Upper semicontinuous valuations
on the space of convex discs
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Abstract

We show that every rigid motion invariant and upper semicontinuous val-
uation on the space of convex discs is a linear combination of the Euler
characteristic, the length, the area, and a suitable curvature integral of the
convex disc.
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1 Introduction and statement of results

Let K2 be the space of convex discs, i.e. of non-empty compact convex sets in the
Euclidean plane E?. A functional p : K? — R is called additive or a valuation, if

p(K) + p(L) = p(K U L) + p(K N L)

whenever K, L, K U L € K?. These valuations play an important role in convex
geometry (see [16] and [15]) and have many applications in integral geometry
(see [9] and [20]). One of the most important results in this field is Hadwiger’s
characterization theorem [7]. The planar case of this theorem states that every
continuous and rigid motion invariant valuation u : K? — R can be written as a
linear combination of the Euler characteristic x, the length L, and the area A of
the convex disc, i.e. there are constants ¢y, ¢1, co € R such that

p(K) = co X(K) + ¢y L(K) + ¢ A(K)

for every K € K2. Here continuity is with respect to the usual topology on K?
induced by the Hausdorff metric.



Beside these continuous valuations, there are other valuations on K? which
are of geometrical interest. One example is the affine length A of a convex disc,
which is defined as

\E) = [ pli )} dou),
Sl
where S! is the unit circle, o is the one-dimensional Hausdorff measure and
p(K,u) is the curvature radius of the boundary of K at the point with normal
u € S'. p(K,u) exists for almost all v € S' and is Lebesgue measurable. This
affine length is well defined for every K € K2, it is invariant with respect to area
preserving affine transformations, and it is upper semicontinuous, i.e. for every
sequence K, of convex discs converging to K,

AK) > limsup A(K,)

n—o0

(cf. [10]). In [11] it is shown that the affine length can be characterized by these
properties. Namely, let p: K2 — R be an upper semicontinuous valuation which
is invariant with respect to area preserving affine transformations, then there are
constants ¢y, ¢; € R and ¢y > 0 such that

p(K) = co X(K) + ¢y A(K) + ¢ M(K)

for every K € K2. The corresponding result in d-dimensional space was proved
by [13], [17].
Further examples of valuations of geometric interest are the functionals

[ ottc.uy o (1)
Sl
with 0 < p < 1. They are important in problems of asymptotic approximation
by polygons (cf. [4], [14], [5], [6]). They are upper semicontinuous. This follows
from the planar case of [12], which states the following. Let D be the set of
functions f : [0,00) — [0,00) such that f is concave, lim; o f(t) = 0, and
limy_, f(t)/t = 0. Then, for f € D,

/ F(plI<, u)) do(u) 2)

depends upper semicontinuously on K. An equivalent way to represent the func-
tionals defined in (2) is by

/ 9(5(K, 7)) do(x) (3)

bd K



where ¢(t) =t f(1/t), bd K is the boundary of K, and (K, z) is the curvature
of bd K at = (see [12] and [8]). They are rigid motion invariant and because of
(3) it is easy to see that they are valuations. We show that these functionals
together with the Euler characteristic, length, and area are the only examples of
rigid motion invariant and upper semicontinuous valuations.

Theorem. Let y1: K? — R be an upper semicontinuous and rigid motion invari-
ant valuation. Then there are constants cg,cy1,co € R and a function f € D such
that

p(K) = co X(K) + c1 L(K) + ¢z A(K) +/f(p(K, w)) do(u)

for every K € K2.

A functional ;1 : K? — R is called homogeneous of degree p, if
p(t K) = 17 p(K)

for every t > 0 and every K € K2. It is easy to see that the functionals in (1)

are homogeneous of degree p. The following simple consequence of our theorem
holds.

Corollary. Let j : K — R be an upper semicontinuous and rigid motion in-
variant valuation which s homogeneous of degree p. For 0 < p < 1, there is a
constant ¢ > 0 such that

W) = / oK, u)P dor(u)

for every K € K?. Forp =10, u(K) = cx(K), forp=1, u(K) = ¢ L(K), and
forp =2, u(K) = cA(K) for every K € K* with a suitable constant c € R. In
all other cases, u(K) = 0 for every K € K?.

