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Abstract

A short survey is given on classification results for valuations on
function spaces. Real valued, matrix valued and convex body valued
valuations on Lebesgue spaces and on Sobolev spaces are considered.
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A function Z defined on a lattice pL,_,^q and taking values in an
Abelian semigroup is called a valuation if

Zpf _ gq � Zpf ^ gq � Zpfq � Zpgq (1)

for all f, g P L (see, for example, [7]). A function Z defined on a subset S of
the set L is called a valuation on S if (1) holds whenever f, g, f_g, f^g P S.

The classical case are valuations on convex bodies (compact convex sets)
in Rn. Here valuations are defined on Kn, the space of convex bodies in Rn,
which is equipped with the topology coming from the Hausdorff metric.
The operations _ and ^ are the usual union and intersection. Results
on valuations on convex polytopes start with Dehn’s solution of Hilbert’s
Third Problem in 1901. In the 1950s, a systematic study of valuations
was initiated by Hadwiger, who was in particular interested in classifying
valuations on Kn. Probably the most famous result on valuations is the
Hadwiger characterization theorem.

Theorem 1 (Hadwiger [29]). A functional Z : Kn Ñ R is a continuous
and rigid motion invariant valuation if and only if there are constants c0,
c1, . . . , cn P R such that

ZpKq � c0 V0pKq � � � � � cn VnpKq

for every K P Kn.
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Here V0pKq, . . . , VnpKq are the intrinsic volumes of K P Kn. In partic-
ular, V0pKq is the Euler characteristic (that is, V0pKq � 1 for K � H
and V0pHq � 0), 2Vn�1pKq is the surface area and VnpKq the volume of
K. Hadwiger’s result was the starting point for many investigations dealing
with characterizations and precise descriptions of classes of valuations having
interesting invariance properties (see [29,35,59,60] for more information).

We remark that pKn,Y,Xq is not a lattice but that there is a natural
lattice structure on the whole of Kn, when ^ is defined as intersection and
_ as convex hull of the union. Gruber [19] established a classification of the
endomorphisms of this lattice (see also [20]). Let Kn

0 denote the space of
convex bodies in Rn that contain the origin in their interiors. The lattice
pKn

0 ,_,^q was studied by Böröczky & Schneider [9], where the main focus
is again on the classification of endomorphisms and a characterization of po-
larity is obtained (see also [4,5]). However, note that these endomorphisms
are not valuations on pKn

0 ,_,^q in the sense of definition (1).
For a space of real valued functions, we define the operations _ and

^ as pointwise maximum and minimum, respectively. When we identify a
convex body K in Rn with its indicator function 1K or its support function
hK (where hKpuq � hpK,uq � maxtu � x : x P Ku and u � x is the standard
inner product of u, x P Rn), we see that valuations on convex bodies can be
considered as valuations on suitable function spaces.

In this short survey, results on valuations on some of the standard func-
tion spaces are collected. An emphasis is put on classification theorems of
invariant real valued valuations and of matrix valued and convex body val-
ued valuations that are compatible with the action of some transformation
group.

1 Valuations on Lebesgue Spaces

For a space X with measure µ, define LppX,µq as the space of measurable
functions f : X Ñ R such that

}f}p �
� »

X
|fpxq|p dµpxq

	1{p
  8.

We say that fj Ñ f in LppX,µq, if }fj � f}p Ñ 0. Let LppRnq denote
the Lp space with respect to the Lebesgue measure dx and LppSn�1q the
Lp space on the unit sphere Sn�1 with respect to the spherical Lebesgue
measure.

1.1 Real valued valuations

Andy Tsang [69] obtained classification results for valuations on LppX,µq
for a non-atomic measure space X. Here we state some of the consequences
of his results. Let p ¥ 1.
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Theorem 2 (Tsang [69]). A functional Z : LppRnq Ñ R is a continuous
and translation invariant valuation if and only if there exists a continuous
function ζ : R Ñ R with the property that |ζptq| ¤ γ |t|p for all t P R for
some γ ¥ 0 such that

Zpfq �

»
Rn

pζ � fqpxq dx

for every f P LppRnq.

Hassane Kone [36] has recently extended the above theorem to Orlicz
spaces.

