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ABSTRACT. In this work we provide a combinatorial analysis of bucket recursive trees, which have been introduced
previously as a natural generalization of the growth model ofrecursive trees. Our analysis is based on the description
of bucket recursive trees as a special instance of so called bucket increasing trees, which is a family of combinatorial
objects introduced in this paper. Using this combinatorial description we obtain exact and limiting distribution
results for the parameters depth of a specified element, descendants of a specified element and degree of a specified
element.

1. INTRODUCTION

Recursive trees are one of the most natural combinatorial tree models with applications in several fields,
e.g., it has been introduced as a model for the spread of epidemics, for pyramid schemes, for the family trees of
preserved copies of ancient texts and furthermore it is related to the Bolthausen-Sznitman coalescence model
(see, e.g., [5, 10]). A recursive tree withn nodes is an unordered rooted tree, where the nodes are labelled by
distinct integers from{1, 2, . . . , n} in such a way that the sequence of labels lying on the unique path from
the root node to any node in the tree are always forming an increasing sequence. This implies that the root
node is always labelled by1. Due to this description recursive trees are falling into the combinatorial class of
increasing tree families, see, e.g., [1]. It is well known (and easy to show by induction) that there are(n− 1)!
different recursive trees withn nodes. It is of particular interest in applications to assume the random recursive
tree model and to speak about a random recursive tree withn nodes, which means that one of the(n − 1)!
possible recursive trees withn nodes is chosen with equal probability, i.e., the probability that a particular tree
with n nodes is chosen is always1/(n− 1)!.

The usefulness of this tree model relies at least in parts on the fact that there also exists a probabilistic
description of random recursive trees via a simple stochastic growth rule: in order to get a random recursive
treeT ′ with n + 1 nodes one can choose a random recursive treeT with n nodes and choose uniformly at
random one of then nodesv ∈ T as a parent node and attach the noden + 1 to v. Starting with node1 this
leads aftern− 1 insertion steps (inserting successively the labels2, 3, . . . , n) to a random recursive tree withn
nodes and easily explains that there are(n− 1)! different recursive trees withn nodes.

An interesting and natural generalization of random recursive trees has been introduced in [9], which are
called (random) bucket recursive trees. In this model the nodes of a bucket recursive tree are buckets, which
can contain up to a fixed integer amount ofb ≥ 1 elements (= labels). A (probabilistic) description of random
bucket recursive trees is given by a generalization of the stochastic growth rule for ordinary random recursive
trees (which are the special instanceb = 1), where a tree grows by progressive attraction of increasing integer
labels: when inserting elementn+1 into an existing bucket recursive tree containingn elements (i.e., containing
the labels{1, 2, . . . , n}) all n existing elements in the tree compete to attract the elementn + 1, where all
existing elements have equal chance to recruit the new element. If the element winning this competition is
contained in a node with less thanb elements (an unsaturated bucket or node), elementn + 1 is added to this
node, otherwise if the winning element is contained in a nodewith alreadyb elements (a saturated bucket or
node), elementn + 1 is attached to this node as a new bucket containing only the elementn + 1. Starting
with a single bucket as root node containing only element1 leads aftern − 1 insertion steps, where the labels
2, 3, . . . , n are successively inserted according to this growth rule, toa so called random bucket recursive tree
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FIGURE 1. A bucket recursive tree of sizen = 20 with maximal bucket sizeb = 3. The
elementj = 8 has depth1, 8 descendants and out-degree2.

with n elements and maximal bucket sizeb. Of course, the above growth rule for inserting the elementn + 1
could also be formulated by saying that, for an existing bucket recursive treeT with n elements, the probability
that a certain nodev ∈ T attracts the new elementn + 1 is proportional to the number of elements contained
in v, let us sayk with 1 ≤ k ≤ b, and is thus given byk

b
. As the authors of [9] mention this growth rule for

random bucket recursive trees could model a variety of possible recruiting situations, as, e.g, for a business in
the service sector. Different bucketing strategies are naturally used in data structures in computer science, as,
e.g., for the construction ofm-ary search trees (see, e.g., [2]).

