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Abstract. We study sums S = S(d, n, k) =
∑

j≥1
[j
d]

jk(n+j
j )j!

with d ∈ N = {1, 2, . . . }
and n, k ∈ N0 = {0, 1, 2, . . . } and relate them with (finite) multiple zeta functions. As a
byproduct of our results we obtain asymptotic expansions of ζ(d+ 1)−H(d+1)

n as n tends
to infinity. Furthermore, we relate sums S to Nielsen’s polylogarithm.

1. Introduction

The unsigned Stirling numbers of the first kind, also called Stirling cycle numbers, are
defined by the recurrence relation[

n

k

]
= (n− 1)

[
n− 1

k

]
+

[
n− 1

k − 1

]
, n ≥ 1, with

[
n

0

]
= δn,0, n ≥ 0,

where δi,j denotes the Kronecker delta function. Throughout this work we use Knuth’s
notation

[
n
k

]
. It is well known that Stirling numbers of the first kind are closely related

to harmonic numbers, i.e.
[
n
2

]
= (n − 1)!Hn−1,

[
n
3

]
= (n − 1)!(H2

n−1 − H
(2)
n )/2, where for

s, n ∈ N the values H
(s)
n =

∑n
`=1 1/`s denote n-th harmonic numbers of order s, Hn = H

(1)
n .

Furthermore, it is known (i.e. see Adamchik [1]) that Stirling numbers of the first kind are
expressible in terms of (finite) multiple zeta functions defined by

ζN(a1, . . . , al) =
∑

N≥n1>n2>···>nl≥1

1

na1
1 n

a2
2 . . . na`

`

,

ζ(a1, . . . , a`) =
∑

n1>n2>···>n`≥1

1

na1
1 n

a2
2 . . . na`

`

,

by the following formula[
n

k

]
= (n− 1)!ζn−1(1, . . . , 1︸ ︷︷ ︸

k−1

) = (n− 1)! · ζn−1({1}k−1).

We use the shorthand notations ζ(∪r
i=1{ai}) = ζ(a1, . . . , ar), and ζ(∪r

i=1{a}) = ζ({a}r).
Note that for n, s ∈ N0 we have ζn(s) = H

(s)
n . We are interested in evaluations of sums

S =
∑

j≥1

[j
d]

jk(n+j
j )j!

with d ∈ N = {1, 2, . . . } and n, k ∈ N0 = {0, 1, 2, . . . }. We assume that
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2 M. KUBA AND H. PRODINGER

n and k are choosen in way such that n+ k ≥ 1 in order to ensure that the sum converges.
Special instances of this family of sums have been studied by Adamchik [1], and also by
Choi and Srivastava [6].

2. Evaluation of sum S

We obtain the following result.

Theorem 1. The sum S = S(d, n, k) with d ∈ N = {1, 2, . . . } and n, k ∈ N0 = {0, 1, 2, . . . }
can be evaluated in terms of harmonic numbers and (finite) multiple zeta functions,

S =
k+1∑
m=2

(−1)k+1−mζ(m, {1}d−1)
∑

∑k+1−m
i=1 i·mi=k+1−m

k+1−m∏
r=1

(H
(r)
n )mr

rmrmr!

+ (−1)k

k∑
h=1

∑
1≤`1<`2<···<`h−1<k

ζn(`1, `2 − `1, . . . , `h−1 − `h−2, d+ k − lh−1),

subject to `0 := 0. We have the short equivalent expression

S = (−1)kζ∗n({1}k−1, d+ 1) +
k+1∑
m=2

(−1)k+1−mζ(m, {1}d−1)ζ
∗
n({1}k+1−m).

Remark 1. The second expression for the sum S is given according to a variant of finite
multiple zeta functions, ζ∗N(a1, . . . , ak), which recently attracted some interest,[2, 12, 9, 7]
where the summation indices satisfy N ≥ n1 ≥ n2 ≥ · · · ≥ nk ≥ 1 in contrast to N ≥ n1 >
n2 > · · · > nk > 1, as in the usual definition (1),

ζ∗N(a1, . . . , ak) =
∑

N≥n1≥n2≥···≥nk≥1

1

na1
1 n

a2
2 . . . nak

k

.

