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Abstract

Let Hj(K, ·) be the j-th elementary symmetric function of the prin-
cipal curvatures of a convex body K in Euclidean d-space. We show
that the functionals

∫
bd K f(Hj(K, x)) dHd−1(x) depend upper semi-

continuously on K, if f : [0,∞) → [0,∞) is concave, limt→0 f(t) = 0,
and limt→∞ f(t)/t = 0. An analogue statement holds for integrals of
elementary symmetric functions of the radii of curvature.
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1 Introduction and statement of results

Let K be a convex body, i.e. a compact convex set, in Euclidean d-dimensional
space Ed. In many problems, especially in connection with asymptotic ap-
proximation by polytopes (see [5] and [6]), integrals of the following type are
important: ∫

bd K

Hj(K,x)p dHd−1(x) (1)

Here bd K denotes the boundary of K, Hj(K, x) is the j-th elementary sym-
metric function of the principal curvatures at x ∈ bd K, Hd−1 is the (d− 1)-
dimensional Hausdorff measure, and p ∈ R. These integrals are defined – but
possibly infinite – for general convex bodies without smoothness assumption,
since Hj(K, ·) exists almost everywhere on bd K and is Lebesgue-measurable
(see [1] or [3]).

The affine surface area for general convex bodies as defined by C. Schütt
and E. Werner [19]

Ω(K) =

∫
bd K

Hd−1(K, x)
1

d+1 dHd−1(x) (2)
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is maybe the most important example of such integrals. Let Kd be the
space of convex bodies in Ed equipped with the usual topology induced by
the Hausdorff metric (cf. [17]). Then Ω(·) is a functional defined on Kd

and Ω(K) depends upper semicontinuously on K. This was first - even for
smooth bodies – proved by E. Lutwak [14] using another definition for affine
surface area. That Lutwak’s definition is equivalent to (2) was shown by
K. Leichtweiß [10], G. Dolzmann and D. Hug [4], and C. Schütt [18]. The
proof of this equivalence can also be found in K. Leichtweiß’ monograph [11].
Using the upper semicontinuity, it is possible to give a characterization of
affine surface area (see [13]).

We give a direct proof for the upper semicontinuity of the functional
defined in (2) and for the following larger class of functionals. Let D be the
set of functions f : [0,∞) → [0,∞) such that f is concave, limt→0 f(t) = 0,
and limt→∞ f(t)/t = 0. Then we have the following result.

Theorem 1 Let f ∈ D. Then for j = 1, . . . , d− 1

µ(K) =

∫
bd K

f(Hj(K, x)) dHd−1(x) (3)

is finite for every K ∈ Kd and depends upper semicontinuously on K.

The functions f(t) = tp for 0 < p < 1 are in D. Therefore Theorem 1 implies
that in this case the functionals defined in (1) are upper semicontinuous.

For d = 2, the class D is the largest possible, i.e. for K ∈ K2 and
Hd−1(K,x) = κ(K, x), the curvature of bd K at x, the functional∫

bd K

f(κ(K, x)) dH1(x)

is upper semicontinuous if and only if f ∈ D or f is constant (in the second
case, the functional is proportional to the length of bd K, which depends
continuously on K). This follows from results of [12], where a characteriza-
tion of upper semicontinuous and rigid motion invariant valuations on K2 is
given.

The first definition of affine surface area for a general convex body K was
given by K. Leichtweiß [9]. It is

Ω(K) =

∫
Sd−1

Pd−1(K, u)
d

d+1 dHd−1(u) (4)
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where Pj(K, u) is the j-th elementary symmetric function of the principal
radii of curvature at u ∈ Sd−1 and Sd−1 is the unit sphere in Ed. This
integral is well defined for a general convex body, since the principal radii
of curvature exist almost everywhere on Sd−1 and are Lebesgue measurable
(see [9]). This definition was shown to be equivalent to (2) in [18]. Also for
other integrals over the elementary symmetric functions of the principal radii
of curvature, we obtain upper semicontinuous functionals.