Theorem 3 (Tsang [69]). A functional Z : LppSn�1q Ñ R is a continuous
and rotation invariant valuation if and only if there exists a continuous
function ζ : R Ñ R with the properties that ζp0q � 0 and |ζptq| ¤ δ � γ|t|p

for all t P R for some δ, γ ¥ 0 such that

Zpfq �

»
Sn�1

pζ � fqpuq du

for every f P LppSn�1q.

Let SppRnq be the space of sets S � Rn which are star shaped with
respect to the origin and whose radial function

ρSpuq � ρpS, uq � maxtλ ¥ 0 : λu P Su

is in LppSn�1q. These sets are called Lp stars. The space SppRnq is equipped
with the topology so that Sj Ñ S if }ρSj � ρS}p Ñ 0. In [33,34], Dan Klain
obtained classification results for valuations on Ln stars. The operations _
and ^ are union and intersection, respectively, and hence correspond to the
pointwise maximum and minimum for radial functions. Here we state one
of Klain’s results that can be obtained as a simple variation of Theorem 3
by restricting Tsang’s result to non-negative functions.

Theorem 4 (Klain [34]). A functional Z : SnpRnq Ñ R is a continuous and
rotation invariant valuation if and only if there exists a continuous function
ζ : r0,8q Ñ R with the properties that ζp0q � 0 and |ζptq| ¤ δ� γ|t|n for all
t P R for some δ, γ ¥ 0 such that

ZpSq �

»
Sn�1

pζ � ρSqpuq du

for every S P SnpRnq.

If the valuation Z in Theorem 4 is in addition positively homogeneous of
degree p (that is, ZprSq � rp ZpSq for all r ¡ 0 and S P SnpRnq), then
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ζptq � c tp with c P R and 0 ¤ p ¤ n and hence Z is a dual mixed volume (as
defined by Lutwak [46]). The theory of dual mixed volumes is also called dual
Brunn Minkowski theory and the theory of mixed (and intrinsic) volumes
is called Brunn Minkowski theory. Hence the Hadwiger theorem belongs to
the Brunn Minkowski theory and Theorem 4 is its analogue within the dual
Brunn Minkowski theory.

1.2 Matrix valued valuations

On convex bodies also vector and tensor valued valuations attracted a lot
of interest (see, for example, [2, 3, 30, 31, 37, 39]). Here we state a result for
matrix valued valuations on the space L2pRn, |x|2dxq of measurable functions
f : Rn Ñ R with finite second moments, where |x| is the Euclidean norm of
x P Rn. For a measurable function f : Rn Ñ R, the moment matrix, Kpfq,
is the n� n matrix with (not necessarily finite) entries,

Kijpfq �

»
Rn

fpxqxi xj dx.

If f is a probability density with mean zero, then Kpfq is the covariance
matrix of f . Let Mn denote the space of real symmetric n�n matrices. An
operator Z : L2pRn, |x|2dxq ÑMn is called SLpnq covariant if

Zpf � φ�1q � φZpfqφt

for all f P L2pRn, |x|2dxq and φ P SLpnq.

Theorem 5 (Ludwig [45]). An operator Z : L2pRn, |x|2dxq Ñ Mn is a
continuous and SLpnq covariant valuation if and only if there exists a con-
tinuous function ζ : R Ñ R with the property that |ζptq| ¤ γ |t| for all t P R
for some γ ¥ 0 such that

Zpfq � Kpζ � fq

for every f P L2pRn, |x|2dxq.

The proof makes use of a classification of matrix valued valuations on convex
bodies which in turn uses ideas of Haberl [24].

1.3 Convex body valued valuations

Convex body valued and star body valued valuations on Kn and Kn
0 have

become more and more important. See [1, 3, 22–25, 38, 41, 61, 62, 64–66, 73]
for some of the recent results.

The most important convex body valued valuations on convex bod-
ies are the projection operator Π : Kn Ñ Kn and the moment operator
M : Kn

0 Ñ Kn. Both are so called Minkowski valuations, that is, they are
valuations with values in the Abelian semi-group xKn,�y, where � stands
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for Minkowski (or vector) addition (that is, K�L � tx� y : x P K, y P Lu).
We remark that besides Minkowski addition, also the so called Lp Minkowski
addition and Lp Minkowski valuations have turned out to be very impor-
tant (see, for example, [10,11,27,40,48–50,54,56,57,67,68]). Since there are
no results yet on Lp Minkowski valuations on function spaces, we will not
consider them in this survey.

