]N . Then one has

P
(
Z′ ∈ P) =

∫
[0,1]N

1{Z∈P} dZ = ext(Y)

N ! ,

where ext(Y) is the number of increasing labellings (linear extensions) of the tableau Y .
Thus,

ext(Y) = N !
∫ 1

0
gM(y)dy.

In the next section, we turn our attention to the density method for trees.

4.3. The density method for trees. Let the tree T , its subtree S , and the vertices
v0, . . . , vm be defined as on page 1939 (see Figure 3). As in Section 4.2, it is possible to
construct a random linear extension of S by using a uniform random variable Y on the order
polytope of S . The vertex vm has then a random value Yvm between 0 and 1, and we want to
compute its density. To this aim, we associate to each internal node vk a polynomial fk (in
σk variables, where σk is the number of siblings of vk). These polynomials fk are defined by
induction starting with f1 := 1, while f2, . . . , fm−1 are defined by

fk(x0, . . . , xσk
) :=

∫ inf{x0,...,xσk
}

0
dy0

∫ 1

0
dy1 · · ·

∫ 1

0
dyσk−1fk−1(y0, y1, . . . , yσk−1).
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The last polynomial, fm, additionally depends on the number j of children of vm:

fm(x0, . . . , xσm)

:= (1 − x0)
j
∫ inf{x0,...,xσm }

0
dy0

∫ 1

0
dy1 · · ·

∫ 1

0
dyσm−1fm−1(y0, y1, . . . , yσm−1).

(33)

We also define hvm :

hvm(x) :=
∫ 1

0
dx1 · · ·

∫ 1

0
dxσmfm(x, x1, . . . , xσm).

We claim that hvm(x) is (up to a multiplicative constant) the density of Yvm . This is shown as
in Section 4.2 using Algorithm 2, which generates uniformly at random a labelling of S .

ALGORITHM 2 (Output: a random uniform increasing labelling Y of the tree S).

Step 1. Generate Yvm according to the density

hvm(x)∫ 1
0 hvm(x) dx

.

Step 2. If vm has j children s1, . . . , sj , then generate (Ys1, . . . , Ysj ) according to the
density ∏j

i=1 1{yi>Yvm }
(1 − Yvm)j

.

Step 3. If vm has j siblings s1, . . . , sj , then generate (Ys1, . . . , Ysj ) according to the
density

fm(Yvm, y1, . . . , yj )∫ 1
0 dy1 · · · ∫ 1

0 dyjfm(Yvm, y1, . . . , yj )
.

Step 4. By descending induction for k from m − 1 down to 1, if vk has j siblings
s1, . . . , sj , then generate the tuple Yk = (Yvk

, Ys1, . . . , Ysj ) according to the density

fk(y0, . . . , yj )

fk+1(Yk+1)
1{y0<min Yk+1}.

Indeed, the random tuple Y generated by this algorithm is by construction an element of
the order polytope. What is more, we have the uniform distribution, as the probabilities of
all Y ’s are equal to a telescopic product similar to formula (32). Therefore, hm(x) is (up to a
multiplicative constant) the density of Yvm and the number ext(S) of linear extensions of S
is given by

ext(S) = |S|!
∫ 1

0
hvm(x) dx.

It remains to connect the densities of v in Y and vm in S ; we do this in the following
lemma.
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LEMMA 4.16. The polynomial gM(x) (which gives the density of v, the southeast corner
of the Young tableau Y) and the polynomial hvm(x) (which gives the density of vm in the
tree S) are equal up to a multiplicative constant:

hvm(x) = cgM(x) with c = |Y|!
|S|!

ext(S)

ext(Y)
.

PROOF. The main idea of the proof consists in adding a filament to the tree and to the
tableau, and inspecting the consequences via the density method.

Part 1 (adding a filament to the tableau). Let YL be the tableau obtained by adding to
Y L cells horizontally to the right of its southeast corner v (and denote these new cells by
e1, . . . , eL). We can generate a random element of the order polytope of YL as follows: remark
that Y is a subtableau of YL and that the first M diagonals D1, . . . ,DM of YL are the same as
the first M diagonals of Y (recall that the diagonals are lines with positive slope +1, starting
from each cell of the first column and row). In particular, DM is the southeast corner cell v.
Then we can extend Algorithm 1 in the following way:

ALGORITHM 3 (Output: a random uniform increasing labelling X of the tableau with L

added cells).

Step 1. Generate XM,L the entry of the cell v according to the density

gM,L(x)∫ 1
0 gM,L(y) dy

where gM,L(x) := gM(x)(1 − x)L

L! .

Step 2. Generate the entries of the diagonals DM−1, . . . ,D1 as in Algorithm 1.
Step 3. Generate the entry X1 of e1 with density

L
(1 − x)L−1

(1 − XM,L)L
1{x>XM,L}.

Step 4. For i from 1 to L − 1, generate the entry Xi+1 of ei+1 with density

(L − i)
(1 − x)L−i−1

(1 − Xi)L−i
1{x>Xi}.

Using the same arguments as for Algorithm 1, we can show that Algorithm 3 yields a
uniform random variable on the order polytope of YL and that the number of increasing
labellings of YL is

ext(YL) = (N + L)!
∫ 1

0
gM,L(y) dy = (N + L)!

∫ 1

0

gM(y)(1 − y)L

L! dy.

On the other hand, using the hook length formula, we see that the hook lengths of YL are
the same as those of Y , except for the first row. A straightforward computation shows that

ext(Y)

N ! = ext(YL)

(N + L)! × GL,

where, as Y has shape λ
i1
1 · · ·λin

n , the constant GL is given by

(34) GL = L!
n∏

k=1

(i1 + · · · + ik + L + λk − 1)ik

(i1 + · · · + ik + λk − 1)ik
,
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where we reuse the falling factorial notation ab = a(a − 1) · · · (a − b + 1). This leads to

(35)
∫ 1

0
gM(y)(1 − y)L dy = L!

GL

ext(Y)

N ! .

Part 2 (adding a filament to the tree). Suppose that we extend the tree S by adding a fila-
ment of length L. Let SL be the tree obtained from S by attaching to vm a subtree consisting
of a line with L vertices. Put

fL(x) := (1 − x)Lhvm(x)

L! .

With the same arguments as for the function hvm defined in (33), we see that fL/
∫ 1

0 fL(x) dx

is the density of YL(vm) where YL is a uniform random variable on the order polytope of SL.
Following the same reasoning, we can show that the number of linear extensions of SL is

ext(SL) = (|S| + L
)!∫ 1

0
fL(y) dy.

On the other hand, recall that a version of the hook length formula holds for trees (see, e.g.,
[41, 55, 82]): the number of linear extensions of a tree of size N is given by

N !∏
v∈S hook(v)

,

where here hook(v) is the number of descendants of v (including v itself).
Applying this formula to the tree S yields

ext(S)

|S|! = ext(SL)

(|S| + L)! × GL,

with the same GL as in (34). Indeed, the most crucial point is that the hook lengths of the
Young tableau on the first row are the same as the hook lengths of the tree along the leftmost
branch. This key construction allows us to connect these two structures. Hence, one has

(36)
∫ 1

0
hvm(y)(1 − y)L dy = L!

GL

ext(S)

|S|! .

Part 3 (linking tableaux and trees). Comparing (35) and (36), we get for any integer L ≥ 1,∫ 1

0
hvm(y)(1 − y)L dy = c

∫ 1

0
gM(y)(1 − y)L dy,

where c is the constant given by

c = |Y|!
|S|!

ext(S)

ext(Y)
.

Since hvm(x) and gM(x) are polynomials, this implies that hvm = cgM . �

Before establishing the final link between Young tableaux and urns, we start by collecting
what we got via the density method: this gives the proof of Proposition 4.9, which we now
restate.

PROPOSITION 4.9 (Link between the corner of a Young tableau and linear extensions of
trees). Fix a tableau with shape λ

i1
1 · · ·λin

n and consider a random uniform Young tableau Y
with this given shape. Let EY(v) be the entry of the southeast corner of this Young tableau.
Let T be a tree with shape (1,N −m−λ1 +1; i1, λ1 −λ2; i2, λ2 −λ3; . . . ; in, λn −1), where
N = ∑

λkik is the size of the tableau Y and m = i1 + · · · + in is the number of its columns.
Let ET be a random uniform linear extension of T , and vm be the mth vertex in the leftmost
branch of this tree T . Then ET (vm) and 1 + EY(v) have the same law.
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PROOF. The reader is invited to have a new look on Figure 3 (page 1938), which illus-
trates for this proof the idea of the trees T , S and the set of leaves S ′. We first introduce a
forest T ∗ := S ∪ S ′ obtained by adding N − m − λ1 + 1 vertices without any order relation
to the tree S . T ∗ has an order relation inherited from the order relation ≤ on S : two nodes x,
y of T ∗ are comparable if and only if they belong to S and in that case, the order relation on
T ∗ is the same as the one on S .

Let P ′ be the order polytope of S . Then it is clear that the order polytope of T ∗ is

P = P ′ × [0,1]N−m−λ1+1.

In particular, if Y ′ is a uniform random variable on P ′ and if Y is a uniform random variable
on P , then Y ′

v and Yv have the same density. This density is proportional to the function hvm

computed in Section 4.3. Next, recall the notation gM and DM from Section 4.2. Lemma 4.16
gives that hvm = cgM . Thus, the density of Yvm is the same as the density of DM . Moreover,
T ∗ and Y have the same cardinality. Therefore, Lemma 4.15 entails that if ET ∗ is a random
uniform linear extension of T ∗ and if EY(v) is the entry of the southeast corner in a random
increasing labelling of Y , then ET ∗(vm) and EY(v) have the same distribution.

Now, it is easy to deduce from ET ∗ a random uniform linear extension ET of T : set
ET (u) = 1 if u is the root of T , and set ET (u) = 1 + ET ∗(u) for the other nodes (since any
such node u can be identified as a node of T ). Applying this to the vertex vm completes the
proof of Proposition 4.9. �

4.4. The link between trees and urns. In order to end the proof of Theorem 4.2, we need
two more propositions.

PROPOSITION 4.17 (Link between trees and urns). Consider a tree S with shape
(i1, j1; . . . ; in, jn). Let v be the parent of the leftmost leaf if jn ≥ 1, or the leftmost leaf if
jn = 0. Let ES be a random uniform linear extension of S .

Let X = |S|−ES(v). Then X has the same law as the number of black balls in the follow-
ing urn process:

• Initialize the urn with b0 := jn + 1 black balls and w0 := in white balls.
• For k from n − 1 to 1, perform the following steps:

1. Perform jk − 1 times the classical Pólya urn with replacement matrix
( 1 0

0 1

)
.

2. Make one transition with the replacement matrix
( 1 ik

0 1+ik

)
.

REMARK 4.18. Note that the urn scheme described in the proposition is precisely the
model of periodic Pólya urns covered by Theorem 3.8. For Young–Pólya urns, one has ik = �

and jk = p for k < n, and in = � and jn = p − 1, compare Figure 3.

PROOF OF PROPOSITION 4.17. First, consider the transition probabilities in the classical
Pólya urn. At step i > 0, the composition (Bi,Wi) is obtained from (Bi−1,Wi−1) by adding
a black ball with probability Bi−1

Bi−1+Wi−1
and a white ball with probability Wi−1

Bi−1+Wi−1
. We will

now show that the same transition probabilities are imposed by the linear extension of the
tree.

We start with a definition. If R ⊂ S we define ER : R → {1, . . . , |R|} as the only bijection
preserving the order relation induced by ES . That is, ER(u) = k if and only if ES(u) is the
kth smallest value in the set {ES(r) : r ∈ R}. It is easy to check that ER is a uniform linear
extension of R seen as a poset equipped with the order relation inherited from S .

Let us prove our claim. On the one hand, for every vertex w which is one of the jn children
of v, we have ES(w) > ES(v). On the other hand, for every vertex u which is one of the in−1
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FIG. 6. Proposition 4.17 relates the labels in the tree S with a Pólya urn process. For periodic shapes, it gives a
periodic Pólya urn. The initial conditions are given by S0. The tree is traversed bottom to top, along vertices not
in the leftmost branch, starting at un,1. Each of these nodes corresponds to a classical Pólya urn step, whereas
each vertex in the leftmost branch corresponds to an additionally added white ball.

most recent ancestors of v, we have ES(u) < ES(v). Let S0 be the set consisting of v, all its
children and its in − 1 most recent ancestors; see Figure 6.

We will perform two nested inductions. The outer one is decreasing from k = n − 1 to 1,
and each inner one increasing from 1 to jk .

We start with k = n − 1. First, let un be the in-th most recent ancestor of v. The
node un has jn−1 children which are not ancestors of v. Call these un,1, . . . , un,jn−1 . Let
S1 := S0 ∪{un,1}, then ES1(un,1) is uniformly distributed on {1, . . . , |S1|}. As a consequence,
ES1(un,1) > ES1(v) with probability (jn +1)/(jn +1+ in). This probability can be expressed
as b0

b0+w0
, where b0 is the number of vertices u in S0 such that ES(u) ≥ ES(v) and w0 is the

number of vertices u in S0 such that ES(u) ≤ ES(v). Conditionally on the initial configura-
tion S0, this defines two random variables: let B1 be the number of vertices u in S1 satisfying
ES(u) ≥ ES(v) and W1 be the number of vertices u in S1 satisfying ES(u) ≤ ES(v).

Next, let S2 := S1 ∪ {un,2}, then ES2(un,2) is uniformly distributed on {1, . . . , |S2|}. Then,
conditionally on B1 and W1, one has ES2(un,2) ≥ ES2(v), with probability B1

B1+W1
. This pro-

cess is then continued by induction until Sjn−1 . After that in−1 white balls are added.
Continuing this process via a decreasing induction in k from n − 2 to 1 completes the

proof. �

Our final proposition requires first the following basic lemma.

LEMMA 4.19 (Order statistics comparisons). Let (Zi,1 ≤ i ≤ N − s − 1) be indepen-
dent, uniform random variables on [0,1] and let Z be a random variable on [0,1], indepen-
dent of each Zi , and distributed like Beta(a, s + 1 − a). Let I be the number of indices i ≥ 1
such that Zi < Z. Then one has

(37) E(I ) = (N − s − 1)a

s + 1

and

(38) E
(
I 2) = a(N − s − 1)((a + 1)N − (s + 2)a)

(s + 1)(s + 2)
.
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PROOF. The density of the beta distribution Z was already encountered in Equation (25);
Z is thus the ath order statistic of the uniform distribution. It is easily seen that for all 1 ≤
i < j ≤ N − s − 1,

P(Zi < Z) = a

s + 1
and P(Zi < Z,Zj < Z) = a(a + 1)

(s + 1)(s + 2)
.

Moreover, writing the random variable I as I = ∑N−s−1
i=1 1{Zi<Z}, we get

E(I ) =
N−s−1∑

i=1

P(Zi < Z) = (N − s − 1)a

s + 1
,

E
(
I 2) = ∑

1≤i �=j≤N−s−1

P(Zi < Z,Zj < Z) +
N−s−1∑

i=1

P(Zi < Z)

= (N − s − 1)(N − s − 2)
a(a + 1)

(s + 1)(s + 2)
+ (N − s − 1)a

s + 1
. �

In order to complete the proof of Theorem 4.2, we still have to relate |S| − ES(vm) to the
quantity that we are interested in, namely N − ET (vm).

PROPOSITION 4.20 (Same asymptotic densities). The random variables ES(vm) and
ET (vm) satisfy asymptotically the following link: for any s, t ∈ R+, one has

(39) lim
n→∞ P

(
s <

|S| − ES(vm)

nδ
< t

)
= lim

n→∞P
(
s <

2(p + �)

p�

N − ET (vm)

n1+δ
< t

)
.

PROOF. Let T ∗ = S ∪ S ′ be the graph obtained from T by removing the root. Then T ∗
is a poset where there is no order relation between any vertex of S ′ and any other vertex from
T ∗. Due to this independence, the order polytope of T ∗ is the Cartesian product of the order
polytope of S and [0,1]|S ′|. Now, let a > 0 be an integer and let Fa be the event that

|S| − ES(vm) = a.

In other words, a is the number of vertices in S with a label greater than ES(vm). Let I be
the random variable counting the number of vertices in S ′ with a label greater than ET (vm).
Then, conditionally on the event Fa , the random variable N − ET (vm) has the same law as
I + a. Indeed, N − ET (vm) counts the number of vertices in T with a label greater than
ET (vm). Note that I satisfies the conditions of Lemma 4.19 (with s := |S| therein), due to
the order polytope independence mentioned above.

Recall that |S| = �(n) while N = �(n2) (in fact, |S| = (p + �)n − 1 and |T | = N =
1
2p�n(n + 1)). Therefore, if (an)n≥1 is a sequence of integers tending to +∞ and such that
an = o(n), then thanks to (37), we have the estimates for the conditional expectation

(40) E(I |Fan) ∼ anN

|S| ∼ cnan,

with the constant c = p�
2(p+�)

and, thanks to (38), for the conditional variance

(41) var(I |Fan) = E
(
I 2|Fan

) − (
E(I |Fan)

)2 ∼ c2n2an.

Combining (40) and (41), the Bienaymé–Chebyshev inequality gives that (for any κ > 0):

(42) P
({∣∣∣∣ I

cnan

− 1
∣∣∣∣ > κ

}∣∣∣Fan

)
≤ 1 + εn

κ2an

,
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where εn is a sequence converging to 0 as n → ∞. Since we have

N − ET (vm)

nan

= I + an

nan

= I

nan

+ 1

n
,

the inequality (42) can be rewritten into

(43) P
({∣∣∣∣N − ET (vm)

cnan

− 1
∣∣∣∣ > κ

}∣∣∣Fan

)
≤ 1 + ε′

n

κ2an

,

where ε′
n is a sequence converging to 0 as n → ∞. In particular, for any t > 0 and 0 < δ < 1,

setting an = �tnδ� in (43) gives

(44) P
({∣∣∣∣N − ET (vm)

cn1+δ
− t

∣∣∣∣ > κt

}∣∣∣Fan

)
≤ 1 + o(1)

κ2tnδ
.

Finally, for all reals 0 < s < t , define the event

Fs,t = ⋃
snδ<a<tnδ

Fa =
{
s <

|S| − ES(vm)

nδ
< t

}
.

According to (44) (set κ = ε/t for any ε > 0), we have for n → ∞

P
({

s <
N − ET (vm)

cn1+δ
< t

}∣∣∣Fs,t

)
→ 1.

Thus, conditioning on the complementary event F̄s,t , we have

(45) lim
n→∞P

({
s <

N − ET (vm)

cn1+δ
< t

}
∩ F̄s,t

)
= 0,

whereas conditioning on Fs,t gives

(46) lim
n→∞ P

({
s <

N − ET (vm)

cn1+δ
< t

}
∩ Fs,t

)
= lim

n→∞P
(
s <

|S| − ES(vm)

nδ
< t

)
.

Summing (45) and (46) leads to (39). �

In summary, in this section we have proven that the four following quantities have asymp-
totically the same distribution:

(47)

2

p�

N − EY(v)

n1+δ
= 2

p�

N − ET (vm)

n1+δ
Prop. 4.9 (density method)

∼ 1

p + �

|S| − ES(vm)

nδ
Prop. 4.20 (order statistics)

= 1

p + �

B(n−1)p

nδ
. Prop. 4.17 (Pólya urn)

In conjunction with Theorem 1.6 proven via analytic combinatorics methods, this implies that
the four quantities in (47) converge in law to the distribution GenGammaProd(p, �, b0,w0),
when δ = p/(p + �). This is exactly the statement of Theorem 4.2.

NOTA BENE. It should be stressed that the sequence of transformations in (47) is not a
bijection between Young tableaux and urns, it is only asymptotically that the corresponding
distributions are equal.
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The perspicacious reader would have noted that in the previous pages, we used several
small lemmas and propositions which were stated with slightly more generality than what was
a priori needed. In fact, this now allows us to state an even stronger version of Theorem 4.2.
(It would have been not unpedagogical to introduce it first: we think it would have been harder
for the reader to digest the different key steps/definitions/figures used in the proof.) In order
to state this generalization to any Young tableau with a more general periodic shape, we need
a slight extension of the shape λ

i1
1 · · ·λin

n introduced in Definition 4.5: we allow some of the
indices ik to be equal to zero, in which case there is no column of height λk .

DEFINITION 4.21 (Periodic tableau). For any tuple of nonnegative integers (�1, . . . , �p),
a tableau with periodic pattern shape (�1, . . . , �p;n) is a tableau with shape(

(np)�p(np − 1)�p−1 · · · (np − p + 1)�1
)

× ((
(n − 1)p

)�p · · · ((n − 1)p − p + 1
)�1

) × · · · × (
p�p · · ·1�1

)
.

A uniform random Young tableau with periodic pattern shape (�1, . . . , �p;n) is a uniform
random filling of a tableau with periodic pattern shape (�1, . . . , �p;n).

Let us put the previous pattern in words: we have a tableau made of n blocks, each of these
blocks consisting of p smaller blocks of length �p, . . . , �1, and the height decreases by 1
between each of these smaller blocks. This leads to a tableau length (�1 + · · · + �p)n, which
repeats periodically the same subshape along its hypotenuse.

Note that the triangular Young tableau of parameters (�,p,n) from Definition 4.1 corre-
sponds to Definition 4.21 for the (p + 1)-tuple (0, . . . ,0, �;n). In order to state our main
result in full generality, we extend the above defined Young tableau by additional rows from
below.

