A NOTE ON STIRLING SERIES

MARKUS KUBA AND HELMUT PRODINGER

ABSTRACT. We study sums S = S(d,n, k) = > ;5 % with d € N = {1,2,...}
> )1

and n,k € Ng = {0,1,2,...} and relate them with (finite) multiple zeta functions. As a

_ pla+D)

byproduct of our results we obtain asymptotic expansions of {(d+ 1) as n tends

to infinity. Furthermore, we relate sums S to Nielsen’s polylogarithm.

1. INTRODUCTION

The unsigned Stirling numbers of the first kind, also called Stirling cycle numbers, are
defined by the recurrence relation

n n—1 n—1 n
= — > ] = >
LJ (n 1){ I ] + L{: B 1], n>1, with [O] Ono, n >0,

where 0; ; denotes the Kronecker delta function. Throughout this work we use Knuth’s
notation m It is well known that Stirling numbers of the first kind are closely related

to harmonic numbers, ie. [}] = (n — 1)!H, 1, [3] = (n — DI(HZ_; — H?)/2, where for

s,n € N the values H = > r—; 1/¢° denote n-th harmonic numbers of order s, H,, = HY.
Furthermore, it is known (i.e. see Adamchik [1]) that Stirling numbers of the first kind are
expressible in terms of (finite) multiple zeta functions defined by

1
(v(ag, .- a) = Z U R—TE

N>ni>ng>->m>1 L2 ‘
1
Clay, ... ap) = E —ara;  ag’
nl n2 .« .. ne
ni>ng>-->np>1

by the following formula

n
[k] =(mn—G-1(1,...;1)=n—1) Go1({1}x-1)-
k-1
We use the shorthand notations ((Ul_,{a;}) = ((ai,...,a,), and ((Ul_,{a}) = (({a},).
Note that for n,s € No we have (,(s) = HY. We are interested in evaluations of sums

J
S:Zpl% withd e N={1,2,...} and n,k € Ny = {0,1,2,...}. We assume that
J
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n and k are choosen in way such that n+k > 1 in order to ensure that the sum converges.
Special instances of this family of sums have been studied by Adamchik [1], and also by
Choi and Srivastava [6].

2. EVALUATION OF SUM S
We obtain the following result.
Theorem 1. The sum S = S(d,n, k) withd e N={1,2,...} andn,k € Ny ={0,1,2,...}
can be evaluated in terms of harmonic numbers and (finite) multiple zeta functions,
k+1 kt1—m

(r)\m
S = Z D¢ (m, {1 as1) Z H %

ZIH'I ™ imi=k+1-m =1

k
- )kz Z Gl bo — oy ooy — lygy d + ko — 1),

h=1 1<l <la<--<lp,_1<k

subject to by := 0. We have the short equivalent expression

k+1

S = (DG {Th-nd+ 1)+ > (=DM m, {1 )G ({1 ks1-m)-

Remark 1. The second expression for the sum S is given according to a variant of finite
multiple zeta functions, (X (a1, ..., ax), which recently attracted some interest,[2, 12, 9, 7]
where the summation indices satisfy N > ny; > ng > -+ > ng > 1 in contrast to N > ny >
ng > .-+ >ng > 1, as in the usual definition (1),

Cv( )= e
Na/17...,a/k; — a1 __as ar
Ny Ny ... Ny,
Nznizng2--2ni=>1

The form stated above is due to the conversion formula below applied to ¢({1}x—1,d+ 1),

11 Lo k
Glanna) =YY <N<Z% S . Y >

h=1 1<l <l <--<lp_1<k 11=1 i9=01+1 in=Cp_1+1
Lo=0

Note that the first term h = 1 should be interpreted as CN(Z“ o1 @iy ), subject to £y = 0.
The notation (x(ai,...,ax) is chosen in analogy with Aoki and Ohno [2] where infinite
counterparts of (X (aq,...,ax) have been treated; see also Ohno [12].

Remark 2. The sum ((m,{1}4s-1) can be completely transformed into single zeta values.
By results of Borwein, Bradley and Broadhoarst [3]

¢(2,{1}a) = C(d +2)

(3, {1}a) = '* C(d+3) -

[\Dlr—t
Pﬂ&

C+1)C(d+2—0).

