Approximation of the Euclidean ball by polytopes
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Abstract

There is a constant ¢ such that for every n € N, there is a N, so that
for every N > N,, there is a polytope P in R™ with IV vertices and

vol,(ByAP) < ¢ voln(Bg)N_%

where Bj denotes the Euclidean unit ball of dimension n.
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1 Main results

Let C and K be two convex bodies in R™. The Euclidean ball with center 0 and
radius r is denoted by B%(r). The ball By (1) is denoted by BY. Let K be a convex
body in R™ with C%-boundary K and everywhere strictly positive curvature k.
Then
I inf{vol,(K \ P)|P C K and P has at most N vertices}
im :
N—oo N »n-1

n+1

- %deln_l (/M H(fﬁ)”‘l“duaf((ﬂf)) a (1)

where pgx denotes the surface measure of K. This theorem gives asymptotically
the order of best approximation of a convex body K by polytopes contained in K
with a fixed number of vertices. It was proved by McClure and Vitale [McV] in
dimension 2 and by Gruber [Gr2] for general n. The constant del,,_; is positive
and depends on the dimension n only. Its order of magnitude can be computed
by considering the case K = BY. This has been done in [GRS1] and [GRS2] by
Gordon, Reisner and Schiitt, namely there are numerical constants a and b such
that
a-n<del,_1 <b-n.

The constant del,,_; was determined more precisely by Mankiewicz and Schiitt
[MaS1], [MaS2]. It was shown there

n—1 2

vol, 1(By 1)"n=1, (2)

) 1 1
vol,_1(BE-1)"a1 < del,_, < (1 +Z n") -

n+1 n n+1

where ¢ is a numerical constant. In particular,

. deln_l 1
lim = —.
n—00 n 2me

What happens if we drop the condition that the polytopes have to be contained
in the convex body and allow all polytopes having at most N vertices? How much
better can we approximate the Euclidean ball?

In [Lud] it was shown that for all convex bodies K whose boundary is twice
continuously differentiable and whose curvature is everywhere strictly positive

lim inf{vol,, (K AP)|P is a polytope with at most N vertices}
N—oo N~ %

1 1
= —ldel,,_; </ n(x)“ldﬂal((%))
2 oK

2

n+1
n—1



The constant ldel,,_; is positive and depends only on n. Clearly, from the above
mentioned results it follows that ldel,_; < ¢-n. On the other hand, it has been
shown in [B6] that for a polytope P with at most N vertices

11
vol, (BEAP) > 6——v01n(Bg)N*%.

Te2Tn

Thus between the upper and lower estimate for ldel,_; there is a gap of order

n?. In this paper we narrow this gap by showing that ldel,_; < ¢ where c is a

numerical constant.

Theorem 1 There is a constant ¢ such that for every n € N there is a N, so
that for every N > N, there is a polytope P in R™ with N wvertices such that

vol, (B} AP) < ¢ vol, (By)N ™. (3)

Gruber also showed [Gr2]

lim inf{vol,,(KAP)|K C P and P is a polytope with at most N facets}
N—oo N_%

n+1

1 n—1
= —div, (/ m(m)nild,uaK(x)>
2 oK

where div,,_; is a positive constant that depends on n only. It is easy to show
[Lud, MaS1] that there are numerical constants a and b such that a-n < div,_; <
b-n.
Ludwig [Lud] showed that for general polytopes
inf{vol,,(KAP)| Pis a polytope with at most N facets}

lim >
N—oo N w1

n+1

1 s n
= —1div,,_; (/ I{($)”+1dll6K($))
2 oK

where ldiv,,_; is a positive constant that depends on n only. Clearly, 1div,,_; < ¢n
and Boroczky [Bo] showed that for polytopes P with N facets

n 1 1 n T
vol, (B AP) > o ﬁvoln(BQ)N n,

Thus again, there is a gap between the upper and lower estimates for ldiv,,_; of
order n?. We narrow this gap by a factor of n.



