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tion and statement of resultsLet K2 be the spa
e of 
onvex dis
s, i.e. of non-empty 
ompa
t 
onvex sets in theEu
lidean plane E 2 . A fun
tional � : K2 ! R is 
alled additive or a valuation, if�(K) + �(L) = �(K [ L) + �(K \ L)whenever K;L;K [ L 2 K2. These valuations play an important role in 
onvexgeometry (see [16℄ and [15℄) and have many appli
ations in integral geometry(see [9℄ and [20℄). One of the most important results in this �eld is Hadwiger's
hara
terization theorem [7℄. The planar 
ase of this theorem states that every
ontinuous and rigid motion invariant valuation � : K2 ! R 
an be written as alinear 
ombination of the Euler 
hara
teristi
 �, the length L, and the area A ofthe 
onvex dis
, i.e. there are 
onstants 
0; 
1; 
2 2 R su
h that�(K) = 
0 �(K) + 
1 L(K) + 
2A(K)for every K 2 K2. Here 
ontinuity is with respe
t to the usual topology on K2indu
ed by the Hausdor� metri
.
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Beside these 
ontinuous valuations, there are other valuations on K2 whi
hare of geometri
al interest. One example is the aÆne length � of a 
onvex dis
,whi
h is de�ned as �(K) = ZS1 �(K; u) 23 d�(u);where S1 is the unit 
ir
le, � is the one-dimensional Hausdor� measure and�(K; u) is the 
urvature radius of the boundary of K at the point with normalu 2 S1. �(K; u) exists for almost all u 2 S1 and is Lebesgue measurable. ThisaÆne length is well de�ned for every K 2 K2, it is invariant with respe
t to areapreserving aÆne transformations, and it is upper semi
ontinuous, i.e. for everysequen
e Kn of 
onvex dis
s 
onverging to K,�(K) � lim supn!1 �(Kn)(
f. [10℄). In [11℄ it is shown that the aÆne length 
an be 
hara
terized by theseproperties. Namely, let � : K2 ! R be an upper semi
ontinuous valuation whi
his invariant with respe
t to area preserving aÆne transformations, then there are
onstants 
0; 
1 2 R and 
2 � 0 su
h that�(K) = 
0 �(K) + 
1 A(K) + 
2 �(K)for every K 2 K2. The 
orresponding result in d-dimensional spa
e was provedby [13℄, [17℄.Further examples of valuations of geometri
 interest are the fun
tionalsZS1 �(K; u)p d�(u) (1)with 0 < p < 1. They are important in problems of asymptoti
 approximationby polygons (
f. [4℄, [14℄, [5℄, [6℄). They are upper semi
ontinuous. This followsfrom the planar 
ase of [12℄, whi
h states the following. Let D be the set offun
tions f : [0;1) ! [0;1) su
h that f is 
on
ave, limt!0 f(t) = 0, andlimt!1 f(t)=t = 0. Then, for f 2 D,ZS1 f(�(K; u)) d�(u) (2)depends upper semi
ontinuously on K. An equivalent way to represent the fun
-tionals de�ned in (2) is by ZbdK g(�(K; x)) d�(x) (3)2



where g(t) = t f(1=t), bdK is the boundary of K, and �(K; x) is the 
urvatureof bdK at x (see [12℄ and [8℄). They are rigid motion invariant and be
ause of(3) it is easy to see that they are valuations. We show that these fun
tionalstogether with the Euler 
hara
teristi
, length, and area are the only examples ofrigid motion invariant and upper semi
ontinuous valuations.Theorem. Let � : K2 ! R be an upper semi
ontinuous and rigid motion invari-ant valuation. Then there are 
onstants 
0; 
1; 
2 2 R and a fun
tion f 2 D su
hthat �(K) = 
0 �(K) + 
1 L(K) + 
2A(K) + ZS1 f(�(K; u)) d�(u)for every K 2 K2.A fun
tional � : K2 ! R is 
alled homogeneous of degree p, if�(tK) = tp �(K)for every t > 0 and every K 2 K2. It is easy to see that the fun
tionals in (1)are homogeneous of degree p. The following simple 
onsequen
e of our theoremholds.Corollary. Let � : K2 ! R be an upper semi
ontinuous and rigid motion in-variant valuation whi
h is homogeneous of degree p. For 0 < p < 1, there is a
onstant 
 � 0 su
h that �(K) = 
 ZS1 �(K; u)p d�(u)for every K 2 K2. For p = 0, �(K) = 
 �(K), for p = 1, �(K) = 
 L(K), andfor p = 2, �(K) = 
A(K) for every K 2 K2 with a suitable 
onstant 
 2 R. Inall other 
ases, �(K) = 0 for every K 2 K2.2 Proof of the TheoremSin
e � is translation invariant, we have for every x 2 E 2 ,�(fxg) = 
0with a suitable 
onstant 
0. De�ne�0(K) = �(K)� 
0 �(K):Then �0 is an upper semi
ontinuous and rigid motion invariant valuation, whi
hvanishes on singletons. 3



