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Abstract

Bourgain, Brezis & Mironescu showed that (with suitable scaling) the frac-
tional Sobolev s-seminorm of a function f ∈ W 1,p(Rn) converges to the Sobolev
seminorm of f as s→ 1−. The anisotropic s-seminorms of f defined by a norm on
Rn with unit ball K are shown to converge to the anisotropic Sobolev seminorm
of f defined by the norm with unit ball Z∗pK, the polar Lp moment body of K.
The limiting behavior for s→ 0+ is also determined (extending results by Maz′ya
& Shaposhnikova).

For p ≥ 1 and 0 < s < 1, Gagliardo introduced the fractional Sobolev s-seminorm
of a function f ∈ Lp(Ω) as

‖f‖pW s,p(Ω) =

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|n+ps
dx dy, (1)

where | · | denotes the Euclidean norm on Rn and Ω ⊂ Rn. This seminorm turned
out to be critical in the study of traces of Sobolev functions in the Sobolev space
W 1,p(Ω) (cf. [11]). Fractional Sobolev norms have found numerous applications within
mathematics and applied mathematics (cf. [3, 7, 27]).

The limiting behavior of fractional Sobolov s-seminorms as s → 1− and s → 0+

turns out to be very interesting. Bourgain, Brezis & Mironescu [2] showed that

lim
s→1−

(1− s)‖f‖pW s,p(Ω) = αn,p ‖f‖pW 1,p(Ω) (2)

for f ∈ W 1,p(Ω) and Ω ⊂ Rn a smooth and bounded domain, where αn,p is a constant
depending on n and p, and

‖f‖W 1,p(Ω) =
( ∫

Ω

|∇f(x)|pdx
)1/p

(3)

is the Sobolev seminorm of f .
Maz′ya & Shaposhnikova [28] showed that if f ∈ W s,p(Rn) for all s ∈ (0, 1), where

W s,p(Rn) are the functions in Lp(Rn) with finite Gagliardo seminorm (1) with Ω = Rn,
then

lim
s→0+

s ‖f‖pW s,p(Rn) =
2n

p
|B| |f |pp, (4)
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where B ⊂ Rn is n-dimensional Euclidean unit ball, |B| its n-dimensional volume and
|f |p the Lp norm of f on Rn.

An anisotropic Sobolev seminorm is obtained by replacing the Euclidean norm | · |
in (3) by an arbitrary norm ‖ · ‖L with unit ball L. We set

‖f‖W 1,p,K =
( ∫

Rn

‖∇f(x)‖pK∗ dx
)1/p

,

where K∗ = {v ∈ Rn : v · x ≤ 1 for all x ∈ K} is the polar body of K. Anisotropic
Sobolev seminorms have attracted increased interest in recent years (cf. [1, 5, 9, 13]).

A natural question is to study the limiting behavior of anisotropic s-seminorms as
s→ 1− and s→ 0+. While one might suspect that the limit as s→ 1− of the anisotropic
s-seminorms defined using a norm with unit ball K is the Sobolev seminorm with the
same unit ball, this turns out not to be true in general.

Theorem 1. If f ∈ W 1,p(Rn) has compact support, then

lim
s→1−

(1− s)
∫
Rn

∫
Rn

|f(x)− f(y)|p

‖x− y‖n+sp
K

dx dy =

∫
Rn

‖∇f(x)‖pZ∗p K dx (5)

where Z∗pK is the polar Lp moment body of K.

For the Euclidean s-seminorms and the Euclidean unit ball B, the convex body Z∗pB
is just a multiple of B. Hence Theorem 1 recovers the result by Bourgain, Brezis &
Mironescu (2) including the value of the constant αn,p. For a convex body K ⊂ Rn, the
polar Lp moment body is the unit ball of the norm defined by

‖v‖pZ∗p K =
n+ p

2

∫
K

|v · x|p dx

for v ∈ Rn.
The polar body of Z∗1K, the convex body Z1K, is the moment body of K. The

convex body
2

(n+ 1)|K|
Z1K

is the centroid body of K, a classical concept that goes back at least to Dupin (cf.
[12]). If we intersect the origin-symmetric convex body K by halfspaces orthogonal to
u ∈ Sn−1, then the centroids of these intersections trace out the boundary of twice the
centroid body of K, which explains the name centroid body. The name moment body
comes from the fact that the corresponding moment vectors trace out the boundary
(of a constant multiple) of Z1K. Centroid bodies play an important role within the
affine geometry of convex bodies (cf. [12, 20]) and moment bodies within the theory of
valuations on convex bodies (see [14,17,18]).
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The polar body of Z∗pK, the convex body ZpK, is the Lp moment body of K and

2

(n+ p)|K|
ZpK

is the Lp centroid body of K, a concept introduced by Lutwak & Zhang [26]. Lp

centroid bodies and Lp moment bodies have found important applications within convex
geometry, probability theory, and the local theory of Banach spaces (cf. [10, 15–17,21–
25,29–32]).

