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Abstract

A survey on SL(n) invariant and SL(n) covariant valuations is given.

1 Introduction

A function Φ defined on convex bodies in Rn and taking values in an Abelian
semigroup is called a valuation if

Φ(K) + Φ(L) = Φ(K ∪ L) + Φ(K ∩ L) for K, L, K ∪ L ∈ Kn,

where Kn is the set of convex bodies (convex, compact sets) in Rn. Thus the notion
of valuation is a generalization of the notion of measure. In the 1930s, Blaschke
obtained the first classification of real valued valuations that are SL(n) invariant.
This was greatly extended by Hadwiger in his famous classification of continuous
and rigid motion invariant valuations.

Theorem 1 (Hadwiger [26]). A functional Φ : Kn → R is a continuous and rigid
motion invariant valuation if and only if there are constants c0, c1, . . . , cn ∈ R such
that

Φ(K) = c0 V0(K) + . . . + cn Vn(K)

for every K ∈ Kn.

Here V0(K), . . . , Vn(K) are the intrinsic volumes of K; Vn = V is the ordinary
volume, Vn−1 is proportional to the surface area and V0 is the Euler Characteristic.
The classical theory of valuations and their applications in integral geometry and
geometric probability are described in the books and surveys [26, 35, 67, 70].

In recent years there have been many new developments in the theory of valu-
ations (see [1, 7, 12, 13, 19, 32, 34, 68, 69, 82, 84]). Here we confine our attention
to valuations in the affine geometry of convex bodies. Let SL(n) denote the special
linear group, that is, the group of n× n matrices of determinant 1. We say that a
functional Φ is SL(n) invariant if

Φ(αK) = Φ(K) ∀K ∈ Kn,∀α ∈ SL(n).

We say that Φ is equi-affine invariant if it is SL(n) invariant and translation in-
variant. These notions are important for real valued valuations. We say that a
functional Φ is SL(n) covariant if

Φ(αK) = α Φ(K) ∀K ∈ Kn,∀α ∈ SL(n).

This notion is important for vector and tensor valued valuations as well as for convex
body and star body valued valuations. In the following, we describe classification
theorems for SL(n) invariant and SL(n) covariant valuations and make some remarks
on related results for rotation invariant and rotation covariant valuations.
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2 Real valued valuations on polytopes

Clearly, the intrinsic volumes V1, . . . , Vn−1 are not SL(n) invariant and Hadwiger’s
characterization theorem implies that every continuous, equi-affine invariant val-
uation on Kn is a linear combination of V0 and Vn. It is very easy to see this
directly. We sketch this well-known proof here. The result is far from best possible
(there are characterizations of volume using only translation invariance, see [67] and
[32]) but the arguments are used in one form or another in many of the proofs for
characterization theorems.

Let Pn denote the set of convex polytopes in Rn. Let Φ : Pn → R be an equi-
affine invariant valuation. Since Φ is translation invariant, we have Φ({x}) = c0

for every singleton {x}, x ∈ Rn. Therefore the functional Φ0(P ) = Φ(P ) − c0 is
simple, that is, it vanishes on lower dimensional sets. Now let S be an n-dimensional
simplex of volume s. Since Φ0 is SL(n) invariant, Φ0(S) depends only on s, that
is, there is a function f : [0,∞] → R such that Φ0(S) = f(s). We can subdivide S
by cutting with a hyperplane containing an (n− 2)-dimensional face of S into two
simplices S1, S2 of volume s1 and s2, respectively. Since Φ0 is a simple valuation,
we have Φ0(S) = Φ0(S1) + Φ0(S2) and therefore

f(s) = f(s1 + s2) = f(s1) + f(s2).

