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Abstract

Asymptotic results for weighted floating bodies are established and used to obtain new
proofs for the existence of floating areas on the sphere and in hyperbolic space and to
establish the existence of floating areas in Hilbert geometries. Results on weighted best
and random approximation and the new approach to floating areas are combined to derive
new asymptotic approximation results on the sphere, in hyperbolic space and in Hilbert
geometries.

2000 AMS subject classification: Primary 52A38; Secondary 52A27, 52A55, 53C60, 60D05.

Let K be a convex body (that is, compact convex set) in Rn. For δ > 0, the floating body
Kδ of K is obtained by cutting off all caps that have volume less or equal to δ. Extending
results for smooth bodies (cf. [18]), Schütt and Werner [34] showed for a general convex body
K that

lim
δ→0

(
Vn(K)−Vn(Kδ)

)
δ−

2
n+1 = αn

∫
∂K

Hn−1(K,x)
1

n+1 dx, (1)

where αn is an explicitly known positive constant (see Section 1.1). Here Vn is n-dimensional
volume, Hn−1(K,x) is the Gauss-Kronecker curvature at x ∈ ∂K and integration is with
respect to the (n − 1)-dimensional Hausdorff measure. The integral on the right side is the
affine surface area of K (cf. [20, 22] and [31, Section 10.5] for more information).

Affine surface area also determines the asymptotic behavior of random polytopes. Specif-
ically, choose m points uniformly and independently in K and denote their convex hull by
Km. The random polytope Km is easily seen to converge to K in the sense that E(Vn(K) −
Vn(Km)) → 0 as m → ∞, where E denotes expectation. The asymptotic behavior of Km

has been studied extensively since the 1960’s, starting with the seminal results by Rényi and
Sulanke [28, 29] (cf. [17, 27]). Extending results of Bárány [1], Schütt [33] was able to prove
the analog to (1) for the random polytope Km in a general convex body K,

lim
m→∞

E
(
Vn(K)−Vn(Km)

)
m

2
n+1 = βn Vn(K)

2
n+1

∫
∂K

Hn−1(K,x)
1

n+1 dx, (2)

where βn is an explicitly known positive constant (see Section 1.2).
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The aim of the paper is to extend (1) and (2) in a simple way to convex bodies on the
sphere, in hyperbolic space and in Hilbert geometries. The approach is via weighted floating
bodies and weighted approximation in Euclidean space and will also be applied to random
approximation by circumscribed polytopes and to asymptotic best approximation. On the
sphere, the asymptotic behavior is described by the spherical floating area recently introduced
in [6] and in hyperbolic space by the hyperbolic floating area introduced in [7]. In Hilbert
geometries, we obtain floating areas that depend on the choice of volume and we establish a
connection to centro-affine surface area.

In the following section, a theorem for weighted floating bodies is stated and results on
weighted approximation are collected. The results on polytopal random and best approxi-
mation and floating bodies on the sphere, in hyperbolic space and in Hilbert geometries are
established in Sections 2, 3 and 4. The final section contains the proof for the theorem for
weighted floating bodies.

1 Weighted floating bodies and polytopal approximation in Rn

Let K(Rn) denote the set of convex bodies (that is, compact convex sets) in Rn with non-empty
interior. For K ∈ K(Rn) and φ, ψ : K → (0,∞) integrable, define, for A ⊂ Rn measurable,
the measure Φ by Φ(A) =

∫
A φ and the measure Ψ by Ψ(A) =

∫
A ψ. If

∫
Rn φ = 1, then Φ is a

probability measure and we write EΦ for the expectation with respect to Φ.

1.1 Weighted floating bodies

For δ > 0, the weighted floating body Kφ
δ is the intersection of all closed half-spaces whose

defining hyperplanes H cut off sets of Φ-measure less than or equal to δ from K, that is,

Kφ
δ =

⋂{
H− : Φ(K ∩H+) ≤ δ

}
, (3)

where H± are the closed half-spaces bounded by the hyperplane H. For φ ≡ 1, we obtain
(convex) floating bodies, which were introduced (independently) in [3,34] as a generalization
of the classical floating bodies (see [31, Chapter 10.6] for more information). Weighted floating
bodies were introduced in [36] and generalizations of (1) were established there.

The following result generalizes those results from volume to a general measure Ψ.

Theorem 1.1. For K ∈ K(Rn) and φ, ψ : K → (0,∞) continuous,

lim
δ→0

Ψ(K)−Ψ(Kφ
δ )

δ
2

n+1

= αn

∫
∂K

Hn−1(K,x)
1

n+1φ(x)−
2

n+1ψ(x) dx, (4)

where

αn :=
1

2

(
n+ 1

vn−1

) 2
n+1

(5)

and vn−1 is the (n− 1)-dimensional volume of the (n− 1)-dimensional unit ball.

The proof is given in Section 5.
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1.2 Random polytopes

For K ∈ K(Rn), let φ : K → (0,∞) be a probability density and KΦ
m the convex hull of m

independent random points chosen according to Φ. The following generalization of (2) was
established by Böröczky, Fodor, and Hug [9, Theorem 3.1].

Theorem 1.2 ([9]). Let K ∈ K(Rn) and ψ : K → (0,∞) be continuous. If φ : K → (0,∞) is a
continuous probability density and the random polytope KΦ

m is the convex hull of m independent
random points chosen according to Φ, then

lim
m→∞

EΦ

(
Ψ(K)−Ψ(KΦ

m)
)
m

2
n+1 = βn

∫
∂K

Hn−1(K,x)
1

n+1φ(x)−
2

n+1ψ(x) dx, (6)

where

βn :=
(n2 + n+ 2)(n2 + 1)

2(n+ 3) · (n+ 1)!
Γ

(
n2 + 1

n+ 1

)(
n+ 1

vn−1

) 2
n+1

. (7)

Efron showed that from the expected volume of a random polytope, the expected number
of vertices f0(Km) can be easily obtained. The same argument applies here and

EΦf0(KΦ
m) = m

(
1− EΦΦ(KΦ

m−1)
)
,

(cf. [17]). Böröczky, Fodor, and Hug [9, Corollary 3.2] deduced the following result.

Corollary 1.3 ([9]). Let K ∈ K(Rn). If φ : K → (0,∞) is a continuous probability density
and the random polytope KΦ

m is the convex hull of m independent random points chosen in K
according to the probability measure Φ, then

lim
m→∞

EΦf0(KΦ
m)m−

n−1
n+1 = βn

∫
∂K

Hn−1(K,x)
1

n+1φ(x)
n−1
n+1 dx,

where βn is the constant defined in (7).