DEFINITION 4.22. Let b0,w0 > 0. A tableau of shape λ
i1
1 · · ·λin

n shifted by a block b
w0
0

is a tableau of shape (λ1 + b0)
i1 · · · (λn + b0)

inb
w0
0 .

We can now state the main theorem of this section.

THEOREM 4.23 (The distribution of the southeast entry in periodic Young tableaux).
Choose a uniform random Young tableau with periodic pattern shape (�1, . . . , �p;n) shifted
by a block b

w0
0 . Let N be its size, set � := �1 + · · · + �p and δ := p/(p + �). Let Xn be the

entry of the southeast corner. Then (N −Xn)/n1+δ converges in law to the same limiting dis-
tribution as the number of black balls in the periodic Young–Pólya urn with initial conditions
(b0,w0) and with replacement matrices Mi = ( 1 �i

0 1+�i

)
:

2

p�

N − Xn

n1+δ

L−→ Beta(b0,w0)

p+�−1∏
i=1

i �=�1+···+�j+j

with 1≤j≤p−1

GenGamma(b0 + w0 + i, p + �).

PROOF. One just follows the same steps as in (47). The final proof holds verbatim, only
the equality N = p�

2 n(n + 1) has to be replaced by an asymptotic N ∼ pl
2 n, which is anyway

the only information that is used. One then concludes via Theorem 3.8. �

In the next section, we discuss some consequences of our results in the context of limit
shapes of random Young tableaux.
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5. Random Young tableaux and random surfaces. There is a vast and fascinating lit-
erature related to the asymptotics of Young tableaux when their shape is free, but the number
of cells is going to infinity: it even originates from the considerations of Erdős, Szekeres and
Ulam on longest increasing subsequences in permutations (see [2, 81] for a nice presentation
of these fascinating aspects). There algebraic combinatorics and variational calculus appear
to play a key rôle, as became obvious with the seminal works of Vershik and Kerov, Logan
and Shepp [60, 91]. The asymptotics of Young tableaux when the shape is constrained is
harder to handle, and this section tackles some of these aspects.

5.1. Random surfaces. Figure 7 illustrates some known results and some conjectures on
“the continuous” limit of Young tableaux (see also the notion of continual Young tableaux
in [52]). Let us now explain a little bit what is summarized by this figure, which, in fact,
refers to different levels of renormalization in order to catch the right fluctuations. It should
also be pinpointed that some results are established under the Plancherel distribution, while
some others are established under the uniform distribution (like in the present work).

First, our Theorem 4.2 can be seen as a result on random surfaces arising from Young
tableaux with a fixed shape. Let us be more specific. Consider a fixed rectangular triangle Tr
where the size of the edges meeting at the right angle are p and q , respectively, where p

and q are integers. One can approximate Tr by a sequence of tableaux (Yn)n≥0 of the same
form as Y in Section 4 where the size of the sides meeting at the right angle are pn and qn.

For each of these tableaux, one can pick a random standard filling and one can interpret it
as a random discretized surface. More precisely, if 0 ≤ x ≤ p and 0 ≤ y ≤ q are two reals and
if the entry of the cell (�xn�, �yn�) is z, then we set fn(x, y) := 2z/(pqn2). Thereby, we con-
struct a random function fn : Tr → [0,1] which is discontinuous but it is to be expected that,
in the limit, the functions fn converge in probability to a deterministic, continuous function f

(see Figure 8). Intuitively, for every point (x, y) on the hypotenuse, one will have f (x, y) = 1
and this is the case in particular for the southeast corner, that is, the point (p,0). Then one
can view Theorem 4.2 as a result on the fluctuations of the random quantity fn(p,0) away
from its deterministic limit, which is 1.

As a matter of fact, the convergence of fn to f has only been studied when the shape of
the tableau is fixed. The convergence toward a limiting surface was first proven when the

FIG. 7. Known and conjectured limit laws of random Young tableaux. Would it one day lead to a nice notion of
“continuous Young tableau”?
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FIG. 8. Random generation of Young tableaux, seen as random surfaces (the colours correspond to level lines):
• top: triangular Young tableaux (size 60 × 60, seen as histogram, and 200 × 200),
• bottom: rectangular and triangular Young tableaux (400 × 200 and 410 × 20).

If one watches such surfaces from above, then one sees exactly the triangular/rectangular shapes, but one loses the
3D effect. The images are generated via our own Maple package available at https:// lipn.fr/~cb/YoungTableaux,
relying on a variant of the hook-length walk of [40].

limit shape is a finite union of rectangles; see Biane [13]. There the limiting surface can be
interpreted in terms of characters of the symmetric group and free probability but this leads
to complicated computations from which it is difficult to extract explicit expressions.

For rectangular Young tableaux, the limiting surface is described more precisely by Pittel
and Romik [73]. A limiting surface also exists for staircase tableaux: it can be obtained by tak-
ing the limiting surface of a square tableau and cutting it along the diagonal; see [4, 59]. This
idea does not work for rectangular (nonsquare) Young tableaux: if one cuts such tableaux
along the diagonal, one does not get the limiting surface of triangular Young tableaux (the
hypotenuse would have been the level line 1, but the diagonal is in fact not even a level line,
as visible in Figure 8 and proven in [73]).

Apart from the particular cases mentioned above, convergence results for surfaces arising
from Young tableau seem to be lacking. There are also very few results about the fluctuations
away from the limiting surface. For rectangular shapes, these fluctuations were studied by
Marchal [63]: they are Gaussian in the southeast and northwest corner, while the fluctuations
on each edge follow a Tracy–Widom limit law, at least when the rectangle is a square (for
general rectangles, there remain some technicalities, although the expected behaviour is the
same). For staircase triangles, Gorin and Rahman [37] use a sorting network representation
to obtain asymptotic formulas using double integrals. In particular, they find the limit law on
the edge. Their approach may be generalizable to other triangular shapes. Also, instead of
renormalized limits, one may be interested in local limits, there are then nice links with the
famous jeu de taquin [86] and characters of symmetric groups [14].

There is another framework where random surfaces naturally arise, namely random tilings
and related structures (see, e.g., [85]). Indeed, one can associate a height function with a
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tiling: this gives an interpretation as a surface. In this framework, there are results on the
fluctuations of these surfaces, which are similar to the ones on Young tableaux. In the case
of the Aztec diamond shape, Johansson and Nordenstam [48] proved that the fluctuations of
the Artic curve are related to eigenvalues of GUE minors (and are therefore Gaussian near
the places where the curve is touching the edges, whereas they are Tracy–Widomian when
the curve is far away from the edges). Note that this gives the same limit laws as for the
Artic curve of a TASEP jump process associated to rectangular Young tableaux [63, 80].
Similar results were also obtained for pyramid partitions [17, 18]. Moreover, in other models
of lozenge tilings, it is proven that for some singular points, other limit laws appear: they are
called cusp-Airy distributions, and are related to the Airy kernel [25]. It has to be noticed
that, up to our knowledge, the generalized gamma distributions, which appear in our results,
have not been found in the framework of random tilings.

A major challenge would be to capture the fluctuations of the surface in the interior of the
domain. For Young tableaux, it is reasonable to conjecture that these fluctuations could be
similar to those observed for random tilings: in this framework, Kenyon [51] and Petrov [72]
proved that the fluctuations are given by the Gaussian free field (see also [20]).

Finally, a dual question would be: in which cell does a given entry lie in a random filling
of the tableau? In the case of triangular shapes like ours, if we look at the largest entry, we
get the following.

PROPOSITION 5.1 (Limit law for the location of the maximum in a triangular Young
tableau). Choose a uniform random triangular Young tableau of parameters (�,p,n) (see
Definition 4.1). Let Posin ∈ {1, . . . , �n} be the x-coordinate of the cell containing the largest
entry. Then one has

Posin
�n

L−→ Arcsine(δ) where δ := p/(p + �).

PROOF. Remove from the Young tableau Y the cell containing its largest entry, and
call Y∗ this new tableau. Then, using the hook length formula, the probability that the largest
entry of Y is situated at x-coordinate k� is

P(Posin = k�) =
∏

c∈Y∗ hookY∗(c)∏
c∈Y hookY(c)

= ∏
c∈Y∗with (x-coord of c) = k�

or (y-coord of c) = (n − k + 1)p

hookY∗(c)

1 + hookY∗(c)
.

An easy computation then gives (with δ = p/(p + �)):

P(Posin = k�) ∼ (k/n)δ−1(1 − k/n)−δ

�(δ)�(1 − δ)

1

n
.

Here, one recognizes an instance of the generalized arcsine law on [0,1] with density

xδ−1(1 − x)−δ

�(δ)�(1 − δ)
. �

So, if we compare models with different p and �, then the largest entry will have the
tendency to be on the top of the hypotenuse when � is much larger than p, while it will be
on its bottom if p is much larger than � (and on the bottom or the top with equally high
probabilities when p ≈ �); see Figure 8. This is in sharp contrast with the case of an n ×
n square tableau where, for t ∈ (0,1), the cell containing the entry tn2 is asymptotically
distributed according to the Wigner semicircle law on its level line; see [73]. We also refer
to Romik [79] for further discussions on Young tableau landscapes and to Morales, Pak and
Panova [66] for recent results on skew-shaped tableaux.
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FIG. 9. Different discrete models converge toward a tableau of slope −p/�. As usual for problems related to
urns, many statistics have a sensibility to the initial conditions; it is therefore nice that some universality holds:
the distributions (depending on p, � and the “zoom factor” K) of our statistics have similar tails compared to
Mittag-Leffler distributions.

5.2. From microscopic to macroscopic models: Universality of the tails. As mentioned in
the previous section, we can approximate a triangle of slope −p/� by a tableau of parameters
(�,p,n) but what happens if we approximate it by a tableau of parameters (K�,Kp,n) for
any “zoom factor” K ∈ N? (See Figure 9.) In the first case, we obtain as a limit law in
the southeast corner GenGammaProd(p, �,p, �) whereas in the second case, we get the law
GenGammaProd(Kp,K�,Kp,K�) and these two distributions are different.

In fact, we could even imagine more general periodic patterns as in Theorem 4.23 cor-
responding to the same macroscopic object. All these models lead to different asymptotic
distributions. However, we partially have some universal phenomenon in the sense that, al-
though these limit distributions are different, they are closely related by the fact that their
tails are similar to the tail of a Mittag-Leffler distribution.

DEFINITION 5.2 (Similar tails). One says that two random variables X and Y have sim-
ilar tails and one writes X � Y if

log E(Xr)
E(Y r )

r
→ 0 as r → ∞.

This definition has the advantage to induce an equivalence relation between random vari-
ables which have moments of all orders: if X, Y are in the same equivalence class, then for
every ε ∈ (0,1), for r large enough, one has

E
((

(1 − ε)X
)r) ≤ E

(
Y r) ≤ E

((
(1 + ε)X

)r)
.

In the proof of the following theorem, we give much finer asymptotics than the above bounds.

THEOREM 5.3 (Similarity with the tail of a Mittag-Leffler distribution). Let X be a ran-
dom variable distributed as GenGammaProd([�1, . . . , �p];b0,w0) and put � = �1 +· · ·+ �p ,
δ = p/(p + �). Let Y := ML(δ, β) (where ML is the Mittag-Leffler distribution defined as
in (48) hereafter, with any β > −δ). Then X and δpδ−1Y have similar tails in the sense of
Definition 5.2.

PROOF. First, recall from, for example, [36], page 8, that the Mittag-Leffler distribution
ML(α,β) (where 0 < α < 1 and β > −α) is determined by its moments. Its r th moment has
two equally useful closed forms:

mML,r = �(β)�(β/α + r)

�(β/α)�(β + αr)
= �(β + 1)�(β/α + r + 1)

�(β/α + 1)�(β + αr + 1)
.(48)

Now, we prove that, for a fixed α, the Mittag-Leffler distributions have similar tails. From the
Stirling’s approximation formula, we have

(49) log�(αr +β) = αr log(r)+ (
α log(α)−α

)
r +

(
β − 1

2

)
log(αr)+ log(2π)

2
+O

(
1

r

)
.
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Applying this to the moments (48) of the Mittag-Leffler distribution Y = ML(α,β), we get

log E
(
Y r) = (1 − α)r log(r) + (−α log(α) + α − 1

)
r +

(
β

α
− β

)
log(r) + O(1),(50)

and thus if one compares with another distribution Y ′ = ML(α,β ′), this leads to Y � Y ′.
Next, we prove that GenGammaProd distributions with the same δ have similar tails. The

moments of X = GenGammaProd([�1, . . . , �p];b0,w0) are given by formula (21). Using the
approximation (49), we get

log E
(
Xr) = (1 − δ)r log(r) + (1 − δ)

(
log

(
δ

p

)
− 1

)
r

+
(
b0 + s0δ + (1 + δ)(p − 1)

2
− δ

p

p−1∑
j=0

j∑
k=1

�k

)
log(r) + O(1).

(51)

Here, we see that in fact up to order O(r) only the slope δ and the period length p play a
rôle; it is only at order o(r) that b0, s0, and the �k really occur. Thus, if we now also consider
X′ = GenGammaProd([�′

1, . . . , �
′
p′ ];b′

0,w
′
0), we directly deduce X � (

p
p′ )δ−1X′.

Finally, we can compare the moments of X (any GenGammaProd distribution associated to
a slope δ and period p) and Y (any Mittag-Leffler distribution with α := δ) via formulas (50)
and (51), this leads to X � δpδ−1Y . �

REMARK 5.4. The tails of this distribution are universal: they depend only on the slope
δ and the period length p. They depend neither on the initial conditions b0 and w0, nor on
further details of the geometry of the periodic pattern (the �i ’s).

One more universal property which holds for some families of urn distributions is that they
possess sub-Gaussian tails, a notion introduced by Kahane in [49] (see also [56] for some urn
models exhibiting this behaviour).

DEFINITION 5.5. A random variable X has sub-Gaussian tails if there exist two con-
stants c,C > 0, such that

P
(|X| ≥ t

) ≤ Ce−ct2
, t > 0.

PROPOSITION 5.6. The GenGammaProd(p, �, b0,w0) distributions have subGaussian
tails if and only if p ≥ �.

PROOF. The GenGammaProd distribution, as defined in equation (1), has moments given
in equation (20). As derived thereafter, it has moments asymptotically equivalent to

(mr)
1/r = (

(p + �)e
)(δ−1)

r(1−δ)(1 + o(1)
)
.

By [49], Proposition 9, a random variable X has sub-Gaussian tails if and only if there exists
a constant K > 0 such that for all r > 0 we have (E(Xr))1/r ≤ K

√
r . As δ = p

p+�
the claim

follows. �

Another useful notion which helps to gain insight into the limit of Young tableaux is the
notion of a level line: let Cv be the curve separating the cells with an entry bigger than v and
the cells with an entry smaller than v (and to get a continuous curve, one follows the border
of the Young tableau if needed; see Figure 10).
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FIG. 10. The level line (in red) of the southeast corner Xn: it separates all the entries smaller than Xn from
the other ones. On the left: one example with the level line of Xn = 42. One the right: the level line of Xn, for a
very large Young tableau of size N of triangular shape. The area between this level line and the hypotenuse is the
quantity N − Xn analysed in Section 4.

When n → ∞, one may ask whether the level line CXn converges in distribution to some
limiting random curve C. If so, the limit laws we computed in Theorem 4.2 would give the
(renormalized) area between the macroscopic curve C and the hypotenuse. In particular, the
law of C would depend on the microscopic details of the model, since we find for the renor-
malized area a whole family of distributions GenGammaProd(p, �, b0,w0) depending on 4
parameters. Besides, note that we could imagine even more general microscopic models for
the same macroscopic triangle. For instance, for a slope −1, starting from the southeast cor-
ner we could have a periodic pattern (1 step north, 2 steps west, 2 steps north, 1 step west).
All shapes leading to the same slope are covered by Theorem 3.8 (see also Example 3.9), and
our method then gives similar, but distinct, limit laws. Such models thus yield another limit
law for the area, and thus another limiting random curve C.

Note that the renormalized area between C and the hypotenuse does not have the same dis-
tribution as the area below the positive part of a Brownian meander [46]. Funnily, Brownian
motion theory is cocking a snook at us: another one of Janson’s papers [47] studies the area
below curves which are related to the Brownian supremum process and, here, one observes
more similarities with our problem, as the moments of the corresponding distribution involve
the gamma function. However, these moments grow faster than in the limit laws found in
Theorem 4.2. It is widely open if there is some framework unifying all these points of view.

5.3. Factorizations of gamma distributions. With respect to the asymptotic landscape of
random Young tableaux, let us add one last result: our results on the southeast corner directly
imply similar results on the northwest corner. In particular, the critical exponent for the upper
left corner is 1 − δ. In fact, it is a nice surprise that there is even more structure: any periodic
pattern shape is naturally associated with a family of patterns such that the limit laws of the
southeast corners of the corresponding Young tableaux are related to each other.

First, let us describe the periodic pattern via a shape path (i1, j1; . . . ; im, jm): it starts at
the northwest corner of the tableau described by the pattern with i1 right steps, followed by
j1 down steps, etc.; see Figure 11. Then its cyclic shift is defined by (jm, i1; . . . ; jm−1, im).

Furthermore, this notion is equivalent to Definition 4.21 of a periodic tableau via the fol-
lowing formula:

(�1, . . . , �p) = (0, . . . ,0, jm︸ ︷︷ ︸
im elements

,0, . . . ,0, jm−1︸ ︷︷ ︸
im−1 elements

, . . . ,0, . . . ,0, j1︸ ︷︷ ︸
i1 elements

).

Then the cyclic shift is given by(
�′

1, . . . , �
′
p′
) := (0, . . . ,0, im︸ ︷︷ ︸

jm−1 elements

, . . . ,0, . . . ,0, i2︸ ︷︷ ︸
j1 elements

,0, . . . ,0, i1︸ ︷︷ ︸
jm elements

).
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FIG. 11. Example of a cyclic shift on a periodic pattern. On the left: one sees the shape path (3,2;1,3;2,2;3,1), it
corresponds to the pattern (�1, . . . , �8) = (3,0,2,0,0,1,0,3) (as sequence of consecutive heights, from right to
left). On the right: one sees its cyclic shift, which corresponds to the pattern (�′

1, . . . , �′
9) = (0,0,2,0,3,2,0,0,1).

In grey, we see the size of the subrectangles described by the shape path, that is, the kth rectangle has size ik × jk .

In particular, we have p′ = � and �′ = p.
Appending n copies of the shape path (i1, j1; . . . ; im, jm) to each other corresponds to n

repetitions of the pattern and, therefore, gives a periodic tableau. Note that this new sequence
is then equal to the shape of its associated tree, similarly to Figure 3 and in accordance with
Definition 4.6.

PROPOSITION 5.7 (Factorization of gamma distributions). Let two sequences (�1, . . . , �p)

and (�′
1, . . . , �

′
p′) be defined as above and let jm be the smallest index such that �jm > 0. Let

b0, w0 be two positive integers, and Y and Y ′ be independent random variables with respec-
tive distribution GenGammaProd([�1, . . . , �p];b0,w0) and GenGammaProd([�′

1, . . . , �
′
p′ ];

b0 + w0, jm) from Theorem 3.8. Then we have the factorization:

(52) YY ′ L= 1

p + �
�(b0).

PROOF. The equality in distribution is obtained by checking the equality of the r th
moments and then applying Carleman’s theorem: using formula (20) for the moments of
GenGammaProd indeed leads (after simplification via the Gauss multiplication formula on
the gamma function) to E(Y r)E((Y ′)r ) = 1

(p+�)r
E(Zr), where Z is a random variable dis-

tributed according to �(b0). �

REMARK 5.8 (A duality between corners). One case of special interest is the case of
Young tableaux having the mirror symmetry (�jm, . . . , �p) = (�p, . . . , �jm), where jm is again
the smallest index such that �jm > 0. Indeed, Y and Y ′ then correspond to the limit laws for
the southeast (resp., northwest) corner of the same tableau. In this case, we can think of (52)
as expressing a kind of duality between the corners of the tableau.

Similar factorizations of the exponential law, which is a particular case of the gamma
distribution, have appeared recently in relation with functionals of Lévy processes, following
[12]. These formulas are also some probabilistic echoes of identities satisfied by the gamma
function.
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We can mention one last result in this direction: indeed, Theorem 4.23 used for the Young
tableau with periodic pattern shape (�1, . . . , �p;2n) and the (same) Young tableau with peri-
odic pattern shape (�1, . . . , �p, �1, . . . , �p;n) leads to two different closed forms of the same
limit distribution, and one also gets other closed forms if one repeats m times the pattern
(�1, . . . , �p). For example, if one takes all the �′

is equal to 1, this gives

GenGamma(3,2) = √
2 GenGamma(3,4)GenGamma(5,4),

and, more generally,

GenGamma(s0 + 1,2) = √
m

m∏
k=1

GenGamma(s0 + 2k − 1,2m).

Using the fact that GenGamma(a,1/b) = �(ab)b, we can rephrase this identity in terms of
powers of � distributions (the notation �, in bold, stands for the distribution, while � stands
for the function; below, we have only occurrences in bold):

�

(
s0 + 1

2

) 1
2 = √

m

m∏
k=1

�

(
s0 + 2k − 1

2m

) 1
2m

.

With x := s0+1
2m

, one gets the following formula equivalent to the Gauss multiplication for-
mula:

�(mx)m = mm
m∏

k=1

�

(
x + k − 1

m

)
.

