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1 Introduction and Statement of Results

Let Kd denote the space of convex bodies in Euclidean d-dimensional space Ed

and let Kd
o denote the space of convex bodies in Ed containing the origin o in

their interiors. For convex polytopes denote the corresponding spaces by Pd and
Pd

o . Studying these spaces has always been a central subject of convex geometry
(see Gruber’s survey [3]). A special aspect here is the classification of additive
functions on these spaces. Here a function z defined on a space D and taking
values in an abelian semi-group is called additive or a valuation, if

z(K1) + z(K2) = z(K1 ∪K2) + z(K1 ∩K2)

whenever K1,K2,K1 ∪K2,K1 ∩K2 ∈ D.
Hadwiger’s classical characterization theorem states that every continuous,

rigid motion invariant, real valued valuation on Kd is a linear combination of quer-
massintegrals (see [4] and also Klain’s short proof [6]). This result has important
applications in geometric probability (see the books of Hadwiger [4], Schneider
and Weil [18], Klain and Rota [7]) and started the systematic study of valuations
on these spaces (see the surveys [11], [9]).

Here we are interested in the classification of vector valued valuations. For this
question, the fundamental notion is the moment vector

m(K) =
∫

K

x dx

of K ∈ Kn, i.e., m(K) is the centroid of K multiplied by the volume V (K) of K.
If we replace volume by the moment vector in the definiton of quermassintegrals,
we obtain the definition of quermassvectors. Schneider [14] proved the following
analogue of Hadwiger’s characterization theorem: Every continuous, rotation co-
variant, vector valued valuation z on Kd with the property that z(K + x)− z(K)
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is parallel to x for every x ∈ Ed is a linear combination of quermassvectors (see
also [5]). Characterizations of further important vector valued valuations like the
Steiner point [12] and the centroid [15] are due to Schneider. For detailed infor-
mation, we refer to [13] and [16], Chapter 5.4.

If we consider convex bodies containing the origin in their interiors, we get
additional examples of invariant valuations. To state our results, we fix some
notation. Let P ∗ denote the polar body of P , P ∈ Pd

o , i.e.,

P ∗ = {y ∈ Ed | x · y ≤ 1 for all x ∈ P},

where x · y denotes the standard inner product of x and y. Call z : Pd
o → R

or z : Pd
o → Ed (Borel) measurable if the pre-image of every open set is a Borel

set. Let GL(d) denote the group of general linear transformations, i.e., of linear
transformations φ with determinant detφ 6= 0, and let SL(d) denote the group of
special linear transformation, i.e., of linear transformations φ with detφ = 1.

Examples of SL(d) invariant, real valued valuations on Pd
o are volume, volume

of the polar body, and the constant. In [8], it was proved that if we consider
homogeneous functionals these are already all examples.

Theorem 1 ([8]). A functional µ : Pd
o → R, d ≥ 2, is a measurable valuation

with the property that
µ(φP ) = |detφ|q µ(P )

for every φ ∈ GL(d) with q ∈ R if and only if there is a constant c ∈ R such that

µ(P ) = c or µ(P ) = c V (P ) or µ(P ) = c V (P ∗)

for every P ∈ Pd
o .

Examples of vector valued valuations on Pd
o are the moment vector m(P ) and

the moment vector m∗(P ) of the polar body of P . It is easy to see that m and m∗

are measurable valuations, and that the following transformation rules hold. For
every φ ∈ GL(d) and P ∈ Pd

o ,

m(φP ) = |detφ|φm(P ) and m∗(φP ) = |detφ−t|φ−tm∗(P ),

where φ−t is the inverse of the transpose of φ. For d = 2 there are additional
examples. Let ψπ/2 denote the rotation by an angle π/2, let m̃(P ) = ψ−1

π/2m
∗(P )

and let m̃∗(P ) = m̃(P ∗). Then

m̃(φP ) = |detφ|−2 φ m̃(P ) and m̃∗(φP ) = |detφ−t|−2 φ−tm̃∗(P ),

We show that the valuations m,m∗, m̃, m̃∗ are the only examples of vector valued
valuations with these transformation properties.
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Theorem 2. A function z : Pd
o → Ed, d ≥ 2, is a measurable valuation with the

property that
z(φP ) = |detφ|q φz(P ) (1)

for every φ ∈ GL(d) with q ∈ R if and only if d ≥ 3 and there is a constant c ∈ R
such that

z(P ) = cm(P )

for every P ∈ Pd
o or d = 2 and there is a constant c ∈ R such that

z(P ) = cm(P ) or z(P ) = c ψ−1
π/2m

∗(P )

for every P ∈ P2
o .