This holds for every s1, s2 ≥ 0. Thus f is a solution of Cauchy’s functional equation.
If we assume that Φ is (Borel) measurable, we can conclude that f(s) = c1 s. Thus

Φ(P ) = c0 + c1 V (P )

for every P ∈ Pn.
Next, we consider the corresponding problem on Pn

0 , the set of convex poly-
topes that contain the origin in their interiors. Here the situation is not yet well
understood. It is easy to see that on Pn

0 there are additional examples of SL(n)
invariant valuations. We describe the construction since it will also be used for
tensor, convex body and star body valued valuations. For Φ : Pn

0 → R an SL(n)
invariant valuation, set Ψ(P ) = Φ(P ∗). Here P ∗ is the polar body of P ∈ Pn

0 , that
is,

P ∗ = {y ∈ Rn |x · y ≤ 1 for all x ∈ P}

and x · y denotes the inner product x and y in Rn. The functional Ψ : Pn
0 → R has

the following properties. For P,Q, P ∪Q ∈ Pn
0 , we have

(P ∪Q)∗ = P ∗ ∩Q∗ and (P ∩Q)∗ = P ∗ ∪Q∗.

Since Φ is a valuation,

Ψ(P ) + Ψ(Q) = Φ(P ∗) + Φ(Q∗) =
Φ(P ∗ ∪Q∗) + Φ(P ∗ ∩Q∗) =
Φ((P ∩Q)∗) + Φ((P ∪Q)∗) = Ψ(P ∩Q) + Ψ(P ∪Q),

that is, Ψ is also a valuation. For α ∈ SL(n) and P ∈ Pn
0 , we have

(α P )∗ = α−t P ∗,

where α−t is the inverse of the transpose of α. Since Φ is SL(n) invariant,

Ψ(αP ) = Φ((αP )∗) = Φ(α−tP ∗) = Φ(P ∗) = Ψ(P ),

that is, Ψ is also SL(n) invariant. We say that a functional Φ is homogeneous of
degree q if

Φ(t K) = tqΦ(K) ∀K ∈ Kn,∀t ≥ 0.
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If Φ is homogeneous of degree q, then

Ψ(t P ) = Φ((t P )∗) = Φ(t−1P ∗) = t−q Ψ(P ),

that is, Ψ is homogeneous of degree −q. In particular, this shows that K 7→ V (K∗)
is an SL(n) invariant and homogeneous valuation. The next result shows that there
are no further examples.

Theorem 2 ([46]). A functional Φ : Pn
0 → R is a measurable, SL(n) invariant

valuation which is homogeneous of degree q if and only if there is a constant c ∈ R
such that

Φ(P ) =


c for q = 0
c V (P ) for q = n

c V (P ∗) for q = −n

0 otherwise

for every P ∈ Pn
0 .

It is not known if there are additional examples if Φ is not homogeneous. We
conjecture that every SL(n) invariant and continuous valuation is a linear combina-
tion of a constant, the volume of the body and the volume of the polar body. Also
the problem to classify rotation invariant valuations on Pn

0 is open. Alesker [1] has
obtained a classification of continuous, rotation invariant, polynomial valuations on
Kn.

3 Real valued valuations on convex bodies

There are SL(n) invariant valuations on convex bodies that vanish on polytopes.
The affine surface area Ω : Kn → R, is such a functional. It is defined by

Ω(K) =
∫

∂K

κ(K, x)1/(n+1) dx,

where κ(K, x) is the generalized Gaussian curvature of K at x and ∂K is the
boundary of K. Affine surface area was introduced by Pick and Blaschke at the
beginning of the twentieth century in the context of Affine Differential Geometry. In
the 1990s, it has been extended to a functional for general (not necessarily smooth)
convex bodies by Leichtweiß, Lutwak, Schütt and Werner (see [39]). Affine surface
area is an equi-affine invariant valuation. Lutwak [56] proved that Ω is upper
semicontinuous.

Affine surface area has found a wide field of applications. In particular, affine
surface area describes the quality of polytopal volume approximation (see [24, 41, 80,
86]). See also [89, 90, 91]. In the planar case, there is a nice geometric interpretation
for affine surface area, see [10]. In general dimensions, floating bodies (see [39]) and
related constructions (see [71, 92, 93]) are used to obtain geometric interpretations.
There is the following characterization of Ω.

Theorem 3 ([42, 51]). A functional Φ : Kn → R is an upper semicontinuous and
equi-affine invariant valuation if and only if there are constants c0, c1, and c2 ≥ 0
such that

Φ(K) = c0 + c1 V (K) + c2 Ω(K)

for every K ∈ Kn.

