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Abstract

A complete classification of SL(n) covariant matrix-valued valua-
tions on functions with finite second moments is obtained. It is shown
that there is a unique homogeneous such valuation. This valuation
turns out to be the moment matrix.
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A function Z defined on a lattice (L,∨,∧) and taking values in an abelian
semigroup is called a valuation if

Z(f ∨ g) + Z(f ∧ g) = Z(f) + Z(g) (1)

for all f, g ∈ L (see, for example, [5]). A function Z defined on some subset
S of L is called a valuation on S if (1) holds whenever f, g, f ∨ g, f ∧ g ∈ S.

Results on valuations on compact convex sets in Rn are classical and
start with Dehn’s solution of Hilbert’s Third Problem in 1901. Here the
operations ∨ and ∧ are union and intersection, respectively. In the 1950s,
a systematic study of valuations was initiated by Hadwiger, who was in
particular interested in classifying valuations on the set of compact convex
sets in Rn. Probably the most celebrated result is Hadwiger’s classification
of continuous and rigid motion invariant valuations on compact convex sets,
which establishes a characterization of the intrinsic volumes (see [14, 17];
see [1–4, 9, 10, 12, 19–22, 33, 36, 37, 41] for some of the more recent results).
The systematic study of valuations in a more general setting is of more recent
vintage. Here valuations were investigated on star shaped sets [15, 16], on
Lebesgue spaces [38, 39], on Orlicz spaces [18], on spaces of functions of
bounded variation [40] and on Sobolev spaces [23,25] (see also [24]).

In numerous applications in statistics and information theory, two ma-
trices associated to functions (in particular, probability densities) play a
critical role: the covariance or moment matrix and the Fisher information
matrix. The Fisher information matrix, J(f), of a weakly differentiable
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function f : Rn → [0,∞) is the n × n-matrix with (not necessarily finite)
entries

Jij(f) =

∫
Rn

∂ log f(x)

∂xi

∂ log f(x)

∂xj
f(x) dx. (2)

In [23], the Fisher information matrix was characterized as the unique (up to
multiplication with a constant) continuous and homogeneous matrix-valued
valuation Z on the Sobolev space W 1,2(Rn) such that

Z(f ◦ φ−1) = φ−t Z(f)φ−1

for all φ ∈ SL(n), where φ−t denotes the inverse of the transpose of φ and Z
is called homogeneous if, for some q ∈ R, we have Z(sf) = |s|q Z(f) for all
s ∈ R. The natural lattice structure on W 1,2(Rn) (as well as other function
spaces) is given by letting f ∨ g denote the pointwise maximum and f ∧ g
the pointwise minimum of f and g. The proof of the characterization [23]
makes essential use of a characterization [20] of the so-called LYZ ellipsoid
introduced by Lutwak, Yang and Zhang [27, 28], which corresponds to a
SL(n) covariant valuation on compact convex sets. Such SL(n) covariant
functions have found important applications and are attracting increased
interest (see, e.g., [8–10,12,13,19–21,26,29–32]).

In this paper, we obtain a characterization of the moment matrix. For
a measurable function f : Rn → R, the moment matrix, K(f), is the n× n-
matrix with (not necessarily finite) entries,

Kij(f) =

∫
Rn

f(x)xi xj dx.

If f is a probability density with mean zero, then K(f) is the covariance
matrix of f . Let L2(Rn) be the space of measurable functions with finite
second moments, that is, the space of measurable functions f : Rn → R
such that

∫
Rn |f(x)| |x|2 dx <∞, where |x| is the Euclidean norm of x ∈ Rn.

Let Mn denote the space of real symmetric n × n-matrices. A function
Z : L2(Rn)→Mn is called SL(n) covariant if

Z(f ◦ φ−1) = φZ(f)φt

for all f ∈ L2(Rn) and φ ∈ SL(n). We obtain the following classification of
matrix-valued valuations. Let n > 2.

Theorem. A function Z : L2(Rn) → 〈Mn,+〉 is a continuous and SL(n)
covariant valuation if and only if there exists a continuous ζ : R → R with
the property that |ζ(t)| ≤ c |t| for all t ∈ R for some c ∈ R, such that

Z(f) = K(ζ ◦ f)

for every f ∈ L2(Rn).
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If in addition homogeneity is assumed, the following characterization of
the moment matrix is obtained.

Corollary. A function Z : L2(Rn) → 〈Mn,+〉 is a continuous, homo-
geneous and SL(n) covariant valuation if and only if there is a constant
c ∈ R such that

Z(f) = cK(f)

for every f ∈ L2(Rn).

