
A Characterization of Affine Surface Area

Monika Ludwig and Matthias Reitzner

Abteilung für Analysis, Technische Universität Wien,
Wiedner Hauptstraße 8-10/1142, A-1040 Vienna
m.ludwig+e1142/m.reitzner+e1142@tuwien.ac.at

Abstract

We show that every upper semicontinuous and equi-affine invariant valu-
ation on the space of d-dimensional convex bodies is a linear combination
of affine surface area, volume and the Euler characteristic.
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1 Introduction and statement of result

Let K be a convex body, i.e. a compact convex set, in Euclidean d-space Ed. For
K with boundary bdK of differentiability class C2 the affine surface area Ω is
defined as

Ω(K) =

∫
bd K

κ(x)
1

d+1 dσ(x),

where κ(x) is the Gaussian curvature of bdK at x and σ is the (d−1)-dimensional
Hausdorff measure. This notion was introduced in affine differential geometry
(see Blaschke’s monograph [4]). The reason for its importance in this field is that
it is equi-affine invariant, i.e. invariant with respect to volume preserving affine
transformations. Also outside affine differential geometry, affine surface area has
important applications, for example, in problems of asymptotic approximation of
convex bodies by polytopes (see [9], [10]) and in the theory of affine inequalities
(see [21]).

Beginning with the work of Leichtweiß [16], several ways of defining affine
surface area Ω for general (not necessarily smooth) convex bodies were proposed.
Since it was shown that these definitions are all equivalent, we can speak of
the affine surface area Ω of a general convex body. Here we describe briefly
three definitions of Ω, from which the properties needed for our characterization
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can easily be deduced. For more detailed information, we refer to Leichtweiß’
monograph [18] and for further ways of defining affine surface area also to [24]
and [31].

A theorem of Aleksandrov (see subsection 2.2) says that with respect to the
(d − 1)-dimensional Hausdorff measure σ at almost every point x ∈ bdK there
is a paraboloid osculating bdK. The (generalized) Gaussian curvature κ(x) of
bdK at such an x is defined as the Gaussian curvature of this paraboloid at x,
and the function κ(x) is Lebesgue integrable. Hence affine surface area can be
defined as

Ω(K) =

∫
bd K

κ(x)
1

d+1 dσ(x). (1)

This definition was given by Schütt and Werner [30]. Schütt [29] (or see [12])
showed that it is equivalent to the definition given by Leichtweiß [16].

Schütt and Werner [30] also showed the following. For δ > 0 define the convex
floating body Kδ of K as the intersection of all half-spaces whose complements in-
tersect K in a set of volume δ. Generalizing results by Blaschke [4] and Leichtweiß
[15], they proved that

lim
δ→0

cd
V (K)− V (Kδ)

δ
2

d+1

=

∫
bd K

κ(x)
1

d+1 dσ(x), (2)

where cd is a suitable constant and V stands for volume. Consequently, the
left-hand side of (2) can also be used as a definition for Ω.

Lutwak [20] gave the following definition of affine surface area for general
convex bodies. Let Sd

o be the set of starshaped bodies in Ed with non-empty
interior and centroid at the origin. Define

Ω(K) = inf
L∈Sd

o

{(d V (L))
1
d

∫
Sd−1

1

ρL(u)
dσK(u)}

d
d+1 , (3)

where Sd−1 is the unit sphere centered at the origin, ρL(u) is the radial function
of L at u ∈ Sd−1, and σK is Aleksandrov’s surface area measure of K. This
definition is related to Petty’s notion of geominimal surface area [25]. It was
shown to be equivalent to the other definitions by Leichtweiß [17] and Dolzmann
and Hug [6].

Let Kd be the space of convex bodies in Ed equipped with the usual topology
induced by the Hausdorff metric (cf. [28]). Then Ω is a functional defined for
every K ∈ Kd and has the following properties.

(i) It is equi-affine invariant, i.e. for every volume preserving affine transformation
ϕ and every convex body K

Ω(ϕ(K)) = Ω(K)
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holds. For general convex bodies, this follows, for example, from (2), since the
volume of convex floating bodies is equi-affine invariant.

(ii) Ω is upper semicontinuous, i.e.

Ω(K) ≥ lim sup
n→∞

Ω(Kn)

for every K ∈ Kd and every sequence Kn ∈ Kd with Kn → K. This was first
– even for smooth bodies – proved by Lutwak [20]. The weak continuity of the
surface area measure σK implies that the functionals over which the infimum is
taken in (3) are continuous, and as an infimum of continuous functionals affine
surface area is therefore upper semicontinuous. Since Ω(P ) = 0 for every polytope
P ∈ Kd, affine surface area is not continuous.

(iii) Ω is a valuation. Here a functional µ : Kd → R is called a valuation, if for
every K,L ∈ Kd with K ∪ L ∈ Kd

µ(K ∪ L) + µ(K ∩ L) = µ(K) + µ(L)

holds. That Ω has this property follows from (1) (see [29]).

Valuations play an important role in convex geometry (see [23], [22]) and have
many applications in integral geometry (see [14]). One of the most important
results in this field is the following characterization theorem by Hadwiger [11]:

A functional µ : Kd → R is a continuous and rigid motion invariant valuation if
and only if there are constants c0, c1, . . . , cd such that

µ(K) = c0W0(K) + . . .+ cdWd(K)

for every K ∈ Kd.

Here W0(K), . . . ,Wd(K) are the quermassintegrals of K. In particular, W0(K)
is equal to the volume V (K) and Wd(K) is a multiple of the Euler characteristic
χ(K). For a short proof of this theorem, see Klain [13].

Prior to Hadwiger, Blaschke [5] indicated that every continuous and equi-
affine invariant valuation on K3 is a linear combination of volume and the Euler
characteristic. Our aim is to extend Blaschke’s result in order to obtain also a
characterization of affine surface area. Ω is an equi-affine invariant and upper
semicontinuous valuation on Kd. Other examples of such functionals are volume
and the Euler characteristic. We show that these properties characterize affine
surface area, volume and the Euler characteristic.

Theorem. A functional µ : Kd → R is an upper (or lower) semicontinuous and
equi-affine invariant valuation if and only if there are constants c0, c1, and c2 ≥ 0
(c2 ≤ 0) such that

µ(K) = c0 χ(K) + c1 V (K) + c2 Ω(K)

for every K ∈ Kd.
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That such a linear combination of affine surface area, volume and the Euler char-
acteristic is an upper semicontinuous and equi-affine invariant valuation follows
from the properties of affine surface area described above. We show that also the
converse holds.

In the planar case, this theorem was proved in [19] and independently by Tibor
Ódor. Recently, he informed us that he has also obtained the above theorem.

2 Tools

1. We need the following result on valuations on the set of spherical polytopes.
Let Sd−1 denote the unit sphere in Ed and σ the (d − 1)-dimensional Hausdorff
measure. A C ⊂ Ed is a polyhedral cone, if it is the intersection of a finite family
of closed half-spaces which have the origin in their boundaries, and a P ⊂ Sd−1 is
called a spherical polytope, if there is a polyhedral cone C such that P = Sd−1∩C.
Let P(Sd−1) be the set of spherical polytopes and let ν : P(Sd−1) → R be a
simple valuation, i.e. ν(P1∪P2) = ν(P1)+ ν(P2) for every P1, P2 ∈ P(Sd−1) with
P1 ∪ P2 ∈ P(Sd−1) and where P1 ∩ P2 is at most (d− 2)-dimensional. Schneider
[27] proved the following characterization theorem.

Let ν : P(Sd−1) → R be a rotation invariant, non-negative and simple valuation.
Then, there is a constant c ≥ 0 such that ν(P ) = c σ(P ) for every P ∈ P(Sd−1).