1.3 Random polyhedral sets

Another model for random polytopes, that was also suggested by Rényi and Sulanke [30] and
that can be considered as dual to the above, is the following: Given a convex body K in
Rn, choose m random closed half-spaces that contain K in a way that is described below
and denote their intersection by Km. The random polyhedral set Km may be unbounded
and therefore one usually considers Km intersected with a bounded neighborhood of K. The
classical choice is the parallel body K + Bn of K, where Bn is the closed Euclidean unit ball,
that is, K + Bn is the set of all points of distance at most 1 from K.

To describe our choice of random half-spaces, we first consider the set H of all closed
half-spaces in Rn. We parametrize closed half-spaces H−(u, t) by its normal u ∈ Sn−1 and
the distance t from the origin, i.e.,

H−(u, t) := {x ∈ Rn : x · u ≤ t}.
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The support function hK of K is defined, for u ∈ Rn, by hK(u) = max{u · x : x ∈ K}.
For u ∈ Sn−1, the support function measures the signed distance between the origin and a
hyperplane with outer normal u that touches K and the width of K in direction u is given
by hK(u) + hK(−u). The average width W (K), also known as mean width of K, is,

W (K) =
1

nvn

∫
Sn−1

(
hK(u) + hK(−u)

)
du =

2

nvn

∫
Sn−1

hK(u) du. (8)

On H, there is a uniquely determined rigid motion invariant Borel measure µ such that

µ
(
{H− ∈ H : 0 < Vn(K ∩H−)/Vn(K) < 1}

)
= W (K).

For a Borel subset A of H, it is defined by

µ(A) =
1

nvn

∫
Sn−1

∫
R
1
[
H−(u, t) ∈ A

]
dt du,

where 1[P ] is the indicator function of the proposition P , that is, 1[P ] = 1 if P holds and
1[P ] = 0 otherwise. For K ∈ K(Rn), we consider the set of all half-spaces that contain K and
whose boundary hyperplanes meet K + Bn, i.e.,

HK =
{
H−(u, t) : u ∈ Sn−1, hK(u) ≤ t ≤ hK(u) + 1

}
.

This yields µ(HK) = 1 and therefore the restriction µK of µ to HK is a probability measure.
Write EµK for the expectation with respect to µK . Böröczky, Fodor, and Hug [9] obtained
the following result, which can be seen as dual to Theorem 1.2 and Corollary 1.3.

Theorem 1.4 ([9]). Let K ∈ K(Rn). If the random polyhedral set Km is the intersection of
m independent random half-spaces chosen from HK according to µK , then

lim
m→∞

EµK
(
W
(
Km ∩ (K + Bn)

)
−W (K)

)
m

2
n+1 = 2βn (nvn)−

n−1
n+1

∫
∂K

Hn−1(K,x)
n
n+1 dx,

and

lim
m→∞

EµKfn−1(Km)m−
n−1
n+1 = βn (nvn)−

n−1
n+1

∫
∂K

Hn−1(K,x)
n
n+1 dx,

where fn−1(Km) is the number of facets of Km and βn is the constant from (7).

1.4 Weighted best approximation

Problems of asymptotic best approximation have been extensively studied since the 1940’s
(cf. [14]). We restrict our attention to two problems and just remark that further notions of
distance and approximation by inscribed and circumscribed polytopes with a given number
of faces have also been studied (cf. [14]). For K,P ⊂ Rn, write K4P for the symmetric
difference of K and P . Set

distΨ

(
K,Pm

)
= inf

{
Ψ(K4P ) : P polytope with at most m vertices

}
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and

distΨ

(
K,P(m)

)
= inf

{
Ψ(K4P ) : P polytope with at most m facets

}
.

Extending results by L. Fejes Tóth [11] and Gruber [15], the following asymptotic result was
established in [19] for convex bodies with positive curvature and in [8] the curvature condition
was dropped.

Theorem 1.5 ([8, 19]). For K ∈ K(Rn) with C2 boundary and ψ : K → (0,∞) continuous,

lim
m→∞

distΨ

(
K,Pm

)
m

2
n−1 =

1

2
ldeln−1

(∫
∂K

Hn−1(K,x)
1

n+1ψ(x)
n−1
n+1 dx

)n+1
n−1

, (9)

and

lim
m→∞

distΨ

(
K,P(m)

)
m

2
n−1 =

1

2
ldivn−1

(∫
∂K

Hn−1(K,x)
1

n+1ψ(x)
n−1
n+1 dx

)n+1
n−1

,

where ldeln−1 and ldivn−1 are positive constants.

The exact values of ldeln−1 and ldivn−1 are only known for n = 2 and n = 3 (see [10]).
Weighted best approximation was first considered by Glasauer (see [13]).

2 Spherical space

Let Sn denote the unit sphere in Rn+1. A set K ⊂ Sn is a proper convex body, if it is closed,
contained in an open hemisphere and its positive hull posK = {λx : x ∈ K,λ ≥ 0} is a convex
set in Rn+1. Let K(Sn) denote the set of proper convex bodies in Sn with non-empty interior.
A hypersphere in Sn is a set H = {x ∈ Sn : x · e = 0} with e ∈ Sn, where “ · ” is the inner
product in Rn+1. Let H± be the closed hemispheres bounded by H. For δ > 0, the spherical
floating body Kδ was introduced in [6] by

Kδ =
⋂{

H− : voln(K ∩H+) ≤ δ
}
, (10)

where voln is spherical volume, that is, the n-dimensional Hausdorff measure on Sn.
Without loss of generality, we may restrict our attention to convex bodies contained in

the hemisphere Sn+ = {x ∈ Sn : x · en+1 > 0}, where en+1 is a vector of an orthonormal basis
of Rn+1. The gnomonic (or central) projection g : Sn+ → Rn is defined by

g(x) =
x

x · en+1
− en+1,

where we identify Rn with {x ∈ Rn+1 : x · en+1 = 0} (cf. [5, Sec. 4]). We write x̄ = g(x) and
K̄ = g(K). Note that g−1 : Rn → Sn maps the point x̄ to (1 + ‖x̄‖2)−1/2(x̄ + en+1) and has
therefore the Jacobian (1 + ‖x̄‖2)−(n+1)/2 (cf. [6, Proposition 4.2]). Thus the pushforward of
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voln under g is the measure Ψn with density ψn(x̄) = (1 + ‖x̄‖2)−(n+1)/2. For the spherical
Gauss-Kronecker curvature, we have

HSn
n−1(K,x) = Hn−1(K̄, x̄)

(
1 + ‖x̄‖2

1 + (x̄ · nK̄(x̄))2

)n+1
2

(cf. [6, Lemma 4.4]), where nK̄(x̄) is the outer unit normal vector to K̄ at x̄, and consequently∫
∂K

HSn
n−1(K,x)

1
n+1 dx =

∫
∂K̄

Hn−1(K̄, x̄)
1

n+1 (1 + ‖x̄‖2)−
n−1
2 dx̄ (11)

(cf. [6, p. 897]). These transformation rules allow us to translate the results from Section 1
to spherical space.