Let I be a one-dimensional 
onvex dis
, i.e. a line segment. Then �0(I)depends only on L(I), the length of I, sin
e �0 is rigid motion invariant. Hen
ethere is a fun
tion g : [0;1)! R su
h that�0(I) = g(L(I))for every one-dimensional I 2 K2. Sin
e �0 vanishes on singletons, dividing Iinto two pie
es I1 and I2 of length L1 and L2, respe
tively, shows thatg(L1 + L2) = g(L1) + g(L2)holds for L1; L2 � 0. Thus g is a solution of Cau
hy's fun
tional equation andsin
e �0 is upper semi
ontinuous, also g has this property. It is a well knownproperty of solutions of Cau
hy's fun
tional equation (see, e.g., [1℄) that thisimplies that there is a 
onstant 
1 su
h thatg(L) = 
1 Lfor every L � 0. De�ne �1(K) = �0(K)� 
1 L(K):Then �1 is an upper semi
ontinuous and rigid motion invariant valuation, whi
hvanishes on every at most one-dimensional 
onvex dis
. Su
h a valuation is 
alledsimple. Set �1(;) = 0. In the rest of the proof, we make use of the followingproperty of simple valuations. Let K 2 K2 and let P1; : : : ; Pm be 
onvex polygonswith pairwise disjoint interiors and su
h that K � P1 [ : : : [ Pm. Then�1(K) = �1(K \ P1) + : : :+ �1(K \ Pm):This 
an be seen by suitably subdividing the polygons and using indu
tion onthe number of pie
es like in the extension theorem [7℄, p. 81.Let T 2 K2 be a triangle. A well known theorem from elementary geometry(
f., e.g., [2℄) states that in the plane every triangle is equi-disse
table to any othertriangle with the same area, i.e. for triangles T and T 0 with A(T ) = A(T 0) thereare triangles T1; : : : ; Tm with pairwise disjoint interiors and triangles T 01; : : : ; T 0mwith pairwise disjoint interiors su
h thatT = m[i=1Ti and T 0 = m[i=1T 0iand there are rigid motions '1; : : : ; 'm su
h thatT 0i = '(Ti)4



holds for i = 1; : : : ; m. Sin
e �1 is a rigid motion invariant and simple valua-tion, this implies that �1(T ) = �1(T 0): Hen
e �1(T ) depends only on A(T ) and
onsequently, there is a fun
tion g : [0;1)! R su
h that�1(T ) = g(A(T ))for every triangle T . Disse
ting a triangle T into triangles T1 and T2 with areaA1 and A2, respe
tively, now shows thatg(A1 + A2) = g(A1) + g(A2)for A1; A2 � 0. Here we used the fa
t that �1 is a simple valuation. Therefore g isan upper semi
ontinuous solution of Cau
hy's fun
tional equation whi
h impliesthat there is a 
onstant 
2 su
h thatg(A) = 
2Afor every A � 0. De�ne �2(K) = �1(K)� 
2A(K):Then �2 is an upper semi
ontinuous and rigid motion invariant valuation, whi
hvanishes on triangles and therefore, being simple, on polygons.The above arguments show that proving the following statement implies ourtheorem.Proposition 1. Let � : K2 ! R be an upper semi
ontinuous and rigid motioninvariant valuation with the property that �(P ) = 0 for every polygon P 2 K2.Then there is a fun
tion f 2 D su
h that�(K) = ZS1 f(�(K; u)) d�(u)for every K 2 K2.Sin
e the polygons are dense in K2 and � is upper semi
ontinuous, we have�(K) � 0for every K 2 K2. De�ne the fun
tion f : [0;1)! [0;1) byf(r) = �(Br)=2 �; (4)where Br is the solid 
ir
le of radius r 
entered at the origin o. First, we provethe following result. 5



