Covariance Matrices and Valuations

Monika Ludwig*

Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8-10/104, 1040 Wien, Austria

Abstract

A complete classification of SL(n) covariant matrix-valued valuations on functions with finite second moments is obtained. It is shown that there is a unique homogeneous such valuation. This valuation turns out to be the moment matrix.

2000 AMS subject classification: 46A40, 52A20, 52B45

A function Z defined on a lattice $(\mathcal{L}, \lor, \land)$ and taking values in an abelian semigroup is called a valuation if

$$Z(f \lor g) + Z(f \land g) = Z(f) + Z(g)$$
(1)

for all $f, g \in \mathcal{L}$ (see, for example, [5]). A function Z defined on some subset \mathcal{S} of \mathcal{L} is called a valuation on \mathcal{S} if (1) holds whenever $f, g, f \lor g, f \land g \in \mathcal{S}$.

Results on valuations on compact convex sets in \mathbb{R}^n are classical and start with Dehn's solution of Hilbert's Third Problem in 1901. Here the operations \vee and \wedge are union and intersection, respectively. In the 1950s, a systematic study of valuations was initiated by Hadwiger, who was in particular interested in classifying valuations on the set of compact convex sets in \mathbb{R}^n . Probably the most celebrated result is Hadwiger's classification of continuous and rigid motion invariant valuations on compact convex sets, which establishes a characterization of the intrinsic volumes (see [14, 17]; see [1–4, 9, 10, 12, 19–22, 33, 36, 37, 41] for some of the more recent results). The systematic study of valuations in a more general setting is of more recent vintage. Here valuations were investigated on star shaped sets [15, 16], on Lebesgue spaces [38, 39], on Orlicz spaces [18], on spaces of functions of bounded variation [40] and on Sobolev spaces [23, 25] (see also [24]).

In numerous applications in statistics and information theory, two matrices associated to functions (in particular, probability densities) play a critical role: the covariance or moment matrix and the Fisher information matrix. The Fisher information matrix, J(f), of a weakly differentiable

^{*}E-mail address: monika.ludwig@tuwien.ac.at

function $f : \mathbb{R}^n \to [0, \infty)$ is the $n \times n$ -matrix with (not necessarily finite) entries

$$J_{ij}(f) = \int_{\mathbb{R}^n} \frac{\partial \log f(x)}{\partial x_i} \frac{\partial \log f(x)}{\partial x_j} f(x) \, dx.$$
(2)

In [23], the Fisher information matrix was characterized as the unique (up to multiplication with a constant) continuous and homogeneous matrix-valued valuation Z on the Sobolev space $W^{1,2}(\mathbb{R}^n)$ such that

$$\mathcal{Z}(f \circ \phi^{-1}) = \phi^{-t} \mathcal{Z}(f) \phi^{-1}$$

for all $\phi \in \mathrm{SL}(n)$, where ϕ^{-t} denotes the inverse of the transpose of ϕ and Z is called homogeneous if, for some $q \in \mathbb{R}$, we have $\mathrm{Z}(sf) = |s|^q \mathrm{Z}(f)$ for all $s \in \mathbb{R}$. The natural lattice structure on $W^{1,2}(\mathbb{R}^n)$ (as well as other function spaces) is given by letting $f \vee g$ denote the pointwise maximum and $f \wedge g$ the pointwise minimum of f and g. The proof of the characterization [23] makes essential use of a characterization [20] of the so-called LYZ ellipsoid introduced by Lutwak, Yang and Zhang [27, 28], which corresponds to a $\mathrm{SL}(n)$ covariant valuation on compact convex sets. Such $\mathrm{SL}(n)$ covariant functions have found important applications and are attracting increased interest (see, e.g., [8–10, 12, 13, 19–21, 26, 29–32]).