Choosing other values for the �i ’s leads to more identities:

p+�−1∏
i=1

i �=�1+···+�j+j

with 1≤j≤p−1

GenGamma(s0 + i, p + �)

= m1−δ
m(p+�)−1∏

i=1
i �=�′

1+···+�′
j+j

with 1≤j≤mp−1

GenGamma
(
s0 + i,m(p + �)

)
.

It is pleasant that it is possible to reverse engineer such identities, and thus obtain a proba-
bilistic proof of the Gauss multiplication formula (see [24]).

This ends our journey in the realm of urns and Young tableaux; in the next final section,
we conclude with a few words on possible extensions of the methods used in this article.

A method is a trick used twice.
George Pólya (1887–1985)

After this the reader who wishes to do so will have no difficulty in developing the theory of urns12

when they are regarded as differential operators.
Alfred Young (1873–1940)

12The reader is invited to compare with the original citations of Pólya and Young in [75], page 208, and [38],
page 366.
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6. Conclusion and further work. In this article, we introduced Pólya urns with periodic
replacements and showed that they can be exactly solved with generating function techniques.
The initial partial differential equation encoding their dynamics leads to D-finite moment
generating functions, which we identify as the signature of a generalized gamma product
distribution. It is also pleasant that it finds applications for some statistics of Young tableaux.

Many extensions of this work are possible:

• The density method which we introduced in [10, 64] can be used to analyse other combi-
natorial structures, like we did already on permutations, trees, Young tableaux and Young
tableaux with local decreases. In fact, the idea to use integral representations of order
polytope volumes in order to enumerate poset structures is quite natural, and was used, for
example, in [11, 28, 69]. Our approach, which uses this idea while following at the same
time the densities of some parameter, allows us to solve both enumeration and random
generation. We hope that some readers will give it a try on their favourite poset structure.

• In [31], Flajolet et al. analyse an urn model which leads to a remarkably simple factor-
ization for the history generating function; see Theorem 1 therein and also Theorem 1 in
[30]. This greatly helps them to perform the asymptotic analysis via analytic combina-
torics tools. Our model does not possess such a factorization; this makes the proofs more
involved. It is nice that our new approach remains generic and can be applied to more
general periodic urn models (with weights, negative entries, random entries, unbalanced
schemes, triangular urns with more colours, multiple drawings, . . . ). It is a full programme
to investigate these variants, in order to get a better characterization of the zoo of special
functions (combination of generalized hypergeometric, etc.) and distributions occurring
for the different models.

• There exists a theory of elimination for partial differential equations, chiefly developed in
the 1920s by Janet, Riquier and Thomas (see, e.g., [16, 35] for modern approaches). In our
case, these approaches however fail to get the linear ordinary differential equations satisfied
by our generating functions. It is thus an interesting challenge for computer algebra to get
an efficient algorithm taking as input the PDE and its boundary conditions, and giving as
output the D-finite equation (if any). Is it possible to extend holonomy theory beyond its
apparent linear frontiers? (See the last part of [71].) Also, as an extension of Remark 2.5, it
is natural to ask: is it possible to extend the work of Flajolet and Lafforgue to the full class
of D-finite equations, thus exhibiting new universal limit laws like we did here?

• Our approach can also be used to analyse the fluctuations of further cells in a random
Young tableau. It remains a challenge to understand the full asymptotic landscape of sur-
faces associated with random Young tableaux, even if it could be globally expected that
they behave like a Gaussian free field, like many other random surfaces [51]. Understand-
ing the fluctuations and the universality of the critical exponent at the corner could help
to get a more global picture. The Arctic circle phenomenon (see [80]) and the study of
the level lines C in random Young tableaux and their possible limits in distribution, as
discussed in Section 5.2, seems to be an interesting but very challenging problem.
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paste methods, factorizations, the kernel method, etc. For this purpose, we focus on the natural
model of directed lattice paths (also called generalized Dyck paths). We introduce the notion of
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1 Introduction and definitions

The recursive nature of lattice paths makes them amenable to context-free grammar tech-
niques; their geometric nature makes them amenable to cut-and-paste bijections; their
step-by-step nature makes them amenable to functional equations solvable by the kernel
method (see e.g. [3–5,8–11,16,30,32,35] for many applications of these ideas). We present in
a unified way some consequences of these observations in Section 2 on context-free grammars
(where we introduce the fruitful notion of prime walks) and in Section 3 on Spitzer and
Wiener–Hopf identities. Additionally, we give new connections with symmetric functions in
Section 4, see Table 2. All of this allows us to greatly extend the enumerative formulas and
asymptotics given in [4], and gives us access to some limit laws, as shown in Section 5.

I Definition 1 (Jumps and lattice paths). A step set S is a finite subset of Z. The elements of
S are called steps or jumps. An n-step lattice path or walk ω is a sequence pj1, . . . , jnq P Sn.
The length |ω| of this lattice path is its number n of jumps.

Such sequences are one-dimensional objects. Geometrically, they can be interpreted as two-
dimensional objects which justifies the name lattice path. Indeed, pj1, . . . , jnq may be seen as
a sequence of points pω0, ω1, . . . , ωnq, where ω0 is the starting point and ωi ´ ωi´1 “ p1, jiq
for i “ 1, . . . , n. Except when mentioned differently, the starting point ω0 of these lattice
paths is p0, 0q.

Let σk :“
řk
i“1 ji be the partial sum of the first k steps of the walk ω. We define the

height or maximum of ω as maxk σk, and the final altitude of ω as σn. For example, the first
walk in Table 1 has height 3 and final altitude 1. Table 1 and Figure 1 are also illustrating
the four following classical types of paths:

I Definition 2 (Excursions, arches, meanders, bridges).
Excursions are paths never going below the x-axis and ending on the x-axis;
Arches are excursions that only touch the x-axis twice: at the beginning and at the end;
Meanders are prefixes of excursions, i.e., paths never going below the x-axis;
Bridges are paths ending on the x-axis (allowed to cross the x-axis any number of times).

Let c :“ ´minS be the maximal negative step, and let d :“ max S be the maximal
positive step. To avoid trivial cases we assume minS ă 0 ă max S. Furthermore we associate
to each step i P S a weight si. These weights si are typically real numbers, like probabilities
or non-negative integers encoding the multiplicity of each jump. The weight of a lattice path
is the product of the weights of its steps. Then we associate to this set of steps the following
step polynomial:

Spuq “
d
ÿ

i“´c

siu
i.

The generating functions of directed lattice paths can be expressed in terms of the roots
of the kernel equation

1´ zSpuq “ 0. (1)

More precisely, this equation has c` d solutions in u. The small roots uipzq, for i “ 1, . . . , c,
are the c solutions with the property uipzq „ 0 for z „ 0. The remaining d solutions are
called large roots as they satisfy |vipzq| „ `8 for z „ 0. The generating functions of the four
classical types of lattice paths introduced above are shown in Table 1.
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Table 1 The four types of paths: walks, bridges, meanders and excursions, and the corresponding
generating functions for directed lattice paths. The functions uipzq for i “ 1, . . . , c are the roots of
the kernel equation 1´ zSpuq “ 0 such that limz“0 uipzq “ 0.

ending anywhere ending at 0

unconstrained
(on Z)

walk/path (W) bridge (B)
W pzq “ 1

1´zSp1q Bpzq “ z
c
ř

i“1

u1ipzq

uipzq

constrained
(on Z)

meander (M) excursion (E)
Mpzq “ 1

1´zSp1q

c
ś

i“1
p1´ uipzqq Epzq “ p´1qc´1

s´cz

c
ś

i“1
uipzq

These results follow from the expression for the bivariate generating function Mpz, uq of
meanders. Indeed, let mn,k be the number of meanders of length n going from altitude 0 to
altitude k, then we have

Mpz, uq “
ÿ

k

Mkpzqu
k “

ÿ

n,kě0
mn,kz

nuk “

śc
i“1pu´ uipzqq

ucp1´ zSpuqq . (2)

This last formula is obtained by the kernel method: this method starts with the func-
tional equation which mimics the recursive definition of meanders, namely Mpz, uq “

1 ` zSpuqMpz, uq ´ tuă0uzSpuqMpz, uq (where tuă0u extracts the monomials of negative
degree in u, as one does not want to allow a jump going below the x-axis). Note that
tuă0uSpuqMpz, uq is a linear combination (with coefficients in u and z) of c unknowns,
namely M0pzq, . . . ,Mc´1pzq. Then, substituting u “ uipzq (each of the c small roots of (1))
into this system leads to the closed form (2). This also directly gives the generating function
of excursions Epzq :“Mpz, 0q and meanders Mpzq :“Mpz, 1q. The generating function for
bridges follows from the link given in Theorem 8 hereafter. See [4, 10] for more details.

It should be stressed that the closed forms of Table 1 grant easy access to the asymptotics
of all these classes of paths after the localization of the dominant singularities:

I Theorem 3 (Radius of convergence of excursions, bridges, and meanders [4]). The radius of
convergence of excursions Epzq :“Mpz, 0q and of bridges Bpzq is given by ρ “ 1{Spτq, where
τ is the smallest positive real number such that S1pτq “ 0. For meanders Mpzq :“Mpz, 1q,
the radius depends on the drift δ :“ S1p1q: It is ρ if δ ă 0 and it is 1{Sp1q if δ ě 0.

We shall make use of all these facts in Section 5 on asympotitcs and limit laws, but,
before to do so, we now present several combinatorial decompositions which will be the key
to get these new asymptotic results.

AofA 2020
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2 Prime walks and context-free grammars

Context-free grammars are a powerful tool to tackle problems related to directed lattice
paths (we refer to [27] for a detailed presentation of grammar techniques). In this section,
we introduce some key families of lattice paths (generalized arches, prime walks), which will
also be used in the next section. Illustrating the philosophy of “latticepathology”, these new
families allow short concise visual proofs based on lattice path surgery: we give grammars
generating the most fundamental classes of lattice paths (excursions, bridges, meanders);
this generalizes and unifies results from [11,16,32,35].

All our grammars are non-ambiguous: there is only one way to generate each lattice path.
They require the introduction of two classes of paths: generalized arches and prime walks.

I Definition 4 (Generalized arches). An arch from i to j is a walk starting at altitude i
ending at altitude j and staying always strictly above altitude maxpi, jq except for its first
and final position; see Figure 1.

An important consequence of this definition is that generalized arches cannot have an
excursion as left or right factor. Note that an arch from i to j can be considered as an arch
from 0 to j ´ i. This justifies that we now focus on arches starting at 0. Let Ak be the
class of arches from 0 to k; see Figure 1. Following the tradition of several authors, we refer
to arches (omitting the start and end point) as arches from 0 to 0, see e.g. [4]. Thus, an
excursion is clearly a sequence of arches.

I Definition 5 (Prime walks). Given a set of steps S, with d “ max S, the set P of prime
walks is defined as the following sets of arches

P “
d
ď

k“0
Ak.

These prime walks are the key to get short proofs for the decomposition of several constrained
classes of paths (Section 3) and for meanders (Theorem 6). Note that these decompositions
hold for any set of jumps: it is straightforward to extend them to multiplicities (jumps with
different colours) or even to an infinite set of jumps.

I Theorem 6 (The universal context-free grammar for directed lattice paths). Meanders and
excursions are generated by the following grammar:

M Ñ ε` PM (meanders),
E Ñ ε`A0E (excursions),

which can be rephrased as “meanders are sequences of prime walks”: M “ Seq
´

řd
k“0Ak

¯

and “excursions are sequences of arches”: E “ SeqpA0q, where the arches Ak from 0 to k
are generated by

Ak Ñ k `
d
ÿ

j“k`1
Aj E Ak´j parches for k ě 0q,

Ak Ñ k `
k´1
ÿ

j“´c

Ak´j E Aj parches for k ă 0q,

with the convention that, in these two rules, the part Ak Ñ k is omitted whenever k R S.
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5 −3 1 0 −2 0 2 1 −3 1 −1 4 0 −5 3 −2 −1

A0 E
A1 E A−1 A0

A2 A−1 A0 E A4 E A−5 A1 A−1
A5 A−3 A1 E A−2 A0 E A0 A3 A−2

A0 A2 A−2 A0

A1 A−3 A1 A−1

Figure 1 Example of our non-ambiguous decomposition of an excursion into generalized arches.
Similar decompositions hold for the factorization of meanders into prime walks.

Proof. Let us start with arches Ak from 0 to k ě 0. (The results for A´k follow analogously.)
For such arches of length ą 1, we cut them at the first and the last time their minimal
altitude (not taking end points into account) is attained. The first factor goes from 0 to j
and stays in-between always strictly above j, and therefore is given by Aj . The second factor
is a (possibly empty) excursion. The last factor is an arch from j to k given by Ak´j . This
gives Ak “ AjEAk´j . From this, it is immediate to get the grammar for excursions, as they
are a sequence of arches A0; thus E “ ε`A0E .

Now take any meander and cut it at the last time it touches altitude 0. The first part is
a (possibly empty) sequence of arches. We cut the second part at the first point where its
minimal altitude ą 0 is attained. The remaining part is again a meander. This gives the
factorization M “ E `řd

k“1 E AkM, which is in turn equivalent to M “ seqpPq.
All these decompositions are clearly 1-to-1 correspondences, as exemplified in Figure 1. J

We end this section with the grammar of bridges. It uses another class of walks: the
negative arches from 0 to k, denoted by sAk. These stay always strictly below minp0, kq.
Their grammar is just the mirror of the one for Ak given in Theorem 6.

I Theorem 7. Bridges B “ B0 are generated by the following grammar:

B0 Ñ ε`
ÿ

kPS
kB´k,

where Bk stands for the “bridges ending at k”, i.e. walks on Z from 0 to k, given by

Bk Ñ

0
ÿ

j“´c

Aj Bk´j pif k ą 0q,

Bk Ñ

d
ÿ

j“0

sAj Bk´j pif k ă 0q.

AofA 2020
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In the next section we present some applications of our decompositions (obtained above in
the framework of the non-commutative world of words) to famous identities from probability
theory (stated below in the framework of the commutative world of generating functions).

3 Latticepathology and surgery of paths

The decompositions of lattice paths mentioned in the previous section find application in the
bivariate versions of the Spitzer/Sparre Andersen1/Wiener–Hopf formulas [2,25,26,34,37].
It gives for free elegant short proofs for these fundamental results which were definitively
missing in [4], neatly illustrating the latticepathology philosophy!

I Theorem 8 (Bivariate version of Spitzer/Sparre Andersen’s identities). The generating
function W`pz, uq “

ř

n w
`
n puqz

n of walks on Z ending at an altitude ě 0 and the generating
function Mpz, uq “

ř

nmnpuqz
n of meanders (where u encodes the final altitude and z

encodes the length of the lattice path) are related by the formulas

W`pz, uq “ 1` zM
1pz, uq

Mpz, uq
or, equivalently, (3a)

Mpz, uq “ exp
ˆ
ż z

0

W`pt, uq ´ 1
t

dt

˙

“ exp
˜

ÿ

ně1

w`n puq

n
tn

¸

. (3b)

Proof (Sketch). We give a bijective proof. It consists in factorizing any non-empty walk
ω ending at an altitude ě 0 into 3 factors: ω “ φ1.m.φ2 where m is the longest meander
starting at the first minimum of the walk and such that φ2.φ1 is a prime walk (pointed, in
order to remember where to split it); see Figure 2. The fact that this factorization exists
and is unique follows from the positivity of ω and from the grammar for meanders from
Theorem 6. This decomposition directly keeps track of the last altitude of each of its factors:

W`pz, uq ´ 1 “Mpz, uqz
B

Bz

ˆ

1´ 1
Mpz, uq

˙

. J

I Remark 9 (Spitzer/Sparre Andersen’s identities for excursions and bridges). Extracting the
constant coefficient with respect to u in the above identities leads to the following links
between bridges and excursions (these specific identities were also proven in [4]).

Bpzq “ 1` Epzqz B
Bz

ˆ

1´ 1
Epzq

˙

“ 1` zE
1pzq

Epzq
or, equivalently, (4a)

Epzq “ exp
ˆ
ż z

0

Bptq ´ 1
t

dt

˙

“ exp
˜

ÿ

ně1

bn
n
tn

¸

. (4b)

Nota bene: Spitzer’s formula is often given as a variant of Formula (3b), stated in terms of
characteristic functions instead of generating functions, and also keeping track of the height of
the path (see e.g. [37,39,42]). More generally, in Brownian motion theory, path decompositions
are also useful for Vervaat transformations, quantile transforms [13, 33, 40], Ray–Knight
theorems for local times and Lamperti, Jeulin, Bougerol, Donati-Martin identities [1,7,15,28].

We now illustrate such approaches with one more important surgery of lattice paths. (This
requires the natural classes of positive and negative meanders, see Definition 12 hereafter.)

1 Funnily, in the literature, this identity of Erik Albrecht Sparre Andersen (Andersen is the family name)
is often called the “Sparre Andersen identity”, probably as he was often signing E. Sparre Andersen.
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φ1 φ2M(z, u)

W+(z, u)

Figure 2 The bijection at the heart of Spitzer/Sparre Andersen identity decomposes a walk
ω P W` into ω “ φ1.m.φ2, where the meander m P M starts at the first minimum of ω and ends at
the rightmost point such that φ2.φ1 ends at altitude ě 0 (and φ2.φ1 is thus a prime walk).

I Theorem 10 (Bivariate version of Wiener–Hopf formula). The bivariate generating functions
W`hpz, uq and W´hpz, uq of walks on Z with u marking the positive and negative height (not
the altitude!) are related to the bivariate generating functions M`pz, uq of positive meanders
and M´pz, uq of negative meanders (with u marking the final altitude, see Figure 3):

W`hpz, uq “M´pzqEpzqM`pz, uq “ ´
1
sdz

˜

c
ź

j“1

1
1´ ujpzq

¸˜

d
ź

`“1

1
u´ v`pzq

¸

,

W´hpz, uq “M´pz, uqEpzqM`pzq “ ´
1
sdz

˜

c
ź

j“1

1
1´ ujpzq{u

¸˜

d
ź

`“1

1
1´ v`pzq

¸

.

This Wiener–Hopf factorization W “M´EM` thus gives

M´pzq “
W pzq

Mpzq
“

c
ź

j“1

1
1´ ujpzq

and M`pzq “
Mpzq

Epzq
“

d
ź

`“1

1
1´ 1{v`pzq

.

Proof (Sketch). The proof follows from the decomposition illustrated in Figure 3. Cutting
at the first and last maxima of the walk gives the factorization W “M`EM´, where the
positive meander and the excursion are obtained after a 180o rotation, and it is thus clear
that the final altitude of this positive meander is the height of the initial walk. Similarly,
cutting the walk at its first and last minima gives the factorization W “M´EM`. J

4 Lattice paths and symmetric functions

Building on the quantities introduced in the previous sections, we now show that three
fundamental classes of symmetric polynomials evaluated at the small roots of the kernel have
a natural combinatorial interpretation in terms of directed lattice paths. En passant, this
also gives the generating function of generalized arches. For our main results see Table 2.
We first recall the definitions of these symmetric polynomials (see e.g. [38] for more on these
objects).

I Definition 11. The complete homogeneous symmetric polynomials hk of degree k in the d
variables x1, . . . , xd are defined as

hkpx1, . . . , xdq “
ÿ

1ďi1ď¨¨¨ďikďd
xi1 ¨ ¨ ¨xik , thus

ÿ

kě0
hkpx1, . . . , xdqu

k “

d
ź

i“1

1
1´ uxi

. (5)

AofA 2020
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W (z, u)

M−(z, u) M+(z)

{

M+(z, u)

W (z, u)

M−(z)

positive height for W (z, u)
= final altitude for M+(z, u)

negative height for W (z, u)
= final altitude for M−(z, u)

E(z)

E(z)

Figure 3 The Wiener–Hopf decomposition of a walk: W “ M´EM`, a product of a negative
meander, an excursion, and a positive meander. See e.g. [25] for the importance of this factorization
for lattice path enumeration. It offers a link between two important parameters (height and final
altitude): the proof uses a 180o rotation of some of the factors (the ones indicated by a right to left
arrow in the picture). The above picture crystallizes the key idea behind the theorems given by Feller
in his nice introduction to the Wiener–Hopf factorization [19, Chapter XVIII.3 and XVIII.4]. It also
explains why this decomposition holds for Lévy processes, which can be seen as the continuous time
and space version of lattice paths, see [31].

The elementary homogeneous symmetric polynomials ek of degree k in the d variables
x1, . . . , xd are defined as

ekpx1, . . . , xdq “
ÿ

1ďi1ă¨¨¨ăikďd
xi1 ¨ ¨ ¨xik , thus

c
ÿ

k“0
ekpx1, . . . , xdqu

k “

d
ź

i“1
p1` uxiq. (6)

The power sum homogeneous symmetric polynomials pk of degree k in the d variables x1, . . . , xd
are defined as

pkpx1, . . . , xdq “
d
ÿ

i“1
xki , thus

ÿ

kě0
pkpx1, . . . , xdqu

k “

d
ÿ

i“1

1
1´ uxi

. (7)

Many variants of directed lattice paths satisfy functional equations which are solvable by
the kernel method and lead to formulas involving a quotient of Vandermonde-like determinants,
see e.g. [4]. It is thus natural that Schur polynomials intervene, they e.g. play an important
role for lattice paths in a strip, see [5, 9]. It is nice that the other symmetric polynomials
also have a combinatorial interpretation, as presented in the following table.

Let us now give a more formal definition of the corresponding objects and a proof of the
formulas for the associated generating functions.

