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Abstract

Let Π be the projection operator, which maps every polytope to its
projection body. It is well known that Π maps the set of polytopes, Pn,
in Rn into Pn, that it is a valuation, and that for every P ∈ Pn, ΠP is
affinely associated to P . It is shown that these properties characterize
the projection operator Π. This proves a conjecture by Lutwak.

Let Kn denote the set of convex bodies (i.e., of compact, convex sets) in
Euclidean n-space Rn and let Pn denote the set of convex polytopes in Rn.
A convex body K ∈ Kn is determined by its support function, h(K, ·), on
the unit sphere Sn−1, where h(K,u) = max{u · x : x ∈ K} and where u · x
denotes the standard inner product of u and x. The projection body, ΠK,
of K is the convex body whose support function is given for u ∈ Sn−1 by

h(ΠK,u) = vol(K|u⊥),

where vol denotes (n− 1)-dimensional volume and K|u⊥ denotes the image
of the orthogonal projection of K onto the subspace orthogonal to u.

Projection bodies were introduced by Minkowski at the turn of the last
century in connection with Cauchy’s surface area formula. They are an
important tool for studying projections and have also proved to be useful in
other ways and in other subjects.

One important aspect here is the range of the operator Π. Projection
bodies of convex polytopes are special polytopes called zonotopes. These are
important due to the connection to oriented matroids, hyperplane arrange-
ments, aspects of optimization, computational geometry, and other areas
(cf. [35], [5]). Projection bodies of convex bodies are highly symmetric cen-
tered convex bodies called zonoids. These arise in a number of guises; for
example, the zonoids in Rn are precisely the ranges of non-atomic Rn-valued
measures, and they are precisely the polars of the unit balls of n-dimensional
subspaces of L1([0, 1]) (cf. the surveys [6], [31], [11]).
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Here we focus on the operator Π : Kn → Kn itself. Starting with
Aleksandrov’s classical projection theorem, there have been many impor-
tant results on Π including those by Petty [25] and Schneider [27] (see [9]).
These have applications in the local theory of Banach spaces (see [7]) and
in Minkowski geometry (see [32]).

One reason that the operator Π is so useful in these areas is that pro-
jection bodies of affinely equivalent convex bodies are affinely equivalent.
Specifically,

Π(φK) = |detφ|φ−tΠK and Π(K + x) = ΠK (1)

for every K ∈ Kn, φ ∈ GL(n), and x ∈ Rn. Here GL(n) denotes the group
of general linear transformations in Rn, detφ denotes the determinant of φ,
and φ−t denotes the inverse of the transpose of φ. This was proved by Petty
[25]. It follows from (1) that the volume of ΠK and of the polar of ΠK are
affine invariants, and there are important affine isoperimetric inequalities
for these quantities (see [26], [33], [20], [10], [22], and Lutwak’s survey [21]).
Recently, Zhang [34] derived from these results an affine invariant Sobolev
inequality that is stronger than the classical Sobolev inequality.

A basic property of the operator Π is that it is a valuation. In general,
a function Z defined on Kn and taking values in an Abelian semi-group is
called a valuation if

ZK1 + ZK2 = Z(K1 ∪K2) + Z(K1 ∩K2)

whenever K1,K2,K1 ∪K2 ∈ Kn. A classical result by Hadwiger [12] states
that the continuous, rigid motion invariant, real valued valuations on Kn

are precisely the linear combinations of intrinsic volumes. In recent years,
many new results on real and tensor valued valuations have been obtained
(see, for example, [1]–[3], [13]–[16], [19], [30], and Klain and Rota’s book
[17]), including Alesker’s proof [4] of McMullen’s twenty year old conjecture
on the classification of translation invariant valuations.

