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1 Introduction and Statement of Result

1.1 The present articles deal with the problem of characterizing ellipsoids among all
closed convex surfaces in Euclidean d-space IEd by local transformation properties. Using
topological tools the answer for odd d was obtained in the first article. Here the answer
for all d will be given. More precisely, the following result will be proved where the closed
convex surface is the boundary of a compact convex subset of IEd with non-empty interior.

Theorem. Let S be a closed convex surface in IEd with the following property A: to any
pair of points x, y ∈ S there corresponds an affine transformation Axy of IEd which maps
x onto y and a suitable neighbourhood Nxy of x in S onto a neighbourhood of y in S.
Then S is an ellipsoid.

For related results we refer to the introduction of the first article. To the convexity
results cited there we include Mäurer [11]. Related results in the context of differential
geometry and affine differential geometry are due to Szabó [15], and Liu and Wang [9].

1.2 The proof relies heavily on results of Leichtweiss on floating bodies and of Blaschke
and Petty in affine differential geometry. In particular, a characterization of ellipsoids due
to Petty is needed utilizing the notions of affine distance and Santaló point. Moreover,
use is made of a characterization of spheres by the property that their Gauss curvature is
constant, which goes back to Liebmann, and of a characterization of convex sets due to
Tietze. In addition, we use tools from the first article and in case d = 2 the solution of a
functional equation is needed.

2 General Tools and Preliminaries

For concepts not explained below and results for which no reference is given we refer to
[14]. Let | · |, conv, relint, and det stand for volume, convex hull, relative interior with
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respect to a given surface, and determinant of the linear part of an affinity, respectively.
‖ · ‖ and Sd−1 denote the Euclidean norm and the unit sphere in IEd.

Let S be a closed convex surface in IEd.

2.1 It is well-known that

(1) a convex function on an interval in IR is almost everywhere twice differentiable.

2.2 The supporting function h(S, ·) of S is defined on Sd−1. Assume now that S is smooth,
i.e. of class C1. Then for x ∈ S we denote by n(S, x) the exterior normal unit vector of
C at x. Given δ > 0, let C(S, x, δ) be the cap of S with centre x and height δ, that is
the part of S between the supporting hyperplane of S at x and its translate by the vector
−δn(S, x). The base B(S, x, δ) of C(S, x, δ) is the convex hull of the intersection of S
with the translated supporting hyperplane. If µ = | conv C(S, x, δ)| then µ is called the
volume of C(S, x, δ) and instead of B(S, x, δ) and C(S, x, δ) we also write B(S, x, µ) and
C(S, x, µ), respectively. For S of class C2 let κ(S, u) be the Gauss curvature of S at the
point(s) of S with exterior normal unit vector u. Thus κ(S, ·) is defined on Sd−1.

2.3 Let S be of class C1. For ν > 0 a closed convex surface S[ν] in the interior of S is the
floating surface of S corresponding to ν if any supporting hyperplane of S[ν] cuts off from
S a cap of volume ν. The following result is well-known.

(2) Let S[ν] be a floating surface of S. Then the base of each cap of S of volume ν
touches S[ν] at a unique point and this point is the centroid of the base.

In order to state the next result we introduce the following notion where ε > 0. The
surface S is ε-smooth if for any x ∈ S there is a (solid Euclidean) ball of radius ε contained
in conv S which touches S at x. If for each x ∈ S there is a ball of radius 1

ε
containing S

and such that its boundary touches S at x, then S will be called ε-strictly convex.
From Leichtweiss [6] we take the following proposition.

(3) Let S be ε-smooth for a given ε > 0 and strictly convex. Then there is a λ > 0
such that for 0 < ν < λ the floating surface S[ν] of S exists, is of class C2 and the
inequality κ(S[ν], ·) > 0 holds.

2.4 Elementary calculations yield the next result, compare [7].

(4) Let S be of class C2 and let L be a volume-preserving linear transformation of IEd.
Then, for each x ∈ S and u = n(S, x),

n(L(S), L(x)) =
L−t(u)

‖L−t(u)‖
= v, say,

and

κ(L(S), v) =
κ(S, u)

‖L−t(u)‖d+1
.
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Here L−t is the inverse of the adjoint transformation of L.