The projection body, ΠK, of a convex body K in Rn is given by

hpΠK,uq � Vn�1pK|u
Kq for u P Sn�1,

where Vn�1 denotes pn� 1q-dimensional volume and K|uK the image of the
orthogonal projection of K onto the subspace orthogonal to u. Projection
bodies were introduced by Minkowski at the turn of the last century and
have proved to be very useful in many ways and subjects (cf. [17]).

The moment body, MK, of a convex body K P Kn
0 is given by

hpMK,uq �

»
K
|u � x| dx �

1

n� 1

»
Sn�1

|u � v| ρn�1
K pvq dv. (2)

When divided by the volume of K, the moment body of K is called centroid
body and is a classical and important notion going back to Dupin (see [17,
47]).

Tsang [70] studied convex body valued valuations on function spaces.
Here the natural space to consider is the space L1pRn, |x| dxq of measurable
functions f : Rn Ñ R of finite first moments. We give a special case of
Tsang’s classification theorem with modified notation.

Let Sp
c pRnq denote the space of origin-symmetric Lp stars in Rn. For a

function f P L1pRn, |x| dxq, define the origin-symmetric and star-shaped set
tfun�1 by

ρn�1ptfun�1 , uq �
1

2

» 8
�8

|fpruq| d|r|n�1, (3)

where d|r|n�1 � pn� 1q|r|nd|r|. Note that

1

n� 1

»

Rn

|fpxq| |x| dx �
1

2

»

Sn�1

8»

�8

|fpruq| |r|n d|r| du �

»

Sn�1

ρn�1ptfun�1 , uq du.

Thus tfun�1 P Sn�1
c pRnq. The operator f ÞÑ tfun�1 and its generalizations

have turned out to be important for many results (see, for example, [6,8,14,
18,32,55]).

Let Kn
c denote the space of origin-symmetric convex bodies in Rn. An

operator Z : L1pRn, |x| dxq Ñ Kn
c is called GLpnq covariant of weight q if

Zpf � φ�1q � |detφ|q φZpfq (4)

for all f P L1pRn, |x| dxq. It is called GLpnq covariant if it is GLpnq covariant
of some weight q P R.

5



Theorem 6 (Tsang [70]). An operator Z : L1pRn, |x| dxq Ñ Kn
c is a con-

tinuous Minkowski valuation which is GLpnq covariant of weight 1 if and
only if there exists a continuous function ζ : R Ñ R with the property that
0 ¤ ζptq ¤ γ|t| for all t P R and some γ ¥ 0 such that

Zpfq � M tζ � fun�1

for every f P L1pRn, |x| dxq.

Here the operator M is extended from Kn
0 to Sn�1pRnq using the right hand

side of (2), that is, for u P Sn�1

hpM tζ � fun�1 , uq �

»
Rn

|u � x| pζ � fqpxq dx.

The proof of Theorem 6 makes use of a classification of Minkowski valuations
on the space of convex bodies containing the origin from [40].

2 Valuations on Sobolev Spaces

Let W 1,ppRnq, where p ¥ 1, denote the Sobolev space of real valued functions
in LppRnq whose weak partial derivatives are also in LppRnq. We remark
that on Sobolev spaces it is an open problem to establish a classification of
all continuous and rigid motion invariant valuations.

2.1 Matrix valued valuations

The following result is a partial analogue of Theorem 5. We say that an
operator Z : W 1,2pRnq ÑMn is GLpnq contravariant if for some q P R

Zpf � φ�1q � |detφ|q φ�t Zpfqφ�1

for all f P W 1,2pRnq and φ P GLpnq. It is called homogeneous if for some
r P R we have Zptfq � |t|r Zpfq for all t P R and f P W 1,2pRnq. It is called
affinely contravariant if it is GLpnq contravariant, translation invariant and
homogeneous.

Theorem 7 (Ludwig [43]). An operator Z : W 1,2pRnq ÑMn, where n ¥ 3,
is a continuous and affinely contravariant valuation if and only if there is a
constant c P R such that

Zpfq � c Jpf2q

for every f PW 1,2pRnq.