For operators taking values in Pn and Kn, it is natural to consider valu-
ations with respect to Minkowski addition. With this operation Pn and Kn

are Abelian semi-groups, and

ΠK1 + ΠK2 = Π(K1 ∪K2) + Π(K1 ∩K2) (2)

wheneverK1,K2,K1∪K2 ∈ Kn, i.e., Π is a valuation. Lutwak asked whether
(1) and (2) characterize the projection operator Π. We obtain the following
results.
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Theorem. An operator Z : Pn → Pn is a valuation such that

Z(φP ) = |detφ|φ−tZP and Z(P + x) = ZP (3)

for every φ ∈ GL(n) and x ∈ Rn, if and only if there is a constant c ≥ 0
such that

ZP = cΠP

for every P ∈ Pn.

The projection operator is continuous and it is monotone increasing,
i.e., if K ⊂ L then ΠK ⊂ ΠL. This immediately implies the following for
operators on Kn.

Corollary 1. An operator Z : Kn → Kn is a monotone increasing valuation
such that

Z(φK) = |detφ|φ−tZK and Z(K + x) = ZK

for every φ ∈ GL(n) and x ∈ Rn, if and only if there is a constant c ≥ 0
such that

ZK = cΠK

for every K ∈ Kn.

For the extension to continuous operators on Kn, we use an argument
by Schneider [28] and obtain the following.

Corollary 2. An operator Z : Kn → Kn is a continuous valuation such that

Z(φK) = |detφ|φ−tZK and Z(K + x) = ZK

for every φ ∈ GL(n) and x ∈ Rn, if and only if there is a constant c ≥ 0
such that

ZK = cΠK

for every K ∈ Kn.

For additional information regarding projection bodies, see the books by
Gardner [9], Leichtweiß [18], Schneider [29], and Thompson [32].
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1 Proof of the Theorem

We assume that Z : Pn → Pn is a valuation for which (3) holds and will
show that there is a constant c ≥ 0 such that ZP = cΠP for every P ∈ Pn.

We work in n-dimensional Euclidean space Rn with origin o, basis e1,
. . ., en, and use coordinates x = (x1, . . . , xn)t for x ∈ Rn. Let SL(n) denote
the group of special linear transformations in Rn, i.e., of linear transfor-
mations with determinant 1, and let O(n) denote the group of orthogonal
transformations in Rn.

The affine hull of a polytope P is the smallest affine subspace containing
P , and the dimension of P , dimP , is defined as the dimension of the affine
hull of P .

Lemma 1. If P ∈ Pn and dimP < (n − 1), then ZP = {o}. If P ∈ Pn

and dimP = (n−1), then ZP is a segment in the one-dimensional subspace
orthogonal to the affine hull of P .

Proof. Let P ∈ Pn with P ⊂ H where H is the k-dimensional subspace
with equation xk+1 = . . . = xn = 0. Since every P ′ ∈ Pn with dimP ′ = k
is an affine image of such a polytope P , (3) implies that it suffices to prove
the lemma in this case. Let

φ =
(
I B
0 A

)
where I is the k× k identity matrix, 0 is the (n− k)× k null matrix, B is a
k× (n− k) matrix, and A is an (n− k)× (n− k) matrix with determinant
1. Then φ ∈ SL(n) and

φ−t =
(

I 0
C A−t

)
with C = −A−tBt. Since P ⊂ H,

φP = P. (4)

Write x =
(

x′

x′′

)
with x′ = (x1, . . . , xk)t and x′′ = (xk+1, . . . , xn)t for x ∈ Rn.

Let x ∈ ZP . It follows from (4) and (3) that y = φ−tx ∈ ZP . Therefore(
y′

y′′

)
=

(
x′

Cx′ +A−tx′′

)
∈ ZP. (5)

This is true for every k × (n − k) matrix B and every (n − k) × (n − k)
A matrix with determinant 1. If x′ 6= o′, this implies that y′′ can be an
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arbitrary vector. Since ZP is bounded, this implies that x′ = o′. Thus
ZP lies in the orthogonal complement of H. If k = (n − 1), this proves
the lemma. So let k < (n − 1). Then x′ = o′ and (5) holds for every
(n− k)× (n− k) matrix A with determinant 1. Since ZP is bounded and
(n− k) ≥ 2, this implies that x′′ = o′′.

