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Abstract

Centroid and difference bodies define SL(n) equivariant operators on con-
vex bodies and these operators are valuations with respect to Minkowski ad-
dition. We derive a classification of SL(n) equivariant Minkowski valuations
and give a characterization of these operators. We also derive a classification
of SL(n) contravariant Minkowski valuations and of Lp-Minkowski valuations.

2000 AMS subject classification: 52A20 (52B11, 52B45)

Centroid, difference, and projection bodies are fundamental notions in the affine
geometry of convex bodies. The most important affine isoperimetric inequalities
(and open problems) are formulated using these bodies. We show that the operators
defined by these bodies together with the identity are basically the only examples
of homogeneous, SL(n) equivariant or contravariant Minkowski valuations.

The centroid body ΓK of a convex body K ⊂ Rn is a classical notion from
geometry (see [5], [16], [36]) that has attracted much attention in recent years (see
[4], [6], [8], [20], [21], [25], [27], [31]). If K is o-symmetric, then ΓK is the body
whose boundary consists of the locus of the centroids of the halves of K formed
when K is cut by hyperplanes through the origin. In general it can be defined in
the following way. Let Kn denote the set of convex bodies (that is, of compact,
convex sets) in Rn, and let Kn

o denote the set of convex bodies in Rn that contain
the origin. A convex body K is uniquely determined by its support function h(K, ·),
where h(K, v) = max{v · x : x ∈ K}, v ∈ Rn, and where v · x denotes the standard
inner product of v and x. The moment body MK of K ∈ Kn

o is the convex body
whose support function is given by

h(MK, v) =
∫

K

|v · x| dx.

If the n-dimensional volume voln(K) of K is positive, then the centroid body ΓK
of K is defined by

ΓK =
1

voln(K)
MK.

The fundamental affine isoperimetric inequality for centroid bodies is the Buse-
mann-Petty centroid inequality [32]: Among bodies of given volume precisely for
centered ellipsoids the centroid bodies have minimal volume. It is one of the major
open problems to determine the reverse inequality (see [31]).

The difference body DK of K ∈ Kn is the Minkowski (or vector) sum of K and
its reflection in the origin, that is,

DK = K + (−K).

The operation that forms the difference body is essentially that known as central
symmetrization and as such finds many applications in geometry and mathematical
physics. The fundamental affine isoperimetric inequality for difference bodies is
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the Rogers-Shephard inequality [34]: Among bodies of given volume precisely for
simplices the difference bodies have maximal volume.

The moment and difference operators are both Minkowski valuations. Here an
operator Z is called a Minkowski valuation if

ZK1 + ZK2 = Z(K1 ∪K2) + Z(K1 ∩K2),

whenever K1,K2,K1 ∪K2 ∈ Kn and addition on Kn is Minkowski addition. Valua-
tions on convex bodies are a classical concept. In 1900, Dehn used them for solving
Hilbert’s third problem on the non-equidecomposability of convex polytopes of equal
volume in R3. Probably the most famous result on valuations is Hadwiger’s charac-
terization of rigid motion invariant real valued valuations continuous with respect
to the Hausdorff metric as linear combinations of quermassintegrals. See [9], [15],
[29], [30] for information on the classical theory and [1] - [3], [11] - [14], [18], [19],
[37] for some of the more recent results.

An operator Z : Kn → Kn is Minkowski additive if Z(K1 +K2) = ZK1 + ZK2

for K1,K2 ∈ Kn. Note that every Minkowski additive operator is a Minkowski val-
uation but not vice versa. Continuous Minkowski additive operators that commute
with rigid motions are called endomorphisms. Schneider [35] (see also [36]) showed
that there is a great variety of these operators. He obtained a complete classifi-
cation of endomorphisms in K2 and characterizations of special endomorphisms in
Kn. These results were further extended by Kiderlen [10].

We show that the moment and difference operators are basically the only ex-
amples of homogeneous, SL(n) equivariant Minkowski valuations. Here an operator
Z : Kn

o → Kn is called SL(n) equivariant, if

Z(φK) = φZK for φ ∈ SL(n),

and it is called homogeneous of degree r, r ∈ R, if

Z(sK) = sr ZK for s ≥ 0.

Let Pn
o denote the set of convex polytopes in Rn that contain the origin. For

n ≥ 3, we show that Z : Pn
o → Kn is a homogeneous, SL(n) equivariant Minkowski

valuation if and only if there are constants c0 ∈ R, c1, c2 ≥ 0 such that

ZP = c0m(P ) + c1 MP or ZP = c1 P + c2(−P )

for every P ∈ Pn
o , where m(P ) is the moment vector of P . In particular, this

implies that these are all continuous, homogeneous, SL(n) equivariant Minkowski
valuations on Kn

o . Combined with McMullen’s polynomial expansion for translation
invariant valuations [28], it implies that Z : Pn → Kn is a translation invariant,
SL(n) equivariant Minkowski valuation if and only if there is a constant c ≥ 0 such
that

ZP = cDP

for every P ∈ Pn. We also derive the corresponding results in the context of the
Lp-Brunn-Minkowski theory and give a characterization of Lp-centroid bodies.

The projection body ΠK of K is the convex body whose support function is
given for u ∈ Sn−1 by

h(ΠK,u) = voln−1(K|u⊥),

where voln−1 denotes (n − 1)-dimensional volume and K|u⊥ denotes the image
of the orthogonal projection of K onto the subspace orthogonal to u. Projection
bodies, which were introduced by Minkowski, are an important tool for studying
projections (see [5]). In recent years, projection bodies and their generalizations
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in the Lp-Brunn-Minkowski theory have attracted increased attention, see [7], [25],
[26], [39]. The fundamental affine isoperimetric inequalities for projection bodies
are the Petty projection inequality [33] and the Zhang projection inequality [38]:
Among bodies of given volume precisely for ellipsoids the polar projection bodies
have maximal volume and precisely for simplices the polar projection bodies have
minimal volume. It is a major open problem to determine the corresponding results
for the volume of the projection body itself (see [23]).

We derive a classification of homogeneous, SL(n) contravariant Minkowski val-
uations and give a characterization of the projection operator. Here an operator
Z : Kn

o → Kn is called SL(n) contravariant, if

Z(φK) = φ−t ZK for φ ∈ SL(n),

where φ−t denotes the inverse of the transpose of φ. This classification generalizes
a result in [17] where it is shown that an operator Z : Pn → Pn is a Minkowski
valuation that is SL(n) contravariant, translation invariant and homogeneous of
degree (n − 1) if and only if it is a multiple of the projection operator. Here we
obtain that an operator Z : Pn → Kn is a translation invariant, SL(n) contravariant
Minkowski valuation if and only if there is a constant c ≥ 0 such that

ZP = cΠP

for every P ∈ Pn. We also derive the corresponding results in the context of the
Lp-Brunn-Minkowski theory.

1 Equivariant Minkowski valuations

In this section, our main result on the classification of SL(n) equivariant Minkowski
valuations is formulated. The important examples are the difference operator, the
moment operator and the moment vector. Here the moment vector m(K) of a
convex body K ∈ Kn

o is defined by

m(K) =
∫

K

x dx.

Note that the moment operator M : Kn
o → Kn and the moment vector m : Kn

o → Rn

commute (up to a determinantal factor) with general linear transformations:

M(φK) = |detφ|φMK and m(φK) = |detφ|φm(K) for φ ∈ GL(n).

The difference operator and the identity are SL(n) equivariant and homogeneous of
degree 1. As we will see, for n ≥ 3 these are already all examples of homogeneous,
SL(n) equivariant Minkowski valuations on Pn

o .
For n = 2, we have an additional example. Let Eo(P ) be the set of edges of P

that contain the origin. For a0, b0 ≥ 0 and ai, bi ∈ R with ai+b0+b1, a0+a1+bi ≥ 0,
i = 1, 2, define Z : P2

o → P2
o by

ZP = a0 P + b0(−P ) +
∑

(aiEi + bi(−Ei)), (1)

where the sum is taken over Ei ∈ Eo(P ). Here and throughout formulae like (1)
have to be read as

h(ZP, v) = a0 h(P, v) + b0 h(−P, v) +
∑

(ai h(Ei, v) + bi h(−Ei, v))

for v ∈ R2. The notation is only used if h(ZP, ·) is the support function of a convex
body, which is here guaranteed by the conditions on ai, bi. Note that Z : P2

o →

3



K2 defined by (1) is SL(2) equivariant, homogeneous of degree 1, and Minkowski
additive.