Theorem 2 There is a constant ¢ such that for every n € N and for every
n—1
M > 107z and all polytopes P in R™ with M facets we have

Vol (BIAP) > ¢ vol, (BY)M w1, (4)

2 Proof of Theorem 1

We need the following lemmas.
Lemma 3 (Stirling’s formula) For all x > 0
2mrate ™ < Tz + 1) < V2rzae “ers.
The following lemma is due to J. Miiller [Mii].

Lemma 4 [Mii] Let E(OBY, N) be the expected volume of a random polytope of
N points that are independently chosen on the boundary of the Euclidean ball B}
with respect to the normalized surface measure. Then

vol,(B}) — E(0By, N)

lim >
N—oo N =1
_ (n=1)" 1 (vol, (9B3)) 1 T (n+1+ 2)
(vol,_o(9By 1)) 71 2(n +1)!

The following lemma can be found in [Mil], ([SW], p. 317), and [Z4].

Lemma 5 [Mil/

duopy (1) -+ dugny (T5) (5)
=(n—1)! wln(ll( [?17)2)37 ) duoppne (1) - dpgpynm (Tn)dpdpapy (§)

where & is the normal to the plane H through x1,...,x, and p is the distance of
the plane H to the origin.



Lemma 6 [Mil/

/ .. / (woly([z1, - . @nsa])Pditong oy (@1) - ditoms oy (@nsr)
0By (r) aBg(r)

_ (n_|_ 1)7ﬂn2+2n71

nlnn?

(vol,_1(OBE))"H! (6)

For a given hyperplane H that does not contain the origin we denote by H*
the halfspace containing the origin and H~ the halfspace not containing the origin.
A cap C of the Euclidean ball Bj is the intersection of a half space H~ with BY.
The radius of such a cap is the radius of the (n — 1)-dimensional ball By N H.

Lemma 7 [SW] Let H be a hyperplane, p its distance from the origin and s the
normalized surface area of 0B N H™, i.e.
. VOlnfl(aB; N H_)
V01n71<aB§)

Then
dp 1 vol,—1(0BY)

- _ : . 7
ds (1—p2)"z vol,_»(dBy ™) (7)

The following lemma is Lemma 3.13 from [SW].

Lemma 8 [SW] Let C be a cap of a Euclidean ball with radius 1. Let u be the
surface area of this cap and r its radius. Then we have

5

() e () (i)
vol,_1(By™) 2(n+1) \vol,_(By™) vol,_1(By™1)

1

<r0) = () ®)

where ¢ is a numerical constant.

The right hand inequality is immediately verified, since u > 7" ~'vol,_;(By™!).

Proof of Theorem 1. The approximating polytope is obtained in a prob-
abilistic way. We are considering a Euclidean ball that is slightly bigger than
the Euclidean ball with radius 1. The factor by which the bigger ball is bigger

5



than the smaller is important and carefully chosen. We are choosing N points
randomly on the bigger ball and we are taking the convex hull of these points.
With large probability there is a random polytope that fits our requirements.

For technical reasons we are choosing random points on a Euclidean ball of
radius 1 and we are approximating a slightly smaller Euclidean ball, say with
radius 1 — ¢ where ¢ = ¢,y depends on n and N only.

We compute now the expected volume difference between B} (1—c¢) and a ran-
dom polytope [z1, ..., zx] whose vertices are chosen randomly from the boundary
of BY. Please note that random polytopes are simplicial with probability 1. We
want to estimate the expected volume difference

Evol,,(By(1 — ¢)APy) 9)

/ / vol, (BX(1 — &)Alan, ... a]) dP(z1) - - - dP(z),
83" dB”

where P denotes the uniform probability measure on 9B3. Since the volume
difference between B (1 — ¢) and a polytope Py = [z1,...,xy] i8

vol, (By (1 — ¢)APy)
= vol,(By \ By(1 —¢)) — vol,,(By \ Pyx) + 2vol,,(B5(1 —¢) N Py),

the above expression equals

vol, (B2 \ B2(1 — ¢))

/83" /8B" vol,(BY\ [z1, ..., xn])dP(z1) - - - dP(z )
+2 /am /83" vol,(By (1 —c¢) N [zq,...,xN]|)dP(zy) - - - dP(zN).

