
Upper semiontinuous valuationson the spae of onvex dissMonika LudwigAbstratWe show that every rigid motion invariant and upper semiontinuous val-uation on the spae of onvex diss is a linear ombination of the Eulerharateristi, the length, the area, and a suitable urvature integral of theonvex dis.1991 AMS subjet lassi�ation: 52A10, 53A04Keywords: onvex dis, valuation, Hadwiger's Charaterization Theorem, urvature integral1 Introdution and statement of resultsLet K2 be the spae of onvex diss, i.e. of non-empty ompat onvex sets in theEulidean plane E 2 . A funtional � : K2 ! R is alled additive or a valuation, if�(K) + �(L) = �(K [ L) + �(K \ L)whenever K;L;K [ L 2 K2. These valuations play an important role in onvexgeometry (see [16℄ and [15℄) and have many appliations in integral geometry(see [9℄ and [20℄). One of the most important results in this �eld is Hadwiger'sharaterization theorem [7℄. The planar ase of this theorem states that everyontinuous and rigid motion invariant valuation � : K2 ! R an be written as alinear ombination of the Euler harateristi �, the length L, and the area A ofthe onvex dis, i.e. there are onstants 0; 1; 2 2 R suh that�(K) = 0 �(K) + 1 L(K) + 2A(K)for every K 2 K2. Here ontinuity is with respet to the usual topology on K2indued by the Hausdor� metri.
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Beside these ontinuous valuations, there are other valuations on K2 whihare of geometrial interest. One example is the aÆne length � of a onvex dis,whih is de�ned as �(K) = ZS1 �(K; u) 23 d�(u);where S1 is the unit irle, � is the one-dimensional Hausdor� measure and�(K; u) is the urvature radius of the boundary of K at the point with normalu 2 S1. �(K; u) exists for almost all u 2 S1 and is Lebesgue measurable. ThisaÆne length is well de�ned for every K 2 K2, it is invariant with respet to areapreserving aÆne transformations, and it is upper semiontinuous, i.e. for everysequene Kn of onvex diss onverging to K,�(K) � lim supn!1 �(Kn)(f. [10℄). In [11℄ it is shown that the aÆne length an be haraterized by theseproperties. Namely, let � : K2 ! R be an upper semiontinuous valuation whihis invariant with respet to area preserving aÆne transformations, then there areonstants 0; 1 2 R and 2 � 0 suh that�(K) = 0 �(K) + 1 A(K) + 2 �(K)for every K 2 K2. The orresponding result in d-dimensional spae was provedby [13℄, [17℄.Further examples of valuations of geometri interest are the funtionalsZS1 �(K; u)p d�(u) (1)with 0 < p < 1. They are important in problems of asymptoti approximationby polygons (f. [4℄, [14℄, [5℄, [6℄). They are upper semiontinuous. This followsfrom the planar ase of [12℄, whih states the following. Let D be the set offuntions f : [0;1) ! [0;1) suh that f is onave, limt!0 f(t) = 0, andlimt!1 f(t)=t = 0. Then, for f 2 D,ZS1 f(�(K; u)) d�(u) (2)depends upper semiontinuously on K. An equivalent way to represent the fun-tionals de�ned in (2) is by ZbdK g(�(K; x)) d�(x) (3)2