The following result is our classification of SL(n) equivariant Minkowski valua-
tions. The proof is given in Section 3.

Theorem 1. Let Z : Pn
o → Kn, n ≥ 3, be a Minkowski valuation which is SL(n)

equivariant and homogeneous of degree r. If r = n + 1, then there are constants
a0 ∈ R, a1 ≥ 0 such that

ZP = a0m(P ) + a1 MP

for every P ∈ Pn
o . If r = 1, then there are constants a, b ≥ 0 such that

ZP = aP + b(−P )

for every P ∈ Pn
o . In all other cases, ZP = {o} for every P ∈ Pn

o .
Let Z : P2

o → K2 be a Minkowski valuation which is SL(2) equivariant and
homogeneous of degree r. If r = 3, then there are constants a0 ∈ R, a1 ≥ 0 such
that

ZP = a0m(P ) + a1 MP

for every P ∈ P2
o . If r = 1, then there are constants a0, b0 ≥ 0 and ai, bi ∈ R with

ai + b0 + b1, a0 + a1 + bi ≥ 0, i = 1, 2, such that

ZP = a0 P + b0(−P ) +
∑

(aiEi + bi(−Ei))

for every P ∈ P2
o , where the sum is taken over Ei ∈ Eo(P ). In all other cases,

ZP = {o} for every P ∈ P2
o .

Let Kn and Kn
o be equipped with the topology defined by the Hausdorff metric.

We have the following simple consequence of Theorem 1. Note that there are further
examples of homogeneous, SL(n) equivariant Minkowski valuations on Kn

o that are
not continuous (see [35]).

Corollary 1.1. If Z : Kn
o → Kn, n ≥ 2, is a continuous, homogeneous, SL(n)

equivariant Minkowski valuation, then there are constants a0 ∈ R, a1, a2 ≥ 0 such
that

ZK = a0m(K) + a1 MK or ZK = a1K + a2(−K)

for every K ∈ Kn
o .

For translation invariant valuations, we obtain the following result.

Corollary 1.2. If Z : Pn → Kn, n ≥ 2, is a translation invariant, SL(n) equivari-
ant Minkowski valuation, then there is a constant c ≥ 0 such that Z = cD.

Here an operator Z : Kn → Kn is called translation invariant, if Z(K + x) = ZK
for x ∈ Rn. The proof of this corollary is given in Section 7.

2 Equivariant Lp-Minkowski valuations

For p > 1, the Lp-Minkowski sum K1 +p K2 of K1,K2 ∈ Kn
o is defined by

hp(K1 +p K2, v) = hp(K1, v) + hp(K2, v)

for v ∈ Rn. This notion, which was introduced by Firey in the middle of the last
century, is at the heart of the Lp-Brunn-Minkowski theory (or Brunn-Minkowski-
Firey theory), see [22], [24]. We derive a classification of homogeneous, SL(n)
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equivariant Lp-Minkowski valuations. Here an operator Z : Kn
o → Kn

o is called an
Lp-Minkowski valuation if

ZK1 +p ZK2 = Z(K1 ∪K2) +p Z(K1 ∩K2),

whenever K1,K2,K1 ∪K2 ∈ Kn
o .

The important examples of SL(n) equivariant Lp-Minkowski valuations are the
Lp-moment operator and the Lp-difference operator. These can be defined in the
following way. For −1 ≤ τ ≤ 1, define Mτ

p : Kn
o → Kn

o by

hp(Mτ
p K, v) =

∫
K

(|v · x|+ τ(v · x))p dx

for v ∈ Rn. For τ = 0, we obtain the Lp-moment operator Mp. If voln(K) > 0,
then the Lp-centroid body ΓpK of K is defined by

ΓpK =
cn,p

voln(K)
MpK,

where the constant cn,p is chosen such that ΓpB = B for the unit ball B. Lp-
centroid bodies were introduced by Lutwak and Zhang [27], for p = 2 they are the
Legendre ellipsoids of classical mechanics. Lutwak, Yang, and Zhang [25] obtained
the Lp-version of the Busemann-Petty centroid inequality, see Campi and Gronchi
[4] for a different proof. Note that

Mτ
p(φK) = |detφ|1/p φMτ

p K for φ ∈ GL(n),

and that Mτ
p is an Lp-Minkowski valuation. The Lp-difference operator Dp, defined

by
DpK = K +p (−K)

for K ∈ Kn
o , and the identity are SL(n) equivariant, homogeneous of degree 1 and

Lp-Minkowski valuations. We will show that for n ≥ 3 these are all examples.
For n = 2, there are additional examples. For a0, b0 ≥ 0 and ai, bi ∈ R with

a0 + ai, b0 + bi ≥ 0, i = 1, 2, define Z : P2
o → K2

o by

ZP = a0 P +p b0(−P ) +p

∑p
(aiEi +p bi(−Ei))

for every P ∈ P2
o , where the sum is taken over Ei ∈ Eo(P ). Here

∑p denotes Lp-
Minkowski sum. Then Z : P2

o → K2
o is SL(2) equivariant, homogeneous of degree

1, and Lp-Minkowski additive. A further operator is obtained in the following way.
Let ψπ/2 denote the rotation by an angle π/2 and for −1 ≤ τ ≤ 1, let Π̂τ

p be the
operator defined in Section 5. Since Π̂τ

p is SL(2) contravariant, we have

(ψπ/2 Π̂τ
p)(φP ) = ψπ/2 φ

−tψ−1
π/2 (ψπ/2 Π̂τ

p)P = φ(ψπ/2 Π̂τ
p)P,

that is, ψπ/2 Π̂τ
p is SL(2) equivariant. Since Π̂τ

p is homogeneous of degree 2/p − 1,
an Lp-Minkowski valuation and not continuous, so is ψπ/2 Π̂τ

p .
The following result is our classification of SL(n) equivariant Lp-Minkowski val-

uations. The proof is given in Section 3.

Theorem 1p. Let Z : Pn
o → Kn

o , n ≥ 3, be an Lp-Minkowski valuation, p > 1,
which is SL(n) equivariant and homogeneous of degree r. If r = n/p+1, then there
are constants a ≥ 0 and −1 ≤ τ ≤ 1 such that

ZP = aMτ
p P
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for every P ∈ Pn
o . If r = 1, then there are constants a, b ≥ 0 such that

ZP = aP +p b(−P )

for every P ∈ Pn
o . In all other cases, ZP = {o} for every P ∈ Pn

o .
Let Z : P2

o → K2
o be an Lp-Minkowski valuation, p > 1, which is SL(2) equiv-

ariant and homogeneous of degree r. If r = 2/p+ 1, then there are constants a ≥ 0
and −1 ≤ τ ≤ 1 such that

ZP = aMτ
p P

for every P ∈ P2
o . If r = 1, then there are constants a0, b0 ≥ 0 and ai, bi ∈ R with

a0 + ai, b0 + bi ≥ 0, i = 1, 2, such that

ZP = a0 P +p b0(−P ) +p

∑p
(aiEi +p bi(−Ei))

for every P ∈ P2
o , where the sum is taken over Ei ∈ Eo(P ). If r = 2/p − 1, then

there are constants a ≥ 0 and −1 ≤ τ ≤ 1 such that

ZP = aψπ/2 Π̂τ
p P

for every P ∈ P2
o . In all other cases, ZP = {o} for every P ∈ P2

o .

As a simple consequence we obtain the following corollary.

Corollary. If Z : Kn
o → Kn

o , n ≥ 2, is a continuous, homogeneous, SL(n) equiv-
ariant Lp-Minkowski valuation, p > 1, then there are constants a, b ≥ 0 and
−1 ≤ τ ≤ 1 such that

ZK = aMτ
p K or ZK = aK +p b(−K)

for every K ∈ Kn
o .