The form stated above is due to the conversion formula below applied to ζ∗n({1}k−1, d+ 1),

ζ∗N(a1, . . . , ak) =
k∑

h=1

∑
1≤`1<`2<···<`h−1<k

`0=0

ζN

( `1∑
i1=1

ai1 ,

`2∑
i2=`1+1

ai2 , . . . ,

k∑
ih=`h−1+1

aih

)
.

Note that the first term h = 1 should be interpreted as ζN(
∑k

i1=`0+1 ai1), subject to `0 = 0.
The notation ζ∗N(a1, . . . , ak) is chosen in analogy with Aoki and Ohno [2] where infinite
counterparts of ζ∗N(a1, . . . , ak) have been treated; see also Ohno [12].

Remark 2. The sum ζ(m, {1}d−1) can be completely transformed into single zeta values.
By results of Borwein, Bradley and Broadhoarst [3]

ζ(2, {1}d) = ζ(d+ 2)

ζ(3, {1}d) =
d+ 2

2
ζ(d+ 3)− 1

2

d∑
`=1

ζ(`+ 1)ζ(d+ 2− `).
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Furthermore, in the general case of ζ(m + 2, {1}d) = ζ(d + 2, {1}m) one obtains products
of up to min{m+ 1, d+ 1} zeta values, according to the generating function, see [3],∑

m,n≥0

ζ(m+ 2, {1}n)xm+1yn+1 = 1− exp

(∑
k≥2

xk + yk − (x+ y)k

k
ζ(k)

)
. (1)

Below we state three specific evaluations of the sum S for special choices of d, n, k.

Corollary 1. For k = 0 and arbitrary n, d ∈ N we get

S(d, n, 0) =
∑
j≥1

[
j
d

](
n+j

j

)
j!

=
1

nd
.

For k = 1 and arbitrary n, d ∈ N we get

S(d, n, 1) =
∑
j≥1

[
j
d

]
j
(

n+j
j

)
j!

= ζ(2, {1}d−1)− ζn(d+ 1) = ζ(d+ 1)−H(d+1)
n , (2)

For n = 0 and arbitrary d, k ∈ N we get

S(d, 0, k) = ζ(k + 1, {1}d−1).

In order to prove the results above we proceed as follows: Since

1(
n+j

j

) =
n!

(n+ j)n
=

n∑
`=1

n

(
n− 1

`− 1

)
(−1)`−1

j + `
,

we obtain

S =
∑
j≥1

[
j
d

]
jk
(

n+j
j

)
j!

=
n∑

`=1

n

(
n− 1

`− 1

)
(−1)`−1

∑
j≥1

[
j
d

]
j!jk(j + `)

.

We use partial fraction decomposition and obtain

1

jk(j + `)
=

k∑
m=2

(−1)k−m

jm`k+1−m
+

(−1)k+1

`k

(1

j
− 1

j + `

)
.

Consequently, we get by using the partial fraction decomposition above and the represen-
tation of Stirling numbers by finite multiple zeta functions

S =
n∑

`=1

n

(
n− 1

`− 1

)
(−1)`−1

k+1∑
m=2

(−1)k+1−m

`k+2−m

∑
j≥1

ζj−1({1}d−1)

jm

+
n∑

`=1

n

(
n− 1

`− 1

)
(−1)`−1 (−1)k

`k+1

∑
j≥1

ζj−1({1}d−1)
(1

j
− 1

j + `

)
= S1 + S2.
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By definition of the multiple zeta function we get

S1 =
n∑

`=1

n

(
n− 1

`− 1

)
(−1)`−1

k+1∑
m=2

(−1)k+1−m

`k+2−m
ζ(m, {1}d−1)

=
k+1∑
m=2

(−1)k+1−mζ(m, {1}d−1)
n∑

`=1

n

(
n− 1

`− 1

)
(−1)`−1

`k+2−m
.