Theorem 3. A function z : Pd
o → Ed, d ≥ 2, is a measurable valuation with the

property that
z(φP ) = |detφ−t|q φ−tz(P ) (2)

for every φ ∈ GL(d) with q ∈ R if and only if d ≥ 3 and there is a constant c ∈ R
such that

z(P ) = cm∗(P )

for every P ∈ Pd
o or d = 2 and there is a constant c ∈ R such that

z(P ) = cm∗(P ) or z(P ) = c ψ−1
π/2m(P )

for every P ∈ P2
o .

In recent years, also tensor valued valuations on the space of convex bodies
have attracted much interest (see [10], [1], [2], [17]). In a subsequent paper, we
will discuss this question for the space Pd

o .

2 Proofs

Let z : Pd
o → Ed be a measurable valuation such that (1) holds for fixed q ∈ R.

The function z∗, defined by z∗(P ) = z(P ∗) for P ∈ Pd
o , is again measurable. For

P,Q, P ∪Q ∈ Pd
o , we have

(P ∪Q)∗ = P ∗ ∩Q∗ and (P ∩Q)∗ = P ∗ ∪Q∗.

Therefore z∗(P ) + z∗(Q) = z∗(P ∩ Q) + z∗(P ∪ Q), i.e., z∗ is a valuation on Pd
o .

For φ ∈ GL(d) and P ∈ Pd
o , we have (φP )∗ = φ−t P ∗ and by (1)

z∗(φP ) = z((φP )∗) = z(φ−tP ∗) = |detφ−t|qφ−tz(P ∗) = |detφ−t|qφ−tz∗(P ).

Thus z∗ : Pd
o → Ed is a measurable valuation with the property that z∗(φP ) =

|detφ−t|qφ−tz∗(P ) for every φ ∈ GL(d), and Theorems 2 and 3 are equivalent for
fixed q ∈ R. This enables us to prove both theorems by first proving Theorem 2
for q > −1 and then Theorem 3 for q ≤ −1.
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2.1 Proof of Theorem 2 for q > −1

1. We begin by proving Theorem 2 for q > −1 and d = 2. We fix an x1-x2-
coordinate system and write x = (x1, x2)t for x ∈ E2. Denote by Qo(x1, x2) the
set of convex polygons Q = [I1, I2] where I1 and I2 are closed intervals lying on
the x1-axis and x2-axis, respectively, and containing the origin in their interiors.
Here [P1, . . . , Pn] denotes the convex hull of P1, . . . , Pn. Let I1 be fixed and define
w : P1

o → E2 by w(I2) = z([I1, I2]). Then w is a valuation on P1
o . Since z is

measurable, so is w. Let φ ∈ SL(2) be the linear transformation that multiplies
the x1-coordinate by a factor 1/r and the x2-coordinate by a factor r. By (1), we
have

z(φ[I1, I2]) = z([r−1 I1, r I2]) = φz([I1, I2]). (3)

Consequently,

z1([r−1 I1, r I2]) = r−2q−1 z1([I1, r2 I2]) = r−1 z1([I1, I2]),

z2([r−1 I1, r I2]) = r−2q−1 z2([I1, r2 I2]) = r z2([I1, I2]),

and
w1(r2 I2) = r2q w1(I2) and w2(r2 I2) = r2q+2 w2(I2),

i.e., w1 is homogeneous of degree q and w2 is homogeneous of degree q + 1.
We need the following result (cf. [8], equations (3) and (4)), which is a simple

consequence of solving Cauchy’s functional equation. Let ν : P1
o → R be measur-

able valuation that is homogeneous of degree r. If r = 0, then there are constants
a, b ∈ R such that

ν([−s, t]) = a log(
t

s
) + b (4)

for every s, t > 0, and if r 6= 0, then there are constants a, b ∈ R such that

ν([−s, t]) = a sr + b tr (5)

for every s, t > 0.

1.1. We consider the case q > −1, q 6= 0. It follows from (5) that

w1([−s, t]) = a1 s
q + b1 t

q and w2([−s, t]) = a2 s
q+1 + b2 t

q+1,

and

z1([I1, I2]) = a1(I1) s
q
2 + b1(I1) t

q
2 and z2([I1, I2]) = a2(I1) s

q+1
2 + b2(I1) t

q+1
2 ,

where I2 = [−s2, t2]. The functionals a1, b1, a2, b2 : P1
o → R are measurable

valuations. By (3) we have

z1([r−1 I1, r I2]) = r2q+1 z1([r−2 I1, I2]) = r−1 z1([I1, I2]),

z2([r−1 I1, r I2]) = r2q+1 z2([r−2 I1, I2]) = r z2([I1, I2]).
(6)
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Therefore a1, b1 are homogeneous of degree q + 1 and a2, b2 are homogeneous of
degree q. By (5) there are constants ai, bi, ci, di, i = 1, 2, such that

z1([I1, I2]) = (a1 s
q+1
1 + b1 t

q+1
1 ) sq

2 + (c1 s
q+1
1 + d1 t

q+1
1 ) tq2,

z2([I1, I2]) = (a2 s
q
1 + b2 t

q
1) s

q+1
2 + (c2 s

q
1 + d2 t

q
1) t

q+1
2

(7)

for every s1, t1, s2, t2 > 0. Let

φ =
(

0 −1
1 0

)
and ψ =

(
−1 0

0 1

)
.