where g(t) = t f(1=t), bdK is the boundary of K, and �(K; x) is the urvatureof bdK at x (see [12℄ and [8℄). They are rigid motion invariant and beause of(3) it is easy to see that they are valuations. We show that these funtionalstogether with the Euler harateristi, length, and area are the only examples ofrigid motion invariant and upper semiontinuous valuations.Theorem. Let � : K2 ! R be an upper semiontinuous and rigid motion invari-ant valuation. Then there are onstants 0; 1; 2 2 R and a funtion f 2 D suhthat �(K) = 0 �(K) + 1 L(K) + 2A(K) + ZS1 f(�(K; u)) d�(u)for every K 2 K2.A funtional � : K2 ! R is alled homogeneous of degree p, if�(tK) = tp �(K)for every t > 0 and every K 2 K2. It is easy to see that the funtionals in (1)are homogeneous of degree p. The following simple onsequene of our theoremholds.Corollary. Let � : K2 ! R be an upper semiontinuous and rigid motion in-variant valuation whih is homogeneous of degree p. For 0 < p < 1, there is aonstant  � 0 suh that �(K) =  ZS1 �(K; u)p d�(u)for every K 2 K2. For p = 0, �(K) =  �(K), for p = 1, �(K) =  L(K), andfor p = 2, �(K) = A(K) for every K 2 K2 with a suitable onstant  2 R. Inall other ases, �(K) = 0 for every K 2 K2.2 Proof of the TheoremSine � is translation invariant, we have for every x 2 E 2 ,�(fxg) = 0with a suitable onstant 0. De�ne�0(K) = �(K)� 0 �(K):Then �0 is an upper semiontinuous and rigid motion invariant valuation, whihvanishes on singletons. 3



Let I be a one-dimensional onvex dis, i.e. a line segment. Then �0(I)depends only on L(I), the length of I, sine �0 is rigid motion invariant. Henethere is a funtion g : [0;1)! R suh that�0(I) = g(L(I))for every one-dimensional I 2 K2. Sine �0 vanishes on singletons, dividing Iinto two piees I1 and I2 of length L1 and L2, respetively, shows thatg(L1 + L2) = g(L1) + g(L2)holds for L1; L2 � 0. Thus g is a solution of Cauhy's funtional equation andsine �0 is upper semiontinuous, also g has this property. It is a well knownproperty of solutions of Cauhy's funtional equation (see, e.g., [1℄) that thisimplies that there is a onstant 1 suh thatg(L) = 1 Lfor every L � 0. De�ne �1(K) = �0(K)� 1 L(K):Then �1 is an upper semiontinuous and rigid motion invariant valuation, whihvanishes on every at most one-dimensional onvex dis. Suh a valuation is alledsimple. Set �1(;) = 0. In the rest of the proof, we make use of the followingproperty of simple valuations. Let K 2 K2 and let P1; : : : ; Pm be onvex polygonswith pairwise disjoint interiors and suh that K � P1 [ : : : [ Pm. Then�1(K) = �1(K \ P1) + : : :+ �1(K \ Pm):This an be seen by suitably subdividing the polygons and using indution onthe number of piees like in the extension theorem [7℄, p. 81.Let T 2 K2 be a triangle. A well known theorem from elementary geometry(f., e.g., [2℄) states that in the plane every triangle is equi-dissetable to any othertriangle with the same area, i.e. for triangles T and T 0 with A(T ) = A(T 0) thereare triangles T1; : : : ; Tm with pairwise disjoint interiors and triangles T 01; : : : ; T 0mwith pairwise disjoint interiors suh thatT = m[i=1Ti and T 0 = m[i=1T 0iand there are rigid motions '1; : : : ; 'm suh thatT 0i = '(Ti)4



holds for i = 1; : : : ; m. Sine �1 is a rigid motion invariant and simple valua-tion, this implies that �1(T ) = �1(T 0): Hene �1(T ) depends only on A(T ) andonsequently, there is a funtion g : [0;1)! R suh that�1(T ) = g(A(T ))for every triangle T . Disseting a triangle T into triangles T1 and T2 with areaA1 and A2, respetively, now shows thatg(A1 + A2) = g(A1) + g(A2)for A1; A2 � 0. Here we used the fat that �1 is a simple valuation. Therefore g isan upper semiontinuous solution of Cauhy's funtional equation whih impliesthat there is a onstant 2 suh thatg(A) = 2Afor every A � 0. De�ne �2(K) = �1(K)� 2A(K):Then �2 is an upper semiontinuous and rigid motion invariant valuation, whihvanishes on triangles and therefore, being simple, on polygons.The above arguments show that proving the following statement implies ourtheorem.Proposition 1. Let � : K2 ! R be an upper semiontinuous and rigid motioninvariant valuation with the property that �(P ) = 0 for every polygon P 2 K2.Then there is a funtion f 2 D suh that�(K) = ZS1 f(�(K; u)) d�(u)for every K 2 K2.Sine the polygons are dense in K2 and � is upper semiontinuous, we have�(K) � 0for every K 2 K2. De�ne the funtion f : [0;1)! [0;1) byf(r) = �(Br)=2 �; (4)where Br is the solid irle of radius r entered at the origin o. First, we provethe following result. 5



