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Abstract

It is shown that every equi-affine invariant and upper semicontinuous val-
uation on the space of convex discs is a linear combination of the Euler
characteristic, area, and affine length. Asymptotic formulae for approxima-
tion of convex discs by polygons are derived, extending results of L. Fejes
Tóth from smooth convex discs to general convex discs.
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1 Introduction

For a convex disc K, i.e., a compact convex set in the Euclidean plane IE 2, the
affine length (or the affine perimeter) is defined as

λ(K) =
∫

bd K

κ(x)
1
3 dσ(x) (1)

where bdK is the boundary of K, κ(x) is the curvature of bdK at x, and σ is the
one-dimensional Hausdorff measure. The notion of affine length was first intro-
duced in the context of affine differential geometry for sufficiently smooth curves
(cf. W. Blaschke’s monograph [2], a recent survey on planar affine differential
geometry is contained in [3]). Since the curvature κ is defined almost everywhere
and Lebesgue integrable, the same definition can be used for general convex discs.
This was pointed out by C. Schütt and E. Werner [18] for d-dimensional convex
bodies and affine surface area. They showed that this way of defining affine sur-
face area is equivalent to a definition given earlier by K. Leichtweiß [9], who was
the first to consider affine surface area for general convex bodies in d-dimensional
space. In the planar case already L. Fejes Tóth [5] used a notion of affine length
defined for general convex discs, which was shown to be equivalent to (1) by
K. Leichtweiß [11].
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Let K2 be the space of convex discs equipped with the topology induced by
the Hausdorff metric. λ : K2 → IR has the following properties:

(i) λ is equi-affine invariant, i.e., for every K ∈ K2

λ(φ(K)) = λ(K)

for every area preserving affine map φ.

(ii) λ is upper semicontinuous, i.e.,

λ(K) ≥ lim sup
n→∞

λ(Kn)

for every sequence Kn of convex discs converging to K.

(iii) λ is an additive map or a valuation, i.e.,

λ(K ∪ L) + λ(K ∩ L) = λ(K) + λ(L)

for K, L, K ∪ L ∈ K2.

That affine length and affine surface area are upper semicontinuous, follows from
a definition of affine surface area given by E. Lutwak [13], which was shown to be
equivalent to the other definitions by K. Leichtweiß [10] and G. Dolzmann and
D. Hug [4]. It is an immediate consequence of the definition (1) that affine length
is a valuation. For the d-dimensional case we refer to [17].

We show that these properties – equi-affine invariance, upper semicontinuity,
and additivity – characterize affine length λ(·), area A(·), and the Euler charac-
teristic χ(·).

Theorem 1 Let µ : K2 → IR be an upper (or lower) semicontinuous and equi-
affine invariant valuation. Then there are constants c0, c1, and c2 such that

µ(K) = c0 χ(K) + c1 A(K) + c2 λ(K)

for every K ∈ K2. If µ is upper semicontinuous, then c2 ≥ 0, if it is lower
semicontinuous, then c2 ≤ 0.

This is a counterpart to H. Hadwiger’s characterization theorem [8], p. 221, (see
also the surveys [16] and [15]) which states that every continuous and rigid motion
invariant valuation on the space of convex bodies in Euclidean d-space can be
written as a linear combination of the quermass-integrals, i.e., for d = 2 a linear
combination of area, length, and the Euler characteristic.

In d-dimensional space affine surface area is an upper semicontinuous and
equi-affine valuation. In a subsequent joint paper with M. Reitzner we will extend
Theorem 1 and show that every functional defined on the space of convex bodies
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in Euclidean d-space which is an upper semicontinuous and equi-affine valuation
is a linear combination of volume, affine surface area, and the Euler characteristic.

Affine length and affine surface area are important in problems of asymptotic
approximation of convex bodies by polytopes if the distance between the convex
body and the polytope is measured by the symmetric difference metric. Here the
symmetric difference metric for K,L ∈ K2 is defined as δ(K,L) = A(K ∪ L) −
A(K ∩ L). For information on asymptotic approximation we refer to the surveys
[6] and [7].

Let P i
n(K) be the set of convex polygons with at most n vertices that are

inscribed in K and define

δ(K,P i
n) = inf{δ(K,Pn) : Pn ∈ P i

n(K)},

i.e., δ(K,P i
n) is the distance of K to its best approximating polygons with at most

n vertices. In case of circumscribed polygons the analogous notion is δ(K,Pc
n).