(=1
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Furthermore, in the general case of ((m + 2,{1}4) = ((d + 2,{1},,) one obtains products
of up to min{m + 1,d + 1} zeta values, according to the generating function, see [3],

xk‘ k _ T k
I R R D S 1) I

m,n>0 k>2

Below we state three specific evaluations of the sum S for special choices of d,n, k.

Corollary 1. For k =0 and arbitrary n,d € N we get

G 1

; ( ]ﬂ)]! nd
For k=1 and arbitrary n,d € N we get
J
S(dn 1) = Y B~ (2 (1ar) = Gld+ 1) = (4 )~ B, (2

= (753!
Forn =0 and arbitrary d,k € N we get
S(d7 07 k) = C(k + 17 {1}11—1)‘

In order to prove the results above we proceed as follows: Since

n

1 N n—1\ (=1)"1!
(”j,j)_(nJrj)"_Z (6—1) j+l

(=1

we obtain
n

n—1 -1 [2]
$=% s~ () Sy

j>1 J* =1 i>1

We use partial fraction decomposition and obtain

]k(j 4 g) o — jmgk—s—l—m (k R :

Consequently, we get by using the partial fraction decomposition above and the represen-
tation of Stirling numbers by finite multiple zeta functions

g Z (g_1) 1y 1; gk+2m Zle{l}dl

j>1

+Z <Z:11> £k+1 ZCJ 1 {1}d 1)(__%) =51+ 5.

j>1
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By definition of the multiple zeta function we get

n n — k41 Nk+1-m
si=> ()0 X S <m (1)

/=1 m=2

k1 Y n—1\(=1)1!
-3 {1}d1>;} (30 e

We rewrite the inner sum as

S0 3 (1)

(=1

This sum can be evaluated by using the following result of Flajolet and Sedgewick [§],

myr

)Ny [

=1 ST iemg=m r=1
we recall that HJ\” = >y, 1/¢° denotes the n-th harmonic number of order s; in other
words we have H.Y = = (,u(s), according to our previous definition of finite multiple zeta

)Zl

functions (1). Furthermore, it is well known that »,_, (”)( = (({1}m), which
can immediately be deduced by repeated usage of the formula ( ) Y (@ 1) The
multiple zeta function ((m,{1}4) is evaluated using a result of Borwein, Bradley and
Broadhoarst [3], see Remark 2. Consequently, we can write sum S as a finite sum involving
higher order harmonic numbers and products of zeta functions and obtain the first part of
our result. For the simplification of the inner sum

ngZn(Z:ll)( Z 1l gk+1 ZCJ 1({1}a- 1)(__j—j1%)

/=1 j>1

we use the notation Ty = > .o (- 1({1}m)(— - m) Subsequently, we interchange
summation, compare with Panholzer and Prodlnger [11]. First we start with the simple

case m = 1 and calculate 717 4, since it is most instructive.

11 1 1
=2 Hi Y ; Nj+1 j+1+4

j>1

Since by definition H; = 327 _, 1/h we obtain after summation change (partial summation)

1 1 1
ne=a S () S

R>1 " j>h R>1 " =

~

By partial fraction decomposition we get

¢ (2)
1 1 1 H;, H;+H
1,0 E E T 2 - 5
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Now we turn to the general case 1), ,. Shifting the index as before, and changing the order
of summation leads to

Gh-1({1}n-1) 1 1
=2 h ;<j+1_j+1+€>

h>1

Consequently,

mz—z ZCh1{}m1< h—l—j) Z ~Tm—1-

31 h>1 =

Hence, the value T}, is a variant of the finite multiple zeta function (,({1},,+1), where the
summation indices satisfy N >mny >ng > -+ > n,, > nyyy > 1instead of N > ny > ny >
> Ny > Nypyr > 1, see Remark 1, such that 77, 0 = (S ({1}m41). We further obtain

h 1

14
mé—Cé {1}m+1 Z( ) Bmt1 )

according to the well known formula (Z) = (2:11) Consequently, the sum S, simplifies
to

l

e () S () £ () ()

(=1

or equivalently

8= ) () G

In order to obtain the final form of S, for £ € N we combine our previous considerations
as follows:

hy

Sy = (_1)143 Z hil Z hiZ . Z ( hy )(_1)hk+1_1<;;k+1({1}d)'

h
hi=1 1 py=1 hppr=1 N Kkt

We use the fact that ), (7)(})(—1)""" = 65,,(—=1)""! and the sum S, simplifies to