We rewrite the inner sum as
n∑

`=1

n

(
n− 1

`− 1

)
(−1)`−1

`k+2−m
=

n∑
`=1

(
n

`

)
(−1)`−1

`k+1−m
.

This sum can be evaluated by using the following result of Flajolet and Sedgewick [8],

n∑
`=1

(
n

`

)
(−1)`−1

`m
=

∑
∑m

i=1 i·mi=m

m∏
r=1

(H
(r)
n )

mr

rmrmr!
;

we recall that H
(s)
n =

∑n
`=1 1/`s denotes the n-th harmonic number of order s; in other

words we have H
(s)
n = ζn(s), according to our previous definition of finite multiple zeta

functions (1). Furthermore, it is well known that
∑n

`=1

(
n
`

) (−1)`−1

`m = ζ∗n({1}m), which

can immediately be deduced by repeated usage of the formula
(

n
k

)
=
∑n

`=k

(
`−1
k−1

)
. The

multiple zeta function ζ(m, {1}d) is evaluated using a result of Borwein, Bradley and
Broadhoarst [3], see Remark 2. Consequently, we can write sum S1 as a finite sum involving
higher order harmonic numbers and products of zeta functions and obtain the first part of
our result. For the simplification of the inner sum

S2 =
n∑

`=1

n

(
n− 1

`− 1

)
(−1)`−1 (−1)k

`k+1

∑
j≥1

ζj−1({1}d−1)
(1

j
− 1

j + `

)
,

we use the notation Tm,` =
∑

j≥1 ζj−1({1}m)
(

1
j
− 1

j+`

)
. Subsequently, we interchange

summation, compare with Panholzer and Prodinger [11]. First we start with the simple
case m = 1 and calculate T1,`, since it is most instructive.

T1,` =
∑
j≥1

Hj−1

(1

j
− 1

j + `

)
=
∑
j≥1

Hj

( 1

j + 1
− 1

j + 1 + `

)
.

Since by definition Hj =
∑j

h=1 1/h we obtain after summation change (partial summation)

T1,` =
∑
h≥1

1

h

∑
j≥h

( 1

j + 1
− 1

j + 1 + `

)
=
∑
h≥1

1

h

∑̀
j=1

1

j + h
.

By partial fraction decomposition we get

T1,` =
∑̀
j=1

1

j

∑
h≥1

(1

h
− 1

j + h

)
=
∑̀
j=1

Hj

j
=
H2

` +H
(2)
`

2
.
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Now we turn to the general case Tm,`. Shifting the index as before, and changing the order
of summation leads to

Tm,` =
∑
h≥1

ζh−1({1}m−1)

h

∑
j≥h

( 1

j + 1
− 1

j + 1 + `

)
Consequently,

Tm,` =
∑̀
j=1

1

j

∑
h≥1

ζh−1({1}m−1)
(1

h
− 1

h+ j

)
=
∑̀
j=1

1

j
Tm−1,j.

Hence, the value Tm,` is a variant of the finite multiple zeta function ζ`({1}m+1), where the
summation indices satisfy N ≥ n1 ≥ n2 ≥ · · · ≥ nm ≥ nm+1 ≥ 1 instead of N ≥ n1 > n2 >
· · · > nm > nm+1 > 1, see Remark 1, such that Tm,` = ζ∗` ({1}m+1). We further obtain

Tm,` = ζ∗` ({1}m+1) =
∑̀
h=1

(
`

h

)
(−1)h−1

hm+1
,

according to the well known formula
(

n
k

)
=
∑n

`=k

(
`−1
k−1

)
. Consequently, the sum S2 simplifies

to

S2 = (−1)k

n∑
`=1

(
n

`

)
(−1)`−1

`k

∑̀
h=1

(
`

h

)
(−1)h−1

hd
= (−1)k

n∑
h=1

(−1)h−1

hd

n∑
`=h

(
n

`

)(
`

h

)
(−1)`−1

`k
,

or equivalently

S2 = (−1)k

n∑
`=1

(
n

`

)
(−1)`−1

`k
ζ∗` ({1}d).

