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1 Introduction

Let C and D be closed convex curves in the Euclidean plane. Their Hausdorff
distance δH(C, D) is defined by

δH(C, D) = max{sup
p∈C

inf
q∈D

‖p− q‖, sup
q∈D

inf
p∈C

‖p− q‖},

where ‖.‖ is the Euclidean norm. Let P i
n(C) be the set of closed convex polygons

which are inscribed into C and have at most n vertices. Beginning with the
work of L. Fejes Tóth (cf. the surveys [3], [4]), there are investigations on the
asymptotic behavior as n → ∞ of the distance of C to its best approximating
inscribed polygons with at most n vertices, i.e., of

δH(C,P i
n) = inf{δH(C, Pn) : Pn ∈ P i

n(C)},

and the similarly defined distance δH(C,Pc
n) for circumscribed polygons.

In the following we assume that C is of class C2 and has positive curvature.
In this case the asymptotic behavior as n →∞ of δH(C,P i

n) and δH(C,Pc
n) was

described by L. Fejes Tóth [1],[2]:

δH(C,P i
n) ∼ δH(C,Pc

n) ∼ 1

8

(∫ l

0
κ1/2(t)dt

)2
1

n2
, (1)

where κ(t) is the curvature of C given as a function of the arclength t and l
the length of C. See also McClure and Vitale [7] and for asymptotic formulae
for approximation with respect to the Hausdorff metric in higher dimensions
R. Schneider [8],[9] and P.M. Gruber [5].

In this article we extend the asymptotic formulae (1) by deriving the second
terms in the asymptotic expansions of δH(C,P i

n) and δH(C,Pc
n). This comple-

ments results derived for approximation with respect to the symmetric difference
metric in [6].
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2 Some Definitions

Let Pn be a polygon inscribed in C and let p1, . . . , pn be its successive vertices.
Denote by hi the maximal distance that a point lying on C between pi−1 and
pi can have from the line segment connecting pi−1 and pi. Thus, δH(C, Pn) =
maxi=1,...,n hi. For a convex curve C with positive curvature and n large enough
it is easy to see that

h1 = h2 = . . . = hn (2)

for all best approximating polygons. A similar statement holds for circumscribed
polygons.

Because of the asymptotic formulae (1), we introduce a new parameter for C
by

s(t) =
∫ t

0
κ1/2(τ)dτ, 0 ≤ t ≤ l, (3)

where t is the arclength of C. Define

λ =
∫ l

0
κ1/2(τ)dτ.

In the following C is always of class C4 with positive curvature and given in
a parametrization x(s), 0 ≤ s ≤ λ, where s is defined by (3). By ′ we denote
differentiation with respect to s.

3 Asymptotic Expansion for δH(C,P i
n)

Lemma 1 For 0 ≤ r ≤ s ≤ λ, let h(r, s) be the maximal distance that a point
lying on C between x(r) and x(s) can have from the line segment connecting these
points. Then

h(r, s) =
1

8
(s−r)2− 1

384

(
κ(r) + κ−1(r)κ′′(r)− 5

6
κ−2(r)(κ′(r))2

)
(s−r)4+o((s−r)4),

uniformly for all 0 ≤ r ≤ s ≤ λ as (s− r) → 0.

Proof. The distance of a point x(σ), r ≤ σ ≤ s, to the line segment joining x(r)
and x(s) is given by

|x(σ)− x(r),
x(s)− x(r)

‖x(s)− x(r)‖
|,

where | . , . | is the determinant. The maximal distance h(r, s) is attained for a
point x(σ) for which

|x′(σ),
x(s)− x(r)

‖x(s)− x(r)‖
| = 0.
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By this equation a function σ = φ(r, s) is defined with the help of which h(r, s)
can be written as

h(r, s) = |x(φ(r, s))− x(r),
x(s)− x(r)

‖x(s)− x(r)‖
|.

Simple but rather lengthy calculations give the Taylor polynomial of order four
of h(r, s) and the statement of the lemma. 2

We define

ki
H(s) = κ(s) + κ−1(s)κ′′(s)− 5

6
κ−2(s)(κ′(s))2

and are able to formulate the first theorem.

Theorem 1 Let C ∈ C4 be a convex curve with positive curvature. Then

δH(C,P i
n) ∼ 1

8

λ2

n2
− λ3

384

λ∫
0

ki
H(s)ds

1

n4
+ o(

1

n4
)

as n →∞.

Proof: We consider a sequence of best approximating polygons with vertices at
x(sni), i = 1, . . . , n. As a first step we derive a simple asymptotic formula for the
λni = sni − sn,i−1.

By (2) we have

hn1 = hn2 = . . . = hnn = δH(C,P i
n).

Since λni → 0 as n → ∞, we see from (1) and the terms of second order in
Lemma 1, that for any ε > 0, there is a positive integer n0 such that

λ2

8n2
(1− ε) ≤ hni ≤

λ2

8n2
(1 + ε)

and
1

8
λ2

ni(1− ε) ≤ hni ≤
1

8
λ2

ni(1 + ε)

for all n ≥ n0. Combining these inequalities gives

1− ε

1 + ε

λ2

n2
≤ λ2

ni ≤
1 + ε

1− ε

λ2

n2
.

