Approximation of convex bodies and a momentum lemma for power diagrams

Károly Böröczky, Jr. and Monika Ludwig

The research was partially supported by Österreichisches Ost-West Programm. The first named author was also supported by OTKA.

Abstract

The volume of the symmetric difference of a smooth convex body in \mathbb{E}^3 and its bestapproximating polytope with n vertices is asymptotically a constant multiple of $\frac{1}{n}$. We determine this constant and the similarly defined constant for approximation with a given number of facets by solving two isoperimetric problems for planar tilings.

1991 AMS subject classification: 52C20, 52A27

Keywords: asymptotic approximation, power diagram, Laguerre tiling, momentum lemma

1 Introduction and statement of results

Let C be a convex body in Euclidean d-space \mathbb{E}^d , i.e., a compact convex set with non-empty interior, and denote by \mathcal{P}_n^i and $\mathcal{P}_{(n)}^c$ the set of polytopes with at most n vertices inscribed to C and the set of polytopes with at most n facets circumscribed to C, respectively. Denote by $\delta(.,.)$ the symmetric difference metric. Beginning with the work of L. Fejes Tóth [2], there are many investigations (cf. the survey [5]) on the asymptotic behavior as $n \to \infty$ of the distance of C to its best approximating polytopes with at most n vertices or facets, i.e., of

$$\delta(C,\mathcal{P}_n^i) = \inf\{\delta(C,P): P \in \mathcal{P}_n^i\}$$

and

$$\delta(C, \mathcal{P}_{(n)}^c) = \inf\{\delta(C, P) : P \in \mathcal{P}_{(n)}^c\}.$$

For $C \subset \mathbb{E}^3$ with boundary of differentiability class C^2 and positive Gaussian curvature κ_C , L. Fejes Tóth [2], p. 152, indicated that

$$\delta(C, \mathcal{P}_n^i) \sim \frac{1}{4\sqrt{3}} \left(\int_{\mathrm{bd}\,C} \kappa_C(x)^{\frac{1}{4}} d\sigma(x) \right)^2 \frac{1}{n} \tag{1}$$

and

$$\delta(C, \mathcal{P}_{(n)}^c) \sim \frac{5}{36\sqrt{3}} \left(\int_{\text{bd} C} \kappa_C(x)^{\frac{1}{4}} d\sigma(x) \right)^2 \frac{1}{n}$$
 (2)

as $n \to \infty$, where σ is the surface area measure in \mathbb{E}^d . These formulae were proved by P.M. Gruber in [3] and [4], for the planar case see [8] and for d > 3 [6].

We are interested in the analogues of (1) and (2) for the problem of approximation by general polytopes, i.e., polytopes that are not necessarily inscribed or circumscribed to C. Let \mathcal{P}_n and $\mathcal{P}_{(n)}$ denote the sets of polytopes with at most n vertices and n facets, respectively, and define $\delta(C, \mathcal{P}_n)$ and $\delta(C, \mathcal{P}_{(n)})$ as above. It is shown in [7] that there are positive constants Idel_{d-1} and Idiv_{d-1} (depending only on d) such that for a convex body $C \subset \mathbb{E}^d$ of class \mathcal{C}^2 and with positive Gaussian curvature,

$$\delta(C, \mathcal{P}_n) \sim \frac{1}{2} \mathrm{Idel}_{d-1} \left(\int_{\mathrm{bd}\,C} \kappa_C(x)^{\frac{1}{d+1}} d\sigma(x) \right)^{\frac{d+1}{d-1}} \frac{1}{n^{\frac{2}{d-1}}}$$
 (3)

and

$$\delta(C, \mathcal{P}_{(n)}) \sim \frac{1}{2} \operatorname{ldiv}_{d-1} \left(\int_{\operatorname{bd} C} \kappa_C(x)^{\frac{1}{d+1}} d\sigma(x) \right)^{\frac{d+1}{d-1}} \frac{1}{n^{\frac{2}{d-1}}}$$
 (4)

as $n \to \infty$. These constants are defined by means of *Laguerre* tilings, which are also known as *power diagrams* (cf. [1]). The values of these constants are known only for d = 2 ($|del_1| = |div_1| = 1/16$, cf. [7]), for d > 3 it seems to be difficult to determine the exact value of these constants, cf. [6].