2.5 A closed set U in IEd is said to have the local supporting property if for each of its
boundary points x there is a hyperplane through x such that all points of U in a suitable
neighbourhood of x are on the same side of the hyperplane, possibly on the hyperplane.
A result of Tietze [16] implies the following.

(5) Let U be a closed compact surface in IEd which is starshaped with respect to the
origin o, that is, each open ray starting at o meets U in precisely one point. If U
has the local supporting property, then it is a closed convex surface.

2.6 Let S be of class C2 with κ(S, ·) > 0 and assume that o is in its interior. Generalizing
a result of Blaschke [3], Petty [12] proved for the affine distance,

(6) a(S, u) = h(S, u)κ(S, u)−1/(d+1)

from o to the (unique) point x ∈ S where u = n(S, x), the formula

(7) a(S, u)d+1 = lim
δ→+0

dd+1| conv({o} ∪B(S, x, δ))|
(d + 1)d−1κ2

d−1| conv C(S, x, δ)|
.

Here κd−1 is the volume of the unit ball in IEd−1.
The Santaló point of S is the point

(8) san S =
∫

Sd−1

uh(S, u)−(d+1)dσ(u),

where σ is the ordinary surface area measure on Sd−1 and the integral is to be understood
componentwise.

The following characterization of ellipsoids is due to Petty [13].

(9) Let S be of class C2 with κ(S, ·) > 0 where o = san S. If a(S, ·) is constant on Sd−1,
then S is an ellipsoid with centre o.

2.7 It is well-known that,

(10) if S is of class C2 with κ(S, ·) > 0, then∫
Sd−1

u

κ(S, u)
dσ(u) = o.

Also well-known is the next result of which a first version was given by Liebmann [8].

(11) Let S be of class C2. If κ(S, ·) is constant, then S is a sphere.
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3 Proof of the Theorem

Let S be as stated in the Theorem. The proof that S is an ellipsoid is split into three
parts: in Section 3.1 some needed tools from the first article are cited and a lemma on
ε-smoothness is proved. In Sections 3.2 and 3.3 we distinguish the cases where there
are, resp. are not points p, q ∈ S such that for corresponding affinities Apq and Bpq the
non-equality | det Apq| 6= | det Bpq| holds. In the former case we treat the cases d = 2 and
d ≥ 3 separately.

3.1 Tools from the first article and a lemma.

3.1.1 From [5], Sections 3.2, 3.3, 3.4.2 and 3.4.3, respectively, we take the following
propositions.

(12) S is of class C1 and strictly convex.

(13) det Axy 6= 0 for all x, y ∈ S.

(14) Assume that for each pair x, y ∈ S the value of | det Axy| is the same for all affinities
Axy. Then, given p ∈ S, the function

x → | det Apx| : x ∈ S

is continuous and thus bounded between positive constants by (13).

(15) Assume that for each pair x, y ∈ S the value of | det Axy| is the same for all affinities
Axy. Then, given p ∈ S, there is a µ > 0 such that

C(S, p, µ) ⊂ Npx,

Apx(C(S, p, µ)) = C(S, x, | det Apx|µ)

for each x ∈ S and suitable Apx.

(16) Let d ≥ 3 and assume that there are points p, q ∈ S and corresponding affinities
Apq and Bpq with | det Apq| 6= | det Bpq|. Then S is an ellipsoid.

3.1.2 This subsection contains the proof of the following lemma.

(17) There is an ε > 0 such that S is ε-smooth and ε-strictly convex.

Since the proofs for ε-smoothness and for ε-strict convexity are very similar, only the
former will be given. The first step is to show the following.

(18) For each x ∈ S there is a ball Bx, with x ∈ Bx ⊂ conv S.

Obviously, there are a point p ∈ S and a ball B such that p ∈ B ⊂ conv S. Now,
for any x ∈ S, by replacing B by a suitable smaller ball which then is also denoted
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by B, if necessary, we may assume that B ⊂ conv Npx where Npx is a neighbourhood
corresponding to p, x. Then

x = Apx(p) ∈ Apx(B) ⊂ Apx(conv Npx) = conv Apx(Npx) ⊂ conv S.

Now choose a ball Bx contained in the ellipsoid Apx(B) with x ∈ Bx. The proof of (18)
is complete.

Clearly, we may assume that for each x ∈ S the ball Bx has maximum radius, say εx.
A simple compactness argument then yields,

(19) Sn = {x ∈ S : εx ≥
1

n
} is closed in S for n = 1, 2, . . .