In this paper, we obtain a characterization of the moment matrix. For a measurable function $f : \mathbb{R}^n \to \mathbb{R}$, the moment matrix, K(f), is the $n \times n$ matrix with (not necessarily finite) entries,

$$\mathbf{K}_{ij}(f) = \int_{\mathbb{R}^n} f(x) \, x_i \, x_j \, dx.$$

If f is a probability density with mean zero, then K(f) is the covariance matrix of f. Let $\mathcal{L}_2(\mathbb{R}^n)$ be the space of measurable functions with finite second moments, that is, the space of measurable functions $f : \mathbb{R}^n \to \mathbb{R}$ such that $\int_{\mathbb{R}^n} |f(x)| |x|^2 dx < \infty$, where |x| is the Euclidean norm of $x \in \mathbb{R}^n$. Let \mathbb{M}^n denote the space of real symmetric $n \times n$ -matrices. A function $Z : \mathcal{L}_2(\mathbb{R}^n) \to \mathbb{M}^n$ is called SL(n) covariant if

$$\mathcal{Z}(f \circ \phi^{-1}) = \phi \,\mathcal{Z}(f) \,\phi^t$$

for all $f \in \mathcal{L}_2(\mathbb{R}^n)$ and $\phi \in \mathrm{SL}(n)$. We obtain the following classification of matrix-valued valuations. Let n > 2.

Theorem. A function $Z : \mathcal{L}_2(\mathbb{R}^n) \to \langle \mathbb{M}^n, + \rangle$ is a continuous and SL(n) covariant valuation if and only if there exists a continuous $\zeta : \mathbb{R} \to \mathbb{R}$ with the property that $|\zeta(t)| \leq c |t|$ for all $t \in \mathbb{R}$ for some $c \in \mathbb{R}$, such that

$$\mathbf{Z}(f) = \mathbf{K}(\zeta \circ f)$$

for every $f \in \mathcal{L}_2(\mathbb{R}^n)$.

If in addition homogeneity is assumed, the following characterization of the moment matrix is obtained.

Corollary. A function $Z : \mathcal{L}_2(\mathbb{R}^n) \to \langle \mathbb{M}^n, + \rangle$ is a continuous, homogeneous and SL(n) covariant valuation if and only if there is a constant $c \in \mathbb{R}$ such that

$$\mathbf{Z}(f) = c \,\mathbf{K}(f)$$

for every $f \in \mathcal{L}_2(\mathbb{R}^n)$.

The corollary is dual to the classification of matrix-valued valuations on Sobolev spaces [23]. In the theorem, we do not assume that Z is homogeneous. The proof makes use of ideas from a recent classification of convex body valued valuations by Haberl [11], where no homogeneity was assumed. We note that it is not known whether the homogeneity assumption can also be omitted in the characterization of the Fisher information matrix [23].

1 Valuations on convex polytopes

We work in Euclidean *n*-space, \mathbb{R}^n , and write $x = (x_1, \ldots, x_n)$ for $x \in \mathbb{R}^n$. The vectors of the standard basis of \mathbb{R}^n are denoted by e_1, \ldots, e_n . Let \mathcal{P}^n denote the space of compact convex polytopes in \mathbb{R}^n equipped with the usual topology coming from the Hausdorff metric. For more information on convex sets, we refer to the books by Gardner [6], Gruber [7] and Schneider [34].

For $P \in \mathcal{P}^n$, the moment matrix, MP, of P is the $n \times n$ -matrix with entries

$$\mathcal{M}_{ij} P = \int_P x_i \, x_j \, dx.$$

A function $Y : \mathcal{P}^n \to \mathbb{M}^n$ is called SL(n) covariant, if

$$Y(\phi P) = \phi Y(P) \phi^t$$

for all $P \in \mathcal{P}^n$ and $\phi \in SL(n)$. Note that M is SL(n) covariant.

Let I = (s,t) with $0 < s \leq t$ be an interval and T_I the convex hull of se_1, \ldots, se_n and te_1, \ldots, te_n , that is, T_I is the difference of two scaled standard simplices. Let \mathcal{T}^n be the set of all images of such T_I under the GL(n) equipped with the Hausdorff metric. A function $Y : \mathcal{T}^n \to \mathbb{M}$ is called simple if Z vanishes on lower dimensional sets. Let n > 2.

Lemma 1. A function $Y : \mathcal{T}^n \to \langle \mathbb{M}^n, + \rangle$ is a continuous, simple and SL(n) covariant valuation if and only if there is a constant $c \in \mathbb{R}$ such that

$$YT = cMT$$

for every $T \in \mathcal{T}^n$.