We will determine the values of Idel_2 and Idiv_2 . These constants are defined in [7] in the following way. Let $L = \{(a_1, r_1), \ldots, (a_m, r_m)\}$ with $a_1, \ldots, a_m \in \mathbb{E}^2$ and $r_1, \ldots, r_m \geq 0$, and define the sets V_1, \ldots, V_m by

$$V_i = \{x \in [0,1]^2 : (x - a_i)^2 - r_i^2 \le (x - a_j)^2 - r_j^2, j = 1, \dots, m\}.$$

Then L is called a Laguerre tiling of $[0,1]^2$ with the tiles V_1,\ldots,V_m . Set

$$v(L) = \sum_{i=1}^{m} \int_{V_i} |(x - a_i)^2 - r_i^2| dx$$

and define

$$ldiv_2 = \lim_{n \to \infty} n \inf\{v(L) : L \text{ has at most } n \text{ tiles}\},$$

cf. [7].

Denote by P_k the regular k-gon centered at the origin o and of area $|P_k| = 1$. For a convex domain C, set

$$I(C,r) = \int_C |x^2 - r^2| dx$$

and choose ρ_k such that $I(P_k, \rho_k) \leq I(P, r)$ for all $r \geq 0$.

THEOREM 1 Let $\{Q_1, \ldots, Q_n\}$ be a tiling of $[0, 1]^2$ with convex tiles, $a_i \in \mathbb{E}^2$ and $r_i \geq 0$, $i = 1, \ldots, n$. Then

$$\sum_{i=1}^{n} \int_{Q_i} |(x - a_i)^2 - r_i^2| \, dx \ge \frac{I(P_6, \rho_6)}{n}.$$

This theorem provides a lower bound for ldiv_2 and taking tilings with regular hexagons then shows that this bound is asymptotically optimal. Thus, calculating $I(P_6, \rho_6)$ gives

Corollary 1

$$1 \text{div}_2 = \frac{5}{18\sqrt{3}} - \frac{1}{4\pi}.$$

In the definition of del_2 , we have to count the number of vertices in the tiling of $[0,1]^2$ and set

$$del_2 = \lim_{n \to \infty} n \inf\{v(L) : L \text{ has at most } n \text{ vertices}\},\$$

cf. [7].

THEOREM 2 Let $\{Q_1, \ldots, Q_m\}$ be a tiling of $[0, 1]^2$ with convex tiles, $a_i \in \mathbb{E}^2$ and $r_i > 0$, $i = 1, \ldots, m$, with no more than n vertices. Then

$$\sum_{i=1}^{m} \int_{Q_i} |(x - a_i)^2 - r_i^2| \, dx \ge \frac{I(P_3, \rho_3)}{2(n-2)}.$$

This provides a lower bound for $ldel_2$ and considering tilings with regular triangles then gives

Corollary 2

$$del_2 = \frac{1}{6\sqrt{3}} - \frac{1}{8\pi}.$$

That this is the correct value, was conjectured in [3].

The classical momentum lemma of L. Fejes Tóth (cf. [2], p. 198) states that for a non-negative monotonous function g, the extremum of the integral

$$\int_{P} g(|x|) \, dx$$

over k-gons P with given area is attained for the regular k-gon. A simple consequence is that $I(P,0) \ge I(P_k,0)|P|^2$, which can be used to prove (2), cf. [4]. In the proof of Theorems 1 and 2, we need the following analogue of the momentum lemma:

THEOREM 3 If P is a convex k-gon, $k \geq 3$, then $I(P,r) \geq I(P_k, \rho_k)|P|^2$.

Note that similar arguments with simpler calculations than for general approximation would yield (1).

