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Abstract. We give a classification of Borel measurable, SL(d) covariant
or contravariant, homogeneous, vector valued valuations on the space of d-
dimensional convex polytopes containing the origin in their interiors. The
only examples are moment vectors of polytopes and moment vectors of polar
polytopes.
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1 Introduction and Statement of Results

Let K¢ denote the space of convex bodies in Euclidean d-dimensional space E?
and let K¢ denote the space of convex bodies in E? containing the origin o in
their interiors. For convex polytopes denote the corresponding spaces by P¢ and
P4, Studying these spaces has always been a central subject of convex geometry
(see Gruber’s survey [3]). A special aspect here is the classification of additive
functions on these spaces. Here a function z defined on a space D and taking
values in an abelian semi-group is called additive or a valuation, if

Z(Kl) + Z(KQ) = Z(K1 @] KQ) + Z(K1 N Kg)

whenever K1, Ko, K1 U Ko, K1 N Ky € D.

Hadwiger’s classical characterization theorem states that every continuous,
rigid motion invariant, real valued valuation on K¢ is a linear combination of quer-
massintegrals (see [4] and also Klain’s short proof [6]). This result has important
applications in geometric probability (see the books of Hadwiger [4], Schneider
and Weil [18], Klain and Rota [7]) and started the systematic study of valuations
on these spaces (see the surveys [11], [9]).

Here we are interested in the classification of vector valued valuations. For this
question, the fundamental notion is the moment vector

m(K) :/deac

of K € K", i.e., m(K) is the centroid of K multiplied by the volume V(K) of K.
If we replace volume by the moment vector in the definiton of quermassintegrals,
we obtain the definition of quermassvectors. Schneider [14] proved the following
analogue of Hadwiger’s characterization theorem: Every continuous, rotation co-
variant, vector valued valuation z on K¢ with the property that 2(K + z) — 2(K)



is parallel to = for every x € E? is a linear combination of quermassvectors (see
also [5]). Characterizations of further important vector valued valuations like the
Steiner point [12] and the centroid [15] are due to Schneider. For detailed infor-
mation, we refer to [13] and [16], Chapter 5.4.

If we consider convex bodies containing the origin in their interiors, we get
additional examples of invariant valuations. To state our results, we fix some
notation. Let P* denote the polar body of P, P € P4, i.e.,

P ={ycE! z-y<1 forall z € P},

where z - y denotes the standard inner product of z and y. Call z : P4 — R
or z : P4 — E? (Borel) measurable if the pre-image of every open set is a Borel
set. Let GL(d) denote the group of general linear transformations, i.e., of linear
transformations ¢ with determinant det ¢ # 0, and let SL(d) denote the group of
special linear transformation, i.e., of linear transformations ¢ with det¢ = 1.

Examples of SL(d) invariant, real valued valuations on P¢ are volume, volume
of the polar body, and the constant. In [8], it was proved that if we consider
homogeneous functionals these are already all examples.

Theorem 1 ([8]). A functional pn: P4 — R, d > 2, is a measurable valuation
with the property that
1(¢P) = | det o[ u(P)

for every ¢ € GL(d) with ¢ € R if and only if there is a constant ¢ € R such that
w(P)y=c or u(P)=cV(P) or p(P)=cV(P")
for every P € P2,

Examples of vector valued valuations on P? are the moment vector m(P) and
the moment vector m*(P) of the polar body of P. Tt is easy to see that m and m*
are measurable valuations, and that the following transformation rules hold. For
every ¢ € GL(d) and P € P2,

m(¢P) = |det g|¢m(P) and m*(¢P) = |det¢~*|¢~"'m"(P),

where ¢~ is the inverse of the transpose of ¢. For d = 2 there are additional
examples. Let 1/, denote the rotation by an angle 7/2, let m(P) = w;/lQ m*(P)

and let m*(P) = m(P*). Then
A(6P) = |det 6|2 m(P) and " (6P) = |det 6|2 6" (P),

We show that the valuations m, m*,m,m* are the only examples of vector valued
valuations with these transformation properties.