The aim of this paper is to give also a combinatorial description of bucket recursive trees generalizing
the one for ordinary recursive trees. We do this by generalizing a class of weighted tree families, so called
simple families of increasing trees, to a class of bucket trees, which we call families of bucket increasing trees.
Bucket recursive trees will then turn out to be a special instance of a bucket increasing tree family. The gain
of the combinatorial description provided here is that the natural combinatorial decomposition of a bucket
recursive tree into a root bucket and its subtrees will lead to a recursive description of several important tree
parameters in random bucket recursive trees. Often this combinatorial decomposition can be translated “almost
automatically” into certain equations (here mainly differential equations) for suitable generating functions.
Thus besides probabilistic techniques, as a description via Ṕolya-Eggenberger urn models or embedding into
continuous time branching processes (see, e.g., [8]), which rely on the stochastic growth rule of random bucket
recursive trees and turn out to be very powerful for a varietyof parameters (like “extremal parameters” as the
so called height of the tree, see [9]), one is able to apply also techniques of analytic combinatorics (see, e.g.,
[4]), which itself turn out to be powerful for a variety of parameters.

We illustrate the usefulness of this combinatorial description for a detailed study of some important “local
parameters” for random bucket recursive trees. In particular we are interested in the effect of bucketing on
“label-based parameters” and we are going to answer the corresponding questions for the random variables
“depth” of elementj (i.e., the number of edges from the root node to the node containing elementj) denoted
byDn,j , the number of “descendants” of elementj (i.e., the total number of elements with a label≥ j contained
in the subtree rooted with the node containing elementj) denoted byYn,j , and the “out-degree” of elementj
(i.e., the out-degree of the node containing elementj) denoted byXn,j in a random bucket recursive tree with
n elements. Since the depth of nodej in a random bucket recursive tree withn elements is independent of
n, which is a consequence of the description via a stochastic growth rule, we may restrict ourselves to a study
of the depth of the largest elementn in a random bucket recursive tree withn elements and thus to the r.v.
Dn := Dn,n. However, for all the parameters mentioned and all fixed maximal-bucket sizesb, we are able to
give a complete characterization of the limiting distribution behaviour and the phase changes appearing for all
regionsj = j(n), where the label1 ≤ j ≤ n is possibly growing with the total numbern of inserted elements.
An example of a bucket recursive tree and the parameters considered is given in Figure 1.

We remark that the effect of bucketing on some “global parameters”, in particular on the distribution of the
r.v. X [k]

n , which counts the number of nodes containing a certain number 1 ≤ k ≤ b of elements in a random
bucket recursive tree withn elements, has been considered and described in [2, 9]. For this parameter it turns
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out that up to a maximal bucket-sizeb ≤ 26 the random vector(X [1]
n , . . . ,X

[b]
n ) satisfies (after suitable normal-

ization) a multivariate normal limit law, but forb ≥ 27 the behaviour changes and an oscillating behaviour of
the variancesV(X

[k]
n ) appears.

The plan of the paper is as follows. In Section 2 we give the combinatorial description of bucket recursive
trees and in Section 3 we give limiting distribution resultsfor the parameters depth, number of descendants and
node-degree of a specified element, which are all obtained byusing this combinatorial description of bucket
recursive trees. The proof of these results is given in Sections 4-6.

With X
(d)
= Y we denote the equality in distribution of two r.v.X andY and we writeXn

(d)−−→ X for the
weak convergence (i.e., convergence in distribution) of a sequence of r.v.Xn to a r.v.X. We denote byHn :=
∑n
k=1

1
k

the harmonic numbers and byH(r)
n :=

∑n
k=1

1
kr the r-th order harmonic numbers. Furthermore,

we use the abbreviationHn+α − Hα :=
∑n
k=1

1
k+α for the continuation of the harmonic numbers for a

complexα ∈ C \ {−1,−2,−3, . . . }. Moreover, the signless Stirling numbers of first kind are denoted by
[

n
m

]

and the Stirling numbers of second kind are denoted by
{

n
m

}

. With xk := x(x − 1) · · · (x − k + 1) and

xk := x(x+ 1) · · · (x+ k − 1) we denote the falling and rising factorials, respectively.