For a polytope P , an outer normal vector (6= o) to a facet (i.e., an
(n − 1)-dimensional face) is called a facet normal. Denote by vol(P, v) the
(n−1)-dimensional volume of the facet with facet normal v, and call a facet
normal v scaled, if it has length vol(P, v). We recall some simple facts about
projection bodies of polytopes (see, for example, [9] or [8]). If P ∈ Pn with
dimP < (n − 1), then ΠP = {o}. If P ∈ Pn with dimP ≥ (n − 1) and
scaled facet normals v1, . . . , vm, then

vol(P |u⊥) =
1
2

m∑
i=1

|vi · u|.

For x ∈ Rn, the support function of the segment [−x, x] with endpoints −x
and x is given by h([−x, x], u) = |u · x|. Thus if P is a polytope with scaled
facet normals v1, . . . , vm then

ΠP =
1
2

m∑
i=1

[−vi, vi]. (6)

In the next lemma, we use the following well known characterization
of volume (cf. [24]). If ν : Pn−1 → R is a simple, translation invariant,
non-negative valuation then there is a constant c ≥ 0 such that

ν(P ) = c vol(P ) (7)

for every P ∈ Pn−1. Here a valuation ν : Pn−1 → R is called simple, if it
vanishes on polytopes P with dimP < (n− 1).

Lemma 2. There is a constant c ≥ 0 such that ZP = cΠP for every
P ∈ Pn with dimP = (n− 1).

Proof. Let P ∈ Pn with P ⊂ H where H is the subspace orthogonal to en.
By Lemma 1, there are ν1(P ), ν2(P ) ∈ R such that

ZP = [ν1(P ) en, ν2(P ) en].

Let φ ∈ GL(n) be such that φei = ei for i = 1, . . . , (n− 1), and φen = −en.
Then P = φP , and it follows from (3) that ν1(P ) = −ν2(P ). Thus

Z(P ) = [−ν(P ) en, ν(P ) en]
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with ν(P ) ≥ 0. The functional ν is defined for every P ∈ Pn with P ⊂ H.
We identify H and Rn−1 and have ν : Pn−1 → [0,∞). Since Z is a valuation,
so is ν. By Lemma 1, ZP = {o} if dimP < (n− 1). This implies that ν is
simple. If x ∈ Rn−1, then it follows from (3) that Z(P+x) = ZP . Therefore
ν is translation invariant. Thus we obtain by (7) that there is a constant
c ≥ 0 such that ν(P ) = 1/2 c vol(P ). By (6),

ΠP =
1
2
[−vol(P ) en, vol(P ) en].

Thus ZP = cΠP for every P ⊂ H. Since every P ′ ∈ Pn with dimP ′ =
(n − 1) is an affine image of a polytope P ∈ Pn−1, this combined with (3)
completes the proof of the lemma.

For a polytope P , denote by NF (P ) the set of facet normals of P . We
recall some simple facts about Minkowski sums of polytopes that will be
used in the next lemma (cf. [29] for more details). Let P, P1, P2 ∈ Pn. Since
P1 + P2 = {x+ y : x ∈ P1, y ∈ P2}, it is easy to see that

v ∈ NF (P1) implies that v ∈ NF (P1 + P2). (8)

If v ∈ NF (P +[−x, x]), x ∈ Rn, and if v 6∈ NF (P ), then v is a normal vector
to a facet with an edge parallel to x, i.e.,

v ∈ NF (P + [−x, x])\NF (P ) implies that v · x = 0. (9)

We also need the following fact about the projection body of a simplex
(cf. [23] or [8]). Let T be an n-dimensional simplex given as the convex
hull of the points x0, . . . , xn. Let v0, . . . , vn be the scaled facets normals of
T labeled such that the facet with normal vk does not contain xk. Then
vk · (xi − xj) = 0 for k 6= i, j. Combined with (6) this shows that NF (ΠT )
consists of the vectors

xi − xj , i 6= j, i, j = 1, . . . , n (10)

and their multiples ( 6= 0).

Lemma 3. For every simplex T , NF (ZT ) ⊂ NF (ΠT ).