2 Some general observations

Let $B(\rho)$ be the circle centered at the origin and with radius ρ . Letting r vary and calculating the critical point of I(C, r) shows

LEMMA 1 Let C be a convex domain and let ρ be chosen such that $I(C, \rho) \leq I(C, r)$ for all $r \geq 0$. Then $|C \cap B(\rho)| = |C \setminus B(\rho)|$.

Using this, we see that $B(\rho_k) \subset P_k$ for $k = 3, \ldots$ Thus, elementary calculations give

$$I(P_k, \rho_k) = \frac{1}{2k \tan \frac{\pi}{k}} + \frac{\tan \frac{\pi}{k}}{6k} - \frac{1}{4\pi}.$$
 (5)

LEMMA 2 Let C be a convex domain and $r \geq 0$. If $o \notin \text{int } C$, then $I(C,r) \geq 1.1 \cdot I(P_3,\rho_3) \cdot |C|^2$.

Proof: Since C is convex and $o \notin \text{int } C$, we can choose a (closed) half-plane H containing o on its boundary such that $C \subseteq H$. Choose r_0 and r_1 satisfying

$$|B(r_1)\backslash B(r)| = |B(r)\backslash B(r_0)| = |C|$$

and define $G(r, |C|) = (B(r_1) \setminus \text{int } B(r_0)) \cap H$. If $x \in C \setminus B(r)$ is not in $B(r_1) \setminus B(r)$, then

$$x^{2} - r^{2} \ge \max\{u^{2} - r^{2} : u \in B(r_{1}) \setminus B(r)\}$$

and if $x \in C \cap B(r)$ is not in $B(r) \setminus B(r_0)$, then

$$r^2 - x^2 \ge \max\{r^2 - u^2 : u \in B(r) \setminus B(r_0)\}.$$

Thus

$$\int_{C\setminus B(r)} (x^2 - r^2) dx \ge \int_{G(r,|C|)\setminus B(r)} (x^2 - r^2) dx$$

and

$$\int_{C \cap B(r)} (r^2 - x^2) \, dx \ge \int_{G(r, |C|) \cap B(r)} (r^2 - x^2) \, dx.$$

Therefore

$$I(C,r) \ge I(G(r,|C|)).$$

Combining this with

$$I(G(r,|C|)) = \frac{|C|^2}{2\pi} \ge 1.1 \cdot \left(\frac{1}{3\sqrt{3}} - \frac{1}{4\pi}\right) |C|^2 = 1.1 \cdot I(P_3, \rho_3) |C|^2$$

where (5) was used, proves the lemma.

3 An auxiliary function

Let T = T(t) be a triangle with a right angle, |T| = 1 and an angle t at o. There always exists an optimal $\rho = \rho(t)$, such that

$$I(T(t), \rho(t)) \le I(T(t), r)$$

for all $r \geq 0$. Define

$$c(t) = I(T(t), \rho(t))$$

for $0 < t < \pi/2$.

With the help of c(t) we can give a sharp lower bound for I(T,r) for general triangles T.

LEMMA 3 Let T be a triangle with an angle 2t at o. Then

$$I(T,r) \ge \frac{1}{2}c(t)|T|^2.$$

Proof: First, we show that among all such triangles T and $r \ge 0$, there is a triangle S and a $\rho \ge 0$ such that

$$\frac{I(T,r)}{|T|^2} \ge \frac{I(S,\rho)}{|S|^2},\tag{6}$$

i.e., that the infimum of $I(T,r)/|T|^2$ is attained for S and ρ . By Lemma 1, we may always assume that

$$|T \cap B(r)| = |T \setminus B(r)|. \tag{7}$$

Consider a sequence $\{T_i, r_i\}$ such that $|T_i|$ is a given value and $I(T_i, r_i)$ approaches the infimum. If $\{T_i\}$ is unbounded then $\{r_i\}$ approaches infinity by (7). For large r_i , (7) yields that the area of the part of T_i outside of $B(r_i+1)$ is at least $\frac{1}{4}|T|$. If x is chosen from that part, then $x^2 - r_i^2 > 2r_i + 1$, and hence $I(T_i, r_i)$ tends to infinity. We conclude that $\{T_i\}$ and $\{r_i\}$ are bounded, and hence the infimum of $I(T, r)/|T|^2$ is attained.