2. COMBINATORIAL DESCRIPTION OF BUCKET RECURSIVE TREES

2.1. Bucket increasing tree families.Our basic objects are rooted ordered trees (the order of the subtrees of
a node is of relevance), where the nodes are “buckets” with aninteger capacityc, with 1 ≤ c ≤ b for a given
maximal integer bucket-sizeb ≥ 1 and the additional restriction, that all internal nodes (i.e., non-leaves) in
the tree must be saturated, while the leaves might be either saturated or unsaturated. We always call a nodev
with capacityc(v) = b “saturated” and otherwise “unsaturated”. A tree defined in this way is called a bucket
ordered tree with maximal bucket-sizeb. It will be convenient to define for bucket ordered trees the size |T |
of a treeT via |T | =

∑

v c(v), wherec(v) ranges over all vertices ofT . An increasing labelling of a bucket
ordered treeT is then a labelling ofT , where the labels{1, 2, . . . , |T |} are distributed amongst the nodes of
T , such that the following conditions are satisfied:(i) every nodev contains exactlyc(v) labels,(ii) the labels
within a node are arranged in increasing order,(iii) each sequence of labels along any path starting at the root
is increasing.

Then a classT of a family of bucket increasing trees with maximal bucket-sizeb can be defined in the follow-
ing way. A sequence of non-negative numbers(ϕk)k≥0 with ϕ0 > 0 and a sequence of non-negative numbers
ψ1, ψ2, . . . , ψb−1 is used to define the weightw(T ) of any bucket ordered treeT byw(T ) :=

∏

v w(v), where
w(v) ranges over all vertices ofT . The weightw(v) of a nodev is given as follows, whered(v) denotes the
out-degree (i.e., the number of children) of nodev:

w(v) =

{

ϕd(v), if c(v) = b,

ψc(v), if c(v) < b.

Thus for saturated nodes the weight is dependent on the out-degree and described by the sequenceϕk, whereas
for unsaturated nodes the weight is dependent on the capacity and described by the sequenceψk.

Furthermore,L(T ) denotes the set of different increasing labellings of the treeT with distinct integers
{1, 2, . . . , |T |}, whereL(T ) :=

∣

∣L(T )
∣

∣ denotes its cardinality. Then the familyT consists of all treesT
together with their weightsw(T ) and the set of increasing labellingsL(T ).

For a given degree-weight sequence(ϕk)k≥0 with a degree-weight generating functionϕ(t) :=
∑

k≥0 ϕkt
k

and a bucket-weight sequenceψ1, . . . , ψb−1, we define now the total weights byTn :=
∑

|T |=n w(T ) · L(T ).

It is then not difficult to show that the exponential generating functionT (z) :=
∑

n≥1 Tn
zn

n! of the total
weightsTn is characterized by the following differential equation oforderb:

db

dzb
T (z) = ϕ

(

T (z)
)

, (1)

T (0) = 0, T (k)(0) = ψk, for 1 ≤ k ≤ b− 1.