From this we see that

λni =
λ

n
+ o(

1

n
) (4)

uniformly as n →∞, which is the desired simple asymptotic formula.
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For any i, j, 0 < i, j < n, we have hni = hnj. Therefore, Lemma 1 and (4) give

1

8
λ2

ni −
1

384
ki

H(sn,i−1)λ
4
ni + o(

1

n4
) =

1

8
λ2

nj −
1

384
ki

H(sn,j−1)λ
4
nj + o(

1

n4
).

Extracting the square root of these equations gives

λni −
1

96
ki

H(sn,i−1)λ
3
ni + o(

1

n3
) = λnj −

1

96
ki

H(sn,j−1)λ
3
nj + o(

1

n3
). (5)

We define

λni =
λ

n
+ εni

and have by (4) εni = o( 1
n
). Combining this with (5) we obtain

εni =
1

96
ki

H(sn,i−1)
λ3

n3
+ εnj −

1

96
ki

H(sn,j−1)
λ3

n3
+ o(

1

n3
).

In these equations we sum on j from 1 to n, and since
∑n

j=0 εnj = 0, find that

nεni =
1

96
ki

H(sn,i−1)
λ3

n2
− 1

96

λ2

n2

n∑
j=0

ki
H(sn,j−1)λnj + o(

1

n2
).

Therefore,

lim
n→∞

n3

(
εni −

1

96
ki

H(sn,i−1)
λ3

n3

)
= −λ2

96

λ∫
0

ki
H(s)ds

and

λni =
λ

n
+

1

96
ki

H(sn,i−1)
λ3

n3
− λ2

96

λ∫
0

ki
H(s)ds

1

n3
+ o(

1

n3
) (6)

uniformly as n →∞.
Using (6), we obtain the asymptotic expansion of δH(C,P i

n). Lemma 1 and
(6) give

δH(C,P i
n) =

1

n

n∑
i=1

hni =
1

n

n∑
i=1

(
λ2

ni

8
− 1

384
ki

H(sn,i−1)λ
4
ni + o(

1

n4
)

)
=

=
1

n

n∑
i=1

(
1

8

(
λ2

n2
+

1

48
ki

H(sn,i−1)
λ4

n4
− λ3

48

λ∫
0

ki
H(s)ds

1

n4

)
−

− 1

384
ki

H(sn,i−1)
λ4

n4
+ o(

1

n4
)
)
.

Therefore,

δH(C,P i
n)− λ2

8n2
= − λ3

384

λ∫
0

ki
H(s)ds

1

n4
+ o(

1

n4
)

and

lim
n→∞

n4

(
δH(C,P i

n)− λ2

8n2

)
= − λ3

384

λ∫
0

ki
H(s)ds. 2
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Comparing this result with the asymptotic expansion for approximation with
respect to the symmetric difference metric

δS(C,P i
n) ∼ 1

12

λ3

n2
− 1

2

λ4

5!

∫ λ

0
k(s)ds

1

n4
+ o(

1

n4
)

(cf. [6]), where λ is the affine length of C, s the affine arclength and k(s) the
affine curvature of C, we see that ki

H plays the same role in the case of the
Hausdorff metric as the affine curvature in the case of the symmetric difference
metric. But whereas in the case of the symmetric difference metric the second
term in the asymptotic expansion for approximation by circumscribed polygons
again depends on k(s), for the Hausdorff metric it depends on a function different
from ki

H (see the following section).

4 Asymptotic Expansion for δH(C,Pc
n)

Lemma 2 For 0 ≤ r ≤ s ≤ λ, let k(r, s) be the maximal distance that a point
lying on C between x(r) and x(s) can have from the point where the tangents at
x(r) and x(s) meet. Then

k(r, s) =
1

8
(s− r)2 +

5

384

(
κ(r) +

1

5
κ−1(r)κ′′(r)− 7

30
κ−2(r)(κ′(r))2

)
(s− r)4

+ o((s− r)4),

uniformly for all 0 ≤ r ≤ s ≤ λ as (s− r) → 0.

Proof. The point where the tangents at x(r) and x(s) meet is given by

y(r, s) = x(r) +
|x(s)− x(r), x′(s)|

|x′(r), x′(s)|
x′(r).

For a point x(σ) with maximal distance from that point we have

x′(σ) · (x(σ)− y(r, s)) = 0.

By this equation a function σ = φ(r, s) is defined, with the help of which we get

k(r, s) = ‖x(φ(r, s))− y(r, s)‖.

As in the proof of Lemma 1 rather lengthy calculations give the Taylor polynomial
of order four of k(r, s) and the statement of the lemma. 2

We define

kc
H(s) = κ(s) +

1

5
κ−1(s)κ′′(s)− 7

30
κ−2(s)(κ′(s))2

and get the following theorem.
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Theorem 2 Let C ∈ C4 be a convex curve with positive curvature. Then

δH(C,Pc
n) ∼ 1

8

λ2

n2
+

5λ3

384

λ∫
0

kc
H(s)ds

1

n4
+ o(

1

n4
)

as n →∞.

The proof of this theorem is analogous to that of Theorem 1.
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