2 Proof of the Theorem

Since p is translation invariant, we have for every x € E?,
p({z}) = o
with a suitable constant cq. Define
po(K) = p(K) — co x(K).

Then pg is an upper semicontinuous and rigid motion invariant valuation, which
vanishes on singletons.



Let I be a one-dimensional convex disc, i.e. a line segment. Then po(7)
depends only on L(T), the length of I, since pi is rigid motion invariant. Hence
there is a function ¢ : [0, 00) — R such that

for every one-dimensional I € K?. Since o vanishes on singletons, dividing T
into two pieces I; and I, of length L; and Ls, respectively, shows that

9(L1 + Lo) = g(L1) + g(Lo)

holds for L;, L, > 0. Thus ¢ is a solution of Cauchy’s functional equation and
since iy is upper semicontinuous, also g has this property. It is a well known
property of solutions of Cauchy’s functional equation (see, e.g., [1]) that this
implies that there is a constant ¢; such that

g(L)=1¢ L
for every L > 0. Define
i (K) = po(K) — ¢ L(K).

Then p4 is an upper semicontinuous and rigid motion invariant valuation, which
vanishes on every at most one-dimensional convex disc. Such a valuation is called
simple. Set p1(0) = 0. In the rest of the proof, we make use of the following
property of simple valuations. Let K € K? and let Py,. .., P, be convex polygons
with pairwise disjoint interiors and such that K ¢ P, U...U P,,. Then

pi(K) = (KNP + .o+ (K0 P).

This can be seen by suitably subdividing the polygons and using induction on
the number of pieces like in the extension theorem [7], p. 81.

Let T € K? be a triangle. A well known theorem from elementary geometry
(cf., e.g., [2]) states that in the plane every triangle is equi-dissectable to any other
triangle with the same area, i.e. for triangles 7" and 7" with A(T) = A(T") there
are triangles T4, ..., T,, with pairwise disjoint interiors and triangles 77,..., 7,
with pairwise disjoint interiors such that

T=JT; and T'={]JT}
i=1 i=1
and there are rigid motions ¢y, ..., ¢, such that

T; = ¢(T})

)



holds for = = 1,...,m. Since u; is a rigid motion invariant and simple valua-
tion, this implies that u;(T) = ui(T"). Hence py(T) depends only on A(T') and
consequently, there is a function ¢ : [0,00) — R such that

pa(T) = g(A(T))

for every triangle T'. Dissecting a triangle T into triangles 7} and 7T, with area
A; and Ay, respectively, now shows that

g(Ar + Ay) = g(A1) + g(Az)

for Ay, Ay > 0. Here we used the fact that p; is a simple valuation. Therefore g is
an upper semicontinuous solution of Cauchy’s functional equation which implies
that there is a constant ¢y such that

g(A)=c A
for every A > 0. Define
p2(K) = i (K) — 2 A(K).

Then po is an upper semicontinuous and rigid motion invariant valuation, which
vanishes on triangles and therefore, being simple, on polygons.

The above arguments show that proving the following statement implies our
theorem.

Proposition 1. Let p : K? — R be an upper semicontinuous and rigid motion
invariant valuation with the property that u(P) = 0 for every polygon P € K2
Then there is a function f € D such that

W(K) = / F (oK, u)) dor(u)

for every K € K2.

Since the polygons are dense in K? and p is upper semicontinuous, we have
u(K) >0
for every K € K2. Define the function f : [0,00) — [0, 00) by
f(r) = u(B,)/2, (4)

where B, is the solid circle of radius r centered at the origin o. First, we prove
the following result.



Lemma 1. f € D.

Proof. Since p is upper semicontinuous and vanishes on singletons, we have for
the origin o
0= u({o}) > limsup p(B,) = limsup 2 f(r),
r—0 r—0
which implies that
lim f(r) = 0.

r—0

figure 1

Next, we show that f is concave. Let 0 < r < s < t. We approximate the
solid circle By of radius s by convex discs L, constructed in the following way.
We choose n translates B}, ..., B, Bi™' = B} of the solid circle B, of radius ¢
such that B, C B} for i = 1,...,n, and such that the B!’s touch B, from the
exterior at consecutive points equally spaced on bd B,. Then we choose translates
BY = B" Bl ..., B™ of the solid circle B, of radius r such that B! is contained
in B! and B;™" and touches both of them from the interior. L, is the convex
disc whose boundary consists for i = 1,...,n of that part of bd B lying between
the points where B:™! and B! touch B} and that part of bd B! lying between the
points where B! and B touch B! (see figure 1).