Here Jpgq is the Fisher information matrix of a weakly differentiable function
g : Rn Ñ r0,8q, that is, the n� n matrix with entries

Jijpgq �

»
Rn

B log gpxq

Bxi

B log gpxq

Bxj
gpxq dx. (5)
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The Fisher information matrix plays an important role in information theory
and statistics (see [13, 15]). In general, Fisher information is a measure of
the minimum error in the maximum likelihood estimate of a parameter in a
distribution. The Fisher information matrix (5) describes such an error for a
random vector of density g with respect to a location parameter. The proof
of Theorem 7 makes use of the connection of the Fisher information matrix
and the so called LYZ ellipsoid established by Lutwak, Yang & Zhang [51,53]
and a classification of matrix valued valuations in [39].

2.2 Convex body valued valuations

Define the notion of GLpnq covariance for operators on the Sobolev space
W 1,1pRnq as for operators on the space L1pRn, |x| dxq (cf. (4)). An operator
on W 1,1pRnq is called affinely covariant if it is GLpnq covariant, translation
invariant and homogeneous.

On the space of origin-symmetric convex bodies, there is a second impor-
tant addition besides Minkowski addition, the so called Blaschke addition.
The Blaschke sum of origin-symmetric convex bodies K,L � Rn with non-
empty interiors is the origin-symmetric convex body K # L such that

SpK # L, �q � SpK, �q � SpL, �q, (6)

where SpK, �q is the surface area measure of K. For a Borel set ω � Sn�1

and a convex body K, the surface area measure SpK,ωq is the pn � 1q-
dimensional Hausdorff measure of the set of all boundary points of K at
which there exists a unit normal vector of K belonging to ω. By the solution
to the Minkowski problem, the convex body K # L is well defined by (6)
(see [21] or [63]).

Let Kn
e denote the space of origin-symmetric convex bodies, where we

identify convex bodies with the same surface area measure and use the topo-
logy induced by weak convergence of surface area measures. Note that when
restricted to convex bodies with non-empty interiors, the spaces Kn

c and Kn
e

coincide. An operator Z : W 1,1pRnq Ñ Kn
e is called a Blaschke valuation if

it is a valuation when the addition on Kn
e is Blaschke addition.

Theorem 8 (Ludwig [44]). An operator Z : W 1,1pRnq Ñ Kn
e , where n ¥ 3,

is a continuous and affinely covariant Blaschke valuation if and only if there
is a constant c ¥ 0 such that

Zpfq � c xfy

for every f PW 1,1pRnq.

The operator f ÞÑ xfy was introduced by Lutwak, Yang & Zhang [56] and is
called the LYZ operator. For a function f P W 1,1pRnq and f � 0, the LYZ
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body xfy is defined in [56] as the unique origin-symmetric convex body in
Rn such that »

Sn�1

gpuq dSpxfy, uq �

»
Rn

gp∇fpxqq dx (7)

for every even continuous function g : Rn Ñ R that is positively homo-
geneous of degree 1. The LYZ body for f � 0 is a convex body with
identically vanishing surface area measure and hence identified with t0u.
Equation (7) is a functional version of the classical even Minkowski problem.
The proof of Theorem 8 makes use of a classification of convex body valued
valuations in [42].

To describe an important application of the LYZ body, we need some
more background information. Let } � } denote a norm on Rn that is normal-
ized so that its unit ball has the same volume, vn, as the n-dimensional Eu-
clidean unit ball. For such a norm, the sharp Gagliardo-Nirenberg-Sobolev
inequality states that for every f PW 1,1pRnq»

Rn

}∇fpxq}� dx ¥ n v1{nn }f} n
n�1

(8)

where } � }� is the dual norm of } � }, that is, }v}� � suptx � v : }x} ¤ 1u
for v P Rn. The sharp Sobolev inequality (8) was established by Federer
& Fleming [16] and Maz1ya [58] for Euclidean norms and by Gromov for
general norms. Note that the right hand side of (8) does not depend on the
norm }�}. Hence for a given f PW 1,1pRnq, we may ask for its optimal Sobolev
norm, that is, for the norm that minimizes the left-hand side of (8) among
all norms whose unit balls have volume vn. This natural and important
question was first asked by Lutwak, Yang & Zhang [56], who showed that
the optimal Sobolev norm is up to normalization the norm whose unit ball
is the LYZ body xfy.

An operator Z : W 1,1pRnq Ñ Kn is called GLpnq contravariant if for
some q P R

Zpf � φ�1q � |detφ|q φ�t Zpfq

for all f P W 1,1pRnq and φ P GLpnq. It is called affinely contravariant if it
is GLpnq contravariant, translation invariant and homogeneous.