This is an equi-affine analogue of Hadwiger’s Characterization Theorem. The prob-
lem to determine all upper semicontinuous and rigid motion invariant valuations on
Kn is open. Only in the planar case, there is a complete classification (see [43]).
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Let Kn
0 denote the space of convex bodies that contain the origin in their inte-

riors. A classical notion is the centro-affine surface area Ωc(K) that can be defined
in the following way. If K ∈ Kn

0 and the Gaussian curvature κ(K, x) exists for
x ∈ ∂K, set

κ0(K, x) =
κ(K, x)

(x · u(K, x))n+1
,

where u(K, x) is the exterior normal unit vector to K at x ∈ ∂K. Note that
κ0(K, x)−1/2 is (up to a constant) the volume of the centered ellipsoid that osculates
K at x. Let

dσK(x) = (x · u(K, x)) dx

denote the cone measure of K. Then the centro-affine surface area is defined by

Ωc(K) =
∫

∂K

κ0(K, x)
1
2 dσK(x)

and it is GL(n) invariant. Here GL(n) denotes the general linear group, that is,
the group of invertible n × n matrices. Similar to affine surface area, centro-affine
surface area has applications in polytopal approximation. In particular, centro-
affine surface area describes the quality of polytopal approximation with respect to
the Banach-Mazur distance (see [23]). There is the following characterization of Ωc.

Theorem 4 ([52]). A functional Φ : Kn
0 → R is an upper semicontinuous, GL(n)

invariant valuation if and only if there are constants c0 ∈ R and c1 ≥ 0 such that

Φ(K) = c0 + c1 Ωc(K)

for every K ∈ Kn
0 .

More generally, the following classification of SL(n) invariant and upper semi-
continuous valuations holds.

Theorem 5 ([52]). A functional Φ : Kn
0 → R is an upper semicontinuous and SL(n)

invariant valuation that vanishes on Pn
0 if and only if there is a concave function

φ : [0,∞) → [0,∞) with limt→0 φ(t) = 0 and limt→∞ φ(t)/t = 0 such that

Φ(K) =
∫

∂K

φ(κ0(K, x)) dσK(x)

for every K ∈ Kn
0 .

Combined with Theorem 2 this gives a classification of upper semicontinuous,
SL(n) invariant, homogeneous valuations on Kn

0 .

Theorem 6 ([52]). A functional Φ : Kn
0 → R is an upper semicontinuous, SL(n)

invariant valuation that is homogeneous of degree q if and only if there are constants
c0 ∈ R and c1 ≥ 0 such that

Φ(K) =



c0 + c1 Ωn(K) for q = 0
c1 Ωp(K) for −n < q < n, q 6= 0,

c0 V (K) for q = n

c0 V (K∗) for q = −n

0 otherwise

for every K ∈ Kn
0 where p = n(n− q)/(n + q).
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Here Ωp(K) is the Lp-affine surface area of K. This notion was introduced by
Lutwak [60] within the setting of the Lp-Brunn-Minkowski theory. For K ∈ Kn

0 and
p ≥ 1, he defined

Ωp(K) =
∫

Sn−1
fp(K, u)

n
n+p du

where Sn−1 is the unit sphere and fp(K, ·) is the Lp-curvature function of K. Lut-
wak [60] showed that Ωp is SL(n) invariant and upper semicontinuous on Kn

0 . Hug
[28] gave an equivalent definition of Lp-affine surface areas and extended Lutwak’s
definition from p ≥ 1 to p > 0. Hug’s definition can be written in the following way.
For p > 0 and K ∈ Kn

0 ,

Ωp(K) =
∫

∂K

κ0(K, x)
p

n+p dσK(x).

For p = 1 we obtain the affine surface area Ω(K) and for p = n the centro-affine
surface area Ωc(K). Geometric interpretations of Lp-affine surface areas can be
found in [72, 87] and applications to partial differential equations in [61].