I Definition 12. A positive meander is a path from ` ě 0 to k ě 0 staying strictly above the
x-axis (and possibly touching it at at most one of its end points). The generating function
is denoted by M`

`,kpzq. Negative meanders are defined similarly, with the condition to stay
strictly below the x-axis.

In Table 2, we focus on positive meanders from 0 to k and from k to 0. Note that it
suffices to consider the paths from 0 to k as by time-reversion they are mapped to each other.
In particular, let uipzq and vjpzq be the small and large roots of the initial model. Then,
after time-reversion the small roots are 1

vjpzq
and the large roots are 1

uipzq
. More details are

given in the long version.



C. Banderier, M.-L. Lackner, and M. Wallner 2:9

Table 2 In this article, we show that the fundamental symmetric polynomials (of the complete
homogeneous, elementary, and power sum type) are counting families of positive meanders (walks
touching the x-axis only at one of the end points and staying always above the x-axis). The functions
vjpzq for j “ 1, . . . , d are the roots of the kernel equation 1´ zSpuq “ 0 with limz“0 |vjpzq| “ `8,
whereas the functions uipzq for i “ 1, . . . , c are the roots such that limz“0 uipzq “ 0.

from 0 to k from k to 0

k k
positive
meander

M`
0,kpzq“hk

´

1
v1pzq

, . . . , 1
vdpzq

¯

M`
k,0pzq“hk pu1pzq, . . . , ucpzqq

k k

positive
meander
avoiding
p0, kq

Mě
0,kpzq“p´1qk´1ek

´

1
v1pzq

, . . . , 1
vdpzq

¯

Mě
k,0pzq“p´1qk´1ek pu1pzq, . . . , ucpzqq

}
}
}

k

}
}

k

positive
meander
marked
below the
minimum

M ‚
0,kpzq“pk

´

1
v1pzq

, . . . , 1
vdpzq

¯

M ‚
k,0pzq“pk pu1pzq, . . . , ucpzqq

I Theorem 13 (Generating function of positive meanders).

M`
0,kpzq “ hk

ˆ

1
v1pzq

, . . . ,
1

vdpzq

˙

.

Proof. Observe that a meander ending at altitude k can be uniquely decomposed into
an initial excursion followed by a positive meander from 0 to k. By [4, Theorem 2]
their generating function is the coefficient of uk in

śd
j“1

1
1´u{vjpzq . Consequently, by Equa-

tion (5) this is the generating function of the complete homogeneous symmetric polynomials
hkp1{v1pzq, . . . , 1{vdpzqq. J

This theorem gives a shorter proof of [4, Corollary 3]:

I Corollary 14. The generating function Mkpzq of meanders ending at altitude k are given
by

Mkpzq “ Epzqhk

ˆ

1
v1pzq

, . . . ,
1

vdpzq

˙

“
1
sdz

d
ÿ

`“1

´

ź

j‰`

1
vjpzq ´ v`pzq

¯ 1
v`pzqk`1 .
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Proof. As in the proof of Theorem 13, we use that positive meanders are classical meanders
factored by excursions. Then a partial fraction decomposition of (5) yields the result. J

The last class we consider is the one of elementary symmetric polynomials. These are
associated to a decorated class of paths.

I Definition 15. A positive meander avoiding a strip of width k is a positive meander from 0
to k that always stays above any point of altitude j ă k except for its start point. The
generating function is denoted by Mě

0,kpzq.

I Theorem 16 (Positive meanders avoiding the strip r0, ks).

Mě
0,kpzq “ p´1qk´1ek

ˆ

1
v1pzq

, . . . ,
1

vdpzq

˙

.

Proof. We proceed by induction on k. The base case k “ 1 holds due toMě
0,1pzq “M`

0,1pzq “

1{v1pzq ` ¨ ¨ ¨ ` 1{vdpzq. Next assume the claim holds for Mě
0,1pzq, . . . ,M

ě
0,k´1pzq.

Take an arbitrary positive meander from 0 to k. Either it is a positive meander avoiding
the strip of width k, or at least one of its lattice points has an altitude smaller than k.

Let 0 ă i ă k be the altitude of the last step below altitude k. Then the path can be
uniquely decomposed into an initial part from altitude 0 to this altitude i and a part from
this point to the end. Note that by the construction the initial part starts at altitude 0 and
then always stays above the x-axis, whereas the last part avoids a strip of width k ´ i. In
terms of generating functions this gives

Mě
0,kpzq “M`

0,kpzq ´
k´1
ÿ

i“1
M`

0,ipzqM
ě
0,k´ipzq.

Inserting the known expressions, we get

Mě
0,kpzq “

k
ÿ

i“1
p´1qk´iek´i

ˆ

1
v1
, . . . ,

1
vd

˙

hi

ˆ

1
v1
, . . . ,

1
vd

˙

“ p´1qk´1ek

ˆ

1
v1
, . . . ,

1
vd

˙

,

thanks to the fundamental involution relation [38, Equation (7.13)] between elementary
symmetric polynomials and complete homogeneous symmetric polynomials. J

I Corollary 17. The generating functions of generalized arches (as introduced in Definition 4)
satisfy (for k ą 0)

Ak “
p´1qk´cs´cz
u1pzq ¨ ¨ ¨ucpzq

ek

ˆ

1
v1pzq

, . . . ,
1

vdpzq

˙

,

A´k “
p´1qk´cs´cz
u1pzq ¨ ¨ ¨ucpzq

ek pu1pzq, . . . , ucpzqq.

Proof. This follows from Ak “Mě
0,k{E and A´k “Mě

k,0{E. J

We end our discussion with a third class of positive meanders.

I Definition 18. A positive meanders marked below the minimum is a positive meander with
an additional marker in t1, . . . ,mu where m is its minimal positive altitude. The generating
function for such paths from 0 to k is denoted by M ‚

0,kpzq.

For example it is immediate that M ‚
0,1pzq “Mě

0,1pzq “M`
0,1pzq as the only restriction is

to avoid the x-axis. Furthermore, M ‚
0,0pzq “ 0 while Mě

0,0pzq “M`
0,0pzq “ 1.
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I Theorem 19 (Positive meanders marked below the minimum).

M ‚
0,kpzq “ pk

ˆ

1
v1pzq

, . . . ,
1

vdpzq

˙

.

Proof (Sketch). Every path from 0 to k has to touch at least one of the altitudes 1, . . . , d,
as the largest possible up step is `d. We decompose any positive meander from 0 to k
into two parts by cutting at the unique last positive minimum m. The first part is an arch
avoiding the strip of width m, whereas the second part is a positive meander from m to k.
Translating this decomposition into generating functions, we get

M ‚
0,kpzq “

d
ÿ

m“1
mMě

0,mpzqM
`
0,k´mpzq,

where the factor m encodes the m possible ways to put a mark below the minimum, see
Definition 18. Note that Mě

0,kpzq “ 0 for k ą d. Thus, by Theorems 13 and 16 we get

ÿ

kě1
M ‚

0,kpzqu
k “

˜

u
B

Bu

ÿ

jě0
Mě

0,jpzqu
j

¸˜

ÿ

iě0
M`

0,ipzqu
i

¸

“

d
ÿ

i“1

u{vipzq

1´ u{vipzq
.

By Equation (7) this proves the claim. J

5 Asymptotics and limit laws

We end the discussion on the symmetric polynomial expressions by deriving their respective
asymptotics: this allows us to revisit some limit laws in which the appearance of symmetric
polynomials was so far unrecognized.

We only consider aperiodic step sets S, which are defined by gcdt|i´ j| : i, j P Su “ 1.
For the treatment of periodic step sets see [6]. We only treat paths from k to 0, as the
formulas are a bit simpler. The results for paths from 0 to k follow in an analogous fashion.
The principal small branch u1pzq and the principal large branch v1pzq are defined by the
property that they are real positive for near 0` and meet at z “ ρ; see [4].

In the next theorem we give the asymptotics of our three classes of positive meanders.

I Theorem 20. Consider an aperiodic step set S. Let τ be the structural constant determined
by S1pτq “ 0, τ ą 0. For the different variants of positive meanders given in Table 2, the
number of paths from k to 0 of size n has the following asymptotic expansions

rznsM`
k,0pzq “ α1

Spτqn

2
?
πn3

ˆ

1`O
ˆ

1
n

˙˙

, α1 “
Bek
Bx1

pτ, u2pρq, . . . , ucpρqq.

The number of positive meanders avoiding p0, kq from k to 0 of size n satisfies

rznsMě
k,0pzq “ α2

Spτqn

2
?
πn3

ˆ

1`O
ˆ

1
n

˙˙

, α2 “
Bhk
Bx1

pτ, u2pρq, . . . , ucpρqq.

The number of positive meanders marked below the minimum from k to 0 of size n satisfies

rznsM ‚
k,0pzq “ α3

Spτqn

2
?
πn3

ˆ

1`O
ˆ

1
n

˙˙

, α3 “
Bpk
Bx1

pτ, u2pρq, . . . , ucpρqq.
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Proof. Let M`
k,0, Mě

k,0, and M ‚
k,0 be the sets of positive meanders, positive meanders

avoiding p0, kq, and positive meanders marked below the minimum, respectively; see Table 2.
Let ωk P Ak and ω´k P A´k be two generalized arches. Now, define the multiset Ek that
consists of d copies of the set tw : ωk ¨ w P Eu of excursions factored by ωk. Then, the
following chain of inclusions holds:

E ¨ ω´k ĎMě
k,0 ĎM`

k,0 ĎM ‚
k,0 Ď Ek. (8)

The first inclusion holds as every walk e ¨ ω´k with e P E is a positive meander avoiding
p0, kq. The middle inclusions hold by definition (see Table 2). The last inclusion holds since,
for every m PM ‚

k,0, we have ωk ¨m P E after removing the marker from m. Therefore, the
exponential growth rates of the counting sequences of E ¨ ω´k and Ek are equal to the one
of classical excursions E , which has been explicitly computed in [4]. Hence, all 3 classes of
meanders in (8) have the same asymptotic growth Rn.

Next, we observe that the corresponding generating functions have non-negative coeffi-
cients, and whence Pringsheim’s Theorem [22, Theorem IV.6] guarantees the existence of a
dominant singularity on the positive real axis R`. By [4] this is the only dominant singularity
and we have ρ “ 1{R. Furthermore, it was shown that on the radius of convergence |z| “ ρ

only one root u1pzq is singular and has a square-root singularity, while the other ones are
analytic. Then, we combine this result with the explicit shape of the symmetric polynomials
from Definition 11. This gives the Puiseux expansion at z “ ρ on which we apply singularity
analysis to derive the claimed formulas. J

Before we continue, let us comment on an often overlooked phenomenon concerning the
analyticity of the small branches.
I Remark 21 (Singularities of the small roots). The small roots (and, in particular the principal
small branch u1pzq) can have a singularity inside the disk of convergence of Epzq. For example,
for Spuq “ u ` 13{u ` 6{u2, one easily checks that the radius of convergence of Epzq is
ρ “ 8{61 while u1pzq and u2pzq are singular at z “ ´1{8. However, their product u1u2 is
regular for |z| ă ρ; more generally what is proven in [4] is that the product of the small roots
is always regular for 0 ă |z| ă ρ, while in general not each single small root is regular for
0 ă |z| ă ρ.

Many theorems leading to a Gaussian distribution require that a key quantity (let us call
it σ) is nonzero. In [22], this nonzero assumption is called “variability condition”; see therein
Theorem IX.8 (Quasi-power theorem), Theorem IX.9 (Meromorphic schema), Theorem
IX.10 (Positive rational systems). Now, many lattice path statistics have a variance with an
expansion σn` opnq, where σ is defined as in the following lemma, and is therefore nonzero.

I Lemma 22 (Universal positivity of the variability condition). For any Laurent series Spuq “
ř

iě´c siu
i, with si ě 0 (at least two si ą 0), one has σ :“ S2p1qSp1q`S1p1qSp1q´S1p1q2 ą 0.

Proof. The trick is to introduce σpuq :“ uS2puqSpuq ` S1puqSpuq ´ uS1puq2. Then, all the
monomials of σpuq have positive coefficients: this follows from rsisjsσpuq “ ui`j´1pi´jq2 ě 0,
and thus σpuq ą 0 for u ą 0. J

It is worth noting that an alternative version of this lemma is: « uSpuq{S1puq “ n has no
double root for u ą 0 »; this plays a role in the tuning of Boltzmann random generation [17].
Such considerations are also related to Harald Cramér’s trick of shifting the mean which
transforms a problem with drift into a problem with zero drift, via the modification of the
weights of the step set rSpuq :“ Spτuq{Spτq (and choosing τ such that S1pτq “ 0 indeed
implies that rS1p1q “ 0). Compare also with the proof of [21, Formula (2.37)].
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As a consequence, Lemma 22 guarantees that we can apply the quasi-power theorem [22,
Theorem IX.8], and obtain a Gaussian limit theorem. This explains why many statistics
related to lattice paths are Gaussian. E.g., for paths with positive or zero drift, it furnishes
a Gaussian limit theorem for the final altitude of meanders or for the height of walks. When
the drift is negative, one gets some discrete limit laws of parameter given by our symmetric
polynomial expressions:

I Theorem 23 ( [4, Theorem 6] and [41, Theorem 4.7]; negative drift cases). Assume a negative
drift δ “ S1p1q ă 0 and let ρ “ 1{P pτq and ρ1 “ 1{P p1q.
1. Let Xn be the random variable of the final altitude of a meander of length n. Then, the

limit law is discrete and given by

lim
nÑ8

PrpXn “ kq “ p1´ τ´1q

řk
i“0 τ

i´khipv1pρq
´1, . . . , vdpρq

´1q
ř

iě0 hipv1pρq
´1, . . . , vdpρq´1q

.

2. Let Yn be the random variable of the height of a walk of length n. Then, the limit law is
discrete and given by

lim
nÑ8

PrpYn “ kq “
hkpv1pρ1q

´1, . . . , vdpρ1q
´1q

ř

iě0 hipv1pρ1q´1, . . . , vdpρ1q´1q
.

Proof (Sketch). Recall that for a path represented by a sequence of points pω0, ω1, . . . , ωnq

the final altitude is ωn and the height is maxi ωi. In both cases the limit law follows from a
rewriting of the closed form of the discrete probability generating function which basically
consists of the generating function of hk (alternatively, M`) and proper rescaling. J

Note that the second case is an avatar of the Wiener–Hopf decomposition which links the
height of walks with the final altitude of meanders; see Theorem 10 and [41].

6 Conclusion and perspectives
In this article we introduced the notion of prime walks, a class of walks which leads to natural
decompositions of lattice paths and to concise proofs of several identities in probability
theory that we are even able to further generalize by capturing some additional statistics.
Moreover, these decompositions can keep track of some additional parameters (e.g. counting
the number of occurrences of some given patterns, see [3]), which then gives access to many
joint distribution studies, see e.g. [12].

Our work also offers new links with symmetric polynomials, adding to previous funda-
mental connections with algebraic combinatorics via Vandermonde determinants, the Jacobi–
Trudi identity, and Schur functions (see [5, 9]). In [6], we give an interpretation of Schur
polynomials (for some appropriate index) in terms of meanders ending at a given altitude.
Together with the results of the present work, this extends the table given in [38, Prop. 2.8.3]:
therein, Stanley gives some nice combinatorial expressions for the bases of symmetric func-
tions (Definition 11), when they are evaluated at specific values like xi “ 1 or xi “ qi. This
is what he calls the “principal specializations”. Our work shows that what we could call the
“kernel root specialization” of the symmetric function bases (i.e. evaluation at xi “ uipzq) is
leading to the enumeration of fundamental lattice path classes, holding for any set of jumps.

En passant, we illustrate the old Schützenberger philosophy: most of the identities in the
commutative world are images of structural identities in the non-commutative world. It is
natural to ask how far we can extend the link between lattice paths and the non-commutative
symmetric world; note that further non-commutative points of view are developed in [18,23,24].
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It is striking that astonishingly powerful formulas can be obtained by astonishingly simple
tools from symbolic combinatorics. Such formulas, e.g. the Spitzer formula for bridges, have
some unexpected avatars. Indeed, bridges of length n can be seen as ru0sSpuqn for some
Laurent polynomial Spuq and the same holds with multivariate polynomials; this leads to
some interesting connections between the non-commutative world, the Laurent phenomenon
(i.e. the fact that some expressions which by design are a priori rational functions are in fact
some Laurent polynomial), and lattice paths (see [14,29,36]).

On the computer algebra side, the so-called “Platypus algorithm” from [4] is a way to
get the algebraic equation satisfied by the generating function of excursions. Another nice
consequence of our formulas is that they permit a generalization of this “Platypus algorithm”:
starting from the generating functions of the symmetric polynomials given in Definition 11,
we show in the long version of this article how to get the algebraic equations of the different
families of constrained meanders, bridges, etc. This offers an effective alternative to an
approach by resultants or Gröbner bases, which are quickly time and memory consuming.

For Motzkin paths (that is, paths with step set S “ t´1, 0,`1u), the generating functions
associated to starting/final altitude constraints can be expressed as continued fractions,
and thus as quotients of orthogonal polynomials [20]. Our work, in one sense, gives the
generalization of these formulas as soon as one has steps ą `1 or ă ´1. Many combinatorial
structures related to the Motzkin paths have some asymptotics in which the “algebra of
orthogonal polynomials” plays a role (e.g. the height of binary trees, related to the Mandelbrot
fractal equation involves Chebyshev polynomials, see e.g. [22]). It is thus natural to ask if
there is a nice “algebra of symmetric polynomials” in which plugging the Puiseux expansions
offered by the kernel method could lead to the limit laws of many parameters of lattice paths?

In conclusion, our work largely complements and extends [4], being part of a wider
program illustrating how lattice path surgery (which we call latticepathology) leads directly
to many neat enumerative, probabilistic, computational, and asymptotic formulas.
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Combinatorics of nondeterministic walks of the Dyck and Motzkin type

Élie de Panafieu∗ Mohamed Lamine Lamali† Michael Wallner†

Abstract
This paper introduces nondeterministic walks, a new vari-
ant of one-dimensional discrete walks. At each step, a
nondeterministic walk draws a random set of steps from
a predefined set of sets and explores all possible exten-
sions in parallel. We introduce our new model on Dyck
steps with the nondeterministic step set {{−1}, {1}, {−1, 1}}
and Motzkin steps with the nondeterministic step set
{{−1}, {0}, {1}, {−1, 0}, {−1, 1}, {0, 1}, {−1, 0, 1}}. For
general lists of step sets and a given length, we express the
generating function of nondeterministic walks where at least
one of the walks explored in parallel is a bridge (ends at the
origin). In the particular cases of Dyck and Motzkin steps,
we also compute the asymptotic probability that at least one
of those parallel walks is a meander (stays nonnegative) or
an excursion (stays nonnegative and ends at the origin).

This research is motivated by the study of networks
involving encapsulations and decapsulations of protocols.
Our results are obtained using generating functions and
analytic combinatorics.

Keywords. Random walks, analytic combinatorics,

generating functions, networking, encapsulation.

1 Introduction

In recent years lattice paths have received a lot of
attention in different fields, such as probability theory,
computer science, biology, chemistry, physics, and much
more [5, 9, 11]. One reason for that is their versatility
as models like e.g., the up-to-date model of certain
polymers in chemistry [16]. In this paper we introduce
yet another application: the encapsulation of protocols
over networks. To achieve this goal we generalize the
class of lattice paths to so called nondeterministic lattice
paths.

1.1 Definitions
Classical walks. We mostly follow terminology

from [2]. Given a set S of integers, called the steps,
a walk is a sequence v = (v1, . . . , vn) of steps vi ∈ S. In
this paper we will always assume that our walks start at
the origin. Its length |v| is the number n of its steps, and
its endpoint is equal to the sum of the steps

∑n
i=1 vi.

As illustrated in Figure 1a, a walk can be visualized by
its geometric realization. Starting from the origin, the
steps are added one by one to the previous endpoints.
This gives a sequence (yj)0≤j≤n of ordinates at discrete

∗Nokia Bell Labs and Lincs, France
†LaBRI - Université de Bordeaux, France

time steps, such that y0 = 0 and yj :=
∑j
i=1 vi. A bridge

is a walk with endpoint yn = 0. A meander is a walk
where all points have nonnegative ordinate, i.e., yj ≥ 0
for all j = 0, . . . , n. An excursion is a meander with
endpoint yn = 0.

Nondeterministic walks. This paper investi-
gates a new variant of walks, called nondeterministic
walks, or N-walks. In our context, this word does not
mean “random”. Instead it is understood in the same
sense as for automata and Turing machines. A process
is nondeterministic if several branches are explored in
parallel, and the process is said to end in an accepting
state if one of those branches ends in an accepting state.
Let us now give a precise definition of these walks.

Definition 1.1. (Nondeterministic walks) An N-
step is a nonempty set of integers. Given an N-step
set S, an N-walk w is a sequence of N-steps. Its length
|w| is equal to the number of its N-steps.

As for classical walks we always assume that they start
at the origin and we distinguish different types.

Definition 1.2. (Types of N-walks) An N-walk
w = (w1, . . . , wn) and a classical walk v = (v1, . . . , vn)
are compatible if they have the same length n, the same
starting point, and for each 1 ≤ i ≤ n, the ith step is
included in the ith N-step, i.e., vi ∈ wi. An N-bridge
(resp. N-meander, resp. N-excursion) is an N-walk
compatible with at least one bridge (resp. meander,
resp. excursion). Thus, N-excursions are particular
cases of N-meanders.

The endpoints of classical walks are central to the
analysis. We define their nondeterministic analogues.