The following result is a corollary to Theorem 1.1 and was first established in [6].

Theorem 2.1 ([6]). For K ∈ K(Sn),

lim
δ→0

voln(K)− voln(Kδ)

δ
2

n+1

= αn

∫
∂K

HSn
n−1(K,x)

1
n+1dx,

where αn is the constant from (5).

Proof. Since g(Kδ) = g(K)ψnδ , we have

voln(K)− voln(Kδ) =

∫
g(K)\g(K)ψnδ

ψn.

Hence Theorem 1.1 with φ = ψ = ψn shows that

lim
δ→0

voln(K)− voln(Kδ)

δ
2

n+1

= αn

∫
∂K̄

Hn−1(K̄, x̄)
1

n+1 (1 + ‖x̄‖2)−
n−1
2 dx̄.

By (11), this completes the proof.

Next, we consider random polytopes that are the spherical convex hull of points chosen
uniformly according to voln in K ∈ K(Sn). In the following, the expectation EK is with
respect to the probability density voln / voln(K).

Theorem 2.2. Let K ∈ K(Sn). If Km is the spherical convex hull of m random points chosen
uniformly in K, then

lim
m→∞

EK
(
voln(K)− voln(Km)

)
m

2
n+1 = βn voln(K)

2
n+1

∫
∂K

HSn
n−1(K,x)

1
n+1 dx,

where βn is the constant from (7).

Proof. Set Φn = Ψn/Ψn(g(K)). Since g(Km) = g(K)Φn
m , we have

EK
(
voln(K)− voln(Km)

)
= EΦn

(
Ψn(g(K)−Ψn(g(K)Φn

m )
)
.

Thus the statement follows from Theorem 1.2 with ψ = ψn and (11).

Theorem 2.2 complements a recent result by Bárány, Hug, Reitzner and Schneider [2] for
random polytopes in hemispheres.
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As a consequence of Corollary 1.3, we obtain the following result.

Corollary 2.3. Let K ∈ K(Sn). If Km is the spherical convex hull of m random points chosen
uniformly in K, then

lim
m→∞

EKf0(Km)m−
n−1
n+1 = βn voln(K)−

n−1
n+1

∫
∂K

HSn
n−1(K,x)

1
n+1 dx,

where βn is the constant from (7).

Finally, we consider best approximation. Let

distn
(
K,PSn

m

)
= inf

{
voln(K4P ) : P spherical polytope with at most m vertices

}
,

and

distn
(
K,PSn

(m)

)
= inf

{
voln(K4P ) : P spherical polytope with at most m facets

}
.

We obtain the following result.

Theorem 2.4. For K ∈ K(Sn) with C2 boundary,

lim
m→∞

distn
(
K,PSn

m

)
m

2
n−1 =

1

2
ldeln−1

(∫
∂K

HSn
n−1(K,x)

1
n+1 dx

)n+1
n−1

,

and

lim
m→∞

distn
(
K,PSn

(m)

)
m

2
n−1 =

1

2
ldivn−1

(∫
∂K

HSn
n−1(K,x)

1
n+1 dx

)n+1
n−1

,

where ldeln−1 and ldivn−1 are the constants from Theorem 1.5.

Proof. Note that distn(K,PSn
m ) = distΨn(g(K),Pm) and distn(K,PSn

(m)) = distΨn(g(K),P(m)).

Thus the statement follows directly from Theorem 1.5 with ψ = ψn and (11).

2.1 Duality principle

Let K be a proper spherical convex body. Instead of random polytopes Km contained in K
we now consider random polytopes Km containing K. The space of closed hemispheres H of
Sn has a uniquely determined rotation invariant probability measure µ. For each point x ∈ Sn
there is a uniquely determined hemisphere H−(x) = {y ∈ Sn : x · y ≤ 0} and for a Borel
subset A of H we have

µ(A) =
1

voln(Sn)

∫
Sn

1
[
H−(x) ∈ A

]
dx.

A random polytope Km is obtained as intersection of m closed hemispheres chosen from
HK := {H− ∈ H : K ⊆ H−} independently and according to µK := µ/µ(HK).
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For K ∈ K(Sn), define the polar body K◦ by

K◦ = {y ∈ Sn : x · y ≤ 0 for all x ∈ K} =
⋂
x∈K

H−(x)

(cf. [32, Sec. 6.5]). Since K◦◦ = K, a hemisphere H−(y) contains K if and only if y ∈ K◦.
Thus we have HK = {H−(y) : y ∈ K◦} and µ(HK) = voln(K◦).

Let Km be the intersection of m randomly chosen closed hemispheres in HK , that is, there
are xi ∈ K◦, i = 1, . . . ,m, such that Km =

⋂m
i=1H

−(xi). We have

Km =
(
conv{x1, . . . , xm}

)◦
=
(
K◦m
)◦
,

where K◦m := (K◦)m. This means, that the polar of a random polytope that contains K is a
polytope inside K◦. In this way we can transfer results about K◦m to (Km)◦.

Theorem 2.5. If F be a non-negative measurable functional on spherical convex polyhedral
sets, then

EµKF(Km) = EK◦F
(

(K◦m)◦
)
.