2. A convex function f : Ed−1 → R is twice differentiable at a point x′0, if there
exists a second order Taylor expansion at x′0, i.e. the gradient grad f at x′0 exists
and there is a symmetric linear map Af(x′0) such that

f(x′) = f(x′0) + 〈grad f(x′0), x
′ − x′0〉+

1

2
〈Af(x′0)(x

′ − x′0), x
′ − x′0〉+ o(|x′ − x′0|2)

as |x′ − x′0| → 0, where 〈·, ·〉 denotes the inner product and | · | the norm in Ed−1

(see [28]).
Let K be a convex body in Ed and x0 ∈ bdK. x0 is called a normal point of

bdK, if bdK can be represented in a neighbourhood of x0 by a convex function
f : Ed−1 → R such that x = (x1, . . . , xd) = (x′, f(x′)) for x ∈ bdK and such that
f is twice differentiable at x′0. In this case, choosing a suitable coordinate system
in Ed makes it possible to write

f(x′) =
1

2

(
κ1(x0) (x1 − x1

0)
2 + . . .+ κd−1(x0) (xd−1 − xd−1

0 )2
)

+ o(|x′ − x′0|2)

as |x′−x′0| → 0. The coefficients κ1(x0), . . . , κd−1(x0) are the (generalized) princi-
pal curvatures of bdK at x0 and κ(x0) = κ1(x0) · · ·κd−1(x0) is the (generalized)
Gaussian curvature. The convexity of K implies that κ1, . . . , κd−1 ≥ 0. If all
principal curvatures are positive, then K is osculated by suitable ellipsoids at x0.
If κ(x0) = 0, then K is osculated by suitable cylinders at x0.
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Let N ⊂ bdK denote the set of normal points of bdK. A classical theorem
of Aleksandrov [2] (or see [3]) states that

σ(N) = σ(bdK), (4)

i.e. almost all points on bdK are normal.

3. We need the following results on packings. They follow immediately from
the Euclidean results (see, for example, [8]), since spheres and cylinders are lo-
cally Euclidean. Let Bd be the closed unit ball in Ed, and let B(x, r) be a
closed d-dimensional ball with center x and radius r. We say that the balls
B(x1, r), . . . , B(xn, r) define a packing in Sd−1, if xi ∈ Sd−1 for i = 1, . . . , n and if
the sets Sd−1 ∩B(xi, r) have pairwise disjoint relative interior in Sd−1. Let m(r)
be the maximum number of balls of radius r that define a packing in Sd−1. Then

κd−1m(r) rd−1 → δd−1 d κd (5)

as r → 0, where δd−1 > 0 is the packing density of balls in Ed−1 and κk is the
volume of the k-dimensional unit ball.

A similar statement holds for cylinders. Let Ik ⊂ Ek denote the closed k-
dimensional cube with side length 2 centered at the origin. Then Ik × Bd−k,
where Bd−k is the (d − k)-dimensional unit ball, is a cylinder. We say that the
balls B(x1, r), . . . , B(xn, r) define a packing in the lateral surface Z = Ik×Sd−k−1

of this cylinder, if xi ∈ Z for i = 1, . . . , n and if the sets Z∩B(xi, r) have pairwise
disjoint relative interior in Z. Let m(r) be the maximum number of disjoint balls
of radius r that define a packing in Z. Then

κd−1m(r) rd−1 → δd−1 2k (d− k)κd−k (6)

as r → 0.

4. Finally, we make use of the following result from measure theory (see, for
example, [7] and [26]). Let N ⊂ Ed be a set of finite (d−1)-dimensional Hausdorff
measure σ(N) and denote the diameter of set V by diamV . We call a collection
V of sets a Vitali class for N , if for every x ∈ N and every δ > 0, there is a
V ∈ V such that x ∈ V , 0 < diamV ≤ δ, and

σ(V )

(diamV )d−1
≥ q(x) > 0,

where q(x) depends only on x. Then a version of Vitali’s covering theorem states
the following.

Let V be a Vitali class of closed sets for N . Then for every ε > 0 there are
pairwise disjoint V1, . . . , Vn ∈ V such that

σ(N) ≤
n∑

i=1

σ(Vi) + ε.
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3 Proof

The proof is organized in the following way. In the first part, we use induction
on the dimension d to arrive at the characterization of affine surface area in
Proposition 2. In the second part, it is shown that it suffices to consider ε-
smooth convex bodies, i.e. to show Proposition 3, for which the proof is given in
the last part.

1. If −µ is lower semicontinuous, then µ is upper semicontinuous. Thus it suffices
to consider upper semicontinuous µ. Since µ is translation invariant, there is a
constant c0 such that

µ(K) = c0

for every singleton K = {x}. We define

µ0(K) = µ(K)− c0 χ(K)

for every K ∈ Kd. Then µ0 is an upper semicontinuous and equi-affine invariant
valuation and it vanishes on singletons. Thus it suffices to show the following
proposition to prove our theorem.

Proposition 1. Let µ : Kd → R be an upper semicontinuous and equi-affine
invariant valuation which vanishes on singletons. Then there are constants c1
and c2 ≥ 0 such that

µ(K) = c1 V (K) + c2 Ω(K)

for every K ∈ Kd.

To prove this proposition we use induction on the dimension d. Let d = 1. Then
every convex body is a closed interval. Since µ vanishes on singletons and is
translation invariant, this implies that µ(K) depends only on the length of the
interval K. Thus we can define a function f : [0,∞) → R by

f(x) = µ(K),

where x = V1(K) is the length of the interval K. Since µ is a valuation and
vanishes on singletons,

f(x+ y) = f(x) + f(y)

holds for every x, y ∈ [0,∞). Thus f is a solution of Cauchy’s functional equation.
Since µ is upper semicontinuous, also f has this property. By a well known
property of solutions of Cauchy’s functional equation (see, for example, [1]), this
implies that there is a constant a such that

f(x) = a x
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for every x ∈ [0,∞). Thus
µ(K) = a V1(K)

and Proposition 1 holds for d = 1.
So suppose that Proposition 1 holds in dimension (d− 1), i.e. for every upper

semicontinuous and equi-affine invariant valuation ν : Kd−1 → R which vanishes
on singletons, there are constants a1 and a2 such that

ν(K) = a1 Vd−1(K) + a2 Ωd−1(K) (7)

for every K ∈ Kd−1, where Vd−1 is the volume and Ωd−1 is the affine surface area
in Ed−1.

Now let d ≥ 2 and let µ : Kd → R be an upper semicontinuous and equi-affine
invariant valuation which vanishes on singletons. Using (7), we show that µ is
simple, i.e. µ(K) = 0 for every at most (d− 1)-dimensional K ∈ Kd.

Lemma 1.1. µ is simple.

Proof. Let H ⊂ Ed be a hyperplane, let K(H) be the set of convex bodies
K ⊂ H, and let ν be the restriction of µ to K(H). Then ν : K(H) → R
is an upper semicontinuous valuation which is invariant with respect to affine
transformations (including dilations). If we identify K(H) with Kd−1, we can
apply our induction assumption (7) and obtain

ν(K) = a1 Vd−1(K) + a2 Ωd−1(K)

for every K ∈ K(H) with suitable constants a1, a2. Since both Vd−1 and Ωd−1 are
homogeneous and neither Vd−1 nor Ωd−1 is invariant with respect to dilations, we
conclude that a1 = a2 = 0. 2

Note that simple valuations have the following additivity property. If P1, . . .,
Pn are polytopes with pairwise disjoint interior and if K is a convex body with
K ⊂ P1 ∪ . . . ∪ Pn, then

µ(K) = µ(K ∩ P1) + . . .+ µ(K ∩ Pn).

This follows easily from the valuation property by using induction on n (see, for
example, [11], p. 81).

Next, we subtract a suitable multiple of volume from µ to obtain a valuation
which vanishes on polytopes. Let S be a simplex, i.e. the convex hull of d + 1
points in Ed. Since µ is equi-affine invariant and simple, the value µ(S) depends
only on the volume of S, i.e. there is a function f : [0,∞) → R such that

f(x) = µ(S),
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where x = V (S). For given values x1, x2 ≥ 0, we can find simplices S1 and S2 of
volume x1 and x2, respectively, such that S1 ∪ S2 is a simplex of volume x1 + x2.
Therefore, taking into account that µ is simple valuation, we obtain

µ(S1 ∪ S2) = µ(S1) + µ(S2)

and
f(x1 + x2) = f(x1) + f(x2).

Thus f is a solution of Cauchy’s functional equation and since it is upper semi-
continuous, this implies that there is a constant c1 such that

f(x) = c1 x

and consequently
µ(S) = c1 V (S)

for every simplex S. Since every polytope P can be dissected into simplices and
since µ is a simple valuation, this implies that

µ(P ) = c1 V (P )

for every polytope P ∈ Kd.
We define

µ1(K) = µ(K)− c1 V (K)

for every K ∈ Kd and obtain a functional µ1 : Kd → R, which is an upper
semicontinuous, equi-affine invariant and simple valuation with the property that
µ1(P ) = 0 for every polytope P . Since every convex bodyK can be approximated
by polytopes Pn and since µ1 vanishes on polytopes, the upper semicontinuity of
µ1 implies that

µ1(K) ≥ lim sup
n→∞

µ1(Pn) = 0, (8)

i.e. µ1 is non-negative.
Using our induction assumption (7), we now show that µ1 vanishes on cylin-

ders. A convex body Z is called a cylinder, if Z is the Minkowski sum of a
(d− 1)-dimensional convex body K and a closed line segment I, i.e. Z = K + I.