3 Proof of Theorems 1 and 1p

In the following, we work in n-dimensional Euclidean space Rn with origin o, a fixed
orthonormal basis e1, . . ., en, and use coordinates x = (x1, . . . , xn) for x ∈ Rn. An
operator Z : Pn

o → Kn is called simple, if ZP = {o} for every P ∈ Pn
o with

dimP < n. Here dimP is the dimension of the linear hull, linP , of P . As a
first step in the proof, we show that every operator which is SL(n) equivariant and
homogeneous of degree r 6= 1 is simple.

Lemma 1. Let Z : Pn
o → Kn be an operator which is SL(n) equivariant and

homogeneous of degree r. Then ZP ⊂ linP . If dimP ≤ (n − 1) and r 6= 1, then
ZP = {o}.

Proof. Let P ∈ Pn
o be such that linP is the k-dimensional subspace with equation

xk+1 = . . . = xn = 0. Since every P ′ ∈ Pn
o with dimP ′ = k is a linear image of

such a polytope P and since Z is SL(n) equivariant, it suffices to prove the lemma
in this case. Let

φ =
(
I B
0 A

)
,

where I is the k × k identity matrix, 0 is the (n − k) × k zero matrix, B is an
(n− k)× k matrix, and A is an (n− k)× (n− k) matrix with determinant 1. Then
φ ∈ SL(n) and

φP = P. (2)
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Write x = (x′, x′′) with x′ = (x1, . . . , xk) and x′′ = (xk+1, . . . , xn) for x ∈ Rn. Let
x ∈ ZP . Since Z is SL(n) equivariant, (2) implies that y = φx ∈ ZP . Therefore(

y′

y′′

)
=

(
x′ +Bx′′

Ax′′

)
∈ ZP. (3)

This is true for every (n − k) × k matrix B and every (n − k) × (n − k) matrix
A with determinant 1. If x′′ 6= o′′, this implies that y′ can be an arbitrary vector.
Since ZP is bounded, it follows that x′′ = o′′. Thus ZP ⊂ linP .

Now, let r 6= 1 and let

φ =
(
I 0
0 s

)
,

where I is the (n− 1)× (n− 1) identity matrix and s ≥ 0. Then

Z(φP ) = s(r−1)/n ZP = ZP.

Since this holds for every s ≥ 0 and ZP is bounded, this implies that ZP = {o}.

Next, we show that we can reduce the proof of Theorem 1 to showing that the
corresponding results hold for simplices. The arguments used in the proof of the
next lemma are well known from several extension theorems for valuations (cf. [9]
or [15]).

Lemma 2. Let Z1,Z2 : Pn
o → Kn be Minkowski valuations. If Z1 S = Z2 S for

every n-dimensional simplex S ∈ Pn
o , then Z1 = Z2.

Proof. If T ′ ∈ Pn
o is a simplex with dimT ′ = k < n, then there is a simplex T

such that T ′ = T ∩ H, where H = linT ′ and such that T ∩ H+ and T ∩ H− are
both (k + 1)-dimensional. Here H+,H− denote the closed halfspaces bounded by
H. Since Zi is a valuation, we have for i = 1, 2

Zi T + Zi T
′ = Zi(T ∩H+) + Zi(T ∩H−).

If Z1 S = Z2 S for every (k + 1)-dimensional simplex S, this implies that Z1 T
′ =

Z2 T
′. Thus we get by induction that Z1 T = Z2 T for every simplex T ∈ Pn

o .
For x ∈ Rn and i, i = 1, 2, fixed, µ(P ) = h(Zi P, x) is a real valued valuation.

Let P ∈ Pn
o be dissected into n-dimensional polytopes P1, . . . Pm ∈ Pn

o , that is,
P = P1 ∪ . . . ∪ Pm and the Pi’s have pairwise disjoint interiors. Induction on the
dimension and the number of terms shows that the inclusion-exclusion principle

µ(P ) =
∑

I

(−1)|I|−1µ(PI) (4)

holds, where the sum is taken over all ordered k-tuples I = {i1, . . . , ik} such that
1 ≤ i1 < . . . < ik ≤ n and k = 1, . . . ,m. Here |I| denotes the cardinality of I and
PI = Pi1 ∩ . . . ∩ Pik

(cf. [15]).
Let P ∈ Pn

o . If dimP = n, then we dissect P into n-dimensional simplices
Si ∈ Pn, i = 1, . . . ,m. Then (4) implies that Z1 P = Z2 P . If dimP < k, we use
the same argument in linP .

The following lemma is used to prove Theorem 1p. The proof is same as that of
Lemma 2.

Lemma 2p. Let Z1,Z2 : Pn
o → Kn

o be Lp-Minkowski valuations. If Z1 S = Z2 S
for every n-dimensional simplex S ∈ Pn

o , then Z1 = Z2.
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To prove Theorems 1 and 1p we determine the value of Z for n-dimensional
simplices. Since Z is SL(n) equivariant and homogeneous, it is enough to consider
a standard simplex. So let T be the simplex with vertices o, e1, . . . , en.

We start with the planar case.

Proposition 1. Let Z : P2
o → K2 be a Minkowski valuation which is SL(2) equiv-

ariant and homogeneous of degree r. If r = 3, then there are constants a0 ∈ R,
a1 ≥ 0 such that

ZT = a0m(T ) + a1 MT.

If r = 1, then there are constants a0, b0 ≥ 0 and ai, bi ∈ R with ai + b0 + b1, a0 +
a2 + bi ≥ 0, i = 1, 2, such that

ZT = a0 T + b0(−T ) + a1 [o, e1] + b1 [o,−e1] + a2 [o, e2] + b2 [o,−e2].

In all other cases, ZT = {o}.

Proposition 1p. Let Z : P2
o → K2

o be an Lp-Minkowski valuation, p > 1, which
is SL(2) equivariant and homogeneous of degree r. If r = 2/p + 1, then there are
constants a ≥ 0 and −1 ≤ τ ≤ 1 such that

ZT = aMτ
p T.

If r = 1, then there are constants a0, b0 ≥ 0 and ai, bi ∈ R with a0 + ai, b0 + bi ≥ 0,
i = 1, 2, such that

ZT = a0 T +p b0(−T ) +p a1 [o, e1] +p b1 [o,−e1] +p a2 [o, e2] +p b2 [o,−e2].

If r = 2/p− 1, then there are constants a1, a2 ≥ 0 such that

ZT = [−a1(e1 − e2), a2(e1 − e2)].

In all other cases, ZT = {o}.

Proposition 1 is basically a special case of Proposition 1p. The only difference is
the range of the operators. We prove both propositions at the same time.

Proof. If p > 1, let Z : P2
o → K2

o, and if p = 1, let Z : P2
o → K2.

For 0 < λ < 1, let Hλ be the hyperplane through the origin o with normal vector
(1−λ) e1−λ e2. Then Hλ dissects T into two simplices T ∩H+

λ and T ∩H−
λ , where

H+
λ ,H

−
λ are the closed halfspaces bounded by Hλ. Since Z is a valuation, we have

ZT +p Z(T ∩Hλ) = Z(T ∩H+
λ ) +p Z(T ∩H−

λ ). (5)

Set T ′ = T ∩ e⊥1 , where e⊥1 denotes the subspace orthogonal to e1, and set

φλ =
(

λ 0
1− λ 1

)
and ψλ =

(
1 λ
0 1− λ

)
. (6)

Then T ∩Hλ = ψλT
′, T ∩H+

λ = φλT , and T ∩H−
λ = ψλT . Set q = (r+1)/2. Since

Z is SL(2) equivariant and homogeneous of degree 2 q + 1, (5) implies that

ZT +p (1− λ)qψλ ZT ′ = λqφλ ZT +p (1− λ)qψλ ZT. (7)

1. Let q 6= 0. By Lemma 1, Z is a simple valuation. Set f(x) = hp(ZT , x). Then
(7) implies that

f(x) = λp q f(φt
λx) + (1− λ)p qf(ψt

λx) for 0 < λ < 1, x ∈ R2. (8)