For p > 1, it follows from Bourgain, Brezis & Mironescu [2, Theorem 2] that (5)
also holds for f ∈ Lp(Ω) in the sense that if f 6∈ W 1,p(Ω), then both sides of (5)
are infinite. For p = 1, it follows from [2, Theorem 3’] that a corresponding result
holds for f 6∈ BV (Rn) (see also Dávila [6]). In [19], the limiting behavior of fractional
anisotropic Sobolev seminorms on BV (Rn) is discussed using fractional anisotropic
perimeters. Ponce [33] obtained several extensions of the results in [2], from which
Theorem 1 can also be deduced if anisotropic s-seminorms are used. The proof given
in this paper is independent of Ponce’s results. It makes use of the one-dimensional
case of the Bourgain, Brezis & Mironescu Theorem (2) and the Blaschke-Petkanschin
Formula from integral geometry.

Corresponding to the result of Maz′ya & Shaposhnikova (4), we obtain the following
result.

Theorem 2. If f ∈ W s,p(Rn) for all s ∈ (0, 1) and f has compact support, then

lim
s→0+

∫
Rn

∫
Rn

|f(x)− f(y)|p

‖x− y‖n+sp
K

dx dy =
2n

p
|K| |f |pp.

The proof of Theorem 2 is based on the one-dimensional case of (4) and the Blaschke-
Petkantschin Formula.

1 Preliminaries

We state the Blaschke-Petkantschin Formula (cf. [34, Theorem 7.2.7]) in the case in
which it will be used. Let Hk denote the k-dimensional Hausdorff measure on Rn and
let Aff(n, 1) denote the affine Grassmannian of lines in Rn. If g : Rn × Rn → [0,∞) is
Lebesgue measurable, then∫

Rn

∫
Rn

g(x, y) dHn(x) dHn(y) =

∫
Aff(n,1)

∫
L

∫
L

g(x, y) |x−y|n−1 dH1(x) dH1(y) dL, (6)

where dL denotes integration with respect to a suitably normalized rigid motion invari-
ant Haar measure on Aff(n, 1). This measure can be described in the following way.

3



Any line L ∈ Aff(n, 1) can be parameterized using one of its direction unit vectors
u ∈ Sn−1 and its base point x ∈ u⊥, where u⊥ is the hyperplane orthogonal to u, as
L = {x+ λu : λ ∈ R}. Hence, for h : Aff(n, 1)→ [0,∞) measurable,∫

Aff(n,1)

h(L) dL =
1

2

∫
Sn−1

∫
u⊥
h(x+ Lu) dHn−1(x) dHn−1(u), (7)

where Lu = {λu : λ ∈ R}.
For f ∈ W 1,p(Rn), we denote by f̄ its precise representative (cf. [8, Section 1.7.1]).

We require the following result. For every u ∈ Sn−1, the precise representative f̄ is
absolutely continuous on the lines L = {x + λu : λ ∈ R} for Hn−1- a.e. x ∈ u⊥

and its first-order (classical) partial derivatives belong to Lp(Rn) (cf. [8, Section 4.9.2,
Theorem 2]). Hence we have for the restriction of f̄ to L,

f̄ |L ∈ W 1,p(L) (8)

for a.e. line L parallel to u.

We require the following one-dimensional case of (2).

Proposition 1 ([2]). If g ∈ W 1,p(R) has compact support, then

lim
s→1−

(1− s)
∫ ∞
−∞

∫ ∞
−∞

|g(x)− g(y)|p

|x− y|1+ps
dx dy =

2

p
‖g‖pW 1,p(R).

We require the following one-dimensional case of (4).

Proposition 2 ([28]). If g ∈ W s,p(R) for all s ∈ (0, 1), then

lim
s→0+

s

∫ ∞
−∞

∫ ∞
−∞

|g(x)− g(y)|p

|x− y|1+ps
dx dy =

4

p
|g|pp.

We also need the following result. The proof is based on the one-dimensional case
of some estimates from [2]. Let diam(C) = sup{|x − y| : x ∈ C, y ∈ C} denote the
diameter of C ⊂ R.

Lemma 1. If g ∈ W 1,p(R) has compact support C, then there exists a constant γp
depending only on p such that

(1− s)
∫ ∞
−∞

|g(x)− g(y)|p

|x− y|1+ps
dx dy ≤ γp max(1, diam(C))p ‖g‖pW 1,p(R)

for all 1/2 ≤ s < 1.
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Proof. If g ∈ W 1,p(R) is smooth, then for h ∈ R

g(x+ h)− g(x) = h

∫ 1

0

g′(x+ th) dt.

Hence for h ∈ R, ∫ ∞
−∞
|g(x+ h)− g(x)|p dx ≤ |h|p ‖g‖pW 1,p(R). (9)

The same estimate is obtained for g ∈ W 1,p(R) by approximation (cf. [4, Proposition
9.3]). Let the support of g be contained in [−r, r], where r ≥ 1. By (9) we get∫ ∞

−∞

∫ ∞
−∞

|g(x)− g(y)|p

|x− y|1+ps
dx dy =

∫ −2r

−2r

∫ ∞
−∞

|g(x+ h)− g(x)|p

|h|1+ps
dx dh

≤
∫ 2r

−2r

|h|−(1−p(1−s))dh ‖g‖pW 1,p(R)

≤ 2 (2r)p(1−s)

p(1− s)
‖g‖pW 1,p(R).