For given N we are choosing ¢ such that

vol, (B \ B (1 — ¢)) = /aBn .. /aBn voly(B2\ 21, ..., o)) dP(zy) - - - dP(y).
(10)

For this particular ¢ we have
/ / vol, (BX(1 — &)Alar, ... a]) dP(z:) - - - dP(z)
oBY OBy
_ 2/ / voly(BX(1 — ¢) O\ 31, .., on]*)dP(1) - - dP(e).
OBy OB}



By Lemma 4 the quantity c is for large N asymptotically equal to

vol,_1(8B%}) ) w1 D+ 1+ -2

N7 (= 1FS <voln_2<aBs-1> 2n 1 1)1

(11)

In particular, for large enough N

<[([1+—= )N »i(n—1)»1 12
€= ( i n2) (n—1) (Voln_g((?Bg_l) 2(n+ 1)! (12)

and

, . n 1T (n4+1+
<1 _ i) N~ (n— 1)n ( volu1(055) ) " w1 <c  (13)
2 vol,_o(0By~) 2(n+1)!

Thus there are constants a and b such that

aN~ 71 < ¢ < bN w1, (14)

We continue the computation of the expected volume difference

/ / vol, (B2(1 — &)Alzy, ... n]) dP(z1) - - - dP(zy)

aBy aBy

:2/ / Vol (BP(1 = &) N [21, -+ 28] X0inr oo dB(21) - - - ()
aBy aBy

9 / / volu(B(L = &) N [e1s -+ 23] X (0inr,an oy dB(21) - - - AP ()
OBy oBp
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By a result of [Wen] the second summand equals

n—1

N-1

vol,, (B}) 2—N+1Z( A ) < vol,, (B}) 2~ N+1In N
k=0

The second summand is of much smaller order than the first summand: The

second summand is essentially of the order 2=, while, as we shall see, the first is
2

of the order of N™»-1. Therefore, we consider in what follows the first summand.



We introduce ®;, ; : 0B x --- x 0B} — R where

(I)jl ..... jn(xl,...,xN):O
if [xj,,...,2;,] is not a (n — 1)-dimensional face of [zi,...,2y] or if 0 is not an
element of [z1,...,zy], and
©jy, a1, 2)
=vol,(By (1 —c¢) N[z, ..., oy Ncone(x),, ..., T}, ))X{0c[,...on]o}
if [x,,...,2;,]is a facet of [zy,...,xy] and if 0 is an element of [z,...,zx]|. Here

n
cone(xy,...,o,) = {Z a;x;
i=1

For all random polytopes [z1, . ..

W:OSaZ}.

,xx] that contain 0 as an interior point

R™ = U cone(zj,,...,Tj,)

[2)y 2y, ] 15 facet of [z1,....0]

/ / q)jla-n,jn(xlw‘-7xN>d]P>(I1) d]P)(IN>
oBY OBY

2 {J1,0s ]n}C{l ..... N}

where we sum over all different subsets {j1,. .., jn}. The latter expression equals

Let H be the hyperplane containing the points x4, ..., x,. The set of points where
H is not well defined has measure 0 and
PY="({(2py1, ..., 2n)|[z1, ..., 2, is facet of [zy,...,2y] and 0 € [zy,. .., 2N]})

_(vol, (0B n HH)\ ™"
B vol,_1(0BY)

Therefore the above expression equals

() L (5205

vol, (B3 (1 —c) N H™ Ncone(xy, ..., Tn))X{0ck

ooy dB(ay) - - dB(z,).

77777
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Since H~ does not contain 0 this can be estimated by

() L L (20m)

vol, (B3 (1 —c¢)N H™ Ncone(xy,...,x,))dP(xy) - - - dP(x,,).