For a convex disc K with boundary of differentiability class C2 and with positive
curvature, the following asymptotic formulae were given by L. Fejes Tóth [5],
p. 43,

δ(K,P i
n) ∼ 1

12
λ(K)3 1

n2
as n→∞ (2)

and

δ(K,Pc
n) ∼ 1

24
λ(K)3 1

n2
as n→∞. (3)

Complete proofs of these results are due to D. McClure and R. Vitale [14], where
a description of best approximating polygons is given as well. In Section 4 we
show that these results also hold for general convex discs.

In the proof of these asymptotic formulae we make use of two further ways
of defining affine length. In Section 3 these definitions are discussed and shown
to be equivalent to (1). It is also shown that the equivalence of the definition of
affine length used by Fejes Tóth and (1) is a simple consequence of Theorem 1.

We thank I. Bárány for informing us that T. Ódor (unpublished) has obtained
independently the characterization of affine length of Theorem 1. We also want
to thank Prof. P.M. Gruber, Matthias Reitzner, and Elisabeth Werner for their
helpful remarks.

2 Proof of Theorem 1

If µ is lower semicontinuous, then −µ is upper semicontinuous. Therefore, it
suffices to consider upper semicontinuous valuations.

First, we show that proving the following statement implies Theorem 1.

3



Let µ1 : K2 → IR be an upper semicontinuous and equi-affine invariant
valuation with the property that µ1(P ) = 0 for every polygon P . Then
there is a constant c ≥ 0 such that

µ1(K) = c λ(K)

for every K ∈ K2.

(4)

Since µ is translation invariant, there is a constant c0 such that

µ(K) = c0

for every singleton K = {x}. We define

µ0(K) = µ(K)− c0 χ(K).

Then µ0 is an upper semicontinuous and equi-affine invariant valuation, which
vanishes on singletons.

Next, we show that µ0 is simple, i.e., µ0(K) = 0 for every K that is at
most one-dimensional. If K is one-dimensional, then it is a closed line segment.
By applying an equi-affine invariant transformation φ, we can double its length
without changing µ0(K). Dissecting φ(K) into two pieces K1 and K2, both
translates of K, such that K1 ∩K2 is a singleton, we obtain

µ0(K) = µ0(φ(K)) = µ0(K1) + µ0(K2)− µ0(K1 ∩K2) = 2µ0(K).

Thus µ0(K) = 0 and µ0 is a simple valuation.
Since µ0 is equi-affine invariant, for every triangle T with area A the value of

µ0(T ) depends only on A, i.e., there is a function f : [0,∞) → IR such that

µ0(T ) = f(A).

By dissecting a triangle into two triangles of area A1 and A2, respectively, we see
that

f(A1 + A2) = f(A1) + f(A2)

for A1, A2 ≥ 0. Thus f is a solution of Cauchy’s functional equation, and since
µ0 and therefore f are upper semicontinuous, we can conclude that there is a
constant c1 such that

f(A) = c1A

for every A ≥ 0 (see, e.g., [1]). Taking again into account that µ0 is a simple
valuation, we obtain

µ0(P ) = c1 A(P )

for every polygon P .

4



We define
µ1(K) = µ0(K)− c1 A(K)

for every K ∈ K2. Then µ1 is an upper semicontinuous and equi-affine invariant
valuation with the property that µ1(P ) = 0 for every polygon P . Thus (4) can
be applied and shows that

µ1(K) = c2 λ(K)

with a suitable constant c2 ≥ 0, and Theorem 1 follows from (4).

So we have to prove (4). This is done by showing the following result.

For every upper semicontinuous and equi-affine invariant valuation
ν : K2 → IR with the property that ν(P ) = 0 for every polygon P ,
ν(K) is uniquely determined for every K ∈ K2 by choosing the value
ν(B) for the solid unit circle B.

(5)

That (5) implies (4) is seen in the following way. Let B be the solid unit circle
and let ν(B) be given. We have ν(B) ≥ 0, since ν is upper semicontinuous and
we can approximate B by polygons Pn and consequently,

ν(B) ≥ lim sup
n→∞

ν(Pn) = 0.