By (18),

(20) S =
∞⋃

n=1

Sn.

Since S is (with the induced metric) a complete metric space, a version of the Baire
category theorem together with (19) and (20) implies that

relint Sn 6= ∅ for a suitable index n.

Let p ∈ relint Sn. Obviously,

Apx(Npx ∩ relint Sn), x ∈ S, is an open covering of S.

By the compactness of S there are open neighbourhoods N1, . . . , Nk of p in Sn and non-
singular affinities A1, . . . , Ak such that

A1(N1), . . . , Ak(Nk) is an open covering of S.

Again, the compactness of S in conjunction with Lebesgue’s covering lemma then shows
that there are sets

(21) M1 ⊂ N1, . . . ,Mk ⊂ Nk, compact,

while still

(22) A1(M1), . . . , Ak(Mk) is a covering of S.

Since Mi ⊂ Ni ⊂ Sn for i = 1, . . . , k, the definition of Sn in (19) implies,

(23) for each q ∈ Mi, i = 1, . . . , k, there is a ball of radius ε =
1

n
in conv S which touches

S at q.

Taking into account (12) and (21), by decreasing ε if necessary, we may replace (23) by
the following proposition.
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(24) There is an ε > 0 such that for each q ∈ Mi, i = 1, . . . , k, there is a ball Bq of radius
ε with q ∈ Bq ⊂ conv Ni.

Now (22), (24) and an argument which is slightly more complicated than the one that led
to (18) give (17). (Here we have to deal with k ellipsoids.)

3.2 Case 1. We assume here that

(25) there are points p, q ∈ S and corresponding affinities Apq and Bpq with | det Apq| 6=
| det Bpq|.

Our aim is to show that then

(26) S is an ellipsoid.

Remark: Since the affinities which map neighbourhoods of points on an ellipsoid onto
neighbourhoods on the ellipsoid are volume-preserving, this shows that Case 1 actually
cannot hold.

3.2.1 d =2. At first it will be shown that a convex arc which properly contains an affine
image of itself must contain an arc of a conic. The proof of this lemma in essence consists
of the solution of a functional equation. The lemma together with the assumption (25)
then easily leads to (26).

We first show the following lemma.

(27) Let p ∈ S and let A be an arc of S starting at p. Assume that Cpp 6= id is an affinity
with det Cpp > 0 such that Cpp(A) is also an arc in S which starts at p in the same
direction as A. Then a sub-arc of A is an arc of a conic.

At first A and Cpp(A) will be represented in a suitable Cartesian coordinate system:
choose p as the origin, let the supporting line of S at p (which is unique by (12)) be the
first coordinate axis such that A starts in the direction of the positive axis and let the
positive second axis point into the halfplane containing S. The coordinates in this system
will be denoted s, t.

Clearly, we may represent a sub-arc of A which starts at p in the form

t = f(s) or s = g(t)

with suitable functions f, g. It follows from (1) and the property A of S that S is
everywhere twice differentiable. Hence

(28) f(s) ∼ αs2 as s → +0 and thus g(t) ∼ βt1/2 as t → +0,

where α > 0 by (17) and β = α−1/2.
Since the arcs A and Cpp(A) on S both start at (the origin) p in the direction of the

positive first coordinate axis, the affinity Cpp maps the positive axis onto itself. Hence we
may represent Cpp in the form(

s

t

)
→
(
as + bt

ct

)
for

(
s

t

)
∈ IR2

with suitable a > 0, b, c. Clearly, det Cpp = ac > 0 implies that c > 0. By replacing Cpp

by C−1
pp and writing Cpp for C−1

pp , if necessary, we may assume that
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(29) 0 < a ≤ 1, c > 0.

Cpp maps (g(t), t)t onto (ag(t) + bt, ct)t. For small t > 0 the latter point is also on the
sub-arc of A which is represented by g(·). Thus

(30) ag(t) + bt = g(ct) for small t > 0,

and therefore
aβt1/2 + bt ∼ c1/2βt1/2 as t → +0

by (28). Hence a = c1/2 or c = a2. Thus, if a = 1 we have c = 1 and (30) yields b = 0,
that is, Cpp = id, a contradiction. Hence a 6= 1 and instead of (29) the sharper statement

(31) 0 < a < 1, c = a2

holds.
The final step in the proof of (27) is to show that

(32) g(t) = βt1/2 − b

a(1− a)
t for small t > 0.