Lemma 1.2. For every cylinder Z, µ1(Z) = 0.

Proof. We choose a hyperplane H and a direction in Ed and consider only line
segments I parallel to this direction. For a given K ∈ K(H), the translation
invariance of µ1 implies that µ1(K + I) depends only on the length x = V1(I) of
I, and we define

fK(x) = µ1(K + I).
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Since µ1 is a translation invariant and simple valuation, we see that for line
segments I1, I2

µ1(K + (I1 + I2)) = µ1(K + I1) + µ1(K + I2)

holds. Setting x1 = V1(I1) and x2 = V1(I2) we therefore obtain

fK(x1 + x2) = fK(x1) + fK(x2),

which implies that fK is a solution of Cauchy’s functional equation. In addition,
fK is upper semicontinuous. Thus there is a ν(K) such that

fK(x) = ν(K)x

and
µ1(K + I) = ν(K)V1(I)

for every K ∈ K(H) and every line segment I.
ν is defined on K(H). Since µ1 is an equi-affine invariant and upper semicon-

tinuous valuation and vanishes on polytopes, also ν has these properties. We can
therefore apply our assumption (7) for Kd−1 and obtain

ν(K) = aΩd−1(K)

for every K ∈ K(H) with a suitable constant a, and consequently

µ1(K + I) = aΩd−1(K)V1(I) (9)

for every K ∈ K(H) and every line segment I.
We now choose equi-affine invariant transformations ϕt in the following way.

We dilate by a factor t > 0 in H and by a factor 1
td−1 in the direction parallel

to our line segments. Then ϕt(K + I) is a translate of the cylinder tK + 1
td−1 I.

¿From the equi-affine invariance of µ1 and from (9), we therefore obtain

µ1(ϕt(K + I)) = aΩd−1(tK)V1(
1

td−1
I) = µ1(K + I) = aΩd−1(K)V1(I).

If a 6= 0, then
Ωd−1(tK) = td−1 Ωd−1(K)

for every K ∈ K(H) and every t > 0. But Ωd−1 is not homogeneous of degree
d− 1. Thus a = 0 and µ1(Z) = 0. 2
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2. By the definition of µ1, Lemma 1.1 and 1.2, it suffices to show the following
result to complete our proof by induction of Proposition 1.

Proposition 2. Let µ : Kd → [0,∞) be an upper semicontinuous, equi-affine
invariant and simple valuation, which vanishes on polytopes and on cylinders.
Then there is a constant c ≥ 0 such that

µ(K) = cΩ(K)

for every K ∈ Kd.

To prove this proposition we show that if we know the value of µ for the unit
ball Bd, the value of µ for every K ∈ Kd is already uniquely determined. That
this implies Proposition 2 can be seen in the following way. Let µ be defined as
in Proposition 2. Then there is a c ≥ 0 such that for the unit ball Bd

µ(Bd) = c σ(Sd−1) = cΩ(Bd). (10)

Ω is also a valuation which fulfills the assumptions of Proposition 2. If for every
K ∈ Kd the value of Ω as well as of µ is uniquely determined by the value for the
unit ball, then (10) implies that µ(K) = cΩ(K) for every K ∈ Kd and therefore
Proposition 2 holds under this assumption.

Thus we have to show that µ is uniquely determined by the constant c chosen
in (10). We already know the value of µ for polytopes and cylinders. As an
application of Schneider’s theorem cited in subsection 2.1, we now obtain the
following result.

Lemma 2.1. For every polytope P , µ(Bd ∩ P ) = c σ(Sd−1 ∩ P ).

Proof. First, we consider polyhedral cones. For every polyhedral cone C, Sd−1∩C
is a spherical polytope. Set ν(Sd−1 ∩ C) = µ(Bd ∩ C). Then ν is defined on
P(Sd−1). Since µ is a rotation invariant and simple valuation, so is ν. In addition,
µ and ν are non-negative by (8). Thus by Schneider’s theorem there is a constant
a ≥ 0 such that ν(Sd−1 ∩ C) = a σ(Sd−1 ∩ C) for every polyhedral cone C. By
(10), ν(Sd−1) = µ(Bd) = c σ(Sd−1). Thus a = c and

µ(Bd ∩ C) = c σ(Sd−1 ∩ C). (11)

Second, we prove the lemma in the case that P is the convex hull of a (d−1)-
dimensional polytope F and the origin. Let CF be the polyhedral cone generated
by the ray starting from the origin and intersecting F , and let ε > 0 be chosen. We
dissect F into polytopes F1, . . . , Fn and hence the cone CF into cones CF1 , . . . , CFn

such that for i = 1, . . . , k, Fi ⊂ Bd, for i = m, . . . , n, Fi ∩Bd = ∅, and such that

m−1∑
i=k+1

σ(Sd−1 ∩ CFi
) < ε. (12)
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Let Pi be the convex hull of Fi and the origin. Then

µ(Bd ∩ Pi) = 0 (13)

for i = 1, . . . , k, since µ vanishes on polytopes, and

µ(Bd ∩ Pi) = c σ(Sd−1 ∩ CFi
) (14)

for i = m, . . . , n, since then Bd ∩ Pi = Bd ∩ CFi
and by (11). The polytopes Pi

have pairwise disjoint interior and since µ is non-negative, this and (13) imply

n∑
i=m

µ(Bd ∩ Pi) ≤ µ(Bd ∩ P ) =
n∑

i=k+1

µ(Bd ∩ Pi).

Since µ is non-negative, µ(Bd ∩ Pi) ≤ µ(Bd ∩ CFi
). Therefore we obtain by (14)

and (11)

c
n∑

i=m

σ(Sd−1 ∩ CFi
) ≤ µ(Bd ∩ P ) ≤ c

n∑
i=k+1

σ(Sd−1 ∩ CFi
)

and thus by (12)

c

(
n∑

i=k+1

σ(Sd−1 ∩ Pi)− ε

)
≤ µ(Bd ∩ P ) ≤ c

(
n∑

i=k+1

σ(Sd−1 ∩ Pi) + ε

)
.

Since σ(Sd−1 ∩Pi) = 0 for i = 1, . . . , k, and since ε > 0 was arbitrary, this proves

µ(Bd ∩ P ) = c σ(Sd−1 ∩ P ) (15)

in the case that P is convex hull of a (d−1)-dimensional polytope and the origin.
Finally, for an arbitrary polytope P the lemma follows now easily from the

observation that every polytope can be represented by the convex hulls of the
(d− 1)-dimensional facets F1, . . . , Fn of P and the origin. The polytope P is the
intersection of finitely many half-spaces H+

1 , . . . , H
+
n such that Fi ⊂ bdH+

i . Let
H+

i for i = 1, . . . ,m be the half-spaces which contain the origin. Denoting by Pi

the convex hull of Fi and the origin, we thus obtain

m⋃
i=1

Pi =
n⋃

i=m+1

Pi ∪ P,

and the Pi’s have for i = 1, . . . ,m and for i = m + 1, . . . , n pairwise disjoint
interior. Hence

µ(Bd ∩ P ) =
m∑

i=1

µ(Bd ∩ Pi)−
n∑

i=m+1

µ(Bd ∩ Pi).
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Since by (15) our statement is already proved for the polytopes Pi, this completes
the proof of the lemma. 2

Therefore µ is uniquely determined by (10) for the intersection of the unit
ball and a polytope, and since µ is equi-affine invariant, it is also determined on
equi-affine images of such intersections. By Lemma 1.2, we know that µ vanishes
on cylinders. Hence we have for the intersection of a polytope P and a cylinder
Z

µ(Z ∩ P ) = 0.

This can be seen by dissecting the cylinder Z by polytopes P, P1, . . . , Pn, since
we have

0 = µ(Z) = µ(Z ∩ P ) + µ(Z ∩ P1) + . . .+ µ(Z ∩ Pn)

and since µ is non-negative. We introduce the following family of convex bodies.

Definition. Let E be the family of convex bodies E which can be represented as

E = E1 ∪ . . . ∪ En,

where the Ei’s have pairwise disjoint interior and every Ei is a polytope or an
equi-affine image of the intersection of the unit ball or a cylinder with a polytope.

Having fixed c ≥ 0 in (10) by the value of µ for the unit ball, we now know the
value of µ for every E ∈ E . Since the polytopes belong to E , E is dense in Kd and
we can approximate every K ∈ Kd by elements of E . The upper semicontinuity
of µ implies that

µ(K) ≥ lim sup
n→∞

µ(En) (16)

for every sequence En with En → K. We will prove that for every K ∈ Kd there
is a sequence En such that we have equality in (16), i.e.