Theorem 2. A function z : P4 — E¢, d > 2, is a measurable valuation with the
property that

2(¢P) = | det ¢|? ¢z(P) (1)
for every ¢ € GL(d) with ¢ € R if and only if d > 3 and there is a constant ¢ € R

such that
z(P) = cm(P)

for every P € P4 or d =2 and there is a constant ¢ € R such that

z(P)=cm(P) or z(P)= cw;/lz m*(P)

for every P € P2.

Theorem 3. A function z : ”Pgl — E?, d > 2, is a measurable valuation with the
property that
2(¢P) = |det ¢~"|7 ¢~ 2(P) (2)
for every ¢ € GL(d) with ¢ € R if and only if d > 3 and there is a constant ¢ € R
such that
z(P) = ¢cm™(P)

for every P € P4 or d =2 and there is a constant ¢ € R such that
2(P) =cm*(P) or z2(P)= czb;/lzm(P)
for every P € P2.

In recent years, also tensor valued valuations on the space of convex bodies
have attracted much interest (see [10], [1], [2], [17]). In a subsequent paper, we
will discuss this question for the space PZ.

2 Proofs

Let z : P4 — E be a measurable valuation such that (1) holds for fixed ¢ € R.
The function z*, defined by z*(P) = z(P*) for P € P4, is again measurable. For
P,Q,PUQ € P, we have

(PUQ)*=P*NQ* and (PNQ)* =P UQ".

Therefore z*(P) + 2*(Q) = z* (PN Q) + 2*(PUQ), i.e., z* is a valuation on PZ.
For ¢ € GL(d) and P € P2, we have (¢ P)* = ¢t P* and by (1)

2 (¢P) = 2((¢P)") = 2(¢7'P*) = |det ¢~ "7~ 2(P") = | det 6~'|"¢~"2" (P).

Thus 2z* : P4 — E? is a measurable valuation with the property that z*(¢P) =
|det ¢~ t|7¢p~t2*(P) for every ¢ € GL(d), and Theorems 2 and 3 are equivalent for
fixed ¢ € R. This enables us to prove both theorems by first proving Theorem 2
for ¢ > —1 and then Theorem 3 for ¢ < —1.



2.1 Proof of Theorem 2 for ¢ > —1

1. We begin by proving Theorem 2 for ¢ > —1 and d = 2. We fix an x1-zo-
coordinate system and write = (21, 12)! for # € E2. Denote by Q,(x1,z2) the
set of convex polygons Q = [I1, I3] where I; and I are closed intervals lying on
the zi-axis and xs-axis, respectively, and containing the origin in their interiors.
Here [P, ..., P,] denotes the convex hull of Py, ..., P,. Let I be fixed and define
w : P} — E? by w(ly) = 2([[1,2]). Then w is a valuation on Pl. Since z is
measurable, so is w. Let ¢ € SL(2) be the linear transformation that multiplies
the x1-coordinate by a factor 1/r and the xo-coordinate by a factor r. By (1), we
have

21, Lo]) = 2([r ™" i, v b)) = ¢2([11, ). (3)
Consequently,
Zl([T_llh’l"Ig]) = 7“_2(1_1 Zl([ll,’l“Q IQD = 7"_1 21([11712]),
22([7"_1 Il,’I’IQ]) = 7,.—2q—1 22([.[1,7"2]2}) = 7"22([.[1,[2}),

and
w1 (7’2 IQ) = ,,,Zq w1 ([2) and ’wg(T‘2 IQ) = T2q+2 ’LUQ(IQ),

i.e., wy is homogeneous of degree ¢ and wy is homogeneous of degree ¢ + 1.

We need the following result (cf. [8], equations (3) and (4)), which is a simple
consequence of solving Cauchy’s functional equation. Let v : P} — R be measur-
able valuation that is homogeneous of degree r. If r = 0, then there are constants
a,b € R such that

v([=s.1) = alog(1) +b (4)
for every s,t > 0, and if r # 0, then there are constants a,b € R such that
v([—s,t]) =as" +bt" (5)
for every s,t > 0.
1.1. We consider the case ¢ > —1, ¢ # 0. It follows from (5) that
wy([—s,t]) = a1 s+ b1t9 and wo([—s,t]) = ag s + by t?H
and
21([I, L)) = a1 (1) s+ b1 (1)t and  zp([I1, I2]) = ao(I1) s4 4 bo (1)) 121,

where Is = [—sg,t3]. The functionals aq,bq,az,by : 77; — R are measurable
valuations. By (3) we have

