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Abstract

All affinely covariant convex-body-valued valuations on the Sobolev space W 1,1pRnq
are completely classified. It is shown that there is a unique such valuation for Blaschke
addition. This valuation turns out to be the operator which associates with each function
f P W 1,1pRnq the unit ball of its optimal Sobolev norm.

2000 AMS subject classification: 46B20 (46E35, 52A21,52B45)

Let } � } denote a norm on Rn that is normalized so that its unit ball has the same volume,
vn, as the n-dimensional Euclidean unit ball. For such a norm, the sharp Gagliardo-Nirenberg-
Sobolev inequality states that

»
Rn
}∇fpxq}� dx ¥ n v1{nn |f | n

n�1
(1)

for every f P W 1,1pRnq. Here for p ¥ 1, |f |p denotes the Lp norm of f and } � }� the dual
norm of } � } (see Section 1 for precise definitions). The Sobolev space W 1,1pRnq is the space
of functions f P L1pRnq such that their weak gradient ∇f is in L1pRnq. If the unit ball B
of } � } is the Euclidean unit ball, then inequality (1) goes back to Federer and Fleming [15]
and Maz1ya [46] and is known to be equivalent to the Euclidean isoperimetric inequality. For
general norms, (1) was established by Gromov [49, Appendix]. Note that the right hand side
of (1) does not depend on } � }. Hence for a given f P W 1,1pRnq, n ¥ 2, we may ask for its
optimal Sobolev norm, that is, for the norm that minimizes the left-hand side of (1) among
all norms whose unit balls have volume vn.

This natural and important question was first asked by Lutwak, Yang and Zhang in [45].
They showed that the unit ball xfy corresponding to the optimal Sobolev norm of f PW 1,1pRnq
is (up to normalization) the unique origin-symmetric convex body (that is, compact, convex
set) in Rn such that »

Sn�1

gpuq dSpxfy, uq �

»
Rn
gp�∇fpxqq dx (2)

for every even g P CpRnq that is positively homogeneous of degree 1. Here SpK, �q is the
Aleksandrov-Fenchel-Jessen surface area measure of K P Kn

c and Kn
c is the set of origin-

symmetric convex bodies in Rn with non-empty interiors together with the convex body t0u.
The equations (2) are a functional version of the classical even Minkowski problem and define
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an operator x�y : W 1,1pRnq Ñ Kn
c which associates with each f PW 1,1pRnq its optimal Sobolev

body xfy. Thus (2) provides a second description of the optimal Sobolev norm. Lutwak,
Yang and Zhang [45] showed that the optimal Sobolev body corresponds also to the optimal
norm in a family of sharp Gagliardo-Nirenberg inequalities recently established by Cordero,
Nazaret, and Villani [14]. Moreover, the optimal Sobolev body has proved to be critical in
recent results on affine isoperimetric inequalities (see [13,24,40,44,45,59,60]).

Using valuations on Sobolev spaces, we obtain a new and totally different description of
the operator f ÞÑ xfy. A function z defined on a lattice pL,_,^q and taking values in an
abelian semigroup is called a valuation if

zpf _ gq � zpf ^ gq � zpfq � zpgq (3)

for all f, g P L. A function z defined on some subset M of L is called a valuation on M if (3)
holds whenever f, g, f _ g, f ^ g PM.

Investigations of valuations on convex bodies pKn,Y,Xq have been an active and prominent
part of mathematics ever since Dehn’s solution of Hilbert’s Third Problem in 1900. Blaschke
obtained the first classification of real-valued valuations on convex bodies that are SLpnq
invariant in the 1930s. This was greatly extended by Hadwiger in his famous classification
of continuous, rigid motion invariant valuations and characterization of elementary mixed
volumes. See [25, 30, 47, 48] for information on the classical theory of valuations on convex
bodies and [1–5, 9, 16, 20–23, 33–35, 38, 39, 51, 53, 54, 58] for some of the more recent results.
Valuations were also investigated on star shaped sets [27, 28], on manifolds [6–8, 10, 11] and
on Lebesgue spaces [37,56,57].