There is the following application of Theorem 6. Set Ψ(K) = Ωp(K∗). Then Ψ
is also an SL(n) invariant valuation and it is homogeneous of degree −q = −n (n−
p)/(n + p). Therefore by Theorem 6, there is a constant c ≥ 0 such that Ψ(K) =
cΩr(K) where r = n2/p. Since for the ball B of radius 1 all Lp-affine surface areas
coincide, we have Ωp(B) = Ωp(B∗) = cΩr(B) and c = 1. Thus

Ωp(K∗) = Ωn2/p(K).

This result was obtained by Hug [29] using a different approach.

4 Tensor valued valuations

For vector valued valuations, Schneider [78] proved the following analogue of Had-
wiger’s characterization theorem: Every continuous, rotation covariant, vector val-
ued valuation z on Kn with the property that z(K + x)− z(K) is parallel to x for
every x ∈ Rn is a linear combination of quermassvectors (see also [27] and [81],
Chapter 5.4). Here we are interested in SL(n) covariant vector valued valuations
on Pn

0 . For this question, the fundamental notion is the moment vector

m(P ) =
∫

P

x dx

of P ∈ Pn
0 , that is, m(P ) is the centroid of P multiplied by the volume of P . The

moment vector is an SL(n) covariant valuation on Pn
0 . The problem to classify

SL(n) covariant valuations from Pn
0 to Rn is not completely solved but there is a

classification of GL(n) covariant valuations. Here a function z : Pn
0 → Rn is called

GL(n) covariant, if there is a real number q such that

z(αP ) = |detα|q αz(P ) ∀P ∈ Pn
0 ,∀α ∈ GL(n).

A function is (Borel) measurable if the pre-image of every open set is a Borel set.

Theorem 7 ([44]). A function z : Pn
0 → Rn, n ≥ 3, is a GL(n) covariant, mea-

surable valuation if and only if there is a constant c ∈ R such that

z(P ) = cm(P )

for every P ∈ Pn
0 .
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More general tensor valued valuations on Kn were studied and classified in [2,
68, 69, 83, 84]. Here we consider only symmetric tensors of rank 2, that is, functions
Z : Pn

0 →Mn, where Mn is the set of real symmetric n × n matrices. Note that
to every positive definite matrix A ∈Mn corresponds an ellipsoid EA defined by

EA = {x ∈ Rn : x ·Ax ≤ 1}. (1)

A classical concept from mechanics is the Legendre ellipsoid or ellipsoid of inertia
Γ2K associated with a convex body K ⊂ Rn (see [39, 40, 73]). It can be defined
as the unique ellipsoid centered at the center of mass of K such that the ellipsoid’s
moment of inertia about any axis passing through the center of mass is the same
as that of K. The Legendre ellipsoid can also be defined by the moment matrix
M2(K) of K. This is the n× n matrix with coefficients∫

K

xi xj dx,

where we use coordinates x = (x1, . . . , xn) for x ∈ Rn. For a convex body K with
non-empty interior, M2(K) is a positive definite symmetric n×n matrix and using
(1) we have

Γ2K =

√
n + 2
V (K)

EM2(K)−1 .

Note that M2 : Kn → Mn is GL(n) covariant of weight q = 1, where a function
Z : Pn

0 →Mn is GL(n) covariant if there is a real number q such that

Z(αP ) = |detα|q αZ(P )αt ∀K ∈ Kn,∀α ∈ GL(n).

Here αt denotes the transpose of α. There is the following classification of GL(n)
covariant matrix valued valuations.

Theorem 8 ([47]). A function Z : Pn
0 → Mn, n ≥ 3, is a measurable, GL(n)

covariant valuation if and only if there is a constant c ∈ R such that

Z(P ) = cM2(P ) or Z(P ) = cM−2(P ∗)

for every P ∈ Pn
0 .

Here M−2(P ∗) is the matrix with coefficients∑
u

a(P ∗, u)
h(P ∗, u)

ui uj

where the sum is taken over all unit normals u of facets of P ∗ and where a(P ∗, u)
is the (n − 1)-dimensional volume of the facet with normal u and h(P ∗, u) is the
distance from the origin of the hyperplane containing this facet. This matrix corre-
sponds to the ellipsoid Γ−2P

∗ recently introduced Lutwak, Yang, and Zhang [63].
Using (1), this LYZ ellipsoid is given by

Γ−2P
∗ =

√
V (K) EM−2(P∗).