Proof. Let S be the simplex that is the convex hull of o, e1, . . . , en. By (10),
NF (ΠS) consists of all multiples (6= 0) of ei for i = 1, . . . , n, and of ei−ej for
i, j = 1, . . . , n, i 6= j. We show that only these vectors (and their multiples)
can be elements of NF (ZS).
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Let H be the (n− 1)-dimensional subspace orthogonal to e1 − e2. Then
H contains e1 + e2 and ek for k = 3, . . . , n, and dissects S into two simplices
S1 and S2, i.e.,

S = S1 ∪ S2 and S1 ∩ S2 ⊂ H.

Since Z is a valuation, this implies

Z(S1) + Z(S2) = Z(S) + Z(S1 ∩ S2). (11)

Lemma 2 shows that

Z(S1 ∩ S2) = cΠ(S1 ∩ S2) = [−x, x] (12)

where the segment [−x, x] is orthogonal toH and therefore parallel to e1−e2.
Define φ, ψ ∈ GL(n) by φe2 = 1/2(e1 + e2) and φek = ek for k = 1, . . . , n,
k 6= 2, and ψe1 = 1/2(e1 + e2) and ψek = ek for k = 2, . . . , n. Then

φS1 = S and ψS2 = S. (13)

We set P = ZS and obtain from (13), (11), (3), and (12) that

1
2
φtP +

1
2
ψtP = P + [−x, x]. (14)

Let v ∈ NF (P ). Then φv ∈ NF (φtP ). By (14) and (8), this implies that
φv ∈ NF (P+[−x, x]). By (9) we obtain that if φv ∈ NF (P+[−x, x])\NF (P )
then

φv · x = v · φtx = 0.

So if φv ∈ NF (P + [−x, x]) and v · φtx 6= 0, then φv ∈ NF (P ). Using this
argument repeatedly, we obtain that if v ∈ NF (P ) and if v · (φt)kx 6= 0
for k = 1, . . . ,m, then φmv ∈ NF (P ). Since P is a polytope and has only
finitely many facets and since φm has the same eigenvectors as φ, this implies
the following. If v ∈ NF (P ) and v · (φt)kx 6= 0 for every positive integer k,
then v has to be an eigenvector of φ. The eigenvectors of φ are the vectors v
where the coordinate v2 vanishes and the multiples of e1− e2. The equation
v · (φt)kx = 0 can also be written in the following way. We represent the
map φt for the relevant first and second coordinates by the matrix

1
2

(
2 0
1 1

)
and use that (

2 0
1 1

)k (
1

−1

)
=

(
2k

2 (2k−1 − 1)

)
.
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This shows that v · (φt)kx = 0 is equivalent to 2k−1v1 + (2k−1 − 1)v2 = 0.
Thus for v ∈ NF (P ) we obtain that either

2k−1v1 + (2k−1 − 1)v2 = 0 (15)

for a positive integer k, or
v2 = 0 (16)

or
v = t(e1 − e2)

with t 6= 0. Similarly, we use ψ and obtain that if v ∈ NF (P ) then either
v · (ψt)mx = 0, i.e.,

(2m−1 − 1)v1 + 2m−1v2 = 0 (17)

for a positive integer m, or
v1 = 0 (18)

or
v = t(e1 − e2)

with t 6= 0. If (15) and (17) hold, then v1 = v2 = 0. If (15) and (18) hold,
then v1 = 0. Note that for k = 1 this is the only condition we get. If (16)
and (17) hold, then v2 = 0. Note that for m = 1 this is the only condition
we get. Therefore if v ∈ NF (P ), then

v1 = 0 or v2 = 0 or v = t(e1 − e2)

with t 6= 0.
For every pair of basis vectors ei, ej , i, j = 1, . . . , n, i 6= j, the (n − 1)-

dimensional subspace orthogonal to ei − ej dissects S into two simplices.
Using the same argument as for e1, e2, we obtain the following. If v ∈ NF (P ),
then

vi = 0 or vj = 0 or v = t(ei − ej)

with t 6= 0. Multiples of the vectors ei, i = 1, . . . , n, and of ei − ej ,
i, j = 1, . . . , n, i 6= j, are the only vectors for which these conditions hold
simultaneously. This completes the proof of the lemma for the simplex S.
Since every simplex is an affine image of S, (3) implies that the lemma holds
for every simplex.