By Lemma 5 the latter expression equals

(N) (n—1)! g/ %/(/ /" <wmhﬂ8B§ﬂ£F))N
(vol,-1(0B3) oBy Jo JoBINH OBPNH vol,—1(9B%)

vol, (B”(l —¢)NH™ Ncone(xy,...,x,))
vol, 1([z1, ..., 2,])
(1—p*)*/?

This in turn can be estimated by

(55 Lo Lo Do i)
(vol,_1( OB oBp OBPNH OBINH vol,,—1(9B3)
vol, (B"(l —c)ﬂH Ncone(xy,...,T,)) (15)
vol,_1([x1, ..., 2y])
(=)

times a factor that is less than 2 provided that N is sufficiently big. Indeed, for
p<1—1

vol,_1 (B3 N HT)\ ¥~
VOlnfl (883)

dpopynm (1) - - - dptopynm (Tn)dpdpasy ().

dpopynm (71) - - - dpoppnm (Tn)dpdpasy (§)

V01n71<aBg N H_)
< (N —
—“d( ”)mmw@)

2 1\ vol,_y(Br )
< (N—n) (2= 172 )
= &P ( ( n) (n n2> n vol, (BY)

N—n
< exp T D)2

and the rest of the expression is bounded. We have

vol, (B3 (1 —c¢)N H™ Ncone(xy,...,x,))

1_ n
< 8max{(), ( C) - 1}Voln1([x1,...,wn]).
n p

This holds since the set BY(1 —¢) N H~ N cone(zy,...,x,) is contained in the
cone cone(xy,...,T,), truncated between H and the hyperplane parallel to H at

9



distance 1 — ¢ from 0. Therefore, as p < 1 the above is smaller or equal than
(N> (n—1)! / / / / <voln_1(aBg NHY) > N-
(vol,-1(0B3) oBy J1-1 JoBrnH dBZNH vol,—1(0BY)

ﬁmax{o (1 ; c) B 1} (vol, (11(%1];_)‘7;/’2%]))2

dpoynm (1) - dpopynm (Tn)dpdpapy (§).

With Lemma 6 this equals
N\ (vol,_o(dBy~ )" / / vol,_1(8By N HH)\ ™
n) (vol,_ 1(83”) (n—1)"" Jops vol,_1(0BY)
1 1—c¢ pni 2
- max {0, (T) — 1} deduajsg (€)

where r denotes the radius of B} N H. Since the integral does not depend on the
direction & and r? + p? = 1 this is

()bl Or
n ) (vol,_1(0B3))—1 (n — 1)n—1

Y vol,_1(0BE N HH)\ Y"1 1—c\" 2
n - 0 -1 nfnf2d )
/( vol,—1(0B;) ) nm{ ( p ) } S

This equals

N\ (vol_o(@BZ 1) n
( ) (vol,,_1(0B%))»1 (n — 1)n1 (16)

/H vol, 1 (0BF NHONY ™1 [ (1—-c\" 1\ preonag,
1 vol,,_1(0BY) n P

Since p > 1 — % and ¢ is of the order N~ -1 we have for sufficiently big N

() ) ewo-eon

Therefore, the previous expression can be estimated by an absolute constant times
N\ (vol,_o(0By ) n (17)
n ) (vol,—1(0By))"~1 (n — 1)»!

/IC vol,_1(0By N H™)
1_% Voln_l(aBg)

> (1—c—p)r™ " 2dp.

10



We choose
~ vol, 1(0By N H™)

vol,—1(0BY)

as our new variable under the integral. We apply Lemma 7 in order to change
the variable under the integral

M) (velealOF )2 & — )N (1 — ¢ — p)r™ D ds
(n) (vol,,_1(0B%))»2 (n — 1)1 /5(1_0)(1 ) p) ds (18)

[N

where the normalized surface area s of the cap is a function of the distance p of
the hyperplane to 0. Before we proceed we want to estimate s(1 —¢). The radius
r and the distance p satisfy 1 = p? + 2. We have

_vol,_1(By ™Y < ) 1 _yvol,_1(By ™Y
h—— = S Jg(V1I—1r2) < " .
" vol,—1(0BY) — 3 )= r27‘ vol,—1(0BY)

We show this. We compare s with the surface area of the intersection By N H of
the Euclidean ball and the hyperplane H. We have

VOln_l(Bg N H) n,1V01n—1(Bg_1)

vol,_1(0B}) " vol,_1(0By)

Since the orthogonal projection onto H maps 0B5 N H~ onto By N H the left
hand inequality follows.