µ(K) = sup{lim sup
n→∞

µ(En) : En ∈ E , En → K}. (17)

Showing this implies that µ is uniquely determined by (10) and therefore proves
Proposition 2.

As a first step, we show that it suffices to prove (17) for ε-smooth bodies.
Here a convex body K is ε-smooth if there is a convex body K0 such that

K = K0 + εBd.

We need the following lemma.

Lemma 2.2. For every K ∈ Kd and every closed line segment I,

µ(K + I) = µ(K).
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Proof. We choose a direction in Ed and consider only line segments I parallel to
this direction. Then, since µ is translation invariant, µ(K + I) depends only on
the length x = V1(I), and we define

fK(x) = µ(K + I).

Let I1, I2 be line segments with disjoint relative interior such that the origin is
contained in I1 ∩ I2. Then

(K + I1) ∪ (K + I2) = K + (I1 + I2)

and
(K + I1) ∩ (K + I2) = K.

Since µ is a valuation, this implies that

µ(K + (I1 + I2)) + µ(K) = µ(K + I1) + µ(K + I2),

and setting x1 = V1(I1) and x2 = V1(I2), now shows that

fK(x1 + x2) + fK(0) = fK(x1) + fK(x2)

for every x1, x2 ≥ 0. Thus fK(x) − fK(0) is a solution of Cauchy’s functional
equation. Since it depends upper semicontinuously on x, there is a ν(K) such
that

fK(x) = ν(K)x+ fK(0)

for every x ≥ 0. Therefore

µ(K + I) = ν(K)V1(I) + µ(K) (18)

holds for every K ∈ Kd and every line segment I.
For I sufficiently long (i.e. longer than the width of the shadow boundary

of K in the direction of the line segment I), we can find closed half-spaces H+
1

and H−
2 such that the part of K + I not lying in one of these half-spaces is a

non-degenerate cylinder Z. Set I1 = I ∩H+
1 and I2 = I ∩H−

2 . Then

V1(I) > V1(I1) + V1(I2). (19)

Since µ vanishes on cylinders by Lemma 1.2 and since it is translation invariant,
we obtain

µ(K + I) = µ((K + I) ∩H+
1 ) + µ(Z) + µ((K + I) ∩H−

2 )

= µ(K + I1 + I2).

Consequently, (18) implies that

ν(K)V1(I) = ν(K)V1(I1 + I2).
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Thus it follows from (19) that
ν(K) = 0

and combining this with (18) shows that

µ(K + I) = µ(K)

holds for every K ∈ Kd. 2

Suppose that (17) does not hold for a K ∈ Kd, i.e.

µ(K) > sup{lim sup
n→∞

µ(En) : En ∈ E , En → K}.

Then there is an a > 0 and a δ > 0 such that

µ(K) > µ(E) + a σ(bdK) (20)

for every E ∈ E with δH(E,K) ≤ δ, where δH stands for Hausdorff distance. We
show that then there is also an ε-smooth convex body for which an inequality of
this type holds.

The unit ballBd can be approximated by zonotopes In, i.e. by Minkowski sums
of finitely many line segments (cf. [28], Chapter 3.5). The upper semicontinuity
of µ and Lemma 2.2 imply that

µ(K + εBd) ≥ lim sup
n→∞

µ(K + ε In) = µ(K)

for every ε > 0, i.e. µ is larger for K + εBd than for K. Thus for ε ≤ 1
2
δ, (20)

implies that
µ(K + εBd) > µ(E) + a σ(bdK)

for every E ∈ E with δH(K + εBd, E) ≤ 1
2
δ, since for such an E ∈ E

δH(K,E) ≤ δH(K,K + εBd) + δH(K + εBd, E) ≤ δ.

Since σ depends continuously on K, it now follows that

µ(K + εBd) > µ(E) +
a

2
σ(bd(K + εBd))

for every E ∈ E with δH(K + εBd, E) ≤ 1
2
δ and 0 < ε ≤ 1

2
δ sufficiently small.

This implies that if (17) does not hold for a K ∈ Kd, then it does also not hold
for K + εBd for ε > 0 sufficiently small.
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3. Thus it suffices to show the following proposition to prove (17) and thereby
our theorem.

Proposition 3. For every ε-smooth K ∈ Kd, ε > 0, we have

µ(K) = sup{lim sup
n→∞

µ(En) : En ∈ E , En → K}.

Let K ∈ Kd be ε-smooth, ε > 0, and let P i, P c ∈ Kd be polytopes such that
P i ⊂ intK ⊂ P c, where int stands for interior. We will prove that for every
choice of such K,P i, P c, and every a > 0, an E ∈ E can be constructed such that
P i ⊂ E ⊂ P c and such that

µ(K) ≤ µ(E) + a σ(bdK) (21)

holds. This shows that there is always an E ∈ E arbitrarily close to K such that
µ(E) is almost as large as µ(K) and therefore proves Proposition 3.

The proof that such an E can always be constructed is subdivided into four
parts. In the first part, we show that for a normal point x0 ∈ bdK with positive
curvature an Er(x0) ∈ E and a small polytope Pr(x0) containing x0 can be chosen
such that µ(Er(x0) ∩ Pr(x0)) is almost as large as µ(K ∩ Pr(x0)). This is done
by comparing K with a suitable unit ellipsoid close to an osculating ellipsoid
of K. In the second part, a similar statement is proved for normal points with
vanishing curvature. Here we compare K with suitable cylinders. In the third
part, we use that K is ε-smooth to show that for every polytope P , µ(K ∩ P ) is
bounded by c(ε)σ(bdK ∩ P ) with a suitable constant c(ε), i.e. we prove a type
of absolute continuity property of µ. Finally, using Aleksandrov’s theorem and
Vitali’s covering theorem, we construct our E ∈ E and using the estimates from
the preceding parts for normal points and the absolute continuity property, we
show that (21) holds for our E.

3.1. Let x0 ∈ bdK be a normal point with curvature κ(x0) > 0. Let R(x0)
be the ray starting at x0, orthogonal to the tangent hyperplane of K at x0 and
intersecting K. Then there is a solid ellipsoid E(x0) of volume κd which osculates
K at x0 and whose center lies on R(x0). Every ellipsoid with center on R(x0)
whose principal curvatures at x0 in respective directions are larger than those of
E(x0) lies locally inside of K and similarly, every ellipsoid with smaller principal
curvatures lies locally outside of K. Thus for a given t > 0 there are solid
ellipsoids Ei

t(x0) and Ec
t (x0) with centers on R(x0) of volume κd and (1 + t)d κd,

respectively, such that Ec
t (x0) is homothetic to Ei

t(x0), E
i
t(x0) touches K at x0

and lies locally inside of K, and Ec
t (x0) touches K at x0 and lies locally outside

of K.
For such an ellipsoid Ei

t(x0), let ϕt be the equi-affine map which transforms
Ei

t(x0) into the unit ball. Denote by ‖ϕt‖ the norm of ϕt. Then

|ϕt(x1)− ϕt(x2)| ≤ ‖ϕt‖ |x1 − x2|
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for every x1, x2 ∈ Ed, which implies that for every set S with finite (d − 1)-
dimensional Hausdorff measure, we have

σ(ϕt(S)) ≤ ‖ϕt‖d−1σ(S).

This is a property of Lipschitz maps (see, for example, [7]). Since ‖ϕt‖ depends
continuously on t, for t > 0 bounded from above, say t < 1

4
, there is a p(x0) > 0

(depending only on x0) such that

σ(S)

σ(ϕt(S))
≥ p(x0) (22)

for every S with finite (d− 1)-dimensional Hausdorff measure. We now choose a
t > 0 so small, that

4
√
t ≤ 1−

(
4 c+ 2 a p(x0)

4 c+ a p(x0)

)− 1
d

, (23)

where c is the constant chosen in (10), and that if c 6= 0, then also

4
√
t ≤

(
1 +

a p(x0)

8 c

) 1
d

− 1 (24)

holds. Denote by ϕ the equi-affine map belonging to this t. Note that (23) implies
that t < 1

4
.

Let y0 = ϕ(x0) ∈ Sd−1 and Bd
t = B(−t y0, 1 + t) = ϕ(Ec

t (x0)). We choose a
polytope Q with the following properties:

Q ⊂ Bd ⊂ (1 + 2
√
t)Q (25)

and
Sd−1 ∩ r Q is a convex set on Sd−1 (26)

for every 0 < r ≤ 1. Define

Tr = ϕ(bdK) ∩ (y0 + r Q),

and
Lr = ϕ(K) ∩ (y0 + r Q).