Lemma 1. f 2 D:Proof. Sine � is upper semiontinuous and vanishes on singletons, we have forthe origin o 0 = �(fog) � lim supr!0 �(Br) = lim supr!0 2 � f(r);whih implies that limr!0 f(r) = 0:

�gure 1Next, we show that f is onave. Let 0 � r < s < t. We approximate thesolid irle Bs of radius s by onvex diss Ln onstruted in the following way.We hoose n translates B1t ; : : : ; Bnt ; Bn+1t = B1t of the solid irle Bt of radius tsuh that Bs � Bit for i = 1; : : : ; n, and suh that the Bit 's touh Bs from theexterior at onseutive points equally spaed on bdBs. Then we hoose translatesB0r = Bnr ; B1r ; : : : ; Bnr of the solid irle Br of radius r suh that Bir is ontainedin Bit and Bi+1t and touhes both of them from the interior. Ln is the onvexdis whose boundary onsists for i = 1; : : : ; n of that part of bdBit lying betweenthe points where Bi�1r and Bir touh Bit and that part of bdBir lying between thepoints where Bit and Bi+1t touh Bir (see �gure 1).
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�gure 2For given n, we write �n = 2�n , and we denote by 2�n the angle at the enterof Bit between the lines to the points where Bi�1r and Bir touh Bit, and by 2 �nthe angle at the enter of Bir between the lines to the points where Bit and Bi+1ttouh Bir (see �gure 2). Then we have�n + �n = �nand by the sine theorem, t� rsin(� � �n) = t� ssin(�n) :Consequently, �n�n ! t� st� r (5)and �n�n ! 1� t� st� r (6)as n!1.Let St(�) 2 K2 be a setor with angle �, 0 � � � �, of the solid irle Bt, i.e.the intersetion of Bt and two losed half-planes with the origin on their boundarywhih enlose an angle �. Sine � is rotation invariant, �(St(�)) depends for t�xed only on �, i.e. there is a funtion g : [0; �℄! [0;1) suh that�(St(�)) = g(�): (7)Choosing setors St(�1) and St(�2) with disjoint interiors suh that St(�1) [St(�2) 2 K2 shows that g(�1 + �2) = g(�1) + g(�2) (8)for �1; �2 � 0 and �1+�2 � �. Using (8), we an extend g to a funtion de�nedon [0;1) that is a solution of Cauhy's funtional equation. Sine � is upper7



semiontinuous, so is g. Thus there is a onstant a suh that g(�) = a �: By (7)and sine � is a simple valuation, �(Bt) = 2�(St(�)) = a 2 �, whih shows that�(St(�)) = �2 � �(Bt) = � f(t): (9)Ln an be disseted into n rotated opies of a setor of Br with angle �n and nrotated opies of a setor of Bt with angle �n. Sine � is a rotation invariantvaluation and vanishes on polygons, this implies by (9) that�(Ln) = n �n2 � �(Br) + n �n2 � �(Bt) = �n�n �(Br) + �n�n �(Bt): (10)Taking into aount that � is upper semiontinuous and that Ln ! Bs as n!1,we therefore obtain by (10), (9), (5), and (6)�(Bs) = 2 � f(s) � lim supn!1 �(Ln)= lim supn!1 ��n�n �(Br) + �n�n �(Bt)�= 2 � � t� st� r f(r) + (1� t� st� r ) f(t)� :Therefore, setting � = t�st�r , we have 0 < � < 1 andf(� r + (1� �) t) � � f(r) + (1� �) f(t);whih shows that f is onave.Finally, we show that limt!1 f(t)t = 0: (11)Let I be a line segment of length 1. We approximate I by segments Ct of solidirles Bt of radius t whih go through the endpoints of I. Here a onvex dis isalled a segment of a irle Bt, if it is the intersetion of Bt and a losed half-plane.A simple alulation using (9) shows that�(Ct) = �(St(2 arsin( 12 t))) = 2 arsin( 12 t) f(t):Sine �(I) = 0 and � is upper semiontinuous, this implies thatlim supt!1 arsin( 12 t)f(t) = 0;and therefore also (11). This ompletes the proof of Lemma 1.8