Second, let S and ρ be chosen such that (6) holds. Denote by H the side of S not containing o and let m be the midpoint of H. Then

$$S$$
 is symmetric (8)

with respect to the line connecting o and m. To show this, keep ρ fixed and rotate the side H around m by an angle φ . Let S_{φ} be the triangle obtained in this way. Then

$$|S_{\omega}| = |S| + O(\varphi^2)$$

and

$$I(S_{\varphi}, \rho) = I(S, \rho) + \left. \frac{\partial I(S_{\varphi}, \rho)}{\partial \varphi} \right|_{\varphi=0} \cdot \varphi + O(\varphi^2).$$

Consequently, the minimality property of S yields

$$\left. \frac{\partial I(S_{\varphi}, \rho)}{\partial \varphi} \right|_{\varphi=0} = 0. \tag{9}$$

This can be written as

$$\int_0^l |(\tau + a)^2 - s^2|\tau \, d\tau - \int_0^l |(\tau - a)^2 - s^2|\tau \, d\tau = 0$$
 (10)

where 2l the length of H, a is the distance of m and the orthogonal projection of o to the affine hull aff H, and 2s is the length of aff $H \cap B(\rho)$. It follows from Lemma 1 that

$$|\operatorname{aff} H \cap B(\rho)| < l. \tag{11}$$

We have to distinguish three cases.

- (i) H does not intersect $B(\rho)$. Then, evaluating (10) gives $4al^3/3 = 0$ and a = 0.
- (ii) H intersects $B(\rho)$ exactly once. If $a \geq s$, then

$$(\tau + a)^2 - s^2 > |(\tau - a)^2 - s^2|$$

holds for $\tau > 0$. Thus (10) does not hold in this case. Therefore a < s or equivalently $m \in \operatorname{int} B(\rho)$. But this implies $|H \cap B(\rho)| > l$ which contradicts (11). So this case cannot occur.

(iii) H intersects $B(\rho)$ twice, and hence $|H \cap B(\rho)| = 2s$. Then evaluating (10) gives $a(l^3 - 2s^3) = 0$. By (11), we know that $l^3 - 2s^3 \neq 0$. Therefore a = 0.

Thus in each case, a = 0 holds, which is in turn equivalent to (8). Finally, it follows from (8) that

$$I(S, \rho) = \frac{1}{2}c(t)|S|^2.$$

Combined with (6) this proves the lemma.

Let t_1 be the unique t, $0 < t < \pi/2$, satisfying $\tan t = 2t$. Then for $t < t_1$ the third side of T does not intersect $B(\rho)$ and

$$c(t) = \frac{1}{\tan t} + \frac{\tan t}{3} - \frac{1}{2t}.$$

c(t) attains a unique minimum at t_0 , $\pi/4 < t_0 < \pi/3$. We use the following properties of 1/c(t).

LEMMA 4 1/c(t) is concave for $t \le t_1$, increasing for $0 < t \le t_0$ and decreasing for $t_0 \le t \le t_1$.

Proof: Derivating c(t) yields

$$c'(t) = -\frac{1}{\tan^2 t} + \frac{\tan^2 t}{3} + \frac{1}{2t^2} - \frac{2}{3}$$

$$c''(t) = \frac{2}{\tan^3 t} + \frac{2}{\tan t} + \frac{2}{3} \tan t + \frac{2}{3} \tan^3 t - \frac{1}{t^3}.$$

To show that 1/c(t) is concave, is equivalent to prove that c(t) $c''(t) - 2c'(t)^2 > 0$. We have

$$c(t) c''(t) - 2c'(t)^{2} = \frac{(\tan t - t)(3t - 3\tan t + 3t\tan^{2} t - \tan^{3} t)}{3t^{3}\tan^{3} t} + \frac{16}{9}(1 + \tan^{2} t) - \frac{\tan t}{3t^{2}}(t + 2\tan t + t\tan^{2} t)$$