In this paper, we classify valuations on pW 1,1pRnq,_,^q, where for f, g P W 1,1pRnq, the
function f_g denotes the pointwise maximum and the function f^g the pointwise minimum
of f and g. As in the classical results for valuations on convex bodies we use invariance
and covariance properties to obtain characterizations of important operators. An operator
z : W 1,1pRnq Ñ Kn

c is called GLpnq covariant if for some p P R,

zpf � φ�1q � |detφ|p φ zpfq

for all f P W 1,1pRnq and φ P GLpnq, where detφ is the determinant of φ. An operator z is
called translation invariant if zpf � τ�1q � zpfq for all f PW 1,1pRnq and translations τ . It is
called homogeneous if for some q P R, we have zpsfq � |s|q zpfq for all f PW 1,1pRnq and s P R.
An operator z : W 1,1pRnq Ñ Kn

c is called affinely covariant if z is homogeneous, translation
invariant and GLpnq covariant.

Theorem 1. An operator z : W 1,1pRnq Ñ xKn
c ,#y, where n ¥ 3, is a continuous, affinely

covariant valuation if and only if there is a constant c ¥ 0 such that

zpfq � c xfy

for every f PW 1,1pRnq.
Here # denotes Blaschke addition on Kn

c , that is, for K,L P Kn
c , the convex body K#L is the

(uniquely determined) origin-symmetric convex body such that SpK#L, �q � SpK, �q�SpL, �q
(see Section 1 for precise definitions). See [12,18,26,29,41–43,52] for some of the recent results
involving Blaschke addition and, in particular, Haberl [21], where a classification of Blaschke
valuations on convex bodies was obtained.

2



Theorem 1 is in a certain sense dual to the following classification result for valuations
z : W 1,1pRnq Ñ xKn

c ,�y. Here � denotes Minkowski addition on Kn
c , that is, for K,L P Kn

c ,
we have K � L � tx � y : x P K, y P Lu. We say that an operator z : W 1,1pRnq Ñ Kn

c is
GLpnq contravariant if for some p P R,

zpf � φ�1q � |detφ|p φ�t zpfq

for all f P W 1,1pRnq and φ P GLpnq, where φ�t is the transpose of the inverse of φ. An
operator z : W 1,1pRnq Ñ Kn

c is called affinely contravariant if z is homogeneous, translation
invariant and GLpnq contravariant.

Theorem 2. An operator z : W 1,1pRnq Ñ xKn
c ,�y, where n ¥ 3, is a continuous, affinely

contravariant valuation if and only if there is a constant c ¥ 0 such that

zpfq � cΠ xfy

for every f PW 1,1pRnq.

Here ΠK denotes the projection body of a convex body K. Projection bodies were introduced
by Minkowski at the turn of the last century and have proved to be very useful in many ways
and subjects (cf. [17]). They can be defined in the following way. Every convex body K is
uniquely determined by its support function hpK, �q, where hpK, vq � maxtv � x : x P Ku for
v P Rn and v � x is the standard inner product of v, x P Rn. The projection body of K is the
convex body whose support function is given by

hpΠK, vq �
1

2

»
Sn�1

|u � v| dSpK,uq, v P Rn.

Combined with (2), this gives

hpΠ xfy, vq �
1

2

»
Rn
|v �∇fpxq| dx. (4)

Also the convex body Π xfy has proved to be critical for affine isoperimetric inequalities. In
particular, the affine Zhang-Sobolev inequality [60] is a volume inequality for the polar body
of Π xfy which strengthens and implies the Euclidean case of the Sobolev inequality (1).