Theorem 2 Let f ∈ D. Then for j = 1, . . . , d− 1

µ(K) =

∫
Sd−1

f(Pj(K, u)) dHd−1(u) (5)

is finite for every K ∈ Kd and depends upper semicontinuously on K.

Since the proofs of these two theorems are similar, we only give the proof of
Theorem 2.

Results related to Theorem 2 are contained in work [15] of E. Lutwak.
He showed that the functionals∫

Sd−1

Pj(K, x)p dHd−1(x) (6)

for 0 < p < 1 defined for convex bodies with boundary of class C2 and positive
curvatures, can be extended to functionals defined for every K ∈ Kd, in such
a way that the extension is upper semicontinuous. We remark that similarly
to the case of affine surface area, i.e. p = d/(d + 1), it can be seen that this
extension coincides with the functionals defined in (5) for f(t) = tp. For the
proof of this equivalence in the case of affine surface area see [10] and [4].

D. Hug gave in [7] a direct proof for the equivalence of the definition of
affine surface area in (2) and in (4). We remark that with similar methods
the connection between the functionals (3) and (5) in the case j = d− 1 can
be established, i.e., for f ∈ D∫

bd K

f(Hd−1(K,x)) dHd−1(x) =

∫
Sd−1

g(Pd−1(K, u)) dHd−1(u)

where g(t) = t f(1/t). For j = 1, . . . , d − 2, the corresponding transforma-
tion formulae are not so simple. This can be seen by considering (d − 1)-
dimensional balls K. For them H1(K, x) = . . . = Hd−1(K, x) = 0 a.e. on
bd K and therefore the functionals (3) always vanish. But P1(K, u), . . .,
Pd−2(K, u) > 0 on a set of positive measure on Sd−1, and therefore the func-
tionals (5) do not always vanish.
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2 Tools

For j = 1, . . . , d − 1, let Sj(K, ·) and Cj(K, ·) be the j-th area measure and
curvature measure of a convex body K. For the definition of these Borel-
measures on the sphere Sd−1 and on Ed, respectively, and their properties,
see [17]. We need the following results. For a sequence of convex bodies Kn

converging to K, the measures Sj(Kn, ·) converge weakly to Sj(K, ·), and the
measures Cj(Kn, ·) converge weakly to Cj(K, ·). This implies that for every
closed set ω ⊂ Sd−1

lim sup
n→∞

Sj(Kn, ω) ≤ Sj(K, ω) (7)

and
lim

n→∞
Sj(Kn, S

d−1) = Sj(K,Sd−1), (8)

and that for every closed set β ⊂ Ed

lim sup
n→∞

Cj(Kn, β) ≤ Cj(K, β)

and
lim

n→∞
Cj(Kn, Ed) = Cj(K, Ed)

(concerning the notion of weak convergence, see, for example, [2]).
The measures Sj(K, ·) can be decomposed into measures absolutely con-

tinuous and singular with respect to the (d− 1)-dimensional Hausdorff mea-
sure Hd−1(·) on the sphere, say, Sj(K, ·) = Sa

j (K, ·) + Ss
j (K, ·). For the

absolutely continuous part, we have

Sa
j (K, ω) =

∫
ω

Pj(K, u) dHd−1(u) (9)

(see, for example, [8]). Here

Pj(K,u) =
1(

d−1
j

) ∑
1≤i1<...<ij≤d−1

ρi1(K, u) · · · ρij(K, u)

where ρi(K, u) is the i-th principal radius of curvature at u ∈ Sd−1. That the
Pj(K, ·) exist almost everywhere on Sd−1 was shown by A.D. Aleksandrov
[1] (or see [3]). The Lebesgue-measurability of Pj(K, ·) is implied by (9) (see
also the remarks in [8]). The singular part is concentrated on a null set, i.e.,
there is a set ω0 ⊂ Sd−1 such that Hd−1(ω0) = 0 and

