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ABSTRACT. In this work we analyze a class of 2× 2 Pólya-Eggenberger urn models with ball replacement matrix
M =

(−a 0
c −d

)
, a, d ∈ N, and c = p · a with p ∈ N0. We obtain limiting distributions for this 2 × 2 urn model

by obtaining a precise recursive description of the moments of the considered random variables, which allows us to
deduce asymptotic expansions of the moments. In particular, we obtain limiting distributions for the pills problem
a = c = d = 1, originally proposed by Knuth and McCarthy. Furthermore, we also obtain limiting distributions
for the well known sampling without replacement urn, a = d = 1 and c = 0, and generalizations of it to arbitrary
a, d ∈ N and c = 0. Moreover, we obtain a recursive description of the moment sequence for a generalized problem.

1. INTRODUCTION

1.1. Pólya-Eggenberger urn models. Pólya-Eggenberger urn models are defined in the following way. We
start with an urn containing n white balls and m black balls. The evolution of the urn occurs in discrete time
steps. At every step a ball is drawn at random from the urn. The color of the ball is inspected and then the
ball is returned to the urn. According to the observed color of the ball there are added/removed balls due to
the following rules. If a white ball has been drawn, we put into the urn a white balls and b black balls, but if a
black ball has been drawn, we put into the urn c white balls and d black balls. The values a, b, c, d ∈ Z are fixed
integer values and the urn model is specified by the 2× 2 ball replacement matrix M =

(
a b
c d

)
. This definition

extends naturally also to higher dimensions. Urn models are simple, useful mathematical tools for describing
many evolutionary processes in diverse fields of application such as analysis of algorithms and data structures,
statistics and genetics. Due to their importance in applications, there is a huge literature on the stochastic
behavior of urn models; see for example [11, 16]. Recently, a few different approaches have been proposed,
which yield deep and far-reaching results for very general urn models; see [3, 4, 9, 10]. Most papers in the
literature impose the so-called tenability condition on the ball replacement matrix, so that the process can be
continued ad infinitum, or no balls of a given color being completely removed. However, in some applications,
there are urn models with a very different nature, which we will refer to as diminishing urn models. We refer
to [8] for a detailed description of diminishing urn models.

A well known example of a diminishing urn model is the classical example sampling without replacement
urn model with transition matrix M =

(−1 0
0 −1

)
. In this model, balls are drawn at random one after another

from an urn containing balls of two different colors and not replaced. What is the probability that k balls of
one color remain when balls of the other color are all removed? Another famous diminishing urn model is the
so-called OK Corral urn, which serves as a mathematical model of the historical gun fight at the OK Corral.
The ball transition matrix of the OK Corral urn model is given byM =

(
0 −1
−1 0

)
. This problem was introduced

by Williams and McIlroy in [22], and can be viewed as a mathematical model for warfare and conflicts; see
[13, 14]. It was studied by several authors using different approaches, leading to very deep and interesting
results; see for example Stadje [19], Kingman [12, 13], Kingman and Volkov [14] or the recent works of
Flajolet et al. [18, 3], and Turner [20]. An vivid interpretation is as follows. Two groups of gunmen, group A
and group B (with n and m gunmen, respectively), face each other. At every discrete time step, one gunman
is chosen uniformly at random who then shoots and kills exactly one gunman of the other group. The gunfight
ends when one group gets completely “eliminated”. Several questions are of interest: what is the probability
that group A (group B) survives, and what is the probability that the gunfight ends with k survivors of group A
(group B)? Moreover, one is also interested in the total number of survivors, regardless of the group. It turns
out that the limit laws arising in the OK Corral urn model are of a different nature compared to the limit laws
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arising in the sampling without replacement urn model, which can easily be seen by comparing the limit laws
given in [19, 12, 13, 14, 18, 3], basically normal distributions or related distributions, with the limit laws –
beta distributions, exponential distributions, and geometric distributions – arising from the sampling without

replacement urn model: P{Xm,n = k} =
(m−1+n−k

m−1 )
(m+n
m )

, 0 ≤ k ≤ n. This explicit formula can be proven in

various ways, e.g., via lattice path counting arguments or generating functions [8]. Here Xm,n denotes the
random variable counting the number of white balls, when all black balls have been drawn, starting with n
white and m black balls, in the sampling without replacement urn model.

In this work we will analyze diminishing Pólya-Eggenberger urn models with ball replacement matrix M
given by

M =

(
−a 0
c −d

)
, with a, d ∈ N and c = p · a, p ∈ N0.

1 (1)

We are interested in the distribution of the random variable Xm,n, counting the number of white balls, when all
black balls have been drawn, starting with n white and m black balls, respectively. We assume that the initial
number of white balls is a multiple of a and the initial number of black balls is a multiple of d; equivalently we
consider the random variables Xdm,an, with m,n ∈ N0. The distribution of the random variable Xdm,an in
the context of the evolution of an urn, with ball replacement matrix given by M , may be described as follows.
We have a state space S := {(d · m, a · n)|m,n ∈ N0}, where the evolution of the urn takes place. The
evolution stops at absorbing statesA := {(0, a ·n)|n ∈ N0}. The question is then to determine the probability
P{Xdm,an = k}, that a certain state k ∈ A is reached, starting with a ·n white balls and d ·m black balls. The
aim of this work is the derivation of limiting distributions of the random variables Xdm,an for diminishing urn
models, when the urn evolves according to a ball replacement matrixM given by (1). We will see that different
limiting distributions arise according to the growth of m and n. Note that when starting with a · n + α white
balls, where 1 ≤ α < a, the urn model is no longer well defined. It may happen that at some stage only α
white balls are left, but we are forced to remove a white balls, when choosing a white ball. The same problem
occurs when the parameter c 6= p ·a is not a multiple of the parameter a in the definition of the ball replacement
matrix.

1.2. Motivation. Our studies of the class of diminishing urns with a ball replacement matrix given by (1) is
motivated by the following problems.

The pills problem. The pills problem was originally proposed by Knuth and McCarthy in [15], p. 264; the
solution appeared in [7]. An vivid interpretation of the pills problem is the following: In a bottle there are m
large pills and n small pills. A large pill is equivalent to two small pills. Every day a person chooses a pill at
random. If a small pill is chosen it is eaten up, but if a large pill is chosen it is broken into two halves, one half is
eaten and the other half which is now considered as a small pill is returned to the bottle. The problem, proposed
in [15], was to find the expected number of small pills remaining when there are no more large pills left in the
bottle. Brennan and Prodinger revisited this problem in [2], where they showed how one can derive the exact
moments of the pills problem (at least in principle), and computed them up to the third moment. Furthermore
they also considered variations of the problem assuming, e.g., that a large pill is equal to p small pills, where
they also succeeded in computing the expected value. The pills problem corresponds to the derivation of the
expected value of Xm,n for a diminishing urn model with ball replacement matrix M =

(−1 0
1 −1

)
. In the

recent work of Hwang et. al. [8] the limiting distributions of the pills problem and a related model, namely
M =

(−1 0
1 −2

)
, where obtained by using generating functions. It was shown that the limiting distributions

significantly differ for these two problems. The generating functions approach of [8] has the benefit that one
not only obtains the limiting distributions, but also the exact distribution of Xm,n for the two considered turn
models. However, it seems difficult to extend the generating function approach to study the class with a ball
replacement given by (1) in full generality. Hence, the results of [8] motivated us to analyze the class of urns
with replacement matrix M =

(−a 0
c −d

)
.

Sampling without replacement This classical urn model corresponds to the urn with ball replacement
matrix M =

(−1 0
0 −1

)
. The distribution of the types of balls after t draws is very well known (see, e.g.,

[3]), but here we will focus on the limiting distributions of Xm,n. Note that this problem is often treated by
introducing two absorbing axes, i.e., {(0, n) : n ≥ 0} ∪ {(m, 0) : m ≥ 0}, but we rather simply use the

1Throughout this work we use the notations N := {1, 2, 3, . . . } and N0 := {0, 1, 2, . . . }.
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absorbing axis A = {(0, n) : n ≥ 0}, which is fully sufficient. We will also derive limiting distributions for
the generalizations M =

(−a 0
0 −d

)
.