The right hand inequality follows again by considering the orthogonal pro-
jection onto H. The surface area of a surface element of 0BY N H~ equals the
surface area of the one it is mapped to in BY N H divided by the cosine of the
angle between the normal to H and the normal to 0B} at the given point. The
cosine is always greater than /1 — r2.

For p = 1 — ¢ we have r = v/2¢ — ¢2 < v/2¢. Therefore we get by (12)

en vol,_1(BY ™)

_ <
s(1—c) < 1 — ¢ vol,_1(0BY)

n—1

ON""T(n— 1)t vol, 1(9By) \*™ Tln+1+;2)) *
vol,_o(0By ™) 2(n+1)!

ew 1 {F(n+1+ﬁ)(n1)}"2

(19)

1—cN (n+1)!

11



The quantity ¢ is of the order N ~#71, therefore 1 /(1 —¢) is as close to 1 as we
desire for N large enough. Moreover, for large n

n—1 BN
n+1

is asymptotically equal to 1/e. Therefore, for both n and N large enough

n—1
L1 [Tn+1+-2)) 2
1—¢c)<en n=
For n sufficiently big
n—1
T 14+ 23] 2
{ (n+ +n_1)} < okin
n! -
We verify the estimate. By Lemma 3
2 n+3 25 1
T () (reat) e
n! n(n — n—
and
n—1
2 \\ = 2 (n+3) ne
D(n+14+ =) Sl " 2 7 (n+3 - 2 624(%%).
n! e n(n —1) n—1
The right hand expression is asymptotically equal to ne'/.
Altogether,
1 n
1—¢) < eb—. 20
s(1-c) < eb (20)

Since p = V1 — r2 we get for all » with 0 <r <1
1
1—c—p:1—c—\/1—r2§57“2—1—7“4—0.

(The estimate is equivalent to 1 — 2r? — r* < /1 —72. The left hand side is
negative for » > .9 and thus the inequality holds for r with .9 < r < 1. For r
with 0 <7 < .9 we square both sides.) Thus (18) is smaller than or equal to

N\ (vol,_o(dB )"t p
<n> (vol,_1(0By))=2 (n — 1)n-1 (21)

1
1
/ (1—s)¥ <§r2 +rt — c) r=1? s,
s(1—c)

12




Now we evaluate the integral. We use Lemma 8. By differentiation we verify that
(%7’2 + 7t — 0)7“(7“1)2 is a monotone function of r. Here we use that %TQ +rt—c
is nonnegative.

1
1
/ (1—s)N " (57“2 +rt— c) r=1%ds
s(1—c)

1 /! vol,_1(0BY) n=ltty
<3 [a-o (5—21> s
0 vol,—1(By ™)

! L, 1(9B) \ "
+/ (1—s)V (S—VO n1(053) ) ds
0 V01n71(3371>

- /1(1 —s)N e (S—VOI"_l(aBg) )nl ds
0 VOlnfl(B;Lil)

+ /S(I_C)(l — )V <3—V01"1(833) )"1 ds
0 VOln,1<BgLil) .