1 Background material on convex bodies

General references on convex bodies are the books by Gardner [17], Gruber [19], Schneider [50],
and Thompson [55]. We work in Euclidean n-space, Rn, and write x � px1, . . . , xnq for x P Rn.
Throughout this paper, u � x denotes the standard inner product of u, x P Rn and | � | denotes
the standard Euclidean norm on Rn. The vectors of the standard basis of Rn are denoted by
e1, . . . , en and the k-dimensional volume of a k-dimensional convex body F by VkpF q.

Let Kn denote the space of convex bodies in Rn. The subspace of convex bodies with non-
empty interiors which contain the origin is denoted by Kn

0 and the subspace of origin-symmetric
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bodies with non-empty interiors by Kn
c . These spaces are equipped with the Hausdorff metric

δ defined by
δpK,Lq � maxt|hpK,uq � hpL, uq| : u P Sn�1u.

Minkowski addition can also be described by support functions, since

hpK � L, vq � hpK, vq � hpL, vq (5)

for all K,L P Kn and v P Rn. Note that xKn
c ,�y is an abelian semigroup.

Blaschke addition is defined using the surface area measure SpK, �q for K P Kn
0 . For a

Borel set ω � Sn�1, the surface area measure SpK,ωq is the pn � 1q-dimensional Hausdorff
measure of the set of all boundary points of K at which there exists a unit normal vector of K
belonging to ω. The solution to the Minkowski problem (see [50]) states that a non-negative
Borel measure µ on Sn�1 is the surface area measure of a convex body if and only if µ is not
concentrated on a great subsphere and has its centroid, 1

µpSn�1q

³
Sn�1 u dµpuq, at the origin. If

such a measure µ is given, there is a unique convex body K P Kn
0 with surface area measure

SpK, �q � µ that has its centroid, 1
VnpKq

³
K x dx, at the origin. For K,L P Kn

0 , their Blaschke
sum, K # L, is defined as the unique convex body with centroid at the origin such that

SpK # L, �q � SpK, �q � SpL, �q.

Since the sum of two surface area measures satisfies the necessary conditions of the Minkowski
problem, Blaschke addition is well defined by the solution of the Minkowski problem. For t ¡ 0
and K P Kn

0 , the Blaschke multiple, t �K, is defined as the unique convex body with centroid
at the origin such that

Spt �K, �q � t SpK, �q.

Hence t �K � t1{pn�1qK, if K has its centroid at the origin. A convex body is origin-symmetric
if and only if its surface area measure is an even measure and its centroid is at the origin.
Note that for K P Kn

0 , the Blaschke symmetral 1
2
� pK # p�Kqq is an origin-symmetric convex

body. Also note that xKn
c ,#y is an abelian semigroup.

For K P Kn which contains the origin in its interior, the polar body, K�, of K is defined
by

K� � tx P Rn : x � y ¤ 1 for every y P Ku.

For a normed space E � pRn, } � }q, the dual space is E� � pRn, } � }�q, where } � }� is given for
v P Rn by

}v}� � suptx � v : }x} ¤ 1u.

If B is the unit ball of E, that is, B � tx P Rn : }x} ¤ 1u, then its polar body, B�, is the unit
ball of E�.

We require some facts about the projection operator Π : Kn Ñ Kn, which can be found
in [17]. It is a simple consequence of the definition of Π that

ΠpK # Lq � ΠK �ΠL (6)

for K,L P Kn
0 . Note that for K P Kn

0 , we have

Π p 1
2
� pK # p�Kqqq � ΠK. (7)
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The projection operator has strong contravariance and invariance properties: for all φ P GLpnq
and translations τ , we have

ΠpφKq � |detφ|φ�t ΠK and ΠpτKq � ΠK (8)

for all K P Kn
0 . Further, Π is continuous on Kn

0 and injective on Kn
c . If Zn denotes the range

of Π, the inverse operator Π�1 : Zn Ñ Kn
c is also continuous.

The proofs of Theorems 1 and 2 make essential use of a classification result of convex-body-
valued valuations established in [36]. To state the result, we need the following definitions.
Let Pn

0 denote the set of convex polytopes in Rn that contain the origin in their interiors.
The moment body, MP , of P is defined by

hpMP, vq �

»
P
|v � x| dx, v P Rn.