In the next lemma, we use Minkowski’s uniqueness theorem that states
that a polytope is determined up to translation by its outer normal vectors
and the (n− 1)-dimensional volume of its facets (cf. [29], p. 397).
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Lemma 4. There is a constant c′ ≥ 0 such that ZT = c′ ΠT for every
n-dimensional simplex T .

Proof. Let S be a fixed regular simplex with centroid at the origin and
vertices x0, . . . , xn. By (10), NF (ΠS) consists of all multiples (6= 0) of
xi−xj for i 6= j, i, j = 1, . . . , n, and by Lemma 3, these vectors are the only
possible facet normals of ZS. Let v, v′ ∈ NF (ΠS) be such that v = xi − xj ,
i 6= j,1 ≤ i, j,≤ n, and v′ = xki

− xkj
, ki 6= kj , 1 ≤ ki, kj ≤ n. Since S is

a regular simplex, there is a φ ∈ O(n) such that φxi = xki
, φxj = xkj

, and
φS = S. Therefore φv = v′. By (3), this implies that ZS = φtZS and

vol(ZS, v) = vol(φtZS, v) = vol(ZS, φv) = vol(ZS, v′).

Thus all facets of ZS as well as of ΠS have the same (n − 1)-dimensional
volume. We apply Minkowski’s uniqueness theorem and obtain that there
is a constant c′ ≥ 0 and a vector x ∈ Rn such that

ZS = c′ΠS + x. (19)

For every φ ∈ O(n) with φS = S, this implies by (3) and (1) that

φ−tZS = c′φ−tΠS + x.

Thus x = φtx and x = o in (19). Combined with (3) this completes the
proof of the lemma.

Lemmas 1 and 2 show that

ZP = cΠP (20)

for every P ∈ Pn with dimP ≤ (n − 1). For an n-dimensional simplex T ,
Lemma 4 shows that ZT = c′ ΠT . We dissect T into two simplices T1, T2,
use that Z is a valuation, and obtain

ZT + Z(T1 ∩ T2) = ZT1 + ZT2.

Since dim(T1 ∩T2) = (n− 1) and since Π is a valuation, it follows from (20)
and Lemma 4 that

c′ ΠT + cΠ(T1 ∩ T2) = c′ ΠT1 + c′ ΠT2 = c′ΠT + c′ Π(T1 ∩ T2).

Thus c = c′.
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Now let P be an n-dimensional polytope. We have to show that

ZP = cΠP. (21)

Suppose we can dissect P into P1, P2 ∈ Pn for which (21) hold. Then using
that Z and Π are valuations, we obtain

ZP + Z(P1 ∩ P2) = ZP1 + ZP2 = cΠP1 + cΠP2 = cΠP + cΠ(P1 ∩ P2).

Since dim(P1 ∩ P2) = (n− 1), using (20) implies

ZP + cΠ(P1 ∩ P2) = cΠP + cΠ(P1 ∩ P2).

Thus (21) holds also for P . Since (21) holds for simplices, using this argu-
ment repeatedly completes the proof of the theorem.

2 Proof of Corollary 2

Since the operator Z is continuous and since

Z(φP ) = |detφ|φ−tZP

holds for every φ ∈ GL(n), we have

Z(ψP ) = ψ̂ZP (22)

for every singular linear transformations ψ, where ψ̂ is the matrix of the al-
gebraic complements of the entries of ψ. Let ψu be the matrix corresponding
to the orthogonal projection to u⊥. Then ψ̂u corresponds to the projection
to the line with direction u and the definition of the support function implies
that

h(ZK, u) = h(ψ̂uZK, u).

By (22) we have
Z(ψuK) = ψ̂uZK.

Therefore Z is already determined by its values for (n − 1)-dimensional
convex sets. Since these values are known by Lemma 2, this completes the
proof of the corollary.
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