The corollary is dual to the classification of matrix-valued valuations on
Sobolev spaces [23]. In the theorem, we do not assume that Z is homo-
geneous. The proof makes use of ideas from a recent classification of convex
body valued valuations by Haberl [11], where no homogeneity was assumed.
We note that it is not known whether the homogeneity assumption can also
be omitted in the characterization of the Fisher information matrix [23].

1 Valuations on convex polytopes

We work in Euclidean n-space, Rn, and write x = (x1, . . . , xn) for x ∈ Rn.
The vectors of the standard basis of Rn are denoted by e1, . . . , en. Let Pn
denote the space of compact convex polytopes in Rn equipped with the usual
topology coming from the Hausdorff metric. For more information on convex
sets, we refer to the books by Gardner [6], Gruber [7] and Schneider [34].

For P ∈ Pn, the moment matrix, MP , of P is the n × n-matrix with
entries

Mij P =

∫
P
xi xj dx.

A function Y : Pn →Mn is called SL(n) covariant, if

Y(φP ) = φ Y(P )φt

for all P ∈ Pn and φ ∈ SL(n). Note that M is SL(n) covariant.
Let I = (s, t) with 0 < s ≤ t be an interval and TI the convex hull

of s e1, . . . , s en and t e1, . . . , t en, that is, TI is the difference of two scaled
standard simplices. Let T n be the set of all images of such TI under the
GL(n) equipped with the Hausdorff metric. A function Y : T n → M is
called simple if Z vanishes on lower dimensional sets. Let n > 2.

Lemma 1. A function Y : T n → 〈Mn,+〉 is a continuous, simple and SL(n)
covariant valuation if and only if there is a constant c ∈ R such that

Y T = cMT

for every T ∈ T n.

3



Proof. For a permutation π on {1, . . . , n}, let φπ be the associated per-
mutation matrix. Hence φπ is orthogonal and φπφ

t
π = id, where id is the

n×n-identity matrix. Set I = (s, t) with 0 < s ≤ t and let TI be the convex
hull of s e1, . . . , s en and t e1, . . . , t en. Note that

φπTI = TI (3)

for every TI and every permutation π. Since Y and M are both SL(n)
covariant, it suffices to prove that there is a constant c ∈ R such that

Y TI = cMTI

for every TI .
Let π be an even permutation. Then φπ has determinant 1 and since Y

is SL(n) covariant, it follows from (3) that

Y TI = φπ Y TI φ
t
π. (4)

For given I and x > 0, set zij(x) = (Y T n√xI)ij . Since Y TI is a symmetric
matrix, it follows from (3) and (4) that for i = 1, . . . , n,

zii(x) = zπi,πi(x) =: z(x) (5)

and for i, j = 1, . . . , n with i 6= j,

zij(x) = zπi,πj(x) =: w(x) (6)

for x > 0. Set J = n
√
xI.

For 0 < λ < 1, let Hλ be the hyperplane through the origin with normal
vector (1−λ) e1−λ e2. The hyperplane Hλ dissects the set TJ into two sets
TJ ∩H+

λ , TJ ∩H
−
λ ∈ T

n, where H+
λ , H

−
λ are the closed halfspaces bounded

by Hλ. Since Y is a simple valuation, we have

Y TJ = Y(TJ ∩H+
λ ) + Y(TJ ∩H−λ ). (7)

Let φλ ∈ GL(n) map e1 to λe1 + (1− λ)e2 and ei to ei for i = 2, . . . , n. Let
ψλ ∈ GL(n) map e2 to λe1 + (1− λ)e2 and ei to ei for i = 1, 3, . . . , n. Note
that detφλ = λ and detψλ = 1− λ. Then

TJ ∩H+
λ = φλTJ =

1
n
√
λ
φλT n√

λJ

and

TI ∩H−λ = ψλTJ =
1

n
√

1− λ
φλT n√1−λJ ,

where 1/ n
√
λφλ, 1/

n
√

1− λφλ ∈ SL(n). Since Y is SL(n) covariant, (7) im-
plies that

Y TJ = λ−
2
nφλ Y T n√

λJφ
t
λ + (1− λ)−

2
nψλ Y T n√1−λJψ

t
λ. (8)
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Looking at the coefficient (Y TJ)nn, we obtain

z(x) = λ−
2
n z(λx) + (1− λ)−

2
n z((1− λ)x).

Setting f(x) = x−2/nz(x), we get f(x) = f(λx)+f((1−λ)x). Using the fact
that every continuous solution of the Cauchy functional equation, f(x+y) =
f(x) + f(y), is linear, we conclude that

z(x) = a x
n+2
n

with a suitable constant a ∈ R. Looking at the coefficient (Y TJ)11, we
obtain from (8) that

z(x) = λ−
2
nλ2z(λx) + (1− λ)−

2
n
(
(1 + λ2)z((1− λ)x) + 2λw((1− λ)x)

)
.