2(rthr L) = P (rihL L) = iy, R)),

22([7"_1 Il,TIQ]) = 7’2q+1 ZQ([T72I1,I2]) = 7“22([[1,]2]). (6)



Therefore ay, b; are homogeneous of degree g + 1 and as, by are homogeneous of
degree q. By (5) there are constants a;, b;, ¢;,d;, ¢ = 1,2, such that

21, 1) = (a1 s b0t 2+ (eq 87T+ dy 7T 8,

([, ) = (azs!+b2t])s§ + (cos? +dat])tdH!

(7)

for every si,t1,S2,t2 > 0. Let

21(o[1, I2]) = 21([~I2, Lh]) = —z([, L)), ®)
(¢, ) = 2(-Lh]) = «a(h,l2]),
and
21, L)) = a1, I2)) —z1([11, I2]), )
W, L)) = z2(-hL]) = 2 ]).
We use (7), compare coefficients in (8) and (9), and obtain
a(lL L) = a(si™ =) (s§+ ),
2l b)) = alsl+ 1) (557 — i) 1o

for every si,t1,s2,t2 > 0 with a € R.

Let R2(z1) be the set of convex polygons [I1, u,v] where I is a closed interval
on the x1-axis containing the origin in its interior and u, v are points in the open
lower and upper halfplane, respectively. Denote by Q2 the set of SL(2)-images of
Q € Qo(z1,72) and by R2 the set of SL(2)-images of R € R2(x1). We need the
following result.

Lemma 1. Let z : P2 — R be a measurable valuation such that (1) and (10) hold.
If > —1 and ¢ # 0,1, then 2(Q) = o for every Q € Q2.

Proof. Let R = [I,su,tv] where I = [—s1,t1] lies on the zq-axis, u = (_%),
v = (31’) with =,y € R, s1,%1,s,t > 0. First we show that

lim zo([I1, s u,tv]) (11)

s,t—
exists. Since 2o is a valuation, we have for 0 < ¢’ < ¢ and ¢ > 0 suitably large
2o([I1, su, tv]) + 2o([I1, —t" v, t' v]) = 29([T1, su, ' v]) + 22([I1, —t" v, tv]).
Since [I1, —t" v,t' v],[I1, —t" v,tv] € Q%) we obtain by (1) and (10)

2o([I1, su, tv]) — zo([I1, su, t' v]) = a (8§ + ) (#TT — o),



Similarly, we have for 0 < s’ < s and s” > 0 suitably large
2o([I1, su, t' v)) — 22([I1, 8" u, ¥’ v]) = a (] + 1) (s7T! — s'7T1),
Since ¢ > —1, this implies that the limit (11) exists. Note that
2o([I1, su, tv]) = zo([I1, 8" u, t' v]) + a (s§ + t3)(s7T — /9T — ot L yatly (12)

Next, we show that the limit in (11) is equal to 0. For I fixed, set f(x,y) =

limg ;0 22([I1, su,tv]), where u = (_‘ﬁ) and v = (7{) Since 29 is a valuation, we

have for r > 0 suitably small
zo([I1, su, tv]) + zo([[1, —sre,tre]) = zo([I1, su,tre]) + z2([I1,—sre,tv])
where e = (2) This implies that

f(@,y) + £(0,0) = f(,0) + £(0,y). (13)
Note that f£(0,0) = 0, since [I;, —sre,tre] € Q2 and since (10) holds. Set

o=(0 1)

By (1) we have zo([I1, su,tv]) = 22([I1, s pu, t ¢pv]) = z9([[1, —s e, t w]) where w =

(’c'fy) . Therefore

fl@y) =f0,2+y). (14)
Set g(z) = f(0,2). Then it follows from (13) and (14) that

g(z +y) = g(x) +g(y).

This is one of Cauchy’s functional equations. Since z is measurable, so is g.
Therefore there is a wy(I;) € R such that

Jim zo([1, s usto]) = g(x +y) = wa(L)(2 +y). (15)
Using this we obtain the following. By (1) 2o is homogeneous of degree 2¢ + 1.