It is not difficult to see that

$$3t - 3\tan t + 3t\tan^2 t - \tan^3 t \ge 0$$

for $0 \le t \le t_1$. Thus, using $\tan t \le 2t$, gives

$$c(t) c''(t) - 2c'(t)^{2} \ge \frac{16}{9} (1 + \tan^{2} t) - \frac{\tan t}{3t} (5 + \tan^{2} t)$$

$$= \frac{1}{9t} (16t + 16t \tan^{2} t - 15 \tan t - 3t \tan^{2} t) > 0.$$

LEMMA 5 Let $f(t; \pi/k)$ be the linear function representing the tangent to 1/c(t) at π/k . Then

$$\frac{1}{c(t)} \le f\left(t; \frac{\pi}{k}\right)$$

for $0 < t < \pi/2$ and k = 3, 4, ...

Proof: By Lemma 4, this holds for $t \leq t_1$ and it remains to be shown that

$$c(t) \ge \frac{1}{f(t; \frac{\pi}{3})} \tag{12}$$

for $t_1 \leq t < \pi/2$. Let o, (h,0) = (h(t),0), and (h,l) = (h(t),l(t)) be the vertices of T = T(t) and denote by s the length of the intersection of $B(\rho)$ and the side of T not containing o. Then Lemma 1 yields that

$$\frac{s}{l} \le 1 - \frac{1}{\sqrt{2}}.\tag{13}$$

For small $\varepsilon > 0$, we have

$$I(T,\rho) - I(T(t-\varepsilon), \rho(t-\varepsilon)) \ge I(T,\rho) - I(T(t-\varepsilon), \rho).$$
 (14)

Note that as $\varepsilon \to 0$,

$$\int_{T \setminus T(t-\varepsilon)} |x^2 - \rho^2| \, dx = \int_0^{\sqrt{h^2 + l^2}} |\tau^2 - \rho^2| \tau \, d\tau \cdot \varepsilon + o(\varepsilon)$$

and

$$\int_{T(t-\varepsilon)\backslash T} |x^2 - \rho^2| \, dx = \int_0^l |h^2 + u^2 - \rho^2| \, du \cdot (h(t-\varepsilon) - h) + o(\varepsilon)$$
$$= \int_0^l |h^2 + u^2 - \rho^2| \, du \left(\frac{h^2 + l^2}{2l}\right) \cdot \varepsilon + o(\varepsilon).$$

Thus the coefficient of ε in the left hand side of (14) is

$$\int_{0}^{\sqrt{h^{2}+l^{2}}} |\tau^{2} - \rho^{2}| \tau \, d\tau - \int_{0}^{l} |h^{2} + u^{2} - \rho^{2}| \, du \left(\frac{h^{2} + l^{2}}{2l}\right) =$$

$$= -\frac{2}{3} + \frac{4}{l^{4}} + \underbrace{\left(\frac{4s^{2}}{l^{2}} - \frac{8s^{3}}{3l^{3}}\right)}_{\geq 0} + l^{4} \underbrace{\left(\frac{1}{12} - \frac{2}{3}\left(\frac{s}{l}\right)^{3} + \frac{1}{2}\left(\frac{s}{l}\right)^{4}\right)}_{\geq 13/24 - \sqrt{2}/3}$$

$$\geq -\frac{2}{3} + \frac{4}{l^{4}} + \left(\frac{13}{24} - \frac{\sqrt{2}}{3}\right)l^{4} \geq 1$$

where we used (13) and $l^2(t) = 2 \tan t \ge 2 \tan t_1 = 4t_1$. We deduce by (14) that

$$I(T, \rho) - I(T(t - \varepsilon), \rho(t - \varepsilon)) \ge \varepsilon + o(\varepsilon),$$

and hence

$$c(t) \ge c(t_1) + (t - t_1).$$

Finally, some simple calculations yield (12).