Hence
w(x) =

a

2
x

n+2
n .

Since M is also a continuous, simple and SL(n) covariant valuations, we
conclude that there is a function c(s, t) defined for 0 ≤ s ≤ t such that

Y T(s,t) = c(s, t) MT(s,t)

and
c(r s, r t) = rn+2c(s, t)

for r > 0. Since Y is a simple valuation, we have for 1 < r < s

Y T (1, r) + Y T (r, s) = Y T (1, s).

Hence, setting g(r) = Y T (1, r), we have

g(r) + rn+2g(
s

r
) = g(s)

or equivalently,
g(rx) = g(r) + rn+2g(x).

Using that

g(r) + rn+2g(x) = g(rx) = g(xr) = g(x) + xn+2g(r),

we obtain that there is a constant b such that

g(x) = b(1− xn+2).

We conclude that there is a constant c such that

Y T(s,t) = c MT(s,t).

This completes the proof of the lemma.
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2 Background material on functions with finite
second moments

Set ‖f‖ =
∫
Rn |f(x)| |x|2 dx. We say that fk → f as k → ∞ in L2(Rn), if

‖fk−f‖ → 0 as k →∞. Note that it follows immediately from the definition
that (L2(Rn),∨,∧) is a lattice. Let 1C be the indicator function of C ⊂ Rn,
that is, 1C(x) = 1 for x ∈ C and 1C(x) = 0 for x 6∈ C.

In the following lemma, we prove some well known properties of the
function f 7→ K(f). Let A(R) be the set of continuous α : R→ R such that
there is a ∈ R with |α(t)| ≤ a |t| for all t ∈ R.

Lemma 2. The function Z : L2(Rn)→ 〈Mn,+〉, defined by Z(f) = K(α◦f)
with α ∈ A(R), is a continuous and SL(n) covariant valuation. The function
Z : L2(Rn)→ 〈Mn,+〉, defined by Z(f) = cK(f) with c ∈ R, is a continuous,
homogeneous and SL(n) covariant valuation.

Proof. Let α(t) ≤ a |t| for t ∈ R. Since∣∣∣ ∫
Rn

xi xj |α(f(x))| dx
∣∣∣ ≤ a ∫

Rn

|f(x)| |x|2 dx,

we have Kij(α ◦ f) < ∞ for f ∈ L2(Rn). It follows immediately from the
definition that f 7→ K(α◦f) is a valuation on L2(Rn). Suppose that fk → f
in L2(Rn). Then

|Kij(α ◦ fk)−Kij(α ◦ f)| ≤ a
∫
Rn

|fk(x)− f(x)| |x|2 dx.

Thus the function f 7→ K(α ◦ f) is continuous on L2(Rn).
Let s ∈ R and φ ∈ SL(n). Since

K(f) =

∫
Rn

xxt |f(x)| dx,

we have
K(s f) = |s|K(f) and K(f ◦ φ−1) = φK(f)φt.

Consequently, the function f 7→ K(α◦f) is SL(n) covariant and the function
f 7→ cK(f) is SL(n) covariant and homogeneous.

The following lemma, which follows immediately from the definitions, de-
scribes an important connection between functions on L2(Rn) and on T .

Lemma 3. For T ∈ T n and α ∈ R, we have K(α1T ) = αMT .
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3 Proof of the Theorem

In Lemma 2, it was shown that for α ∈ A(R), the function f 7→ K(α ◦ f) is
a continuous and SL(n) covariant valuation on L2(Rn). Suppose that Z is a
continuous and SL(n) covariant valuation. The following lemmas establish
that there is function ζ ∈ A(R) such that Z(f) = K(ζ ◦f) for all f ∈ L2(Rn).

Lemma 4. If Z : L2(Rn) → 〈Mn,+〉 is a continuous and SL(n) covariant
valuation, then there is a continuous function ζ : R→ R such that

Z(α1T ) = ζ(α) K(1T )

for every T ∈ T n.

Proof. For α ∈ R, define the function Yα : T n → 〈Mn,+〉 by setting

Yα T = Z(α1T ).

Since Z is a valuation on L2(Rn), it follows for S, T, S ∩ T, S ∪ T ∈ T n that

Yα S + Yα T = Z(α1S) + Z(α1T )

= Z(α(1S ∨1T )) + Z(α(1S ∧1T ))

= Yα(S ∪ T ) + Yα(S ∩ T ).