Proof. For a permutation π on $\{1, \ldots, n\}$, let ϕ_{π} be the associated permutation matrix. Hence ϕ_{π} is orthogonal and $\phi_{\pi}\phi_{\pi}^{t} = \text{id}$, where id is the $n \times n$ -identity matrix. Set I = (s, t) with $0 < s \leq t$ and let T_{I} be the convex hull of $s e_{1}, \ldots, s e_{n}$ and $t e_{1}, \ldots, t e_{n}$. Note that

$$\phi_{\pi}T_I = T_I \tag{3}$$

for every T_I and every permutation π . Since Y and M are both SL(n) covariant, it suffices to prove that there is a constant $c \in \mathbb{R}$ such that

$$Y T_I = c M T_I$$

for every T_I .

Let π be an even permutation. Then ϕ_{π} has determinant 1 and since Y is SL(n) covariant, it follows from (3) that

$$Y T_I = \phi_\pi Y T_I \phi_\pi^t. \tag{4}$$

For given I and x > 0, set $z_{ij}(x) = (Y T_{\sqrt[n]{xI}})_{ij}$. Since $Y T_I$ is a symmetric matrix, it follows from (3) and (4) that for i = 1, ..., n,

$$z_{ii}(x) = z_{\pi i,\pi i}(x) =: z(x)$$
 (5)

and for $i, j = 1, \ldots, n$ with $i \neq j$,

$$z_{ij}(x) = z_{\pi i,\pi j}(x) =: w(x)$$
 (6)

for x > 0. Set $J = \sqrt[n]{xI}$.

For $0 < \lambda < 1$, let H_{λ} be the hyperplane through the origin with normal vector $(1 - \lambda) e_1 - \lambda e_2$. The hyperplane H_{λ} dissects the set T_J into two sets $T_J \cap H_{\lambda}^+, T_J \cap H_{\lambda}^- \in \mathcal{T}^n$, where $H_{\lambda}^+, H_{\lambda}^-$ are the closed halfspaces bounded by H_{λ} . Since Y is a simple valuation, we have

$$Y T_J = Y(T_J \cap H_{\lambda}^+) + Y(T_J \cap H_{\lambda}^-).$$
(7)

Let $\phi_{\lambda} \in \operatorname{GL}(n)$ map e_1 to $\lambda e_1 + (1 - \lambda)e_2$ and e_i to e_i for $i = 2, \ldots, n$. Let $\psi_{\lambda} \in \operatorname{GL}(n)$ map e_2 to $\lambda e_1 + (1 - \lambda)e_2$ and e_i to e_i for $i = 1, 3, \ldots, n$. Note that det $\phi_{\lambda} = \lambda$ and det $\psi_{\lambda} = 1 - \lambda$. Then

$$T_J \cap H_{\lambda}^+ = \phi_{\lambda} T_J = \frac{1}{\sqrt[n]{\lambda}} \phi_{\lambda} T_{\sqrt[n]{\lambda}J}$$

and

$$T_I \cap H_{\lambda}^{-} = \psi_{\lambda} T_J = \frac{1}{\sqrt[n]{1-\lambda}} \phi_{\lambda} T_{\sqrt[n]{1-\lambda}J},$$

where $1/\sqrt[n]{\lambda}\phi_{\lambda}, 1/\sqrt[n]{1-\lambda}\phi_{\lambda} \in SL(n)$. Since Y is SL(n) covariant, (7) implies that

$$Y T_J = \lambda^{-\frac{2}{n}} \phi_\lambda Y T_{\sqrt[n]{\lambda J}} \phi_\lambda^t + (1-\lambda)^{-\frac{2}{n}} \psi_\lambda Y T_{\sqrt[n]{1-\lambda J}} \psi_\lambda^t.$$
(8)

Looking at the coefficient $(Y T_J)_{nn}$, we obtain

$$z(x) = \lambda^{-\frac{2}{n}} z(\lambda x) + (1-\lambda)^{-\frac{2}{n}} z((1-\lambda)x)$$

Setting $f(x) = x^{-2/n} z(x)$, we get $f(x) = f(\lambda x) + f((1-\lambda)x)$. Using the fact that every continuous solution of the Cauchy functional equation, f(x+y) = f(x) + f(y), is linear, we conclude that

$$z(x) = a \, x^{\frac{n+2}{n}}$$

with a suitable constant $a \in \mathbb{R}$. Looking at the coefficient $(Y T_J)_{11}$, we obtain from (8) that

$$z(x) = \lambda^{-\frac{2}{n}} \lambda^2 z(\lambda x) + (1 - \lambda)^{-\frac{2}{n}} \left((1 + \lambda^2) z((1 - \lambda)x) + 2\lambda w((1 - \lambda)x) \right).$$