Ss
j (K, ω\ω0) = 0 (10)
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for every Borel set ω ⊂ Sd−1.
The measures Cj(K, ·) are concentrated on bd K. Decomposing Cj(K, ·)

into measures absolutely continuous and singular with respect to the (d−1)-
dimensional Hausdorff measure Hd−1(·) on bd K, say, Cj(K, ·) = Ca

j (K, ·) +
Cs

j (K, ·), gives

Ca
j (K, β) =

∫
β∩bd K

Hd−1−j(K, x) dHd−1(x)

(see, for example, [8]). Here

Hj(K, x) =
1(

d−1
j

) ∑
1≤i1<...<ij≤d−1

κi1(K, x) · · · κij(K, x)

where κi(K, x) is the i-th principal curvature at x ∈ bd K. Hj(K, ·) is defined
a.e. on bd K and Lebesgue-measurable. The singular part Cs

j (K, ·) vanishes
outside a set β0 ⊂ bd K with Hd−1(β0) = 0.

3 Proof of Theorem 2

The definition of D implies that every f(t) ∈ D is continuous and that
f(0) = 0. Since f(t) is concave and non-negative on [0,∞), f(t) is non-
decreasing. Using the concavity of f(t) and the fact that f(0) = 0, we have
for every t > 0 and 0 < λ < 1

f(λ t + (1− λ) 0) ≥ λ f(t) + (1− λ) f(0)

and consequently with s = λ t < t

f(s) ≥ s

t
f(t).

This shows that f(t)/t is non-increasing.
Using the fact that f is concave, we obtain by Jensen’s inequality

1

Hd−1(Sd−1)

∫
Sd−1

f(Pj(K, u)) dHd−1(u)

≤ f
( 1

Hd−1(Sd−1)

∫
Sd−1

Pj(K, u) dHd−1(u)
)
.

The left hand side is always finite, since by (9)∫
Sd−1

Pj(K, u) dHd−1(u) ≤ Sj(K, Sd−1)
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and since f is non-decreasing. Therefore we have µ(K) < ∞ for every K ∈ K.
Let K ∈ Kd and ε > 0 be chosen. Since Pj(K, ·) is measurable a.e. on

Sd−1 and since the set ω0, where the singular part of Sj(K, ·) is concentrated,
is a null set, we can choose by Lusin’s theorem (see, for example, [16]) a closed
set ω ⊂ Sd−1 such that Pj(K, ·) is continuous as a function restricted to ω,
such that

ω ∩ ω0 = ∅ (11)

and such that
Hd−1(Sd−1\ω) ≤ ε. (12)

Let Kn be a sequence of convex bodies converging to K. First, we show
that

lim sup
n→∞

∫
ω

f(Pj(Kn, u)) dHd−1(u) ≤
∫

ω

f(Pj(K,u)) dHd−1(u) (13)

holds. Let η > 0 be chosen, and set a = inf{f(Pj(K,u)) : u ∈ ω} and
b = sup{f(Pj(K, u)) : u ∈ ω}. Since Pj(K, ·) is continuous on ω and ω is
compact, b < ∞. f is therefore uniformly continuous on [a, b], i.e. there is a
δ > 0 such that

|f(s)− f(t)| ≤ η for |s− t| ≤ δ. (14)

We choose a subdivision a = t1 ≤ t2 ≤ . . . ≤ tm+1 = b, such that

max
i=1,...,m

{ti+1 − ti} ≤ δ (15)

and such that
Hd−1({u ∈ ω : Pj(K, u) = ti}) = 0

for i = 2, . . . ,m. This is possible, since Hd−1({u ∈ ω : Pj(K, u) = t}) > 0
holds only for countably many t. Setting

ωi = {u ∈ ω : ti ≤ Pj(K,u) ≤ ti+1},

and using the monotonicity of f we have∫
ω

f(Pj(K, u)) dHd−1(u) =
m∑

i=1

∫
ωi

f(Pj(K,u)) dHd−1(u)

≥
m∑

i=1

f(ti)Hd−1(ωi).