figure 2

For given n, we write ¢, = 27”, and we denote by 2, the angle at the center

of B} between the lines to the points where B.~' and B} touch B}, and by 23,
the angle at the center of B! between the lines to the points where B! and B/™!
touch B! (see figure 2). Then we have

p + B = On
and by the sine theorem,

t—r t—s

sin(m — ¢,)  sin(B,)’

Consequently,
n t -
Bn N s (5)
On t—r
and y
o, — 5
— =1 6
5 T (6)
as n — 0o.

Let S;(a) € K? be a sector with angle o, 0 < oo <, of the solid circle By, i.e.
the intersection of B, and two closed half-planes with the origin on their boundary
which enclose an angle «. Since p is rotation invariant, u(S;(«)) depends for ¢
fixed only on «, i.e. there is a function g : [0, 7] — [0, 00) such that

p(Si(a)) = g(a). (7)

Choosing sectors S;(aq) and Si(ae) with disjoint interiors such that S;(a;) U
Si(az) € K? shows that

g(ar + az) = g(a) + g(a) (8)

for a, 0 > 0 and ay + ap < m. Using (8), we can extend ¢ to a function defined
on [0,00) that is a solution of Cauchy’s functional equation. Since p is upper



semicontinuous, so is g. Thus there is a constant a such that g(«) = aa. By (7)
and since 4 is a simple valuation, pu(B;) = 2 u(Sy(7)) = a2 7, which shows that

(%

w(Sil@)) = 5— u(By) = a f(t). (9)

L,, can be dissected into n rotated copies of a sector of B, with angle 3, and n
rotated copies of a sector of B, with angle «,,. Since y is a rotation invariant
valuation and vanishes on polygons, this implies by (9) that

p(La) =0 S5 u(By) +n % u(By) = S u(B) + 22 (B, (10)

Taking into account that p is upper semicontinuous and that L, — Bg as n — oo,
we therefore obtain by (10), (9), (5), and (6)

p(Bs) =2m f(s) > limsupp(Ly)

= liﬁsip <% w(By) + % M(Bt)>
— on (i:if(r)—i-(l_ i:i)f(ﬂ) -

Therefore, setting A = £=2, we have 0 < A < 1 and
JOr+ @ =Xt) > Xf(r)+(1—=X) f(t),

which shows that f is concave.
Finally, we show that

tim £ g, (11)

t—woo Tt

Let I be a line segment of length 1. We approximate I by segments C; of solid
circles B; of radius ¢t which go through the endpoints of I. Here a convex disc is
called a segment of a circle By, if it is the intersection of B; and a closed half-plane.
A simple calculation using (9) shows that

w(Cr) = u(Sy(2 arcsin(%))) =2 arcsin(%t) f(t).

Since pu(I) = 0 and p is upper semicontinuous, this implies that

1

lim sup arcsin(—) f(¢) = 0,
t—00 2 t
and therefore also (11). This completes the proof of Lemma 1. O



Since for f € D the functional

py(K) = . f(p(K, u)) do(u)

is an upper semicontinuous and rigid motion invariant valuation which vanishes
on polygons and satisfies ps(B,) = 27 f(r), it suffices to prove the following
statement to show Proposition 1.

Proposition 2. For a given f € D, there is a unique p : K* — [0,00) with the
following properties:

(i) w is upper semicontinuous.

(ii) w is rigid motion invariant.

(1ii) 1 is a valuation.

(iv) p(P) =0 for every polygon P € K?.
(v) w(By) =2m f(r).

Let 1 : K? — [0,00) have properties (7)-(v) and set u(0) = 0. Let A C K2 be
the set of convex discs which can be dissected into finitely many polygons and
segments of solid circles. Since p vanishes on polygons and is by (9) determined
by f on sectors and segments of circles, j1(A) is determined by f for every A € A.
Since the polygons belong to A, A is dense in K2, and we can approximate every
K € K? by elements of A. The upper semicontinuity of y implies that

p(K) > limsup pu(Ay,) (12)

n— 00

for every sequence A, with A, — K. We will prove that for every K € K? there
is a sequence A, € A such that we have equality in (12), i.e.

p(K) = sup{limsup u(4,) : A, € A, A, — K}. (13)
n—o0
Showing this implies that p is uniquely determined by f and therefore proves
Proposition 2.