By (1), we have

z1(φ[I1, I2]) = z1([−I2, I1]) = −z2([I1, I2]),
z2(φ[I1, I2]) = z2([−I2, I1]) = z1([I1, I2]),

(8)

and
z1(ψ[I1, I2]) = z1([−I1, I2]) = −z1([I1, I2]),
z2(ψ[I1, I2]) = z2([−I1, I2]) = z2([I1, I2]).

(9)

We use (7), compare coefficients in (8) and (9), and obtain

z1([I1, I2]) = a (sq+1
1 − tq+1

1 ) (sq
2 + tq2),

z2([I1, I2]) = a (sq
1 + tq1) (sq+1

2 − tq+1
2 )

(10)

for every s1, t1, s2, t2 > 0 with a ∈ R.
Let R2

o(x1) be the set of convex polygons [I1, u, v] where I1 is a closed interval
on the x1-axis containing the origin in its interior and u, v are points in the open
lower and upper halfplane, respectively. Denote by Q2

o the set of SL(2)-images of
Q ∈ Qo(x1, x2) and by R2

o the set of SL(2)-images of R ∈ R2
o(x1). We need the

following result.

Lemma 1. Let z : P2
o → R be a measurable valuation such that (1) and (10) hold.

If q > −1 and q 6= 0, 1, then z(Q) = o for every Q ∈ Q2
o.

Proof. Let R = [I1, s u, t v] where I1 = [−s1, t1] lies on the x1-axis, u =
(

x
−1

)
,

v =
(

y
1

)
with x, y ∈ R, s1, t1, s, t > 0. First we show that

lim
s,t→0

z2([I1, s u, t v]) (11)

exists. Since z2 is a valuation, we have for 0 < t′ < t and t′′ > 0 suitably large

z2([I1, s u, t v]) + z2([I1,−t′′ v, t′ v]) = z2([I1, s u, t′ v]) + z2([I1,−t′′ v, t v]).

Since [I1,−t′′ v, t′ v], [I1,−t′′ v, t v] ∈ Q2
o, we obtain by (1) and (10)

z2([I1, s u, t v])− z2([I1, s u, t′ v]) = a (sq
1 + tq1)(t

′q+1 − tq+1).
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Similarly, we have for 0 < s′ < s and s′′ > 0 suitably large

z2([I1, s u, t′ v])− z2([I1, s′ u, t′ v]) = a (sq
1 + tq1)(s

q+1 − s′q+1).

Since q > −1, this implies that the limit (11) exists. Note that

z2([I1, s u, t v]) = z2([I1, s′ u, t′ v]) + a (sq
1 + tq1)(s

q+1 − s′q+1 − tq+1 + t′q+1). (12)

Next, we show that the limit in (11) is equal to 0. For I1 fixed, set f(x, y) =
lims,t→0 z2([I1, s u, t v]), where u =

(
x
−1

)
and v =

(
y
1

)
. Since z2 is a valuation, we

have for r > 0 suitably small

z2([I1, s u, t v]) + z2([I1,−s r e, t r e]) = z2([I1, s u, t r e]) + z2([I1,−s r e, t v])

where e =
(
0
1

)
. This implies that

f(x, y) + f(0, 0) = f(x, 0) + f(0, y). (13)

Note that f(0, 0) = 0, since [I1,−s r e, t r e] ∈ Q2
o and since (10) holds. Set

φ =
(

1 x
0 1

)
.

By (1) we have z2([I1, s u, t v]) = z2([I1, s φu, t φv]) = z2([I1,−s e, t w]) where w =(
x+y

1

)
. Therefore

f(x, y) = f(0, x+ y). (14)

Set g(x) = f(0, x). Then it follows from (13) and (14) that

g(x+ y) = g(x) + g(y).