In the Euclidean setting a similar results was obtained in [9, Prop. 5.1].
As an application of this theorem we consider the spherical mean width U1(K) of a spherical

convex body K, which is defined by

U1(K) =
1

2

∫
G(n+1,n)

χ(K ∩H) dν(H),

where χ is the Euler characteristic, G(n + 1, n) is the Grassmannian of all n-dimensional
linear subspaces in Rn+1 and ν denotes the invariant probability measure on G(n+1, n). The
probability that a random hypersphere hits K is equal to 2U1(K). The name spherical mean
width corresponds to the Euclidean notion of mean width W (K̄) for K̄ ∈ K(Rn), which can
be defined as the probability of a random affine hyperplane hitting K̄. Equivalently, W (K̄)
is given by (8), which, however, does not have a natural analog in the spherical setting.

Corollary 2.6. Let K ∈ K(Sn). If Km is the intersection of m random hemispheres contain-
ing K and chosen uniformly according µK , then

lim
m→∞

EµK
(
U1(Km)− U1(K)

)
m

2
n+1 =

βn
voln(Sn)

voln(K◦)
2

n+1

∫
∂K

HSn
n−1(K,x)

n
n+1 dx,

and

lim
m→∞

EµKfn−1(Km)m−
n−1
n+1 = βn voln(K◦)−

n−1
n+1

∫
∂K

HSn
n−1(K,x)

n
n+1 dx,

where βn is the constant from (7).
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Proof. By [12, Eqn. (20)], we have

U1(K) =
1

2
− voln(K◦)

voln(Sn)
.

Also, the facets of Km correspond to the vertices of (Km)◦ = K◦m. Thus fn−1(Km) = f0(K◦m).
Hence, by Theorem 2.5, we find

EµK
(
U1(Km)− U1(K)

)
=

EK◦
(
voln(K◦)− voln(K◦m)

)
voln(Sn)

,

and

EµKfd−1(Km) = EK◦f0(K◦m).

Applying Theorem 2.2 and Corollary 2.3 on K◦ we obtain

lim
m→∞

EµK
(
U1(Km)− U1(K)

)
m

2
n+1 =

βn
voln(Sn)

voln(K◦)
2

n+1

∫
∂K◦

HSn
n−1(K◦, x)

1
n+1 dx,

and

lim
m→∞

EµKfn−1(Km)m−
n−1
n+1 = βn voln(K◦)−

n−1
n+1

∫
∂K◦

HSn
n−1(K◦, x)

1
n+1 dx,

By [6, Thm. 7.4], we have∫
∂K◦

HSn
n−1(K◦, x)

1
n+1 dx =

∫
∂K

HSn
n−1(K,x)

n
n+1 dx,

which concludes the proof.

3 Hyperbolic space

Let Rn,1 denote the Lorentz-Minkowski space of dimension n + 1, that is, Rn+1 with the
indefinite inner product “◦” defined by

x ◦ x = x2
1 + · · ·+ x2

n − x2
n+1.

Then the hyperboloid model of hyperbolic space is given by

Hn =
{
x ∈ Rn,1 : x ◦ x = −1 and xn+1 > 0

}
.

The hyperbolic distance dH between two points x, y ∈ Hn is determined by cosh dH(x, y) =
−x ◦ y. A set K ⊂ Hn is a convex body, if it is compact and the positive hull is a convex
set in Rn+1. Let K(Hn) denote the set of convex bodies in Hn with non-empty interior. For
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a hyperplane H let H± be the closed half-spaces bounded by H. For δ > 0, the hyperbolic
floating body Kδ was introduced in [7] by

Kδ =
⋂{

H− : voln(K ∩H+) ≤ δ
}
,

where voln is the hyperbolic volume on Hn.
We fix a Lorentz-orthonormal basis e1, e2, . . . , en+1 in Rn,1 such that en+1 is in Hn. The

gnomonic (or central) projection g : Hn → Rn is defined by

g(x) =
x

x ◦ en+1
+ en+1,

where we identify Rn with {x ∈ Rn,1 : x◦en+1 = 0}. We write x̄ = g(x) and K̄ = g(K). Since

‖x̄‖2 = 1− (x ◦ en+1)−2 = tanh2 dH(x, en+1),

we have ‖x̄‖ ∈ [0, 1). Therefore the gnomonic projection maps Hn into the open unit ball
intBn ⊂ Rn. Note that g−1 : intBn → Hn maps the point x̄ to (1−‖x̄‖2)−1/2(x̄+ en+1). The
gnomonic projection is an isometry between the hyperboloid model Hn and the projective
model (or Beltrami–Cayley–Klein model) intBn. Thus the pushforward of voln under g is the
measure Ψn with density ψn(x̄) = (1 − ‖x̄‖2)−(n+1)/2. For the hyperbolic Gauss–Kronecker
curvature, we have

HHn
n−1(K,x) = Hn−1(K̄, x̄)

(
1− ‖x̄‖2

1− (x̄ · nK̄(x̄))2

)n+1
2

(cf. [7, Cor. 3.16]), and furthermore∫
∂K

HHn
n−1(K,x)

1
n+1 dx =

∫
∂K̄

Hn−1(K̄, x̄)
1

n+1 (1− ‖x̄‖2)−
n−1
2 dx̄ (12)

(cf. [7, (3.12)]). So again, these transformation rules allow us to translate the results from
Section 1 to hyperbolic space. The proofs are identical to those in spherical space (just replace
(11) by (12)) and are therefore omitted.

As a corollary to Theorem 1.1 we obtain the existence of floating area for hyperbolic space,
which was originally established in [7].

Theorem 3.1 ([7]). For K ∈ K(Hn),

lim
δ→0

voln(K)− voln(Kδ)

δ
2

n+1

= αn

∫
∂K

HHn
n−1(K,x)

1
n+1dx,

where αn is defined in Theorem 1.1.

Next, we consider random polytopes that are the hyperbolic convex hull of points chosen
uniformly according to voln in K ∈ K(Hn). In the following, the expectation EK is with
respect to the density voln / voln(K).

10



Theorem 3.2. Let K ∈ K(Hn). If Km is the hyperbolic convex hull of m random points
chosen uniformly in K, then

lim
m→∞

EK
(
voln(K)− voln(Km)

)
m

2
n+1 = βn voln(K)

2
n+1

∫
∂K

HHn
n−1(K,x)

1
n+1 dx,

where βn is the constant from (7).

As a consequence, we obtain the following result.

Corollary 3.3. Let K ∈ K(Hn). If Km is the hyperbolic convex hull of m random points
chosen uniformly in K, then

lim
m→∞

EKf0(Km)m−
n−1
n+1 = βn voln(K)−

n−1
n+1

∫
∂K

HHn
n−1(K,x)

1
n+1 dx,

where βn is the constant from (7).