Definition 1.3. (Reachable points) The reach-
able points of a general N-walk are the endpoints of all
walks compatible with it. For N-meanders, the reachable
points are defined as the set of endpoints of compatible
meanders. In particular, all reachable endpoints of
an N-meander are nonnegative. The minimum (resp.
maximum) reachable point of an N-walk w is denoted
by min(w) (resp. max(w)). The minimum (resp. maxi-
mum) reachable point of an N-meander w is denoted by
min+(w) (resp. max+(w)).
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The geometric realization of an N-walk is the sequence,
for j from 0 to n, of its reachable points after j
steps. Figure 1 illustrates the geometric realization
of a walk v = (2,−1, 0, 1) in (1a), of an N-walk
w = ({2}, {−1, 1}, {−2, 0}, {0, 1, 2}) in (1b), and of the
classical meanders compatible with w in (1c). Note that
the walk v (highlighted in red) is compatible with the
N-walk w.
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(a) A classical walk.
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(b) An N-walk.
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(c) Meanders compatible with the N-walk.

Figure 1: Geometric realization of a walk, an N-walk,
and its compatible meanders.

Probabilities. Any set of weights, and in partic-
ular any probability distribution on the set of steps or
N-steps induces a probability distribution on walks or
N-walks. The probability associated to the walk or N-
walk w = (w1, . . . , wn) is then the product

∏n
i=1P(wi)

of the probabilities of its steps or N-steps.

1.2 Main results Our main results are the
analysis of the asymptotic number of nonde-
terministic walks of the Dyck and Motzkin
type with step sets {{−1}, {1}, {−1, 1}} and
{{−1}, {0}, {1}, {−1, 0}, {−1, 1}, {0, 1}, {−1, 0, 1}},
respectively. The results for the unweighted case where
all weights are set equal to one are summarized in
Table 1. These results are derived using generating
functions and singularity analysis. The reappearing
phenomenon is the one of a simple dominating polar
singularity arising from the large redundancy in the
steps. The type of N-walk only influences the constant
or the proportion among all N-walks. The lower order
terms are exponentially smaller and of the square root
type. These are much more influenced by the types.
From a combinatorial point of view, we see a quite
different behavior compared with classical paths. In
particular, the limit probabilities for a Dyck N-walk
of even length to be an N-bridge, an N-meander, or
an N-excursion, are 1, 1/2, or 1/4, and for Motzkin
N-walks 1, 3/4, or 9/16.

We also explore general N-steps and prove that the
generating function of N-bridges is always algebraic. N-
excursions with general N-steps will be investigated in
a longer version of this article.

1.3 Motivation and related work Let us start
with a vivid motivation of the model using Russian
dolls. Suppose we have a set of n + 1 people arranged
in a line. There are three kinds of people. A person
of the first kind is only able to put a received doll in
a bigger one. A person of the second kind is only able
to extract a smaller doll (if any) from a bigger one. If
she receives the smallest doll, then she throws it away.
Finally, a person of the third kind can either put a doll
in a bigger one or extract a smaller doll if any. We want
to know if it is possible for the last person to receive the
smallest doll after it has been given to the first person
and then, consecutively, handed from person to person
while performing their respective operations. This is
equivalent to asking if a given N-walk with each N-
step ∈ {{1}, {−1}, {−1, 1}} is an N-excursion, i.e., if
the N-walk is compatible with at least one excursion.
The probabilistic version of this question is: what is the
probability that the last person can receive the smallest
doll according to some distribution on the set of people
over the three kinds?

Networks and encapsulations. The original
motivation of this work comes from networking. In
a network, some nodes are able to encapsulate pro-
tocols (put a packet of a protocol inside a packet of
another one), decapsulate protocols (extract a nested
packet from another one), or perform any of these two
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Type Dyck N-steps Motzkin N-steps
P({−1, 1}) \ ∅ P({−1, 0, 1}) \ ∅

N-Walk 3n 7n

N-Bridge 1+(−1)n
2

(
3n − 2

√
2√
π

8n/2
√
n

+O
(

8n/2

n3/2

))
7n −

√
3
π

6n√
n

+O
(

6n

n3/2

)

N-Meander 3n

2 + 3
√
2(1+(−1)n)+4(1−(−1)n)√

π
8n/2
√
n3

+O
(

8n/2

n5/2

)
3
47n + 3

√
3

2
√
π

6n√
n3

+O
(

6n

n5/2

)

N-Excursion 1+(−1)n
2

(
3n

4 + 4
√

2 8n/2
√
πn3

+O
(

8n/2

n5/2

))
9
167n − γ 6n√

πn3
+O

(
6n

n5/2

)

Table 1: The asymptotic number of nondeterministic unweighted (all weights equal to 1) Dyck and Motzkin
N-walks with n steps obeying different constraints: N-Bridges contain at least one classical bridge ending at 0,
N-Meanders contain at least one classical meander staying nonnegative, and N-excursions contain at least one
classical excursion staying nonnegative and ending at 0. The constant γ ≈ 0.6183 is an algebraic number defined
as the positive real solution of 1024γ4 − 8019γ2 + 2916 = 0.

operations (albeit most nodes are only able to trans-
mit packets as they receive them). Typically, a tunnel
is a subpath starting with an encapsulation and ending
with the corresponding decapsulation. Tunnels are very
useful for achieving several goals in networking (e.g.,
interoperability: connecting IPv6 networks across IPv4
ones [19]; security and privacy: securing IP connec-
tions [18], establishing Virtual Private Networks [17],
etc.). Moreover, tunnels can be nested to achieve sev-
eral goals. Replacing the Russian dolls by packets, it is
easy to see that an encapsulation can be modeled by a
{1} step and a decapsulation by a {−1}, while a passive
transmission of a packet is modeled by a {0} step.

Given a network with some nodes that are able
to encapsulate or decapsulate protocols, a path from
a sender to a receiver is feasible if it allows the latter
to retrieve a packet exactly as dispatched by the sender.
Computing the shortest feasible path between two nodes
is polynomial [12] if cycles are allowed without restric-
tion. In contrast, the problem is NP-hard if cycles are
forbidden or arbitrarily limited. In [12], the algorithms
are compared through worst-case complexity analysis
and simulation. The simulation methodology for a fixed
network topology is to make encapsulation (resp. decap-
sulation) capabilities available with some probability p
and observe the processing time of the different algo-
rithms. It would be interesting, for simulation purposes,
to generate random networks with a given probability
of existence of a feasible path between two nodes. This
work is the first step towards achieving this goal, since
our results give the probability that any path is feasible
(i.e., is a N-excursion) according to a probability distri-
bution of encapsulation and decapsulation capabilities
over the nodes.

Lattice paths. Nondeterministic walks naturally
connect between lattice paths and branching processes.
This is underlined by our usage of many well-established

analytic and algebraic tools previously used to study
lattice paths. In particular, those are the robustness
of D-finite functions with respect to the Hadamard
product, and the kernel method [2, 4, 7].

The N-walks are nondeterministic one-dimensional
discrete walks. We will see that their generating
functions require three variables: one marking the
lowest point min(w) that can be reached by the N-walk
w, another one marking the highest point max(w), and
the last one marking its length |w|. Hence, they are also
closely related to two-dimensional lattice paths, if we
interpret (min(w),max(w)) as coordinates in the plane.

2 Dyck N-walks

The step set of classical Dyck paths is {−1, 1}. The
N-step set of all nonempty subsets is

S =
{
{−1}, {1}, {−1, 1}

}
,

and we call the corresponding N-walks Dyck N-walks.
To every step we associate a weight or probability
p−1, p1, and p−1,1, respectively.

Example 2.1. (Dyck N-walks) Let us consider the
Dyck N-walk w = ({1}, {−1, 1}, {−1, 1}, {−1}).
The sequence of its reachable points is
({0}, {1}, {0, 2}, {−1, 1, 3}, {−2, 0, 2}). There are 4
classical walks compatible with it:

Classical walk Geometric realization
(sequence of steps) (ordinates)

(1,−1,−1,−1) (0, 1, 0,−1,−2)
(1,−1, 1,−1) (0, 1, 0, 1, 0)
(1, 1,−1,−1) (0, 1, 2, 1, 0)
(1, 1, 1,−1) (0, 1, 2, 3, 2)

There are two bridges, which happen to be excursions.
Thus, w is an N-bridge and an N-excursion.
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The set of reachable points of a Dyck N-walk or
N-meander has the following particular structure.

Lemma 2.1. The reachable points of a Dyck N-walk w
are {min(w) + 2i | 0 ≤ min(w) + 2i ≤ max(w)} , where
min(w), max(w), and the length of w have the same
parity. The same result holds for Dyck N-meanders,
with min(w) and max(w) replaced by min+(w) and
max+(w) (see Definition 1.3).

We define the generating functions D(x, y; t),
D+(x, y; t), of Dyck N-walks and Dyck N-meanders as

∑

Dyck N-walk w

(∏

s∈w
ps

)
xmin(w)ymax(w)t|w|,

∑

Dyck N-meander w

(∏

s∈w
ps

)
xmin+(w)ymax+(w)t|w|.

Note that by construction these are power series in t
with Laurent polynomials in x and y, as each of the
finitely many N-walks of length n has a finite minimum
and maximum reachable point.

Remark 2.1. One difference to classical lattice paths
is the choice of the catalytic variables x and y. Here,
they encode the minimum and the maximum reachable
points, while in classical problems one chooses to keep
track of the coordinates of the endpoint, (see [2], for
example).

2.1 Dyck N-meanders and N-excursions As a
direct corollary of Lemma 2.1, all N-bridges and N-
excursions have even length. The total number of Dyck
N-bridges and Dyck N-excursions are then, respectively,
given by

[x≤0y≥0t2n]D(x, y; t) and D+(0, 1; t),

where the coefficient extraction operator [tk] is defined
as [tk]

∑
n≥0 fnt

n := fk and the nonpositive part ex-

traction operator [x≤0] is defined as [x≤0]
∑
k∈Z gkx

k :=∑
k≤0 gkx

k (and analogously for [y≥0]).

Proposition 2.1. The generating function of Dyck N-
meanders is characterized by the relation

D+(x, y; t) = 1 + t
(
p−1x

−1y−1 + p1xy + p−1,1x
−1y

)

× (D+(x, y; t)−D+(0, y; t))

+ t
(
p−1xy

−1 + (p1 + p−1,1)xy
)

× (D+(0, y; t)−D+(0, 0; t))

+ t (p1 + p−1,1)xyD+(0, 0; t).

Proof. Applying the symbolic method (see [7]), we
translate the following combinatorial characterization of
N-meanders into the claimed equation. An N-meander
is either of length 0, or it can be uniquely decomposed
into an N-meander w followed by an N-step. If min+(w)
is nonzero, then any N-step can be applied. The gen-
erating function of N-meanders with positive minimum
reachable point is D+(x, y; t)−D+(0, y; t). If min+(w)
vanishes, but max+(w) is nonzero (those N-meanders
have generating function D+(0, y; t)−D+(0, 0; t)), then
an additional N-step {−1} increases min+(w) (the path
ending at 0 disappears, and the one ending at 2 becomes
the minimum) and decreases max+(w), while an addi-
tional N-step {1} or {−1, 1} increases both min+(w)
and max+(w). Finally, if min+(w) and max+(w)
vanish, which corresponds to the generating function
D+(0, 0; t), then the N-step {−1} is forbidden, and the
two other available N-steps both increase min+(w) and
max+(w).

Let us introduce the min-max-change polynomial
S(x, y) and the kernel K(x, y) as

S(x, y) :=
p−1
xy

+ p1xy + p−1,1
y

x
,

K(x, y) := xy(1− tS(x, y)).

The generating function of Dyck N-walks has now the
compact form 1/(1 − tS(x, y)). A key role in the
following result on the closed form of Dyck N-meanders
is played by Y (t) and X(y, t), the unique power series
solutions satisfying K(1, Y (t)) = 0, and K(X(y, t), y) =
0 which are given by

Y (t) =
1−

√
1− 4p−1(p1 + p−1,1)t2

2(p1 + p−1,1)t
,

X(y, t) =
1−

√
1− 4p1(p−1 + p−1,1y2)t2

2p1yt
.

Theorem 2.1. The generating function D+(x, y; t) of
Dyck N -meanders is algebraic of degree 4, and equal to

x−X(y, t)

1−X(y, t)2
y − xY (t)−X(y, t)Y (t) + xyX(y, t)

xy(1− tS(x, y))
.

The generating function of Dyck N-excursions is sym-
metric in p−1 and p1, and equal to

D+(0, 1; t) =
X(1, t)

1−X(1, t)2
1−X(1, t)Y (t)

(p−1 + p−1,1)t
.

Proof (Sketch). Starting from the result of Proposi-
tion 2.1 one first substitutes x = 1 and finds a
closed-form expression for D+(0, 0; t) using the kernel
method. After substituting this expression back into
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the initial equation one applies the kernel method again
with respect to x and finds a closed-form solution for
D+(0, y; t). Combining these results one proves the
claim. Finally, using a computer algebra system a short
computation using the closed form of Dyck N-excursions
shows the symmetry in p−1 and p1.

Remark 2.2. It would be desirable to find a combina-
torial interpretation of the surprising symmetry in p−1
and p1 of Dyck N-excursions (which is clear for Dyck
N-bridges).

With this result, we can easily answer the counting
problem in which all weights are set equal to one.
Thereby we also solve a conjecture in the OEIS1 on the
asymptotic growth.

Corollary 2.1. For p−1 = p1 = p−1,1 = 1 the
generating function of unweighted Dyck N-meanders is

D+(1, 1, t) = −1− 4t−
√

1− 8t2

4t(1− 3t)

= 1 + 2t+ 6t2 + 16t3 + 48t4 + . . . .

The number of unweighted Dyck N-meanders is asymp-
totically equal to

[tn]D+(1, 1, t) =
3n

2
+
(

3
√

2(1 + (−1)n) + 4(1− (−1)n)
)

× 8n/2√
πn3

+O
(

8n/2

n5/2

)
.

These N-walks are in bijection with walks in the first
quadrant Z2

≥0 starting at (0, 0) and consisting of steps
{(−1, 0), (1, 0), (1, 1)}. The counting sequence is given
by OEIS A151281.

For p−1 = p1 = p−1,1 = 1 the complete generating
function of unweighted Dyck N-excursions is

D+(0, 1, t) =
1− 8t2 − (1− 12t2)

√
1− 8t2

8t2(1− 9t2)

= 1 + 4t2 + 28t4 + 2246 + 18888 + . . . .

The number [tn]D+(0, 1, t) of unweighted Dyck N-
excursions is asymptotically equal to

(1 + (−1)n)

(
3n

8
+
√

8
8n/2√
πn3

+O
(

8n/2

n5/2

))
.

Finally, we come back to one of the starting ques-
tions from the networking motivation.

1The on-line encyclopedia of integer sequences: http://oeis.

org/A151281.

Theorem 2.2. The probability for a random Dyck N-
walk of length 2n to be an N-excursion has for n → ∞
the following asymptotic form where the roles of p−1 and
p1 are interchangeable:

• (1−2p1)(1−2p−1)
(1−p1)(1−p−1)

+ O
(

(4p−1(1−p−1))
n

n3/2

)
if 0 < p1 ≤

p−1 < 1
2 ,

• 1−2p1
(1−p1)

√
πn

+O
(

1
n3/2

)
if 0 < p1 <

1
2 and p−1 = 1

2 ,

• 1√
πn3

+O
(

1
n5/2

)
if p1 = p−1 = 1

2 ,

• O
(

(4p−1(1−p−1))
n

n3/2

)
if 0 < p1 <

1
2 < p−1 < 1 and

p−1 + p1 ≤ 1.

Proof (Sketch). Starting from the results of Theo-
rem 2.1 we perform a singularity analysis [7]. Thereby
different regimes need to be considered, leading to the
different cases in the result. In the last case the condi-
tion guarantees that p−1 is closer to 1/2 than p1.

Note that the (huge) formula for the constant in the
last case can be made explicit in terms of p−1 and p1.
However, it is of different shape for p−1 + p1 = 1, and
p−1 + p1 < 1. In Figure 2 we compare the theoretical
results with simulations for three different probability
distributions. These nicely exemplify three of the four
possible regimes of convergence.

2.2 Dyck N-bridges We now turn our attention to
Dyck N-bridges. Their generating function is defined as

B(x, y, t) =
∑

n,k,`≥0
b2n,k,`x

−ky`t2n.

Recall the following relation with all N-walks (note that
bridges have to be of even length): [t2n]B(x, y, t) =
[x≤0y≥0t2n]D(x, y; t). In the following theorem we will
reveal a great contrast to classical walks: nearly all N-
walks are N-bridges.

Theorem 2.3. The generating function of Dyck N-
bridges B(x, y, t) is algebraic of degree 4. For p−1 =
p1 = p−1,1 = 1 the generating function of unweighted
Dyck N-bridges is algebraic of degree 2:

B(1, 1, t) =
1− 6t2√

1− 8t2(1− 9t2)

= 1 + 7t2 + 63t4 + 583t6 + 5407t8 + . . . .

The number [tn]B(1, 1, t) of unweighted Dyck N-bridges
is asymptotically equal to

1 + (−1)n

2

(
3n − 2

√
2√
π

8n/2√
n

+O
(

8n/2

n3/2

))
.
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Figure 2: Comparison of theoretical expectation and averaged simulation (over 105 runs) of the proportion of
Dyck N-excursions among Dyck N-walks.

Proof. In order to improve readability we drop the
parity condition on t and define

B2(x, y, t) := [x≤0y≥0]D(x, y; t),

such that

B2(x, y, t) = D(x, y; t)− [x>0]D(x, y, t)

− [y<0]D(x, y, t).
(2.1)

It is then simple to recover B(x, y, t) from B2(x, y, t). In
words, an N-bridge is an N-walk of even length whose
minimum is not strictly positive, nor is its maximum
strictly negative2.

The change in the x- (minimal reachable point) and
y-coordinate (maximal reachable point) can be conve-
niently encoded in the min-max-change polynomial

S(x, y) =
p−1
xy

+ p1xy + p−1,1
y

x
.

Then, the construction can be interpreted as the one
of two-dimensional walks of length n, starting at (0, 0),
with the step set {(−1,−1), (1, 1), (−1, 1)}, and ending
in the fourth quadrant {(x, y) : x ≥ 0, y ≤ 0}. A lot
is known about these walks, see e.g., [4]. By (2.1) it
suffices to find the generating functions F (x, y, t) :=
[x>0]D(x, y, t) and G(x, y, t) := [y<0]D(x, y, t) for 2D-
walks ending with a positive abscissa (resp. negative
ordinate). The theory of formal Laurent series with
positive coefficients tells us automatically that they are
algebraic, which implies that the generating function of

2We thank Mireille Bousquet-Mélou for suggesting us this
approach.

bridges is algebraic, see e.g., [8, Section 6] which also
gives further historical references.

Due to the symmetry of the step set we have
F (x, y, t) = G(1/y, 1/x, t) after additionally interchang-
ing the role of p−1 and p1. In order to end the proof
it remains to compute the roots of the denominator of
D(x, y, t) and perform a partial fraction decomposition.

After this detailed discussion of nondeterministic
walks derived from Dyck paths, we turn to the probably
next most classical lattice paths: Motzkin paths.

3 Motzkin N-walks

The step set of classical Motzkin paths is {−1, 0, 1}.
The N-step set of all nonempty subsets is

S =
{
{−1}, {0}, {1}, {−1, 0}, {−1, 1}, {0, 1}, {−1, 0, 1}

}
,

and we call the corresponding N-walks Motzkin N-walks.
A Motzkin N-walk w is said to be
• of type 1 if reach(w) is equal to
{min(w),min(w) + 2,min(w) + 4, . . . ,max(w)},

• of type 2 if reach(w) is equal to
{min(w),min(w) + 1,min(w) + 2, . . . ,max(w)}
and max(w)−min(w) ≥ 1.

The following proposition explains how these two types
are sufficient to characterize the structure of Motzkin
N-walks.

Proposition 3.1. A Motzkin N-walk w is of type 1 if
and only if it is constructed only from the N-steps {−1},
{0}, {1}, and {−1, 1}. Otherwise, it is of type 2.

Proof (Sketch). The proof is based on a recurrence and
a case-by-case analysis on the number and type of N-
steps.
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The set of Motzkin N-walks of type 1 (resp. 2)
is denoted by M1 (resp. M2), and their generating
functions are defined as

M1(x, y; t) =
∑

w∈M1

xmin(w)ymax(w)t|w|,

M2(x, y; t) =
∑

w∈M2

xmin(w)ymax(w)−1t|w|.

Theorem 3.1. The generating functions of Motzkin N-
walks of type 1 and 2 are rational. The generating
function of Motzkin N-bridges is algebraic.

Proof. The first statement is a direct corollary of the
previous proposition due to a simple sequence construc-
tion. An N-bridge w of type 1 is an M1 N-walk that
satisfies min(w) ≤ 0, max(w) ≥ 0, and min(w) is even.
Note that in this case this property is not equivalent to
an even number of steps. An N-bridge w of type 2 is an
M2 N-walk that satisfies min(w) ≤ 0 and max(w) ≥ 0.
Thus, the generating function of Motzkin N-bridges is
equal to

[x≤0y≥0]

(
M1(x, y; t) +M1(−x, y; t)

2
+M2(x, y; t)

)
.

Since the generating functions of M1 and M2 are
rational, according to [4, Proposition 1] (see also [13]),
the generating function of N-bridges is D-finite. Yet
the generating function is even algebraic, which can be
proved similarly as done the proof of Theorem 2.3.