Therefore
’wg(?“]l) :’]”2q+1’(1)2(.[1). (16)

On the other hand, let 1) € GL(2) be the linear transformation that multiplies the
x1-coordinate by r and the zo-coordinate by 1. Then z3(¢)R) = r9 z2(R) and by
(15), wo(r I1) = r?7 Y wy(Iy). Since ¢ > —1, this combined with (16) shows that
wa(I1) = 0. Thus we obtain by (12) that

2o([I1, su,tv]) = a(s§ +t9) (s — ahy, (17)



Let 72 be the triangle with vertices (J), (J), (7%), r,s > 0. Then T =

[I1,sru,v] with Iy = [—s1,1], 51 = s/(1 +s7), u = (fl), x=-1/r,v= (31’),
y = 0. By (17) we have

s
1+sr

2(T7) = a(( )"+ 1)((sr) 1), (18)

To determine z1(7}?), note that 777 = ¢T7/ where
01
(1)

A(TE) = 2a(T5]) = a(s™ = 1)((+—)7 + 1), (19)

By (1) this implies that

Let the triangle T%(x, y) be the convex hull of (ﬂy)7 (1fz)7 (:;) For0 <z <

1/2 < y < 1, we have T%(z,y) € P2, T = T%(0,1) = T%(0,y) U T*(x,1) with
r=1,and T%(z,y) = T%(0,y) N T*(x,1). Since z is a valution, this implies that

2(T°(0,y)) + 2(T%(2,1)) = 2(T°(0,1)) + 2(T*(x, y))- (20)

_ Y z
¢_(1—y 1—:v)'

Then T%(x,y) = ¢T3t with r = 2y — 1)/(1 — 22) and t = (1 — 22)/(y — ).
Therefore we get by (1)

Let

2(T*(x,y)) = (y — )7 ¢2(T;").

If ¢ > 0, then by (19) and (18) lims_0 21 (T**) = lims_0 22(7**) = —a. Therefore
it follows from (20) that

a(y™ +(1-2)(1+2) =al+(y—2)(y+z)). (21)

Taking the limit as z,y — 1/2 in (21), we obtain a2 (1/2)? = a. This shows that
a=0forqg#1 If -1<qg<0,wesety=1—xand s = 1. Then the right
hand sight of (20) vanishes. We multiply (20) by (1 —22)9"! and take the limit
as * — 1/2, and obtain a (1/2)?*! = 0. This shows that a = 0 for —1 < ¢ < 0 and
completes the proof of the lemma. O

For ¢ > —1, ¢ # 0,1, we apply Lemma 1 and obtain 2(Q) = o for every Q € Q2.
Using Lemmas 3 and 4 (stated and proved below) shows that Theorem 2 holds for
g> -1, # 0,1, and d = 2. If ¢ = 1, then (10) implies that z2(Q) = —6am(Q)
for every Q € Q2. Applying Lemmas 3 and 4 to w(P) = z(P) + 6 am(P) shows



that w(P) = o for every P € P2. This implies that Theorem 2 holds for ¢ = 1 and
d=2.

1.2. We counsider the case ¢ = 0. Then we have by (4) and (5)

t
z21(l1, I2]) = ai(h) log(£)+b2(11),
z([h, L)) = az (1) s2 + ba(I1) ta,
where I = [—s2,t3]. The functionals aj,bi,a,b2 : P} — R are measurable

valuations. Equations (6) imply that aq, by are homogeneous of degree 1 and that
az, by are homogeneous of degree 0. Thus, by (4) and (5) there are constants
a;,b;,ci,d;, 1 =1,2, such that

t
Zl([Il,IQ]) = (a1 81+bl tl) 10g(£)+(61 S1 +d1 tl),
t t
220 Bl) = (a2 log(2) +ba) s + (c2 log() + da) o

Comparing coefficients in (8) and (9) shows that
Zl([[l,IQ]) = a(31 — tl) and ZQ([Il,IQ]) = CL(SQ — t2) (22)

for every s1,t1,s2,t2 > 0 with a € R.
We need the following result.

Lemma 2. Let 2z : P2 — R be a measurable valuation such that (1) and (22) hold.
Then z(R) = o for every R € R2.