Note that for r > 0 sufficiently small the set Tr is simply connected and that by
the definition of Ei

t(x0), E
c
t (x0) and ϕ, Tr lies between Bd and Bd

t .
We show that µ(Bd∩(y0+r Q)) is almost as large as µ(Lr) for r > 0 sufficiently

small. The basic idea is the following. By construction bd(ϕ(K)) touches Bd at
y0 and lies locally outside of Bd and the boundary of the convex hull of Lr and
Bd differs only around y0 from Sd−1. We take a dense packing in Sd−1 of rotated
copies of that part of Sd−1 not contained in the boundary of this convex hull
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and using the same rotations we construct a convex body M(r) as the convex
hull of rotated copies of Lr and Bd. Then M(r) → Bd as r → 0 and since µ
is upper semicontinuous, µ(M(r)) cannot be much larger than µ(Bd) for r > 0
sufficiently small. From this we deduce that also µ(Lr) is not much larger than
µ(Bd ∩ (y0 + r Q)). Then, in 3.1.2., we replace Bd ∩ (y0 + r Q) by an element
Er of E which consists of a relatively large piece of Bd ∩ (y0 + r Q) contained in
ϕ(K) and suitable parts of cylinders and polytopes. This Er is chosen in such a
way that after transforming back by ϕ−1 we are able to build our E ∈ E using
ϕ−1(Er).

3.1.1. Suppose that for r > 0 arbitrarily small,

µ(Lr) > µ(Bd ∩ (y0 + r Q)) +
a p(x0)

4
σ(Sd−1 ∩ (y0 + r Q)) (27)

holds.
To show that this leads to a contradiction the following technical claim will

be useful. It states that the convex hull of Tr and Bd differs only in a small
neighbourhood of y0 from Bd.

claim 1. For every r, 0 < r < 1,

conv
(
Bd ∪ Tr

)
\Bd ⊂ y0 + (1 + 4

√
t) r Q. (28)

Proof. First we state some elementary facts which will be used throughout this
section. Let y /∈ Bd, denote by dist(y,Bd) = inf{|y−x| : x ∈ Bd} the distance of
y to Bd, and let ȳ ∈ Sd−1 be such that aff(y, ȳ) is tangent to Bd. Here aff stands
for affine hull. Then we have

|y − ȳ| =
√

(dist(y,Bd) + 1)2 − 1 ≤ 2
√

dist(y,Bd) (29)

for dist(y,Bd) ≤ 1. Note that this implies

conv
(
Bd ∪ y

)
\Bd ⊂ y + 2

√
dist(y,Bd)Bd. (30)

Now, if y ∈ Bd
t an elementary calculation shows that

dist(y,Bd) ≤ t |y − y0|2. (31)

Clearly, this is a two-dimensional problem. Denote by f(s) and ft(s) the functions
representing the circle with radius 1 and 1 + t, respectively, and touching the s-
axis at the origin from above. Then dist(y,Bd) < f(|y − y0|) − ft(|y − y0|) and
the Taylor expansions of f and ft yield (31).

Since Tr lies in Bd
t , we now have by (31), (30), and (25)

conv
(
Bd ∪ y

)
\Bd ⊂ y + 2

√
t (1 + 2

√
t) r Q
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for every y ∈ Tr. Since y ∈ y0 + r Q and t < 1
4
, this proves the claim. 2

We now construct the convex bodies M(r). Let mr be the maximum number
of points y1, . . . , ymr ∈ Sd−1 such that the sets

Sd−1 ∩B(yi, (1 + 4
√
t) r)

for i = 1, . . . ,mr form a packing in Sd−1. Then, since mr = m((1 + 4
√
t) r), it

follows from (5) that

κd−1mr ((1 + 4
√
t) r)d−1 → δd−1 d κd (32)

as r → 0. We define

M(r) = conv
(
Bd ∪ ψy1(Tr) ∪ . . . ∪ ψymr

(Tr)
)
,

where the ψyi
’s are rotations such that ψyi

(y0) = yi. This construction implies
that

M(r) → Bd as r → 0,

and because of (28) that
ψyi

(Tr) ⊂ bdM(r) (33)

holds for i = 1, . . . ,mr and r > 0 sufficiently small. We dissect

M(r)\
mr⋃
i=1

ψyi
(Lr)

into convex polytopes P1, . . . , Pkr . It follows from (26) and (33) that the inter-
section of ψyi

(Lr) and ψyj
(Lr) for i 6= j is empty and we obtain

µ(M(r)) =
mr∑
i=1

µ(ψyi
(Lr)) +

kr∑
j=1

µ(M(r) ∩ Pj). (34)

Note that for a polytope P for which P ∩ bdM(r) = P ∩Sd−1 it follows from
Lemma 2.1 that µ(M(r)∩P ) = c σ(Sd−1∩P ). Since µ is non-negative, dissecting
M(r) ∩ Pj into small pieces therefore implies that

kr∑
j=1

µ(M(r) ∩ Pj) ≥ c σ(Sd−1 ∩ bdM(r)).

Using this and the rotation invariance of µ we obtain from (34)

µ(M(r)) ≥ mr µ(Lr) + c σ
(
Sd−1 ∩ bdM(r)

)
. (35)
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By the definition of M(r) and (28), we have

σ(Sd−1 ∩ bdM(r)) ≥ σ(Sd−1)−mr σ(Sd−1 ∩ (y0 + (1 + 4
√
t) r Q)),

and since σ is homogeneous of degree (d− 1) in the hyperplane tangent to Sd−1

at y0 and since Sd−1 is locally Euclidean, the estimate

σ(Sd−1 ∩ (y0 + (1 + 4
√
t) r Q)) ≤ (1 + 4

√
t)d σ(Sd−1 ∩ (y0 + r Q))

holds for r > 0 sufficiently small.
Hence (35) and our assumption (27) now yield

µ(M(r)) ≥ mr

(
µ(Bd ∩ (y0 + r Q)) +

a p(x0)

4
σ(Sd−1 ∩ (y0 + r Q))

)
+ c
(
σ(Sd−1)−mr σ(Sd−1 ∩ (y0 + (1 + 4

√
t) r Q))

)
≥ µ(Bd) +mr σ(Sd−1 ∩ (y0 + r Q))

(
c+

a p(x0)

4
− c (1 + 4

√
t)d
)

for r > 0 sufficiently small. Since by (25) B ⊂ (1 + 2
√
t)Q, comparison with the

tangent hyperplane shows that the estimate

σ(Sd−1 ∩ (y0 + r Q)) ≥ rd−1κd−1

(1 + 4
√
t)d−1

holds for r > 0 sufficiently small. Thus by our choice of t in (24), by (32), and
since µ is upper semicontinuous, we obtain

µ(Bd) ≥ lim sup
r→0

µ(M(r)) ≥ µ(Bd) +
a p(x0)

8

δd−1 d κd

(1 + 4
√
t)2(d−1)

.

This is a contradiction, since a > 0. Therefore

µ(Lr) ≤ µ(Bd ∩ (y0 + r Q)) +
a p(x0)

4
σ(Sd−1 ∩ (y0 + r Q)) (36)

holds for r > 0 sufficiently small.

3.1.2. For r > 0, we construct a polyhedral cone Cr with

Sd−1 ∩ Cr ⊂ Sd−1 ∩ (y0 + r Q)

such that Cr can be complemented by cylinders and polytopes to a suitable
element Er of E with the properties that for r > 0 sufficiently small

µ(Lr) ≤ µ(Er ∩ (y0 + r Q)) +
a p(x0)

2
σ(Er ∩ (y0 + r Q)), (37)

µ(Er) = µ(Bd ∩ Cr), (38)

and
bdEr ∩ ϕ(K) ⊂ y0 + r Q. (39)

Since locally around y0 B
d lies in Lr, the last property means that bdEr intersects

bdϕ(K) before it intersects y0 + r bdQ.
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For y ∈ Sd−1, let H+(y) be the closed half-space which contains Bd and is
bounded by the tangent hyperplane to Bd at y, and for a convex set C, set

H+(C) =
⋂

y∈Sd−1∩C

H+(y).

Note that for C a polyhedral cone, H+(C) is the union of Bd∩C and finitely many
polyhedra and pieces of unbounded cylinders. Hence for a suitable polyhedral
cone Cr we can set Er = H+(Cr)∩ϕ(P c) and obtain an element of E . Using this
notation (39) can be written as

bdH+(Cr) ∩ ϕ(K) ⊂ y0 + r Q.