Hence

$$w(x) = \frac{a}{2} x^{\frac{n+2}{n}}.$$

Since M is also a continuous, simple and SL(n) covariant valuations, we conclude that there is a function c(s,t) defined for $0 \le s \le t$ such that

$$Y T_{(s,t)} = c(s,t) M T_{(s,t)}$$

and

$$c(r s, r t) = r^{n+2}c(s, t)$$

for r > 0. Since Y is a simple valuation, we have for 1 < r < s

$$Y T(1, r) + Y T(r, s) = Y T(1, s).$$

Hence, setting g(r) = Y T(1, r), we have

$$g(r) + r^{n+2}g(\frac{s}{r}) = g(s)$$

or equivalently,

$$g(rx) = g(r) + r^{n+2}g(x).$$

Using that

$$g(r) + r^{n+2}g(x) = g(rx) = g(xr) = g(x) + x^{n+2}g(r),$$

we obtain that there is a constant b such that

$$g(x) = b(1 - x^{n+2}).$$

We conclude that there is a constant c such that

$$Y T_{(s,t)} = c M T_{(s,t)}.$$

This completes the proof of the lemma.

2 Background material on functions with finite second moments

Set $||f|| = \int_{\mathbb{R}^n} |f(x)| |x|^2 dx$. We say that $f_k \to f$ as $k \to \infty$ in $\mathcal{L}_2(\mathbb{R}^n)$, if $||f_k - f|| \to 0$ as $k \to \infty$. Note that it follows immediately from the definition that $(\mathcal{L}_2(\mathbb{R}^n), \lor, \land)$ is a lattice. Let $\mathbb{1}_C$ be the indicator function of $C \subset \mathbb{R}^n$, that is, $\mathbb{1}_C(x) = 1$ for $x \in C$ and $\mathbb{1}_C(x) = 0$ for $x \notin C$.

In the following lemma, we prove some well known properties of the function $f \mapsto K(f)$. Let $A(\mathbb{R})$ be the set of continuous $\alpha : \mathbb{R} \to \mathbb{R}$ such that there is $a \in \mathbb{R}$ with $|\alpha(t)| \leq a |t|$ for all $t \in \mathbb{R}$.

Lemma 2. The function $Z : \mathcal{L}_2(\mathbb{R}^n) \to \langle \mathbb{M}^n, + \rangle$, defined by $Z(f) = K(\alpha \circ f)$ with $\alpha \in A(\mathbb{R})$, is a continuous and SL(n) covariant valuation. The function $Z : \mathcal{L}_2(\mathbb{R}^n) \to \langle \mathbb{M}^n, + \rangle$, defined by Z(f) = c K(f) with $c \in \mathbb{R}$, is a continuous, homogeneous and SL(n) covariant valuation.

Proof. Let $\alpha(t) \leq a |t|$ for $t \in \mathbb{R}$. Since

$$\left|\int_{\mathbb{R}^n} x_i x_j |\alpha(f(x))| \, dx\right| \le a \int_{\mathbb{R}^n} |f(x)| \, |x|^2 \, dx,$$

we have $K_{ij}(\alpha \circ f) < \infty$ for $f \in \mathcal{L}_2(\mathbb{R}^n)$. It follows immediately from the definition that $f \mapsto K(\alpha \circ f)$ is a valuation on $\mathcal{L}_2(\mathbb{R}^n)$. Suppose that $f_k \to f$ in $\mathcal{L}_2(\mathbb{R}^n)$. Then

$$|\operatorname{K}_{ij}(\alpha \circ f_k) - \operatorname{K}_{ij}(\alpha \circ f)| \le a \int_{\mathbb{R}^n} |f_k(x) - f(x)| \, |x|^2 \, dx.$$

Thus the function $f \mapsto \mathrm{K}(\alpha \circ f)$ is continuous on $\mathcal{L}_2(\mathbb{R}^n)$.