This is one of Cauchy’s functional equations. Since z2 is measurable, so is g.
Therefore there is a w2(I1) ∈ R such that

lim
s,t→0

z2([I1, s u, t v]) = g(x+ y) = w2(I1)(x+ y). (15)

Using this we obtain the following. By (1) z2 is homogeneous of degree 2q + 1.
Therefore

w2(r I1) = r2q+1w2(I1). (16)

On the other hand, let ψ ∈ GL(2) be the linear transformation that multiplies the
x1-coordinate by r and the x2-coordinate by 1. Then z2(ψR) = rq z2(R) and by
(15), w2(r I1) = rq−1 w2(I1). Since q > −1, this combined with (16) shows that
w2(I1) = 0. Thus we obtain by (12) that

z2([I1, s u, t v]) = a (sq
1 + tq1) (sq+1 − tq+1). (17)
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Let T s
r be the triangle with vertices

(
1
0

)
,

(
0
1

)
,

( −s
−s r

)
, r, s > 0. Then T s

r =
[I1, s r u, v] with I1 = [−s1, 1], s1 = s/(1 + s r), u =

(
x
−1

)
, x = −1/r, v =

(
y
1

)
,

y = 0. By (17) we have

z2(T s
r ) = a ((

s

1 + s r
)q + 1)((s r)q+1 − 1). (18)

To determine z1(T s
r ), note that T s

r = φT s r
1/r where

φ =
(

0 1
1 0

)
.

By (1) this implies that

z1(T s
r ) = z2(T s r

1/r) = a (sq+1 − 1)((
s r

1 + s
)q + 1). (19)

Let the triangle T s(x, y) be the convex hull of
(

y
1−y

)
,
(

x
1−x

)
,
(−s
−s

)
. For 0 ≤ x <

1/2 < y ≤ 1, we have T s(x, y) ∈ P2
o , T s

r = T s(0, 1) = T s(0, y) ∪ T s(x, 1) with
r = 1, and T s(x, y) = T s(0, y) ∩ T s(x, 1). Since z is a valution, this implies that

z(T s(0, y)) + z(T s(x, 1)) = z(T s(0, 1)) + z(T s(x, y)). (20)

Let

φ =
(

y x
1− y 1− x

)
.

Then T s(x, y) = φT s t
r with r = (2y − 1)/(1 − 2x) and t = (1 − 2x)/(y − x).

Therefore we get by (1)

z(T s(x, y)) = (y − x)q φz(T s t
r ).

If q > 0, then by (19) and (18) lims→0 z1(T s t
r ) = lims→0 z2(T s t

r ) = −a. Therefore
it follows from (20) that

a
(
yq+1 + (1− x)q(1 + x)

)
= a (1 + (y − x)q(y + x)) . (21)

Taking the limit as x, y → 1/2 in (21), we obtain a 2 (1/2)q = a. This shows that
a = 0 for q 6= 1. If −1 < q < 0, we set y = 1 − x and s = 1. Then the right
hand sight of (20) vanishes. We multiply (20) by (1 − 2x)q+1 and take the limit
as x→ 1/2, and obtain a (1/2)q+1 = 0. This shows that a = 0 for −1 < q < 0 and
completes the proof of the lemma.

For q > −1, q 6= 0, 1, we apply Lemma 1 and obtain z(Q) = o for every Q ∈ Q2
o.

Using Lemmas 3 and 4 (stated and proved below) shows that Theorem 2 holds for
q > −1, q 6= 0, 1, and d = 2. If q = 1, then (10) implies that z(Q) = −6 am(Q)
for every Q ∈ Q2

o. Applying Lemmas 3 and 4 to w(P ) = z(P ) + 6 am(P ) shows
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that w(P ) = o for every P ∈ P2
o . This implies that Theorem 2 holds for q = 1 and

d = 2.

1.2. We consider the case q = 0. Then we have by (4) and (5)

z1([I1, I2]) = a1(I1) log(
t2
s2

) + b2(I1),

z2([I1, I2]) = a2(I1) s2 + b2(I1) t2,

where I2 = [−s2, t2]. The functionals a1, b1, a2, b2 : P1
o → R are measurable

valuations. Equations (6) imply that a1, b1 are homogeneous of degree 1 and that
a2, b2 are homogeneous of degree 0. Thus, by (4) and (5) there are constants
ai, bi, ci, di, i = 1, 2, such that

z1([I1, I2]) = (a1 s1 + b1 t1) log(
t2
s2

) + (c1 s1 + d1 t1),

z2([I1, I2]) = (a2 log(
t1
s1

) + b2) s2 + (c2 log(
t1
s1

) + d2) t2.

Comparing coefficients in (8) and (9) shows that

z1([I1, I2]) = a(s1 − t1) and z2([I1, I2]) = a(s2 − t2) (22)

for every s1, t1, s2, t2 > 0 with a ∈ R.
We need the following result.

Lemma 2. Let z : P2
o → R be a measurable valuation such that (1) and (22) hold.

Then z(R) = o for every R ∈ R2
o.