So = (~D!C({1her, d + 1),

In the case k = 0 we use
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2.1. An application: asymptotic expansions. Following Romik [13] we note that the
j
limit lim,, o > i>1 % = 0 provides information about the convergence of the two

sums appearing in the results for S = S1 + 9., stated in Theorem 1. This is of particular
interest in the special case k = 1 and arbitrary n,d € N, where we have obtained ¢ (d+

1) — i) ijl %, see Corollary 1.

Proposition 1. We obtain the following asymptotic expansions for n — oo

k+1

(=D ({1 -1, d +1) + Z(—l)k“’mé(ma {1t )G{ T er1-m)

_;J "ﬂ (\/EQ")

In the case of S = S(d,n,1) with k =1 and arbitrary n,d € N we obtain in particular:

ey N~ ] 1 .
C(d+1) — HIY = ;J(”ﬁj) !+(9(\/ﬁ2n), for n — oo.

Proof. We can split the summation range j > 1l into1 <j< Nand j > N+1>k. We
get

¢< 2 2 (nt1+N)
Z (nﬂ)ﬂ Z (n—l-J) Z k'(i) (nﬂ) k! (k — 1+ N)(n+1+N) (N+1) :

Pty iSNd J>N+1 j k

Consequently, we readily obtain, setting i.e. N = n and using Stirling’s formula,

n

n=""vamn(1+0(5)).

(&

the stated asymptotic expansions. O

3. RELATION TO NIELSEN’S POLYLOGARITHM

Nielsen’s polylogarithm Ly 4(%) is defined by

(—1)k-1+d /1 log"*(t) log?(1 — zt)dt
(i — D! /

By definition of the generating function of the Stirling cycle numbers

3 [Z}Z_T: _ (—1)'?105(1 — 2)7

n>k

Lk,d(z) =

A,
it is evident that Ly a(z) = > 5, [d,l ,J

J 777

Hence, we obtain the following result.
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Proposition 2. The series S(2) = Sanr(2) = 35y % can be expressed by Nielsen’s
polylogarithm Ly 4(z) in the following way. ’

ST

j>1 ‘7

Note that

S@m@)=§éa—DLlCD —1uuh/ /1bg bg( “D dtdu
::E:E(—1V—I<Z)2AZ: 1 Ly a(u)du.

Interchanging summation and integration gives the desired result.

3.1. Generalized r-Stirling numbers of the first kind. In a recent work Mez [10]
considered series involving so-called r-Stirling numbers of the first kind, see Broder [5]. For
any positive integer » € N the quantity [;ﬂr denotes the number of permutations of the
set {1,...,n} having m cycles such that the first r element are in distinct cycles. These
numbers obey the recurrence relation

n n—1 n—1 n n
e _1 pr— pr— p— .
Ljr (n ){ i L—l— {k‘— Jr, n>r, LJT Okr, M=r, |:k':|r 0, n<r

For r = 0 and r = 1 these numbers coincide with the ordinary Stirling numbers of the first
kind. We will consider the series
j+€+r} 5
T

r r [ d+r
SO (z) = 85 4 (2) = > W
i>1 J
which generalizes the series considered by Mez6 [10] (case n = 0) and our previously
considered series S (case £ = r = 0). Subsequently, we obtain representations of Sg}mo(z)

and also of S’gr)hu(z). We introduce the quantity Lgi(z), which generalizes Nielsen’s
polylogarithm

. (DR U ogh T (1) log?(1 — 2t)
LW()_(k—DuL/ T
(7] 29

d+r (T)

Proposition 3. The series Sc(lg,k,o(z) =D i1 jk("+9;j| can be expressed by L, ,(z) in the
- j ! bl

following way.
. n [* u\n—t .
Shol) =2 [ (1=2)" Lwdu
z Jo z

The series Sy, 1. ,(2) can be expression as a linear combination of the sums Shn 4 0( ), with

0<h<d.
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First we note that the r-Stirling numbers of the first kind have the generating function
Z [nJrr} 2" (—=1)Flogh(1 - 2)
pet k+r| nl Kl(1—2)

, (5] 2
L) =Y -2

7>1 '] (n+j)']'

We observe that
= S50 k0(2).