LEMMA 6 t c(t) is monotonously increasing for $t \le \pi/3$.

Proof: We have

$$(tc(t))' = \frac{3\tan t + \tan^3 t - 2t\tan^2 t + t\tan^4 t - 3t}{3\tan^2 t}.$$

Since $\tan t \ge t$ and the enumerator E(t) satisfies E(0) = 0 and

$$E'(t) = 4\tan^2 t - 4t\tan t + 4\tan^4 t + 4t\tan^5 t,$$

we deduce that E(t) > 0 for $0 < t < \pi/3$.

4 Proof of Theorem 3

Since, by the definition of c(t) and (5), $I(P_k, \rho_k) = c(\pi/k)/(2k)$, it follows from Lemma 6 that

$$I(P_3, \rho_3) > I(P_4, \rho_4) > I(P_5, \rho_5) > \dots$$
 (15)

Therefore, if $o \notin \text{int } P$, we have by Lemma 2

$$I(P,r) > 1.1 \cdot I(P_3, \rho_3) |P|^2 > I(P_k, \rho_k) |P|^2$$

i.e., the theorem holds in this case. So, let $o \in \text{int } P$ and dissect P into triangles T_1, \ldots, T_k with a common vertex o, and let $2t_j$ be the angle of T_j at o. By Lemma 3, we have

$$I(P,r) = \sum_{i=1}^{k} I(T_i,r) \ge \frac{1}{2} \sum_{i=1}^{k} c(t_i) |T_i|^2.$$

The Cauchy-Schwarz inequality yields

$$\sum_{i=1}^{k} c(t_i) |T_i|^2 \ge \left(\sum_{i=1}^{k} \frac{1}{c(t_i)}\right)^{-1} \left(\sum_{i=1}^{k} |T_i|\right)^2.$$
 (16)

By Lemma 5,

$$\sum_{k=1}^{k} \frac{1}{c(t_i)} \le \sum_{k=1}^{k} f\left(t_i; \frac{\pi}{k}\right) = \frac{k}{c(\frac{\pi}{k})}.$$

Therefore,

$$I(P,r) \ge \frac{1}{2} \left(\sum_{i=1}^{k} \frac{1}{c(t_i)} \right)^{-1} |P|^2 \ge \frac{1}{2k} c\left(\frac{\pi}{k}\right) |P|^2 = I(P_k, \rho_k) |P|^2,$$

which proves the theorem.

5 Proof of Theorem 2

We can dissect every tile Q_i into triangles such that we obtain a simplicial tiling with tiles T_1, \ldots, T_k and at most n vertices. If we double each tile, we

may think of this as a polytope with $f_2 = 2k$ facets, f_1 edges and $f_0 < 2n$ vertices. By Euler's formula $f_2 - f_1 + f_0 = 2$ and $f_2 \le 2f_0 - 4$ which implies

$$k \le 2(n-2). \tag{17}$$

Therefore, by Theorem 3, the inequality of quadratic and arithmetic means, and (17) we obtain

$$\sum_{i=1}^{m} \int_{Q_i} |(x - a_i)^2 - r_i^2| \, dx \ge I(P_3, \rho_3) \sum_{i=1}^{k} |T_i|^2$$

$$\ge I(P_3, \rho_3) \left(\sum_{i=1}^{k} |T_i|\right)^2 \frac{1}{k} \ge \frac{I(P_3, \rho_3)}{2(n-2)},$$

which proves the theorem.

To obtain the corollary, cover $[0,1]^2$ with k non-overlapping regular triangles of equal area |T|. Then, we obtain a Laguerre-tiling L with, say, n vertices by setting $r^2 = |T|/(2\pi)$ for each tile. We have

$$v(L) \le k I(P_3, \rho_3) |T|^2.$$

Since we may choose the triangles such that $k|T| \to 1$ and $k/n \to 2$ as $k \to \infty$,

$$\limsup_{n \to \infty} n \, v(L_k) \le \frac{I(P_3, \rho_3)}{2},$$

and by Theorem 2, we have $Idel_2 = I(P_3, \rho_3)/2$.