Proof. Let R = [I1, s u, t v] where I1 = [−s1, t1] lies on the x1-axis, u =
(

x
−1

)
,

v =
(

y
1

)
with x, y ∈ R, s1, t1, s, t > 0. First, note that for q = 0 (22) implies that

(10) holds. Therefore we can proceed as in Lemma 1 and obtain by (17)

z2([I1, s u, t v]) = a (s− t). (23)

Next we show that
lim

s,t→0
z1([I1, s u, t v]) (24)

exists. Since z1 is a valuation, we have for 0 < t′ < t and t′′ > 0 suitably large

z1([I1, s u, t v]) + z1([I1,−t′′ v, t′ v]) = z1([I1, s u, t′ v]) + z1([I1,−t′′ v, t v]).

Since [I1,−t′′ v, t′ v], [I1,−t′′ v, t v] ∈ Q2
o, we obtain by (1) and (22)

z1([I1, s u, t v])− z1([I1, s u, t′ v]) = y a (t′ − t).

In a similar way, we see that

z1([I1, s u, t′ v])− z1([I1, s′ u, t′ v]) = −x a (s− s′).
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This implies that the limit (24) exists. Note that

z1([I1, s u, t v]) = z1([I1, s′ u, t′ v]) + y a (t′ − t)− x a (s− s′). (25)

For I1 fixed, set f(x, y) = lims,t→0 z1([I1, s u, t v]), where u =
(

x
−1

)
and v =

(
y
1

)
.

Since z1 is a valuation, we have for r > 0 suitably small

z1([I1, s u, t v]) + z1([I1,−s r e, t r e]) = z1([I1, s u, t r e]) + z1([I1,−s r e, t v])

where e =
(
0
1

)
. This implies that

f(x, y) + f(0, 0) = f(x, 0) + f(0, y). (26)

Note that f(0, 0) = a (s1 − t1), since [I1,−s r e, t r e] ∈ Q2
o. Set

φ =
(

1 x
0 1

)
.

Then we have

z1(φ[I1, s u, t v]) = z1([φI1, s φu, t φv]) = z1([I1,−s e, t w])

and by (1) and (23)

z1(φ[I1, s u, t v]) = z1([I1, s u, t v]) + x z2([I1, s u, t v])

where w =
(
x+y

1

)
. Consequently

f(x, y) = f(0, x+ y). (27)

Set g(x) = f(0, x)− f(0, 0). Then it follows from (26) and (27) that

g(x+ y) = g(x) + g(y).

This is one of Cauchy’s functional equations. Since z1 is measurable, so is g.
Therefore there is a w1(I1) ∈ R such that g(x) = w1(I1)x and

lim
s,t→0

z1([I1, s u, t v]) = g(x+ y) + f(0, 0) = w1(I1)(x+ y) + a (s1 − t1). (28)

Using this we obtain the following. By (1), z1 is homogeneous of degree 1. There-
fore

w1(r I1) = r w1(I1). (29)

On the other hand, let φ ∈ GL(2) be the linear transformation that multiplies
the x1-coordinate by r and the x2-coordinate by 1. Then z1(φR) = r z1(R) and
by (28), w1(r I1) = w1(I1). Combined with (29) this shows that w1(I1) = 0.
Therefore we obtain by (28) and (25) that

z1([I1, s u, t v]) = a (s1 − t1)− y a t− x a s. (30)
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Let T s
r be the triangle with vertices

(
1
0

)
,

(
0
1

)
,

( −s
−s r

)
, r, s > 0. Then T s

r =
[I1, s r u, v] with I1 = [−s1, 1], s1 = s/(1 + s r), u =

(
x
−1

)
, x = −1/r, v =

(
y
1

)
,

y = 0. By (30) and (23) we have

z1(T s
r ) = a (

s

1 + s r
− 1) + a s and z2(T s

r ) = a (s r − 1). (31)

We can determine z1(T s
r ) also in the following way. Since T s

r = φT s r
1/r with

φ =
(

0 1
1 0

)
we have by (1), z1(T s

r ) = z2(T s r
1/r) = a (s−1). Combined with (31) this shows that

a = 0. Because of (23) and (30) this completes the proof of the lemma.

Since z(R) = o for every R ∈ R2
o, using Lemma 4 we obtain that Theorem 2 holds

for q = 0 and d = 2.