Proof. Let R = [I1,su,tv] where Iy = [—s1,¢1] lies on the zj-axis, u = (_”i),

v = (7{) with z,y € R, s1,t1,s,t > 0. First, note that for ¢ = 0 (22) implies that

(10) holds. Therefore we can proceed as in Lemma 1 and obtain by (17)

zo([I1,su,tv]) =a(s—t). (23)
Next we show that
w11i5m 21([11, s u, tv]) (24)

exists. Since z; is a valuation, we have for 0 < ¢’ < t and ¢” > 0 suitably large
21([I, su, tv]) + 21 ([I1, —t" v, ¢ v]) = 21 ({11, su, t' v]) + 21 ([I1, —t" v, tv]).
Since [I1, —t" v,t'v],[I1, —t" v,tv] € Q%) we obtain by (1) and (22)
21([I1, su,tv]) — z1([I1, su, t'v]) = ya (t' —t).
In a similar way, we see that

21 ([, su, t' v)) — z1([[1, 8" u, t' v]) = —xa(s —§).



This implies that the limit (24) exists. Note that
21([I, su, tv]) = 21 ([I1, 8" u, ' v]) +ya(t' —t) —za(s—s). (25)

For I fixed, set f(z,y) = lim,¢—o 21([I1, su, tv]), whereuw = (_%) and v = (¥).
Since z; is a valuation, we have for r > 0 suitably small

z1([I1, su, tv)) + z1([[1, —sre,tre]) = z1([I1, su,tre]) + z1([[1,—sre,tv])
where e = ((1)) This implies that
F,y) + £(0,0) = £(2,0) + £(0,1). (26)
Note that £(0,0) = a(s; —t1), since [I1, —sre,tre] € Q2. Set

o=(0 1)

21(9[I1, su, tv]) = z1([p11, s du, t pv]) = 21([I1, —s e, tw])

and by (1) and (23)

Then we have

z21(@[I1, su, tv]) = z1([[1, su, tv]) + © z2([I1, su, tv])

where w = (IJ{y) Consequently

f(x,y)zf(O,a?+y). (27)
Set g(x) = f(0,2) — £(0,0). Then it follows from (26) and (27) that

g(z +y) = g(x) +g(y).

This is one of Cauchy’s functional equations. Since z; is measurable, so is g.
Therefore there is a wy (1) € R such that g(z) = wi(I1) z and

51%21021([]1’ su,tv]) =gz +y) + f(0,0) =wi(I1)(x+y)+a(sy —t1). (28)
Using this we obtain the following. By (1), z; is homogeneous of degree 1. There-
fore

wl(rfl)zrwl(ll). (29)

On the other hand, let ¢ € GL(2) be the linear transformation that multiplies
the z1-coordinate by r and the xz-coordinate by 1. Then z(¢R) = r 21 (R) and
by (28), wi(rly) = wi(l1). Combined with (29) this shows that wy(l;) = 0.
Therefore we obtain by (28) and (25) that

z1([[1, su,tv]) =a(s1 —t1) —yat —zas. (30)



Let 72 be the triangle with vertices (J), (J), (7%), r,s > 0. Then T =

[Ii,sru,v] with Iy = [—s1,1], s1 = s/(1+s7), u= (%), v = -1/r, v= (Y,
y = 0. By (30) and (23) we have

21(T2) =a( —1)+as and 2(T7)=a(sr—1). (31)

1+sr

We can determine 21 (7}7) also in the following way. Since T}? = ¢T7 . with

o=V 0)

we have by (1), 21(T}?) = 22(T}/,) = a (s — 1). Combined with (31) this shows that
a = 0. Because of (23) and (30) this completes the proof of the lemma. O

Since z(R) = o for every R € R2, using Lemma 4 we obtain that Theorem 2 holds
forg=0and d = 2.