Therefore we can choose a c ≥ 0 such that

ν(B) = c λ(B). (6)

Since the affine length λ is an upper semicontinuous and equi-affine invariant
valuation with the property that λ(P ) = 0 for every polygon P , (5) implies for
λ as well as for ν that the value for every K ∈ K2 is uniquely determined by the
value for the solid unit circle. Thus (6) implies that

ν(K) = c λ(K)

for every K ∈ K2, which shows that (4) follows from (5).
So we have to show (5). Let S ∈ K2 be a sector of the solid unit circle B, i.e.,

the intersection of two closed half-planes with the origin on their boundary and
B. Since ν is rotation invariant, ν(S) depends only on A = A(S), i.e., there is a
function g : [0, π/2] → IR such that

ν(S) = g(A). (7)

Choosing sectors S1 and S2 such that S1∪S2 ∈ K2 and A(S1∪S1) = A(S1)+A(S2)
shows that

g(A1 + A2) = g(A1) + g(A2) (8)
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for A1, A2 ≥ 0 and A1 + A2 ≤ π/2. Using (8), we can extend g to a function
defined on [0,∞) that is a solution of Cauchy’s functional equation. Since ν is
upper semicontinuous, so is g. Thus there is a constant a such that g(A) = aA.
By (7), ν(B) = g(π) = aA(B), which shows that

ν(S) =
A(S)

A(B)
ν(B).

Thus ν is uniquely determined on all sectors of B. A segment of B is the inter-
section of a closed half-space and B. Since ν(P ) = 0 for polygons P , ν is also
uniquely determined on all segments of B, and since ν is equi-affine invariant,
also on equi-affine images of segments.

Let E be the family of all convex discs which may be dissected into finitely
many polygons and segments of B and their equi-affine images. Since ν is a
simple valuation, ν is uniquely determined on E , and since the polygons belong
to E , E is dense in K2. Thus the upper semicontinuity of ν implies that for every
K ∈ K2

ν(K) ≥ lim sup
k→∞

ν(Ek)

for every sequence of Ek ∈ E such that Ek → K.
Showing that for every K ∈ K2 there are Ek ∈ E such that Ek → K and

ν(K) = lim supk→∞ ν(Ek), implies that ν is uniquely determined on K2 and thus
proves (5). So assume on the contrary that there is a K ∈ K2, necessarily with
non-empty interior, such that

ν(K) > lim sup
k→∞

ν(Ek)

for all sequences Ek with Ek ∈ E and Ek → K.
Then there is an ε > 0 and a constant a > 0 such that

ν(K) ≥ ν(E) + a

for every E ∈ E with δ(K,E) < ε. By the affine isoperimetric inequality (see
[13]) λ(E) is uniformly bounded for all E with δ(K,E) < ε. Therefore there is a
constant b > 0 such that

ν(K) ≥ ν(E) + b λ(E) (9)

for every E ∈ E with δ(K,E) < ε. We approximate the solid unit circle by a
sequence of convex discs built from suitable pieces of K and show that this leads
to a contradiction.

We take an interior point of K and dissect K into small sectors by choosing
lines through this point. At every point where such a line intersects the boundary
of K, we take a support line of K. The triangle T bounded by two such support
lines for two points, say x, y, on bdK together with the chord connecting these
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points is called a support triangle of K and x, y are called its endpoints. In such
a way we can assign to every sector S a support triangle T .

For a given n we can choose lines such that we obtain mn sectors S
(n)
1 , . . . , S(n)

mn

and support triangles T
(n)
1 , . . . , T (n)

mn
with the property that

mn∑
i=1

A(T
(n)
i ) ≤ 1

n
< ε. (10)

For every T
(n)
i with non-empty interior, there is a unique arc of the unit ellipse

which touches the two sides of T
(n)
i which are given by the support lines of K. We

denote by E
(n)
i the convex disc bounded by this arc of an ellipse and the chord

connecting the endpoints of the support triangle T
(n)
i . In the case that T

(n)
i has

empty interior, let E
(n)
i = T

(n)
i .

We define En as the union of E
(n)
i for i = 1, . . . ,mn and K\⋃mn

i=1 T
(n)
i . En is a

convex disc and En ∈ E and because of (10), δ(K,En) < ε. Since ν and λ vanish
on polygons, (9) therefore implies that

ν(K) =
mn∑
i=1

ν(K ∩T (n)
i ) ≥

mn∑
i=1

(
ν(En ∩ T (n)

i ) + b λ(En ∩ T (n)
i )

)
= ν(En)+ b λ(En).