We say that an operator Z : Pn
0 Ñ Kn is GLpnq contravariant of weight p P R, if

ZpφP q � |detφ|p φ�t ZP

for all P P Pn
0 and φ P GLpnq.

Theorem 3 ([36]). An operator Z : Pn
0 Ñ xKn

c ,�y, where n ¥ 3, is a valuation which is
GLpnq contravariant of weight p if and only if there is a constant c ¥ 0 such that

ZP �

$''''&
''''%

cMP � for p � �1

cpP � � p�P q�q for p � 0

cΠP for p � 1

t0u otherwise

for every P P Pn
0 .

For n � 2, there are additional convex-body-valued valuations (see [36]). Also note that if we
replace GLpnq contravariance by SOpnq covariance, there is a much larger class of valuations
(see, for example, [52]).

2 Background material on Sobolev spaces

For p ¥ 1 and a measurable function f : Rn Ñ R, let

|f |p �

�»
Rn
|fpxq|p dx


1{p

.

A measurable function f is in LppRnq if |f |p   8. A function f P L1pRnq has L1 weak
derivative, if there exists a measurable function ∇f : Rn Ñ Rn such that ∇f P L1pRnq (that
is, |∇f | P L1pRnq) and »

Rn
νpxq �∇fpxq dx � �

»
Rn
fpxq∇ � νpxq dx
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for every compactly supported smooth vector field νpxq : Rn Ñ Rn, where we use the notation
∇ � ν � Bν

Bx1
� � � � � Bν

Bxn
. The function ∇f is called the weak gradient of f and the L1 norm of

|∇f | is denoted by |∇f |1.
An operator z : W 1,1pRnq Ñ Kn

c is continuous, if for every sequence fk P W
1,1pRnq with

fk Ñ f as k Ñ8 in W 1,1pRnq, we have δpzpfkq, zpfqq Ñ 0 as k Ñ8. Here fk Ñ f as k Ñ8
in W 1,1pRnq if |fk�f |1 Ñ 0 and |∇pfk�fq|1 Ñ 0 as k Ñ8. An operator z : W 1,1pRnq Ñ Kn

c

is called trivial, if zpfq � t0u for all f P W 1,1pRnq. It is called GLpnq covariant of weight
p P R, if

zpf � φ�1q � |detφ|p φ zpfq

for all f PW 1,1pRnq and φ P GLpnq. It is called GLpnq contravariant of weight p P R, if

zpf � φ�1q � |detφ|p φ�t zpfq

for all f PW 1,1pRnq and φ P GLpnq. It is called homogeneous of degree q P R, if

zpsfq � |s|q zpfq

for all f P W 1,1pRnq and s P R. If an operator z : W 1,1pRnq Ñ Kn
c is homogeneous of

degree q and non-trivial, then setting s � 0 in the definition of homogeneity gives q ¥ 0.
If z : W 1,1pRnq Ñ Kn

c is continuous and homogeneous of degree 0, then zpfq � zp0q for all
f PW 1,1pRnq. If z is in addition GLpnq co- or contravariant, then we obtain that z is trivial.
In particular, we have

zp0q � t0u (9)

for all continuous, homogeneous and GLpnq co- or contravariant z : W 1,1pRnq Ñ Kn
c .