Finally, we consider best approximation. Let

distn
(
K,PHn

m

)
= inf

{
voln(K4P ) : P hyperbolic polytope with at most m vertices

}
,

and

distn
(
K,PHn

(m)

)
= inf

{
voln(K4P ) : P hyperbolic polytope with at most m facets

}
.

We obtain the following result.

Theorem 3.4. For K ∈ K(Sn) with C2 boundary,

lim
m→∞

distn
(
K,PHn

m

)
m

2
n−1 =

1

2
ldeln−1

(∫
∂K

HHn
n−1(K,x)

1
n+1 dx

)n+1
n−1

,

and

lim
m→∞

distn
(
K,PHn

(m)

)
m

2
n−1 =

1

2
ldivn−1

(∫
∂K

HHn
n−1(K,x)

1
n+1 dx

)n+1
n−1

,

where ldeln−1 and ldivn−1 are the constants from Theorem 1.5.

4 Hilbert geometries

Hilbert’s Fourth Problem asks for a characterization of metric geometries whose geodesics are
straight lines. Hilbert constructed a special class of examples, now called Hilbert geometries
(see [26, Ch. 15] for more information). A Hilbert geometry (C, dC) is defined on the interior
of a convex body C ∈ K(Rn) in the following way: For distinct points x, y ∈ intC, the line

11



passing through x and y meets ∂C at two points p and q, say, such that one has p, x, y, q in
that order on the line. Define the Hilbert distance of x and y by

dC(x, y) =
1

2
log[p, x, y, q],

where [p, x, y, q] is the cross ratio of p, x, y, q, that is,

[p, x, y, q] =
‖y − p‖
‖x− p‖

‖x− q‖
‖y − q‖

.

Note that the invariance of the cross ratio by projective maps implies the projective invariance
of dC . Unbounded closed convex sets with nonempty interiors and not containing a straight
line are projectively equivalent to convex bodies. Hence the definition of Hilbert geometry
naturally extends to the interiors of such convex sets. If C is an ellipsoid, then the Hilbert
geometry on intC is isometric to hyperbolic space.

Straight lines are geodesics in a Hilbert geometry (C, dC) and if C is strictly convex,
then the affine segment between to distinct points is the unique geodesic joining them (see
e.g. [26, p. 60]). Hence, if C is strictly convex, then hyperplanes are the totally geodesic
submanifolds of co-dimension 1. A convex body K ∈ K(Rn) that is contained in intC is
therefore also a convex body of the Hilbert geometry (C, dC) and polytopes are an intrinsic
notion of (C, dC). Thus we may consider polytopal approximation in a Hilbert geometry
(C, dC) for a strictly convex body C. In the following K(C) denotes the space of convex
bodies K ⊂ intC.

The Hilbert metric dC is induced by a weak Finsler structure in the following way: For
x ∈ intC define a (weak) Minkowski norm ‖.‖x by

‖v‖x =
1

2

( 1

t+
+

1

t−

)
,

for v ∈ Rn, where t± is determined by x ± t±v ∈ ∂C. If we identify Rn with the tangent
space TxRn, then ‖ · ‖x defines a Minkowski norm on TxRn for every x ∈ intC. The map
FC : x 7→ ‖ · ‖x defines a (weak) Finsler structure on intC. The length of a C1 curve
γ : [a, b]→ intC is defined by

`(γ) =

∫ b

a
‖γ̇(t)‖γ(t) dt,

and the Hilbert metric between two distinct points x, y ∈ intC is just the minimal length of a
C1 curve joining them. In particular, if C is C2

+, that is, the boundary of C is a C2 manifold
with positive curvature, then (intC,FC) defines a Finsler manifold in the classical sense.

The unit ball of the Minkowski norm ‖ · ‖x is ICx = {v ∈ Rn : ‖v‖x ≤ 1}. Recall that the
polar body K∗ of a convex body K is defined by K∗ = {y ∈ Rn : x · y ≤ 1 for all x ∈ K} and
the difference body DK is defined by D(K) = 1

2(K −K) = 1
2{x− y : x, y ∈ K}. For a fixed

x ∈ intC we find

‖v‖x = h
(
D(C − x)∗, v

)
and ICx =

(
D(C − x)∗

)∗
.

Hence ICx is the harmonic symmetrization of C in x (see [25]).
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There are several good choices for volume volC in (C, dC) which give a projective invariant
notion of volume; for example, the Busemann volume or the Holmes-Thompson volume of the
associated Finsler manifold. The Busemann volume is the n-dimensional Hausdorff volume of
the metric space (C, dC). Its density function with respect to Lebesgue measure λn is given by
vn/λn(ICx ). The Holmes-Thompson volume has density λn((ICx )∗)/vn. Both, the Busemann
and the Holmes-Thompson volume, have the property that the density σC is non-negative and
continuous. This allows us to directly apply the results from Section 1 to Hilbert geometries
with these volume densities.

First, we consider random polytopes that are the convex hull of points chosen uniformly
according to volC in K ∈ K(C). In the following, the expectation EK is with respect to the
density volC / volC(K).

Theorem 4.1. Let K ∈ K(C). If Km is the convex hull of m random points chosen uniformly
in K with respect to volC , then

lim
m→∞

EK
(
volC(K)− volC(Km)

)
m

2
n+1 = βn volC(K)

2
n+1

∫
∂K

Hn−1(K,x)
1

n+1σC(x)
n−1
n+1 dx,

where βn is the constant from (7).

As a consequence of Corollary 1.3, we obtain the following result.

Corollary 4.2. Let K ∈ K(C). If Km is the convex hull of m random points chosen uniformly
in K with respect to volC , then

lim
m→∞

EKf0(Km)m−
n−1
n+1 = βn volC(K)−

n−1
n+1

∫
∂K

Hn−1(K,x)
1

n+1σC(x)
n−1
n+1 dx,

where βn is the constant from (7).

Next, we consider best approximation. Let

distC
(
K,PCm

)
= inf

{
volC(K4P ) : P ⊂ intC polytope with at most m vertices

}
,

and

distC
(
K,PC(m)

)
= inf

{
volC(K4P ) : P ⊂ intC polytope with at most m facets

}
.

We obtain the following result.