Consequently, there is a T
(n)
i with non-empty interior such that

ν(K ∩ T (n)
i ) ≥ ν(En ∩ T (n)

i ) + b λ(En ∩ T (n)
i ). (11)

We take an equi-affine transformation φ(n) which transforms this T
(n)
i into a

support triangle T (n) of the solid unit circle B, and denote by K(n) and B(n) the
images under φ(n) of K ∩ T (n)

i and En ∩ T (n)
i , respectively. Then by (11) and the

equi-affine invariance of ν, we have

ν(K(n)) ≥ ν(B(n)) + b λ(B(n)). (12)

Let ln be the largest integer such that there are rotations ψ1, . . . , ψln such that
ψ1(T

(n)), . . . , ψln(T (n)) are non-overlapping support triangles of B. Since for a
sector with an angle 2α at the origin the area of a support triangle to B is

sin2 α tanα, (13)

we have

sin2
(

π

ln + 1

)
tan

(
π

ln + 1

)
≤ A(T (n)) ≤ sin2

(
π

ln

)
tan

(
π

ln

)
. (14)

We construct convex discs Kn and Bn by taking the union of ψi(K
(n)) and

ψi(B
(n)), respectively, for i = 1, . . . , ln and of B\⋃ln

i=1 ψi(T
(n)). Then

Bn = B
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and (12) implies that

ν(Kn) ≥ ν(Bn) +
b

2
λ(Bn) = ν(B) +

b

2
λ(B) (15)

for n sufficiently large. Since δ(Kn, B) ≤ ln A(T (n)), we obtain by (14)

Kn → B (16)

as n→∞. Thus by the upper semicontinuity of ν, by (16) and (15), we obtain

ν(B) ≥ lim sup
n→∞

ν(Kn) ≥ lim sup
n→∞

(
ν(Bn) +

b

2
λ(Bn)

)
= ν(B) +

b

2
λ(B).

This is a contradiction, since b > 0 and λ(B) > 0. Thus (5) holds and the proof
of the theorem is complete. 2

3 Some further definitions of affine length

We call a closed triangle T = T (x, y) a support triangle of a convex disc K with
endpoints x and y, if x, y ∈ bdK and T is bounded by support lines to K at x and
y and the chord connecting x and y. W. Blaschke [2], p. 10, gave the following
definition of affine length λ1(K). Choose subdivisions x1, . . . , xn, xn+1 = x1 of
bdK and support triangles T1, . . . , Tn such that Ti = T (xi, xi+1). Then

λ1(K) = lim
n∑

i=1

3

√
8 A(Ti) (17)

where the limit is taken over a sequence of subdivisions with max
i=1,...,n

A(Ti) → 0.

For smooth convex discs Blaschke showed that this limit always exists and that
λ1(K) = λ(K).

If we choose in a support triangle T (x, z) of K a further subdivision point
y, we obtain support triangles T (x, y) and T (y, z) and the following elementary
anti-triangle inequality holds

3

√
8 A(T (x, z)) ≥ 3

√
8 A(T (x, y)) + 3

√
8 A(T (y, z))

(cf. [2], p. 38, or [3]). This implies that
∑n

i=1
3

√
8 A(Ti) decreases as the subdivi-

sion is refined. Consequently, the limit in (17) exists and is independent of the
sequence of subdivisions chosen and

λ1(K) = inf
n∑

i=1

3

√
8 A(Ti) (18)

where the infimum is taken over all subdivisions of bdK. Thus λ1 is well defined
and K. Leichtweiß [11] proved that λ1(K) = λ(K) for every convex disc K. We
show that this is a simple consequence of Theorem 1.
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Theorem 2 For every K ∈ K2

λ1(K) = λ(K).