In order to obtain the final form of S2 for k ∈ N we combine our previous considerations
as follows:

S2 = (−1)k

n∑
h1=1

1

h1

h1∑
h2=1

1

h2

· · ·
hk∑

hk+1=1

(
hk

hk+1

)
(−1)hk+1−1ζ∗hk+1

({1}d).

We use the fact that
∑n

`=h

(
n
`

)(
`
h

)
(−1)`−1 = δh,n(−1)n−1 and the sum S2 simplifies to

S2 = (−1)kζ∗n({1}k−1, d+ 1).

In the case k = 0 we use

S2 =
n∑

h=1

(−1)h−1

hd

n∑
`=h

(
n

`

)(
`

h

)
(−1)`−1 =

1

nd
.
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2.1. An application: asymptotic expansions. Following Romik [13] we note that the

limit limn→∞
∑

j≥1

[j
d]

jk(n+j
j )j!

= 0 provides information about the convergence of the two

sums appearing in the results for S = S1 + S2, stated in Theorem 1. This is of particular
interest in the special case k = 1 and arbitrary n, d ∈ N, where we have obtained ζ(d +

1)−H(d+1)
n =

∑
j≥1

[j
d]

j(n+j
j )j!

, see Corollary 1.

Proposition 1. We obtain the following asymptotic expansions for n→∞

(−1)kζ∗n({1}k−1, d+ 1) +
k+1∑
m=2

(−1)k+1−mζ(m, {1}d−1)ζ
∗
n({1}k+1−m)

=
n∑

j=1

[
j
d

]
jk
(

n+j
j

)
j!

+O
(

1√
n2n

)
,

In the case of S = S(d, n, 1) with k = 1 and arbitrary n, d ∈ N we obtain in particular:

ζ(d+ 1)−H(d+1)
n =

n∑
j=1

[
j
d

]
j
(

n+j
j

)
j!

+O
(

1√
n2n

)
, for n→∞.

Proof. We can split the summation range j ≥ 1 into 1 ≤ j ≤ N and j ≥ N + 1 > k. We
get ∑

j≥N+1

[
j
d

]
jk
(

n+j
j

)
j!
<
∑

j≥N+1

2

jk
(

n+j
j

) < ∑
j≥N+1

2

k!
(

j
k

)(
n+j

j

) =
(n+ 1 +N)

k!(k − 1 +N)
(

n+1+N
n

)(
N+1

k

) .
Consequently, we readily obtain, setting i.e. N = n and using Stirling’s formula,

n! =
nn

en

√
2πn

(
1 +O

( 1

n

))
,

the stated asymptotic expansions. �

3. Relation to Nielsen’s polylogarithm

Nielsen’s polylogarithm Lk,d(z) is defined by

Lk,d(z) =
(−1)k−1+d

(k − 1)!d!

∫ 1

0

logk−1(t) logd(1− zt)
t

dt

By definition of the generating function of the Stirling cycle numbers∑
n≥k

[
n

k

]
zn

n!
=

(−1)k logk(1− z)

k!
,

it is evident that Lk,d(z) =
∑

j≥1

[j
d]zj

jkj!
. Hence, we obtain the following result.
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Proposition 2. The series S(z) = Sd,n,k(z) =
∑

j≥1

[j
d]zj

jk(n+j
j )j!

can be expressed by Nielsen’s

polylogarithm Lk,d(z) in the following way.∑
j≥1

[
j
d

]
zj

jk
(

n+j
j

)
j!

=
n

z

∫ z

0

(
1− u

z

)n−1

Lk,d(u)du.

Note that

Sd,n,k(z) =
n∑

`=1

`(−1)`−1

(
n

`

)
(−1)k−1

(k − 1)!d!