Lemma 1. f 2 D:Proof. Sin
e � is upper semi
ontinuous and vanishes on singletons, we have forthe origin o 0 = �(fog) � lim supr!0 �(Br) = lim supr!0 2 � f(r);whi
h implies that limr!0 f(r) = 0:

�gure 1Next, we show that f is 
on
ave. Let 0 � r < s < t. We approximate thesolid 
ir
le Bs of radius s by 
onvex dis
s Ln 
onstru
ted in the following way.We 
hoose n translates B1t ; : : : ; Bnt ; Bn+1t = B1t of the solid 
ir
le Bt of radius tsu
h that Bs � Bit for i = 1; : : : ; n, and su
h that the Bit 's tou
h Bs from theexterior at 
onse
utive points equally spa
ed on bdBs. Then we 
hoose translatesB0r = Bnr ; B1r ; : : : ; Bnr of the solid 
ir
le Br of radius r su
h that Bir is 
ontainedin Bit and Bi+1t and tou
hes both of them from the interior. Ln is the 
onvexdis
 whose boundary 
onsists for i = 1; : : : ; n of that part of bdBit lying betweenthe points where Bi�1r and Bir tou
h Bit and that part of bdBir lying between thepoints where Bit and Bi+1t tou
h Bir (see �gure 1).
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�gure 2For given n, we write �n = 2�n , and we denote by 2�n the angle at the 
enterof Bit between the lines to the points where Bi�1r and Bir tou
h Bit, and by 2 �nthe angle at the 
enter of Bir between the lines to the points where Bit and Bi+1ttou
h Bir (see �gure 2). Then we have�n + �n = �nand by the sine theorem, t� rsin(� � �n) = t� ssin(�n) :Consequently, �n�n ! t� st� r (5)and �n�n ! 1� t� st� r (6)as n!1.Let St(�) 2 K2 be a se
tor with angle �, 0 � � � �, of the solid 
ir
le Bt, i.e.the interse
tion of Bt and two 
losed half-planes with the origin on their boundarywhi
h en
lose an angle �. Sin
e � is rotation invariant, �(St(�)) depends for t�xed only on �, i.e. there is a fun
tion g : [0; �℄! [0;1) su
h that�(St(�)) = g(�): (7)Choosing se
tors St(�1) and St(�2) with disjoint interiors su
h that St(�1) [St(�2) 2 K2 shows that g(�1 + �2) = g(�1) + g(�2) (8)for �1; �2 � 0 and �1+�2 � �. Using (8), we 
an extend g to a fun
tion de�nedon [0;1) that is a solution of Cau
hy's fun
tional equation. Sin
e � is upper7



semi
ontinuous, so is g. Thus there is a 
onstant a su
h that g(�) = a �: By (7)and sin
e � is a simple valuation, �(Bt) = 2�(St(�)) = a 2 �, whi
h shows that�(St(�)) = �2 � �(Bt) = � f(t): (9)Ln 
an be disse
ted into n rotated 
opies of a se
tor of Br with angle �n and nrotated 
opies of a se
tor of Bt with angle �n. Sin
e � is a rotation invariantvaluation and vanishes on polygons, this implies by (9) that�(Ln) = n �n2 � �(Br) + n �n2 � �(Bt) = �n�n �(Br) + �n�n �(Bt): (10)Taking into a