For f, g PW 1,1pRnq, f _ g, f ^ g PW 1,1pRnq and for almost every x P Rn,

∇pf _ gqpxq �

$'&
'%
∇fpxq when fpxq ¡ gpxq

∇gpxq when fpxq   gpxq

∇fpxq � ∇gpxq when fpxq � gpxq

(10)

and

∇pf ^ gq �

$'&
'%
∇fpxq when fpxq   gpxq

∇gpxq when fpxq ¡ gpxq

∇fpxq � ∇gpxq when fpxq � gpxq

(11)

(see, for example, [32]). Hence pW 1,1pRnq,_,^q is a lattice.
Let L1,1pRnq � W 1,1pRnq denote the space of piecewise affine functions on Rn, where

a function ` : Rn Ñ R is called piecewise affine, if ` is continuous and there are finitely
many n-dimensional simplices S1, . . . , Sm � Rn with pairwise disjoint interiors such that the
restriction of ` to each Si is affine and ` � 0 outside S1 Y � � � Y Sm. Note that the simplices
S1, . . . , Sm are a triangulation of the support of `. Further, note that if V is the set of vertices
of this triangulation, then V and the values `pvq for v P V completely determine `. Piecewise
affine functions lie dense in W 1,1pRnq (see, for example, [31]).

For P P Pn
0 , define the piecewise affine function `P by requiring that `P p0q � 1, that

`P pxq � 0 for x R P , and that `P is affine on each simplex with apex at the origin and base
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equal to a facet of P . Define P 1,1pRnq � L1,1pRnq as the set of all `P for P P Pn
0 . Note that

for φ P GLpnq,
`φP � `P � φ

�1. (12)

We remark that multiples and translates of `P P P 1,1pRnq correspond to linear elements within
the theory of finite elements.

3 The operators f ÞÑ xfy and f ÞÑ Π xfy

The operator f ÞÑ xfy has strong covariance and invariance properties (see [45] and also [40]).
In particular,

xs fy � |s| � xfy, xf � φ�1y � φ xfy, xf � τ�1y � xfy (13)

for all s P R, φ P GLpnq and for all translations τ .

Lemma 1. The operator z : W 1,1pRnq Ñ xKn
c ,�y, defined by zpfq � cΠ xfy with c ¥ 0, is a

continuous affinely contravariant valuation.

Proof. Using (10) and (11), we obtain from (4) and (5) that z is a valuation. By (13) and (8),
we see that z is affinely contravariant. Suppose that fk Ñ f as k Ñ8 in W 1,1pRnq. Then for
u P Sn�1 we have by (4), the reverse triangle inequality and the Cauchy-Schwarz inequality,

|hpzpfkq, uq � hpzpfq, uq| ¤
c

2

»
Rn
|u �∇pfk � fqpxq| dx ¤

c

2

»
Rn
|∇pfk � fqpxq| dx.

Therefore we obtain δpzpfkq, zpfqq Ñ 0 as k Ñ 0 and thus z is continuous.

Lemma 2. The operator z : W 1,1pRnq Ñ xKn
c ,#y, defined by zpfq � c xfy with c ¥ 0, is a

continuous affinely covariant valuation.

Proof. Since the inverse projection operator Π�1 is continuous, Lemma 1 implies that z is
continuous. By (13), z is affinely covariant. Since by Lemma 1 for all f, g PW 1,1pRnq,

Π zpfq �Π zpgq � Π zpf _ gq �Π zpf ^ gq,

we obtain by (6) that

Π
�

zpfq # zpgq
�
� Π

�
zpf _ gq # zpf ^ gq

�
.

Applying Π�1 gives
zpfq # zpgq � zpf _ gq # zpf ^ gq

for all f, g PW 1,1pRnq. Thus z : W 1,1pRnq Ñ xKn
c ,#y is a valuation.

7



Lemma 3. For P P Pn
0 , x`P y � 1

2
� pP # p�P qq.

Proof. By definition, x`P y � 1
2
� pP # p�P qq if for every even g P CpRnq that is homogeneous

of degree 1,
1

n

»
Sn�1

gpuq dSp 1
2
� pP # p�P qq, uq �

»
Rn
gp�∇`P q dx.