Remark 3.1. Using a computer algebra system it is
easy to get closed-form solutions and asymptotics for
specific values of the weights. We do not give these
closed forms, as they are quite large and do not shed
new light on the problem. It is however interesting to
compute the asymptotic proportion of N-bridges among
all N-walks. For example, when all weights are set to 1,
it is equal to

1−
√

3

π

(6/7)n√
n

+O
(

(6/7)n

n3/2

)
.

Hence, nearly all N-walks are N-bridges.

We now turn to the analysis of Motzkin N-meanders
and N-excursions.

Theorem 3.2. The generating functions of Motzkin N-
meanders and N-excursions are algebraic.

Proof. Without loss of generality we perform all com-
putations here with all weights pi = 1. Let M+

1 and

M+
2 denote the Motzkin N-meanders of type 1 and 2.

Their generating functions are

M+
1 (x, y; t) =

∑

w∈M+
1

xmin+(w)ymax+(w)t|w|,

M+
2 (x, y; t) =

∑

w∈M+
2

xmin+(w)ymax+(w)−1t|w|.

Let also M+(x, y; t) denote the column vector
(M+

1 (x, y; t),M+
2 (x, y; t)). An N-meander is either

empty – in which case, it is of type 1 – or it is an N-
meander w followed by an N-step s. The type of w · s
depends on the type of w, the N-step s, as well as on the
case if min+(w) = 0 or if max+(w) = 0. Specifically,
• when w has type 1, then w · s has type 1 if s ∈
{{−1}, {0}, {1}, {−1, 1}}, otherwise it has type 2,

• when w has type 2 and max+(w) > 1 then w ·s has
type 2 for any s,

• when w has type 2 and max+(w) = 1 (i.e. the
reachable points are {0, 1}) then w · s has type 1 if
s = {−1}, and type 2 otherwise.

Applying the Symbolic Method [7] and the same rea-
soning as in the proof of Proposition 2.1, we obtain the
following system of equations characterizing the gener-
ating functions from the vector M+(x, y; t)

M+(x, y; t) = e1 + t
(
A(x, y)(M+(x, y; t)−M+(0, y; t))

+B(x, y)(M+(0, y; t)−M+(0, 0; t))

+ C(x, y)M+(0, 0; t)
)
,

where e1 is the column vector (1, 0), and A(x, y),
B(x, y), C(x, y) are two-by-two matrices with Laurent
polynomials in x and y given in Figure 3. Observe
that the first two matrices are upper-triangular. This
equation is rearranged into

(Id−tA(x, y))M+(x, y; t) =

e1 − t (A(x, y)−B(x, y))M+(0, y; t)(3.2)

− t (B(x, y)− C(x, y))M+(0, 0; t).

Next, we apply the kernel method (see e.g., [2] and [1])
successively on x and y in a two phases to compute the
generating function M+(x, y; t) of Motzkin N-meanders.
The small roots in the variable x of the equations

1− tA0,0(x, y) = 0,

1− tA1,1(x, y) = 0,

are denoted by X1(y, t) and X2(y, t), and are equal to

1− t−
√

1− 4t2y2 − 3t2 − 2t

2ty
,

1− t(y + 1)−
√

1− 7t2y2 − 2t2y − 3t2 − 2ty − 2t

2ty
.
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A(x, y) =

(
x−1y−1 + 1 + xy + x−1y 0

x−1y−1 + 1 + x−1 x−1y−1 + 1 + xy + x−1 + y + 2x−1y

)
,

B(x, y) =

(
xy−1 + 1 + 2xy 0

y−1 + 2 y−1 + 2 + xy + 3y

)
, C(x, y) =

(
2 + 2xy 1

2 xy + 2 + 3y

)
.

Figure 3: Matrices involved in the proof of Theorem 3.2.

We then define the row vectors

u1 = (1, 0),

u2(y, t) = (tA1,0(X2(y, t), y), 1− tA0,0(X2(y, t), y)) ,

so that the left-hand side of Equation (3.2) vanishes
both when evaluated at x = X1(y, t) and left-multiplied
by u1, and also when evaluated at x = X2(y, t) and left-
multiplied by u2(y, t). Combining the corresponding
two right-hand sides, we obtain a new two-by-two
system of linear equations

(3.3) tD(y, t)M+(0, y; t) = f(y, t)−E(y, t)M+(0, 0; t),

where the vector f(y, t) of size 2 has its first element
equal to 1, and its second element equal to
(
ty + t−

√
−7 t2y2 − 3 t2 − 2 (t2 + t)y − 2 t+ 1 + 1

)
t

1− ty − t−
√
−7 t2y2 − 3 t2 − 2 (t2 + t)y − 2 t+ 1

,

and the two-by-two matrices D(y, t) and E(y, t) are two
large to be shown here. Again, the matrix D(y, t) is
upper-triangular. We now define

Y1(t) =
t− 1 +

√
−7t2 − 2t+ 1

4t
,

Y2(t) =
1− 2t−

√
−12t2 − 4t+ 1

8t
,

and the row vectors

v1 = (1, 0),

v2(t) = (−D1,0(Y2(t), t), D0,0(Y2(t), t)),

to ensure that Y1(t) and Y2(t) have series expansions at
the origin, and that the left-hand side of Equation (3.3)
vanishes both when evaluated at y = Y1(t) and left-
multiplied by v1, and also when evaluated at y = Y2(t)
and left-multiplied by v2(t). The corresponding two
right-hand side are combined to form a new two-by-two
system of equations

h(t) = tF (t)M+(0, 0; t),

where the column vector h(t) and the matrix F (t)
are too large to be shown here. The matrix F (t) is

invertible, so the generating function of Motzkin N-
meanders with maximum reachable point 0 is equal to

M+(0, 0; t) =
1

t
F (t)−1h(t).

This expression is injected in Equation (3.3) to express
the generating function of Motzkin N-meanders with
minimum reachable point 0

M+(0, y; t) =
1

t
D(y, t)−1(f(y, t)− E(y, t)M+(0, 0; t)).

Finally, this expression is injected in Equation (3.2) to
express the generating function of Motzkin N-meanders

M+(x, y; t) = (Id−tA(x, y))
−1

× (e1 − t (A(x, y)−B(x, y))M+(0, y; t)

− t (B(x, y)− C(x, y))M+(0, 0; t)).

The generating function of N-meanders and N-
excursions are then, respectively, M+

1 (1, 1; t) +
M+

2 (1, 1; t) and M+
1 (0, 1; t) +M+

2 (0, 1; t).

Remark 3.2. As before we can use a computer algebra
system to get numeric results. After tedious computa-
tions one gets that for all pi’s equal to 1 the generat-
ing function of N-meanders is algebraic of degree 2 and
given by

10t− 1 +
√

(1 + 2t)(1− 6t)

8t(1− 7t)
.

The total number of N-meanders is asymptotically equal
to

3

4
7n +

3
√

3

2
√
π

6n√
n3

+O
(

6n

n5/2

)
.

The generating function of N-excursions is algebraic of
degree 4. Their asymptotic number is

9

16
7n − γ 6n√

πn3
+O

(
6n

n5/2

)
,

where γ ≈ 0.6183 is the positive real solution of 1024γ4−
8019γ2 + 2916 = 0. This means that for large n
approximately 75% of all N-walks are N-meanders and
56.25% of all N-walks are N-excursions.
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1 2

Figure 4: The automaton representing the structure of
reachable points of Motzkin N-walks. The types from
Theorem 4.1 corresponding to vertex 1 are A1 = {0},
B1 = {1}, C1 = ∅, and for vertex 2, we have A2 = {0},
B2 = {0}, C2 = {0}.

4 N-bridges with general N-steps

The main result of this section is

Theorem 4.1. For any N-step set S, the generating
function of N-bridges is algebraic.

A method for computing this generating function
is provided by the proof, in Subsection 4.2. In order
to establish this result, we first derive Proposition 4.1,
which provides a description of the set of reachable
points for N-walks on a given N-step set. It is proven in
Section 4.1.

Given nonnegative integer sets A, B, C, an N-walk
w is of type (A,B,C) when an integer r is reachable if
and only if max(w)−min(w) ≥ max(A) + max(C), and
at least one of the following conditions holds
• r −min(w) belongs to A,
• max(w)− r belongs to C,
• r−min(w) ≥ max(A), max(w)− r ≥ max(C), and
r−min(w)−max(A)−1 mod (max(B)+1) belongs
to B,

with the convention max(∅) = 0. The set of N-walks of
type (A,B,C) is denoted by WA,B,C .

Proposition 4.1. Given an N-step set S, there is a
finite set of types (Aj , Bj , Cj)1≤j≤m such that the set
of all N-walks on S is equal to the disjoint union⊎m
j=1WAj ,Bj ,Cj

. Furthermore, if we consider the N-
walks as words on the alphabet S, there are nonempty
subsets (Ti,j)1≤i≤j≤m of S such that for all 1 ≤ j ≤
m, the grammar characterizing the N-walks of type
(Aj , Bj , Cj) is

WAj ,Bj ,Cj = (empty N-walk if j = 1)

+

j∑

i=1

WAi,Bi,Ci

∑

s∈Ti,j

s.

Figure 4 illustrates the previous proposition on the
example of Motzkin N-walks.

4.1 Proof of Proposition 4.1 Consider an N-walk
w and the N-walk w · s obtained by adding the N-step

s to w. In this section, we will use the observation that
the set of reachable points of w and w · s are linked by
the relation

reach(w · s) =
⋃

h∈s
{r + h | r ∈ reach(w)} .

Hence, the set of reachable points of an N-walk does not
depend on the order of its N-steps. We start the proof
with a description of reachable points as solutions of a
linear equation.

Lemma 4.1. There exists an N-walk on the N-step set
S that reaches the point r if and only if the following
equation has a solution

∑

s∈S

∑

h∈s
hxs,h = r, ∀(s, h), xs,h ∈ Z≥0.

Furthermore, any N-walk that contains exactly∑
h∈s xs,h occurrences of the N-step s reaches r.

Proof. By definition, if the N-walk w = s1 ·s2 · · · s|w| on
the N-step set S reaches the point r, then there exists
a sequence of integers (hi)1≤i≤|w| such that for all i, we
have hi ∈ si, and

|w|∑

i=1

hi = r.

Let xh,s denote the number if values of 1 ≤ i ≤ |w|
such that (h, s) = (hi, si), then the previous equation
becomes ∑

s∈S

∑

h∈s
hxs,h = r.

The previous lemma translates the study of reach-
able points into the realm of numerical semigroups.
Using the tools of this field (Schur’s Theorem and
Fröbenius number [15]), we obtain the following lemma,
that specializes Proposition 4.1 to N-walks containing
sufficiently many occurrences of each N-step.

Lemma 4.2. Let pS denote the gcd of the N-steps from
S, shifted so that their minimum is at 0

pS = gcd

( ⋃

s∈S
{h−min(s) | h ∈ s}

)
.

For any N-step set S, there exist an integer mS and two
nonnegative integer sets A and C such that any N-walk
w on S that contains at least mS occurrences of each
N-step is in WA,{pS},C .

Proof. Given an N-step set S, the normalized version
of the N-step s is defined as {(h − min(s))/pS | h ∈
s}. The normalized version of S is then the set
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of its normalized N-steps. If Lemma 4.2 holds for
normalized N-step sets, it also holds in the general
case. Thus, without loss of generality, we assume S
to be normalized. In particular, all its N-steps have
minimum 0, so the smallest reachable point is always
0. According to Schur’s Theorem, there is an integer f ,
called the Fröbenius number3, such that for any r > f ,
the equation from Lemma 4.1 has a solution. Let wr
denote an N-walk reaching r, and |w|s the number of
occurrences of the N-step s in w. Let us define the

integers `, m
(0)
S and b as

` = max
s∈S

max(s),

m
(0)
S = max

s∈S,f<r≤f+`
|wr|s,

c = max
∀s∈S, |w|s=m(0)

S

(max(w)− f − `).

Those three integers have the following meanings:
• ` is the maximum height of any N-step from S,

• any N-walk containing at least m
(0)
S occurrences of

each N-step reaches all integers from [f + 1, f + `],

• let W=m
(0)
S denote the set of N-walks that contain

exactly m
(0)
S occurrences of each N-step, then for

any such N-walk, the distance between the maximal
reachable point and f + ` is at most c.

Since any N-step has minimum 0, and maximum at most

`, adding an N-step s to an N-walk w from W=m
(0)
S

produces an N-walk w · s which reaches all the points
from f + 1 to max(w · s)− c. By recurrence, for any N-

walk w that contains at least m
(0)
S occurrences of each

N-step, all points from f+1 to max(w)−c are reachable.
Since all N-steps contain 0, we have

reach(w) ⊂ reach(w · s).
Let w=m denote an N-walk that contains exactly m
occurrences of each N-step. Then ([0, f ]∩reach(w=m))m
is an increasing (for the inclusion) sequence of sets
included in [0, f ]. Thus, it reaches for some finite integer

m = n its limit A. We set m
(1)
S = max(m

(0)
S , n). Any

N-walk w containing at least m
(1)
S occurrences of each

N-step satisfies

reach(w) ∩ [0, f ] = A,

[f + 1,max(w)− c] ⊂ reach(w).

3Computing the Fröbenius number is NP-hard under Turing
reduction if the number of integers n = | ∪s∈S s| is arbitrary [14].

It is an open problem whether it is also NP-hard under Karp

reduction. If n is fixed, there is a polynomial algorithm [10]
to compute the Fröbenius number but it is unpractical as its

complexity is in O
(

(logm)n
O(n)

)
where m = maxs∈S max(s).

However, there are algorithms that perform very well in practice
[3, 6].

Finally, let us define the symmetric of an N-step s as the
N-step {max(s) − h | h ∈ s}, and the symmetric of an
N-step set as the set of its symmetric N-steps. Applying
the previous proof to the symmetric of S, we obtain the

existence of an integer m
(2)
S , and integer f ′ and a set

C such that for any N-walk w containing at least m
(2)
S

occurrences of each N-step, we have

reach(w) ∩ [max(w)− f ′,max(w)] = C.

Defining the integer mS as max(m
(1)
S ,m

(2)
S ) finishes the

proof.

We can finally provide the proof of Proposition 4.1.

Proof of Proposition 4.1. Given an N-step set S, we
set qS = maxT⊂SmT , where mT has been defined in
Lemma 4.2. Let |w|s denote the number of occurrences
of the N-step s in the N-walk w. Consider the partial
order on N-walks such that w ≤ w′ if and only if any N-
step that has less than qS occurrences in w′ has at least
as many occurrences in w′ as in w. Let us also define
the equivalence relation w ∼ w′ when the N-steps that
occurs at least qS times in w and w′ are the same, and
the other N-steps have the same number of occurrences
in both N-walks

w ≤ w′ ⇔ (∀s ∈ S, |w′|s < qS ⇒ |w|s ≤ |w′|s) ,
w ∼ w′ ⇔

(
∀s ∈ S, (|w|s ≥ qs ⇒ |w′|s ≥ qs)

and (|w|s < qs ⇒ |w|s = |w′|s)
)
.

When the set of all N-walks is factored by the “∼” re-
lation, we obtain a finite number of disjoint subsets,
on which the “≤” partial order induces a lattice struc-
ture. In the next paragraph, we will prove that each
of those subsets V corresponds to a type, such that
there are finite nonnegative integer sets A B, C such
that V = WA,B,C . This will conclude the proof of the
proposition, as the lattice structure ensures the gram-
mar characterization stated in the second part of the
proposition.

First, observe that two N-walks that contain the
same N-steps with the same multiplicities reach the
same set of points. Consider an element V of the
lattice. By definition, if an N-walk from V contains
less than qS occurrences of each N-step, then all N-
walks in V contain, for each N-step, the same number of
occurrences, and thus have the same set R of reachable
points. We then define A as the set R shifted by min(R),
and obtain V = WA,∅,∅. Otherwise, let T ⊂ S denote
the set of N-steps that occur in the N-walks from V
at least qs times. Let also v denote any N-walk with
exactly |w|s occurrences of each N-step s from S \ T ,
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and no other N-step. Let W≥mT
denote the set of N-

walks that contain at least mT occurrences of each N-
step from T , and no other N-step. Since qS ≥ mT ,
for any N-walk w from V , there is an N-walk w′ from
W≥mT

such that the reachable points of w are the same
as for w′ · v, the concatenation of w′ and v. Since w′

belongs to W≥mT
, according to Lemma 4.2, there are

integer sets A′, C ′ and an integer pT such that w′ is in
WA′,{pT },C′ . Adding the N-steps from v to w′ changes
the set of reachable points, and we obtain integer sets
A, B, C such that w′ · v belongs to WA,B,C .

4.2 Proof of Theorem 4.1 The main idea of the
proof is the repeated use of closure properties of al-
gebraic functions, see [7]. Let WA,B,C(x, y; t) =∑
w∈WA,B,C

xmin(w)ymax(w)t|w| and BridgeA,B,C(t) de-
note the generating functions of N-walks and N-bridges
of type (A,B,C). The first part of Proposition 4.1 im-
plies

Bridge(t) =

m∑

j=1

BridgeAj ,Bj ,Cj
(t).

Hence, the proof is complete once established that each
BridgeAj ,Bj ,Cj

(t) is algebraic. The grammar character-
ization from the second part of Proposition 4.1 is trans-
lated into the following system of equations: for j from 1
to m, the generating function WAj ,Bj ,Cj

(x, y; t) is equal
to

1j=1 + t

j∑

i=1

WAi,Bi,Ci
(x, y; t)

∑

s∈Ti,j

xmin(s)ymax(s).

Solving this system, we obtain a rational expression
for each WAj ,Bj ,Cj (x, y; t), because the sets Ti,j are
nonempty. In the following, we consider some 1 ≤
j ≤ m, set (A,B,C) = (Aj , Bj , Cj), and prove that
BridgeA,B,C(t) is algebraic. We assume that those three
sets are nonempty, the other cases being similar.

An N-walk where the minimal reachable point is
positive or the maximal reachable point is negative
cannot be a bridge. Thus, we distinguish three kinds
of N-walks that have the potential to be bridges:

• w ∈W (1)
A,B,C when −max(A) ≤ min(w) ≤ 0,

• w ∈ W
(2)
A,B,C when min(w) < −max(A) and

max(C) < max(w),

• w ∈W (3)
A,B,C when 0 ≤ max(w) ≤ max(C).

The corresponding generating functions are expressed
as sums of positive parts in x and y of rational function

in t with Laurent polynomials in x and y coefficients

W
(1)
A,B,C(x, y; t) = WA,B,C(x, y; t)

− [x<−max(A)]WA,B,C(x, y; t)

− [x>0]WA,B,C(x, y; t),

W
(2)
A,B,C(x, y; t) = WA,B,C(x, y; t)

− [x≥−max(A)]WA,B,C(x, y; t)

− [y≤max(C)]WA,B,C(x, y; t),

W
(3)
A,B,C(x, y; t) = WA,B,C(x, y; t)

− [y<0]WA,B,C(x, y; t)

− [y>max(C)]WA,B,C(x, y; t).

The set of bridges from W
(1)
A,B,C is denoted by

Bridge
(1)
A,B,C , and the same holds for (2) and (3). By

definition of the type, we have

• w ∈ Bridge
(1)
A,B,C if and only if −min(w) ∈ A,

• w ∈ Bridge
(2)
A,B,C if and only if−min(w)−max(A)−

1 mod max(B) + 1 ∈ B,

• w ∈ Bridge
(3)
A,B,C if and only if max(w) ∈ C.

Those characterizations imply

Bridge
(1)
A,B,C(t) =

∑

a∈A
[xa]W

(1)
A,B,C(x−1, 1; t),

Bridge
(3)
A,B,C(t) =

∑

c∈C
[yc]W

(3)
A,B,C(1, y; t),

which are algebraic functions because the set A is finite,

and W
(1)
A,B,C(x−1, 1; t) is an algebraic function analytic

in x and t at the origin, so

[xa]W
(1)
A,B,C(x−1, 1; t) =

da

dxa
W

(1)
A,B,C(x−1, 1; t)|x=0

(the same reasoning applies to (3)). Using the classi-

cal relation, 1
p

∑p−1
k=0 F (e2iπk/p) =

∑
p|n[zn]F (z), valid

for any series F (z) and p > 0 we obtain that

Bridge
(2)
A,B,C(t), equal to

∑

b∈B

∑

(max(B)+1)|(n−max(A)−1−b)
[xn]W

(2)
A,B,C(x−1, 1; t),

is algebraic as well. We conclude that the generating
function of all N-bridges is algebraic, since

Bridge(t) =
m∑

j=1

BridgeAj ,Bj ,Cj
(t)

=
m∑

j=1

Bridge
(1)
Aj ,Bj ,Cj

(t) + Bridge
(2)
Aj ,Bj ,Cj

(t)

+ Bridge
(3)
Aj ,Bj ,Cj

(t).

11
Copyright © 2019

Copyright for this paper is retained by authors

D
ow

nl
oa

de
d 

01
/1

1/
22

 to
 8

4.
11

5.
22

6.
23

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



5 Conclusion

In this paper we introduced nondeterministic lattice
paths and solved the asymptotic counting problem for
such walks of the Dyck and Motzkin type. The strength
of our approach relies on the methods of analytic
combinatorics, which allowed us to derive not only the
asymptotic main terms but also lower order terms (to
any order if needed). Furthermore, we showed that for
a general step set the generating function of bridges is
algebraic. In the long version of this work we will extend
this setting to excursions and meanders with general N-
steps.