By (13)
! 1 >
/ (1—s)N " (—7‘2 + i — c) r=17gs
s(1—c) 2
< 1 <V01n 1(0BY) )n Wty [(N —n+1)I'(n+ %)
= 2 \vol,_1(By™Y) I(N+1+-2%)
vol,_1(8By) \" a1t T(N —n+ 1)D(n + L)
(olnlB”I) (N +1+-4)
( ) (voln (0B )"—1 (N —n+ 1)I'(n)
vol,_1(By 1) (N +1)
(n—1)"5 (vol, 4 (9B5)) = U (n+ 1+ 725) o
(vol,_o(0By 1))t 2(n+1)!
vol,_1(8B3) \" R
tc-s(1—c) <ﬁ((5’321))) 56&?1){_6)](1 —s)Nngn—t,
Thus

/1 (1—s)V (%r2 + 7t — c) r =% ds (22)
s(1—c)

o1 (vola(9Bg) \" T (N —n+ DT (n + 225)
~ 2 \vol,_1(BF ™) I(N+1+-%)

13



<V01n—1(5B§l) )”—1+n41 (N —n+1)I(n+ %)
vol,_1(By™1) I(N+1+-%)

1 < 1 ) n—1 (vdm(agg) )"Hn"’l
—S\1-= n—1
2 n?) (n+1)n \vol, (By™")

I(N—n+1(n+14+-%)

N-iT
I'(N+1)
l-1(0B3) \"™
+c-s(l—c¢) <Vol—(n21)) max (1 —s)V"s" L
VOln,1<Bz ) s€[0,s(1—c)]

The second summand is asymptotically equal to

( vol,_1(0BY) >"—1+nf1 (N —n)l(n — 1)lpaT
vol,_1(By ™) NI(N + 1)1

— (VOln_l(aBg) )H_H"‘l n~ AT (23)
vol,_1(By™1) (M)(N 4+ 1)

This summand is of the order N = while the others are of the order N _%.
We consider the sum of the first and third summands:

1 ( vol,_1(0BY) )"—Hﬁl I(N —n+1)(n+ %)

2 \vol,_(By™") FVE s 2
1—(1—i) (n=DC(n+1+ 20N + 1+ %)
") n(n+ DF(n+ 2TV + N

Since I'(n + 1 4+ —25) = (n + —27)I'(n + -2;) the latter expression equals

1/ vol,1(0By) \" I T(N —n+ Dl (n + ;%)
2 \vol,_,(By 1) (N +1+ %)

1-— <1_i) (n—1)(n+ 20N +1+ %) |
n?2 n(n+ DT(N + 1)an

Since I'(N + 1 + -%;) is asymptotically equal to (N + 1)#— F(N + 1) the sum of
the first and third summand is for large N of the order

(24)

1 <voln_1(aBg) )”‘“nz—l (N —n+ 1) (n+ %)
n

vol,_1(By™1) (N +1+-2%)

14



which in turn is of the order
1 L, 1(0Bp) \" T AN\
L (volua(9B3) _21) N (25)
n? \vol,_1(By™") n

We consider now the fourth summand. By (14) and (20) the fourth summand is
less than

_ 2. n vol,_1(0B3) \" N—n n—1
bN ~n—1 1-— e, 26
65/6N (VOln_l (B;L_l) se[ég?lx—c)]( S) 5 ( )

The maximum of the function (1 — s)¥="s""! is attained at (n —1)/(N — 1) and
the function is increasing on the interval [0, (n — 1)/(N — 1)]. Therefore, by (20)
we have s(1 —¢) < (n—1)/(IN — 1) and the maximum of this function over the
interval [0, s(1 — ¢)] is attained at s(1 — ¢). By (20) we have s(1 —¢) < e%% and
thus for N sufficiently big

N—n n—1
max (1 —s)V "t < <1 — L) (e%l>
s€[0,s(1—c)]

Thus we get for (26) with a new constant b

pN-t (Yol(0B3) e
VOln_l(Bg ) Nn

This is asymptotically equal to

> 1, 1(0BM)\" !
pN"T <—VO" (0 21)) e
VOln_1<Bg )

1
(v

n

o3

(27)