2. Now let d ≥ 3. We use induction on the dimension d. Suppose that Theorem
2 is true for q > −1 in dimension (d− 1).

We fix an x1-. . .-xd-coordinate system, identify the x1-. . .-xd−1-coordinate hy-
perplane with Ed−1, and write x = (x1, . . . , xd)t = (x′, xd)t with x′ ∈ Ed−1 for
x ∈ Ed. Let Qo(xd) be the set of convex polytopes Q = [P ′, I] where P ′ ∈ Pd−1

o

and I is a closed interval lying on the xd-axis and containing the origin in its
interior. For I fixed, define z′ : Pd−1

o → Ed−1 and µ : Pd−1
o → R by

z′(P ′) =

 z1([P ′, I])
...

zd−1([P ′, I])

 (32)

and
µ(P ′) = zd([P ′, I]). (33)

Then z′ and µ are measurable valuations on Pd−1
o . For every φ′ ∈ GL(d − 1) we

have
z′(φ′P ′) = |detφ′|qφ′z′(P ′) and µ(φ′P ′) = |detφ′|qµ(P ′). (34)

This can be seen in the following way. Let φ ∈ GL(d) with coefficients φij be such
that φij = φ′ij for i, j = 1, . . . , d − 1, φdj = φid = 0 for i, j = 1, . . . , d − 1, and
φdd = 1. Then detφ = detφ′ and (1) shows that (34) holds.

Let q 6= 1, q > −1. We apply Theorem 2 for q > −1 in dimension (d− 1) and
obtain that z′(P ′) = o′. If q 6= 0, then Theorem 1 implies that µ(P ′) = 0. If q = 0,
then we obtain that µ(P ′) = c and zd([P ′, I]) = c(I). We take Q = [I1, . . . , Id],
where Ij is an interval on the xj-axis containing the origin in its interior, and
φ ∈ SL(d) that interchanges the first and last coordinates, and obtain from (1)
that we have c(I) = 0. Thus for q 6= 1, q > −1,

z(Q) = o (35)
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for Q ∈ Qo(xd).
Now let q = 1. Then Theorem 2 in dimension (d − 1) and Theorem 1 imply

that
z′(P ′) = am′(P ′) and µ(P ′) = b Vd−1(P ′) (36)

where m′ is the moment vector in Ed−1 and Vd−1 is volume in Ed−1. Thus we have

z([P ′, I]) =
(

a(I)m′(P ′)
b(I)Vd−1(P ′)

)
where a, b : P1

o → R are measurable valuations. Let φ ∈ SL(d) be the transforma-
tion that multiplies the first (d − 1) coordinates by r and the last coordinate by
r−(d−1). By (1) we have

z(φ[P ′, I]) = z([r P ′, r−(d−1)I]) = φz([P ′, I])

and
z(φ[P ′, I]) = z(r [P ′, r−dI]) = rd+1z([P ′, r−dI]).

Therefore a is homogeneous of degree 1 and by (5) there are constants a1, a2 ∈ R
such that

a([−s, t]) = a1 s+ a2 t.

The functional b is homogeneous of degree 2 and by (5) there are constants b1, b2 ∈
R such that

b([−s, t]) = b1 s
2 + b2 t

2.

Now let φ be the orthogonal reflection on the hyperplane Ed−1. Then

z(φ[P ′, I]) = z([P ′,−I]) = φz([P ′, I]).

Consequently, a1 = a2 and b1 = −b2. To determine a1 and b1, let P = [I1, . . . , Id]
where Ij is an interval on the xj-axis containing the origin in its interior, I1 = Id,
and let φ be a linear transformation that interchanges the first and last coordinates.
Then φP = P and by (1) zd(φP ) = z1(P ). By calculating m(Q), we obtain that

z(Q) = am(Q) (37)

for Q ∈ Qo(xd) with a ∈ R.
Let Rd

o(xd) be the set of convex polytopes [P ′, u, v] where P ′ ∈ Pd−1
o and u, v

are points in the halfspace xd < 0 and xd > 0, respectively. Denote by Qd
o the set

of SL(d)-images of Q ∈ Qo(xd) and by Rd
o the set of SL(d)-images of R ∈ Rd

o(xd).
We need the following results.

Lemma 3. Let z : Pd
o → Ed be a measurable valuation such that (1) holds. If z

vanishes on Qd
o and q > −1, then z = o for every R ∈ Rd

o.
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Proof. Let R = [P ′, s u, t v] where P ′ ∈ Pd−1
o , u =

(
u′

−1

)
and v =

(
v′

1

)
with

u′, v′ ∈ Ed−1 and s, t > 0. Since z is a valuation, we have for 0 < t < t′ and t′′ > 0
suitably small

z([P ′, s u, t v]) + z([P ′,−t′′ v, t′ v]) = z([P ′, s u, t′ v]) + z([P ′,−t′′ v, t v]).