As a first step in the proof of (13), we show that it suffices to prove it for
e-smooth convex discs. Here we call a convex disc K e-smooth if there is a convex
disc K such that

K= K() +e B,

where B is the solid unit circle centered at the origin. Suppose that there is a
K € K? such that

pu(K) > sup{limsup pu(4,) : 4, € A, A, — K}.

n—oo



Then there is an @ > 0 and a § > 0 such that
pu(K) > pu(A)+ao(bd K) (14)

for every A € A with 6(A, K) < 4, where (-, -) stands for the Hausdorff distance.
We need the following result. Let L € K? and let I be a line segment. Then

p(L+ 1) = p(L). (15)

This can be seen in the following way. There are points in bd L with support lines
parallel to I. Let H be a line connecting two such points in bd L and intersecting
the interior of L, if this is non-empty. Denote by H*, H~ the complementary
closed half-planes bounded by H. Then L + I can be dissected into translates of
LNH*, LN H™ and a polygon. Since p vanishes on polygons and is translation
invariant, this implies that

pL+T)=pu(LNH")+pu(LNH") = pu(L),

which proves (15).

The solid unit circle B can be approximated by Minkowski sums S,, of finitely
many line segments (cf. [19], Chapter 3.5). The upper semicontinuity of x then
implies that

p(K +¢eB) > limsup u(K +¢5,) (16)

n—oo

for every € > 0. Since ¢S,, = I, + ... + I,, with suitable line segments I, we
have by (15)

pw(K+eSp)=mwK+L+...+ 1) =pK+L+...4+ 1) =...=p(K)
for every n and £ > 0. Therefore it follows from (16) that for every ¢ > 0 we have
w(K +¢B) > pu(K).
Thus for e < 16, (14) implies that
u(K +¢eB) > pu(K) > u(A) + ao(bd K)
for every A € A with §(K +¢ B, A) < 36, since for such an A € A
5(K,A) < 6(K,K +¢B)+6(K +¢B,A) <6
Since o depends continuously on K, it now follows that

WK + e B) > p(A) + g o(bd(K + ¢ B))

for every A € A with §(K + B, A) < 16 and ¢ < 16 sufficiently small. If
therefore (13) does not hold for a K € K?, it also does not hold for an e-smooth
convex disc K + ¢ B with a suitable ¢ > 0.

10



Thus it suffices to show the following proposition to prove (13) and thereby
our theorem.

Proposition 3. Let K € K? be e-smooth with € > 0. Then

pu(K) = sup{limsup pu(4,) : A, € A, A, — K}.

n—oo

So let an e-smooth K € K2, § > 0 and a > 0 be given. Using suitable support
triangles of K we construct an A € A with 6(K, A) < ¢ such that

W(K) < p(A) + ao(bd K) (17)

holds. Here a triangle T is called a support triangle of K and x,y € bd K are
called its endpoints, if T is bounded by support lines to K at x and y and the
chord connecting x and y. Further, we make use of the following simple version
of Vitali’s covering theorem (see, e.g., [3] or [18]). Let N C bd K and let V be a
Vitali class for N of closed connected sets V' C bd K, i.e. for every x € N and
7 > 0 there exists a V € V with z € V and 0 < ¢(V) < 7. Then Vitali’s covering

theorem states that for every n > 0 there are pairwise disjoint Vi,...,V,, € V
such that .
a(N) <) o(Vi) +n. (18)
i=1

We will first show that for the set N C bd K of normal points, i.e. points
where bd K is twice differentiable, there is a suitable Vitali class defined with the
help of support triangles of K.

Lemma 2. For every 7 > 0 and every normal point o € bd K, there is a support
triangle T of K and an Ar € A such that

(i) 20 €bdKNT and 0 < o(bd K N T) < 7
(ii)) Ar C T and T is a support triangle of Ar
(iii) (K NT) < p(Ar) + ga(bdK nT).