The method of choice is the well-established kernel
method. We extended it to a two-phase approach in
order to deal with two catalytic variables.

Additionally to the mathematically interesting
model, our nondeterminstic lattice paths have applica-
tions in the encapsulation and decapsulation of proto-
cols over networks. In the long version of this work we
want to further explore this interesting bridge between
combinatorics and networking.
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Abstract
We continue the enumeration of plane lattice paths avoiding the negative quadrant initiated by the
first author in [1]. We solve in detail a new case, the king walks, where all 8 nearest neighbour
steps are allowed. As in the two cases solved in [1], the associated generating function is proved to
differ from a simple, explicit D-finite series (related to the enumeration of walks confined to the first
quadrant) by an algebraic one. The principle of the approach is the same as in [1], but challenging
theoretical and computational difficulties arise as we now handle algebraic series of larger degree.

We also explain why we expect the observed algebraicity phenomenon to persist for 4 more
models, for which the quadrant problem is solvable using the reflection principle.
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1 Introduction

In this paper we continue the enumeration of plane lattice paths confined to non-convex cones
initiated by the first author in [1]. Therein the two most natural models of walks confined
to the three-quadrant cone C := {(i, j) : i ≥ 0 or j ≥ 0} were studied: walks with steps
{→, ↑,←, ↓}, and those with steps {↗,↖,↙,↘}. In both cases, the generating function
that counts walks starting at the origin was proved to differ (additively) from a simple explicit
D-finite series by an algebraic one. The tools essentially involved power series manipulations,
coefficient extractions, and polynomial elimination.

Later, Raschel and Trotignon gave in [13] sophisticated integral expressions for 8 models,
which imply that 3 additional models ({↗,←, ↓}, {→, ↑,↙}, and {→,↗, ↑,←,↙, ↓}) are
D-finite. Their results use an analytic approach inspired by earlier work on probabilistic and
enumerative aspects of quadrant walks [5, 12].

In this paper we first extend the results of [1] to the so-called king walks, which take
their steps from {→,↗, ↑,↖,←,↙, ↓,↘}. We show that the algebraicity phenomenon of [1]
persists: if Q(x, y; t) (resp. C(x, y; t)) counts walks starting from the origin that are confined

© Mireille Bousquet-Mélou and Michael Wallner;
licensed under Creative Commons License CC-BY

31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2020).
Editors: Michael Drmota and Clemens Heuberger; Article No. 8; pp. 8:1–8:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany



8:2 More Models of Walks Avoiding a Quadrant

to the non-negative quadrant Q := {(i, j) : i ≥ 0 and j ≥ 0} (resp. to the cone C) by the
length (variable t) and the coordinates of the endpoint (variables x, y), then C(x, y; t) differs
from the series

1
3
(
Q(x, y; t)−Q(1/x, y; t)/x2 −Q(x, 1/y; t)/y2)

by an algebraic series, as detailed in our main theorem below. Moreover, we expect a similar
property to hold (with variations on the above linear combination of the series Q) for the 7
step sets of Figure 1, related to reflection groups, and for which the quadrant problem can
be solved using the reflection principle [7]. However, we also expect the effective solution
of these models to be extremely challenging in computational terms, mostly, because the
relevant algebraic series have very large degree. This is illustrated by our main theorem
below. There, and in the sequel, we use the shorthand x̄ = 1/x, ȳ = 1/y, and omit in the
notation the dependencies on t, writing for instance Q(x, y) instead of Q(x, y; t).

I Theorem 1. Take the step set {−1, 0, 1}2 \ {(0, 0)} and let Q(x, y) be the generating
function of lattice walks starting from (0, 0) that are confined to the first quadrant Q (this
series is D-finite and given in [3]). Then, the generating function of walks starting from
(0, 0), confined to C, and ending in the first quadrant (resp. at a negative abscissa) is

1
3Q(x, y) + P (x, y), (resp.− x̄2

3 Q(x̄, y) + x̄M(x̄, y)), (1)

where P (x, y) andM(x, y) are algebraic of degree 216 over Q(x, y, t). Of course, the generating
function of walks ending at a negative ordinate follows, using the x/y-symmetry.

The series P is expressed in terms of M by:

P (x, y) = x̄
(
M(x, y)−M(0, y)

)
+ ȳ
(
M(y, x)−M(0, x)

)
, (2)

and M is defined by the following equation:

K(x, y) (2M(x, y)−M(0, y)) = 2x
3 − 2tȳ(x+ 1 + x̄)M(x, 0) + tȳ(y + 1 + ȳ)M(y, 0)

+ t(x− x̄)(y + 1 + ȳ)M(0, y)− t
(
1 + ȳ2 − 2x̄ȳ

)
M(0, 0)− tȳMx(0, 0),

(3)

where K(x, y) = 1− t(x+ xy + y + x̄y + x̄+ x̄ȳ + ȳ + xȳ). The specializations M(x, 0) and
M(0, y) are algebraic each of degree 72 over Q(x, t) and Q(y, t), respectively, and M(0, 0)
and Mx(0, 0) have degree 24 over Q(t).

We have moreover a complete algebraic description of all the series needed to reconstruct
P (x, y) and M(x, y) from (2) and (3), namely the univariate series M(0, 0) and Mx(0, 0),
and the bivariate series M(x, 0) and M(0, y). In particular, both univariate series lie in the
extension of Q(t) (the field of rational functions in t) generated in 3 steps as follows: first,
u = t+ t2 +O(t3) is the only series in t satisfying

(1− 3u)3(1 + u)t2 + (1 + 18u2 − 27u4)t− u = 0, (4)

simple diagonal
simple

king double-tandem tandemdiabolo Gouyou-
Beauchamps

Figure 1 The seven step sets to which the strategy of this paper should apply. The first two are
solved in [1], the third one in this paper.
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then v = t+ 3t2 +O(t3) is the only series with constant term zero satisfying

(1 + 3v − v3)u− v(v2 + v + 1) = 0, (5)

and finally

w =
√

1 + 4v − 4v3 − 4v4 = 1 + 2t+ 4t2 +O(t3). (6)

Schematically, Q(t) 4
↪→ Q(t, u) 3

↪→ Q(t, v) 2
↪→ Q(t, w). Of particular interest is the series

M(0, 0): by (1), this is also the series C−1,0 that counts by the length walks in C ending at
(−1, 0). It is algebraic, as conjectured in [13], and given by

M(0, 0) = C−1,0 = 1
2t

(
w(1 + 2v)

1 + 4v − 2v3 − 1
)

= t+ 2t2 + 17t3 + 80t4 + 536t5 +O(t6). (7)

Due to the lack of space, the extensions of Q(x, t) generated by M(x, 0) and M(0, x) will
only be described in the long version of this paper.

Once the series C(x, y) is determined, we can derive detailed asymptotic results, which
refine general results of Denisov and Wachtel [4] and Mustapha [11] (who only obtain the
following estimates up to a multiplicative factor).

I Corollary 2. The number c0,0(n) of n-step king walks confined to C and ending at the
origin, and the number c(n) of walks of C ending anywhere satisfy for n→∞:

c0,0(n) ∼
(

229K

37

)1/3 Γ(2/3)
π

8n
n5/3 ,

c(n) ∼
(

232K

37

)1/6 1
Γ(2/3)

8n
n1/3 ,

where K is the unique real root of 1016K3 − 601275603K2 + 92811K − 1.

Outline of the paper

We begin in Section 2 with a general discussion on models of walks with small steps confined
to the cone C, and on the related functional equations. The main part of the paper, Section 3,
is devoted to the solution of the king model. We sketch in the final Section 4 what should be
the starting point for the 4 rightmost models of Figure 1.

Some definitions and notation

Let A be a commutative ring and x an indeterminate. We denote by A[x] (resp. A[[x]]) the
ring of polynomials (resp. formal power series) in x with coefficients in A. If A is a field,
then A(x) denotes the field of rational functions in x, and A((x)) the field of Laurent series
in x, that is, series of the form

∑
n≥n0

anx
n, with n0 ∈ Z and an ∈ A. The coefficient of xn

in a series F (x) is denoted by [xn]F (x).
This notation is generalized to polynomials, fractions, and series in several indeterminates.

If F (x, x1, . . . , xd) is a series in the xi’s whose coefficients are Laurent series in x, say

F (x, x1, . . . , xd) =
∑

i1,...,id

xi11 · · ·xidd
∑

n≥n0(i1,...,id)

a(n, i1, . . . , id)xn,

then the non-negative part of F in x is the following formal power series in x, x1, . . . , xd:

[x≥0]F (x, x1, . . . , xd) =
∑

i1,...,id

xi11 · · ·xidd
∑

n≥0
a(n, i1, . . . , id)xn.
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8:4 More Models of Walks Avoiding a Quadrant

We define similarly the negative part of F , its positive part, and so on. We denote with
bars the reciprocals of variables: that is, x̄ = 1/x, so that A[x, x̄] is the ring of Laurent
polynomials in x with coefficients in A.

If A is a field, a power series F (x) ∈ A[[x]] is algebraic (over A(x)) if it satisfies a
non-trivial polynomial equation P (x, F (x)) = 0 with coefficients in A. It is differentially
finite (or D-finite) if it satisfies a non-trivial linear differential equation with coefficients in
A(x). For multivariate series, D-finiteness requires the existence of a differential equation in
each variable. We refer to [8, 9] for general results on D-finite series.

As mentioned above, we usually omit the dependency in t of our series. For a series
F (x, y; t) ∈ Q[x, x̄, y, ȳ][[t]] and two integers i and j, we denote by Fi,j the coefficient of xiyj
in F (x, y; t). This is a series in Q[[t]].

2 Enumeration in the three-quarter plane

We fix a subset S of {−1, 0, 1}2 \ {(0, 0)} and we want to count walks with steps in S that
start from the origin (0, 0) of Z2 and remain in the cone C := {(x, y) : x ≥ 0 or y ≥ 0}. By
this, we mean that not only must every vertex of the walk lie in C, but also every edge: a
walk containing a step from (−1, 0) to (0,−1) (or vice versa) is not considered as lying in C.
We often say for short that our walks avoid the negative quadrant. The step polynomial of S
is defined by

S(x, y) =
∑

(i,j)∈S
xiyj = ȳH−(x) +H0(x) + yH+(x) = x̄V−(y) + V0(y) + xV+(y),

for some Laurent polynomials H−, H0, H+ and V−, V0, V+ (of degree at most 1 and valuation
at least −1) recording horizontal and vertical displacements, respectively. We denote by
C(x, y; t) ≡ C(x, y) the generating function of walks confined to C, where the variable t
records the length of the walk, and x and y the coordinates of its endpoints:

C(x, y) =
∑

(i,j)∈C

∑

n≥0
ci,j(n)xiyjtn =

∑

(i,j)∈C
xiyjCi,j(t). (8)

Here, ci,j(n) is the number of walks of length n that go from (0, 0) to (i, j) and that are
confined to C.

2.1 Interesting step sets
As in the quadrant case [3], we can decrease the number of step sets that are worth being
considered (a priori, there are 28 of them) thanks to a few simple observations:

Since the cone C (as well as the quarter plane Q) is x/y-symmetric, the models defined
by S and by its mirror image S := {(j, i) : (i, j) ∈ S} are equivalent; the associated
generating functions are related by C(x, y) = C(y, x).
If all steps of S are contained in the right half-plane {(x, y) : x ≥ 0}, then all walks with
steps in S lie in C, and the series C(x, y) = 1/(1− tS(x, y)) is simply rational. The series
Q(x, y) is known to be algebraic in this case [6].
If all steps of S are contained in the left half-plane {(x, y) : x ≤ 0}, then confining a
walk to C is equivalent to confining it to the upper half-plane: the associated generating
function is then algebraic, and so is Q(x, y).
If all steps of S lie (weakly) above the first diagonal (x = y), then confining a walk to C
is again equivalent to confining it to the upper half-plane: the associated generating
function is then algebraic, and so is Q(x, y).
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Finally, if all steps of S lie (weakly) above the second diagonal (x+ y = 0), then all walks
with steps in S lie in C, and C(x, y) = 1/(1− tS(x, y)) is simply rational. In this case
however, the series Q(x, y) is not at all trivial [3, 10]. Such step sets are sometimes called
singular in the framework of quadrant walks.

Symmetric statements allow us to discard step sets that lie in the upper half-plane Z×N, in
the lower half-plane Z× (−N), or weakly below the x/y diagonal.

In conclusion, one finds that there are exactly 51 essentially distinct models of walks
avoiding the negative quadrant that are worth studying: the 56 models considered for
quadrant walks (see Tables 1–4 in [3]) except the 5 singular models for which all steps of S
lie weakly above the diagonal x+ y = 0.

2.2 A functional equation
Constructing walks confined to C step by step gives the following functional equation:

C(x, y) = 1 + tS(x, y)C(x, y)− tȳH−(x)C−,0(x̄)− tx̄V−(y)C0,−(ȳ)− tx̄ȳC0,01(−1,−1)∈S ,

where the series C−,0(x̄) and C0,−(ȳ) count walks ending on the horizontal and vertical
boundaries of C (but not at (0, 0)):

C−,0(x̄) =
∑

i<0
n≥0

ci,0(n)xitn ∈ x̄Q[x̄][[t]],

C0,−(ȳ) =
∑

j<0
n≥0

c0,j(n)yjtn ∈ ȳQ[ȳ][[t]].

On the right-hand side of the above functional equation, the term 1 accounts for the empty
walk, the next term describes the extension of a walk in C by one step of S, and each of the
other three terms correspond to a “bad” move, either starting from the negative x-axis, or
from the negative y-axis, or from (0, 0). Equivalently,

K(x, y)C(x, y) = 1− tȳH−(x)C−,0(x̄)− tx̄V−(y)C0,−(ȳ)− tx̄ȳC0,01(−1,−1)∈S , (9)

where K(x, y) := 1− tS(x, y) is the kernel of the equation.
The case of walks confined to the first (non-negative) quadrant Q has been much studied

in the past 15 years. The associated generating function Q(x, y) ≡ Q(x, y; t) ∈ Q[x, y][[t]] is
defined similarly to (8) and satisfies a similarly looking equation:

K(x, y)Q(x, y) = 1− tȳH−(x)Q−,0(x)− tx̄V−(y)Q0,−(y) + tx̄ȳQ0,01(−1,−1)∈S ,

where now

Q−,0(x) =
∑

i≥0
n≥0

qi,0(n)xitn = Q(x, 0) ∈ Q[x][[t]],

Q0,−(y) =
∑

j≥0
n≥0

q0,j(n)yjtn = Q(0, y) ∈ Q[y][[t]].

3 The king walks

In this section we focus on the case where the 8 steps of {−1, 0, 1}2 \ {(0, 0)} are allowed.
That is,

S(x, y) = (x̄+ 1 + x)(ȳ + 1 + y)− 1 = x+ xy + y + x̄y + x̄+ x̄ȳ + ȳ + xȳ.
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8:6 More Models of Walks Avoiding a Quadrant

The functional equation (9) specializes to

K(x, y)C(x, y) = 1− tȳ(x+ 1 + x̄)C−(x̄)− tx̄(y + 1 + ȳ)C−(ȳ)− tx̄ȳC0,0, (10)

where we have denoted C−(x̄) = C−,0(x̄) = C0,−(x̄) (by symmetry). Equivalently,

xyK(x, y)C(x, y) = xy − t(x2 + x+ 1)C−(x̄)− t(y2 + y + 1)C−(ȳ)− tC0,0. (11)

The generating function Q(x, y) of quadrant walks satisfies

xyK(x, y)Q(x, y) = xy − t(x2 + x+ 1)Q(x, 0)− t(y2 + y + 1)Q(0, y) + tQ0,0. (12)

3.1 Reduction to an equation with orbit sum zero
A key object in the study of walks confined to the first quadrant is a certain group of
birational transformations that depends on the step set. For king walks, it is generated by
(x, y) 7→ (x̄, y) and (x, y) 7→ (x, ȳ). As in [1], the similarities between the equations for C
and Q, combined with the structure of this group, lead us to define a new series A(x, y) by

C(x, y) = A(x, y) + 1
3
(
Q(x, y)− x̄2Q(x̄, y)− ȳ2Q(x, ȳ)

)
. (13)

Then the combination of (11) and (12) gives

xyK(x, y)A(x, y) = 2xy+ x̄y+ xȳ

3 − t(x2 + x+ 1)A−(x̄)− t(y2 + y+ 1)A−(ȳ)− tA0,0,

and it follows from this equation that xyA(x, y) has orbit sum zero. By this, we mean:

xyA(x, y)− x̄yA(x̄, y) + x̄ȳA(x̄, ȳ)− xȳA(x, ȳ) = 0. (14)

Theorem 1 states that A(x, y) is algebraic. In Section 4 we define an analogous series A for
all models of Figure 1 which we expect to be systematically algebraic.

The proof of Theorem 1 starts as in the case of the simple and diagonal walks in [1]. The
first objective, achieved in Section 3.5, is to derive an equation that involves a single bivariate
series, essentially A−(x) (and no trivariate series). In principle, the “generalized quadratic
method” of [2] then solves it routinely. But in practise, the king model turns out to be much
more difficult to solve than the other two, and raises serious computational difficulties. In
what follows, we focus on the points of the derivation that differ from [1]. We have performed
all computations with the computer algebra system Maple. The corresponding sessions will
be available on the authors’ webpages with the long version of the paper.

3.2 Reduction to a quadrant-like problem
We separate in A(x, y) the contributions of the three quadrants, again using the x/y-symmetry
of the step set:

A(x, y) = P (x, y) + x̄M(x̄, y) + ȳM(ȳ, x),

where P (x, y) andM(x, y) lie in Q[x, y][[t]]. Note that this identity defines P andM uniquely
in terms of A. Replacing A by this expression, and extracting the positive part in x and y
from the orbit equation (14) relates the series P and M by

xyP (x, y) = y (M(x, y)−M(0, y)) + x (M(y, x)−M(0, x)) ,

which is exactly the same as [1, Eq. (22)], and as Eq. (2) in Theorem 1. We then follow the
lines of proof of [1, Sec. 2.3] to obtain the functional equation (3) for M .
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3.3 An equation between M(0, x), M(0, x̄), and M(x, 0)
Next we will cancel the kernel K. As a polynomial in y, the kernel admits only one root
that is a formal power series in t:

Y (x) = 1− t(x+ x̄)−
√

(1− t(x+ x̄))2 − 4t2(x+ 1 + x̄)2

2t(x+ 1 + x̄) = (x+ 1 + x̄)t+O(t2).

Note that Y (x) = Y (x̄). We specialize (3) to the pairs (x, Y (x)), (x̄, Y (x)), (Y (x), x), and
(Y (x), x̄) (the left-hand side vanishes for each specialization since K(x, y) = K(y, x)), and
eliminate M(0, Y ), M(Y, 0), and M(x̄, 0) from the four resulting equations. We obtain:

(x+ 1 + x̄)
(
Y (x)− 1

Y (x)

)
(xM(0, x)− 2x̄M(0, x̄)) + 3(x+ 1 + x̄)M(x, 0)

− 2x̄Y (x)
t

+ 3M1,0 + (2Y (x)− x− x̄)M0,0 = 0.
(15)

3.4 An equation between M(0, x) and M(0, x̄)
Let us denote the discriminant occurring in Y (x) by

∆(x) := (1− t(x+ x̄))2 − 4t2(x+ 1 + x̄)2 = (1− t(3(x+ x̄) + 2))(1 + t(x+ x̄+ 2)) (16)

and introduce the notation

R(x) := t2M(x, 0) = xt2

3 +
(

1 + x2

3

)
t3 +O(t4),

S(x) := txM(0, x) = x(1 + x)t2 + 2x(1 + x+ x2)t3 +O(t4).
(17)

Then (15) reads
√

∆(x)
(
S(x)− 2S(x̄) + R(0)− tx̄

t(x+ 1 + x̄)

)
= 3(x+ 1 + x̄)R(x) + 3R′(0)

+1− t(x+ x̄)(x+ 2 + x̄)
t(x+ 1 + x̄) R(0)− 1− t(x+ x̄)

1 + x+ x2 .

(18)

Next, we square this equation and extract the negative part in x. The series R(x) (mostly)
disappears as it involves only non-negative powers of x. This gives an expression for the
negative part of ∆(x)S(x)S(x̄). Using the symmetry of ∆(x) in x and x̄, we then reconstruct
an expression of ∆(x)S(x)S(x̄) that does not involve R(x), as in [1, Sec. 2.5].

During these calculations, we have to extract the negative and non-negative parts in series
of the form F (x)/(1 + x+ x̄)m, where F (x) is a series in t with coefficients in Q[x, x̄]. Upon
performing a partial fraction expansion, and separating in F the negative and non-negative
parts, we see that the key question is how to extract and express the non-negative part in
series of the form F (x̄)/(1− ζix)m, where F (x) ∈ C[x][[t]] and

ζ1 := −1
2 + i

√
3

2 and ζ2 := −1
2 −

i
√

3
2

are the primitive cubic roots of unity. A simple calculation establishes the following lemma.