This could be done by setting up a recurrence for the total weightsTn:

Tn =
∑

r≥0

ϕr
∑

k1+···+kr=n−b
k1,...,kr≥1

Tk1 . . . Tkr

(

n− b

k1, k2, . . . , kr

)

, for n ≥ b, (2)
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and treat it by introducing the exponential generating function T (z).
However it is advantageous for such enumeration problems todescribe a family of increasing treesT by the

following formal recursive equation:

T = ψ1 · 1 ∪̇ ψ2 · 1 2 ∪̇ · · · ∪̇ ψb−1 · 1 2 b-1... ∪̇
ϕ0 · 1 2 . . . b ∪̇ ϕ1 · 1 2 . . . b × T ∪̇ ϕ2 · 1 2 . . . b × T ∗ T ∪̇ ϕ3 · 1 2 . . . b × T ∗ T ∗ T ∪̇ · · · (3)

= ψ1 · 1 ∪̇ ψ2 · 1 2 ∪̇ · · · ∪̇ ψb−1 · 1 2 b-1... ∪̇ 1 2 . . . b × ϕ
(

T
)

,

where 1 2 ... k denotes a bucket of capacityk labelled by1, 2, . . . , k, × the cartesian product,∗ the partition
product for labelled objects, andϕ(T ) the substituted structure (see, e.g., [13]). Then the differential equa-
tion (1) follows immediately by translating equation (3), but this formal description will turn out to be useful
in particular when considering certain parameters in bucket increasing trees; see Sections 4-6.

2.2. Description of bucket recursive trees as a bucket increasing tree family. In the following we will
show that bucket recursive trees can be considered as a certain bucket increasing tree family. We claim that the
family of bucket recursive trees can be modeled, e.g., by using the following degree-weight and bucket-weight
sequences (the choice of the sequences leading to bucket recursive trees is not unique):

ϕk =
(b− 1)!bk

k!
, for k ≥ 0, ψk = (k − 1)!, for 1 ≤ k ≤ b− 1.

To show that this choice of sequences is actually a model for bucket recursive trees we have to show that this
combinatorial familyT of bucket increasing trees has the same stochastic growth rule as bucket recursive trees,
namely: given an arbitrary bucket increasing treeT ∈ T of size |T | = n, then the probability that a new
elementn+ 1 is attracted by a nodev ∈ T with capacityc(v) = k must be given byk

n
.

We use now the notationT → T ′ to denote thatT ′ is obtained fromT with |T | = n by incorporating
elementn+ 1, i.e., either by attaching elementn+ 1 to a saturated nodev ∈ T at one of thed(v) + 1 possible
positions (recall that bucket increasing trees are per definition ordered trees and thus the order of the subtrees
is of relevance) by creating a new bucket of capacity1 containing elementn + 1 or by adding elementn + 1
to an unsaturated nodev ∈ T by increasing the capacity ofv by 1. If we want to express that nodev ∈ T

has attracted the elementn + 1 leading fromT to T ′ we use the notationT
v−→ T ′. If there exists a stochastic

growth rule for a bucket increasing tree familyT , then it must hold that for a given treeT ∈ T of size|T | = n
and a given nodev ∈ T the probabilitypT (v), which gives the probability that elementn + 1 is attracted by
nodev ∈ T is given as follows:

pT (v) =

∑

T ′∈T :T
v−→T ′

w(T ′)
∑

T̃∈T :T→T̃ w(T̃ )
=

∑

T ′∈T :T
v−→T ′

w(T ′)
w(T )

∑

T̃∈T :T→T̃
w(T̃ )
w(T )

. (4)

For a certain treẽT with T
u−→ T̃ andu ∈ T the quotient of the weight of the trees̃T andT is by the

definition of bucket increasing trees given as follows, where we define for simplicityψb := ϕ0:

w(T̃ )

w(T )
=

{

ψ1
ϕk+1

ϕk
, for c(u) = b and d(u) = k,

ψk+1

ψk
, for c(u) = k < b.