Since [P ′,−t′′ v, t′ v], [P ′,−t′′ v, t v] ∈ Qd
o and since z vanishes on Qd

o, this implies
that z([P ′, s u, t v]) does not depend on t > 0. A similar argument shows that it
does not depend on s > 0. Thus

z([P ′, s u, t v]) = z([P ′, u, v]) (38)

for s, t > 0.
For P ′ fixed, set f(u′, v′) = z([P ′, u, v]). Since z is a valuation, we have for

r > 0 suitably small

z([P ′, u, v]) + z([P ′,−r e, r e]) = z([P ′, u, r e]) + z([P ′,−r e, v])

where e =
(
o′

1

)
. By (38) this implies that

f(u′, v′) + f(o′, o′) = f(u′, o′) + f(o′, v′). (39)

Note that since [P ′,−r e, r e] ∈ Qd
o, we have f(o′, o′) = 0. Let

φ =


1 . . . 0 u1

...
. . .

...
...

0 . . . 1 ud−1

0 . . . 0 1

 . (40)

Then φ
(

u′

−1

)
=

(
o′

−1

)
and φ

(
v′

1

)
=

(
u′+v′

1

)
= w. Since (1) holds, this implies that

zd([P ′, u, v]) = zd([φP ′, φu, φv]) = zd([P ′,−e, w])

and
fd(u′, v′) = fd(o′, u′ + v′). (41)

Note that
zi([P ′,−e, w]) = zi([P, u, v]) + ui zd([P ′, u, v]) (42)

for i = 1, . . . , d− 1. Set gd(u′) = fd(o′, u′). Then we get by (39) and (41) that

gd(u′ + v′) = gd(u′) + gd(v′).

This is one of Cauchy’s functional equations. Since z is measurable, there is a
w′(P ′) ∈ Ed−1 such that

zd(R) = zd([P ′, u, v]) = w′(P ′) · (u′ + v′) (43)
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for every u′, v′ ∈ Ed−1.
Using this we obtain the following. By (1), zd is homogeneous of degree d q+1.

Since we know by (38) that z([r P ′, r u, r v]) = z([t P ′, u, v]) for r > 0, this and
(43) imply that

w′(r P ′) = rd q+1w′(P ′). (44)

On the other hand, let ψ ∈ GL(d) be the map that multiplies the first (d − 1)
coordinates with r and the last coordinate with 1. Then zd(ψR) = r(d−1)q zd(R)
and by (43) this implies that

w′(r P ′) = r(d−1)q−1 w′(P ′).

Since q > −1, this combined with (44) shows that w′(P ′) = o′. Thus by (43),
zd(R) = 0.

Using this and (42) we obtain by the same arguments as for i = d that there
are w′(i)(P

′) ∈ Ed−1 such that

zi(R) = zi([P ′, u, v]) = w′(i)(P
′) · (u′ + v′)

for i = 1, . . . , d− 1. As in (44) we have

w′(i)(r P
′) = rd q+1w′(i)(P

′)

and using ψ shows that

w′(i)(r P
′) = r(d−1)q w′(i)(P ′).

Since q > −1, this shows that w′(i)(P
′) = o′ and zi(R) = 0 for i = 1, . . . , d − 1.

This completes the proof of the lemma.

Lemma 4 ([8]). Let µ : Pd
o → R be a valuation. If µ vanishes on Rd

o, then
µ(P ) = 0 for every P ∈ Pd

o .

If q 6= 1, (35) holds. Therefore by Lemmas 3 and 4 we obtain z(P ) = o for every
P ∈ Pd

o . This proves Theorem 2 in this case. If q = 1, (37) holds. We apply
Lemmas 3 and 4 to w(P ) = z(P ) − am(P ) and obtain that w(P ) = o for every
P ∈ Pd

o . Thus z(P ) = am(P ) for every P ∈ Pd
o . This completes the proof of

Theorem 2 for q > −1.

2.2 Proof of Theorem 3 for q ≤ −1

1. We begin by proving Theorem 3 for q ≤ −1 and d = 2. Define

w(P ) = ψπ/2 z(P ),

where

ψπ/2 =
(

0 −1
1 0

)
.
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Then w : P2
o → R is a measurable valuation. Since z transforms according to (2),

we have

w(φP ) = |detφ|−qψπ/2 φ
−tψ−1

π/2w(P ) = |detφ|−q−1φw(P )

for every φ ∈ GL(2). Thus w transforms according to (1) with p = −q − 1.
Applying Theorem 1 for p ≥ 0 and d = 2 gives the following. For q 6= −2, we have
w(P ) = o and

z(P ) = o

for every P ∈ P2
o . For q = −2, there is a constant c ∈ R such that w(P ) = cm(P )

and
z(P ) = c ψ−1

π/2m(P )

for every P ∈ P2
o . This proves Thereom 3 for q ≤ −1 and d = 2.