(30), (31), and (28) show that for small t > 0

g(t) =
1

a
g(a2t)− b

a
t

=
1

a
{1

a
g(a4t)− b

a
a2t} − b

a
t =

1

a2
g(a4t)− b

a
(1 + a)t

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=
1

an
g(a2nt)− b

a
(1 + a + . . . + an−1)t =

1

an
g(a2nt)− b

a

1− an

1− a
t

→ βt1/2 − b

a(1− a)
t as n →∞,

which concludes the proof of (32).
Since the arc of S defined by g(·) where t > 0 is small is a conic arc by (32), the proof

of (27) is complete.
Having proved (27), the proof of (26) is simple. Note the assumption (25) and let

Cpp = A−1
pq Bpq. By replacing Cpp by C2

pp and writing Cpp for C2
pp, if necessary, we may

suppose that

(33) 0 < det Cpp 6= 1 and thus, in particular, Cpp 6= id.

Clearly, Cpp maps p onto p and for a suitable arc A in S starting at p also Cpp(A) is an arc
of S starting at p. The strict convexity of S (see (12)) and det Cpp > 0 (see (33)) imply
that A and Cpp(A) both start in the same direction. Thus an application of (27) shows
that S contains an arc of a conic. The transformation property A, the compactness of
S, and the fact that two overlapping arcs of conics actually are on the same conic then
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implies that S is a conic itself. Being bounded, it is an ellipse, concluding the proof of
(26).

3.2.2 d ≥3. The assumption (25) together with (16) immediately yield (26).

3.3 Case 2. We now assume that

(34) for each pair x, y ∈ S the value of | det Axy| is the same for all corresponding affinities
Axy.

Again, our aim is to prove that

(35) S is an ellipsoid.

As a first step it will be shown that | det Axy| = 1 for all x, y ∈ S. Then we will prove that
the floating surfaces T = S[ν] also have property A. Next, to each T we assign a closed
starshaped surface U . (It is perhaps worth noting that T is a dilatation of the curvature
image of U , compare Lutwak [10].) It then turns out that U has also property A but
with linear affinities. This yields in particular, using Tietze’s theorem (5), that U is a
closed convex surface. Hence one may consider the floating surfaces V = U[ν] of U . They,
again, have property A where the affinities are linear. A further property of the V ’s deals
with the affine distance. This permits the application of Petty’s characterization (9) of
ellipsoids. Hence each V is an ellipsoid. Then, going back from V to U , from U to T , and
then to S, we see that also S is an ellipsoid.

3.3.1 This subsection contains the proof that

(36) | det Apx| = 1 for all p, x ∈ S.

Property A and the assumption (34) yield the following proposition.

(37) Let p, z, y ∈ S and let Apz, Azy, Apy be corresponding affinities. Then | det Apy| =
| det Apz| | det Azy|.

Let p ∈ S. The assumption (34) together with (14) implies that there is a q ∈ S such
that

| det Apq| = max{| det Apz| : z ∈ S}.
Thus

(38) | det Apz| ≤ | det Apq| for all z ∈ S.

Let x ∈ S and consider Aqx. The affinity Aqx maps a neighbourhood Nqx of q in S onto
a neighbourhood Nx of x in S. For any y ∈ Nx there is a point z ∈ Nqx with Aqx(z) = y.
By (34) we thus have

| det Azy| = | det Aqx|.
This, (37) and (38) together then show

| det Apy| = | det Apz| | det Azy|
≤ | det Apq| | det Aqx| = | det Apx| for all y ∈ Nx.
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The function x → | det Apx| thus has a local maximum at any point x ∈ S. Since this
function is continuous by (34) and (14), it is a constant. Taking x = p, it follows that
this constant is 1, concluding the proof of (36).

3.3.2 By (3) and (17),

(39) there is a λ > 0 such that T = S[ν] exists, is of class C2 and κ(S[ν], ·) > 0 for
0 < ν < λ.

Since | det Axy| = 1 for all x, y ∈ S by (36), the following is a simple consequence of (15),
where for Axy we take ApyA

−1
px :

(40) there is a µ > 0 such that

Axy(C(S, x, µ)) = C(S, y, µ)

for all x, y ∈ S and suitable Axy.

In the following when we write Axy it is to be understood that Axy is a volume-preserving
affinity which satisfies (40).