This completes the proof of the lemma.

The following estimate is used in the proof of Theorem 2.

Lemma 2. If g ∈ W s,p(R) for all s ∈ (0, 1), then∫ ∞
−∞

∫ ∞
−∞

|g(x)− g(y)|p

|x− y|1+ps
dx dy ≤ 2p+1

ps
|g|pp + ‖g‖p

W s′,p(R)

for all 0 < s ≤ s′ < 1.

Proof. Note that∫
R

∫
{|x−y|≥1}

|g(x)|p

|x− y|1+ps
dx dy ≤

∫
{|z|≥1}

dz

|z|1+ps
|g|pp =

2

ps
|g|pp.

Hence, by Jensen’s inequality,∫ ∫
{|x−y|≥1}

|g(x)− g(y)|p

|x− y|1+ps
dx dy ≤ 2p−1

∫ ∞
−∞

∫ ∞
−∞

|g(x)|p + |g(y)|p

|x− y|1+ps
dx dy ≤ 2p+1

ps
|g|pp.

On the other hand,∫ ∫
{|x−y|<1}

|g(x)− g(y)|p

|x− y|1+sp
dx dy ≤

∫ ∫
{|x−y|<1}

|g(x)− g(y)|p

|x− y|1+s′p
dx dy

for 0 < s < s′.
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2 Proof of Theorem 1

By the Blaschke-Petkantschin Formula (6), we have∫
Rn

∫
Rn

|f(x)− f(y)|p

‖x− y‖n+ps
K

dx dy =

∫
Aff(n,1)

‖u(L)‖−(n+ps)
K

∫
L

∫
L

|f(x)− f(y)|p

|x− y|1+ps
dH1(x) dH1(y) dL.

(10)
By Proposition 1 and (8), we have

lim
s→1−

(1− s)
∫
L

∫
L

|f(x)− f(y)|p

|x− y|1+ps
dx dy =

2

p

∫
L

|∇f(x) · u|p dH1(x) (11)

for a.e. line L parallel to u ∈ Sn−1.
By Fubini’s Theorem, the definition of the measure on the affine Grassmannian (7)

and the polar coordinate formula, we get

2

p

∫
Aff(n,1)

‖u(L)‖−(n+p)
K

∫
L

|∇f(x) · u|p dH1(x) dL

=
1

p

∫
Sn−1

∫
u⊥

‖u‖−(n+p)
K

∫
y+Lu

|∇f(x) · u|p dH1(x) dHn−1(y) dHn−1(u)

=
1

p

∫
Sn−1

∫
Rn

‖u‖−(n+p)
K |∇f(x) · u|p dHn(x) dHn−1(u)

=
n+ p

p

∫
K

∫
Rn

|∇f(x) · y|p dHn(x) dHn(y).

Using Fubini’s Theorem and the definition of the Lp moment body of K, we obtain∫
Aff(n,1)

‖u(L)‖−(n+ps)
K

∫
L

|∇f(x) · u|p dH1(x) dL =

∫
Rn

‖∇f(x)‖pZ∗p K dx. (12)

So, in particular, we have∫
Aff(n,1)

∫
L

|∇f(x) · u|p dH1(x) dL = αn,p

∫
Rn

|∇f(x)|p dx <∞, (13)

where αn,p is a constant.
Using the Dominated Convergence Theorem combined with Lemma 1 and (13), we

obtain from (10), (11) and (12) that

lim
s→1−

(1− s)
∫
Rn

∫
Rn

|f(x)− f(y)|p

‖x− y‖n+ps
K

dx dy =

∫
Rn

‖∇f(x)‖pZ∗p K dx.

This concludes the proof of the theorem.
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3 Proof of Theorem 2

By the Blaschke-Petkantschin Formula (6), we obtain∫
Rn

∫
Rn

|f(x)− f(y)|p

‖x− y‖n+ps
K

dx dy =

∫
Aff(n,1)

‖u(L)‖−(n+ps)
K

∫
L

∫
L

|f(x)− f(y)|p

|x− y|s+1
dx dy dL.

Thus we obtain by the Dominated Convergence Theorem, Lemma 2 and Proposition 2
that

lim
s→0+

s

∫
Rn

∫
Rn

|f(x)− f(y)|p

‖x− y‖n+ps
K

dx dy =
4

p

∫
Aff(n,1)

‖u(L)‖−nK

∫
L

|f(x)|p dH1(x) dL.

By Fubini’s Theorem, the definition of the measure on the affine Grassmannian (7) and
the polar coordinate formula for volume, we get

4

p

∫
Aff(n,1)

‖u(L)‖−nK

∫
L

|f(x)|p dH1(x) dL

=
2

p

∫
Sn−1

∫
u⊥

‖u‖−nK

∫
y+Lu

|f(x)|p dH1(x) dHn−1(y) dHn−1(u)

=
2

p

∫
Sn−1

∫
Rn

‖u‖−nK |f(x)|p dHn(x) dHn−1(u)

=
2n

p
|K| |f |pp.

This concludes the proof of the theorem.
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