Theorem 9 (Ludwig [44]). An operator Z : W 1,1pRnq Ñ Kn
c , where n ¥ 3,

is a continuous and affinely contravariant Minkowski valuation if and only
if there is a constant c ¥ 0 such that

Zpfq � cΠ xfy

for every f PW 1,1pRnq.

Note that it follows from the definition of projection bodies and surface area
measures that for f PW 1,1pRnq and v P Sn�1

hpΠ xfy, vq �
1

2

»
Rn

|v �∇fpxq| dx.
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The convex body Π xfy has proved to be critical for affine analytic inequal-
ities. In particular, the affine Sobolev-Zhang inequality [74] is a volume
inequality for the polar body of Π xfy which strengthens and implies the
Euclidean case of the L1 Sobolev inequality (see also [12,26,52,56]).

Very recently, Tuo Wang [71] has studied the LYZ operator f ÞÑ xfy
on the space, BVpRnq, of functions of bounded variation. On BVpRnq,
the LYZ operator is not a valuation anymore but Wang [72] established a
characterization as an affinely covariant Blaschke semi-valuation.
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[9] K. J. Böröczky and R. Schneider, A characterization of the duality mapping for
convex bodies. Geom. Funct. Anal. 18 (2008), 657–667.

[10] S. Campi and P. Gronchi, The Lp-Busemann-Petty centroid inequality, Adv. Math.
167 (2002), 128–141.

[11] K. Chou and X.-J. Wang, The Lp-Minkowski problem and the Minkowski problem
in centroaffine geometry, Adv. Math. 205 (2006), 33–83.

[12] A. Cianchi, E. Lutwak, D. Yang, and G. Zhang, Affine Moser-Trudinger and Morrey-
Sobolev inequalities. Calc. Var. Partial Differential Equations 36 (2009), 419–436.

[13] T. Cover and J. Thomas, Elements of Information Theory. Second ed., Wiley-
Interscience, Hoboken, NJ, 2006.

[14] N. Dafnis and G. Paouris, Small ball probability estimates, ψ2-behavior and the
hyperplane conjecture, J. Funct. Anal. 258 (2010), 1933–1964.

[15] A. Dembo, T. Cover, and J. Thomas, Information-theoretic inequalities. IEEE Trans.
Inform. Theory 37 (1991), 1501–1518.

[16] H. Federer and W. Fleming, Normal and integral currents. Ann. of Math. (2) 72
(1960), 458–520.

[17] R. Gardner, Geometric Tomography. Second ed., Encyclopedia of Mathematics and
its Applications, vol. 58, Cambridge University Press, Cambridge, 2006.

[18] R. Gardner and G. Zhang, Affine inequalities and radial mean bodies, Amer. J. Math.
120 (1998), 505–528.

9



[19] P. M. Gruber, The endomorphisms of the lattice of convex bodies. Abh. Math. Sem.
Univ. Hamburg 61 (1991), 121–130.

[20] P. M. Gruber, The endomorphisms of the lattice of norms in finite dimensions. Abh.
Math. Sem. Univ. Hamburg 62 (1992), 179–189.

[21] P. M. Gruber, Convex and Discrete Geometry. Grundlehren der Mathematischen
Wissenschaften, vol. 336, Springer, Berlin, 2007.

[22] C. Haberl, Star body valued valuations. Indiana Univ. Math. J. 58 (2009), 2253–2276.

[23] C. Haberl, Blaschke valuations. Amer. J. Math. 133 (2011), 717–751.

[24] C. Haberl, Minkowski valuations intertwining the special linear group. J. Eur. Math.
Soc., in press.

[25] C. Haberl and M. Ludwig, A characterization of Lp intersection bodies. Int. Math.
Res. Not. 10548 (2006), 1–29.

[26] C. Haberl and F. E. Schuster, Asymmetric affine Lp Sobolev inequalities. J. Funct.
Anal. 257 (2009), 641–658.

[27] C. Haberl and F. E. Schuster, General Lp affine isoperimetric inequalities, J. Differ-
ential Geom. 83 (2009), 1–26.

[28] C. Haberl, F. E. Schuster, and J. Xiao, An asymmetric affine Pólya-Szegö principle.
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