Our aim in this subsection is to show that

(41) T = S[ν] has property A for 0 < ν < min{λ, µ} where the affinities are volume-
preserving.

For the proof of (41) it is sufficient to verify the following.

(42) Let 0 < ν < min{λ, µ} and u, v ∈ T = S[ν] be chosen. Since by (12) and (39) the
surfaces S and T are smooth and strictly convex, there are unique x, y ∈ S with
n(S, x) = n(T, u) and n(S, y) = n(T, v). Then there are a neighbourhood M of u in
T and a volume-preserving affinity Buv(= Axy) which maps u onto v and M into T .

The supporting hyperplane of T at u cuts off from S the cap C(S, x, ν) of volume ν.
Since ν < µ, this cap is contained in relint C(S, x, µ). Thus, since T is smooth and strictly
convex (see (39)), there is a neighbourhood M of u in T such that

(43) for each w ∈ M the following hold: if z ∈ S is chosen (uniquely) such that n(S, z) =
n(T, w), then

(a) the supporting hyperplane of T at w cuts off from S the cap C(S, z, ν) of
volume ν, where

(b) C(S, z, ν) ⊂ C(S, x, µ), and

(c) w is the centroid of the base B(S, z, ν).
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(a), (b) are clear and (c) is implied by (2).
The proof that Buv = Axy maps u onto v in essence is a special case of the proof that

Buv maps M into T . Hence only the latter will be given: let w ∈ M and choose z ∈ S
such that n(S, z) = n(T,w). By (43) w is the centroid of the base B(S, z, ν) of the cap
C(S, z, ν). Since Axy is non-singular, Axy(w) is the centroid of the base of the cap

Axy(C(S, z, ν)) = C(S, Axy(z), ν) ⊂ S,

see the definition of M , (43), and (40). This implies that Buv(w) = Axy(w) is the point
where the basis of the cap C(S, Axy(z), ν) touches T . Thus Buv(w) ∈ T , concluding the
proof of (42) and thus of (41).

3.3.3 The next aim is to establish the following proposition.

(44) Let T (= S[ν]) be a closed convex surface of class C2 with κ(T, ·) > 0 which has
property A. Define a closed surface U , starshaped with respect to o, by

U = {κ(T, t)−1/(d+1)t : t ∈ Sd−1}.

Then U has property A where the affinities are volume-preserving and linear and
U is convex with o in its interior.

For the proof that U has property A it is sufficient to prove the following:

(45) let r, s ∈ Sd−1 and choose (unique) u, v ∈ T such that r = n(T, u) and s = n(T, v).
Then there are a neighbourhood N of κ(T, r)−1/(d+1)r in U and a volume-preserving
linear transformation L−t

rs (Lrs is the linear part of Buv) which maps κ(T, r)−1(d+1)r
onto κ(T, r)−1/(d+1)s and N into U .

By the assumptions in (44) there is a neighbourhood M of u in T and a volume-
preserving affinity Buv mapping u onto v and M into T . The assumptions in (44) also
show that T is smooth and strictly convex. Hence the exterior normal unit vectors of T
at the points of M form a neighbourhood of r = n(T, u) in Sd−1. As t ranges over this
neighbourhood, the vectors κ(T, t)−1/(d+1)t form a neighbourhood N of κ(T, r)−1/(d+1)r in
U . In order to show that L−t

rs maps N into U , let κ(T, t)−1/(d+1)t ∈ N . By the definitions
of N and U there is a w ∈ M with t = n(T,w). Now apply (4):

L−t
rs (κ(T, t)−1/(d+1)t) = κ(T, t)−1/(d+1)L−t

rs (t)

= (
κ(T, t)

‖L−t
rs (t)‖d+1

)−1/(d+1) L−t
rs (t)

‖L−t
rs (t)‖

= κ(Lrs(T ),
L−t

rs (t)

‖L−t
rs (t)‖

)−1/(d+1)n(Lrs(T ), Lrs(w))

= κ(Buv(T ), n(Buv(T ), Buv(w)))−1/(d+1)n(Buv(T ), Buv(w))

= κ(T, n(T, Buv(w)))−1/(d+1)n(T,Buv(w)) ∈ U,
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since Buv(w) ∈ T . Thus L−t
rs (N) ⊂ U . For w = u we have t = n(T, w = u) = r and for

v = Buv(u) we have n(T, v) = s. Hence

L−t
rs (κ(T, r)−1/(d+1)r) = κ(T, s)−1/(d+1)s.