Sine for f 2 D the funtional�f (K) = ZS1 f(�(K; u)) d�(u)is an upper semiontinuous and rigid motion invariant valuation whih vanisheson polygons and satis�es �f(Br) = 2 � f(r), it suÆes to prove the followingstatement to show Proposition 1.Proposition 2. For a given f 2 D, there is a unique � : K2 ! [0;1) with thefollowing properties:(i) � is upper semiontinuous.(ii) � is rigid motion invariant.(iii) � is a valuation.(iv) �(P ) = 0 for every polygon P 2 K2.(v) �(Br) = 2 � f(r).Let � : K2 ! [0;1) have properties (i)-(v) and set �(;) = 0. Let A � K2 bethe set of onvex diss whih an be disseted into �nitely many polygons andsegments of solid irles. Sine � vanishes on polygons and is by (9) determinedby f on setors and segments of irles, �(A) is determined by f for every A 2 A.Sine the polygons belong to A, A is dense in K2, and we an approximate everyK 2 K2 by elements of A. The upper semiontinuity of � implies that�(K) � lim supn!1 �(An) (12)for every sequene An with An ! K. We will prove that for every K 2 K2 thereis a sequene An 2 A suh that we have equality in (12), i.e.�(K) = supflim supn!1 �(An) : An 2 A; An ! Kg: (13)Showing this implies that � is uniquely determined by f and therefore provesProposition 2.As a �rst step in the proof of (13), we show that it suÆes to prove it for"-smooth onvex diss. Here we all a onvex dis K "-smooth if there is a onvexdis K0 suh that K = K0 + "B;where B is the solid unit irle entered at the origin. Suppose that there is aK 2 K2 suh that�(K) > supflim supn!1 �(An) : An 2 A; An ! Kg:9



Then there is an a > 0 and a Æ > 0 suh that�(K) > �(A) + a �(bdK) (14)for every A 2 A with Æ(A;K) � Æ, where Æ(�; �) stands for the Hausdor� distane.We need the following result. Let L 2 K2 and let I be a line segment. Then�(L + I) = �(L): (15)This an be seen in the following way. There are points in bdL with support linesparallel to I. Let H be a line onneting two suh points in bdL and intersetingthe interior of L, if this is non-empty. Denote by H+; H� the omplementarylosed half-planes bounded by H. Then L+ I an be disseted into translates ofL \H+, L \H� and a polygon. Sine � vanishes on polygons and is translationinvariant, this implies that�(L+ I) = �(L \H+) + �(L \H�) = �(L);whih proves (15).The solid unit irle B an be approximated by Minkowski sums Sn of �nitelymany line segments (f. [19℄, Chapter 3.5). The upper semiontinuity of � thenimplies that �(K + "B) � lim supn!1 �(K + " Sn) (16)for every " > 0. Sine " Sn = I1 + : : : + Im with suitable line segments Ik, wehave by (15)�(K + " Sn) = �(K + I1 + : : :+ Im) = �(K + I1 + : : :+ Im�1) = : : : = �(K)for every n and " > 0. Therefore it follows from (16) that for every " > 0 we have�(K + "B) � �(K):Thus for " � 12 Æ, (14) implies that�(K + "B) � �(K) > �(A) + a �(bdK)for every A 2 A with Æ(K + "B;A) � 12 Æ, sine for suh an A 2 AÆ(K;A) � Æ(K;K + "B) + Æ(K + "B;A) � Æ:Sine � depends ontinuously on K, it now follows that�(K + "B) > �(A) + a2 �(bd(K + "B))for every A 2 A with Æ(K + "B;A) � 12 Æ and " � 12 Æ suÆiently small. Iftherefore (13) does not hold for a K 2 K2, it also does not hold for an "-smoothonvex dis K + "B with a suitable " > 0.10