2. Now let d > 3. We use induction on the dimension d. Suppose that Theorem
2 is true for ¢ > —1 in dimension (d — 1).

We fix an x;-. . .-x4-coordinate system, identify the z1-...-x4_1-coordinate hy-
perplane with E4~1 and write x = (21,...,2q9)" = (2/,24)" with 2’ € E4~! for
x € B4 Let Q,(z4) be the set of convex polytopes Q = [P’, I] where P’ € Pd~1
and I is a closed interval lying on the z4-axis and containing the origin in its
interior. For I fixed, define 2’ : P4~1 — E4~! and p: P4~1 — R by

21 ([P, 1))
Z(P) = : (32)
za-1 ([P, 1])
and
w(P") = za([P', 1)) (33)

Then 2z’ and u are measurable valuations on P2~ For every ¢/ € GL(d — 1) we
have

H(@P) = |det |76/ (P') and p(@'P') = |det | 7u(P).  (34)
This can be seen in the following way. Let ¢ € GL(d) with coefficients ¢;; be such
that ¢;; = ¢}, fori,j = 1,...,d =1, ¢4j = ¢ia = 0 for 4,j = 1,...,d — 1, and
¢aqa = 1. Then det ¢ = det ¢’ and (1) shows that (34) holds.

Let ¢ # 1, ¢ > —1. We apply Theorem 2 for ¢ > —1 in dimension (d — 1) and
obtain that z/(P’) = o’. If ¢ # 0, then Theorem 1 implies that p(P’) = 0. If ¢ = 0,
then we obtain that u(P’') = ¢ and z4([P',I]) = ¢(I). We take Q = [I1,...,14],
where I; is an interval on the z;-axis containing the origin in its interior, and
¢ € SL(d) that interchanges the first and last coordinates, and obtain from (1)
that we have ¢(I) = 0. Thus for ¢ # 1, ¢ > —1,

2(@)=o (35)

10



for @ € Q,(xq).
Now let ¢ = 1. Then Theorem 2 in dimension (d — 1) and Theorem 1 imply

that
Z(P)=am/(P") and u(P')=0bVy_1(P) (36)

where m/ is the moment vector in E~1 and V;_; is volume in E4~!. Thus we have

) a(I)m'(P")
([P, 1)) = < b(I) Va—1(P') >

where a,b : P! — R are measurable valuations. Let ¢ € SL(d) be the transforma-
tion that multiplies the first (d — 1) coordinates by r and the last coordinate by
r~(@=1)_ By (1) we have

2(¢[P', 1)) = z([r P',r==1]) = ¢z([P', 1))

and
([P 1)) = 2(r [P, r=]) = r T2 ([P',r D).
Therefore a is homogeneous of degree 1 and by (5) there are constants a1,as € R
such that
a([—s,t]) = a1 s+ azt.
The functional b is homogeneous of degree 2 and by (5) there are constants by, by €

R such that
b([—s,t]) = by s> + by t2.

Now let ¢ be the orthogonal reflection on the hyperplane E4~!. Then
([P 1)) = 2([P', 1) = ¢=([P', I]).

Consequently, a; = as and by = —by. To determine a; and by, let P =[I1,...,14]
where I; is an interval on the x;-axis containing the origin in its interior, I; = I,
and let ¢ be a linear transformation that interchanges the first and last coordinates.
Then ¢P = P and by (1) z4(¢P) = z1(P). By calculating m(Q), we obtain that

2(Q) = am(Q) (37)

for Q € Q,(z?) with a € R.

Let R%(x4) be the set of convex polytopes [P, u,v] where P’ € P4~! and u,v
are points in the halfspace r4 < 0 and z4 > 0, respectively. Denote by Q¢ the set
of SL(d)-images of Q € Q,(z4) and by R the set of SL(d)-images of R € R%(zy).
We need the following results.

Lemma 3. Let z : P4 — E? be a measurable valuation such that (1) holds. If z
vanishes on Q% and ¢ > —1, then z = o for every R € RZ.