Let $s \in \mathbb{R}$ and $\phi \in SL(n)$. Since

$$\mathbf{K}(f) = \int_{\mathbb{R}^n} x \, x^t \, |f(x)| \, dx,$$

we have

$$\mathbf{K}(s f) = |s| \mathbf{K}(f) \text{ and } \mathbf{K}(f \circ \phi^{-1}) = \phi \mathbf{K}(f) \phi^{t}$$

Consequently, the function $f \mapsto \mathcal{K}(\alpha \circ f)$ is $\mathcal{SL}(n)$ covariant and the function $f \mapsto c \mathcal{K}(f)$ is $\mathcal{SL}(n)$ covariant and homogeneous.

The following lemma, which follows immediately from the definitions, describes an important connection between functions on $\mathcal{L}_2(\mathbb{R}^n)$ and on \mathcal{T} .

Lemma 3. For $T \in \mathcal{T}^n$ and $\alpha \in \mathbb{R}$, we have $K(\alpha \mathbb{1}_T) = \alpha M T$.

3 Proof of the Theorem

In Lemma 2, it was shown that for $\alpha \in A(\mathbb{R})$, the function $f \mapsto K(\alpha \circ f)$ is a continuous and SL(n) covariant valuation on $\mathcal{L}_2(\mathbb{R}^n)$. Suppose that Z is a continuous and SL(n) covariant valuation. The following lemmas establish that there is function $\zeta \in A(\mathbb{R})$ such that $Z(f) = K(\zeta \circ f)$ for all $f \in \mathcal{L}_2(\mathbb{R}^n)$.

Lemma 4. If $Z : \mathcal{L}_2(\mathbb{R}^n) \to \langle \mathbb{M}^n, + \rangle$ is a continuous and SL(n) covariant valuation, then there is a continuous function $\zeta : \mathbb{R} \to \mathbb{R}$ such that

$$Z(\alpha \mathbb{1}_T) = \zeta(\alpha) \operatorname{K}(\mathbb{1}_T)$$

for every $T \in \mathcal{T}^n$.

Proof. For $\alpha \in \mathbb{R}$, define the function $Y_{\alpha} : \mathcal{T}^n \to \langle \mathbb{M}^n, + \rangle$ by setting

$$\mathbf{Y}_{\alpha} T = \mathbf{Z}(\alpha \, \mathbb{1}_T).$$

Since Z is a valuation on $\mathcal{L}_2(\mathbb{R}^n)$, it follows for $S, T, S \cap T, S \cup T \in \mathcal{T}^n$ that

$$Y_{\alpha}S + Y_{\alpha}T = Z(\alpha \mathbb{1}_{S}) + Z(\alpha \mathbb{1}_{T})$$

= $Z(\alpha(\mathbb{1}_{S} \vee \mathbb{1}_{T})) + Z(\alpha(\mathbb{1}_{S} \wedge \mathbb{1}_{T}))$
= $Y_{\alpha}(S \cup T) + Y_{\alpha}(S \cap T).$

Thus $Y_{\alpha} : \mathcal{T}^n \to \langle \mathbb{M}^n, + \rangle$ is a valuation. Since for $\phi \in SL(n)$

$$\mathbf{Y}_{\alpha}(\phi T) = \mathbf{Z}(\alpha \, \mathbb{1}_{\phi T}) = \mathbf{Z}(\alpha \, \mathbb{1}_{T} \circ \phi^{-1}) = \phi \, \mathbf{Z}(\alpha \, \mathbb{1}_{T}) \phi^{t} = \phi \, \mathbf{Y}_{\alpha} \, T \, \phi^{t},$$

the function Y_{α} is SL(n) covariant. Thus we obtain from Lemma 1 that for n > 2 there exists a continuous function $\zeta : \mathbb{R} \to \mathbb{R}$ such that

$$Z(\alpha \mathbb{1}_T) = \zeta(\alpha) M T$$

for all $T \in \mathcal{T}^n$. The statement now follows from Lemma 3.

The following lemma is very similar to a result by Tsang [38, Lemma 3.6] and therefore the proof is omitted.

Lemma 5. Let $\zeta : \mathbb{R} \to \mathbb{R}$ be continuous and $\zeta \not\equiv 0$. If $K(\zeta \circ f)$ is finite for all $f \in \mathcal{L}_2(\mathbb{R}^n)$, then $\zeta \in A(\mathbb{R})$.