Thus it suÆes to show the following proposition to prove (13) and therebyour theorem.Proposition 3. Let K 2 K2 be "-smooth with " > 0. Then�(K) = supflim supn!1 �(An) : An 2 A; An ! Kg:So let an "-smooth K 2 K2, Æ > 0 and a > 0 be given. Using suitable supporttriangles of K we onstrut an A 2 A with Æ(K;A) � Æ suh that�(K) � �(A) + a �(bdK) (17)holds. Here a triangle T is alled a support triangle of K and x; y 2 bdK arealled its endpoints, if T is bounded by support lines to K at x and y and thehord onneting x and y. Further, we make use of the following simple versionof Vitali's overing theorem (see, e.g., [3℄ or [18℄). Let N � bdK and let V be aVitali lass for N of losed onneted sets V � bdK, i.e. for every x 2 N and� > 0 there exists a V 2 V with x 2 V and 0 < �(V ) � � . Then Vitali's overingtheorem states that for every � > 0 there are pairwise disjoint V1; : : : ; Vm 2 Vsuh that �(N) � mXi=1 �(Vi) + �: (18)We will �rst show that for the set N � bdK of normal points, i.e. pointswhere bdK is twie di�erentiable, there is a suitable Vitali lass de�ned with thehelp of support triangles of K.Lemma 2. For every � > 0 and every normal point x0 2 bdK, there is a supporttriangle T of K and an AT 2 A suh that(i) x0 2 bdK \ T and 0 < �(bdK \ T ) < �(ii) AT � T and T is a support triangle of AT(iii) �(K \ T ) � �(AT ) + a2 �(bdK \ T ):Proof. By hoosing a suitable oordinate system we an represent bdK loallyaround x0 by a onvex funtion g(s) suh that x0 = (0; g(0)) and suh that ass! 0 g(s) = 12 �(K; x0) s2 + o(s2); (19)where �(K; x0) is the urvature of bdK at x0.We �rst onsider the ase �(K; x0) > 0: Let x = x(s) be the point withoordinates (�s; g(�s)), let y = y(s) be the point (s; g(s)), and let T = T (s)be the support triangle with endpoints x(s) and y(s). Then (i) holds for s > 011



suÆiently small. Let H(x) and H(y) be support lines at x and y, respetively,and let w = w(s) be the point where H(x) and H(y) interset. Without loss ofgenerality, we may assume thatjx� wj � jy � wj:De�ne y0 = y0(s) as the point on H(y) suh thatjx� wj = jy0 � wjand y 2 [w; y0℄, where [w; y0℄ is the losed line segment with endpoints w and y0.The triangle T 0 = T 0(s) with verties x, w, and y0 is isoseles. Hene there isa solid irle B(z; r) with enter z = z(s) and radius r = r(s) suh that H(x)is tangent to B(z; r) at x and H(y) is tangent to B(z; r) at y0 (see �gure 3). Asimple alulation using (19) shows that as s! 0B(z; r)! B(z0; r0); (20)where r0 = 1=�(K; x0) is the radius of the irle of urvature to bdK at x0 andz0 is its enter, and that lims!0 jx(s)� w(s)jjy(s)� w(s)j = 1: (21)