Proof. By choosing a suitable coordinate system we can represent bd K locally
around xy by a convex function g¢(s) such that zo = (0,¢(0)) and such that as
s —0 1
g(s) = 3 Kk(K, 1) s> + o(s?), (19)
where k(K xy) is the curvature of bd K at zy.
We first consider the case k(K,z9) > 0. Let # = x(s) be the point with
coordinates (—s, g(—s)), let y = y(s) be the point (s, g(s)), and let T = T(s)
be the support triangle with endpoints z(s) and y(s). Then (i) holds for s > 0

11



sufficiently small. Let H(x) and H(y) be support lines at = and y, respectively,
and let w = w(s) be the point where H(z) and H(y) intersect. Without loss of
generality, we may assume that

|z —w| > |y — w|.
Define y' = /() as the point on H(y) such that
|z —w| = |y — w]

and y € [w,y'], where [w, 1] is the closed line segment with endpoints w and y'.
The triangle 7" = T'(s) with vertices x, w, and y' is isosceles. Hence there is
a solid circle B(z,r) with center z = z(s) and radius r = r(s) such that H(x)
is tangent to B(z,r) at x and H(y) is tangent to B(z,r) at ' (see figure 3). A
simple calculation using (19) shows that as s — 0

B(z,r) = B(z0,70), (20)

where ro = 1/k(K, xq) is the radius of the circle of curvature to bd K at xy and
zg 1is its center, and that

(21)

The point y does not lie in the interior of B(z,r) and [y, 3] is tangent to B(z,r).
Let y” = y"(s) be the second point on bd B(z,r) such that [y,y"] is tangent to
B(z,r), and let T" = T"(s) be the triangle with vertices x, w and y". We define
Ar = Ar(s) as

Ar = (B(z,r) N T") U conv{z,y", y},

where conv denotes convex hull. Then Ay € A and (i) holds. That also (%ii)
holds, can be seen in the following way.

12



Let 1 = 1)(s) be the angle between [z, w] and [z,4], and ¢ = ¢(s) the angle
between [z, y] and [z, y']. Then using (9) we have

2(p—09 29 0
p(Ar) = 2229 5 ) = 22 (w(Be ) - L (B ).
27 27 i
By (21) it follows that
¢ . tang |y —yl |y —w| |y —w
lim - = lim =1i = lim
s—0 zp 5—0 tanq/) s—0 |y’ — w| s—0 |y’ — w|
TR Uil
50 |x — w|
Therefore, for every n > 0,
2
o (1(B(z,7)) —n) < u(Ar) (22)

holds for s > 0 sufficiently small.
For u(K NT) we have the following. 7" is a support triangle of

(KNT)Uconv{z,y,y'},

which is convex. Since 7" is also a support triangle of B(z,r), there are rotations
©1, .. pn Withn < 27/(21) < n+1 such that the ¢;(T")’s have pairwise disjoint
interiors and are support triangles of B(z,r). Define

Ly=J #i((K nT)Uconvie,y,y}) U (B \Jw™).  (23)
i=1 1=1
Then our construction implies that L, € K2, that u(Ls) > nu(K NT), and by
(20), that
Ls — B(ZU, 7"0)

as s — 0. Since p is upper semicontinuous, this implies that

2
1(B(20,70)) > limsup so(L,) > lim supﬁ u(KNT).

s—0 s—0

Hence for every n > 0
2y
p( N T) < 22 (u(Bz.r) + 1) (24)
for s > 0 sufficiently small, where we used that p(B(z,r)) = 27 f(r) is continu-
ous. This, (22) and (20) now imply that
21

WENT) < p(Ar) +5—2n

4n
< A KNnT
<l T)+2wa(bd NT)

8
< w(Ar) + —L o(bd K NT)
27’('7'0

13



for s > 0 sufficiently small. Here we used the simple estimate that o(bd K NT") >
r for s > 0 sufficiently small. Setting n = amro/8 now shows that (%ii) holds
for s > 0 sufficiently small.