ount that � is upper semi
ontinuous and that Ln ! Bs as n!1,we therefore obtain by (10), (9), (5), and (6)�(Bs) = 2 � f(s) � lim supn!1 �(Ln)= lim supn!1 ��n�n �(Br) + �n�n �(Bt)�= 2 � � t� st� r f(r) + (1� t� st� r ) f(t)� :Therefore, setting � = t�st�r , we have 0 < � < 1 andf(� r + (1� �) t) � � f(r) + (1� �) f(t);whi
h shows that f is 
on
ave.Finally, we show that limt!1 f(t)t = 0: (11)Let I be a line segment of length 1. We approximate I by segments Ct of solid
ir
les Bt of radius t whi
h go through the endpoints of I. Here a 
onvex dis
 is
alled a segment of a 
ir
le Bt, if it is the interse
tion of Bt and a 
losed half-plane.A simple 
al
ulation using (9) shows that�(Ct) = �(St(2 ar
sin( 12 t))) = 2 ar
sin( 12 t) f(t):Sin
e �(I) = 0 and � is upper semi
ontinuous, this implies thatlim supt!1 ar
sin( 12 t)f(t) = 0;and therefore also (11). This 
ompletes the proof of Lemma 1.8



Sin
e for f 2 D the fun
tional�f (K) = ZS1 f(�(K; u)) d�(u)is an upper semi
ontinuous and rigid motion invariant valuation whi
h vanisheson polygons and satis�es �f(Br) = 2 � f(r), it suÆ
es to prove the followingstatement to show Proposition 1.Proposition 2. For a given f 2 D, there is a unique � : K2 ! [0;1) with thefollowing properties:(i) � is upper semi
ontinuous.(ii) � is rigid motion invariant.(iii) � is a valuation.(iv) �(P ) = 0 for every polygon P 2 K2.(v) �(Br) = 2 � f(r).Let � : K2 ! [0;1) have properties (i)-(v) and set �(;) = 0. Let A � K2 bethe set of 
onvex dis
s whi
h 
an be disse
ted into �nitely many polygons andsegments of solid 
ir
les. Sin
e � vanishes on polygons and is by (9) determinedby f on se
tors and segments of 
ir
les, �(A) is determined by f for every A 2 A.Sin
e the polygons belong to A, A is dense in K2, and we 
an approximate everyK 2 K2 by elements of A. The upper semi
ontinuity of � implies that�(K) � lim supn!1 �(An) (12)for every sequen
e An with An ! K. We will prove that for every K 2 K2 thereis a sequen
e An 2 A su
h that we have equality in (12), i.e.�(K) = supflim supn!1 �(An) : An 2 A; An ! Kg: (13)Showing this implies that � is uniquely determined by f and therefore provesProposition 2.As a �rst step in the proof of (13), we show that it suÆ
es to prove it for"-smooth 
onvex dis
s. Here we 
all a 
onvex dis
 K "-smooth if there is a 
onvexdis
 K0 su
h that K = K0 + "B;where B is the solid unit 
ir
le 
entered at the origin. Suppose that there is aK 2 K2 su
h that�(K) > supflim supn!1 �(An) : An 2 A; An ! Kg:9



Then there is an a > 0 and a Æ > 0 su
h that�(K) > �(A) + a �(bdK) (14)for every A 2 A with Æ(A;K) � Æ, where Æ(�; �) stands for the Hausdor� distan
e.We need the following result. Let L 2 K2 and let I be a line segment. Then�(L + I) = �(L): (15)This 
an be seen in the following way. There are points in bdL with support linesparallel to I. Let H be a line 
onne
ting two su
h points in bdL and interse
tingthe interior of L, if this is non-empty. Denote by H+; H� the 
omplementary
losed half-planes bounded by H. Then L+ I 
an be disse
ted into translates ofL \H+, L \H� and a polygon. Sin
e � vanishes on polygons and is translationinvariant, this implies that�(L+ I) = �(L \H+) + �(L \H�) = �(L);whi
h proves (15).The solid unit 
ir
le B 
an be approximated by Minkowski sums Sn of �nitelymany line segments (
f. [19℄, Chapter 3.5). The upper semi
ontinuity of � thenimplies that �(K + "B) � lim supn!1 �(K + " Sn) (16)for every " > 0. Sin
e " Sn = I1 + : : : + Im with suitable line segments Ik, wehave by (15)�(K + " Sn) = �(K + I1 + : : :+ Im) = �(K + I1 + : : :+ Im�1) = : : : = �(K)for every n and " > 0. Therefore it follows from (16) that for every " > 0 we have�(K + "B) � �(K):Thus for " � 12 Æ, (14) implies that�(K + "B) � �(K) > �(A) + a �(bdK)for every A 2 A with Æ(K + "B;A) � 12 Æ, sin
e for su
h an A 2 AÆ(K;A) � Æ(K;K + "B) + Æ(K + "B;A) � Æ:Sin
e � depends 
ontinuously on K, it now follows that�(K + "B) > �(A) + a2 �(bd(K + "B))for every A 2 A with Æ(K + "B;A) � 12 Æ and " � 12 Æ suÆ
iently small. Iftherefore (13) does not hold for a K 2 K2, it also does not hold for an "-smooth
onvex dis
 K + "B with a suitable " > 0.10