�gure 3The point y does not lie in the interior of B(z; r) and [y; y0℄ is tangent to B(z; r).Let y00 = y00(s) be the seond point on bdB(z; r) suh that [y; y00℄ is tangent toB(z; r), and let T 00 = T 00(s) be the triangle with verties x, w and y00. We de�neAT = AT (s) as AT = (B(z; r) \ T 00) [ onvfx; y00; yg;where onv denotes onvex hull. Then AT 2 A and (ii) holds. That also (iii)holds, an be seen in the following way.12



Let  =  (s) be the angle between [z; w℄ and [z; y0℄, and � = �(s) the anglebetween [z; y℄ and [z; y0℄. Then using (9) we have�(AT ) = 2 ( � �)2 � �(B(z; r)) = 2 2 � ��(B(z; r))� � �(B(z; r))� :By (21) it follows thatlims!0 � = lims!0 tan�tan = lims!0 jy0 � yjjy0 � wj = lims!0 jy0 � wj � jy � wjjy0 � wj= 1� lims!0 jy � wjjx� wj = 0:Therefore, for every � > 0,2 2 � (�(B(z; r))� �) � �(AT ) (22)holds for s > 0 suÆiently small.For �(K \ T ) we have the following. T 0 is a support triangle of(K \ T ) [ onvfx; y; y0g;whih is onvex. Sine T 0 is also a support triangle of B(z; r), there are rotations'1; : : : ; 'n with n � 2 �=(2 ) < n+1 suh that the 'i(T 0)'s have pairwise disjointinteriors and are support triangles of B(z; r). De�neLs = n[i=1 'i�(K \ T ) [ onvfx; y; y0g� [ �B(z; r)n n[i=1'i(T 0)�: (23)Then our onstrution implies that Ls 2 K2, that �(Ls) � n�(K \ T ), and by(20), that Ls ! B(z0; r0)as s! 0. Sine � is upper semiontinuous, this implies that�(B(z0; r0)) � lim sups!0 �(Ls) � lim sups!0 2 �2 �(K \ T ):Hene for every � > 0 �(K \ T ) � 2 2 � (�(B(z; r)) + �) (24)for s > 0 suÆiently small, where we used that �(B(z; r)) = 2 � f(r) is ontinu-ous. This, (22) and (20) now imply that�(K \ T ) � �(AT ) + 2 2 � 2 �� �(AT ) + 4 �2 � r �(bdK \ T )� �(AT ) + 8 �2 � r0 �(bdK \ T )13



for s > 0 suÆiently small. Here we used the simple estimate that �(bdK\T ) �r  for s > 0 suÆiently small. Setting � = a � r0=8 now shows that (iii) holdsfor s > 0 suÆiently small.Now, let �(K; x0) = 0. Let T = T (s) be the support triangle of K withendpoints x = x0 and y = y(s) = (s; g(s)) and let AT = T . Then (i) and (ii)hold. For every r > 0, there is a solid irle B(z; r) with x0 2 bdB(z; r) whih isloally ontained in K. We hoose r so large that16 f(r)r � a2 ; (25)whih is possible, sine limr!1 f(r)=r = 0. Let w = w(s) be the point on thesupport line to K at x suh that y 2 [z; w℄ and let y0 = y0(s) be the point onbdB(z; r) suh that [y0; w℄ is tangent to B(z; r) (see �gure 4). Let  =  (s) bethe angle between [z; x℄ and [z; w℄.

�gure 4Then the triangle T 0 = T 0(s) with the verties x, w, and y0 is a support triangleof B(z; r). Sine B(z; r) is loally ontained in K, the support lines of K at y donot interset B(z; r) for s > 0 suÆiently small. Therefore(K \ T ) [ onvfx; y; y0gis onvex for s > 0 suÆiently small and T 0 is also a support triangle of this set.De�ne Ls as in (23). Then Ls ! B(z; r) as s! 0 and �(Ls) � n�(K\T ). Sine� is upper semiontinuous and n � 2 �=(2 ) < n + 1, we have for every � > 0,2 �2 �(K \ T ) � �(B(z; r)) + 2 � � = 2 � (f(r) + �)for s > 0 suÆiently small. Using the simple estimate that � 4r �(bdK \ T )for s > 0 suÆiently small, we have�(K \ T ) � 8r (f(r) + �) �(bdK \ T ): (26)Setting � = a r=32, we obtain by (25) that (iii) holds.14