Theorem 4.3. For K ∈ K(C) with C2 boundary,

lim
m→∞

distC
(
K,PCm

)
m

2
n−1 =

1

2
ldeln−1

(∫
∂K

Hn−1(K,x)
1

n+1σC(x)
n−1
n+1 dx

)n+1
n−1

,

and

lim
m→∞

distC
(
K,PC(m)

)
m

2
n−1 =

1

2
ldivn−1

(∫
∂K

Hn−1(K,x)
1

n+1σC(x)
n−1
n+1 dx

)n+1
n−1

,

where ldeln−1 and ldivn−1 are the constants from Theorem 1.5.
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Finally, we obtain the following result for the weighted floating body KσC
δ .

Theorem 4.4. For K ∈ K(C),

lim
δ→0

volC(K)− volC(KσC
δ )

δ
2

n+1

= αn

∫
∂K

Hn−1(K,x)
1

n+1σC(x)
n−1
n+1 dx,

where αn is defined in Theorem 1.1.

Note that the floating area

ΩC(K) =

∫
∂K

Hn−1(K,x)
1

n+1σC(x)
n−1
n+1 dx,

depends on the Hilbert geometry (C, dC) and the choice of the volume density σC . Let
K(0)(Rn) be the set of convex bodies in Rn containing the origin in their interiors. For
C ∈ K(0)(Rn) and λ < 1, the floating area ΩC(λC) is a centro-affine (or GL(n)) invariant by
the definition of floating area and the projective invariance of the volume volC (however, note
that ΩC(λC) is not a projective invariant). For the limiting case λ → 1 and the Busemann
floating area, we obtain the following result. The proof is based on results by Berck, Bernig,
and Vernicos [4], who studied the limiting behavior of the volume entropy of λC.

Theorem 4.5. For C ∈ K(0)(Rn) with C1,1 boundary,

Ωn(C) = 2
n−1
2 lim

λ→1−
ΩC(λC)(1− λ)

n−1
2 ,

where ΩC is the Busemann floating area.

Here Ωn(C) is the classical centro-affine surface area of C which is defined as

Ωn(C) =

∫
∂C

Hn−1(C, x)
1
2(

x · nC(x)
)n−1

2

dx.

Centro-affine surface area is an upper semicontinuous and GL(n) invariant valuation on
Kn(0)(R

n). Moreover, it is basically the only such functional (see [21]). For more informa-

tion on centro-affine surface area, which is also called Ln-affine surface area, see [23,24,35].

Proof. Berck, Bernig, and Vernicos [4, Proposition 2.8] obtained that

lim
λ→1−

σC(λx)(1− λ)
n+1
2 =

Hn−1(C, x)
1
2(

2x · nC(x)
)n+1

2

, (13)

for x ∈ ∂C. Using a version of Blaschke’s rolling theorem, they also showed in [4, Proposition
2.10] that

σC(λx) ≤ c(1− λ)−
n+1
2 , (14)
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where the constant c does not depend on x and λ. Thus,

lim
λ→1−

ΩC(λC)(1− λ)
n−1
2 = lim

λ→1−
λn

n−1
n+1

∫
∂C
Hn−1(C, x)

1
n+1

(
(1− λ)

n+1
2 σC(λx)

)n−1
n+1

dx

=

∫
∂C
Hn−1(C, x)

1
n+1

(
Hn−1(C, x)

1
2(

2x · nC(x)
)n+1

2

)n−1
n+1

dx

= 2−
n−1
2 Ωn(C),

where the last inequality uses Lebesgue’s Dominated Convergence Theorem and (14).

Theorem 4.5 holds true not only for the Busemann volume, but also for other notions
of volume. This follows, since according to Berck, Bernig, and Vernicos [4], equation (13)
holds true for the volume densities of all volumes that satisfies the following very general
assumptions:

� The volume measure volC is a Borel measure on intC and absolutely continuous with
respect to the Lebesgue measure.

� If A ⊂ C ⊂ C ′ where C,C ′ ∈ K(Rn), then volC(A) ≥ volC′(A).

� If C is an ellipsoid, then volC is the hyperbolic volume.

All volume measures that satisfy these conditions are equivalent, i.e., if σC and σ̄C are the
volume densities of two volume measures volC and v̄olC , then there exist positive real constants
a, b such that

aσC(x) ≤ σ̄C(x) ≤ bσC(x),

see e.g. [26, p. 249]. Hence, by (14), we conclude that

σ̄C(λx) ≤ bc(1− λ)−
n+1
2 .

Therefore Theorem 4.5 also holds for any volume measure that satisfies these conditions and
in particular for the Holmes-Thompson volume.

5 Proof of Theorem 1.1

The first step of the proof is the following disintegration result, which follows easily from the
area formula (see e.g. [7, Prop. 3.7] or [9, Lem. 4.2] for related results).

Lemma 5.1. Let K,L be convex bodies such that L ⊆ K and 0 ∈ intL. For x ∈ ∂K,

Ψ(K)−Ψ(L) =

∫
∂K

nK(x) · (x‖x‖−n)

∫ ‖x‖
‖xL‖

ψ(tx‖x‖−1)tn−1 dt dx,

where {xL} = ∂L ∩ [0, x].
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The next step is to give upper and lower bounds of the weighted floating body Kφ
δ by a re-

parametrized Euclidean floating body. To be more precise, we find δ1 = δ1(δ) and δ2 = δ2(δ)

such that 0 < δ1 ≤ δ2 and Kδ2 ⊆ Kφ
δ ⊆ Kδ1 . Before we go into the details of this proof, we

need to fix a few notions.
For v ∈ Sn−1 and t ∈ R, define, as before, the closed halfspaces H−(v, t) := {y ∈ Rn :

y · v ≤ t} and H+(v, t) := H−(−v,−t). The weighted floating body Kφ
δ can be expressed as

Kφ
δ =

⋂{
H−
(
v, tδ(v)

)
: v ∈ Sn−1

}
, (15)

where tδ(v) = t(K,φ, δ, v) is determined implicitly by

δ = Φ
(
K ∩H+

(
v, tδ(v)

))
=

∫ hK(v)

tδ(v)

∫
K ∩H(v,s)

φ(x) dλH(v,s)(x) ds. (16)

Here λH(v,s) is the Lebesgue measure in the affine hyperplane H(v, s) = {y ∈ Rn : y · v = s}.
Note that there exists δ0 > 0 such that the function tδ(v) is continuous for (δ, v) ∈ [0, δ0)×Sn−1

and t0(v) = hK(v).