More information on this ellipsoid, its applications, and its connection to the Fisher
information from information theory can be found in [25, 63, 65].
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5 Convex body valued valuations

The basic notion of addition for convex bodies is Minkowski addition. For K1,K2 ∈
Kn, the Minkowski sum is

K1 + K2 = {x1 + x2 : x1 ∈ K1, x2 ∈ K2}

and K1 + K2 ∈ Kn. Minkowski addition can also be described by using the support
function h(K, ·), which is defined for u ∈ Sn−1 by

h(K, u) = max{x · u : x ∈ K}.

Note that h(K, ·) on Sn−1 determines K and that the support function of the
Minkowski sum is given by

h(K1 + K2, ·) = h(K1, ·) + h(K2, ·).

Minkowski addition and volume are the fundamental notions in the Brunn-Minkowski
theory (see [81]). We remark that there are important extensions of the concepts
of the Brunn-Minkowski theory in the Lp-Brunn-Minkowski theory (see [57, 60]).

Here we consider convex body valued functions on Kn and Kn
0 that are valuations

with respect to Minkowski addition. Since we are interested in the affine geometry
of convex bodies, we confine our attention to operators Z : Kn → Kn that are SL(n)
covariant or SL(n) contravariant. Here an operator is called SL(n) contravariant if

Z(αK) = α−t Z K ∀K ∈ Kn
0 ,∀α ∈ SL(n),

where α−t is the transpose of the inverse of α.
The classical example of an SL(n) contravariant operator is the projection oper-

ator Π : Kn → Kn. It is defined in the following way. The projection body, ΠK, of
K is the convex body whose support function is given by

h(ΠK, u) = vol(K|u⊥) for u ∈ Sn−1,

where vol denotes (n− 1)-dimensional volume and K|u⊥ denotes the image of the
orthogonal projection of K onto the subspace orthogonal to u. Projection bodies
were introduced by Minkowski at the turn of the last century. They are an important
tool for studying projections. Petty [75] showed that

Π(αK) = |detα|α−tΠK and Π(K + x) = ΠK (2)

for every K ∈ Kn, α ∈ GL(n), and x ∈ Rn. It follows from (2) that the volume
of ΠK and of the polar of ΠK are affine invariants, and there are important affine
isoperimetric inequalities for these quantities (see [76, 94, 58, 20, 64, 96]). There is
the following characterization of Π.

Theorem 9 ([45, 48]). An operator Z : Pn → Kn is an SL(n) contravariant and
translation invariant valuation if and only if there is a constant c ≥ 0 such that

ZP = cΠP

for every P ∈ Pn.

A simple consequence of this characterization is that every continuous, SL(n) con-
travariant, translation invariant valuation on Kn is a multiple of the projection
operator.
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The corresponding result for SL(n) covariant operators is the following.

Theorem 10 ([48]). An operator Z : Pn → Kn is an SL(n) covariant and trans-
lation invariant valuation if and only if there is a constant c ≥ 0 such that

ZP = c D P

for every P ∈ Pn.

Here DP = P + (−P ) is the difference body of P , which is an important con-
cept in the affine geometry of convex bodies. The fundamental affine isoperimetric
inequality for difference bodies is the Rogers-Shephard inequality [77].

It is an open problem to establish a classification of rigid motion covariant
convex body valued valuations. But there are some important results. An operator
Z : Kn → Kn is Minkowski additive if Z(K1 + K2) = Z K1 + ZK2 for K1,K2 ∈
Kn. Note that every Minkowski additive operator is a valuation with respect to
Minkowski addition but not vice versa. Continuous Minkowski additive operators
that commute with rigid motions are called endomorphisms. Schneider [79] (see
also [81]) showed that there is a great variety of these operators. He obtained
a complete classification of endomorphisms in K2 and characterizations of special
endomorphisms in Kn. These results were further extended by Kiderlen [31]. Also
operators that map Blaschke sums of convex bodies to Minkowski sums are examples
of valuations with respect to Minkowski addition. For these operators, classification
results were obtained by Schuster [85].