1.3. Weighted lattice paths. It is useful to describe and visualize the evolution of an urn with ball replacement
matrixM =

(
a b
c d

)
by weighted paths, which is described here in the case of urns with two types of balls. If the

urn containsm black balls and n white balls and we are picking up a white ball, which appears with probability
n

m+n , this corresponds to a step (m,n) → (m + a, n+ b), which gets the weight n
m+n , and if we are picking

up a black ball, this corresponds to a step (m,n)→ (m+ c, n+ d), which appears with probability m
m+n and

gets thus the weight m
m+n . The weight of a path after t successive draws consists of the product of the weights

of every step. For a diminishing urn we obtain that the sum of the weights of all possible paths starting at state
(m,n) and ending at the absorbing state (i, j) ∈ A (which did not pass another absorbing state earlier) gives
then the required probability, that when starting at (m,n) we are ending at (i, j).

Unfortunately the weighted path approach is in general not effective for studying the behaviour of urn
models. An example for a weighted path corresponding to the evolution of a diminishing urn is given in
Figure 1. The steps associated with a ball replacement matrix M =

(−a 0
c−d
)

are visualized in Figure 2.
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FIGURE 1. An example of a weighted path from (6, 1) to the absorbing state (0, 2) for the
so called pills problem with ball replacement matrix M =

(−1 0
1−1
)

and the vertical absorbing
axis A = {(0, n) : n ≥ 0}. The illustrated path has weight 6
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FIGURE 2. The steps associated to the transition matrix M =
(−a 0
c−d
)

for c = 0 and c > 0.

1.4. Goal. We will determine the structure of the moments of Xdm,an for urn models with ball replacement
matrix M =

(−a 0
c −d

)
, a, d ∈ N and c = p · a, with p ∈ N0, as well as providing explicit formulas for the

expectation and variance ofXdm,an. Moreover, we will determine limiting distributions of the random variable
Xdm,an with replacement matrix M as given in (1). As a byproduct we (re)-obtain limiting distributions for
the pills problem, and also for generalizations of it.

For m fixed and n tending to infinity we can show that Xdm,an/(a · n) tends to a so-called Kumaraswamy
distributed random variable. Furthermore, we show that for m tending to infinity the limiting distribution for
c ≥ 0 changes according to the quotient a/d, with a, d ∈ N and the proportion of m and n. We will also
encounter Weibull distributions as limiting distributions.
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1.5. Notation and plan of the paper. We denote by Xn
L−→ X the weak convergence, i.e., the convergence

in distribution, of the sequence of random variables Xn to a random variable X . Furthermore, we denote with
Hn :=

∑n
k=1 1/k the n-th harmonic number and with H(2)

n :=
∑n
k=1 1/k2 the n-th second order harmonic

number. We denote with
[
n
k

]
the unsigned Stirling number of the first kind, and with

{
n
k

}
the Stirling numbers

of the second kind, see e.g. [5]. Furthermore, we use the abbreviation x` := x(x − 1) · · · (x − ` + 1) and
x` := x(x+ 1) · · · (x+ `− 1) for the falling and rising factorials, respectively. Moreover, we use the standard
asymptotic notations, such as the big-O notation, small-o notation, and also the asymptotic equivalence of
functions f ∼ g ⇐⇒ lim(f/g) = 1.

The main results of this work are the characterization of the limiting distributions of Xdm,an depending on
the ball replacement matrix M and the initial states, which are contained in the next section. In Section 3 we
will give a recursive description of the moments of Xdm,an together with the derivation of the expectation and
the variance. Section 4 is devoted to the proofs of the limiting distribution results. A generalization of the
considered urn model is then discussed in Section 5.

2. RESULTS

Next we state our limiting distribution results for Xdm,an, divided into three cases, namely first c = 0,
second c 6= 0 and a

d ≤ 1, and third c 6= 0 and a
d > 1.

2.1. Limiting distributions for c = 0.

Theorem 1. For the ball replacement matrix M =
(−a 0

0 −d
)
, the random variable Xdm,an, counting the

number of white balls when all black balls have been removed, starting with a · n white and d ·m black balls,
has the following limiting behaviour:

(1) For fixed m and n → ∞ the scaled random variable Xdm,an
an converges in distribution to a limiting

variable Y (d/a,m):
Xdm,an

an

L−→ Y (
d

a
,m),

with convergence of all moments, where Y (α, β) denotes a Kumaraswamy distributed random variable
with parameters α and β.

(2) For m,n → ∞ such that ma/d = o(n) the scaled random variable m
a
dXdm,an
an converges in distribu-

tion to a Weibull distributed random variable,

m
a
dXdm,an

an

L−→W (
d

a
, 1).

(3) For m,n → ∞ such that n ∼ ρma/d, with ρ ∈ R+, the random variable Xdm,an converges to a
random variable X , which is fully characterized by the sequence of its moments:

Xdm,an
L−→ X, with E(Xs) = as

s∑
`=1

{
s

l

}
ρ`Γ(1 +

a`

d
).

(4) For m → ∞ and n = n(m) = o(ma/d) the random variable Xdm,an converges to a limit X , which
has all its mass concentrated at zero:

Xdm,an
L−→ 0.

Remark 1. For a = d = 1 we obtain the limit laws for the well known sampling without replacement urn
model M =

(−1 0
0 −1

)
, which seem to be mathematical folklore, although we could not find a proper reference

to the literature. In particular, one obtains a Beta B(1,m) limiting distribution for fixed m and n → ∞, an
exponential distribution for m,n → ∞ such that m = o(n), and geometric distributions for m,n → ∞ such
that n ∼ ρm.
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2.2. Limiting distributions for c 6= 0 and a
d ≤ 1.

Theorem 2. For the ball replacement matrix M =
(−a 0
c −d

)
, with c = p · a > 0 with p ∈ N, and a

d ≤ 1 the
random variable Xdm,an, counting the number of white balls when all black balls have been removed, starting
with a · n white and d ·m black balls, has the following limiting behaviour:

(1) For fixed m and n → ∞ the scaled random variable Xdm,an
an converges in distribution to a limiting

variable Y (d/a,m):
Xdm,an

an

L−→ Y (
d

a
,m),

with convergence of all moments, where Y (α, β) denotes a Kumaraswamy distributed random variable
with parameters α and β.

(2) For m → ∞ and arbitrary n = n(m), possibly constant or a function of m, the random variable
Xdm,an
gm,n

converges in distribution to a limit W (d/a, 1):

Xdm,an

gm,n

L−→W (
d

a
, 1), (2)

with convergence of all moments, where W (k, λ) denotes a Weibull distributed random variable with
parameters k and λ. The normalization values gm,n are given as follows:

gm,n = gm,n(a, c, d) =


an+m cd

d−a

m
a
d

, for
a

d
< 1,

an

m
+ c logm, for

a

d
= 1.

(3)

Remark 2. The special case a = c = d = 1 of Theorem 2 was already proved by Hwang et. al. in [8].
Furthermore, the special case a = c = 1, d = 2 of Theorem 2 reproves the Rayleigh limiting distribution for√
mXn,2m/(n+ 2m), also stated in Hwang et. al. [8].

2.3. Limiting distributions for c 6= 0 and a/d > 1.

Theorem 3. For the ball replacement matrix M =
(−a 0
c −d

)
, with c = p · a > 0 with p ∈ N, and a

d > 1 the
random variable Xdm,an, counting the number of white balls when all black balls have been removed, starting
with a · n white and d ·m black balls, has the following limiting behaviour:

(1) For fixed m and n → ∞ the scaled random variable Xdm,an
an converges in distribution to a limiting

variable Y (d/a,m):
Xdm,an

an

L−→ Y (
d

a
,m),

with convergence of all moments, where Y (α, β) denotes a Kumaraswamy distributed random variable
with parameters α and β.

(2) For m,n → ∞ such that ma/d = o(n) the random variable Xdm,an converges after suitable scaling
to a Weibull distributed random variable,

m
a
dXdm,an

an

L−→W (
d

a
, 1).

(3) For m,n → ∞ such that n ∼ ρma/d, with ρ ∈ R+, the moments of the random variable Xdm,an

converge,

E(Xs
dm,an)→ as

s∑
`=0

ρ`Γ(1 +
a`

d
)

s∑
r=`

{
s

r

}
ϑr,`;`,0, s ≥ 1,

where the values ϑs,`;h,g satisfy a system of recurrence relations given in Proposition 1.

(4) For m → ∞ and arbitrary n = n(m) satisfying n = o(ma/d) the moments of the random variable
Xdm,an converge,

E(Xs
dm,an)→ as

s∑
r=0

{
s

r

}
ϑr,0;0,0, s ≥ 1,

where the values ϑs,`;h,g satisfy a system of recurrence relations given in Proposition 1.
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Remark 3. Unfortunately, even though we can prove convergence of the moments also for the regionsm,n→
∞ such that n ∼ ρma/d or n = o

(
ma/d

)
, we are not able to show that the resulting moment sequence defines

a unique distribution for these two cases.