For a given treeT ∈ T we define bymk := |{u ∈ T : c(u) = k < b}| the number of unsaturated nodes ofT
with capacityk < b and bynk := |{u ∈ T : c(u) = b and d(u) = k}| the number of saturated nodes ofT
with out-degreek ≥ 0. It holds then

n =
∑

u∈T
c(u) =

b−1
∑

k=1

kmk + b
∑

k≥0

nk

and (where we use that there arek + 1 possibilities of attaching a new node to a saturated nodeu ∈ T with
out-degreed(u) = k):

∑

T̃∈T :T→T̃

w(T̃ )

w(T )
=

b−1
∑

k=1

mk

ψk+1

ψk
+
∑

k≥0

nk(k + 1)ψ1
ϕk+1

ϕk
.
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Thus if one chooses the weightsψk = (k − 1)! andϕk = (b−1)!bk

k! we obtain further

∑

T̃∈T :T→T̃

w(T̃ )

w(T )
=

b−1
∑

k=1

kmk + ψ1

∑

k≥0

nk(k + 1)
b

k + 1
=

b−1
∑

k=1

kmk + b
∑

k≥0

nk = n.

Furthermore by choosing these weightsϕk andψk we get

∑

T ′∈T :T
v−→T ′

w(T ′)

w(T )
=

{

(k + 1)ψ1
ϕk+1

ϕk
= b, for c(v) = b and d(v) = k,

ψk+1

ψk
= k, for c(v) = k < b,

and thus
∑

T ′∈T :T
v−→T ′

w(T ′)

w(T )
= k, for c(v) = k.

Therefore we have shown that by choosing the weight sequences ψk = (k − 1)! andϕk = (b−1)!bk

k! the
probabilitypT (v) that in a bucket increasing treeT of size|T | = n the nodev with capacityc(v) = k attracts
elementn+ 1 is always given byk

n
, which coincides with the stochastic growth rule for bucketrecursive trees.

We obtain then from equation (1) that the exponential generating functionT (z) :=
∑

n≥1 Tn
zn

n! of the
total-weightTn of bucket recursive trees of sizen satisfies the differential equation

db

dzb
T (z) = (b− 1)!ebT (z), (5)

with initial conditionsT (0) = 0 and dk

dzk T (z)
∣

∣

∣

z=0
= (k−1)!, for 1 ≤ k ≤ b−1. The solution of this equation

is given by

T (z) = log
1

1 − z
=
∑

n≥1

(n− 1)!
zn

n!
. (6)

Hence the total weight of all size-n bucket recursive trees is given byTn = (n− 1)!.

We remark that we have introduced here the more general combinatorial objects “bucket increasing trees” to
describe bucket recursive trees by using specific weight sequences(ϕk)k≥0 andψ1, . . . , ψb−1 for the following
reasons:(i) the combinatorial decompositions used in Sections 4-6 holdfor arbitrary weight sequences and thus
for general bucket increasing trees and seem to be more transparent for them.(ii) it seems to be interesting
(and it is planned by the authors) to study the effect of bucketing also for other increasing tree families, as, e.g.,
for growth models with a “preferential attachment rule” like generalized plane-oriented recursive trees.

3. RESULTS FOR LABEL-BASED PARAMETERS

Here we give our main results for the exact and asymptotic behaviour of the parameters depth of elementn,
the number descendants of elementj and the out-degree of elementj in a random bucket recursive tree of size
n (and fixed maximal bucket-sizeb). In the formulation of the theorems there will appear numbers λi, with
1 ≤ i ≤ b, which are given by the roots of the equation

λb − b! = λ(λ+ 1) · · · (λ+ b− 1) − b! = 0.

To formulate our limiting distribution results we use the notationN (0, 1) for a standard normal distributed
r.v. andΦ(x) for its distribution function. Furthermore we use the notation γ(a, b) andβ(a, b) for a Gamma
and Beta distributed r.v. with parametersa and b, respectively, andNegBin(m, p) for a negative binomial
distributed r.v. with parametersm andp.
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3.1. Results for the depth of the largest element.

Theorem 1. The random variableDn, which denotes the depth of the node that contains elementn in a
random bucket recursive tree of sizen with maximal bucket sizeb, is asymptotically normal distributed with
rate of convergenceO

(

1√
log n

)

:

sup
x∈R

∣

∣

∣

∣

∣

P

{Dn − E(Dn)
√

V(Dn)
≤ x

}

− Φ(x)

∣

∣

∣

∣

∣

= O
( 1√

log n

)

.