We need the following lemma, which is also used for the case q = 0.
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Lemma 3. Let f : R2 → R be a function which is positively homogeneous of degree
p and for which (8) holds. Then for x1 ≥ x2 ≥ 0

f(x1, x2) =
xp q+p

1 − xp q+p
2

(x1 − x2)p q
f(e1), (9)

f(−x1,−x2) =
xp q+p

1 − xp q+p
2

(x1 − x2)p q
f(−e1), (10)

for x2 ≥ x1 ≥ 0

f(x1, x2) =
xp q+p

2 − xp q+p
1

(x2 − x1)p q
f(e2), (11)

f(−x1,−x2) =
xp q+p

2 − xp q+p
1

(x2 − x1)p q
f(−e2), (12)

and for x1, x2 ≥ 0

f(−x1, x2) =
xp q+p

2

(x1 + x2)p q
f(e2) +

xp q+p
1

(x1 + x2)p q
f(−e1), (13)

f(x1,−x2) =
xp q+p

1

(x1 + x2)p q
f(e1) +

xp q+p
2

(x1 + x2)p q
f(−e2). (14)

Proof. The vector e1 is an eigenvector of φt
λ with eigenvalue λ, the vector e1 + e2

is an eigenvector with eigenvalue 1. The vector e2 is an eigenvector of ψt
λ with

eigenvalue (1−λ), the vector e1 + e2 is an eigenvector with eigenvalue 1. Therefore

f(e1) = λp q f(λ e1) + (1− λ)p q f(e1 + λ e2)

and

f(e1 + λ e2) =
1− λp q+p

(1− λ)p q
f(e1).

Since f is homogeneous of degree p, this can be written as

f(x1, x2) =
xp q+p

1 − xp q+p
2

(x1 − x2)p q
f(e1)

for x1 ≥ x2 ≥ 0. Similarly, (10) – (12) are derived.
From (8) we obtain

f(−(1− λ) e1 + λ e2) = λp q+p f(e2) + (1− λ)p q+p f(−e1),

which can be written as

f(−x1, x2) =
xp q+p

2

(x1 + x2)p q
f(e2) +

xp q+p
1

(x1 + x2)p q
f(−e1)

for x1, x2 ≥ 0. Similarly, (14) is derived.

Let q > 1/p. If f(e1) 6= 0, then by Lemma 3

lim
λ→1

f(e1 + λ e2) = lim
λ→1

1− λp q+p

(1− λ)p q
f(e1) = ±∞.

Since f(x) = hp(ZT, x) and since ZT is bounded, this is not possible. Thus
f(e1) = 0. Similarly, we obtain from Lemma 3 that f(−e1) = f(e2) = f(−e2) = 0.
Therefore Lemma 3 implies that f(x) = 0 for every x ∈ R2, that is, ZT = {o}.
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Let q < 1/p. Then by Lemma 3 we have

lim
λ→1

f(e1 + λ e2) = lim
λ→1

f(−e1 − λ e2) = 0.

Thus ZT ⊂ (e1 + e2)⊥ and there are constants a1, a2 ∈ R such that

f(x) = hp([−a1(e1 − e2), a2(e1 − e2)], x) for x ∈ R2.

If p > 1 and q = 1/p − 1, then a1, a2 ≥ 0 and this is just the statement of the
proposition. If q 6= 1/p− 1, we use (8) with x = ±(1,−1) and obtain that

ap
i = λp q+pap

i + (1− λ)p q+p ap
i .

This implies that a1 = a2 = 0 and ZT = {o}.
Let q = 1/p. Since f(x) = hp(ZT, x) is continuous, we obtain from Lemma 3

that f(e1) = f(e2) and f(−e1) = f(−e2). Thus

f(x1, x2) =
xp+1

1 − xp+1
2

x1 − x2
f(e1) for x1 ≥ x2 ≥ 0,

f(−x1,−x2) =
xp+1

1 − xp+1
2

x1 − x2
f(−e1) for x1 ≥ x2 ≥ 0,

f(−x1, x2) =
xp+1

2

x1 + x2
f(e1) +

xp+1
1

x1 + x2
f(−e1) for x1, x2 ≥ 0

(15)

and f(x1, x2) = f(x2, x1). Set g(x) = τ h(m(T ), x)+h(MT, x) with τ ∈ R for p = 1
and set g(x) = hp(Mτ

p T, x) with −1 ≤ τ ≤ 1 for p > 1. Then a simple calculation
shows that

g(x1, x2) =
(1 + τ)p (xp+1

1 − xp+1
2 )

(p+ 1) (p+ 2) (x1 − x2)
for x1 ≥ x2 ≥ 0,

g(x1, x2) =
(1− τ)p (xp+1

1 − xp+1
2 )

(p+ 1) (p+ 2) (x1 − x2)
for x1 ≥ x2 ≥ 0,

g(x1, x2) =
(1 + τ)p xp+1

2 + (1− τ)p xp+1
1

(p+ 1) (p+ 2)(x1 + x2)
for x1, x2 ≥ 0

(16)

and that g(x1, x2) = g(x2, x1). Comparing this with (15) shows that for p = 1

f(x) = a0 h(m(T ), x) + a1 h(MT , x),

where a0 ∈ R and a1 ≥ 0 are suitable constants, and that for p > 1

f(x) = a h(Mτ
p T, x),

where a ≥ 0 and −1 ≤ τ ≤ 1 are suitable constants.

2. Let q = 0. Set f(x) = hp(ZT , x) − hp(ZT ′, x). By Lemma 1, ZT ′ ⊂ e⊥1 .
Therefore φλT

′ = T ′ and (5) implies that

f(x) = f(φt
λx) + f(ψt

λx) for 0 < λ < 1, x ∈ R2.

Thus (8) holds with q = 0 and we can apply Lemma 3.
Since ZT ′ ⊂ e⊥1 , we have ZT ′ = [−s e2, t e2] with s, t ∈ R, −s ≤ t. Note that if

p > 1, then h(ZT ′, ·) ≥ 0 and s, t ≥ 0. Setting a0 = f(e1)+f(e2), a1 = −f(e2), a2 =
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−f(e1)+ tp and b0 = f(−e1)+f(−e2), b1 = −f(−e2), b2 = −f(−e1)+sp, we obtain
from Lemma 3 that for x1 ≥ x2 ≥ 0

hp(ZT, (x1, x2)) = xp
1(a0 + a1) + xp

2 a2,
hp(ZT, (−x1,−x2)) = xp

1(b0 + b1) + xp
2 b2,

for x2 ≥ x1 ≥ 0

hp(ZT, (x1, x2)) = xp
1 a1 + xp

2(a0 + a2),
hp(ZT, (−x1,−x2)) = xp

1 b1 + xp
2(b0 + b2),

and for x1, x2 ≥ 0

hp(ZT, (−x1, x2)) = xp
1 (b0 + b1) + xp

2(a0 + a2),
hp(ZT, (x1,−x2)) = xp

1 (a0 + a1) + xp
2(b0 + b2).

As a support function h(ZT, x) is convex. Therefore

h(ZT, e1) + h(ZT, e2) ≥ h(ZT, e1 + e2),

which implies that a0 ≥ 0. Similarly, we obtain b0 ≥ 0. If p > 1, then a0 + a1, a0 +
a2, b0 + b1, b0 + b2 ≥ 0. This is just the statement of the proposition. Since

h(ZT, e1 + e2) + h(ZT,−e1 + e2) ≥ 2h(ZT, e2),

we have a1 + b0 + b1 ≥ 0. Similarly, we obtain a2 + b0 + b1 ≥ 0 and a0 +a1 + b1, a0 +
a1 + b2 ≥ 0. Thus the proposition holds true.

Next, we consider the case n ≥ 3.

Proposition 2. Let Z : Pn
o → Kn, n ≥ 3, be a Minkowski valuation which is SL(n)

equivariant and homogeneous of degree r. If r = n + 1, then there are constants
a0 ∈ R, a1 ≥ 0 such that

ZT = a0m(T ) + a1 MT.

If r = 1, then there are constants a, b ≥ 0 such that

ZT = aT + b(−T ).

In all other cases, ZT = {o}.