Since L−t
rs is volume-preserving, the proof of (45) is finished.

Now we show that

(46) U is convex with o in its interior.

Choose p ∈ U having maximum distance from o. The hyperplane through p orthogonal
to the vector p supports U locally at p (even globally, but we do not need this). The
transformation property A of U (see (45)) then implies that U is supported locally at
each of its points. Thus (5) shows that U is convex. By definition of U (see (44)), o is in
the interior of U , concluding the proof of (46).

Having proved (45) and (46), proposition (44) follows.
Taking into account (44), the argument of 3.3.2 shows that

(47) for each sufficiently small ν > 0 the floating surface V = U[ν] exists, is of class C2

with κ(V, ·) > 0, has property A where the affinities are (volume-preserving and)
linear, and o is in the interior of V .

3.3.4 This subsection is devoted to the proof of the following proposition.

(48) Let V (= U[ν]) be a closed convex surface of class C2 with κ(V, ·) > 0 and o in
its interior which has property A where the affinities are (volume-preserving and)
linear. Then V is an ellipsoid with centre o.

In the proof of (48) we first show that the affine distance from o,

(49) a(V, ·) is constant on V .

Choose x, y ∈ V and let u = n(V, x), v = n(V, y). For all sufficiently small δ > 0 the
cap C(V, x, δ) is mapped by a suitable volume-preserving linear transformation Lxy onto
a cap of the form C(V, y, ε) of the same volume. The assumptions in (48) imply that V
is smooth and strictly convex. Hence ε = ε(δ) → 0 as δ → +0. Clearly, Lxy maps the
cone conv({o} ∪ B(V, x, δ)) onto the cone conv({o} ∪ B(V, y, ε)). Therefore both cones
have the same volume. This holding for all sufficiently small δ > 0 together with (7) yield
a(V, u) = a(V, v), concluding the proof of (49).

From (8), (6), (49) and (10) it follows for the Santaló point of V ,

san V =
∫

Sd−1

uh(V, u)−(d+1)dσ(u) =
∫

Sd−1

ua(V, u)−(d+1)κ(V, u)−1dσ(u)

= const
∫

Sd−1

u

κ(V, u)
dσ(u) = o.

Combining this with (49), we see that the affine distance from the Santaló point o of
V is constant on V . Note that V is of class C2, see (47). Hence an application of Petty’s
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characterization (9) shows that V is an ellipsoid with centre o. This concludes the proof
of (48).

3.3.5 Now we make use of what has been proved in earlier subsections to show (35), i. e.,
S is an ellipsoid.

For sufficiently small ν > 0 the floating surfaces V = U[ν] exist and are ellipsoids
with centre o, see (47) and (48). Clearly, they approximate U arbitrarily closely from the
interior as ν → +0. Hence

(50) U is an ellipsoid with centre o.

Next it will be shown that

(51) T (= S[ν]) is an ellipsoid for all sufficiently small ν > 0.

The floating surface T = S[ν] exists for all sufficiently small ν > 0, compare (39). For
such ν the corresponding closed convex surface U is also an ellipsoid and its centre is o
by (44) and (50). Let L−t be a volume-preserving linear transformation which transforms
U into a sphere with centre o. Using (4) and (44) the following relation obtains:

L−t(U) = {L−t(κ(T, t)−1/(d+1)t) : t ∈ Sd−1}

= {κ(T, t)−1/(d+1)L−t(t) : t ∈ Sd−1}

= {( κ(T, t)

‖L−t(t)‖d+1
)−1/(d+1) L−t(t)

‖L−t(t)‖
: t ∈ Sd−1}

= {κ(L(T ), s)−1/(d+1)s : s ∈ Sd−1},

see [10]. Since L−t(U) is a sphere with centre o, this can hold only if κ(L(T ), ·) is constant
on Sd−1. Now, noting (39), proposition (11) implies that L(T ) is a sphere. This concludes
the proof of (53).

The floating surfaces T = S[ν] approximate S arbitrarily closely as ν → +0. This
together with (51) shows that S is an ellipsoid. Thus the proof of (35) is complete.

3.4 Having shown that S is an ellipsoid, the proof of the Theorem is complete.
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