Let P have facets F1, . . . , Fm. For the facet Fi, let ui be its unit outer normal vector and Ti
the convex hull of Fi and the origin. Since for x P Ti

`P pxq � �
ui

hpP, uiq
� x� 1

and
∇`P pxq � �

ui
hpP, uiq

,

we obtain that

»
Rn
gp�∇`P q dx �

m̧

i�1

»
Ti

gp�∇`P pxqq dx

�
m̧

i�1

gpuiq
VnpTiq

hpP, uiq

�
1

n

m̧

i�1

gpuiqVn�1pFiq

�
1

n

»
Sn�1

gpuq dSpP, uq

�
1

n

»
Sn�1

gpuq dSp 1
2
� pP # p�P qq, uq.

Thus x`P y � 1
2
� pP # p�P qq.

4 Proof of Theorem 2

In Lemma 1, it was shown that f ÞÑ cΠ xfy is for c ¥ 0 a continuous affinely contravariant
valuation. Suppose that z is a continuous affinely contravariant valuation. The following
lemmas establish that there is a constant c ¥ 0 such that zpfq � cΠ xfy for all f PW 1,1pRnq.

Lemma 4. If z : P 1,1pRnq Ñ Kn
c is continuous, non-trivial, and GLpnq contravariant of

weight p, then p ¥ 1.

Proof. For a ¡ 0 and 0   ε   1, let φa P GLpnq map e1 to a e1 and ei to aεei for i � 2, . . . , n.
Using (12), we obtain for P P Pn

0 that |`φaP |1 � |detφa| |`P |1 and

|∇`φaP |1 � |detφa|

»
Rn
|φ�ta ∇`P pxq| dx ¤ |detφa| |∇`P |1 maxt|φ�ta u| : u P Sn�1u.
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Hence |`φaP |1 � Opa1�pn�1qεq and |∇`φaP |1 � Opapn�1qεq as a Ñ 0. Consequently, `φaP Ñ 0
in W 1,1pRnq as aÑ 0. Since z is GLpnq contravariant of weight p, we obtain by (12) that

zp`φaP q � ap1�pn�1qεqpφ�ta zp`P q.

Thus the first coordinates of points from zp`P q are multiplied by ap1�pn�1qεqp�1. Since this
happens for all P P Pn

0 and z is continuous, we conclude that p ¥ 1{p1 � pn � 1qεq. Since
ε ¡ 0 was arbitrary, we obtain p ¥ 1.

Lemma 5. If z : P 1,1pRnq Ñ xKn
c ,�y, where n ¥ 3, is a continuous affinely contravariant

valuation, then there is a constant c ¥ 0 such that

zpfq � cΠ xfy

for every f P P 1,1pRnq.

Proof. Define the operator Z : Pn
0 Ñ xKn

c ,�y by setting

ZP � zp`P q.

If `P , `Q P P 1,1pRnq are such that `P_`Q P P 1,1pRnq, then `P_`Q � `PYQ and `P^`Q � `PXQ.
Since z is a valuation on P 1,1pRnq, it follows for P,Q, P YQ P Pn

0 that

ZpP q � ZpQq � zp`P q � zp`Qq

� zp`P _ `Qq � zp`P ^ `Qq

� ZpP YQq � ZpP XQq.

Thus Z : Pn
0 Ñ xKn

c ,�y is a valuation.
By Lemma 4, the operator z is GLpnq contravariant of weight p ¥ 1. Since for φ P GLpnq

ZpφP q � zp`φP q � zp`P � φ
�1q � |detφ|p φ�t zp`P q � |detφ|p φ�t ZP,

also Z is GLpnq contravariant of weight p ¥ 1. Thus we obtain from Theorem 3 that there
exists a constant c ¥ 0 such that

zp`P q � cΠP

for all `P P P 1,1pRnq. The statement now follows from Lemma 3 and (7).

Lemma 6. If z : W 1,1pRnq Ñ xKn
c ,�y is a continuous, non-trivial, translation invariant

valuation which is homogeneous of degree q, then q ¥ 1.

Proof. Let P P Pn
0 and ε ¡ 0. Take translations τ1, . . . , τk such that the polytopes τi P are

pairwise disjoint. Define

fk �
1

k1�ε
p`τ1P _ � � � _ `τkP q.