The following claim shows that it suffices to choose a polyhedral cone Cr with
Sd−1 ∩ Cr ⊂ y0 + (1− 3

√
t) r Q to ensure that this condition holds.

claim 2. For every r, 0 < r < 1

bdH+(y0 + (1− 3
√
t) r Q) ∩ ϕ(K) ⊂ y0 + r Q. (40)

Proof. The proof of this claim is analogous to that of Claim 1 in 3.1.1. Let
y ∈ ϕ(K) and ȳ ∈ Sd−1 ∩ (y0 + (1 − 3

√
t)r Q) be such that aff(y, ȳ) is tangent

to Bd. Then by (29) and (31), which can be used since dist(y,Bd) ≤ 1 and since
y ∈ Bd

t ,
|y − ȳ| < 2

√
t |y − y0|.

By assumption, |ȳ−y0| ≤ (1−3
√
t)r and therefore this and the triangle inequality

imply

|y − y0| <
1− 3

√
t

1− 2
√
t
r.

Using (25) we therefore have

y ∈ ȳ + 2
√
t
1− 3

√
t

1− 2
√
t
(1 + 2

√
t) r Q

Since ȳ ∈ y0 + (1− 3
√
t)r Q, this proves the claim. 2

By (26) Sd−1 ∩ (y0 + (1− 3
√
t) r Q) is a convex set on Sd−1 and can therefore

be approximated by polyhedral cones. We choose a polyhedral cone Cr such that

Sd−1 ∩ (y0 + (1− 4
√
t) r Q) ⊂ Sd−1 ∩ Cr ⊂ Sd−1 ∩ (y0 + (1− 3

√
t) r Q)

and define
Er = H+(Sd−1 ∩ Cr) ∩ ϕ(P c). (41)
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Then Er ∈ E and since µ vanishes on polytopes and cylinders, we therefore have

µ(Er) = µ(Bd ∩ Cr) = c σ(Sd−1 ∩ Cr).

Thus (38) holds. By (40) and by the definition of Cr also (39) holds, and it
remains to prove (37). Since σ is homogeneous of degree (d−1) in the hyperplane
tangent to Sd−1 at y0 and since Sd−1 is locally Euclidean,

σ(Sd−1 ∩ (y0 + r Q)) ≤ (1− 4
√
t)−dσ(Sd−1 ∩ (y0 + (1− 4

√
t) r Q)).

Consequently (23) implies that

σ(Sd−1 ∩ (y0 + r Q)) ≤
(

4 c+ 2 a p(x0)

4 c+ a p(x0)

)
σ(Sd−1 ∩ (y0 + (1− 4

√
t) r Q))

holds for r > 0 sufficiently small. Therefore we obtain by (36)

µ(Lr) ≤ (c+
a p(x0)

2
)σ(Sd−1 ∩ (y0 + (1− 4

√
t) r Q)).

Since by construction

σ(Sd−1 ∩ (y0 + (1− 4
√
t) r Q)) ≤ σ(Sd−1 ∩ Cr) ≤ σ(Er ∩ (y0 + r Q)),

we now have

µ(Lr) ≤ c σ(Sd−1 ∩ Cr) +
a p(x0)

2
σ(Er ∩ (y0 + r Q)),

which combined with (38) implies (37).

3.1.3. We transform back and obtain the following. For r > 0 sufficiently small,
there are polytopes

Pr(x0) = ϕ−1(y0 + r Q) = x0 + rϕ−1(Q) (42)

and elements of E
Er(x0) = ϕ−1(Er),

and a q(x0) > 0 such that for every r > 0

σ(bdK ∩ Pr(x0))

diam(bdK ∩ Pr(x0))d−1
≥ q(x0). (43)

Here (43) follows from (25), since ϕ depends only on x0. Er(x0) consists of a piece
of a solid unit ellipsoid, which lies in K, and pieces of cylinders and polytopes
and by (39) it has the property that

bdEr(x0) ∩K ⊂ Pr(x0) (44)



Affine Surface Area 22

for r > 0 sufficiently small. By (37) and by (22) we have

µ(K ∩ Pr(x0)) ≤ µ(Er(x0) ∩ Pr(x0)) +
a

2
σ(Er(x0) ∩ Pr(x0)). (45)

Because of (41),
Er(x0) ⊂ P c (46)

and because of (42),
P i ⊂ Er(x0) (47)

for r > 0 sufficiently small, i.e. we can choose a r(x0) such that (45), (46), (47),
and (44) hold for 0 < r ≤ r(x0).

3.2. Let x0 ∈ bdK be a normal point with curvature κ(x0) = 0, i.e. there is
a k ≥ 1 such that, without loss of generality, κ1(x0) = . . . = κk(x0) = 0 and
κk+1(x0), . . . , κd−1(x0) > 0. Then there is an equi-affine map ϕ, such that for the
principal curvatures of bdϕ(K) at ϕ(x0) we have κ1(ϕ(x0)) = . . . = κk(ϕ(x0)) =
0 and κk+1(ϕ(x0)) = . . . = κd−1(ϕ(x0)) = 1, and as in the case κ(x0) > 0, there
is a constant p(x0) > 0 such that

σ(S)

σ(ϕ(S))
≥ p(x0) (48)

for every set S with finite (d− 1)-dimensional Hausdorff measure.
Let Et, t > 0, be the solid ellipsoid with the equation

t (x1)2 + . . .+ t (xk)2 + (1 + t)(xk+1)2 + . . .+ (1 + t)(xd)2 ≤ 1.

Let Ik ⊂ Ek be the k-dimensional cube centered at the origin, with side length
2, and edges parallel to the coordinate axes. Then Et ∩ Id tends to the cylinder
Ik × Bd−k as t→ 0 and bdEt ∩ Id tends to the lateral surface Z = Ik × Sd−k−1

of this cylinder. This implies the following. For every z1, z2 ∈ Z denote by y1

and y2 the nearest point on bdEt to z1 and z2, respectively. Then the ratio of
|z1 − z2| to |y1 − y2| tends to 1 as t→ 0. In particular, we have

|y1 − y2| ≥
1

2
|z1 − z2| (49)

for t > 0 sufficiently small. Since µ is upper semicontinuous and vanishes on
cylinders, µ(Et∩Id) is arbitrarily small for t > 0 sufficiently small. Consequently

µ(Et ∩ Id) <
ap(x0)

4

δd−1 2k (d− k)κd−k

2d−1 (8 d)d−1
(50)

holds for t > 0 sufficiently small. We assume that t, 0 < t < 1
4 d

, is chosen so
small that (49) and (50) are satisfied.
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We now choose a polytope Q with the property

Q ⊂ Bd ⊂ 2Q. (51)

Define
Tr = ϕ(bdK) ∩ (ϕ(x0) + r Q),

and
Lr = ϕ(K) ∩ (ϕ(x0) + r Q).

We show that µ(Lr) is not much larger than µ(Et ∩ (ϕ(x0) + r Q)) for r > 0
sufficiently small.

3.2.1. Suppose that for r > 0 arbitrarily small

µ(Lr) >
ap(x0)

2
σ (H(ϕ(x0)) ∩ (ϕ(x0) + r Q)) (52)

holds, where H(ϕ(x0)) is the hyperplane tangent to ϕ(K) at ϕ(x0).
For a y ∈ bdEt ∩ Id, let ψy be a rigid motion such that ψy(Tr) touches Et at

y in such a way that the corresponding principal directions of ψy(Tr) and bdEt

at y coincide. We show that ψy(Tr) lies locally outside of Et and that the convex
hull of ψy(Tr) and Et differs only in a small neighbourhood of y from Et.

claim. There exists a r1 > 0 such that ψy0(Tr) ∩ Et = {y0} and

conv (Et ∪ ψy0(Tr)) \Et ⊂ y0 + 4 d r Q (53)

for 0 < r ≤ r1 and for every y0 ∈ bdEt ∩ Id.