Proof. By (18) λ1 is an equi-affine invariant functional defined for every K ∈ K2

and λ1(K) = 0 for every K which is at most one-dimensional.
For a given K0 ∈ K2 we show that λ1 is upper semicontinuous at K0. If K0

has empty interior, this follows immediately from the definition. So let K0 have
non-empty interior and let x be an interior point of K. For a given n divide
the plane into n congruent sectors by choosing n rays emanating from x. For a
K ∈ K2 such that x is an interior point of K, denote the intersection points of
these rays with bdK by x1, . . . , xn+1 = x1 and set

µn(K) =
n∑

i=1

3

√
8 A(Ti)

where Ti is that support triangle of K with endpoints xi and xi+1 which has
minimum area. Then µn is continuous at K0 and

λ1(K0) = inf
n
µn(K0).

Thus λ1 is the infimum of continuous functionals and therefore upper semicon-
tinuous.

Since max
i=1,...,n

A(Ti) → 0, we have for every line H

λ1(K) = λ1(K ∩H+) + λ1(K ∩H−)

where H+ and H− are the closed half-spaces bounded by H. This implies that λ1

is a valuation. Thus we can apply Theorem 1, and since λ1 is simple, we obtain

λ1(K) = c λ(K)

with a constant c ≥ 0. By taking a subdivision of the unit circle with equi-distant
points, we obtain by (13) that c = 1. 2

A further definition of affine length is given in Blaschke’s book [2], p. 11. As
above choose subdivisions of bdK and support triangles T1, . . . , Tn. Then

λ2(K) = lim
n∑

i=1

3

√
12 A(K ∩ Ti)

where the limit is taken over a sequence of subdivisions with max
i=1,...,n

A(Ti) → 0.

Blaschke again showed that this limit exists and is equal to the other definitions
of affine length in the case of smooth convex discs. Similarly, affine length can
be defined as

λ3(K) = lim
n∑

i=1

3

√
24 A(Ti\K)
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where the limit is taken over a sequence of subdivisions with max
i=1,...,n

A(Ti) → 0.

To show that λ2 and λ3 are well defined and equal to λ in the case of general
convex discs, we make use of a result by L. Fejes Tóth [5], p. 46. To formulate
it, we need the function Φ(q), 0 < q < 1, defined in the following way. For a
given triangle T = T (x, y) and a given value q, there is a unique convex disc C
bounded by an arc of a conic and the chord connecting x and y such that T is a
support triangle of C and q = A(C ∩ T )/A(T ). Define

Φ(q) = λ(C ∩ T ).

For q = 2
3
, C is bounded by an arc of a parabola and

Φ
(

2

3

)
= 3

√
8 A(T ) (19)

for 0 < q < 2
3
, C is bounded by an arc of an ellipse and for 2

3
< q < 1, by an arc

of an hyperbola. Elementary calculations show that Φ is continuous and strictly
increasing for 0 < q < 2

3
and strictly decreasing for 2

3
< q < 1 (cf. [5], p. 45).

Fejes Tóth’s result states that for every convex disc K and every support triangle
T of K,

λ(K ∩ T ) ≤ Φ

(
A(K ∩ T )

A(T )

)
. (20)

Theorem 3 For every K ∈ K2

λ2(K) = λ3(K) = λ(K).

Proof. For a given K ∈ K2, we show that λ2(K) = λ(K). λ3(K) = λ(K) can be
obtained in a similar way.

Let ε > 0 be chosen and choose a sequence of subdivisions and support
triangles such that

λ′2(K) = lim
n∑

i=1

3

√
12 A(K ∩ Ti)

exists. For maxi=1,...,n A(Ti) sufficiently small, we therefore have

n∑
i=1

3

√
12 A(K ∩ Ti)− ε ≤ λ′2(K) ≤

n∑
i=1

3

√
12 A(K ∩ Ti) + ε (21)

and by Theorem 2
n∑

i=1

3

√
8 A(Ti)− ε2 ≤ λ(K). (22)

Since Φ attains its maximum at 2
3
, it follows from (20) and (19) that

λ(K ∩ Ti) ≤ 3

√
8 A(Ti) (23)
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for i = 1, . . . , n. Let the triangles be numbered in such a way that

λ(K ∩ Ti) ≥ (1− ε) 3

√
8 A(Ti) (24)

for i = 1, . . . ,m and

λ(K ∩ Ti) < (1− ε) 3

√
8 A(Ti) (25)

for i = m+ 1, . . . , n.
Then by (19), (24), and (20) and since Φ attains its maximum at 2

3
, we have

for i = 1, . . . ,m

(1− ε)Φ
(

2

3

)
≤ λ(K ∩ Ti) ≤ Φ

(
A(K ∩ Ti)

A(Ti)

)
≤ Φ

(
2

3

)
.