Proposition 2p. Let Z : Pn
o → Kn

o , n ≥ 3, be an Lp-Minkowski valuation, p > 1,
which is SL(n) equivariant and homogeneous of degree r. If r = n/p+1, then there
are constants a ≥ 0 and −1 ≤ τ ≤ 1 such that

ZT = aMτ
p T.

If r = 1, then there are constants a, b ≥ 0 such that

ZT = aT +p b(−T ).

In all other cases, ZT = {o}.

We prove both propositions at the same time.

Proof. If p > 1, let Z : Pn
o → Kn

o , and if p = 1, let Z : Pn
o → Kn.

For 0 < λ < 1, i < j, let Hλ = Hλ(i, j) be the hyperplane through o with
normal vector (1− λ) ei − λ ej . Then Hλ dissects T into two simplices T ∩H+

λ and
T ∩H−

λ . Since Z is a valuation, we have

ZT +p Z(T ∩Hλ) = Z(T ∩H+
λ ) +p Z(T ∩H−

λ ). (17)
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Define φλ = φλ(i, j), ψλ = ψλ(i, j) by

φλei = λ ei + (1− λ) ej , φλek = ek for k 6= i, (18)
ψλej = λ ei + (1− λ) ej , ψλek = ek for k 6= j. (19)

Then T ∩H+
λ = φλT and T ∩H−

λ = ψλT . Set T ′ = T ∩ e⊥i . Then T ∩Hλ = ψλT
′.

Set q = (r− 1)/n. Since Z is SL(n) equivariant and homogeneous of degree n q+ 1,
(17) implies that

ZT +p (1− λ)qψλ ZT ′ = λqφλ ZT +p (1− λ)qψλ ZT. (20)

We need the following symmetry relations. Let i 6= j, k 6= l and let α ∈ SL(n)
be such that αtei = ek, α

tej = el and αT = T . Since Z is SL(n) equivariant,
ZT = αZT . This implies that for s, t ∈ R

h(ZT, s ei + t ej) = h(ZT, s ek + t el). (21)

1. Let q 6= 0. By Lemma 1, Z is a simple valuation. Set g(x) = hp(ZT , x). Then
(20) implies that

g(x) = λp q g(φt
λx) + (1− λ)p qg(ψt

λx) for 0 < λ < 1, i < j, x ∈ Rn. (22)

For k 6= i, j, we have

g(ek) = λp q g(ek) + (1− λ)p q g(ek).

Let q 6= 1/p. Then this implies that g(ek) = 0. Similarly, we obtain that
g(−ek) = 0. Since (22) implies that Lemma 3 holds for f(s, t) = g(s ei + t ej), we
obtain that g(s ei + t ej) = 0 for (s, t) ∈ R2. Combined with the following lemma
this shows that ZT = {o} for q 6= 1/p.

Lemma 4. Let g1, g2 : Rn → R be functions for which (22) holds. If g1(x) = g2(x)
for every x ∈ Rn where all but two coordinates vanish, then g1 = g2.

Proof. Assume that g1(x) = g2(x) holds true for every x ∈ Rn where at most k,
2 ≤ k ≤ n − 1, coordinates are 6= 0. We show that then g1(x) = g2(x) for every
x ∈ Rn where at most (k + 1) coordinates are 6= 0. So let x = (x1, . . . , xn), n ≥ 3,
be such that at most k coordinates are 6= 0. Since at least two coordinates of x have
the same sign and (22) holds for every pair i < j, we may assume that x1, x2 > 0
or x1, x2 < 0 and use (22) for i = 1, j = 2.

First, let 0 < x2 < x1 or x1 < x2 < 0. By (22), we have for 0 < λ < 1

gi(ψ−t
λ x) = λp q gi(φt

λψ
−t
λ x) + (1− λ)p q gi(x).

Since
ψ−t

λ x = (x1,−
λ

1− λ
x1 −

1
1− λ

x2, x3, . . . , xn),

φt
λψ

−t
λ x = (x2,−

λ

1− λ
x1 −

1
1− λ

x2, x3, . . . , xn),

we set λ = x2/x1 and obtain 0 < λ < 1. In ψ−t
λ x and φt

λψ
−t
λ x at most k coordinates

are 6= 0.
Now, let 0 < x1 < x2 or x2 < x1 < 0. By (22), we have

gi(φ−t
λ x) = λp q gi(x) + (1− λ)p q gi(ψt

λφ
−t
λ x).

Since
φ−t

λ x = (
1
λ
x1 −

1− λ

λ
x2, x2, . . . , xn),
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ψt
λφ

−t
λ x = (

1
λ
x1 −

1− λ

λ
x2, x1, x3, . . . , xn),

we set λ = 1− x1/x2 and obtain 0 < λ < 1. As before we obtain g1(x) = g2(x). In
φ−t

λ x and ψt
λφ

−t
λ x at most k coordinates are 6= 0.

Let q = 1/p. Note that for x = s e1 + t e2, s, t ∈ R, h(MT, x) is a multiple
of h(MT2, (s, t)), where T2 is the 2-dimensional standard simplex, and that corre-
sponding statements hold for h(m(T ), x) and h(Mτ

p T, x). Set f(s, t) = g(s e1+t e2).
Since (22) implies that Lemma 3 holds for f(s, t) = g(s e1 + t e2), we obtain from
(15) and (16) that for p = 1 and x = s e1 + t e2,

g(x) = h(ZT , x) = a0 h(m(T ), x) + a1 h(MT , x), (23)

where a0 ∈ R and a1 ≥ 0 are suitable constants. Similarly, we obtain that for p > 1
and x = s e1 + t e2,

g(x) = hp(ZT , x) = a h(Mτ
p T, x), (24)

where a ≥ 0 and −1 ≤ τ ≤ 1 are suitable constants. Since Z as well as m,M,Mτ
p are

SL(n) equivariant, we obtain from (21) and the same argument applied to m,M,Mτ
p

that (23) and (24) hold for every x ∈ Rn where all but two coordinates vanish. Thus
applying Lemma 4 shows that the propositions hold true for q = 1/p.

2. Let q = 0. Let i = 1, j = 2. Set g(x) = hp(ZT , x) − hp(ZT ′, x). By Lemma 1,
ZT ′ ⊂ e⊥1 . Therefore φλT

′ = T ′ and (17) implies that

g(x) = g(φt
λx) + g(ψt

λx) for 0 < λ < 1, x ∈ Rn.

Thus (22) holds with q = 0. Set a = hp(ZT ′, e2) and b = hp(ZT ′,−e2). We apply
Lemma 3 with f(x1, x2) = hp(ZT, x)− hp(ZT ′, x) for x = x1 e1 + x2 e2 and obtain
that for x1 ≥ x2 ≥ 0

hp(ZT , (x1, x2, 0, . . . , 0)) = (xp
1 − xp

2) f(e1) + xp
2 a,

hp(ZT , (−x1,−x2, 0, . . . , 0)) = (xp
1 − xp

2) f(−e1) + xp
2 b,

(25)

for x2 ≥ x1 ≥ 0

hp(ZT , (x1, x2, 0, . . . , 0)) = (xp
2 − xp

1) f(e2) + xp
2 a,

hp(ZT , (−x1,−x2, 0, . . . , 0)) = (xp
2 − xp

1) f(−e2) + xp
2 b,

(26)

and for x1, x2 ≥ 0

hp(ZT , (−x1, x2, 0, . . . , 0)) = xp
2 f(e2) + xp

1 f(−e1) + x2 a,
hp(ZT , (x1,−x2, 0, . . . , 0)) = xp

1 f(e1) + xp
2 f(−e2) + x2 b.