Then |fk|1 � |∇fk|1 � Opk�εq as k Ñ 8. Hence fk Ñ 0 as k Ñ 8 in W 1,1pRnq. Since z is a
translation invariant and homogeneous valuation, we obtain using (9) that

zpfkq � k k�qp1�εq zp`P q.

Since z is continuous, it follows from (9) that q ¥ 1.
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Lemma 7. If z : W 1,1pRnq Ñ xKn
c ,�y is a continuous, non-trivial, translation invariant

valuation which is GLpnq contravariant of weight 1 and homogeneous of degree q, then q ¤ 1.

Proof. Let P P Pn
0 and α, β ¡ 0. Take translations τ1, . . . , τk such that the polytopes τi P are

pairwise disjoint. Define
fk � kαp`τ1pP {kβq _ � � � _ `τkpP {kβqq.

Then |fk|1 � Opk1�α�nβq and |∇fk|1 � Opk1�α�β�nβq as k Ñ8. Hence for α   pn�1qβ�1,
we have fk Ñ 0 as k Ñ 8 in W 1,1pRnq. Since z is a translation invariant and homogeneous
valuation, we obtain using (9) that

zpfkq � k kα qk�nβ�β zp`P q.

Since z is continuous, it follows from (9) that q ¤ p�1� pn� 1qβq{α. Since this holds for all
α   pn� 1qβ � 1 and all β, we conclude that q ¤ 1.

Lemma 8. Let z1, z2 : L1,1pRnq Ñ xKn,�y be continuous, translation invariant valuations,
which are homogeneous of the same degree. If z1pfq � z2pfq for all f P P 1,1pRnq, then

z1pfq � z2pfq (14)

for all f P L1,1pRnq.

Proof. Let z1 and z2 be homogeneous of degree q. As noted before, q ¥ 0. If q � 0, then
zipfq � zip0q for all f P L1,1pRnq and the statement of the lemma is true. Therefore we assume
that z1 and z2 are homogeneous of degree q ¡ 0 and have

z1p0q � z2p0q � t0u. (15)

Since z1 and z2 are homogeneous valuations, we obtain using (15) that for i � 1, 2,

zipf _ 0q � zipf ^ 0q � zipfq � zip0q � zipfq

and
zipf ^ 0q � zip�pp�fq _ 0qq � zipp�fq _ 0q.

Thus it suffices to show that (14) holds for all f P L1,1pRnq with f ¥ 0.
Let such a function f be given and let f not vanish identically. Triangulate the support of

f so that f is affine on each simplex of the triangulation. Let V be the (finite) set of vertices
and S the set of n-dimensional simplices of this triangulation. Note that f is determined by
the values fpvq for v P V and that if fpv̄q ¡ 0 for some v̄ P V , then by changing the value fpv̄q
we obtain again a function in L1,1pRnq. Since z1 and z2 are continuous, it suffices to prove
(14) for a function f where the values fpvq are distinct for v P V with fpvq ¡ 0.
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First, we show that for such a function f there are f1, . . . , fm P L1,1pRnq which are non-
negative and concave on their supports such that

f � f1 _ � � � _ fm. (16)

Define the function fi by setting fipvq � fpvq on the vertices v of the simplex Si of S. Choose
a polytope Pi such that Si � Pi and set fipvq � 0 on the vertices v of Pi. The function fi
determined by these data is concave on its support and piecewise linear. Moreover, if the
polytopes Pi are chosen suitably small, (16) holds.

Using the inclusion-exclusion principle, we obtain from (16) that for i � 1, 2,

zipfq � zipf1 _ � � � _ fmq �
¸
J

p�1q|J |�1 zipfJq

where we sum over all non-empty J � t1, . . . ,mu and

fJ � fj1 ^ � � � ^ fjk

for J � tj1, . . . , jku. Thus it suffices to prove (14) for non-negative f P L1,1pRnq that are
concave on their support.