I Lemma 3 (Non-negative part at pole ρ). Let F (x) ∈ C[x][[t]] and ρ ∈ C. Then,

[x≥0] F (x̄)
1− ρx = F (ρ)

1− ρx,

[x≥0] F (x̄)
(1− ρx)2 = F (ρ)

(1− ρx)2 + ρF ′(ρ)
1− ρx .
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8:8 More Models of Walks Avoiding a Quadrant

One outcome of the extraction procedure is the following identity:

S(ζ1) = S(ζ2) = −R(0) + 3R′(0)
1 + t

= −t2 − 11t4 − 30t5 +O(t6). (19)

Using these results, we finally arrive at an equation relating S(x) and S(x̄):

∆(x)
(
S(x)2 + S(x̄)2 − S(x)S(x̄) + S(x)(xt−R(0)) + x̄S(x̄)(x̄t−R(0))

t(x+ 1 + x̄)

)
=

(1 + t)S(ζ1)
(

2(x+ 1 + x̄)R(0)− (1− t(x+ x̄))(t(x+ x̄)− 2R(0))
t(x+ 1 + x̄)

)

+(1 + 4t)(x+ x̄)R(0)− (t2 + tR(0) +R(0)2)(x2 + x̄2) + ∆0,

(20)

where ∆0 is the coefficient of x0 in ∆(x)S(x)S(x̄).

3.5 An equation for M(0, x) only

Equation (20) is almost ready for a positive part extraction, except for the mixed term
S(x)S(x̄). To eliminate it, we multiply (20) by S(x) +S(x̄) + x+x̄−2R(0)/t

x+1+x̄ . Then we are able
to extract the non-negative terms in x. Hereby we repeatedly apply Lemma 3. Additionally,
we use R(0) = tS′(0) and (19). Furthermore, we work with the real and imaginary parts of
ζ1S
′(ζ1) and ζ2S′(ζ2). More precisely, we define

(1 + t)2ζ1S
′(ζ1) = B1 + i

√
3B2,

(1 + t)2ζ2S
′(ζ2) = B1 − i

√
3B2.

(Note that B1 and B2 here are series in t.) In the end we get a cubic equation in S(x):

Pol(S(x), S′(0), S(ζ1), B1, B2, t, x) = 0, (21)

where the polynomial Pol(x0, x1, x2, x3, x4, t, x) is given in Appendix A.

3.6 The generalized quadratic method

We now use the results of [2] to obtain a system of four polynomial equations relating the
series S′(0), S(ζ1), B1, and B2. Combined with a few initial terms, this system characterizes
these four series. Unfortunately, it turned out to be too big for us to solve it completely, be
it by bare hand elimination or using Gröbner bases: we did obtain a polynomial equation for
S′(0) and S(ζ1), but not for the other two series. Instead, we have resorted to a guess-and-
check approach, consisting in guessing such equations (of degree 12 or 24, depending on the
series), and then checking that they satisfy the system. This guess-and-check approach is
detailed in the next subsection. For the moment, let us explain how the system is obtained.

The approach of [2] instructs us to consider the fractional series X (in t), satisfying

Polx0(S(X), S′(0), S(ζ1), B1, B2, t,X) = 0, (22)

where Polx0 stands for the derivative of Pol with respect to its first variable. The number and
first terms of such series X depend only on the first terms of the series S(x), S′(0), S(ζ1), B1,
and B2 (see [2, Thm. 2]). We find that 6 such series exist:
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X1(t) = i+ 2t2 + 4t3 + (36− 2i)t4 +O(t5),
X2(t) = −i+ 2t2 + 4t3 + (36 + 2i)t4 +O(t5),

X3(t) =
√
t+ t+ 3

2 t
3/2 + 3t2 + 51

8 t
5/2 + 14t3 +O(t7/2),

X4(t) = −
√
t+ t− 3

2 t
3/2 + 3t2 − 51

8 t
5/2 + 14t3 +O(t7/2),

X5(t) = i
√
t− it3/2 + 2it5/2 + t3 − 4it7/2 + 2t4 +O(t9/2),

X6(t) = −i
√
t+ it3/2 − 2it5/2 + t3 + 4it7/2 + 2t4 +O(t9/2).

Note that the coefficients of X1 and X2 (resp. X5 and X6) are conjugates of one another.
As discussed in [2], each of these series X also satisfies

Polx(S(X), S′(0), S(ζ1), B1, B2, t,X) = 0, (23)

where Polx is the derivative with respect to the last variable of Pol, and (of course)

Pol(S(X), S′(0), S(ζ1), B1, B2, t,X) = 0. (24)

Using this, we can easily identify two of the series Xi: indeed, eliminating B1 and B2
between the three equations (22), (23), and (24) gives a polynomial equation between
S(X), S′(0), S(ζ1), t, and X, which factors. Remarkably, its simplest non-trivial factor does
not involve S(X), nor S′(0) nor S(ζ1), and reads

X2 − t(1 +X)2(1 +X2). (25)

By looking at the first terms of the Xi’s and the other factors, one concludes that the above
equation holds for X3 and X4, which are thus explicit.

Let D(x1, . . . , x4, t, x) be the discriminant of Pol(x0, . . . , x4, t, x) with respect to x0.
According to [2, Thm. 14], each Xi is a double root of D(S′(0), S(ζ1), B1, B2, t, x), seen as a
polynomial in x. Hence this polynomial, which involves 4 unknown series S′(0), S(ζ1), B1, B2,
has (at least) 6 double roots. This seems more information than we need! In principle, 4
double roots should suffice to give 4 conditions relating the 4 unknown series. However, we
shall see that there is some redundancy in the 6 series Xi, which comes from the special
form of D.

We first observe that D factors as

D(S′(0), S(ζ1), B1, B2, t, x) = 27x2(1 + x+ x2)2∆(x)D1(S′(0), S(ζ1), B1, B2, t, x),

where ∆(x) is defined by (16), and D1 has degree 24 in x. It is easily checked that none of
the Xi’s are roots of the prefactors, so they are double roots of D1. But we observe that D1
is symmetric in x and x̄. More precisely,

D1(S′(0), S(ζ1), B1, B2, t, x) = x12D2(S′(0), S(ζ1), B1, B2, t, x+ 1 + x̄),

for some polynomial D2(x1, . . . , x4, t, s) ≡ D2(s) of degree 12 in s. Since each Xi is a double
root of D1, each series Si := Xi + 1 + 1/Xi, for 1 ≤ i ≤ 6, is a double root of D2. The series
Si, for 2 ≤ i ≤ 6, are easily seen from their first terms to be distinct, but the first terms of
S1 and S2 suspiciously agree: one suspects (and rightly so), that X2 = 1/X1, and carefully
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concludes that D2 has (at least) 5 double roots in s. Moreover, since X3 and X4 satisfy (25),
the corresponding series S3 and S4 are the roots of 1 + t = tS2

i , that is, S3,4 = ±
√

1 + 1/t.
The other roots start as follows:

S2 = 1 + 4t2 + 8t3 +O(t4), S5,6 = ∓ i√
t

+ 1 + t2 ± it5/2 +O(t3).

But this is not the end of the story: indeed, D2 appears to be almost symmetric in s and
1/s. More precisely, we observe that

D2(S′(0), S(ζ1), B1, B2, s) = s6D3

(
S′(0), S(ζ1), B1, B2, ts+ t+ 1

s

)
,

for some polynomial D3(S′(0), S(ζ1), B1, B2, t, z) ≡ D3(z) of degree 6 in z. It follows that
each series Zi := tSi + (1 + t)/Si, for 2 ≤ i ≤ 6, is a root of D3(z), and even a double root,
unless tS2

i = 1 + t, which precisely occurs for i = 3, 4. One finds Z3,4 = ±2
√
t(1 + t),

Z2 = 1 + 2t− 4t2 +O(t3), Z5,6 = 2t+ 2t3 +O(t4).

Since Z5 and Z6 seem indistinguishable, we safely conclude that D3(z) has two double roots
Z2 and Z5, and a factor (z2 − 4t(1 + t)). Writing

D3(z) =
6∑

i=0
diz

i,

these properties imply, by matching the three monomials of highest degree, that

D3(z) =
(
z2 − 4 t(1 + t)

) (
8 z2d6

2 + 4 zd5d6 + 16 t2d6
2 + 16 td6

2 + 4 d4d6 − d5
2)2

64 d6
3 .

Extracting the coefficients of z0, . . . , z3 gives 4 polynomial relations between the coefficients di,
resulting in 4 polynomial relations between the 4 series S′(0), S(ζ1), B1, B2. One easily checks
that this system, combined with the first terms of these series, defines them uniquely.

As explained at the beginning of this subsection, we have at the moment only been able
to derive from this system polynomial equations (of degree 24) for S′(0) and S(ζ1). For the
other two, we had to resort to a guess-and-check approach, which we now describe.

3.7 Guess-and-check
Guessing. Returning to the functional equation (10) it is easy to extract a simple recurrence
for the polynomials cn(x, y) that count walks of length n by the position of their endpoint.
We implemented this recurrence in the programming language C using modular arithmetic
and the Chinese remainder theorem to compute the explicit values of this sequence up to
n = 2000. Then we were able to guess polynomial equations satisfied by S′(0), S(ζ1), B1,
and B2 using the gfun package in Maple [14]. Of course, those obtained for S′(0) and S(ζ1)
coincide with those that we derived from the system of the previous subsection. Details on
the corresponding equations are shown below.

Generating function Degree in GF Degree in t Number of terms
S′(0) 24 12 323
S(ζ1) 24 32 823
B1 12 26 229
B2 24 60 477
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Checking that the guessed series satisfy the system turns out to be much easier once the
algebraic structure of these series is elucidated, which we do below1. We have not tried a
direct check.

The algebraic structure of S′(0), S(ζ1), B1, and B2. We begin with the simplest series,
B1, of (conjectured) degree 12. Let P (F, t) be its guessed monic minimal polynomial. Using
the Subfields command of Maple for several fixed values of t, one conjectures that the
extension Q(t, B1) possesses a subfield Q(t, u) of degree 4 over Q(t). Maple gives a possible
generator u for fixed values of t, but how can we choose u for a generic t? Indeed, the value of
u given by Maple for fixed t has no reason to be canonical. But the factorisation of P (F, t)
over Q(t, u), of the form P3(F )P9(F ) (with Pi of degree i), with coefficients in Q(t, u), is
canonical. Hence we will compute this factorisation, first for fixed values of t. We proceed as
follows: we factor P (F, t) over Q(t, B1), and find, for fixed t = 3, . . . , 50, that

P (F, t) = (F −B1)P2(F,B1)P9(F,B1),

where P2 (resp. P9) is a monic polynomial of degree 2 (resp. 9) in F . Hence the cubic
factor P3(F ) = F 3 + p2F

2 + p1F + p0 must be (F −B1)P2(F,B1), and we have just found
its coefficients pi in terms of B1 (for t fixed). We now compute the minimal polynomial
over Q of each pi using a resultant or the evala/Norm command in Maple. If the above
factorization persists for all t, as we expect, each pi should have a minimal polynomial over
Q(t) of degree (at most) 4. Having computed this polynomial for sufficiently many values
of t, we reconstruct its generic form by rational reconstruction. We find that all pi generate
the same extension of degree 4 of Q(t), and we can take any of them as a first candidate for
the generator u. We may simplify this generator further to end with the choice (4). Then
we factor P (F, t) over Q(t, u), and check that our guess was correct: the series B1 is indeed
cubic over Q(t, u). Moreover, it can be written rationally in terms of t and the series v
given by (5).

Finally, we factor the guessed minimal polynomials of S′(0), S(ζ1), and B2 over Q(t, v),
and find that these three series all belong to the same quadratic extension of Q(t, v), generated
by the series w given by (6). In particular,

S′(0) = 1
2

(
w(1 + 2v)

1 + 4v − 2v3 − 1
)
,

which coincides with (7), given the Definition (17) of S(x).
Now that we have guessed rational expressions of S′(0), S(ζ1), B1, and B2 in terms of

t, v, and w, the 4 equations obtained in Section 3.6 are readily checked to hold, using the
minimal polynomials of v and w.

3.8 Back to S(x) and R(x)
For S(x) we start with Equation (21), with all one-variable series replaced by their expressions
in terms of t, v, and w. We eliminate w and v using resultants to arrive at an equation of
degree 72 over Q(t, x) for S(x) = txM(0, x).

1 For this section, we have greatly benefited from the help of Mark van Hoeij (https://www.math.fsu.
edu/~hoeij/), who explained us how to find subextensions of Q(t, B1), and “simple” series in these
extensions.
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We can simplify (21) by working with the depressed equation, i.e., removing the quadratic
term by a suitable change of variable. Indeed, defining T (x) by

S(x) = T (x) + 3xS′(0)− 2x2 − 1
3(x2 + x+ 1) ,

we find that T (x) satisfies a cubic equation with no quadratic term, involving t and v but
not w. That is, T (x) has degree 36 over Q(t, x), instead of 72 for S(x).

Introducing T (x) also helps understanding the algebraic structure of R(x). Returning
to (18), we recall that R(0) = tS′(0) and use (19) to express R′(0) in terms of t, v, and w.
The left-hand side simply reads

√
∆(x)(T (x) − 2T (x̄)), and is found to be an element of

wQ(t, x, T (x)). In the end, R(x) has degree 72 and belongs to the same extension of Q(t, x)
as S(x). This ends the proof of our main result, Theorem 1.

4 More models

For each of the 7 step sets S of Figure 1, we are able to define a series A(x, y) that
satisfies the same equation as C(x, y) (see (9)), but with a different constant term,
satisfies an orbit sum identity similar to (14).

Explaining where this series comes from would require us to introduce the group associated to
a step set. For the sake of conciseness, we simply define A(x, y) without further justification.

For the first four step sets S of Figure 1, the series A(x, y) is defined by (13) (with Q(x, y)
counting quadrant walks with steps in S) as we have seen. For the next two step sets,

C(x, y) = A(x, y) + 1
5
(
Q(x, y)− x̄2yQ(x̄y, y) + x̄3Q(x̄y, x̄) + ȳ3Q(ȳ, xȳ)− xȳ2Q(x, xȳ)

)
.

Finally, for the seventh one,

C(x, y) = A(x, y) + 1
7
(
Q(x, y)− x̄2yQ(x̄y, y) + x̄4yQ(x̄y, x̄2y)

−x̄4Q(x̄, x̄2y)− ȳ3Q(xȳ, ȳ) + x2ȳ3Q(xȳ, x2ȳ)− x2ȳ2Q(x, x2ȳ)
)
.

In all cases, the series A(x, y) satisfies the following variant of (9):

K(x, y)A(x, y) = P0(x, y)− tȳH−(x)A−,0(x̄)− tx̄V−(y)A0,−(ȳ)− tx̄ȳA0,01(−1,−1)∈S ,

where K(x, y) = 1− tS(x, y) as before, and P0(x, y) is a Laurent polynomial. This equation
is easily obtained by combining the equations for C(x, y) and Q(x, y).

Finally, the vanishing orbit sum, which is (14) for the first four models, reads

xyA(x, y)− x̄y2A(x̄y, y) + x̄2yA(x̄y, x̄)− x̄ȳA(ȳ, x̄) + xȳ2A(ȳ, xȳ)− x2ȳA(x, xȳ) = 0

for the next two, and

xyA(x, y)− x̄y2A(x̄y, y) + x̄3y2A(x̄y, x̄2y)− x̄3yA(x̄, x̄2y)
+ x̄ȳA(x̄, ȳ)− xȳ2A(xȳ, ȳ) + x3ȳ2A(xȳ, x2ȳ)− x3ȳA(x, x2ȳ) = 0

for the last one. We conjecture that the series A(x, y) is systematically algebraic (this is now
proved for the first three models). To support this conjecture, we have tried to guess (using
the gfun package [14] in Maple), for the 4 models for which it is still open, a polynomial
equation for the series A−1,0, which, in all cases, coincides with the generating function C−1,0
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of walks ending at (−1, 0) (for the second model we consider A−2,0 instead, since A−1,0 = 0
due to the periodicity of the model). This series has degree 4 (resp. 8, 24) in the three
solved cases. We could not guess anything for the 4th model (using the counting sequence
for such walks up to length n = 4000), but we discovered equations of degree 24 for each of
the next three.

We believe that it would be worth exploring if the guiding principles of the present paper
apply to these 4 other models. In all cases, we expect to face a system of quadrant-like
equations rather than a single one. We plan to investigate at least some of these models.

To conclude, we recall that the 4 small step models that are algebraic for the quadrant
problem are conjectured to be algebraic for the three-quadrant cone as well [1, Fig. 5]. In this
case, the series A(x, y) simply coincides with C(x, y), as the orbit sum of xyC(x, y) vanishes.

References

1 M. Bousquet-Mélou. Square lattice walks avoiding a quadrant. J. Combin. Theory Ser. A,
144:37–79, 2016. doi:10.1016/j.jcta.2016.06.010.

2 M. Bousquet-Mélou and A. Jehanne. Polynomial equations with one catalytic variable,
algebraic series and map enumeration. J. Combin. Theory Ser. B, 96:623–672, 2006. doi:
10.1016/j.jctb.2005.12.003.

3 M. Bousquet-Mélou and M. Mishna. Walks with small steps in the quarter plane. In Algorithmic
probability and combinatorics, volume 520 of Contemp. Math., pages 1–39. Amer. Math. Soc.,
Providence, RI, 2010. doi:10.1090/conm/520/10252.

4 D. Denisov and V. Wachtel. Random walks in cones. Ann. Probab., 43(3):992–1044, 2015.
doi:10.1214/13-AOP867.

5 G. Fayolle, R. Iasnogorodski, and V. Malyshev. Random walks in the quarter-plane: Algebraic
methods, boundary value problems and applications, volume 40 of Applications of Mathematics.
Springer-Verlag, Berlin, 1999.

6 I. Gessel. A factorization for formal Laurent series and lattice path enumeration. J. Combin.
Theory Ser. A, 28(3):321–337, 1980. doi:10.1016/0097-3165(80)90074-6.

7 I. M. Gessel and D. Zeilberger. Random walk in a Weyl chamber. Proc. Amer. Math. Soc.,
115(1):27–31, 1992. doi:10.1090/S0002-9939-1992-1092920-8.

8 L. Lipshitz. The diagonal of a D-finite power series is D-finite. J. Algebra, 113(2):373–378,
1988. doi:10.1016/0021-8693(88)90166-4.

9 L. Lipshitz. D-finite power series. J. Algebra, 122:353–373, 1989. doi:10.1016/0021-8693(89)
90222-6.

10 M. Mishna and A. Rechnitzer. Two non-holonomic lattice walks in the quarter plane. Theoret.
Comput. Sci., 410(38-40):3616–3630, 2009. doi:10.1016/j.tcs.2009.04.008.

11 S. Mustapha. Non-D-finite walks in a three-quadrant cone. Ann. Comb., 23(1):143–158, 2019.
doi:10.1007/s00026-019-00413-2.

12 K. Raschel. Counting walks in a quadrant: a unified approach via boundary value problems.
J. Eur. Math. Soc. (JEMS), 14(3):749–777, 2012. doi:10.4171/JEMS/317.

13 K. Raschel and A. Trotignon. On walks avoiding a quadrant. Electron. J. Combin., 26(3):Paper
3.31, 34, 2019. doi:10.37236/8019.

14 B. Salvy and P. Zimmermann. Gfun: a Maple package for the manipulation of generating
and holonomic functions in one variable. ACM Transactions on Mathematical Software,
20(2):163–177, 1994. doi:10.1145/178365.178368.

AofA 2020



8:14 More Models of Walks Avoiding a Quadrant

A Final polynomial equation for S(x) in the king model

The polynomial Pol involved in the cubic Equation (21) defining S(x) is:

Pol(x0, x1, x2, x3, x4, t, x) =
− 3(x2 + x+ 1)2(x2t+ 2xt+ x+ t)(3x2t+ 2xt− x+ 3t)x3

0

+ 3(x2 + x+ 1)(x2t+ 2xt+ x+ t)(3x2t+ 2xt− x+ 3t)(3x1x− 2x2 − 1)x2
0

+
[
3x2(x2 + x+ 1)2(2x4x1 + x4 − x3)− 3x2(t+ 1)2(x2 + x+ 1)2x2

2

+ 6x(t+ 1)(x2 + x+ 1)(x4t+ 2x2t+ x2 + t)x1x2

+ 3x(t+ 1)(x2 + x+ 1)(x4t− x3t− x3 + x2t− xt− x+ t)x2 − 3
(
x8t2 + 2x7t2

+10x6t2 + 20x5t2 + 4x5t+ 25x4t2 + 20x3t2 − 2x4 + 4x3t+ 10x2t2 + 2xt2 + t2
)
x2

1

− 3
(
x8t2 − 11x7t2 − x7t− 32x6t2 − 9x6t− 53x5t2 − 6x5t− 55x4t2 + 3x5 − 15x4t

−39x3t2 − 6x3t− 16x2t2 + x3 − 5x2t− 5xt2 − xt+ t2
)
x1 − 12x8t2 − 30x7t2 − 6x7t

− 51x6t2 − 60x5t2 + 3x6 − 12x5t− 54x4t2 − 36x3t2 + 3x4 − 6x3t− 21x2t2 − 6xt2

−3t2
]
x0 + x2(x2 + x+ 1)

[
(2x3x

2 − 6x4x− 2x3)x2
1 − (x2 + 2)x3 + 3x4x

2

+(2x− 1)(3x4x+ x3(x+ 2))x1] + 3x3(t+ 1)2(x2 + x+ 1)(x1 − x)x2
2

− 3x2(t+ 1)x2(x1 − x)((2(x2 + t(x2 + 1)2))x1 + t(x4 + x2 + 1)− (t+ 1)x(x2 + 1))
+ 3xt(x2 + x+ 1)2(x1 − x)(t(x2 − x+ 1)x2

1 + (x2t− 5xt− x+ t)x1 + t(x2 − x+ 1)).
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