Note that a continuous and SL(n) covariant valuation maps the zero function to the zero matrix. Hence the following lemma concludes the proof the theorem.

Lemma 6. Let $Z_1, Z_2 : \mathcal{L}_2(\mathbb{R}^n) \to \langle \mathbb{M}^n, + \rangle$ be continuous valuations that map the zero function to the zero matrix. If $Z_1(\alpha \mathbb{1}_T) = Z_2(\alpha \mathbb{1}_T)$ for all $T \in \mathcal{T}^n$ and $\alpha \in \mathbb{R}$, then

$$\mathbf{Z}_1(f) = \mathbf{Z}_2(f) \tag{9}$$

for all $f \in \mathcal{L}_2(\mathbb{R}^n)$.

Proof. Since Z_1 and Z_2 are valuations and $Z_1(0) = Z_2(0) = 0$, we have for k = 1, 2,

$$\mathbf{Z}_k(f \vee 0) + \mathbf{Z}_k(f \wedge 0) = \mathbf{Z}_k(f) + \mathbf{Z}_k(0) = \mathbf{Z}_k(f).$$

Thus it suffices to show that (9) holds for all $f \in \mathcal{L}_2(\mathbb{R}^n)$ with $f \ge 0$ and with $f \le 0$.

Since simple functions of compact support, whose support does not contain the origin, are dense in $\mathcal{L}_2(\mathbb{R}^n)$, it is not difficult to see that also simple functions of the form $\sum_{i=1}^m \alpha_i \mathbb{1}_{T_i}$, where α_i are reals and $T_i \in \mathcal{T}^n$ have pairwise disjoint interiors, are dense in $\mathcal{L}_2(\mathbb{R}^n)$. Since \mathbb{Z}_1 and \mathbb{Z}_2 are continuous, it suffices to prove (9) for a simple functions f of the form $\sum_{i=1}^m \alpha_i \mathbb{1}_{T_i}$, where $\alpha_i \geq 0$ and $T_i \in \mathcal{T}^n$ have pairwise disjoint interiors. First, let $f \geq 0$. Since the coefficients α_i are non-negative, we have for k = 1, 2,

$$\mathbf{Z}_k(f) = \mathbf{Z}_k(\alpha_1 \, \mathbb{1}_{T_1} \vee \cdots \vee \alpha_m \, \mathbb{1}_{T_m}) = \mathbf{Z}_k(\alpha_1 \, \mathbb{1}_{T_1}) + \cdots + \mathbf{Z}_k(\alpha_m \, \mathbb{1}_{T_m}).$$

If $f \leq 0$, then the coefficients α_i are non-positive and for k = 1, 2,

$$\mathbf{Z}_k(f) = \mathbf{Z}_k(\alpha_1 \, \mathbb{1}_{T_1} \wedge \dots \wedge \alpha_m \, \mathbb{1}_{T_m}) = \mathbf{Z}_k(\alpha_1 \, \mathbb{1}_{T_1}) + \dots + \mathbf{Z}_k(\alpha_m \, \mathbb{1}_{T_m}).$$

In both case, we have

$$Z_1(f) = \sum_{i=1}^m Z_1(\alpha_i \, \mathbb{1}_{T_i}) = \sum_{i=1}^m Z_2(\alpha_i \, \mathbb{1}_{T_i}) = Z_2(f).$$

This concludes the proof of the lemma.

References

- J. Abardia, A. Bernig, Projection bodies in complex vector spaces, Adv. Math. 227 (2011), 830–846.
- [2] S. Alesker, Continuous rotation invariant valuations on convex sets, Ann. of Math.
 (2) 149 (1999), 977–1005.
- [3] S. Alesker, Description of translation invariant valuations on convex sets with solution of P. McMullen's conjecture, Geom. Funct. Anal. 11 (2001), 244–272.
- [4] A. Bernig, J.H.G. Fu, Hermitian integral geometry, Ann. of Math. (2) 173 (2011), 907–945.
- [5] G. Birkhoff, Lattice Theory. American Mathematical Society, New York, 1940.
- [6] R. Gardner, Geometric Tomography, second ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, Cambridge, 2006.
- [7] P.M. Gruber, Convex and Discrete Geometry, Grundlehren der Mathematischen Wissenschaften, vol. 336, Springer, Berlin, 2007.
- [8] C. Haberl, L_p intersection bodies, Adv. Math. 217 (2008), 2599–2624.
- [9] C. Haberl, Star body valued valuations, Indiana Univ. Math. J. 58 (2009), 2253–2276.
- [10] C. Haberl, Blaschke valuations, Amer. J. Math. 133 (2011), 717–751.
- [11] C. Haberl, Minkowski valuations intertwining the special linear group, J. Eur. Math. Soc. 14 (2012), 1565–1597.