Altogether, (15) for N sufficiently big can be estimated by

(N) (voln-o(0B; )™ m
n) (vol,_1(0By))=2 (n — 1)1

1 <v01n1(aBg>)”—1+ﬁ1 <N)—1 s
n? \vol,_1(By™) n

n n—1
LN (—VOI"‘I@B_?R ) ¢
vol,_1(By ™)

o3

15



This can be estimated by a constant times

1 no 1
(Volnl((?B;))n{ﬁN_nzl +bN e 6 \/ﬁ} (28)

Finally, it should be noted that we have been estimating the approximation of
B} (1 — ¢) and not that of BY. Therefore, we need to multiply (28) by (1 —¢)™"™.
By (14)
1—c)">1-b—"
Nt

so that we have for all N with N > (2bn)nT_1

(1—¢)™"<2

3 Proof of Theorem 2

We need another lemma.

Lemma 9 Let Py be a polytope with M facets Fi, ..., Fy that is best approxi-
mating for a convexr body K in R™ with respect to the symmetric difference metric.
Fork=1,...,M, let

Fl=F.NK, F'=F.NK"
Then, for allj=1,.... M
volys () = vol,1 (FY).
Proof. Let H;, j =1,..., M be the hyperplane containing the face F;. Then
M
Py = () H.

Jj=1

Suppose Hy = H(xy,&), i.e. Hy is the hyperplane containing z; and being
orthogonal to &. We consider

t
P, = ﬂ HrnH* (xk + —xk,fk) .

L 2]
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We have
vol,_1(BAK) = vol,_1(PyAK) +t (vol,_1 (Ff) — vol,_q (F})) + w(t)

where 1)(t)/t? is a bounded function. [J

Proof of Theorem 2. Let Py, be a best approximating polytope with M facets
Fy, ..., Fy for B} with respect to the symmetric difference metric. For k£ =
1,..., M, let

F,=FNBy, F=FnN(By),

let Hj be the hyperplane containing the facet Fj, and let C} be the cap of BY
with base Hy, N BY. (There are actually two caps, we take the one whose interior
has empty intersection with Py;.) We put, for k =1,..., M

B — height of the cap Cy, if Fy, N (BY)° #0
o0, if FpN(BY)° =0.

Then

1
vol,_1(PyABY) > = th vol,_1 (F}) (29)

n

Let 7, be such that vol,,_; (rkBg‘l) = vol,,_1 (F}). Thus

1

vol, 1 (Ff) \""
Tk = | =5 7Hnoiy .
vol,—1 (B2 )

Let hy be the height of the cap of B} with base 7, By, Then

hy, < hg, forall k (30)
and ,
e dazd (i)
Thus we get from (29) with (30)

VOln—l(PMAB;L) Z L Z (VOlnfl (Fk>> -
2n k=1 (voln,1 (ng)) T

n+1

LS (ol (B)) (31)

>
— 8me

M=

B
Il

1
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We consider two cases. The first case is

M M
> voluoy (F) + ) volu_1 (F¢) > ¢ vol,_y (0B), (32)
k=1 k=1

where M > 10" and ¢ = %. It then follows from Lemma 9 that

M

3" Vol (F)) = g L1 (OBD). (33)

k=1

By Holder’s inequality

B =

2 voluot () < (Z (vol- <Fz;>>P) ()7

k=1

Therefore we get from (31) and (33) with p = 2+l that

(/2)n+1 1 nt%
vol,_1(Py ABE) > Cgm — (nvol, (B2)it > 83\4 — vol,. (Bj)

The second case is that (32) does not hold. Thus

Z vol,—1 (Fy) = Z vol,—1 (F}) +Z vol,—1 (F}) < ¢ vol,_1 (0BY).

k=1 k=1

Then, by the isoperimetric inequality

_n_

M n—1
1,1 (F _n_
vol,, (Py) < <Zk:1 voln1 ( k>> vol, (BYy) < c¢»-1 vol, (BY)

VOln_l (833)

and thus
vol, (Py ABY) > (1 - cm) vol,, (B .

Since ¢ = 10, then this last expression is greater than M~ »- = vol,, (BY), provided
M > 10"z, which holds by assumption. O

18
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