Thus it suÆ
es to show the following proposition to prove (13) and therebyour theorem.Proposition 3. Let K 2 K2 be "-smooth with " > 0. Then�(K) = supflim supn!1 �(An) : An 2 A; An ! Kg:So let an "-smooth K 2 K2, Æ > 0 and a > 0 be given. Using suitable supporttriangles of K we 
onstru
t an A 2 A with Æ(K;A) � Æ su
h that�(K) � �(A) + a �(bdK) (17)holds. Here a triangle T is 
alled a support triangle of K and x; y 2 bdK are
alled its endpoints, if T is bounded by support lines to K at x and y and the
hord 
onne
ting x and y. Further, we make use of the following simple versionof Vitali's 
overing theorem (see, e.g., [3℄ or [18℄). Let N � bdK and let V be aVitali 
lass for N of 
losed 
onne
ted sets V � bdK, i.e. for every x 2 N and� > 0 there exists a V 2 V with x 2 V and 0 < �(V ) � � . Then Vitali's 
overingtheorem states that for every � > 0 there are pairwise disjoint V1; : : : ; Vm 2 Vsu
h that �(N) � mXi=1 �(Vi) + �: (18)We will �rst show that for the set N � bdK of normal points, i.e. pointswhere bdK is twi
e di�erentiable, there is a suitable Vitali 
lass de�ned with thehelp of support triangles of K.Lemma 2. For every � > 0 and every normal point x0 2 bdK, there is a supporttriangle T of K and an AT 2 A su
h that(i) x0 2 bdK \ T and 0 < �(bdK \ T ) < �(ii) AT � T and T is a support triangle of AT(iii) �(K \ T ) � �(AT ) + a2 �(bdK \ T ):Proof. By 
hoosing a suitable 
oordinate system we 
an represent bdK lo
allyaround x0 by a 
onvex fun
tion g(s) su
h that x0 = (0; g(0)) and su
h that ass! 0 g(s) = 12 �(K; x0) s2 + o(s2); (19)where �(K; x0) is the 
urvature of bdK at x0.We �rst 
onsider the 
ase �(K; x0) > 0: Let x = x(s) be the point with
oordinates (�s; g(�s)), let y = y(s) be the point (s; g(s)), and let T = T (s)be the support triangle with endpoints x(s) and y(s). Then (i) holds for s > 011



suÆ
iently small. Let H(x) and H(y) be support lines at x and y, respe
tively,and let w = w(s) be the point where H(x) and H(y) interse
t. Without loss ofgenerality, we may assume thatjx� wj � jy � wj:De�ne y0 = y0(s) as the point on H(y) su
h thatjx� wj = jy0 � wjand y 2 [w; y0℄, where [w; y0℄ is the 
losed line segment with endpoints w and y0.The triangle T 0 = T 0(s) with verti
es x, w, and y0 is isos
eles. Hen
e there isa solid 
ir
le B(z; r) with 
enter z = z(s) and radius r = r(s) su
h that H(x)is tangent to B(z; r) at x and H(y) is tangent to B(z; r) at y0 (see �gure 3). Asimple 
al
ulation using (19) shows that as s! 0B(z; r)! B(z0; r0); (20)where r0 = 1=�(K; x0) is the radius of the 
ir
le of 
urvature to bdK at x0 andz0 is its 
enter, and that lims!0 jx(s)� w(s)jjy(s)� w(s)j = 1: (21)