3. THE STRUCTURE OF THE MOMENTS

3.1. A recurrence for the moments. By definition of Pólya-Eggenberger urn models with ball replacement
matrix given by (1) the probability generating function hm,n(v) :=

∑
k≥0 P{Xdm,an = k}vk of Xdm,an

satisfies the following recurrence (recall that c = pa, p ∈ N0):

hm,n(v) =
an

an+ dm
hm,n−1(v) +

dm

an+ dm
hm−1,n+p(v), for n ≥ 0,m ≥ 1, (4)

with initial values given by h0,n(v) = van for all n ≥ 0.

Our aim is to derive limiting distributions of Xdm,an, for max{m,n} → ∞. To do this we will give a
precise description of the moments, which enables us to determine the limiting distributions using the so-called
method of moments, i.e., by applying the moment convergence theorem of Fréchet and Shohat, the second
central limit theorem, see, e.g, [17]. Of course, it follows from (4) that the moments e[s]m,n := E(Xs

dm,an)
satisfy the recurrence

e[s]m,n =
an

an+ dm
e
[s]
m,n−1 +

dm

an+ dm
e
[s]
m−1,n+p, for n ≥ 0,m ≥ 1, (5)

with initial values e[s]0,n = asns, for n ∈ N0.

Our first observation for determining the structure of the moments is that e[s]m,n is a polynomial of degree
s in n, in other words the s-th moment is of the form e

[s]
m,n =

∑s
`=0 λs,`,mn

`, where the numbers λs,`,m are
independent of n. In the following we obtain an explicit result for λs,s,m, and a recursive description of the
quantities λs,`,m, 1 ≤ ` ≤ s− 1 in terms of λs,i,j , with `+ 1 ≤ i ≤ s and 1 ≤ j ≤ m.

Lemma 1. The s-th moments e[s]m,n = E(Xs
dm,an) of the random variableXdm,an satisfy the expansion e[s]m,n =∑s

k=0 λs,k,mn
k, where λs,s,m =

as(
m+ as

d
m

) . Furthermore the values λs,`,m, 1 ≤ ` ≤ s−1, satisfy the following

recurrence relations:

λs,`,m =

m−1∑
k=0

(
m
k

)(m+ a`
d

k

)µs,`,m−k,
where

µs,`,m :=
a

a`+ dm

s∑
k=`+1

(
k

`− 1

)
(−1)k−`−1λs,k,m +

dm

a`+ dm

s∑
k=`+1

(
k

`

)
pk−`λs,k,m−1.

For ` = 0 we have

λs,0,m =

m−1∑
k=0

µs,0,k, with µs,0,m :=

s∑
k=1

pkλs,k,m.

The initial values are given by λs,s,0 = as and λs,`,0 = 0, for 0 ≤ ` ≤ s− 1.

Proof. In order to prove the stated expansion of e[s]m,n we start with the ansatz e[s]m,n =
∑s
`=0 λs,`,mn

`, and get
from the recurrence relation (5) the equation

(an+ dm)

s∑
`=0

λs,`,mn
` = an

s∑
`=0

λs,`,m(n− 1)` + dm

s∑
`=0

λs,`,m−1(n+ p)`. (6)
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By comparing the coefficients of n`, for 0 ≤ ` ≤ s+ 1, in equation (6) we obtain a system of s+ 2 equations:

λs,s,m = λs,s,m,

dmλs,`,m + aλs,`−1,m = a

s∑
k=`−1

(−1)k−`+1λs,k,m

(
k

`− 1

)
+ dm

s∑
k=`

pk−`λs,k,m−1

(
k

`

)
, 1 ≤ ` ≤ s,

λs,0,m =

s∑
k=0

pkλs,k,m−1,

with initial values λs,s,0 = as, and λs,`,0 = 0 for 0 ≤ ` ≤ s − 1, which are determined by e[s]0,n = asns. The
first equation is trivially true, so there remain s + 1 equations, which determine the values λs,`,m, 0 ≤ ` ≤ s.
The term λs,`−1,m on the left hand side cancels with the first summand of

∑s
k=`−1(−1)k−`+1λs,k,m

(
k
`−1
)

on
the right hand side, and we obtain

dmλs,`,m = −a`λs,`,m + a

s∑
k=`+1

(−1)k−`+1λs,k,m

(
k

`− 1

)

+ dmλs,k,m−1 + dm

s∑
k=`+1

pk−`λs,k,m−1

(
k

`

)
,

1 ≤ ` ≤ s. The key step is to note that for computing the values λs,`,m, for 1 ≤ ` ≤ s, only values λs,i,m and
λs,i,m−1, with ` + 1 ≤ i ≤ s, are needed, which allows to recursively describe these values. Hence, we can
obtain for the values λs,`,m the following recurrence relations:

λs,`,m =
dm

dm+ a`
λs,`,m−1 + µs,`,m, for 1 ≤ ` ≤ s,

with

µs,`,m :=
a

dm+ a`

s∑
k=`+1

(
k

`− 1

)
(−1)k−`−1λs,k,m +

dm

dm+ a`

s∑
k=`+1

(
k

`

)
pk−`λs,k,m−1.

In the case ` = 0 we directly obtain

λs,0,m = λs,0,m−1 +

s∑
k=1

pkλs,k,m−1,

and further

λs,0,m = λs,0,m−1 + µs,0,m−1, with µs,0,m :=

s∑
k=1

pkλs,k,m.

Using induction with respect tom and n we conclude that the recurrence (5) has a unique solution for the given
initial values λs,s,0 = as, and λs,`,0 = 0 for 0 ≤ ` ≤ s− 1.

Now we will compute λs,s,m. We have

dmλs,s,m + aλs,s−1,m = −saλs,s,m + aλs,s−1,m + dmλs,s,m−1,

leading to
(dm+ as)λs,s,m = dmλs,s,m−1.

This gives

λs,s,m =
dm

dm+ as
λs,s,m−1, and further λs,s,m =

m!

(m+ as
d )m

=
as(

m+ as
d

m

) ,
where (m+ as

d )m = (m+ as
d ) . . . (1 + as

d ) is written using the falling factorials notation. �

By Lemma 1 we can derive arbitrarily high moments ofXdm,an. In particular, we will derive the expectation
of Xdm,an, and use Lemma 1 to prove our limiting distribution results.
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3.2. Factorial moments and an explicit formula for the moments in the case c = 0. The computation of
several moments using Lemma 1 suggested that an alternative description of the moments can be obtained. Let
e
(s)
m,n := E

(Xdm,an
a

)s
denote the s-th factorial moment of the normalized random variable Xdm,an/a, with

e
(s)
0,n = 1. In the following we obtain an alternative expansion of e(s)n,m in terms of ns, the falling factorials

powers of n.

Lemma 2. The s-th factorial moments e(s)m,n = E
(Xdm,an

a

)s
of the normalized random variable Xdm,an/a

satisfies the expansion e(s)m,n =
∑s
`=0 Λs,`,mn

`, with Λs,s,m =
1(

m+ as
d

m

) , and Λs,`,m, 1 ≤ ` ≤ s−1, recursively

described by

Λs,`,m =
1(

m+ a`
d

m

) m−1∑
k=0

(
k + a`

d

k

) s∑
j=`+1

(
j

`

)
pj−`Λs,j,k.

The initial values are given by Λs,s,0 = 1 and Λs,`,0 = 0, for 0 ≤ ` ≤ s− 1.

Moreover, the values λs,`,m, with e[s]m,n = E
(
Xs
dm,an

)
=
∑s
`=0 n

`λs,`,m, arising in the expansion of the
ordinary moments of Xdm,an, are related to Λs,j,m in the following way.

λs,`,m = as
s∑
r=`

r∑
j=`

(−1)j−`
{
s

r

}[
j

`

]
Λr,j,m, 0 ≤ ` ≤ s,

where
[
n
k

]
denotes the unsigned Stirling numbers of the first kind, and

{
n
k

}
denotes the Stirling numbers of the

second kind, respectively.

As an immediate consequence of the result above we get explicit results for all moments in the case c = 0.