Lemma 5.2. Let K ∈ K(Rn) and ε ∈ (0,min∂K φ). For

α := min
∂K

φ− ε, β := max
∂K

φ+ ε, (17)

there exists δ0 = δ0(ε) > 0 such that for all δ ∈ (0, δ0), we have

Kδ/α ⊆ K
φ
δ ⊆ Kδ/β .

Proof. Note that by our assumptions φ is continuous and positive on ∂K and therefore
min∂K φ > 0. First we show that there is δ1 = δ1(ε) > 0 such that for all δ ∈ (0, δ1)
and v ∈ Sn−1 we have

K ∩H+
(
v, tδ(v)

)
⊆
{
x ∈ K : φ(x) ≤ β

}
. (18)

Assume the opposite. Then for all δ > 0 there exists v(δ) ∈ Sn−1 and y(δ) ∈ K such that
φ(y(δ)) ≥ β and y(δ) · v(δ) ≥ tδ(v(δ)). By compactness there are converging subsequences
with limits v0 ∈ Sn−1 and y0 ∈ ∂K such that φ(y0) ≥ β and y0 · v0 ≥ t0(v0) = hK(v0). Thus
y0 ∈ ∂K and therefore φ(y0) ≤ max∂K φ < β ≤ φ(y0) – a contradiction.

By (18), we have that

δ = Φ
(
K ∩H+

(
v, tδ(v)

))
≤ βλn

(
K ∩H+

(
v, tδ(v)

))
,

which yields t(K, 1, δ/β, v) ≥ t(K,φ, δ, v). Thus, by (15) and (16), Kφ
δ ⊆ Kδ/β.

Conversely, there is δ2 = δ2(ε) > 0 such that for all δ ∈ (0, δ2) and v ∈ Sn−1 we have

K ∩H+
(
v, t(K,φ, δ, v)

)
⊆
{
x ∈ K : φ(x) ≥ α

}
.

Similar to the above we first have

δ = Φ
(
K ∩H+

(
v, tδ(v)

))
≥ αλ

(
K ∩H+

(
v, tδ(v)

))
,

and therefore Kδ/α ⊆ K
φ
δ . Setting δ0 = min{δ1, δ2} concludes the proof.
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For two distinct points x, y ∈ Rn the affine segment joining x and y is denoted by [x, y].
The previous lemma immediately implies the following result.

Corollary 5.3. Let K ∈ K(Rn), let α, β as in (17), and let z ∈ int K. For x ∈ ∂K we set{
xδ/α

}
= ∂Kδ/α ∩ [x, z],

{
xδ/β

}
= ∂Kδ/β ∩ [x, z],

{
xφδ
}

= ∂Kφ
δ ∩ [x, z].

Then for δ > 0 sufficiently small, we have∥∥xδ/α − z∥∥ ≤ ∥∥xφδ − z∥∥ ≤ ∥∥xδ/β − z∥∥.
To complete the proof, we proceed as follows: The left hand-side of (4) can be written as

an integral over ∂K by Lemma 5.1. Theorem 1.1 follows by applying Lebesgue’s Dominated
Convergence Theorem and calculating the point-wise limit of the integrand. To do so, we
need to bound the integrand from above by an integrable function.

We denote by rK : ∂K → [0,+∞) the maximal radius of a Euclidean ball that contains
x ∈ ∂K and is contained in K. It was proven in [34], that for α > −1 we have∫

∂K
rK(x)α dx < +∞.

Hence rK is an integrable function and it was already used as upper bound of the integrand
for the Euclidean floating body. The following upper bound for the weighted floating body
follows by the Euclidean results obtained in [34].

Lemma 5.4. Let K ∈ K(Rn) with 0 ∈ int K. There exists C > 0 such that for δ > 0
sufficiently small

x · nK(x)

δ2/(n+1)‖x‖n

∫ ‖x‖
‖xφδ ‖

tn−1ψ(tx/‖x‖) dt ≤ C
(

max
K

ψ
)
rK(x)−

n−1
n+1 ,

for almost all x ∈ ∂K.

Proof. Since 0 ∈ intK, by Corollary 5.3 we have ‖xφδ ‖ ≥ ‖xδ/α‖. We conclude

x · nK(x)

δ2/(n+1)‖x‖n

∫ ‖x‖
‖xφδ ‖

tn−1ψ(tx/‖x‖) dt ≤
(

max
K

ψ
) x · nK(x)

δ2/(n+1)‖x‖n

∫ ‖x‖
‖xδ/α‖

tn−1 dt.

Furthermore,

x · nK(x)

δ2/(n+1)‖x‖n

∫ ‖x‖
‖xδ/α‖

tn−1 dt ≤ x · nK(x)

‖x‖

∥∥x− xδ/α∥∥
δ2/(n+1)

≤ CrK(x)−
n−1
n+1 ,

where the last inequality is the Euclidean result established in [34, Lemma 6].

To calculate the point-wise limit of the integrand, we also use the Euclidean result to
obtain the result for the weighted floating body. We recall some notions for boundary points
of a convex body (see, for example, [31, Section 2.2, Section 2.5]).
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A boundary point x of K is called regular if there is a unique outer unit normal nK(x)
to K at x. Almost all boundary points are regular. Recall that for a convex body K the
boundary ∂K is C2 almost everywhere in the following sense: If x is a regular boundary point,
there is ε > 0 and an open neighborhood U of x such that U ∩ ∂K can be described as

U ∩ ∂K =
{
x+ v − f(v)nK(x) : v ∈ nK(x)⊥ ∩ εBn

}
,

where f : nK(x)⊥ ∩ εBn → R is a convex function which satisfies f ≥ 0, f(0) = 0 and
nK(x)⊥ = {y ∈ Rn : y · nK(x) = 0}. A regular boundary point x ∈ ∂K is normal (or second
order differentiable), if f is twice differentiable at 0 in the following sense: f is differentiable
at 0 and there exists a symmetric linear map A : Rn → Rn such that for v, w ∈ nK(x)⊥,

f(w) = f(v) +∇f(v) · (w − v) +
1

2
A(w − v) · (w − v) + o

(
‖w − v‖2

)
,

as ‖w − v‖ → 0. Note that almost all boundary points are normal (see [31, Thm. 2.5.5]),
and the (generalized) Gauss–Kronecker curvature Hn−1(K,x) = det(A) exists for normal
boundary points.