6 Proof of Theorem 1

To every tile Q_i with l_i sides we assign $2l_i$ rectangular triangles of area $|Q_i|/(2l_i)$ and with angle π/l_i at the vertex o. Let $k=2\sum_{i=1}^n l_i$, let T_1,\ldots,T_k be these triangles, and let t_j denote the angle of T_j at o. Then $\sum_{j=1}^k t_j = 2\pi n$. By Theorem 3,

$$\int_{Q_i} |(x - a_i)^2 - r_i^2| \, dx \ge I(P_{l_i}, \rho_{l_i}) |Q_i|^2$$

and

$$\sum_{i=1}^{n} \int_{Q_i} |(x - a_i)^2 - r_i^2| \, dx \ge \sum_{j=1}^{k} c(t_j) |T_j|^2.$$

By (16), we obtain from this

$$\sum_{i=1}^{n} \int_{Q_i} |(x-a_i)^2 - r_i^2| \, dx \ge \sum_{j=1}^{k} c(t_j) |T_j|^2 \ge \left(\sum_{j=1}^{k} \frac{1}{c(t_j)}\right)^{-1} \left(\sum_{j=1}^{k} |T_j|\right)^2.$$

We have

$$k \le 12(n-1). \tag{18}$$

This can be seen in the following way. If we double each tile Q_i , we may think of this as a polytope with f_0 vertices, $f_1 = 1/2 k$ edges and $f_2 = 2n$ facets. By Euler's formula $f_2 - f_1 + f_0 = 2$ and $f_1 \leq 3f_2 - 6$, which implies (18).

So, we obtain by Lemma 4, Jensen's inequality, Lemma 6 and (18)

$$\sum_{j=1}^{k} \frac{1}{c(t_j)} \le \frac{k}{c(\frac{1}{k} \sum_{j=1}^{k} t_j)} = \frac{2\pi n}{\frac{2\pi n}{k} c(\frac{2\pi n}{k})} \le \frac{12 n}{c(\frac{\pi}{6})}.$$

Thus

$$\sum_{i=1}^{n} \int_{Q_i} |(x - a_i)^2 - r_i^2| \, dx \ge \frac{c(\frac{\pi}{6})}{12 \, n} = \frac{I(P_6, \rho_6)}{n},$$

which proves the theorem.

Corollary 1 follows as Corollary 2, except that the triangular tiling is replaced by the hexagonal tiling.

References

- [1] Aurenhammer,F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput. **16** (1987), 78 96
- [2] Fejes Tóth,L.: Lagerungen in der Ebene, auf der Kugel und im Raum. 2nd ed. Springer-Verlag, Berlin 1972
- [3] Gruber, P.M.: Volume approximation of convex bodies by inscribed polytopes. Math. Ann. **281** (1988), 229 245
- [4] Gruber, P.M.: Volume approximation of convex bodies by circumscribed polytopes. The "Victor Klee Festschrift", 309 317. DIMACS Ser. 4, Amer. Math. Soc. 1991

- [5] Gruber, P.M.: Aspects of approximation of convex bodies. In: Handbook of convex geometry **A**, 319 345, North-Holland, Amsterdam 1993
- [6] Gruber, P.M.: Asymptotic estimates for best and stepwise approximation of convex bodies II. Forum Math. 5 (1993), 521 538
- [7] Ludwig,M.: Asymptotic approximation of smooth convex bodies by general polytopes. Manuscript
- [8] McClure, D.E., Vitale, R.A.: Polygonal approximation of plane convex bodies. J. Math. Anal. Appl. **51** (1975), 326 358

Károly Böröczky, Jr. Mathematical Institute of the Hungarian Academy of Sciences P.O. Box 127 H-1364 Budapest Monika Ludwig Technische Universität Wien Abteilung für Analysis Wiedner Hauptstr. 8-10/1142 A-1040 Wien