Consequently, we get

J+r J P u\n
(r B |:d+r} z _/ n(l—=2)" o
Saneo(2) = Z T i) L, (u)du.

AR

Next we turn to the general case ¢ € N. Since

T [n+r] " (—1)%log(1 — 2)

d+r] n! di(1—z)y

we obtain the exponential generating function of [";ﬁf"] by differentiating %

(-times with respect to z and a subsequent shift of the index,

O (=1)log?(1—2) Z n+r] 2t Z n+l+r] 2"
0zt d(1—z2)r d+r], (n—20! d+r |.n!

n>d+/ n>max{d—¢,0}

By Faa di Bruno’s formula we get

0 (=1)logh(1 = 2) o= d:(=1)"log™ (1 = 2) <~ 7= .
_ — 'B. I 11 21 — |
577 A1 —2) E (1= 2t iE:hr B, p(0, 1020 .0 (i — h)),

h=0
where B; (21,22, ...,%;—p11) denote the Bell polynomials. Consequently, we can express
the sum SC([T)LH(Z) as a linear combination of the sums Séfi7k70(z), with 0 < h < d, which
proves the stated result.

j+Z+T]TZj

Remark 3. Note that the sums Sgg,k,z(l) =D i>1 [],j(*,f—ﬂ) can in principle also be treated

using our previous approach; however, the expression become much more involved, there-
fore we refrain from going into this matter. Furthermore, one can evaluate sums of the

H

form 21 Y with g € N; however, the expressions get more and more involved.
> )75

4. A GENERALIZATION OF SERIES S

In the following we will briefly consider the more general series V' defined by

G-1(as, .-, ar)
V=V(a,...,a,,n,k) Z I PETCEN
7>1 J )

with a; € Nfor 1 <i <r,and n,k € Ny ={0,1,2,...} such that n + k > 1. We reobtain
our previous Stirling cycle number series S choosingr =d—1anda; =1,1<:<d— 1.
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Before we state our result for the series V' we introduce one more series, namely a variant
of the finite multiple zeta star function

. N ( (l1 1 (L1 1 .
AN(ab e 7a7’) = Z <TL1) Gpdz _nar - Z (nl) n Cm (a2’ s 7a7")’
LS

N>ni>ng>-->nr>1
which can be expressed in terms of (X (a1, ...,a,) by the relation
A (ar, {1}, -1, Ui fai + 1 {1} 1 }) = U {H{T a1, 05 + 13 {1}, -1, 00),
which is due to Bradley [4].

Theorem 2. The sum V = V(ay,...,a.,n,k) with a; € N for 1 < i < r, and n,k €
No ={0,1,2,...} such that n+ k > 1 can be evaluated in terms of (finite) multiple zeta
functions,

1P (1) Z @D S (1) m e (m, UL {anh) Ak, U5 ag ) ag + 1 —m)
g:l m=2
k+1
(= D)FE= A (kU {a}, 1) 4 (DT as - an) G es—m)-
m=2

Proof (Sketch). The proof is analogous to the proof of Theorem 1; therefore it is only
sketched. We only elaborate on the main new difficulty—the evaluation of the sum
Tas oot = 951 Gio1(an, - .. ,ar)(% — ]ﬁ) Proceeding as before, i.e. interchanging sum-
mation and using partial fraction decomposition, we obtain the recurrence relation

~

al

—-m * a 1
Tal,...,ar;é - Z(_l)al C(ma ag, ... aa'T)CE (al +1-— m) + (_1) o Z '_Ta2»-~-var§i'

201
m=2 i=1

One can show that

- 9~ (q il ag—m r
Toroare = 3 _(=1)Z1=1 DN ()00 m e (m, UL i} (U2 {ai}, ag + 1 — m)
g=1 m=2

+ (1)U {aid 1),

which implies the stated result for the series V. U

HISTORICAL REMARK

The author H.P. has found the formula (2) empirically in 2003. He contacted several
specialists about it and got feedback from Christian Krattenthaler who provided a hyper-
geometric proof for it. Eventually it turned out that it was known already [6]. We are
happy that in 2009 we could put new life into this project.
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