(27)

Note that (21), (25), and (26) imply that

f(e1) = f(e2) + a. (28)

Since there is a β ∈ SL(n) such that βe2 = e3, βe3 = e2, and βT ′ = T ′ and since Z
is SL(n) equivariant, we have

h(ZT ′, e2) = h(ZT ′, e3). (29)

Since e3 and e1 +e2 are eigenvectors with eigenvalue 1 of φt
λ and ψt

λ, it follows from
(20) that

h(ZT ′, e3) = h(ZT, e3) and h(ZT ′, e1 + e2) = h(ZT, e1 + e2). (30)
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By (29), (21), and (30), we obtain

a = hp(ZT ′, e2) = hp(ZT, e1) = f(e1)

and therefore by (28) that f(e2) = 0. Similarly, we get b = f(−e1). Thus it follows
from (25) – (27) that

hp(ZT, x) = a hp(T, x) + b hp(−T, x) (31)

for every x = (x1, x2, 0, . . . , 0). Since ZT is convex, we have a, b ≥ 0.
The operators Z and P 7→ aP +p b(−P ) are SL(n) equivariant. Therefore (31)

holds for every x ∈ Rn where all but two coordinates vanish. We apply Lemma 4
with

g1(x) = hp(ZT, x)− hp(ZT ′, x)

and
g2(x) = a(hp(T, x)− hp(T ′, x)) + b(hp(−T, x)− hp(−T ′, x))

and obtain that for every x ∈ Rn

hp(ZT, x) = a hp(T, x) + b hp(−T, x) + w(x),

where
w(x) = hp(ZT ′, x)− a hp(T ′, x)− b hp(−T ′, x).

We identify e⊥1 with Rn−1 and use induction on the dimension to obtain ZT ′.
The operator Z restricted to convex polytopes in e⊥1 is a homogeneous, SL(n − 1)
equivariant Lp-Minkowski valuation. Let n = 3. Then we obtain from Proposition
1 and 1p that there are constants such that

ZT ′ = a1 T
′ +p b1(−T ′) +p a2 [o, e2] +p b2 [o,−e2] +p a3 [o, e3] +p b3 [o,−e3].

We have

hp(ZT, e2 + e3) = a+ w(e2 + e3) = hp(ZT ′, e2 + e3) = a1 + a2 + a3

and
hp(ZT, e1 + e3) = a+ w(e1 + e2) = hp(ZT ′, e2) = a1 + a2.

Thus (21) implies that a3 = 0. Similarly, we obtain a2 = b2 = b3 = 0. This shows
that w(x) = 0 for n = 3 and ZT = aT +p b(−T ). Let n ≥ 4. Then we get by
induction that

ZT ′ = aT ′ +p b (−T ′).

Therefore w(x) = 0 also in this case. Thus ZT = aT +p b(−T ) holds for n ≥ 4.

4 Contravariant Minkowski valuations

In this section, our main result on the classification of SL(n) contravariant Minkowski
valuations is formulated. The most important example is the projection operator
Π : Kn → Kn. The following transformation rule for Π, which is due to Petty
(cf. [5]), shows that Π is SL(n) contravariant and homogeneous of degree (n− 1):

Π(φK) = |detφ|φ−t ΠK for φ ∈ GL(n).

On Pn
o we define an additional operator with the same transformation behaviour.

Note that for a polytope P , ΠP can be written in the following way (cf. [5]). A
vector v is a scaled facet normal of P , if v is an outer normal to a facet of P and
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if the length of v is equal to the (n − 1)-dimensional volume of the corresponding
facet. Then

ΠP =
∑

v∈V(P )

[o, v],

where V(P ) is the set of scaled facet normals of P . Define the operator Πo : Pn
o →

Kn by
Πo P =

∑
v∈Vo(P )

[o, v],

where Vo(P ) is the set of scaled facet normals of P that correspond to facets that
contain the origin. We set Πo P = {o} if P contains the origin in its interior.
Note that Πo is a Minkowski valuation and that it is not continuous. For a1 ≥ 0,
a2, a3 ∈ R with a1 + a2 + a3 ≥ 0, the operator Z : Pn

o → Kn defined by

ZP = a1 ΠP + a2 Πo P + a3(−Πo P )

is a Minkowski valuation which is SL(n) contravariant and homogeneous of degree
(n − 1). As we will see, for n ≥ 3 these are already all examples of homogeneous,
SL(n) contravariant Minkowski valuations on Pn

o .
For n = 2, we have additional examples. Let ψπ/2 denote the rotation by an

angle π/2. If Z : P2
o → K2 is SL(2) equivariant, then

(ψπ/2 Z)(φP ) = ψπ/2 φψ
−1
π/2 (ψπ/2 Z)P = φ−t(ψπ/2 Z)P,

that is, ψπ/2 Z is SL(2) contravariant. If Z is a Minkowski valuation and homoge-
neous of degree r, so is ψπ/2 Z. This implies that the rotated versions of the operators
from Theorem 1 are homogeneous, SL(2) contravariant Minkowski valuations.

The following result is our classification of SL(n) contravariant Minkowski val-
uations. The proof is given in Section 6.

Theorem 2. Let Z : Pn
o → Kn, n ≥ 3, be a Minkowski valuation which is SL(n)

contravariant and homogeneous of degree r. If r = n − 1, then there are constants
a1 ≥ 0, a2, a3 ∈ R with a1 + a2 + a3 ≥ 0 such that

ZP = a1 ΠP + a2 Πo P + a3(−Πo P )

for every P ∈ Pn
o . In all other cases, ZP = {o} for every P ∈ Pn

o .
Let Z : P2

o → K2 be a Minkowski valuation which is SL(2) contravariant and
homogeneous of degree r. If r = 3, then there are constants a0 ∈ R and a1 ≥ 0 such
that

ZP = ψπ/2

(
a0m(P ) + a1 MP

)
for every P ∈ P2

o . If r = 1, then there are constants a0, b0 ≥ 0 and ai, bi ∈ R with
ai + b0 + b1, a0 + a1 + bi ≥ 0, i = 1, 2, such that

ZP = ψπ/2

(
a0 P + b0(−P ) +

∑
(aiEi + bi(−Ei))

)
for every P ∈ P2

o , where the sum is taken over Ei ∈ Eo(P ). In all other cases,
ZP = {o} for every P ∈ P2

o .

The following simple consequence of this theorem holds.

Corollary 2.1. If Z : Kn
o → Kn, n ≥ 3, is a continuous, homogeneous, SL(n)

contravariant Minkowski valuation, then there is a constant a ≥ 0 such that

ZK = aΠK
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for every K ∈ Kn
o .

If Z : K2
o → K2 is a continuous, homogeneous, SL(2) contravariant Minkowski

valuation, then there are constants a0 ∈ R and a1, b1 ≥ 0 such that

ZK = ψπ/2

(
a0m(K) + a1 MK

)
or ZK = ψπ/2

(
a1K + b1(−K)

)
for every K ∈ K2

o.

For translation invariant valuations we obtain the following result. The proof is
given in Section 7.

Corollary 2.2. Let Z : Pn → Kn, n ≥ 2, be a translation invariant, SL(n)
contravariant Minkowski valuation. Then there is a constant c ≥ 0 such that Z =
cΠ.

5 Contravariant Lp-Minkowski valuations

In [25] Lutwak, Yang, and Zhang introduced the Lp-projection operator Πp and
obtained an Lp-version of the Petty projection inequality. For K ∈ Kn

o which
contain the origin as an interior point, Πp is defined by

hp(ΠpK, v) = cn,p

∫
Sn−1

|v · u|p dSp(K,u)

for v ∈ Rn, where cn,p is chosen such that ΠpB = B for the unit ball B. Here
Sp(K, ·) is the Lp-surface area measure of K, that is Sp(K, ·) = h(K, ·)1−p S(K, ·),
where S(K, ·) is the surface area measure of K. It is proved in [25] that

Πp(φK) = |detφ|1/p φ−t ΠpK for φ ∈ GL(n).

Note that Πp is an Lp-Minkowski valuation on convex bodies that contain the
origin in their interiors and that it is not bounded on Kn

o . We need the following
generalization of this operator. For −1 ≤ τ ≤ 1 and K ∈ Kn

o which contain o as an
interior point, define Πτ

p K by

hp(Πτ
p K, v) = cn,p

∫
Sn−1

(|v · u|+ τ(v · u))p dSp(K,u).