Proof. To simplify the notion we identify the hyperplane tangent to Et at y0 with
Ed−1. Choosing a suitable coordinate system in Ed, we can represent bdEt in
a neighbourhood of y0 = (y′0, 0) by a convex function f(x′) (x′, y′0 ∈ Ed−1) for
which

f(x′) =
1

2

d−1∑
i=1

κi(y0) (xi − yi
0)

2 + o(|x′ − y′0|2)

as |x′ − y′0| → 0. Here the coefficients κ1(y0), . . . , κd−1(y0) are the principal
curvatures of bdEt at y0 (see 2.2). An elementary calculation, using the rotational
symmetry of Et and Taylor expansions, shows that for every y0 ∈ bdEt ∩ Id

t√
1 + t

≤ κi(y0) ≤ t√
(1 + t) (1− k t)3

for i = 1, . . . , k,

√
1 + t ≤ κi(y0) ≤

√
1 + t√

1− k t
for i = k + 1, . . . , d− 1.
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Since t < 1
4 d

there exists a r2 > 0 such that

t

4

k∑
i=1

(xi−yi
0)

2+
1

2

d−1∑
i=k+1

(xi−yi
0)

2≤f(x′)≤ 3 t

2

k∑
i=1

(xi−yi
0)

2+
1+d t

2

d−1∑
i=k+1

(xi−yi
0)

2

(54)
for |x′− y′0| ≤ r2. Note that r2 can be chosen independently of y0 since the third
order terms of the Taylor expansion of bdEt ∩ Id are uniformly bounded.

Denote by dist(y, Et) = inf{|y − x| : x ∈ Et} the distance of y = (y′, 0) to Et

(y′ ∈ Ed−1). Since f is a convex function

dist(y, Et) ≥ dist(y,H(y′, f(y′))),

where H(y′, f(y′)) is the hyperplane tangent to bdEt at (y′, f(y′)). Since f is
twice differentiable at y′0 the angle between Ed−1 and H(y′, f(y′)) tends to 0 as
|y′ − y′0| → 0. This implies that

dist(y,H(y′, f(y′))) ≥ 1

2
f(y′)

for |y′ − y′0| sufficiently small. Hence

dist(y, Et) ≥ t

8

k∑
i=1

(yi − yi
0)

2 +
1

4

d−1∑
i=k+1

(yi − yi
0)

2 ≥ t

8
|y − y0|2 (55)

holds for |y′ − y′0| sufficiently small.
By the definition of ϕ and since ψy0(Tr) touches Et at y0 in such a way that the

corresponding principal directions of ψy0(Tr) and bdEt coincide, we can represent
ψy0(ϕ(K)) in a neighbourhood of y0 by a convex function g(x′), (x′ ∈ Ed−1), with

g(x′) =
1

2

d−1∑
i=k+1

(xi − yi
0)

2 + o(|x′ − y′0|2)

as |x′ − y′0| → 0. Since g is convex, there exists an r3 > 0 such that

g(x′) ≥ 1− t

2

d−1∑
i=k+1

(xi − yi
0)

2 (56)

for |x′ − y′0| ≤ r3. The proof now proceeds like the proof of Claim 1 in 3.1.1. Let
y = (y′, g(y′)) ∈ ψy0(Tr) and let ȳ = (ȳ′, f(ȳ′)) ∈ bdEt∩Id be such that aff(y, ȳ) is
tangent to Et. By (54), (56) and the obvious inequality dist(y, Et) ≤ f(y′)−g(y′),
we have

dist(y, Et) ≤ 3 t

2

k∑
i=1

(yi − yi
0)

2 +
(d+ 1)t

2

d−1∑
i=k+1

(yi − yi
0)

2

≤ (d+ 1)t

2
|y − y0|2.
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On the other hand, since aff(y, ȳ) is tangent to Et, we can apply (55) to ȳ instead
of y0 and obtain

dist(y, Et) ≥
t

8
|y − ȳ|2.

Combined these inequalities yield by the definition of Tr

|y − ȳ|2 ≤ 4 (d+ 1) |y − y0|2 ≤ 4 (d+ 1) r2.

By (51) this proves the claim, since y ∈ y0 + r Q. 2

Let mr be the maximum number of points z1, . . . , zmr ∈ Z such that the sets

B(zi, 8 d r) ∩ Z (57)

for i = 1, . . . ,mr form a packing in Z. Then, since mr = m(8 d r), it follows from
(6) that

κd−1mr r
d−1 → δd−1 2k (d− k)κd−k

(8 d)d−1
(58)

as r → 0. Let yi be the nearest point to zi on bdEt. Then it follows from (57)
and (49) that the sets

B(yi, 4 d r) ∩ bdEt ∩ Id (59)

for i = 1, . . . ,mr form a packing in bdEt ∩ Id.
We define

M(r) = conv
(
(Et ∩ Id) ∪ ψy1(Tr) ∪ . . . ∪ ψymr

(Tr)
)
.

This construction implies that

M(r) → Et ∩ Id as r → 0,

and by (59) and (53) that
ψyi

(Tr) ⊂ bdM(r)

holds for i = 1, . . . ,mr and r > 0 sufficiently small. Therefore the intersection
of ψyi

(Lr) and ψyj
(Lr) for i 6= j is empty or a convex polytope. Since µ is

non-negative and rigid motion invariant and vanishes on polytopes, we therefore
obtain

µ(M(r)) ≥ mr µ(Lr).

¿From this it follows by (51) and by our assumption (52) that

µ(M(r)) ≥ a p(x0)

2
mr σ

(
H(ϕ(x0)) ∩ (ϕ(x0) +

r

2
Bd)
)
.

Since µ is upper semicontinuous, we now obtain by (58)

µ(Et ∩ Id) ≥ lim sup
r→0

M(r) ≥ a p(x0)

2

δd−1 2k (d− k)κd−k

2d−1 (8 d)d−1
.
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Because of our upper bound for µ(Et ∩ Id) in (50), this is a contradiction. Thus

µ(Lr) ≤
a p(x0)

2
σ(H(ϕ(x0)) ∩ (ϕ(x0) + r Q)) (60)

holds for r > 0 sufficiently small.

3.2.2. We transform back and obtain the following. For r > 0 sufficiently small,
there are polytopes

Pr(x0) = ϕ−1(ϕ(x0) + r Q) = x0 + r ϕ−1(Q) (61)

and elements of E
Er(x0) = H+(x0) ∩ P c, (62)

where H+(x0) is the closed half-space which contains K and is bounded by the
tangent hyperplane to K at x0, and by (51) there is a q(x0) > 0 such that for
every r > 0

σ(bdK ∩ Pr(x0))

diam(bdK ∩ Pr(x0))d−1
≥ q(x0). (63)

In addition
P i ⊂ Er(x0) ⊂ P c (64)

holds for every r > 0 and by (60) combined with (48)

µ(K ∩ Pr(x0)) ≤
a

2
σ(Er(x0) ∩ Pr(x0)) (65)

for r > 0 sufficiently small, i.e. we can choose a r(x0) > 0 such that (65) holds
for 0 < r ≤ r(x0).

3.3. Using that K is ε smooth, we now prove the following absolute continuity
property. There is a c(ε) such that

µ(K ∩ P ) ≤ c(ε)σ(bdK ∩ P ) (66)

for every polytope P .
First, we show that an inequality of this type holds if P is a suitable cube.

There is a c(ε) such that

µ(K ∩ (x0 + r I)) ≤ 2d−2 c(ε)

(1 + 2
√
d)d−1

rd−1

≤ c(ε)

2 (1 + 2
√
d)d−1

σ(bdK ∩ (x0 + r I))

(67)

for every x0 ∈ bdK and every closed cube I of side length 2 with center at the
origin such that one of its facets is parallel to the tangent hyperplane H(x0) to
K at x0. The following proof of (67) will be almost the same as the proof of (36).
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Since K is ε-smooth there is a ball of radius ε touching K at x0 from the
interior. For y0 ∈ εSd−1, there is a rigid motion ψy0 which maps this ball to
εBd and x0 to y0. Similar to Claim 1 of 3.1.1, we show that the convex hull of
ψy0(K)∩(y0 +r ψy0(I)) and εBd differs only in a small neighbourhood from εBd:

conv
(
εBd ∪ (ψy0(bdK) ∩ (y0 + r ψy0(I)))

)
\(εBd) ⊂ y0 + 2

√
d r ψy0(I) (68)

for r > 0 sufficiently small. This is proved by stating (30) and (31) for the present
situation. Let y ∈ ψy0(bdK) ∩ (y0 + r ψy0(I)) and let ȳ ∈ ε Sd−1 be such that
aff(y, ȳ) is tangent to εBd. Then

conv
(
εBd ∪ y

)
\εBd ⊂ y + 2

√
dist(y, εBd)

√
εBd, (69)

and since y lies between the tangent hyperplane and εBd

dist(y, εBd) ≤ 1

ε
|y − y0|2, (70)

which implies (68) since y ∈ y0 + r ψy0(I).
We construct from suitable ψy(K) ∩ (y + r ψy(I)) with y ∈ ε Sd−1 a convex

body M(r) in the following way. Let mr be the maximum number of points
y1, . . . , ymr ∈ ε Sd−1 such that the sets

ε Sd−1 ∩B(yi, 2
√
d r)

for i = 1, . . . ,mr form a packing in ε Sd−1. Then, since mr = m(2
√
d r), it follows

from (5) that there is an r0(ε) > 0 such that

κd−1mr (2
√
d r)d−1 ≥ 1

2
δd−1 d κd ε

d−1 > 0 (71)

for r ≤ r0(ε). We define

M(r) = conv

(
(εBd) ∪

mr⋃
i=1

(ψyi
(K) ∩ (yi + r ψyi

(I)))

)
.