Since Φ is continuous, this implies that there is a continuous function h(ε) with

lim
ε→0

h(ε) = 1 (26)

such that
1

h(ε)
3

√
2 A(Ti) ≤ 3

√
3 A(K ∩ Ti) ≤ h(ε) 3

√
2 A(Ti) (27)

for i = 1, . . . ,m.
By (22), (23), and (25) we have

n∑
i=1

3

√
8 A(Ti)− ε2 ≤ λ(K) =

m∑
i=1

λ(K ∩ Ti) +
n∑

i=m+1

λ(K ∩ Ti)

≤
n∑

i=1

3

√
8 A(Ti)− ε

n∑
i=m+1

3

√
8 A(Ti).

Consequently,
n∑

i=m+1

3

√
8 A(Ti) < ε. (28)

Combing (21), (27), (28), and (22) shows that

λ′2(K) ≤
m∑

i=1

3

√
12 A(K ∩ Ti) +

n∑
i=m+1

3

√
12 A(K ∩ Ti) + ε

≤ h(ε)
m∑

i=1

3

√
8 A(Ti) +

3

√
3

2

n∑
i=m+1

3

√
8 A(Ti) + ε

≤ h(ε)
(
λ(K) + ε2

)
+

3

√
3

2
ε+ ε.

11



On the other hand, by (23), (27), (28) and (21)

λ(K) ≤
m∑

i=1

3

√
8 A(Ti) +

n∑
i=m+1

3

√
8 A(Ti)

≤ h(ε)
m∑

i=1

3

√
12 A(K ∩ Ti) + ε

≤ h(ε) (λ′2(K) + ε) + ε.

Since ε > 0 was arbitrary and by (26), this shows that λ′2(K) = λ(K) and since
this hold for every sequence of subdivisions of bdK with maxi=1,...,n A(Ti) → 0,
this proves the theorem. 2

4 Asymptotic approximation of general convex

discs

In the following theorem we show that the asymptotic formulae (2) and (3) also
hold for general convex discs. This is done by using Theorem 3. Another way to
prove this result would be to first show that

lim
n→∞

n2δ(K,P i
n)

exists, to show that the functional defined in that way is a valuation, and to
show that it is upper semicontinuous. The asymptotic result then follows by
applying Theorem 1 and calculating the value for the unit circle. But since we
have no simple proof for the existence of the limit and the semicontinuity of the
functional, we do not follow this approach.

Theorem 4 For every K ∈ K2

lim
n→∞

12n2δ(K,P i
n) = λ(K)3 (29)

and
lim

n→∞
24n2δ(K,Pc

n) = λ(K)3. (30)

Proof. We prove (29). (30) can be obtained in a similar way.
Let ε > 0 be chosen. First, we show that for n sufficiently large

12n2δ(K,P i
n) ≤ λ(K)3 + ε. (31)

For a polygon Pn with vertices x1, . . . , xn ∈ bdK, δ(K,Pn) depends con-
tinuously on x1, . . . , xn. Thus for a given n it is possible to choose a Pn such
that

A(K ∩ T1) = A(K ∩ T2) = . . . = A(K ∩ Tn) (32)
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where Ti = T (xi, xi+1). Then

δ(K,P i
n) ≤ δ(K,Pn)

and by (32)

12n2 δ(K,Pn) = 12n2
n∑

i=1

A(K ∩ Ti) =

(
n∑

i=1

3

√
12 A(K ∩ Ti)

)3

.

Thus by Theorem 3, for n sufficiently large

12n2 δ(K,Pn) ≤ λ(K)3 + ε

which proves (31).
To show the corresponding lower estimate, choose polygons Pn such that

δ(K,P i
n) = δ(K,Pn) and let T1, . . . , Tn be support triangles of K to consecutive

vertices of Pn. Then

δ(K,P i
n) =

n∑
i=1

A(K ∩ Ti)

and
max

i=1,...,n
A(Ti) → 0

as n→∞. Applying Hölder’s inequality shows that

12n2
n∑

i=1

A(K ∩ Ti) ≥
(

n∑
i=1

3

√
12 A(K ∩ Ti)

)3

.