�gure 3The point y does not lie in the interior of B(z; r) and [y; y0℄ is tangent to B(z; r).Let y00 = y00(s) be the se
ond point on bdB(z; r) su
h that [y; y00℄ is tangent toB(z; r), and let T 00 = T 00(s) be the triangle with verti
es x, w and y00. We de�neAT = AT (s) as AT = (B(z; r) \ T 00) [ 
onvfx; y00; yg;where 
onv denotes 
onvex hull. Then AT 2 A and (ii) holds. That also (iii)holds, 
an be seen in the following way.12



Let  =  (s) be the angle between [z; w℄ and [z; y0℄, and � = �(s) the anglebetween [z; y℄ and [z; y0℄. Then using (9) we have�(AT ) = 2 ( � �)2 � �(B(z; r)) = 2 2 � ��(B(z; r))� � �(B(z; r))� :By (21) it follows thatlims!0 � = lims!0 tan�tan = lims!0 jy0 � yjjy0 � wj = lims!0 jy0 � wj � jy � wjjy0 � wj= 1� lims!0 jy � wjjx� wj = 0:Therefore, for every � > 0,2 2 � (�(B(z; r))� �) � �(AT ) (22)holds for s > 0 suÆ
iently small.For �(K \ T ) we have the following. T 0 is a support triangle of(K \ T ) [ 
onvfx; y; y0g;whi
h is 
onvex. Sin
e T 0 is also a support triangle of B(z; r), there are rotations'1; : : : ; 'n with n � 2 �=(2 ) < n+1 su
h that the 'i(T 0)'s have pairwise disjointinteriors and are support triangles of B(z; r). De�neLs = n[i=1 'i�(K \ T ) [ 
onvfx; y; y0g� [ �B(z; r)n n[i=1'i(T 0)�: (23)Then our 
onstru
tion implies that Ls 2 K2, that �(Ls) � n�(K \ T ), and by(20), that Ls ! B(z0; r0)as s! 0. Sin
e � is upper semi
ontinuous, this implies that�(B(z0; r0)) � lim sups!0 �(Ls) � lim sups!0 2 �2 �(K \ T ):Hen
e for every � > 0 �(K \ T ) � 2 2 � (�(B(z; r)) + �) (24)for s > 0 suÆ
iently small, where we used that �(B(z; r)) = 2 � f(r) is 
ontinu-ous. This, (22) and (20) now imply that�(K \ T ) � �(AT ) + 2 2 � 2 �� �(AT ) + 4 �2 � r �(bdK \ T )� �(AT ) + 8 �2 � r0 �(bdK \ T )13



for s > 0 suÆ
iently small. Here we used the simple estimate that �(bdK\T ) �r  for s > 0 suÆ
iently small. Setting � = a � r0=8 now shows that (iii) holdsfor s > 0 suÆ
iently small.Now, let �(K; x0) = 0. Let T = T (s) be the support triangle of K withendpoints x = x0 and y = y(s) = (s; g(s)) and let AT = T . Then (i) and (ii)hold. For every r > 0, there is a solid 
ir
le B(z; r) with x0 2 bdB(z; r) whi
h islo
ally 
ontained in K. We 
hoose r so large that16 f(r)r � a2 ; (25)whi
h is possible, sin
e limr!1 f(r)=r = 0. Let w = w(s) be the point on thesupport line to K at x su
h that y 2 [z; w℄ and let y0 = y0(s) be the point onbdB(z; r) su
h that [y0; w℄ is tangent to B(z; r) (see �gure 4). Let  =  (s) bethe angle between [z; x℄ and [z; w℄.