Then M(r) → εBd as r → 0. Since µ is upper semicontinuous, this implies that

µ(εBd) ≥ 1

2
µ(M(r)) (72)

for 0 < r ≤ r1(ε) with a suitable r1(ε) > 0. By (68) and our construction of
M(r)

ψyi
(bdK) ∩ (yi + ψyi

(I)) ⊂ bdM(r)
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for i = 1, . . . ,mr. Therefore the intersection of ψyi
(K)∩(yi+ψyi

(I)) and ψyi
(K)∩

(yi + ψyi
(I)) for i 6= j is either empty or a convex polytope. Since µ is non-

negative, rigid motion invariant and vanishes on polytopes, this and the definition
of M(r) imply that

µ(M(r)) ≥
mr∑
i=1

µ(ψyi
(K) ∩ (yi + r ψyi

(I))) = mr µ(K ∩ (x0 + rI)).

¿From this combined with (72) and (71) it follows that

µ(K ∩ (x0 + rI)) ≤ 2µ(εBd)m−1
r

≤ 2µ(εBd)
κd−1

(
2
√
d r
)d−1

1
2
δd−1 d κd εd−1

(73)

for 0 < r ≤ min{r0(ε), r1(ε)}. Since a facet of I is parallel to the tangent
hyperplane H(x0),

σ(bdK ∩ (x0 + r I)) ≥ σ(H(x0) ∩ (x0 + r I)) ≥ (2 r)d−1, (74)

and this combined with (73) implies that (67) holds with a suitable c(ε).
Now let P be an arbitrary polytope and let U be a relatively open set in bdK

such that
bdK ∩ P ⊂ U (75)

and
σ(U) ≤ 2σ(bdK ∩ P ). (76)

Let J be the family of all closed cubes I = I(x, r) with center x ∈ bdK ∩P and
side length 2 r such that one facet of I is parallel to the tangent hyperplane to
K at x, 0 < r ≤ min{r0(ε), r1(ε)}, and bdK ∩ I ⊂ U . Then the relative interior
of bdK ∩ I for I ∈ J form an open covering of bdK ∩ P . Since bdK ∩ P is
compact, we can choose a finite subcovering and denote by I ⊂ J the set of
closed cubes corresponding to this subcovering. A standard argument known as
Vitali’s lemma (see, for example, [7]) shows that we can choose from I pairwise
disjoint cubes I(x1, r1), . . . , I(xn, rn) such that

bdK ∩ P ⊂
n⋃

i=1

I
(
xi, (1 + 2

√
d) ri

)
.

Since µ is non-negative, this implies that

µ(K ∩ P ) ≤
n∑

i=1

µ
(
K ∩ I

(
xi, (1 + 2

√
d) ri

))
,



Affine Surface Area 29

and applying the estimate (67) now shows that

µ(K ∩ P ) ≤ 2d−2 c(ε)

(1 + 2
√
d)d−1

n∑
i=1

((1 + 2
√
d) ri)

d−1. (77)

Since the I(xi, ri) are pairwise disjoint, we obtain by (74), (75), and (76)

n∑
i=1

rd−1
i ≤ 2−(d−1)

n∑
i=1

σ(bdK ∩ I(xi, ri))

≤ 2−(d−1)σ(U) ≤ 2−(d−2)σ(bdK ∩ P ).

Combined with (77), this proves (66).

3.4. Using the results from 3.1.3, 3.2.2 and (66), we now construct our E ∈ E .
Let N ⊂ bdK be the set of normal points of bdK and let V be the collection of
sets

Vr(x) = bdK ∩ Pr(x)

for x ∈ N and 0 < r ≤ r(x), where Pr(x) and r(x) are defined above in 3.1.3 and
3.2.2. (42), (43), (61), and (63) imply that V is a Vitali class for N . Set

η =
a σ(bdK)

4 c(ε)
. (78)

Then by Vitali’s covering theorem (see subsection 2.4), there are pairwise disjoint
Vr1(x1), . . . , Vrm(xm) ∈ V such that

σ(N)−
m∑

i=1

σ(Vri
(xi)) ≤ η. (79)

Let Pr1(x1), . . . , Prm(xm) be the polytopes and Er1(x1), . . . , Erm(xm) the elements
of E corresponding to these Vr1(x1), . . . , Vrm(xm) as defined in 3.1.3 and 3.2.2.
By (44) and (62) we have that for i 6= j, bdEri

(xi) does not intersect bdErj
(xj)

within K. We can therefore choose a polytope P such that K ⊂ P and such that
for every i, j, i 6= j, bdEri

(xi) intersects bdP before intersecting bdErj
(xj) and

define

E =
m⋂

i=1

Eri
(xi) ∩ P.

Then we have E ∈ E . Since σ depends continuously on E, P can be chosen such
that also

σ(bdE) ≤ 3

2
σ(bdK) (80)

holds.
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Next, we dissect P\
⋃m

i=1 Pri
(xi) into polytopes P1, . . . , Pk and have

K ⊂
m⋃

i=1

Pri
(xi) ∪

k⋃
j=1

Pj.

Since the Vri
(xi)’s are disjoint, our definition of Pr(x) implies that for i 6= j

the intersection of K ∩ Pri
(xi) and K ∩ Prj

(xj) is empty or a polytope which is
contained in the interior of K. Since µ vanishes on polytopes, we therefore obtain

µ(K) =
m∑

i=1

µ(K ∩ Pri
(xi)) +

k∑
j=1

µ(K ∩ Pj). (81)

Our definition of Er(x) implies that for a normal point x with positive curvature,
Er(x) consists of a piece of an ellipsoid, which lies in K, and pieces of cylinders
and polytopes. Since for a normal point with vanishing curvature Er(x) is a
polytope and since µ vanishes on cylinders and polytopes, we therefore have

µ(E) =
m∑

i=1

µ(Eri
(xi) ∩ Pri

(xi)).

Using this, (45), (65), and (80) we obtain

m∑
i=1

µ(K ∩ Pri
(xi)) ≤

m∑
i=1

(
µ (Eri

(xi) ∩ Pri
(xi)) +

a

2
σ(Eri

(xi) ∩ Pri
(xi))

)
≤ µ(E) +

a

2
σ(bdE)

≤ µ(E) +
3 a

4
σ(bdK). (82)

Applying (66) for P1, . . . , Pk shows that

k∑
j=1

µ(K ∩ Pj) ≤ c(ε)
k∑

j=1

σ(bdK ∩ Pj).

Since by Aleksandrov’s theorem (4) σ(bdK) = σ(N), our choice of the Pj’s and
(79) imply that

k∑
j=1

σ(bdK ∩ Pj) ≤ η.

Consequently, we have by our definition of η in (78)

k∑
j=1

µ(K ∩ Pj) ≤
a

4
σ(bdK). (83)
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By (81), (82), and (83) we now obtain

µ(K) ≤ µ(E) + a σ(bdK). (84)

Therefore (21) holds, since (47), (46) and (64) imply that P i ⊂ E ⊂ P c. Thus
Proposition 3 is proved and the proof of the theorem is complete.
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Ambrosius Barth), Heidelberg, 1998.

[19] M. Ludwig, A characterization of affine length and asymptotic approxima-
tion of convex discs, Abh. Math. Semin. Univ. Hamb., to appear.

[20] E. Lutwak, Extended affine surface area, Adv. Math. 85 (1991), 39–68.

[21] E. Lutwak, Selected affine isoperimetric inequalities, in “Handbook of Con-
vex Geometry A” (P.M. Gruber and J. Wills, eds.), pp. 151–176, North-
Holland, Amsterdam, 1993.

[22] P. McMullen, Valuations and dissections, in “Handbook of Convex Geometry
B” (P.M. Gruber and J. Wills, eds.), pp. 933–990, North-Holland, Amster-
dam, 1993.

[23] P. McMullen and R. Schneider, Valuations on convex bodies, in “Convex-
ity and its applications” (P.M. Gruber and J. Wills, eds.), pp. 170–247,
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