11



Proof. Let R = [P',su,tv] where P/ € PI~l u = (_“1,) and v = (”1/) with

W, v € E% 1 and s,t > 0. Since z is a valuation, we have for 0 < ¢t < ¢’ and ¢/ > 0
suitably small

2([P', su,tv]) + z([P', —t" v,t' v]) = z([P, su, t' v]) + ([P, —t" v, tv]).
Since [P', —t" v, t'v], [P, —t" v,tv] € Q¢ and since z vanishes on Q% this implies
that z([P’, su,tv]) does not depend on ¢ > 0. A similar argument shows that it
does not depend on s > 0. Thus

2([P', su,tv]) = 2([P',u,v]) (38)

for s,t > 0.
For P’ fixed, set f(u',v") = z([P’,u,v]). Since z is a valuation, we have for
r > 0 suitably small

2([P',u,v]) + 2([P', —re,re]) = 2([P',u,re]) + z([P', —re,v])
where ¢ = (01/) By (38) this implies that
f(ul,v/) + f(olvol) = f(ulv O/) + f(olvv/)' (39>

Note that since [P/, —re,re] € Q%, we have f(o',0') = 0. Let

1 0 U1l

¢ = R : ) (40)
0 ... 1 Ud—1
0 0 1

Then q{)(i‘;) = (f;) and (b(”ll) = (”/T”/) = w. Since (1) holds, this implies that

za([P',u,v]) = 2a([9P', du, ¢v]) = za([P', —e, w])

and
fa(u',v") = fa(o,u' + ). (41)

Note that
2i([P', —e,w]) = 2 ([P, u,v]) + u; zq([P, u,v]) (42)

fori=1,...,d—1. Set gq(v') = fq(0o’,u’). Then we get by (39) and (41) that
ga(u' + ") = ga(u') + ga(v').

This is one of Cauchy’s functional equations. Since z is measurable, there is a
w'(P") € E4~! such that

za(R) = za([P',u,v]) = w'(P') - (u' + v') (43)
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for every u’,v’ € E4~1,

Using this we obtain the following. By (1), z4 is homogeneous of degree d g+ 1.
Since we know by (38) that z([r P’,ru,rv]) = 2([t P',u,v]) for r > 0, this and
(43) imply that

w'(r P') = rdatiy’(P'). (44)

On the other hand, let ¢p € GL(d) be the map that multiplies the first (d — 1)
coordinates with  and the last coordinate with 1. Then z4(¢R) = r(4=14 2,(R)
and by (43) this implies that

w'(r P') = @091/ (P").

Since ¢ > —1, this combined with (44) shows that w'(P’) = o’. Thus by (43),
Zd(R) =0.

Using this and (42) we obtain by the same arguments as for i = d that there
are w, (P') € E?-! such that

zi(R) = 2([P',u,v]) = wi;y (P') - (v + ')
fori=1,...,d—1. Asin (44) we have
wi; (rP') = rd‘”lwzi)(P’)
and using 1 shows that
wyy(r P’y = D90/ (§)(P).

Since ¢ > —1, this shows that w(;,)(P') = o' and z(R) =0 fori=1,....d - 1.
This completes the proof of the lemma. O

Lemma 4 ([8]). Let p : P¢ — R be a valuation. If u vanishes on R, then
w(P) =0 for every P € P2,

If ¢ # 1, (35) holds. Therefore by Lemmas 3 and 4 we obtain z(P) = o for every
P € P4, This proves Theorem 2 in this case. If ¢ = 1, (37) holds. We apply
Lemmas 3 and 4 to w(P) = z(P) — am(P) and obtain that w(P) = o for every
P € P4 Thus z(P) = am(P) for every P € P4, This completes the proof of
Theorem 2 for ¢ > —1.

2.2 Proof of Theorem 3 for ¢ < —1
1. We begin by proving Theorem 3 for ¢ < —1 and d = 2. Define

w(P) :7/%/22(]3)7

where



Then w : P2 — R is a measurable valuation. Since z transforms according to (2),
we have

w(¢P) = [det |~ W2 ¢~y w(P) = | det |~ pw(P)

for every ¢ € GL(2). Thus w transforms according to (1) with p = —¢ — 1.
Applying Theorem 1 for p > 0 and d = 2 gives the following. For ¢ # —2, we have
w(P) = o and

z(P)=o0

for every P € P2. For ¢ = —2, there is a constant ¢ € R such that w(P) = ¢m(P)
and

Z(P) = C¢;/12m(P)
for every P € P2. This proves Thereom 3 for ¢ < —1 and d = 2.