Now, let k(K,x9) = 0. Let T = T(s) be the support triangle of K with
endpoints © = xy and y = y(s) = (s,9(s)) and let Ay = T. Then (i) and (ii)
hold. For every r > 0, there is a solid circle B(z,r) with zy € bd B(z,r) which is
locally contained in K. We choose r so large that

16@ < g (25)

which is possible, since lim, o, f(r)/r = 0. Let w = w(s) be the point on the
support line to K at x such that y € [z,w] and let ¥’ = ¢'(s) be the point on
bd B(z,r) such that [y, w] is tangent to B(z,r) (see figure 4). Let ¢ = (s) be
the angle between [z, ] and [z, w].

figure 4

Then the triangle 7" = T"(s) with the vertices x, w, and ¥’ is a support triangle
of B(z,r). Since B(z,r) is locally contained in K, the support lines of K at y do
not intersect B(z,r) for s > 0 sufficiently small. Therefore

(KNT)Uconvi{z,y,y'}

is convex for s > 0 sufficiently small and 7" is also a support triangle of this set.
Define L; as in (23). Then Ly — B(z,7) as s — 0 and p(Ls) > nu(KNT). Since
p is upper semicontinuous and n < 27/(2v) < n+ 1, we have for every n > 0,
27
20t
for s > 0 sufficiently small. Using the simple estimate that

(KNT) < p(B(z,7)) +2mn =27 (f(r) + 1)

4
< -0o(bdKNT)
T
for s > 0 sufficiently small, we have
8
uENT) <~ (f(r) +m)o(bd KNT). (26)

Setting n = ar/32, we obtain by (25) that (%ii) holds. O

14



Further, we need the following result.

Lemma 3. There is a c¢(¢) such that
p(K N P)<ce(e)o(bd KN P)
for every polygon P € K? and every e-smooth K € K? with € > 0.

Proof. Since K is e-smooth, for every xy € bd K there is a B(z,¢) C K such that
xo € bd B(z,¢). Let T be a support triangle of K with endpoints x = 2 and y.
Then we can construct a support triangle 7" of B(z, ) with vertices x, w,y’ as in
the second part of the proof of Lemma 2 (see figure 4). As in (26) we therefore
have with n =1

p(KNT) <

™ | o

(f(e)+1)o(bdKNT) (27)

for every T sufficiently small, and since in the proof of (26) only the circle B(z,r)
and the angle between [z, ] and [z,y] are used, this holds uniformly for every
xg € bd K. We can therefore dissect P into finitely many polygons which are
either support triangles for which (27) holds or lie entirely in K or outside of K.
Since p vanishes on polygons, (27) therefore proves the lemma. O

Since a convex function is almost everywhere twice differentiable (see, e.g.,
[19]), the set N of points, where bd K is twice differentiable, has measure
o(N) =0(bd K).

By Lemma 2 the sets bd K N7 defined in Lemma 2 are a Vitali class for N and
this remains true if we only take triangles T with o(bdT) < 4. Let

0<n< o(bd K) (28)

2¢(e)

and 7 < §. Then we can choose by Vitali’s theorem (18) support triangles
Ty, ...,T,, such that

a(bdK)za(N)ﬁXm:a(bdKﬂTi)jLn (29)

=1

and such that the sets bd K NT; are pairwise disjoint. Let Ar, ..., A, be the
elements of A corresponding to T1,...,T,, as defined in Lemma 2 and define

A= COIIV{AAT1 Uu...u ATm}-
Then our construction using support triangles implies that

WANT) = p(Ar) (30)

15



for i = 1,...,m, and that 6(K, A) < § holds. Let = be an interior point of K
and let P; be the convex hull of z and T;. We choose polygons @, ..., @, such
that Py,..., Py, Q1,...,Q, have pairwise disjoint interiors and such that A and
K are contained in

PU...UP,UQ U...UQ,.

Since p vanishes on polygons and by (30), we have

p(A) = n(ANP) + Y p(ANQ;) = n(Ar).
i=1 j=1 i=1
For K we have by Lemma 2 and Lemma 3 and since g vanishes on polygons,

wK) = ) uKnPp) +ZuKﬂQa
i=1

(u(AT)+2a(bdKﬂT) ()Y o(bd K Q)
7=1

NERD

=1

u(A) + % o(bd K) + ¢(2) n,

where we used (29). Consequently, by (28)
u(K) < p(A) +ao(bd K).

This shows that (17) holds and therefore concludes the proof of our theorem.
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