- [12] C. Haberl, M. Ludwig, A characterization of L_p intersection bodies, Int. Math. Res. Not. 10548 (2006), 1–29.
- [13] C. Haberl, F. Schuster, General L_p affine isoperimetric inequalities, J. Differential Geom. 83 (2009), 1–26.
- [14] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, Berlin, 1957.
- [15] D. A. Klain, Star valuations and dual mixed volumes, Adv. Math. 121 (1996), 80-101.
- [16] D. A. Klain, Invariant valuations on star-shaped sets, Adv. Math. 125 (1997), 95–113.
- [17] D. A. Klain, G.-C. Rota, Introduction to geometric probability, Cambridge University Press, Cambridge, 1997.
- [18] H. Kone, Valuations on Orlicz spaces, Adv. in Appl. Math., in press.
- [19] M. Ludwig, Projection bodies and valuations, Adv. Math. 172 (2002), 158–168.
- [20] M. Ludwig, Ellipsoids and matrix valued valuations, Duke Math. J. 119 (2003), 159– 188.
- [21] M. Ludwig, Intersection bodies and valuations, Amer. J. Math. 128 (2006), 1409– 1428.
- [22] M. Ludwig, Minkowski areas and valuations, J. Differential Geom. 86 (2010), 133– 161.
- [23] M. Ludwig, Fisher information and valuations, Adv. Math. 226 (2011), 2700–2711.
- [24] M. Ludwig, Valuations on function spaces, Adv. Geom. 11 (2011), 745–756.
- [25] M. Ludwig, Valuations on Sobolev spaces, Amer. J. Math. 134,(2012), 827-842.
- [26] E. Lutwak, D. Yang, G. Zhang, L_p affine isoperimetric inequalities, J. Differential Geom. 56 (2000), 111–132.
- [27] E. Lutwak, D. Yang, G. Zhang, A new ellipsoid associated with convex bodies, Duke Math. J. 104 (2000), 375–390.
- [28] E. Lutwak, D. Yang, G. Zhang, The Cramer-Rao inequality for star bodies, Duke Math. J. 112 (2002), 59–81.
- [29] E. Lutwak, D. Yang, G. Zhang, Moment-entropy inequalities, Ann. Probab. 32 (2004), 757–774.
- [30] E. Lutwak, D. Yang, G. Zhang, Orlicz centroid bodies, J. Differential Geom. 84 (2010), 365–387.
- [31] E. Lutwak, D. Yang, G. Zhang, Orlicz projection bodies, Adv. Math. 223 (2010), 220–242.
- [32] E. Lutwak, G. Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997), 1–16.
- [33] L. Parapatits, F. Schuster, The Steiner formula for Minkowski valuations, Adv. Math. 230 (2012), 978–994.
- [34] R. Schneider, Convex Bodies: the Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993.
- [35] F. Schuster, Valuations and Busemann-Petty type problems, Adv. Math. 219 (2008), 344–368.
- [36] F. Schuster, Crofton measures and Minkowski valuations, Duke Math. J. 154 (2010), 1–30.
- [37] F. Schuster, T. Wannerer, GL(n) contravariant Minkowski valuations, Trans. Am. Math. Soc. 364 (2012), 815–826.

- $[38]\,$ A. Tsang, Valuations on L^p spaces, Int. Math. Res. Not. 20 (2010), 3993–4023.
- [39] A. Tsang, Minkowski valuations on $L^p\mbox{-spaces},$ Trans. Am. Math. Soc. 364 (2012), 6159–6186.
- [40] T. Wang, Semi-valuations on $BV(\mathbb{R}^n)$, Preprint 2012.
- [41] T. Wannerer, $\mathrm{GL}(n)$ equivariant Minkowski valuations, Indiana Univ. Math. J. 60 (2011), 1655 1672.