�gure 4Then the triangle T 0 = T 0(s) with the verti
es x, w, and y0 is a support triangleof B(z; r). Sin
e B(z; r) is lo
ally 
ontained in K, the support lines of K at y donot interse
t B(z; r) for s > 0 suÆ
iently small. Therefore(K \ T ) [ 
onvfx; y; y0gis 
onvex for s > 0 suÆ
iently small and T 0 is also a support triangle of this set.De�ne Ls as in (23). Then Ls ! B(z; r) as s! 0 and �(Ls) � n�(K\T ). Sin
e� is upper semi
ontinuous and n � 2 �=(2 ) < n + 1, we have for every � > 0,2 �2 �(K \ T ) � �(B(z; r)) + 2 � � = 2 � (f(r) + �)for s > 0 suÆ
iently small. Using the simple estimate that � 4r �(bdK \ T )for s > 0 suÆ
iently small, we have�(K \ T ) � 8r (f(r) + �) �(bdK \ T ): (26)Setting � = a r=32, we obtain by (25) that (iii) holds.14



Further, we need the following result.Lemma 3. There is a 
(") su
h that�(K \ P ) � 
(") �(bdK \ P )for every polygon P 2 K2 and every "-smooth K 2 K2 with " > 0.Proof. Sin
e K is "-smooth, for every x0 2 bdK there is a B(z; ") � K su
h thatx0 2 bdB(z; "). Let T be a support triangle of K with endpoints x = x0 and y.Then we 
an 
onstru
t a support triangle T 0 of B(z; ") with verti
es x; w; y0 as inthe se
ond part of the proof of Lemma 2 (see �gure 4). As in (26) we thereforehave with � = 1 �(K \ T ) � 8" (f(") + 1) �(bdK \ T ) (27)for every T suÆ
iently small, and sin
e in the proof of (26) only the 
ir
le B(z; r)and the angle between [z; x℄ and [z; y℄ are used, this holds uniformly for everyx0 2 bdK. We 
an therefore disse
t P into �nitely many polygons whi
h areeither support triangles for whi
h (27) holds or lie entirely in K or outside of K.Sin
e � vanishes on polygons, (27) therefore proves the lemma.Sin
e a 
onvex fun
tion is almost everywhere twi
e di�erentiable (see, e.g.,[19℄), the set N of points, where bdK is twi
e di�erentiable, has measure�(N) = �(bdK):By Lemma 2 the sets bdK \ T de�ned in Lemma 2 are a Vitali 
lass for N andthis remains true if we only take triangles T with �(bdT ) � Æ. Let0 < � � a2 
(") �(bdK) (28)and � � Æ. Then we 
an 
hoose by Vitali's theorem (18) support trianglesT1; : : : ; Tm su
h that�(bdK) = �(N) � mXi=1 �(bdK \ Ti) + � (29)and su
h that the sets bdK \ Ti are pairwise disjoint. Let AT1 ; : : : ; ATm be theelements of A 
orresponding to T1; : : : ; Tm as de�ned in Lemma 2 and de�neA = 
onvfAT1 [ : : : [ ATmg:Then our 
onstru
tion using support triangles implies that�(A \ Ti) = �(ATi) (30)15



for i = 1; : : : ; m, and that Æ(K;A) � Æ holds. Let x be an interior point of Kand let Pi be the 
onvex hull of x and Ti. We 
hoose polygons Q1; : : : ; Qn su
hthat P1; : : : ; Pm; Q1; : : : ; Qn have pairwise disjoint interiors and su
h that A andK are 
ontained in P1 [ : : : [ Pm [Q1 [ : : : [Qn:Sin
e � vanishes on polygons and by (30), we have�(A) = mXi=1 �(A \ Pi) + nXj=1 �(A \Qj) = mXi=1 �(ATi):For K we have by Lemma 2 and Lemma 3 and sin
e � vanishes on polygons,�(K) = mXi=1 �(K \ Pi) + nXj=1 �(K \Qj)� mXi=1 ��(ATi) + a2 �(bdK \ Ti)� + 
(") nXj=1 �(bdK \Qj)� �(A) + a2 �(bdK) + 
(") �;where we used (29). Consequently, by (28)�(K) � �(A) + a �(bdK):This shows that (17) holds and therefore 
on
ludes the proof of our theorem.A
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