Then Πτ
p is an SL(n) contravariant Lp-Minkowski valuation on convex bodies that

contain the origin in their interiors. For P ∈ Pn
o , set

hp(Π̂τ
p P, v) = cn,p

∫
Sn−1\ωo(P )

(|v · u|+ τ(v · u))p dSp(P, u),

where ωo(P ) is the set of outer unit normal vectors to facets of P that contain
the origin. Note that Π̂τ

p is bounded but not continuous on Kn
o and that it is an

Lp-Minkowski valuation. As we will show, these operators are the only examples of
homogeneous, SL(n) contravariant Lp-Minkowski valuations for n ≥ 3. For n = 2,
the rotated version of the operators from Theorem 1p are additional examples.

The proof of the following result is given in Section 6.

Theorem 2p. Let Z : Pn
o → Kn, n ≥ 3, be an Lp-Minkowski valuation, p > 1,

which is SL(n) contravariant and homogeneous of degree r. If r = n/p − 1, then
there are constants a ≥ 0 and −1 ≤ τ ≤ 1 such that

ZP = a Π̂τ
p P
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for every P ∈ Pn
o . In all other cases, ZP = {o} for every P ∈ Pn

o .
Let Z : P2

o → K2 be an Lp-Minkowski valuation, p > 1, which is SL(2) con-
travariant and homogeneous of degree r. If r = 2/p + 1, then there are constants
a ≥ 0 and −1 ≤ τ ≤ 1 such that

ZP = aψπ/2 Mτ
p P

If r = 1, then there are constants a0, b0 ≥ 0 and ai, bi ∈ R with a0 + ai, b0 + bi ≥ 0,
i = 1, 2, such that

ZP = ψπ/2

(
a0 P +p b0(−P ) +p

∑p
(aiEi +p bi(−Ei))

)
for every P ∈ P2

o , where the sum is taken over Ei ∈ Eo(P ). If r = 2/p − 1, then
there are constants a ≥ 0 and −1 ≤ τ ≤ 1 such that

ZP = a Π̂τ
p P

for every P ∈ P2
o . In all other cases, ZP = {o} for every P ∈ P2

o .

As a simple consequence we obtain the following result.

Corollary. If Z : Kn
o → Kn, n ≥ 3, is a continuous, homogeneous, SL(n) con-

travariant Lp-Minkowski valuation, p > 1, then

ZK = {o}

for every K ∈ Kn
o .

If Z : K2
o → K2 is a continuous, homogeneous, SL(2) contravariant Lp-Minkowski

valuation, p > 1, then there are constants a, b ≥ 0 and −1 ≤ τ ≤ 1 such that

ZK = aψπ/2 Mτ
p K or ZK = ψπ/2 (aK +p b(−K))

for every K ∈ K2
o.

6 Proof of Theorems 2 and 2p

As a first step in the proof, we show that every operator which is SL(n) contravariant
and homogeneous of degree r 6= n− 1 is simple.

Lemma 5. Let Z : Pn
o → Kn be an operator which is SL(n) contravariant and

homogeneous of degree r. If dimP < (n− 1), then ZP = {o}. If dimP = (n− 1),
then ZP ⊂ (linP )⊥. If dimP = (n− 1) and r 6= n− 1, then ZP = {o}.

Proof. Let P ∈ Pn
o be such that linP is the k-dimensional subspace with equation

xk+1 = . . . = xn = 0. Since every P ′ ∈ Pn
o with dimP ′ = k is a linear image of

such a polytope P and since Z is SL(n) contravariant, it suffices to prove the lemma
in this case. Let

φ =
(
I B
0 A

)
,

where I is the k × k identity matrix, 0 is the (n − k) × k zero matrix, B is an
(n− k)× k matrix, and A is an (n− k)× (n− k) matrix with determinant 1. Then
φ ∈ SL(n),

φ−t =
(

I 0
C A−t

)
with C = −A−tBt, and

φP = P. (32)
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Write x =
(

x′

x′′

)
with x′ = (x1, . . . , xk) and x′′ = (xk+1, . . . , xn) for x ∈ Rn. Let

x ∈ ZP . Since Z is SL(n) contravariant, (32) implies that y = φ−tx ∈ ZP , that is,(
y′

y′′

)
=

(
x′

Cx′ +A−tx′′

)
∈ ZP. (33)

This is true for every (n − k) × k matrix B and every (n − k) × (n − k) matrix
A with determinant 1. If x′ 6= o′, this implies that y′′ can be an arbitrary vector.
Since ZP is bounded, it follows that x′ = o′. Thus ZP ⊂ (linP )⊥. If k = (n − 1)
and q = 1, this proves the lemma. Let k < (n− 1). Then x′ = o′ and (33) holds for
every (n − k) × (n − k) matrix A with determinant 1. Since ZP is bounded and
(n− k) ≥ 2, this implies that x′′ = o′′. Let k = (n− 1), r 6= n− 1, and let

φ =
(
I 0
0 s

)
,

where I is the (n− 1)× (n− 1) identity matrix and s ≥ 0. Then

Z(φP ) = s(r−(n−1))/n ZP = ZP.

Since this holds for every s ≥ 0 and ZP is bounded, this implies that ZP = {o}.

By Lemmas 2 and 2p, it suffices to determine the value of Z for n-dimensional
simplices to prove Theorems 2 and 2p. Since Z is SL(n) contravariant and ho-
mogeneous, it is enough to determine ZT , where T is the simplex with vertices
o, e1, . . . , en.

We start with the planar case.

Proposition 3. Let Z : P2
o → K2 be a Minkowski valuation which is SL(2) contra-

variant and homogeneous of degree r. If r = 3, then there are constants a0 ∈ R and
a1 ≥ 0 such that

ZT = ψπ/2

(
a0m(T ) + a1 MT

)
.

If r = 1, then there are constants a0, b0 ≥ 0 and ai, bi ∈ R with ai + b0 + b1, a0 +
a2 + bi ≥ 0, i = 1, 2, such that

ZT = ψπ/2 (a0 T + b0(−T ) + a1 [o, e1] + b1 [o,−e1] + a2 [o, e2] + b2 [o,−e2]).

In all other cases, ZT = {o}.

Proposition 3p. Let Z : P2
o → K2

o be an Lp-Minkowski valuation, p > 1, which
is SL(2) contravariant and homogeneous of degree r. If r = 2/p+ 1, then there are
constants a ≥ 0 and −1 ≤ τ ≤ 1 such that

ZT = aψπ/2 Mτ
p T.

If r = 1, then there are constants a0, b0 ≥ 0 and ai, bi ∈ R with a0 + ai, b0 + bi ≥ 0,
i = 1, 2, such that

ZT = ψπ/2 (a0 T +p b0(−T ) +p a1 [o, e1] +p b1 [o,−e1] +p a2 [o, e2] +p b2 [o,−e2]).

If r = 2/p− 1, then there are constants a1, a2 ≥ 0 such that

ZT = [−a1(e1 + e2), a2(e1 + e2)].

In all other cases, ZT = {o}.
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That these propositions hold true can be seen in the following way. Let Z be as
in Proposition 3 or 3p. Then ψπ/2 Z is an Lp-Minkowski valuation which is SL(2)
equivariant and homogeneous of degree r. Thus Propositions 1 and 1p immediately
imply that the above propositions hold true.

Next, we consider the case n ≥ 3.

Proposition 4. Let Z : Pn
o → Kn, n ≥ 3, be a Minkowski valuation, which is

SL(n) contravariant and homogeneous of degree r. If r = n − 1 then there are
constants a1 ≥ 0, a2, a3 ∈ R with a1 + a2 + a3 ≥ 0 such that

ZT = a1 ΠT + a2 Πo T + a3(−Πo T ).

In all other case, ZT = {o}.

Proposition 4p. Let Z : Pn
o → Kn

o , n ≥ 3, be an Lp-Minkowski valuation, p > 1,
which is SL(n) contravariant and homogeneous of degree r. If r = n/p − 1, then
there are constants a1, a2 ≥ 0, such that

ZT = [−a1(e1 + . . .+ en), a2(e1 + . . .+ en)].

In all other cases, ZT = {o}.

We prove both propositions at the same time.

Proof. If p > 1, let Z : Pn
o → Kn

o , and if p = 1, let Z : Pn
o → Kn.