Corollary 1. In the case c = 0 the s-th factorial moment E
(Xdm,an

a

)s
of the normalized random variable

Xdm,an/a is given by

E
(Xdm,an

a

)s
=

ns(m+ as
d

d

) .
Consequently, the ordinary s-th moment of Xdm,an is given by

E(Xs
dm,an) = as

s∑
`=0

n`
s∑
j=`

(−1)j−`

{
s
j

}[
j
`

](
m+ aj

d
m

) .
Proof of Lemma 2. First we note that the factorial moments e(s)m,n satisfy the same recurrence relations (5) as
their ordinary counterparts e[s]m,n, only the initial condition changes to e(s)0,n = E

(X0,an

a

)s
= ns. We proceed as

in the proof of Lemma 1 and obtain by the ansatz e(s)m,n =
∑s
k=0 Λs,k,mn

s the equation.

(an+ dm)

s∑
`=0

Λs,`,mn
` = an

s∑
`=0

Λs,`,m(n− 1)` + dm

s∑
`=0

Λs,`,m−1(n+ p)`. (7)

Next we use the facts

(an+ dm)n` = (a(n− `) + a`+ dm)n` = an`+1 + a`+ dmn`, n · (n− 1)` = n`+1,

and the binomial theorem for falling factorials

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k,

in order to write (7) as
s∑
`=0

Λs,`,m

(
an`+1 + (a`+ dm)n`

)
= a

s∑
`=0

Λs,`,mn
`+1 + dm

s∑
j=0

nj
s∑
`=j

(
`

j

)
p`−jΛs,`,m−1.
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The equation above simplifies to
s∑
`=0

Λs,`,m(a`+ dm)n` = dm

s∑
j=0

nj
s∑
`=j

(
`

j

)
p`−jΛs,`,m−1.

Comparing the coefficients of n`, the falling factorial powers of n, we obtain the equations

Λs,s,m(as+ dm) = dmΛs,s,m−1, ` = s,

Λs,`,m(as+ dm) = dmΛs,`,m−1 + dm

s∑
j=`+1

(
j

`

)
pj−`Λs,j,m−1, 0 ≤ ` ≤ s− 1.

(8)

Consequently, we obtain

Λs,s,m =
m

m+ as
d

Λs,s,m−1, and further Λs,s,m =
1(

m+ as
d

m

) .
Moreover, we also get from (8) the stated recurrence relation for Λs,`,m,

Λs,`,m =
m

m+ a`
d

Λs,`,m−1 +
m

m+ a`
d

s∑
j=`+1

(
j

`

)
pj−`Λs,j,m−1.

In order to obtain the stated relation between λs,`,m and Λs,j,m, 0 ≤ `, j ≤ s, we use the expansion of the
ordinary moments into factorial moments using the Stirling numbers of the first and second kind.

E(Xs
dm,an) = asE

(Xdm,an

a

)s
= as

s∑
r=0

{
s

r

}
E
(Xdm,an

a

)r
= as

s∑
r=0

{
s

r

} r∑
j=0

njΛr,j,m

= as
s∑
r=0

{
s

r

} r∑
j=0

Λr,j,m

j∑
`=0

[
j

`

]
(−1)j−`n` = as

s∑
`=0

n`
s∑
r=`

{
s

r

} r∑
j=`

Λr,j,m

[
j

`

]
(−1)j−`.

On the other hand, E
(
Xs
dm,an

)
=
∑s
`=0 n

`λs,`,m, which proves the stated result.
�

Proof of Corollary 1. In the case of c = a · p = 0, or equivalently p = 0, we obtain from Lemma 2 the result

e(s)m,n =

s∑
`=0

Λs,`,mn
` = nsΛs,s,m =

ns(
m+ as

d
m

) ,
since all terms Λs,`,m, 0 ≤ ` ≤ s− 1, are zero due to the factor p. This implies that the ordinary moments are
explicitly given by

E(Xs
dm,an) = as

s∑
`=0

n`
s∑
j=`

(−1)j−`

{
s
j

}[
j
`

](
m+ aj

d
m

) .
�

3.3. The fine structure of the moments for a/d > 1. Next we are going to use Lemma 2 to obtain a refine-
ment of the description of the factorial moments.

Proposition 1. For a/d > 1 and c 6= 0 the values Λs,`,m, arising in the expansion of the s-th factorial moment
e
(s)
m,n = E

(Xdm,an
a

)s
=
∑s
`=0 n

`Λs,`,m of the random variable Xdm,an, satisfy

Λs,`,m =

s∑
h=`

1(
m+ ah

d
m

) h−∑̀
g=0

ϑs,`;h,gm
g,

where the values ϑs,`;j,i satisfy ϑs,s;s,0 = 1,

ϑs,`;`,0 = −
s∑

j=`+1

(
j

`

)
pj−`

s∑
h=j

h−j∑
i=0

ϑs,j;h,i · qi(
ah

d
,
a`

d
),
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and further for `+ 1 ≤ h ≤ s− 1 and 0 ≤ g ≤ h− `

ϑs,`;h,g =

min{h,h−g+1}∑
j=`+1

(
j

`

)
pj−`

h−j∑
i=max{0,g−1}

ϑs,j;h,i · pi,g(
ah

d
,
a`

d
).

The quantities pi,`(X,Y ), 0 ≤ ` ≤ i+ 1, and qi(X,Y ) arising here will be defined in Lemma 3 stated below.

In order to give the proof of the result above, we need the following identity.

Lemma 3. The sum 1

(m+Y
m )

∑m−1
k=0

(k+Yk )
(k+Xk )

ki can be expanded in the following way:

1(
m+Y
m

) m−1∑
k=0

(
k+Y
k

)(
k+X
k

)ki =

i+1∑
`=0

m`pi,`(X,Y )(
m+X
m

) − qi(X,Y )(
m+Y
m

) , (9)

assuming that Y + h+ 1−X 6= 0, for 0 ≤ h ≤ i, i ≥ 0, with

pi,`(X,Y ) =

i+1∑
j=`

[
j

`

]
(−1)j−`

i∑
h=max{0,j−1}

(
h+1
j

)
Xh+1−j

h!(Y + h+ 1−X)

i∑
f=h

(−X)i−f
(
i

f

){
f

h

}
, 0 ≤ ` ≤ i+ 1,

qi(X,Y ) =

i∑
h=0

i∑
f=h

(−X)i−f
(
i

f

){
f

h

}
(X − h)

(
X
h

)
(Y + 1 + h−X)

.

Proof. We use the identity,
m−1∑
k=0

(
k+Y
k

)(
k+X
k

) (k +X)j =
(m+X − j)

(
m+Y
m

)(
m+X
j

)
(j + 1 + Y −X)

(
m+X
m

) − (X − j)
(
X
j

)
j + 1 + Y −X

, (10)

with j + 1 +X − Y 6= 0, and j ≥ 0, which can be proven using induction with respect to m. In order to apply

the result above to the sum 1

(m+Y
m )

∑m−1
k=0

(k+Yk )
(k+Xk )

ki we expand ki in the following way:

ki = (k +X −X)i =

i∑
f=0

(
i

f

)
(−X)i−f (k +X)f =

i∑
f=0

(
i

f

)
(−X)i−f

f∑
h=0

{
f

h

}
(k +X)h

=

i∑
h=0

(k +X)h
i∑

f=h

(
i

f

){
f

h

}
(−X)i−f .

Consequently, we get

1(
m+Y
m

) m−1∑
k=0

(
k+Y
k

)(
k+X
k

)ki =

i∑
h=0

1(
m+Y
m

) m−1∑
k=0

(
k+Y
k

)(
k+X
k

) (k +X)h
i∑

f=h

(
i

f

){
f

h

}
(−X)i−f

=

i∑
h=0

(
(m+X − h)

(
m+X
h

)
(h+ 1 + Y −X)

(
m+X
m

) − (X − h)
(
X
h

)
(h+ 1 + Y −X)

(
m+Y
m

)) i∑
f=h

(
i

f

){
f

h

}
(−X)i−f .

This proves the stated result for qi(X,Y ). In order to obtain the expressions for pi,`(X,Y ), 0 ≤ ` ≤ i+ 1, we
expand (m+X − h)

(
m+X
h

)
in terms of ordinary powers of m,

(m+X − h)

(
m+X

h

)
=

(m+X)h+1

h!
=

1

h!

h+1∑
j=0

(
h+ 1

j

)
mj ·Xh+1−j

=
1

h!

h+1∑
j=0

(
h+ 1

j

) j∑
`=0

[
j

`

]
(−1)j−`m`Xh+1−j =

1

h!

h+1∑
`=0

m`
h+1∑
j=`

(
h+ 1

j

)[
j

`

]
(−1)j−`Xh+1−j .