Thus Yα : T n → 〈Mn,+〉 is a valuation. Since for φ ∈ SL(n)

Yα(φT ) = Z(α1φT ) = Z(α1T ◦φ−1) = φZ(α1T )φt = φYα T φ
t,

the function Yα is SL(n) covariant. Thus we obtain from Lemma 1 that for
n > 2 there exists a continuous function ζ : R→ R such that

Z(α1T ) = ζ(α) MT

for all T ∈ T n. The statement now follows from Lemma 3.

The following lemma is very similar to a result by Tsang [38, Lemma 3.6]
and therefore the proof is omitted.

Lemma 5. Let ζ : R → R be continuous and ζ 6≡ 0. If K(ζ ◦ f) is finite
for all f ∈ L2(Rn), then ζ ∈ A(R).

Note that a continuous and SL(n) covariant valuation maps the zero
function to the zero matrix. Hence the following lemma concludes the proof
the theorem.

Lemma 6. Let Z1,Z2 : L2(Rn) → 〈Mn,+〉 be continuous valuations that
map the zero function to the zero matrix. If Z1(α1T ) = Z2(α1T ) for all
T ∈ T n and α ∈ R, then

Z1(f) = Z2(f) (9)

for all f ∈ L2(Rn).
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Proof. Since Z1 and Z2 are valuations and Z1(0) = Z2(0) = 0, we have for
k = 1, 2,

Zk(f ∨ 0) + Zk(f ∧ 0) = Zk(f) + Zk(0) = Zk(f).

Thus it suffices to show that (9) holds for all f ∈ L2(Rn) with f ≥ 0 and
with f ≤ 0.

Since simple functions of compact support, whose support does not con-
tain the origin, are dense in L2(Rn), it is not difficult to see that also simple
functions of the form

∑m
i=1 αi 1Ti , where αi are reals and Ti ∈ T n have pair-

wise disjoint interiors, are dense in L2(Rn). Since Z1 and Z2 are continuous,
it suffices to prove (9) for a simple functions f of the form

∑m
i=1 αi 1Ti ,

where αi ≥ 0 and Ti ∈ T n have pairwise disjoint interiors. First, let f ≥ 0.
Since the coefficients αi are non-negative, we have for k = 1, 2,

Zk(f) = Zk(α1 1T1 ∨ · · · ∨ αm 1Tm) = Zk(α1 1T1) + · · ·+ Zk(αm 1Tm).

If f ≤ 0, then the coefficients αi are non-positive and for k = 1, 2,

Zk(f) = Zk(α1 1T1 ∧ · · · ∧ αm 1Tm) = Zk(α1 1T1) + · · ·+ Zk(αm 1Tm).

In both case, we have

Z1(f) =

m∑
i=1

Z1(αi 1Ti) =

m∑
i=1

Z2(αi 1Ti) = Z2(f).

This concludes the proof of the lemma.

References

[1] J. Abardia, A. Bernig, Projection bodies in complex vector spaces, Adv. Math. 227
(2011), 830–846.

[2] S. Alesker, Continuous rotation invariant valuations on convex sets, Ann. of Math.
(2) 149 (1999), 977–1005.

[3] S. Alesker, Description of translation invariant valuations on convex sets with solution
of P. McMullen’s conjecture, Geom. Funct. Anal. 11 (2001), 244–272.

[4] A. Bernig, J.H.G. Fu, Hermitian integral geometry, Ann. of Math. (2) 173 (2011),
907–945.

[5] G. Birkhoff, Lattice Theory. American Mathematical Society, New York, 1940.

[6] R. Gardner, Geometric Tomography, second ed., Encyclopedia of Mathematics and
its Applications, vol. 58, Cambridge University Press, Cambridge, 2006.

[7] P.M. Gruber, Convex and Discrete Geometry, Grundlehren der Mathematischen Wis-
senschaften, vol. 336, Springer, Berlin, 2007.

[8] C. Haberl, Lp intersection bodies, Adv. Math. 217 (2008), 2599–2624.

[9] C. Haberl, Star body valued valuations, Indiana Univ. Math. J. 58 (2009), 2253–2276.

[10] C. Haberl, Blaschke valuations, Amer. J. Math. 133 (2011), 717–751.

[11] C. Haberl, Minkowski valuations intertwining the special linear group, J. Eur. Math.
Soc. 14 (2012), 1565–1597.

8



[12] C. Haberl, M. Ludwig, A characterization of Lp intersection bodies, Int. Math. Res.
Not. 10548 (2006), 1–29.

[13] C. Haberl, F. Schuster, General Lp affine isoperimetric inequalities, J. Differential
Geom. 83 (2009), 1–26.

[14] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer,
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