Next, we consider operators on Z : Kn
0 → Kn. Such an operator is called GL(n)

covariant, if there is a real number q such that

Z(αK) = |det α|q α Z K ∀K ∈ Kn
0 ,∀α ∈ GL(n).

It is called GL(n) contravariant, if there is a real number q such that

Z(αK) = |det α|q α−t Z K ∀K ∈ Kn
0 ,∀α ∈ GL(n).

Note that the projection operator is GL(n) contravariant of weight q = 1 and that
the operator K 7→ ΠK∗ is GL(n) covariant of weight q = −1. Further examples of
GL(n) covariant operators are the trivial operators K 7→ c0 K + c1(−K), c0, c1 ≥ 0.

Theorem 11 ([48, 50]). An operator Z : Pn
0 → Kn is a non-trivial GL(n) covariant

valuation if and only if there are constants c0 ≥ 0 and c1 ∈ R such that

Z P = c0 MP + c1 m(P ) or Z P = c0 Π P ∗

for every P ∈ Pn
0 .

Here M P is the moment body of P ∈ Pn
0 , that is, the convex body whose support

function is given by

h(MK, u) =
∫

K

|u · x| dx for u ∈ Sn−1.

If the n-dimensional volume V (K) of K is positive, then the centroid body Γ K of
K is defined by

Γ K =
1

V (K)
MK.

Centroid bodies are a classical notion from geometry (see [16, 39, 81]). If K is
centrally symmetric, then Γ K is the body whose boundary consists of the locus of
the centroids of the halves of K formed when K is cut by hyperplanes through the
origin. The fundamental affine isoperimetric inequality for centroid bodies is the
Busemann-Petty centroid inequality [74]. Recent results on centroid bodies can be
found in [11, 17, 22, 53, 55, 62, 66, 73].
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6 Star body valued valuations

The basic notion of addition for star bodies is radial addition. Here a set L ⊂ Rn

is a star body, if it is sharshaped with respect to the origin and has a continuous
radial function ρ(L, ·), which is defined for u ∈ Sn−1 by

ρ(L, u) = max{t ≥ 0 : t u ∈ L}.

Note that ρ(L, ·) on Sn−1 determines L. Let Sn denote the set of star bodies in
Rn. Then the radial sum L1 +̃ L2 of L1, L2 ∈ Sn is given by

ρ(L1 +̃ L2, ·) = ρ(L1, ·) + ρ(L2, ·)

and L1 +̃ L2 ∈ Sn. Radial addition and volume are the fundamental notions in
the dual Brunn-Minkowski theory (see [16]). Here we consider star body valued
functional on Kn

0 that are valuations with respect to radial addition. Note that
the trivial operators, K 7→ c0 K +̃ c1(−K), c0, c1 ≥ 0, are GL(n) covariant and
valuations with respect to radial addition.

Theorem 12 ([49]). An operator Z : Pn
0 → Sn is a non-trivial GL(n) covariant

valuation if and only if there is a constant c ≥ 0 such that

Z P = c I P ∗

for every P ∈ Pn
0 .

Here IP ∗ is the intersection body of P ∗ ∈ Pn
0 , that is, the star body whose radial

function is given by

ρ(I P ∗, u) = vol(P ∗ ∩ u⊥) for u ∈ Sn−1,

where P ∗ ∩ u⊥ denotes the intersection of P ∗ with the subspace orthogonal to u.
Intersections bodies first appear in Busemann’s [8] theory of area in Finsler spaces
and they were first explicitly defined and named by Lutwak [54]. Intersection bodies
turned out to be critical for the solution of the Busemann-Petty problem: If the
central hyperplane sections of an origin-symmetric convex body in Rn are always
smaller in volume than those of another such body, is its volume also smaller?
Lutwak [54] showed that the answer to the Busemann-Petty problem is affirmative
if the body with the smaller sections is an intersection body of a star body. This led
to the final solution that the answer is affirmative if n ≤ 4 and negative otherwise
(see [14, 15, 18, 36, 37, 95, 97]). Further applications of intersection bodies can be
found in [9, 21, 22, 30, 38, 73].
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