2. Now let d ≥ 3. We use induction on the dimension d. Suppose that Theorem
3 is true for q ≤ −1 in dimension (d− 1).

For I fixed, define z′ : Pd−1
o → Ed−1 and µ : Pd−1

o → R by (32) and (33).
Then z′ and µ are measurable valuations on Pd−1

o . As in the proof of Theorem 2
we have

z′(φ′P ′) = |detφ′−t|qφ′−t
z′(P ′) and µ(φ′P ′) = |detφ′−t|qµ(P ′) (45)

for every φ′ ∈ GL(d− 1).
Let q ≤ −1, q 6= −2. Theorem 3 for q ≤ −1 in dimension (d − 1) implies

that z′(P ′) = o′. If q < −1, then Theorem 1 implies that µ(P ′) = 0. If q = −1,
then we obtain that µ(P ′) = c Vd−1(P ′∗) and zd([P ′, I]) = c(I)Vd−1(P ′∗). We
take Q = [I1, . . . , Id], where Ij is an interval on the xj-axis containing the origin
in its interior, and φ ∈ SL(d) that interchanges the first and last coordinates, and
obtain from (2) that we have c(I) = 0. Thus we get for q ≤ −1, q 6= −2

z(Q) = o (46)

for Q ∈ Qo(xd).
Let q = −2. If d = 3, then z′(P ′) = c ψ−1

π/2m(P ′) and µ(P ′) = 0. Let Q and φ
be defined as before. Then (2) shows that c = 0. Therefore (46) holds. The same
argument as for q 6= −2 now implies that (46) holds for d ≥ 3.

We need the following result.

Lemma 5. Let z : Pd
o → Ed be a measurable valuation such that (2) holds. If z

vanishes on Qd
o and q ≤ −1, then z(R) = o for every R ∈ Rd

o.

Proof. Let R = [P ′, s u, t v] where P ′ ∈ Pd−1
o , u =

(
u′

−1

)
and v =

(
v′

1

)
with

u′, v′ ∈ Ed−1 and s, t > 0. We use notation and results from Lemma 3. We have
by (38) that

z([P ′, s u, t v]) = z([P ′, u, v]) (47)
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for s, t > 0, and by (39)

f(u′, v′) = f(u′, o′) + f(o′, v′). (48)

where P ′ is fixed and f(u′, v′) = z([P ′, u, v]). Let φ be as in (40). Then φ
(

u′

−1

)
=(

o′

−1

)
and φ

(
v′

1

)
=

(
u′+v′

1

)
= w, and by (2),

zi([P ′, u, v]) = zi([φP ′, φu, φv]) = zi([P ′,−e, w])

and
fi(u′, v′) = fi(o′, u′ + v′) (49)

for i = 1, . . . , d− 1. Note that

zd([P ′,−e, w]) = −u1 z1([P ′, u, v])−. . .−ud−1 zd−1([P ′, u, v])+zd([P ′, u, v]). (50)

Set gi(u′) = fi(o′, u′). Then we get by (48) and (49) that

gi(u′ + v′) = gi(u′) + gi(v′).

These are equations of Cauchy’s type. Since z is measurable, there are w′(i)(P
′) ∈

Ed−1 such that
zi(R) = zi([P ′, u, v]) = w′(i)(P

′) · (u′ + v′) (51)

for every u′, v′ ∈ Ed−1 and i = 1, . . . , d− 1.
Using this we obtain for every i, 1 ≤ i ≤ d − 1, the following. By (2), zi is

homogeneous of degree −(d q+ 1). Since we know by (47) that z([r P ′, r u, r v]) =
z([t P ′, u, v]) for r > 0, this and (51) imply that

w′(i)(r P
′) = r−(d q+1)w′(P ′). (52)

On the other hand, let ψ ∈ GL(d) be the map that multiplies the first (d − 1)
coordinates by r and the last coordinate by 1. Then zi(ψR) = r−((d−1) q+1) zi(R),
and by (51)

w′(i)(r P
′) = r−((d−1) q+2) w′(i)(P

′).

Since q ≤ −1, this combined with (52) shows that w′(i)(P
′) = o′. Thus by (51),

zi(R) = 0.
Using this and (50), we get zd([P ′, u, v]) = zd([P ′,−e, w]). The same argument

as for 1 ≤ i ≤ d− 1 shows that there is a w′(P ′) ∈ Ed−1 such that

zd(R) = zd([P ′, u, v]) = w′(P ′) · (u′ + v′) (53)

for every u′, v′ ∈ Ed−1. Note that (52) hold for i = d. Let ψ be defined as before.
Then zd(ψR) = r−(d−1) q zi(R), and by (53)

w′(i)(r P
′) = r−((d−1) q+1) w′(i)(P

′).

Since q ≤ −1, this combined with (52) shows that zd(R) = 0. This completes the
proof of the lemma.

We apply Lemmas 5 and 4 and obtain that z(P ) = o for every P ∈ Pd
o . This

proves Theorem 3 for q ≤ −1.
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