1

zl

∫ z

0

u`−1

∫ 1

0

logk−1(t) logd(1− ut)
t

dtdu

=
n∑

`=1

`(−1)`−1

(
n

`

)
1

zl

∫ z

0

u`−1Lk,d(u)du.

Interchanging summation and integration gives the desired result.

3.1. Generalized r-Stirling numbers of the first kind. In a recent work Mező [10]
considered series involving so-called r-Stirling numbers of the first kind, see Broder [5]. For
any positive integer r ∈ N the quantity

[
n
m

]
r

denotes the number of permutations of the
set {1, . . . , n} having m cycles such that the first r element are in distinct cycles. These
numbers obey the recurrence relation[
n

k

]
r

= (n− 1)

[
n− 1

k

]
r

+

[
n− 1

k − 1

]
r

, n > r,

[
n

k

]
r

= δk,r, n = r,

[
n

k

]
r

= 0, n < r.

For r = 0 and r = 1 these numbers coincide with the ordinary Stirling numbers of the first
kind. We will consider the series

S(r)(z) = S
(r)
d,n,k,`(z) =

∑
j≥1

[
j+`+r
d+r

]
r
zj

jk
(

n+j
j

)
j!
,

which generalizes the series considered by Mező [10] (case n = 0) and our previously

considered series S (case ` = r = 0). Subsequently, we obtain representations of S
(r)
d,n,k,0(z)

and also of S
(r)
d,n,k,`(z). We introduce the quantity L

(r)
n,k(z), which generalizes Nielsen’s

polylogarithm

L
(r)
k,d(z) =

(−1)k−1+d

(k − 1)!d!

∫ 1

0

logk−1(t) logd(1− zt)
(1− zt)rt

dt.

Proposition 3. The series S
(r)
d,n,k,0(z) =

∑
j≥1

[j+r
d+r]rzj

jk(n+j
j )j!

can be expressed by L
(r)
k,d(z) in the

following way.

S
(r)
d,n,k,0(z) =

n

z

∫ z

0

(
1− u

z

)n−1

L
(r)
k,d(u)du.

The series S
(r)
d,n,k,`(z) can be expression as a linear combination of the sums S

(r+`)
h,n,k,0(z), with

0 ≤ h ≤ d.
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First we note that the r-Stirling numbers of the first kind have the generating function∑
n≥k

[
n+ r

k + r

]
r

zn

n!
=

(−1)k logk(1− z)

k!(1− z)r
.

We observe that

L
(r)
k,d(z) =

∑
j≥1

[
j+r
d+r

]
r
zj

jk
(

n+j
j

)
j!

= S
(r)
d,0,k,0(z).

Consequently, we get

S
(r)
d,n,k,0(z) =

∑
j≥1

[
j+r
d+r

]
r
zj

jk
(

n+j
j

)
j!

=

∫ z

0

n(1− u
z
)n

(z − u)
L

(r)
k,d(u)du.

Next we turn to the general case ` ∈ N. Since∑
n≥k

[
n+ r

d+ r

]
r

zn

n!
=

(−1)d logd(1− z)

d!(1− z)r
,

we obtain the exponential generating function of
[
n+`+r

d+r

]
r

by differentiating (−1)d logd(1−z)
d!(1−z)r

`-times with respect to z and a subsequent shift of the index,

∂`

∂z`

(−1)d logd(1− z)

d!(1− z)r
=
∑

n≥d+`

[
n+ r

d+ r

]
r

zn−`

(n− `)!
=

∑
n≥max{d−`,0}

[
n+ `+ r

d+ r

]
r

zn

n!
.

By Faà di Bruno’s formula we get

∂`

∂z`

(−1)d logd(1− z)

d!(1− z)r
=
∑̀
h=0

dh(−1)h logd−h(1− z)

(1− z)r+`

∑̀
i=h

r`−iBi,h(0!, 1!, 2!, . . . , (i− h)!),

where Bi,h(x1, x2, . . . , xi−h+1) denote the Bell polynomials. Consequently, we can express

the sum S
(r)
d,n,k,`(z) as a linear combination of the sums S

(r)
h,n,k,0(z), with 0 ≤ h ≤ d, which

proves the stated result.