Interchanging summations leads then directly to the stated results for pi,`(X,Y ). �
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Proof of Proposition 1. We proceed by induction with respect to m and `. We readily observe that Λs,s,m
satisfies the stated expansion. Assuming that the values Λs,j,k have the stated expansion for all k < m and
`+ 1 ≤ j ≤ s we get by Lemma 2 and the induction hypothesis

Λs,`,m =
1(

m+ a`
d

m

) m−1∑
k=0

(
k + a`

d

k

) s∑
j=`+1

(
j

`

)
pj−`Λs,j,k

=

s∑
j=`+1

(
j

`

)
pj−`

s∑
h=j

h−j∑
i=0

ϑs,j;h,i
1(

m+ a`
d

m

) m−1∑
k=0

(k+ a`
d

k

)(k+ ah
d

k

)ki.
Before we can apply Lemma 3 we need to check that the conditions Y + 1 + g − X 6= 0 are satisfied, for
Y = a`

d , X = ah
d , 0 ≤ g ≤ i. We have 1 ≤ 1 + g ≤ i + 1 ≤ h − j + 1 ≤ h − `, with equality only

in the case j = ` + 1. Hence, from our assumption a/d > 1 we get 1 + g ≤ h − ` < a
d (h − `), such that

1 + g − a
d (h− `) 6= 0, 0 ≤ g ≤ i. We obtain by Lemma 3

Λs,`,m =

s∑
j=`+1

(
j

`

)
pj−`

s∑
h=j

h−j∑
i=0

ϑs,j;h,i

( i+1∑
g=0

mgpi,g(
ah
d ,

a`
d )(

m+ ah
d

m

) −
qi(

ah
d ,

a`
d )(

m+ a`
d

m

) ).
This implies the stated result for ϑs,`;`,0. Furthermore, we obtain

s∑
j=`+1

(
j

`

)
pj−`

s∑
h=j

h−j∑
i=0

ϑs,j;h,i

i+1∑
g=0

mgpi,g(
ah
d ,

a`
d )(

m+ ah
d

m

)
=

s∑
h=`+1

1(
m+ ah

d
m

) h−∑̀
g=0

mg

min{h,h−g+1}∑
j=`+1

(
j

`

)
pj−`

h−j∑
i=max{0,g−1}

ϑs,j;h,ipi,g(
ah

d
,
a`

d
),

which leads to the stated results. �

3.4. Derivation of the expected value. Next we will derive the explicit expressions for the expectation of
Xdm,an using Lemma 1.

Proposition 2. The expectation of Xdm,an is given as follows:

E(Xdm,an) =
an

m+ 1
+ cHm, for

a

d
= 1,

E(Xdm,an) =
an(
m+ a

d
m

) +
c

d− a

(dm+ a(
m+ a

d
m

) − a), for
a

d
6= 1.

Proof. In order to obtain the expected value of Xdm,an we use Lemma 1 to get

E(Xdm,an) = λ1,1,mn+ λ1,0,m,

where the values λ1,1,m, λ1,0,m are given by

λ1,1,m =
a(

m+ a
d

m

) , λ1,0,m = λ1,0,m−1 + p1λ1,1,m.

This implies that λ1,0,m can be written as

λ1,0,m = p

m−1∑
k=0

λ1,k,m = p · a
m−1∑
k=0

1(k+ a
d

k

) .
We have to distinguish between the cases a

d = 1 and a
d 6= 1. First assume that ad = 1. We obtain

m−1∑
k=0

1(k+ a
d

k

) =

m−1∑
k=0

1(
k+1
k

) =

m−1∑
k=0

1

k + 1
= Hm,

and further E(Xdm,an) = an
m+1 + cHm. In the remaining case a

d 6= 1 we use the summation formula

m−1∑
k=0

1(
k+X
X

) =
m+X

(1−X)
(
m+X
X

) − X

1−X
,
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which can easily be deduced from another summation formula, see [5], p. 188,
k∑
`=0

(
k

`

)
(−1)`

X + `
=

1

X
(
k+X
k

) ,
using the fact that

∑m−1
k=0

(
k
`

)
=
(
m
`+1

)
. We get

m−1∑
k=0

1(k+ a
d

k

) =
dm+ a

(d− a)
(
m+ a

d
m

) − a

d− a
,

which directly leads to the result

E(Xdm,an) =
an(
m+ a

d
m

) +
c(dm+ a)

(d− a)
(
m+ a

d
m

) − ca

d− a
.

�

3.5. Asymptotic expansions of the expected value. Next we derive asymptotic expansions of the expected
value E(Xdm,an) for max{m,n} → ∞. These expansions serve as an indicator for the normalizations used in
Theorems 1-3 for the random variables Xdm,an.

Lemma 4. For m ∈ N fixed and n → ∞, and arbitrary a, c, d, the expected value of Xdm,an, as given in
Theorem 2, is asymptotically given by

E(Xdm,an) =
an(
m+ a

d
m

) +O(1).

For m → ∞, a/d ≤ 1 and c 6= 0 and arbitrary n = n(m) the expected value of Xdm,an always tends to
infinity:

E(Xdm,an) ∼


an
m + c logm, for a

d = 1,

Γ(1 + a
d ) ·

an+ cd
d−am

m
a
d

, for a
d < 1.

For m→∞, a/d > 1, or a/d ≤ 1 together with c = 0, we have the following three regions in the asymptotic
behaviour of the expected value of Xdm,an:

• For ma/d = o(n) we have

E(Xdm,an) = Γ(1 +
a

d
)
an

m
a
d

+O
( n

m
a
d+1

+
c

m
a
d−1

+ 1
)
.

• For n ∼ ρma/d, with ρ ∈ R+, we have

E(Xdm,an) = aΓ(1 +
a

d
)ρ+

ca

a− d
+O

( 1

m
+

c

m
a
d−1

+
1

m
a
d

)
.

• For n = n(m) such that n = o(ma/d), we have

E(Xdm,an) =
ca

a− d
+O(

n

m
a
d

+
c

m
a
d−1

). (11)

Remark 4. Our results above say in principle that the asymptotic behaviour ofXdm,an is governed by the quo-
tient a/d, together with the (non)-positivity of c. A similar situation occurs in tenable triangular urn schemes,
compare with Janson [10]. A simple explanation for the results above is as follows. For m fixed and n tending
to infinity, the actual values of a, d and c are irrelevant. For m tending to infinity, such that a/d < 1 and c 6= 0,
the positivity of c ensures that the random variable always tends to infinity. In the remaining cases with m
tending to infinity, such that a/d > 1, or c = 0 and arbitrary a, d, the random variable Xdm,an can be rather
small, depending on the growth of n = n(m) compared to m.

Proof. We use the explicit results stated in Theorem 2. For m fixed and n → ∞ we use Stirling’s formula for
the Gamma function:

Γ(z) =
(z
e

)z√2π√
z

(
1 +

1

12z
+

1

288z2
+O(

1

z3
)
)
, (12)
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and obtain for arbitrary a, c, d the expansion

E(Xdm,an) =
an(
m+ a

d
m

) +O(1) = an
Γ(m+ 1)Γ(1 + a

d )

Γ(m+ 1 + a
d )

+O(1) = Γ(1 +
a

d
)
an

m
a
d

+O(1).

Assume next that m → ∞, a/d ≤ 1 and c 6= 0 and arbitrary n = n(m). We use the asymptotic expansion of
the harmonic numbers

Hm = logm+ γ − 1

2m
+O(

1

m2
),

where γ = 0.5772156649 denotes the Euler-Mascheroni constant, to get for a/d = 1 the result

E(Xdm,an) =
an

m+ 1
+ cHm ∼

an

m
+ c logm.

For a/d < 1 we get

E(Xdm,an) =
an(
m+ a

d
m

) +
c

d− a

(dm+ a(
m+ a

d
m

) − a) ∼ Γ(1 +
a

d
)
an

m
a
d

+
cd

d− a
Γ(1 +

a

d
)m1− ad ,

where we have used again Stirling’s formula (12). For m → ∞, a/d > 1, or a/d ≤ 1 together with c = 0,
we proceed similarly to the previous cases. For example, assuming that ma/d = o(n), we obtain by Stirling’s
formula (12) the result

E(Xdm,an) =
an(
m+ a

d
m

) +
c

d− a

(dm+ a(
m+ a

d
m

) − a) = Γ(1 +
a

d
)
an

m
a
d

(
1 +O(

1

m
)
)

+O
( c

m
a
d−1

+ 1
)
.