Further, we need the following result.Lemma 3. There is a (") suh that�(K \ P ) � (") �(bdK \ P )for every polygon P 2 K2 and every "-smooth K 2 K2 with " > 0.Proof. Sine K is "-smooth, for every x0 2 bdK there is a B(z; ") � K suh thatx0 2 bdB(z; "). Let T be a support triangle of K with endpoints x = x0 and y.Then we an onstrut a support triangle T 0 of B(z; ") with verties x; w; y0 as inthe seond part of the proof of Lemma 2 (see �gure 4). As in (26) we thereforehave with � = 1 �(K \ T ) � 8" (f(") + 1) �(bdK \ T ) (27)for every T suÆiently small, and sine in the proof of (26) only the irle B(z; r)and the angle between [z; x℄ and [z; y℄ are used, this holds uniformly for everyx0 2 bdK. We an therefore disset P into �nitely many polygons whih areeither support triangles for whih (27) holds or lie entirely in K or outside of K.Sine � vanishes on polygons, (27) therefore proves the lemma.Sine a onvex funtion is almost everywhere twie di�erentiable (see, e.g.,[19℄), the set N of points, where bdK is twie di�erentiable, has measure�(N) = �(bdK):By Lemma 2 the sets bdK \ T de�ned in Lemma 2 are a Vitali lass for N andthis remains true if we only take triangles T with �(bdT ) � Æ. Let0 < � � a2 (") �(bdK) (28)and � � Æ. Then we an hoose by Vitali's theorem (18) support trianglesT1; : : : ; Tm suh that�(bdK) = �(N) � mXi=1 �(bdK \ Ti) + � (29)and suh that the sets bdK \ Ti are pairwise disjoint. Let AT1 ; : : : ; ATm be theelements of A orresponding to T1; : : : ; Tm as de�ned in Lemma 2 and de�neA = onvfAT1 [ : : : [ ATmg:Then our onstrution using support triangles implies that�(A \ Ti) = �(ATi) (30)15



for i = 1; : : : ; m, and that Æ(K;A) � Æ holds. Let x be an interior point of Kand let Pi be the onvex hull of x and Ti. We hoose polygons Q1; : : : ; Qn suhthat P1; : : : ; Pm; Q1; : : : ; Qn have pairwise disjoint interiors and suh that A andK are ontained in P1 [ : : : [ Pm [Q1 [ : : : [Qn:Sine � vanishes on polygons and by (30), we have�(A) = mXi=1 �(A \ Pi) + nXj=1 �(A \Qj) = mXi=1 �(ATi):For K we have by Lemma 2 and Lemma 3 and sine � vanishes on polygons,�(K) = mXi=1 �(K \ Pi) + nXj=1 �(K \Qj)� mXi=1 ��(ATi) + a2 �(bdK \ Ti)� + (") nXj=1 �(bdK \Qj)� �(A) + a2 �(bdK) + (") �;where we used (29). Consequently, by (28)�(K) � �(A) + a �(bdK):This shows that (17) holds and therefore onludes the proof of our theorem.AknowledgementsI would like to thank my referees for their helpful remarks.Referenes[1℄ J. Azel, Letures on funtional equations and their appliations, AademiPress, New York, 1966.[2℄ V. Boltianskii, Hilbert's third problem, John Wiley, New York, 1978.[3℄ K. Faloner, The geometry of fratal sets, Cambridge University Press, Cam-bridge, 1985.[4℄ L. Fejes T�oth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nded., Springer, Berlin, 1972.[5℄ P.M. Gruber, Approximation of onvex bodies, Convexity and its appliations(P.M. Gruber and J.M. Wills, eds.), Birkh�auser, 1983, 131{162.16
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