By Theorem 3, we therefore obtain

λ(K)3 − ε ≤
(

n∑
i=1

3

√
12 A(K ∩ Ti)

)3

≤ 12n2δ(K,P i
n)

for n sufficiently large. Since ε was arbitrary, this combined with (31) proves the
theorem. 2

It follows from the above proof that sequences of polygons Pn which are error-
balancing, i.e., for which (32) holds, are asymptotic best approximating, i.e.,

lim
n→∞

n2δ(K,Pn) = lim
n→∞

n2δ(K,P i
n),

and the respective result for circumscribed polygons also holds. For the case
of smooth convex discs, this was shown in [14]. There it was also shown that
for a smooth convex disc K, the vertices of any sequence of best approximating
inscribed polygons are uniformly distributed in bdK with respect to affine length.
For sequences of best approximating circumscribed polygons it is shown there that
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the points where the sides of the polygons touch K are uniformly distributed in
bdK with respect to affine length (see also [12]). That this also holds for general
convex discs with positive affine length, follows from the next theorem, since the
vertices of best approximating inscribed polygons lie on bdK and the sides of
best approximating circumscribed polygons touch bdK.

Theorem 5 For every K ∈ K2 with λ(K) > 0 and every sequence of asymptotic
best approximating polygons Pn ∈ P i

n(K) or Pc
n(K),

lim
n→∞

|Pn ∩H+|
n

=
λ(K ∩H+)

λ(K)

where H+ is a closed half-space and |Pn∩H+| is the number of vertices of Pn∩H+.

Proof. We need Hölder’s inequality in the following version. For a1, a2, b1, b2 > 0

a−2
1 b 3

1 + a−2
2 b 3

2 ≥ (a1 + a2)
−2 (b1 + b2)

3 , (33)

and there is equality if and only if

a1

a2

=
b1
b2
. (34)

Let Pn ∈ P i
n(K) be a sequence of asymptotic best approximating polygons.

Since 0 ≤ |Pn ∩H+|/n ≤ 1 + 1/n, we can choose a convergent subsequence such
that

lim
k→∞

|Pnk
∩H+|
nk

= c (35)

for a suitable c, 0 ≤ c ≤ 1. We have

12n2
kδ(K,Pnk

) =

=

(
nk

|Pnk
∩H+|

)2

12 |Pnk
∩H+|2δ(K ∩H+, Pnk

∩H+)

+

(
nk

|Pnk
∩H−|

)2

12 |Pnk
∩H−|2δ(K ∩H−, Pnk

∩H−),

(36)

where H− is the closed half-space complementary to H+. Since Pnk
is asymptotic

best approximating, we obtain by Theorem 4

lim
k→∞

12n2
kδ(K,Pnk

) = λ(K)3, (37)

and since Pnk
∩H+ ∈ P i

mk
(K ∩H+) where mk = |Pnk

∩H+|, by Theorem 4
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lim inf
k→∞

12 |Pnk
∩H+|2δ(K ∩H+, Pnk

∩H+) ≥

lim
n→∞

12m2
k δ(K ∩H+,P i

mk
(K ∩H+))

= λ(K ∩H+)3,

(38)

and similarly

lim inf
k→∞

12 |Pnk
∩H−|2δ(K ∩H−, Pnk

∩H−) ≥ λ(K ∩H−)3. (39)

Letting k →∞ in (36) shows that c = 0 or c = 1, if and only if λ(K∩H+) = 0
and λ(K∩H−) = 0, respectively, and in these cases the statement of the theorem
holds. So let 0 < c < 1 and λ(K ∩H+), λ(K ∩H−) > 0. Then we obtain from
(36) by using (37), (35), (38), (39), and (33),

λ(K)3 ≥
(

1

c

)2

λ(K ∩H+)3 +
(

1

1− c

)2

λ(K ∩H−)3

≥ (c+ (1− c))−2
(
λ(K ∩H+) + λ(K ∩H−)

)3

= λ(K)3.

Thus there is equality in Hölder’s inequality, which implies by (34)

c

1− c
=
λ(K ∩H+)

λ(K ∩H−)

and therefore

c =
λ(K ∩H+)

λ(K)
.

Since this holds for every sequence nk for which |Pnk
∩ H+|/nk converges, this

proves the theorem in the case of inscribed polygons. The proof for circumscribed
polygons is analogous. 2
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