�

4. DERIVATION OF THE LIMITING DISTRIBUTIONS

In the following we will present our proofs of Theorems 1-3. First we prove simultaneously the limit laws of
the Theorems 1-3 in the case of fixed m, and n tending to infinity. Then, we separately provide the remaining
proofs of the Theorems 1-3 for m tending to infinity and n = n(m) in Subsections 4.2, 4.3, 4.4.

4.1. The case of fixed m. We assume that m is an arbitrary but fixed natural number, and derive the limit of
Xdm,an for n tending to infinity. Using Lemma 1 we can expand the s-th moment of Xdm,an for arbitrary
values of a, d, c ∈ N in powers of n in the following way:

E(Xs
dm,an) = e[s]m,n =

s∑
k=0

λs,k,mn
k = λs,s,mn

s+

s−1∑
k=0

λs,k,mn
k = λs,s,mn

s+O(ns−1) =
asns(
m+ as

d
m

)+O(ns−1),

since we assumed thatm is an arbitrary but fixed natural number. Consequently, the moments of the normalized
random variable Xdm,an/(an) satisfy the following asymptotic expansion:

E
(Xs

dm,an

asns

)
=
e
[s]
m,n

asns
=

1(
m+ as

d
m

)(1 +O(
1

n
)
)

=
m!Γ(1 + as

d )

Γ(1 +m+ as
d )

(
1 +O(

1

n
)
)
.

Hence the s-th moment of the scaled random variable Xdm,an/(a · n) tends to the s-th moment of a Kura-
maswamy distributed random variable Y = Y (d/a,m) with parameters α = d/a and β = m, for any s ≥ 1,
in symbol E

(
Xsdm,an
asns

)
→ E(Y s). Hence, by the theorem of Fréchet and Shohat, which says that the moment

convergence implies the convergence in distribution if the moments sequence determines a unique distribution,
we obtain the convergence in distribution of Xdm,an/(a · n) to Y (d/a,m).

Note that the density f(t) = fY (t) and the distribution function of a Kumaraswamy distributed random
variable Y = Y (α, β) are given as follows:

f(t) = αβtα−1(1− tα)β−1, and P{Y ≤ x} = 1− (1− xα)β .

Furthermore, the s-th moment of Y is given by

E(Y s) =
Γ(β + 1)Γ(1 + s

α )

Γ(1 + β + s
α )

, for s ≥ 1.
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The Kumaraswamy distribution is closely related to the beta distribution. A Kumaraswamy distributed random
variable Y = Y (α, β) can be expressed as the α-th root of a beta distributed random variable with parameters
1 and β.

4.2. Proof of Theorem 1. We use the explicit results for the moments of Xdm,an in the case c = 0 and
arbitrary a, d stated in Corollary 1:

E(Xs
dm,an) = as

s∑
`=0

n`
s∑
j=`

(−1)j−`

{
s
j

}[
j
`

](
m+ aj

d
m

) .
Hence, using Stirling’s formula (12) we obtain for m→∞ the asymptotic expansions

1(
m+ aj

d
m

) ∼ Γ(1 + aj
d )

m
aj
d

, E(Xs
dm,an) ∼ as

s∑
`=0

n`
s∑
j=`

(−1)j−`
Γ(1 + aj

d )
{
s
j

}[
j
`

]
m

aj
d

. (13)

Assume first that m,n → ∞ such that ma/d = o(n). The dominant term in the expansion above is given by
asnsΓ(1 + as

d )/m
as
d , and we get

E(
Xs
dm,anm

as
d

asns
) ∼ Γ(1 +

as

d
).

Let W = W (k, λ) denote a Weibull distributed random variable. Then, the s-th moment of W is given by

E(W s) = λnΓ
(
1 +

s

k

)
, for s ≥ 1.

Moreover, special instances of the Weibull distribution are the exponential distribution and the Rayleigh distri-
bution, and the density f(t) = fW (t) is given as follows

f(t) =
k

λ

( t
λ

)k−1
e−(t/λ)

k

, for t ≥ 0. (14)

Hence, in the region m,n → ∞ such that ma/d = o(n), we can use the moment convergence theorem of
Fréchet and Shohat and obtain the convergence in distribution of Xdm,anm

a/d/(a · n) to W (d/a, 1).

For m,n→∞ such that n ∼ ρma/d, with ρ ∈ R+, we obtain from (13) the expansion

E(Xs
dm,an) ∼ as

s∑
`=0

(ρma/d)`
Γ(1 + a`

d )
{
s
`

}
m

a`
d

= as
s∑
`=0

{
s

`

}
ρ`Γ(1 +

a`

d
).

Consequently,

lim
m,n→∞

E(Xs
dm,an) = ηs, where ηs := as

s∑
`=0

{
s

`

}
ρ`Γ(1 +

a`

d
).

In order to show that the sequence of moments (ηs)s defines a unique distribution, we compute the correspond-
ing moment generating function ϕ(z) associated to the moment sequence (ηs)s:

ϕ(z) =
∑
s≥0

ηs
zs

s!
=
∑
s≥0

as
s∑
l=0

{
s

l

}
ρlΓ(1 +

al

d
)
zs

s!
=
∑
l≥0

ρlΓ(1 +
al

d
)
∑
s≥l

as
{
s

l

}
zs

s!
.

Using the bivariate generating function identity of the Stirling numbers of the second kind, see Wilf [21],∑
n≥0

∑
k≥0

{
n

k

}
zn

n!
uk = eu(e

z−1),

we obtain further

ϕ(z) =
∑
`≥0

Γ(1 +
a`

d
)
ρ`(eaz − 1)`

`!
.

Since the latter expression is the moment generating function ψ(t) of a Weibull distributed random variable
with parameters a/d and 1, evaluated at t = ρ(eaz − 1), we see that ϕ(z) is indeed analytic around z = 0,
which completes the proof. Hence, by the theorem of Fréchet and Shohat Xdm,an converges in distribution
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to a random variable X with moment sequence (ηs)s. Note that the special choice a = d, sampling without
replacement, gives a (scaled) geometric distribution with parameter 1

1+ρ , due to

ϕ(z) =
∑
`≥0

ρ`(eaz − 1)` =
1

1− ρ(eaz − 1)
=

1

1 + ρ− ρeaz
=

1
1+ρ

1− (1− 1
1+ρ )eaz

.

In the remaining case m → ∞, with arbitrary n = n(m) satisfying that n = o(ma/d), we obtain
E(Xs

dm,an)→ 0, for all s ≥ 1, which proves the stated result.

4.3. Proof of Theorem 2. The limiting distributions of Xdm,an, for a/d ≤ 1 and c 6= 0 and m → ∞, will
be obtained by giving precise estimates for the s-th moments e[s]m,n. Lemma 4 suggests the right scaling factors
gm,n chosen according to the ratio a/d. We will provide the following estimates for the moments of Xdm,an:

e[s]m,n =


Γ(1 + as

d )
(
an+m cd

d−a

m
a
d

)s(
1 +O( 1

ma/d
)
)
, for a

d < 1,

s!
(
an
m + c logm

)s(
1 +O( 1

logm )
)
, for a

d = 1.

Note that the above expansions will imply the limiting distribution results by applying the method of moments:

E
(Xs

dm,an

gsm,n

)
=
e
[s]
m,n

gsm,n
=

Γ(1 + as
d )
(
1 +O( 1

m
a
d

)
)
, for a

d < 1,

s!
(
1 +O( 1

logm )
)
, for a

d = 1,

since the s-th moment of Xdm,an/gm,n converges to the s-th moment of a Weibull distribution with suitably
chosen parameters.

First we consider the case a/d < 1. Since we want to prove the asymptotic expansion

e[s]m,n = Γ(1 +
as

d
)
(an+m cd

d−a

m
a
d

)s(
1 +O(

1

m
a
d

)
,

we have to determine the asymptotic growth of the coefficients λs,`,m appearing in the recursive description of
the moments e[s]m,n in Lemma 1. The shape of the s-th moment e[s]m,n =

∑s
`=0 λs,`,mn

` implies that we have to
show the following asymptotic expansion of the numbers λs,`,m:

λs,`,m = a`Γ(1 +
as

d
)

(
s

`

)
ms−`− asd

(cd)s−`

(d− a)s−`

(
1 +O(

1

m
a
d

)
)
. (15)

To show this we will use induction with respect to ` and apply Euler’s summation formula. The statement is
true for ` = s, since we know by Lemma 1 that

λs,s,m =
as(

m+ as
d

m

) = asΓ(1 +
as

d
)

(
s

l

)
m−

as
d (1 +O(

1

m
a
d

)).