2. Now let d > 3. We use induction on the dimension d. Suppose that Theorem
3 is true for ¢ < —1 in dimension (d — 1).

For I fixed, define 2/ : P4~1 — E4~1 and p : P4~! — R by (32) and (33).
Then 2’ and y are measurable valuations on P41, As in the proof of Theorem 2
we have

Z(¢'P') =|det ¢’ |7/~ (P') and p(¢'P') =|dete’"|"u(P")  (45)

for every ¢ € GL(d — 1).

Let ¢ < —1, ¢ # —2. Theorem 3 for ¢ < —1 in dimension (d — 1) implies
that 2/(P’) = o’. If ¢ < —1, then Theorem 1 implies that u(P’) = 0. If ¢ = —1,
then we obtain that u(P’') = ¢Vy_1(P™) and z4([P’,I]) = c¢(I) Vy_1(P™*). We
take @ = [I1,...,Iq], where I; is an interval on the z;-axis containing the origin
in its interior, and ¢ € SL(d) that interchanges the first and last coordinates, and
obtain from (2) that we have ¢(I) = 0. Thus we get for ¢ < —1, ¢ # —2

z(@)=o (46)

for Q € Qu(zq).

Let ¢ = —2. If d = 3, then 2/(P’) = cw;/lzm(P’) and p(P') =0. Let Q and ¢
be defined as before. Then (2) shows that ¢ = 0. Therefore (46) holds. The same
argument as for ¢ # —2 now implies that (46) holds for d > 3.

We need the following result.

Lemma 5. Let z : P4 — E? be a measurable valuation such that (2) holds. If z
vanishes on Q% and ¢ < —1, then z(R) = o for every R € RZ.

Proof. Let R = [P',su,tv] where P' € PI~1 u = (_“1/) and v = (Ul/) with
w, v’ € B! and s,t > 0. We use notation and results from Lemma 3. We have
by (38) that

2([P', su,tv]) = z([P',u,v]) (47)
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for s,t > 0, and by (39)
fl' o) = f(W, o) + f(o,0"). (48)
where P’ is fixed and f(u',v") = z([P’,u,v]). Let ¢ be as in (40). Then qﬁ(i‘/l) =
(7)) and 6(1) = () = w, and by (2),
zi([P' u,v]) = zi([oP', du, ¢v]) = 2 ([P, —e,w])

and
fi(u',v") = fi(o',u' + ") (49)
fori=1,...,d—1. Note that
zq([P', —e,w]) = —uy 21 ([P, u,v]) —. .. —ug—1 2a—1 ([P, u, v))+za([P, u,v]). (50)

Set g;(u') = fi(o',u). Then we get by (48) and (49) that
gi(u +v') = gi(u') + g;(v").
These are equations of Cauchy’s type. Since z is measurable, there are w (P’ ) €
E4~1 such that
zi(R) = zi([P',u,v]) = wi;) (P') - (u/ + ) (51)
for every v/,v' € E¥landi=1,...,d— 1.

Using this we obtain for every i, 1 < i < d — 1, the following. By (2), z; is
homogeneous of degree —(d ¢+ 1). Since we know by (47) that z([r P/, r u,rv]) =
z([t P’ u,v]) for r > 0, this and (51) imply that

wiy (r P') = r= @t/ (P), (52)
On the other hand, let ¢y € GL(d) be the map that multiplies the first (d — 1)
coordinates by  and the last coordinate by 1. Then z;(yR) = r— (=D a+1) 5 (R),
and by (51)
wéi)(rP)*r ((d=1)q+2) ,, )(p/)
Since ¢ < —1, this combined with (52) shows that w(i) (P') = o/. Thus by (51),

Using this and (50), we get z4([P’, u,v]) = z4([P’, —e, w]). The same argument
as for 1 <i < d — 1 shows that there is a w’(P’) € E4~! such that

za(R) = za([P',u,v]) = w'(P') - (' + ') (53)
for every ', v’ € E~. Note that (52) hold for i = d. Let 1 be defined as before.
Then z4(¥R) = r~ (=14 z;(R), and by (53)

wiy (rP') = p((d=1) g+1) wi;y (P').

Since g < —1, this combined with (52) shows that z4(R) = 0. This completes the
proof of the lemma. O

We apply Lemmas 5 and 4 and obtain that z(P) = o for every P € P4, This
proves Theorem 3 for ¢ < —1.
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