Lemma 5.5. Let K ∈ K(Rn). If x ∈ ∂K is a normal boundary point, then

lim
δ→0+

x · nK(x)

δ2/(n+1)‖x‖n

∫ ‖x‖
‖xφδ ‖

tn−1ψ(tx/‖x‖) dt = αnHn−1(K,x)
1

n+1 φ(x)−
2

n+1 ψ(x).

In the proof of Lemma 5.5 we will use the following two results.

Lemma 5.6 ([7, Lemma 2.9]). Let K ∈ K(Rn) with 0 ∈ int K and ε > 0. If x ∈ ∂K is a
normal boundary point such that Hn−1(K,x) > 0, then there is δ0 = δ0(ε) such that for all
δ ∈ (0, δ0),

[x, 0] ∩ Lφδ = [x, 0] ∩Kφ
δ ,

where L = K ∩ (x + εBn). In particular, if we set {xφ,Kδ } = ∂Kφ
δ ∩ [x, 0] and {xφ,Lδ } =

∂Lφδ ∩ [x, 0], then xφ,Kδ = xφ,Lδ .

Lemma 5.7 ([34]). Let K ∈ K(Rn). If x ∈ ∂K is a normal boundary point, then

lim
δ→0+

x · nK(x)

δ2/(n+1)‖x‖n

∫ ‖x‖
‖xδ‖

tn−1 dt = αnHn−1(K,x)
1

n+1 .

Proof of Lemma 5.5. Since x is normal, Hn−1(K,x) exists. First, if Hn−1(K,x) = 0, then

x · nK(x)

δ2/(n+1)‖x‖n

∫ ‖x‖
‖xφδ ‖

tn−1ψ(tx/‖x‖) dt ≤
(

max
K

ψ
) x · nK(x)

δ2/(n+1)‖x‖n

∫ ‖x‖
‖xδ/α‖

tn−1 dt.

By Lemma 5.7, we conclude

lim sup
δ→0+

x · nK(x)

δ
2

n+1 ‖x‖n

∫ ‖x‖
‖xφδ ‖

tn−1ψ
( tx

‖x‖

)
dt ≤ maxK ψ

α
2

n+1

lim sup
δ→0+

x · nK(x)

(δ/α)
2

n+1 ‖x‖n

∫ ‖x‖
‖xδ/α‖

tn−1 dt = 0.
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Now assume Hn−1(K,x) > 0 and let ε > 0 be arbitrary. Set L = K ∩ (x + εBn). Then
Hn−1(L, x) = Hn−1(K,x) and nK(x) = nL(x). Furthermore, for δ small enough, we have

x · nK(x)

δ2/(n+1)‖x‖n

∫ ‖x‖
‖xφ,Kδ ‖

tn−1ψ(tx/‖x‖) dt =
x · nL(x)

δ2/(n+1)‖x‖n

∫ ‖x‖
‖xφ,Lδ ‖

tn−1ψ(tx/‖x‖) dt.

Let z ∈ (intL) ∩ [0, x]. We apply Corollary 5.3 on L with ε and obtain, for y ∈ ∂L,

‖yδ/β − z‖ ≥ ‖y
φ,L
δ − z‖ ≥ ‖yδ/α − z‖,

where β = max∂L φ + ε and α = min∂L φ − ε. Since ‖x‖ = ‖z‖ + ‖x − z‖, this yields

‖xδ/β‖ ≥ ‖x
φ,L
δ ‖ ≥ ‖xδ/α‖. We conclude

x · nL(x)

δ
2

n+1 ‖x‖n

∫ ‖x‖
‖xφ,Lδ ‖

tn−1ψ
( tx

‖x‖

)
dt ≤ x · nL(x)

δ
2

n+1 ‖x‖n

(
max

t∈
[
‖xL
δ/α
‖,‖x‖

]ψ( tx

‖x‖

))∫ ‖x‖
‖xL
δ/α
‖
tn−1 dt,

and therefore

lim sup
δ→0+

x · nL(x)

δ2/(n+1)‖x‖n

∫ ‖x‖
‖xφ,Lδ ‖

tn−1ψ(tx/‖x‖) dt ≤ αnHn−1(L, x)
1

n+1
ψ(x)

α2/(n+1)
.

Conversely, we have

x · nL(x)

δ
2

n+1 ‖x‖n

∫ ‖x‖
‖xφ,Lδ ‖

tn−1ψ
( tx

‖x‖

)
dt ≥ x · nL(x)

δ
2

n+1 ‖x‖n

(
min

t∈
[
‖xL
δ/β
‖,‖x‖

]ψ( tx

‖x‖

))∫ ‖x‖
‖xL
δ/β
‖
tn−1 dt,

and hence

lim inf
δ→0+

x · nL(x)

δ2/(n+1)‖x‖n

∫ ‖x‖
‖xφ,Lδ ‖

tn−1ψ(tx/‖x‖) dt ≥ αnHn−1(L, x)
1

n+1
ψ(x)

β2/(n+1)
.

Since ε > 0 can be chosen arbitrarily small and β, α→ φ(x) for ε→ 0, we conclude

lim
δ→0+

x · nL(x)

δ2/(n+1)‖x‖n

∫ ‖x‖
‖xφ,Lδ ‖

tn−1ψ(tx/‖x‖) dt = αnHn−1(L, x)
1

n+1 φ(x)−
2

n+1 ψ(x).

This finishes the proof, as, for δ > 0 sufficiently small, we have nL(x) = nK(x), Hn−1(L, x) =

Hn−1(K,x) and xφ,Lδ = xφ,Kδ .

The proof of (4) is now straightforward. By Lemma 5.1 we have

Ψ(K)−Ψ(Kφ
δ )

δ
2

n+1

=

∫
∂K

x · nK(x)

δ(n+1)/2‖x‖n

∫ ‖x‖
‖xδ‖

tn−1ψ(tx/‖x‖) dt dx.

By Corollary 5.3, there is δ0 > 0 such that the integrand is bounded by an integrable function
for all δ < δ0. By Lebesgue’s Dominated Convergence Theorem and Lemma 5.5, we conclude

lim
δ→0+

Ψ(K)−Ψ(Kφ
δ )

δ
2

n+1

= αn

∫
∂K

Hn−1(K,x)
1

n+1φ(x)−
2

n+1ψ(x) dx.
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