Using the induction hypothesis for `+1 up to s−1 we see that the dominant contribution to µs,`,m is stemming
from the term λs,`+1,m−1 and we get

µs,`,m ∼
(
`+ 1

`

)
dm

dm+ a`
pλs,`+1,m−1. (16)

Due to Lemma 1 we also have

λs,`,m =

m−1∑
k=0

(
m
k

)(m+ a`
d

k

)µs,`,m−k =
m!

Γ(m+ a`
d + 1)

m∑
k=1

Γ(k + a`
d + 1)

k!
µs,`,k. (17)

Using the induction hypothesis we obtain the approximation
m∑
k=1

Γ(k + a`
d + 1)

k!
µs,`,k = a`+1Γ(1+

as

d
)

(
`+ 1

`

)(
s

`+ 1

)
p

(cd)s−`

(d− a)s−`

m∑
k=blogmc

Γ(k + a`
d )ks−`−

as
d

k!

(
1+O(

1

m
a
d

)
)
.
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Now an application of Euler’s summation formula (see, e.g., [5], p. 469) leads to

λs,`,m = a`cΓ(1 +
as

d
)

(
`+ 1

`

)(
s

`+ 1

)
ms−`− asd

(cd)s−`−1

(d− a)s−`−1

∫ 1

0

ts−`−1−
a(s−`)
d dt

(
1 +O(

1

m
a
d

)
)

= a`cΓ(1 +
as

d
)

(
s

`+ 1

)(
`+ 1

`

)
ms−`− asd c

(cd)s−`−1

(d− 1)s−`−1(s− `− a(s−`)
d )

(
1 +O(

1

m
a
d

)
)

= a`Γ(1 +
as

d
)

(
s

`

)
ms−`− asd

(cd)s−`

(d− a)s−`

(
1 +O(

1

m
a
d

)
)
,

which proves the stated result for 0 < ` ≤ s. For ` = 0 we have due to Lemma 1:

λs,0,` =

m−1∑
k=0

s∑
i=1

piλs,i,k = p

m−1∑
k=0

λs,1,k

(
1 +O(

1

m
a
d

)
)
.

Using Euler’s summation formula and the fact c = a · p gives

λs,0,` = paΓ(1 +
as

d
)

(
s

1

)
(cd)s−1

(d− a)s−1

∫ m

0

ts−1−
as
d dt(1 +O(

1

m
a
d

))

= sΓ(1 +
as

d
)ms− asd

csds−1

(d− a)s−1(s− sa
d )

(1 +O(
1

m
a
d

))

= Γ(1 +
as

d
)ms− asd

(cd)s

(d− a)s
(1 +O(

1

m
a
d

)).

This completes the proof of Theorem 2 for a/d < 1.

Now we consider the remaining case a/d = 1. We have to prove that

e[s]m,n = s!
(an
m

+ c logm
)s

(1 +O(
1

logm
)). (18)

This implies that we have to show the following asymptotic expansion of the numbers λs,`,m:

λs,`,m = s!

(
s

`

)
a`cs−`(logm)s−`

m`
(1 +O(

1

logm
)). (19)

We proceed exactly as in the previous case a/d < 1. Using (16) and (17) we finally obtain

λs,`,m = a`+1pcs−l`−1s!

(
`+ 1

`

)(
s

`+ 1

)
m!

(m+ `)!

∫ m

1

(log t)s−`−1

t
dt(1 +O(

1

logm
))

= a`cs−`s!

(
`+ 1

`

)(
s

`+ 1

)
1

m`

(log(m))s−l`

s− `
(1 +O(

1

logm
))

= s!

(
s

`

)
a`cs−`(logm)s−`

m`
(1 +O(

1

logm
)),

which proves the stated result for 0 < ` ≤ s. The remaining case ` = 0 is treated in a fully analogous manner.
Hence for m → ∞ the limiting distribution is given by an exponential distribution with parameter 1, which
also proves the part a/d = 1 of Theorem 2.

4.4. Proof of Theorem 3. We use the results of Lemma 2 and Proposition 10 and study the moments

E(Xs
dm,an) = as

s∑
`=0

n`
s∑
r=`

r∑
j=`

(−1)j−`
{
s

r

}[
j

`

] r∑
h=j

1(
m+ ah

d
m

) h−j∑
g=0

ϑr,j;h,gm
g,

for m→∞. Interchanging summations gives

E(Xs
dm,an) = as

s∑
`=0

n`
s∑
h=`

1(
m+ ah

d
m

) h−∑̀
g=0

mg
s∑

r=h

h∑
j=g+`

(−1)j−`
{
s

r

}[
j

`

]
ϑr,j;h,g.
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Proceeding as in Subsection 4.2 we use the expansions 1/
(
m+ ah

d
m

)
∼ Γ(1 + ah

d )/m
ah
d , and obtain

E(Xs
dm,an) ∼ as

s∑
`=0

n`
s∑
h=`

Γ(1 + ah
d )

m
ah
d

h−∑̀
g=0

mg
s∑

r=h

h∑
j=g+`

(−1)j−`
{
s

r

}[
j

`

]
ϑr,j;h,g.

First we consider the case m,n→∞ such that ma/d = o(n), and directly obtain

E(Xs
dm,an) ∼ as ns

m
as
d

Γ(1 +
as

d
), E(

m
as
d Xs

dm,an

asns
) ∼ Γ(1 +

as

d
).

We use again the moment convergence theorem of Fréchet and Shohat and obtain the convergence in distribu-
tion of Xdm,anm

a/d/(a · n) to a Weibull distributed random variable W (d/a, 1).

Next assume that m,n→∞ such that n ∼ ρma/d, with ρ ∈ R+. We have

E(Xs
dm,an) ∼ as

s∑
`=0

(ρma/d)`
s∑
h=`

Γ(1 + ah
d )

m
ah
d

h−∑̀
g=0

mg
s∑

r=h

h∑
j=g+`

(−1)j−`
{
s

r

}[
j

`

]
ϑr,j;h,g

∼ as
s∑
`=0

ρ`Γ(1 +
a`

d
)

s∑
r=`

{
s

r

}
ϑr,`;`,0.

It seems difficult to obtain suitable bounds on ϑr,`;`,0 in order to prove that the moment sequence determines a
unique distribution, which is necessary to apply the theorem of Fréchet and Shohat.

In the remaining case n = o(ma/d) only the constant term being independent of n and m, case ` = h =
g = 0, in the expansion of E(Xs

dm,an) is relevant, and we get

E(Xs
dm,an) ∼ as

s∑
r=0

{
s

r

}
ϑr,0;0,0.

Note that this expansion is consistent with ρ = 0 in the case considered before. Unfortunately, again we are
not able to show that the moment sequence determines a unique distribution.

5. GENERALIZATION: A BIASED PÓLYA-EGGENBERGER URN MODEL

In the ordinary Pólya-Eggenberger urn model at every step a ball is chosen at random from the urn. E.g., if
the urn contains n white and m black balls, the probability of choosing a white ball is given by n/(m + n),
whereas the probability of choosing a black ball is given by m/(m + n). We consider now a biased Pólya-
Eggenberger urn model defined as follows. Starting with an urn with ball replacement matrix M =

(−1 0
c −1

)
,

we associate with the states of the urn a sequence P of positive real numbers P = (pm)m∈N0
, with p0 = 0

and pm ∈ R+, where P is independent of n. For the sake of simplicity we have chosen a = d = 1 in
M . The cases d > 1 or a > 1 (with c = p · a) can be reobtained by properly choosing the sequence
P = (pm)m∈N0

= (dma )m∈N0
. Assuming that the urn contains n white and m black balls, for this class

of biased diminishing urns, the probability of choosing a white ball is given by n/(n + pm), whereas the
probability of choosing a black ball is given by pm/(n + pm). Let Xm,n denote the random variable, which
counts the number of white balls remaining in the urn when all black ball have been removed. By definition we
have the following recurrence for P{Xm,n = k}:

P{Xm,n = k} =
n

n+ pm
P{Xm,n−1 = k}+

pm
n+ pm

P{Xm−1,n+c = k},

with initial values P{X0,n = n} = 1, for n ∈ N0. We also have the following recurrence for the moments
e
[s]
m,n = E(Xs

m,n):

e[s]m,n =
n

n+ pm
e
[s]
m,n−1,m +

pm
n+ pm

e
[s]
m−1,n+c,

with initial values e[s]0,n = ns, for n ∈ N0. Obviously, the recurrence for the moment sequence is almost
identical to the previous recurrence (5). This suggests that, as before, the s-th moment is again a polynomial
of degree s in n, with coefficients depending only on m. The next result makes this precise – we recursively
determine the moments ofXm,n for a given sequenceP = (pm)m∈N0 , and also obtain an alternative description
for the factorial moments of Xm,n, similar to Lemmata 1-2.
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Proposition 3. The s-th moment e[s]m,n = E(Xs
m,n) of the random variable Xm,n satisfies the expansion

e
[s]
m,n =

∑s
`=0 λs,`,mn

k. The values λs,`,m are recursively given by

λs,s,m =

m∏
l=1

pk
pk + s

, and λs,`,m =

m−1∑
k=0

µs,`,m−k

m∏
j=m+1−k

pj
pj + k

,

where

µs,`,m :=
1

pm + `

s∑
k=`+1

(
k

`− 1

)
(−1)k−`−1λs,k,m +

pm
pm + `

s∑
k=`+1

(
k

`

)
ck−`λs,k,m−1.