(16)
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Since f is concave, by Jensen’s inequality

1

Hd−1(ωi)

∫
ωi

f(Pj(Kn, u)) dHd−1(u)

≤ f
( 1

Hd−1(ωi)

∫
ωi

Pj(Kn, u) dHd−1(u)
)

holds for i = 1, . . . ,m, and Hd−1(ωi) 6= 0. By (9)∫
ωi

Pj(Kn, u) dHd−1(u) ≤ Sj(Kn, ωi).

Using these inequalities and the monotonicity of f , we obtain∫
ω

f(Pj(Kn, u)) dHd−1(u) ≤
m∑

i=1

∫
ωi

f(Pj(Kn, u)) dHd−1(u)

=
m∑

i=1

′
∫

ωi

f(Pj(Kn, u)) dHd−1(u)

≤
m∑

i=1

′f

(
Sj(Kn, ωi)

Hd−1(ωi)

)
Hd−1(ωi)

where the ′ indicates that we sum only over ωi with Hd−1(ωi) 6= 0. Since
Pj(K, ·) is continuous on ω and ω is closed, the sets ωi are closed for i =
1, . . . ,m. This implies by (7) that

lim sup
n→∞

Sj(Kn, ωi) ≤ Sj(K, ωi).

By (11) and (10),
Sj(K, ωi) = Sa

j (K, ωi).

Consequently, using the continuity and monotonicity of f , the fact that by
(9) and the definition of ωi

Sa
j (K, ωi) ≤ ti+1Hd−1(ωi),

(16), (15), and (14), we obtain

lim sup
n→∞

∫
ω

f(Pj(Kn, u) dHd−1(u)

≤
m∑

i=1

′f

(
Sj(K, ωi)

Hd−1(ωi)

)
Hd−1(ωi)
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≤
m∑

i=1

f(ti+1)Hd−1(ωi)

=
m∑

i=1

f(ti)Hd−1(ωi) +
m∑

i=1

(f(ti+1)− f(ti)) Hd−1(ωi)

≤
∫

ω

f(Pj(K, u)) dHd−1(u) + ηHd−1(ω).

Since η > 0 is arbitrary, this proves (13).
Finally, we show that

lim sup
n→∞

∫
Sd−1

f(Pj(Kn, u)) dHd−1(u) ≤
∫

Sd−1

f(Pj(K,u)) dHd−1(u). (17)

Since f(t) is non-decreasing and f(t)/t is non-increasing, using (9) we see
that for every t > 0,∫

Sd−1\ω
f(Pj(Kn, u)) dHd−1(u)

=

∫
{u∈Sd−1\ω : Pj(Kn,u)≤t}

f(Pj(Kn, u)) dHd−1(u)

+

∫
{u∈Sd−1\ω : Pj(Kn,u)>t}

f(Pj(Kn, u))

Pj(Kn, u)
Pj(Kn, u) dHd−1(u)

≤ f(t)Hd−1(Sd−1\ω) +
f(t)

t
Sj(Kn, S

d−1).

Combined with (13), (12), and (8), this implies that for every t > 0

lim sup
n→∞

∫
Sd−1

f( Pj(Kn, u)) dHd−1(u)

≤
∫

Sd−1

f(Pj(K, u)) dHd−1(u) + f(t) ε +
f(t)

t
Sj(K,Sd−1).

Since ε > 0 is arbitrary and since t does not depend on ε, we therefore have
for every t > 0

lim sup
n→∞

∫
Sd−1

f(Pj(Kn, u)) dHd−1(u)

≤
∫

Sd−1

f(Pj(K, u)) dHd−1(u) +
f(t)

t
Sj(K, Sd−1).

(18)

Using the fact that f(t)/t is continuous and that limt→∞ f(t)/t = 0, we now
can make f(t)/t arbitrarily small by choosing t suitably large. Therefore (18)
proves (17).
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