For 0 < λ < 1, i < j, let Hλ = Hλ(i, j) be the hyperplane through o with
normal vector (1−λ) ei−λ ej . Then Hλ dissects T into the two simplices φλT and
ψλT , where φλ and ψλ are defined by (18). Set T ′ = T ∩ e⊥i . Then T ∩Hλ = ψλT

′.
Set q = (r + 1)/n. Since Z is SL(n) contravariant, homogeneous of degree n q − 1
and an Lp-Minkowski valuation, we have

ZT +p (1− λ)qψ−t
λ ZT ′ = λqφ−t

λ ZT +p (1− λ)qψ−t
λ ZT. (34)

Denote by απ/2 = απ/2 (i, j) the rotation by an angle π/2 in the plane lin{ei, ej},
that is,

απ/2 ei = ej , απ/2 ej = −ei, απ/2 ek = ek for k 6= i, j.

Then we obtain that

(απ/2 Z)(φλT ) = λ(r+1)/nαπ/2 φ
−t
λ α−1

π/2 (απ/2 Z)T = λ(r−1)/nφλ(απ/2 Z)T (35)

and
(απ/2 Z)(ψλT ) = λ(r−1)/nψλ(απ/2 Z)T. (36)

1. Let q 6= 1. By Lemma 1, Z is a simple valuation. Set g(x) = hp(απ/2 ZT, x).
Then (34) – (36) imply that

g(x) = λp q g(φt
λx) + (1− λ)p qg(ψt

λx) for 0 < λ < 1, i < j, x ∈ Rn. (37)

Therefore we have for k 6= i, j

g(ek) = λp q g(ek) + (1− λ)p q g(ek).

If q 6= 1/p, this implies that g(ek) = 0. Similarly, we obtain that g(−ek) = 0.
Since (37) implies that Lemma 3 holds for f(x1, x2) = g(x1 ei + x2 ej), we obtain
that g(x) = 0 for x = x1 ei + x2 ej . Thus Lemma 4 implies that ZT = {o}.

If q = 1/p, then (37) implies that

g(ei − ej) = λ1−p g(ei − ej) + (1− λ)1−pg(ei − ej).
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Therefore g(ei − ej) = 0. Similarly, we obtain that g(ej − ei) = 0. Thus we have
for i < j,

ZT ⊂ (ei − ej)⊥.

This shows that ZT = [−a1(e1 + . . .+ en), a2(e1 + . . .+ en)] with suitable constants
a1, a2 ≥ 0.

2. Let q = 1. Lemma 5 implies that ZT ′ ⊂ lin{ei}. Since there is a β ∈ SL(n) such
that βei = −ei and βT ′ = T ′ and since Z is SL(n) contravariant, we obtain that
ZT ′ = [−a ei, a ei] with a ≥ 0. By (34) we have for k 6= i, j

hp(ZT, ek)+(1−λ)php(ZT ′, ek) = hp(ZT, ek) = λphp(ZT, ek)+(1−λ)php(ZT, ek).

If p > 1, this implies that h(ZT, ek) = 0. Similarly, we obtain that h(ZT,−ek) = 0.
Thus ZT = {o}. So let p = 1. Setting f(x1, x2) = hp(ZT, x) − hp(ZT ′, x) for
x = x1 ei + x2 ej , we see that (37) holds. Therefore we can apply Lemma 3. Since
for i 6= j, k 6= l there is an α ∈ SL(n) such that αei = ek, αej = el and αT = T and
since Z is SL(n) contravariant, we see that f does not depend on i, j and that for
x1, x2 ∈ R

h(ZT, x1 ei + x2 ej) = h(ZT, x1 ek + x2 el). (38)

Thus we obtain for x1 ≥ x2 ≥ 0

h(ZT, x1 ei − x2 ej) = x1 (f(e1) + a)− x2 f(e1),
h(ZT,−x1 ei + x2 ej) = x1 (f(−e1) + a)− x2 f(−e1),

and for x1, x2 ≥ 0

h(ZT, x1 ei + x2 ej) = x1 (f(e1) + a) + x2 f(e2),
h(ZT,−x1 ei − x2 ej) = x1 (f(−e1) + a) + x2 f(−e2).

It follows from (38) that f(e1) + a = f(e2) and f(−e1) − a = f(−e2). Setting
a1 = f(e1) + f(−e1) + a, a2 = −f(−e1), a3 = −f(e1) and using (38) shows that

h(ZT, x) = a1 h(ΠT, x) + a2 h(Πo T, x) + a3 h(−Πo T, x) (39)

for x = x1 ei + x2 ej . Thus by Lemma 4 the proposition is proved.

7 Proof of Corollaries 1.2 and 2.2

The main tool is the following result by McMullen.

Theorem ([28]). Let µ : Pn → R be a translation invariant valuation. Then for
s ∈ Q, s ≥ 0,

µ(sP ) =
n∑

i=0

si µi(P ).

The coefficient µi(P ) (which is independent of s) is a translation invariant valuation
on Pn, which is homogeneous of degree i.

Let Z : Pn → Kn be a translation invariant Minkowski valuation. Then for
x ∈ Rn fixed, P 7→ h(ZP, x) is a translation invariant real valued valuation. Thus
for s ∈ Q, s ≥ 0, there is a polynomial expansion

h(Z(sP ), x) =
n∑

i=0

siµi(P, x),
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where for every x ∈ Rn the coefficient µi(·, x) is a translation invariant valuation
on Pn, which is homogeneous of degree i.

First, we consider Corollary 1.2, that is, Z is SL(n) equivariant. Then we have
for φ ∈ SL(n), x ∈ Rn,

h(Z(φP ), x) =
n∑

i=0

si µi(φP, x) = h(ZP, φtx) =
n∑

i=0

si µi(P, φtx).

Thus for i = 1, . . . , n,

µi(φP, x) = µi(P, φtx) for φ ∈ SL(n), x ∈ Rn. (40)

Note that a function f : Rn → R which is homogeneous of degree 1 is the support
function of a convex body if and only if f is sublinear, that is, f(x+y) ≤ f(x)+f(y)
for x, y ∈ Rn (cf. [36]). Since h(Z(sP ), ·) is sublinear for s > 0,

µn(P, ·) = lim
s→∞

h(Z(sP ), ·)
sn

is also sublinear. Thus µn(P, ·) is a support function. In view of (40) and the
homogeneity of µn, we can apply Theorem 1 and obtain that µn(P, ·) = 0. Therefore

h(Z(sP ), ·) =
n−1∑
i=0

siµi(P, ·).

Using induction on the degree of homogeneity and the same arguments as above, we
obtain that for i = n− 1, . . . , 2, µi(P, ·) is a support function and that by Theorem
1 µi(P, ·) = 0 for i = n− 1, . . . , 2. By Lemma 1 we have Z{o} = {o} and therefore
µ0(P, ·) = 0. This implies that µ1(P, ·) = h(ZP, ·). Thus applying Theorem 1 shows
that Z = cD with a suitable constant c ≥ 0 and Corollary 1.2 is proved.

Now, we consider Corollary 2.2, that is, Z is SL(n) contravariant. Then we have
for i = 1, . . . , n,

µi(φP, x) = µi(P, φ−1x) for φ ∈ SL(n), x ∈ Rn. (41)

Since µn(P, ·) = lims→∞ h(Z(sP ), ·)/sn is sublinear, it is a support function. In
view of (41) and the homogeneity of µn, we can apply Theorem 2 and obtain that
µn(P, ·) = 0. By Lemma 5 we have Z{o} = {o} and therefore µ0(P, ·) = 0. This
implies that

h(Z(sP ), ·) =
n−1∑
i=1

siµi(P, ·).

Since µ1(P, ·) = lims→0 h(Z(sP ), ·)/s is sublinear, it is a support function. We
apply Theorem 2 and obtain that µ1(P, ·) = 0. Using induction on the degree of
homogeneity and the same arguments as above, we obtain that for i = 1, . . . , n− 2,
µi(P, ·) is also a support function and that by Theorem 2 µi(P, ·) = 0 for i =
1, . . . , n − 2. This implies that h(ZP, ·) = µn−1(P, ·). Thus applying Theorem 2
shows that Z = cΠ with a suitable constant c ≥ 0 and Corollary 2.2 is proved.
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