For a given function f P L1,1pRnq, let F � Rn�1 be the compact polytope bounded by the
graph of f and the hyperplane txn�1 � 0u. We call F singular if F has n facet hyperplanes
that intersect in a line L parallel to txn�1 � 0u but not contained in txn�1 � 0u. Since z1
and z2 are continuous, it suffices to show (14) for f P L1,1pRnq such that F is not singular.
So we assume for the rest of the proof that f has this property.

Let such a function f be given. Let p̄ be the vertex of F with the largest xn�1 coordinate.
We use induction on the number m of facet hyperplanes of F that are not passing through
p̄. If m � 1, then a translate of f is in P 1,1pRnq. Since z1 and z2 are translation invariant
and homogeneous, (14) is true. Suppose (14) is true for all f P L1,1pRnq such that F has at
most pm � 1q facet hyperplanes not containing p̄. We show that (14) then also holds for all
f P L1,1pRnq with m such hyperplanes.

So let F have m such hyperplanes. Let p0 � px0, fpx0qq be a vertex of F with minimal
non-negative xn�1-coordinate. Let H1, . . . ,Hj be the facet hyperplanes of F through p0 which
do not contain p̄. There is at least one such hyperplane. Define F̄ as the polytope bounded by
the intersection of all facet hyperplanes of F with the exception of H1, . . . ,Hj . Since F has
no edges parallel to txn�1 � 0u but not contained in txn�1 � 0u, the polytope F̄ is bounded
and the piecewise affine function f̄ corresponding to F̄ is in L1,1pRnq. Note that F̄ has at
most pm � 1q facet hyperplanes not containing p̄. Let H̄1, . . . , H̄i be the facet hyperplanes
of F̄ that contain p0. Choose suitable hyperplanes H̄i�1, . . . , H̄k containing p0 so that the
hyperplanes H̄1, . . . , H̄k and txn�1 � 0u bound a pyramid with apex at p0 that is contained
in F̄ , has x0 in its base and has H̄1, . . . , H̄i among its facet hyperplanes. Define ` as the
piecewise affine function determined by this pyramid and note that a suitable translate of ` is
in P 1,1pRnq. Set ¯̀� f ^ ` P L1,1pRnq. The polytope determined by ¯̀ is a pyramid since it is
bounded by txn�1 � 0u and hyperplanes containing p0. Therefore a suitable translate of ¯̀ is
in P 1,1pRnq. Hence translates of ¯̀ and ` are in P 1,1pRnq, the polytope F̄ has at most pm� 1q
facet hyperplanes not containing p̄, and

f _ ` � f̄ and f ^ ` � ¯̀.
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Since z is a valuation, we obtain for i � 1, 2 that

zipfq � zip`q � zipf̄q � zip¯̀q.

Thus by induction (14) holds for all f P L1,1pRnq with m facet hyperplanes not containing p̄.
This completes the proof of the lemma.

5 Proof of Theorem 1

Suppose that z : W 1,1pRnq Ñ xKn
c ,#y is a continuous affinely covariant valuation. Then for

all f, g PW 1,1pRnq,
zpfq # zpgq � zpf _ gq # zpf ^ gq.

Hence, applying Π, we obtain by (6) that

Π zpfq �Π zpgq � Π zpf _ gq �Π zpf ^ gq

for all f, g P W 1,1pRnq, that is, Π � z : W 1,1pRnq Ñ xKn
c ,�y is a valuation. Since z is affinely

covariant, (8) implies that Π � z is affinely contravariant. Since z and Π are continuous, also
Π � z is continuous. Thus by Theorem 2, there is a constant c̃ ¥ 0 such that

Π zpfq � c̃Π xfy

for every f P W 1,1pRnq. Since Π is injective on Kn
c , we obtain that zpfq � c xfy for all

f P W 1,1pRnq for some c P R. Combined with Lemma 2, this completes the proof of the
theorem.
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