For ` = 0 we have

λs,0,m =

m−1∑
k=0

µs,0,k, with µs,0,m :=

s∑
k=1

λs,k,mc
k.

The initial values are given by λs,s,0 = 1 and λs,`,0 = 0 for 0 ≤ ` ≤ s− 1.

Furthermore, the s-th factorial moment e(s)m,n = E(X
s
m,n) of the random variable Xm,n satisfies the expan-

sion e(s)m,n =
∑s
k=0 Λs,k,mn

k. The values Λs,k,m are recursively given by Λs,s,m =

m∏
l=1

pk
pk + s

, and

Λs,`,m =

( m∏
h=1

ph
ph + `

)m−1∑
k=0

( k∏
h=1

ph
ph + `

) s∑
j=`+1

(
j

`

)
cj−`Λs,j,k−1,

with initial values are given by Λs,s,0 = 1 and Λs,`,0 = 0 for 0 ≤ ` ≤ s− 1.

The proof of the above result is fully analogous to the proofs of Lemma 1, 2 and is therefore omitted.
We refrain from studying this new generalized urn problem in full generality, and only state the following
immediate consequences.

Corollary 2. In the biased urn model with c = 0 the factorial moments of the random variableXm,n are given
by

E(Xs
m,n) = ns ·

m∏
k=1

pk
pk + s

.

Consequently, for c = 0 and any given sequence P = (pm)m∈N0
, satisfying

∑
m≥1

1
pm

< ∞, one obtains the
following limiting distribution results.

• For m fixed and n → ∞ the normalized random variable Xm,n/n converges in distribution to a
random variable Vm, with convergence of all moments,

Xm,n

n

L−→ Vm, E(
Xs
m,n

ns
)→ E(V sm) =

m∏
l=1

pk
pk + s

.

Moreover, Vm can be written as the exponential of a weighted sum of m independent exponential
random variables εk,

Vm = exp
(
−

m∑
k=1

εk
pk

)
.

• For n fixed and m → ∞ the random variable Xm,n converges in distribution to a random variable
Zn, with convergence of all moments,

Xm,n
L−→ Zn, E(Xs

m,n)→ E(V sm) =

s∑
j=0

nj
{
s

j

} m∏
l=1

pk
pk + j

.

• For min{m,n} → ∞ the normalized random variable Xm,n/n converges in distribution to a random
variable W , with convergence of all moments,

Xm,n

n

L−→W, E(
Xs
m,n

ns
)→ E(W s) =

∞∏
l=1

pk
pk + s

.
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Moreover,W can be written as the exponential of a series of independent exponential random variables
εk
L
= Exp(1),

W = exp
(
−
∞∑
k=1

εk
pk

)
.

Moreover, the random variables Zn/n, and Vm both converge in distribution to W , with convergence of all
moments, for n, m tending to infinity.

Proof. In the case c = 0 the factorial moments e(s)m,n of Ym,n are given by

e(s)m,n =

s∑
k=0

Λs,k,mn
k = nsΛs,s,m = ns

m∏
`=1

p`
p` + s

,

since the values Λs,k,m, 0 ≤ k ≤ s−1, all have a factor c. The assumption
∑
m≥1

1
pm

<∞ on the sequence P
ensures that the product

∏m
`=1

p`
p`+s

converges for s ≥ 1 and m tending to infinity. Consequently, the limiting
distributions are obtained in a straightforward way using Fréchet-Shohat’s moment convergence theorem, see,
e.g, [17]. In order to decompose the random variables Vm and W into sums of exponential random variables,
we proceed as follows. Let ε L= Exp(λ) denote an exponentially distributed random variable with parameter
λ. The Laplace transform E(e−tε) of ε is given by E(e−tε) = 1

1+ t
λ

. Let (ε`)`∈N be independent identically

Exp(1)-distributed random variables. Using the fact that 1
λ · ε

L
= Exp(λ), we obtain

E
(

exp
(
− t ·

m∑
`=1

ε`
p`

))
=

m∏
`=1

E(e
−t ε`p` ) =

m∏
`=1

1

1 + t
p`

.

The moments of the random variables Vm and W are given by

E(V sm) =

m∏
`=1

p`
p` + s

=

m∏
`=1

1

1 + s
p`

, E(W s) =

∞∏
`=1

p`
p` + s

=

∞∏
`=1

1

1 + s
p`

.

Hence, we obtain the stated decompositions Vm
L
= exp

(
−
∑m
k=1

εk
pk

)
, and W L

= exp
(
−
∑∞
k=1

εk
pk

)
. �

Remark 5. A particularly interesting case is the biased sampling without replacement urn M =
(−1 0

0 −1
)

with
sequence P = (pm)m∈N0

= (m2)m∈N0
. The factorial moments and the ordinary moments of Ym,n are given

by

E(Y sm,n) = ns
m∏
k=1

1

1 + s
k2
, E(Y sm,n) =

s∑
j=0

{
s

j

}
nj

m∏
k=1

1

1 + j
k2

.

A closed form expression for the product
∏m
k=1

1
1+ s

k2
is readily obtained using the Euler product form of the

hyperbolic sine function, together with the product form of the Gamma function

sinh(πz) = πz

∞∏
k=1

(
1 +

z2

k2
)
, Γ(z) =

e−γz

z

∞∏
k=1

e
z
n

1 + z
n

,

such that
m∏
k=1

1

1 + s
k2

=
π
√
sΓ(m+ 1)2

sinh(π
√
s)Γ(m+ 1 + i

√
s)Γ(m+ 1− i

√
s)

; moreover,
∞∏
k=1

1

1 + s
k2

=
π
√
s

sinh(π
√
s)
.

Note that the random variable W = exp
(
−
∑∞
k=1

εk
k2 ) arising in the limit min{m,n} → ∞ is closely related

to distributions considered by Biane, Pitman and Yor [1] in the context of Brownian excursions and Theta
functions. For example, one can further show that the random variableW has support [0, 1], and its distribution
function can be expressed in terms of the Jacobi Theta function Θ(q) =

∑
n∈Z(−1)nqn

2

, P{W ≤ q} =
1−Θ(q), 0 ≤ q ≤ 1.
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6. CONCLUSION AND ACKNOWLEDGEMENTS

By applying the method of moments we were able to describe in a quite precise manner the asymptotic
behaviour of a class of 2 × 2-urn models with replacement matrix M =

(−a 0
c −d

)
, a, d, p ∈ N and c = a · p.

In the table below we give a short summary of our findings, using the asymptotic small-o, and equivalence
notations. It is an interesting question to ask whether the approach used for a study of 2 × 2-urn models can
be generalized to an analysis of certain diminishing urn models with more types of balls. Moreover, the biased
variant of the considered urn models has interesting connections to distributions considered by Biane, Pitman
and Yor [1].

n→∞: m→∞: m→∞: m→∞:
m fixed m = o(n

a
d ) m ∼ ρ · n ad , ρ ∈ R+ n = o(m

a
d )

a/d ≤ 1 and c ∈ N Kuramaswamy Weibull Weibull Weibull
a/d > 1 and c ∈ N Kuramaswamy Weibull Moment convergence Moment convergence
a, d ∈ N and c = 0 Kuramaswamy Weibull Characterized by moments Degenerate
The authors want to thank Hsien-Kuei Hwang for useful and encouraging discussions on this topic, and

Svante Janson for pointing out the decompositions into sums of exponentials in Corollary 2. Furthermore,
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