Remark 3. Note that the sums S
(r)
d,n,k,`(1) =

∑
j≥1

[j+`+r
d+r ]

r
zj

jk(n+j
j )j!

can in principle also be treated

using our previous approach; however, the expression become much more involved, there-
fore we refrain from going into this matter. Furthermore, one can evaluate sums of the

form
∑

j≥1

[j
d]

jk(n+j
j )

g
j!

, with g ∈ N; however, the expressions get more and more involved.

4. A generalization of series S

In the following we will briefly consider the more general series V defined by

V = V (a1, . . . , ar, n, k) =
∑
j≥1

ζj−1(a1, . . . , ar)

jk+1
(

n+j
j

) ,

with ai ∈ N for 1 ≤ i ≤ r, and n, k ∈ N0 = {0, 1, 2, . . . } such that n+ k ≥ 1. We reobtain
our previous Stirling cycle number series S choosing r = d− 1 and ai = 1, 1 ≤ i ≤ d− 1.
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Before we state our result for the series V we introduce one more series, namely a variant
of the finite multiple zeta star function

A∗N(a1, . . . , ar) =
∑

N≥n1≥n2≥···≥nr≥1

(
N

n1

)
(−1)a1−1

na1
1 n

a2
2 . . . nar

r

=
N∑

n1=1

(
N

n1

)
(−1)a1−1

na1
1

ζ∗n1
(a2, . . . , ar),

which can be expressed in terms of ζ∗N(a1, . . . , ar) by the relation

A∗N(a1, {1}b1−1,∪r
i=2{ai + 1, {1}bi−1}) = ζ∗N(∪r−1

i=1{{1}ai−1, bj + 1}, {1}ar−1, br),

which is due to Bradley [4].

Theorem 2. The sum V = V (a1, . . . , ar, n, k) with ai ∈ N for 1 ≤ i ≤ r, and n, k ∈
N0 = {0, 1, 2, . . . } such that n + k ≥ 1 can be evaluated in terms of (finite) multiple zeta
functions,

V = (−1)k

r∑
g=1

(−1)
∑g−1

f=1(af+1)

ag∑
m=2

(−1)ag−mζ(m,∪r
i=g+1{ai})An(k,∪g−1

i=1 {ai}, ag + 1−m)

+ (−1)k+r+
∑r

f=1 afAn(k,∪r
i=1{ai}, 1) +

k+1∑
m=2

(−1)k+1−mζ(m, a1, . . . , ar)ζ
∗
n({1}k+1−m).

Proof (Sketch). The proof is analogous to the proof of Theorem 1; therefore it is only
sketched. We only elaborate on the main new difficulty—the evaluation of the sum
Ta1,...,ar;` =

∑
j≥1 ζj−1(a1, . . . , ar)

(
1
j
− 1

j+`

)
. Proceeding as before, i.e. interchanging sum-

mation and using partial fraction decomposition, we obtain the recurrence relation

Ta1,...,ar;` =

a1∑
m=2

(−1)a1−mζ(m, a2, . . . , ar)ζ
∗
` (a1 + 1−m) + (−1)a1+1

∑̀
i=1

1

ia1
Ta2,...,ar;i.

One can show that

Ta1,...,ar;` =
r∑

g=1

(−1)
∑g−1

f=1(af+1)

ag∑
m=2

(−1)ag−mζ(m,∪r
i=g+1{ai})ζ∗` (∪g−1

i=1 {ai}, ag + 1−m)

+ (−1)r+
∑r

f=1 af ζ∗` (∪r
i=1{ai}, 1),

which implies the stated result for the series V . �

Historical remark

The author H.P. has found the formula (2) empirically in 2003. He contacted several
specialists about it and got feedback from Christian Krattenthaler who provided a hyper-
geometric proof for it. Eventually it turned out that it was known already [6]. We are
happy that in 2009 we could put new life into this project.
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