Moreover, the expectationE(Dn) and the varianceV(Dn) ofDn have the following asymptotic expansions:

E(Dn) =
1

Hb

log n+ O(1), V(Dn) =
H

(2)
b

H3
b

log n+ O(1).

3.2. Results for the number of descendants of a specified element.

Theorem 2. The exact distribution of the random variableYn,j , which denotes the number of descendants
of elementj in a random bucket recursive tree of sizen with maximal bucket sizeb, is for 2 ≤ j ≤ n and
1 ≤ m ≤ n+ 1 − j given as follows:

P{Yn,j = m} =

b
∑

i=1

b−1
∑

ℓ=0

(

λi+b−1
b−ℓ−1

)(

λi+j−2
j−1

)(

ℓ+m−1
ℓ

)(

n−m−ℓ−1
j−ℓ−2

)

(

b
ℓ

)

(b− ℓ)(Hλi+b−1 −Hλi−1)
(

n−1
j−1

) .

Furthermore, it holdsP{Yn,1 = n} = 1.

Theorem 3. The limiting distribution behaviour of the random variableYn,j is, forn→ ∞ and depending on
the growth ofj, characterized as follows:

• The region forj ≥ 2 fixed. The normalized r.v.Yn,j

n
converges in distribution to a r.v.Yj :

Yn,j

n

(d)−−→ Yj ,
whereYj has densityfj(x):

fj(x) =
b−1
∑

ℓ=0

xℓ(1 − x)j−ℓ−2(j − 1)

(

j − 2

ℓ

) b
∑

i=1

(

λi+b−1
b−ℓ−1

)(

λi+j−2
j−1

)

(

b
ℓ

)

(b− ℓ)(Hλi+b−1 −Hλi−1)
, for 0 < x < 1.

ThusYj is given as a beta distributed random variable:Yj
(d)
= β(Kj , j−Kj), where the first parameter

is given by the random variableKj ∈ {0, 1, . . . , b− 1}, which is distributed as follows:

P{Kj = ℓ} =

b
∑

i=1

(

λi+b−1
b−ℓ−1

)(

λi+j−2
j−1

)

(

b
ℓ

)

(b− ℓ)(Hλi+b−1 −Hλi−1)
, for 0 ≤ ℓ ≤ b− 1.

• The region forj small: j → ∞ such thatj = o(n). The normalized r.v.j
n
Yn,j converges in distribution

to a r.v.Y : j
n
Yn,j

(d)−−→ Y , whereY has densityf(x):

f(x) =
b−1
∑

ℓ=0

e−xxℓ
1

(ℓ+ 1)!Hb

.

ThusY is given as a gamma distributed random variable:Y
(d)
= γ(K, 1), where the first parameter is

given by a Zipf distributed random variableK ∈ {1, . . . , b}: P{K = i} = 1
iHb

.
• The central region forj: j → ∞ such thatj ∼ ρn, with 0 < ρ < 1. The r.v. Yn,j converges in

distribution to a discrete r.v.Yρ: Yn,j
(d)−−→ Yρ, where the probability mass function ofYρ is given by

P{Yρ = m} =
b−1
∑

ℓ=0

(

ℓ+m−
ℓ

)

(ℓ+ 1)Hb

ρℓ+1(1 − ρ)m−1, for m = 1, 2, . . .

ThusYρ − 1 is given as a negative binomial-distributed random variables,Yρ − 1
(d)
= NegBin(K, ρ),

where the first parameter is given by a Zipf distributed random variableK ∈ {1, . . . , b}: P{K = i} =
1
iHb
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• The region forj large: j → ∞ such thatn− j = o(n). The r.v.Yn,j converges to a random variable

Ỹ , which has all its mass concentrated at1: Yn,j
(d)−−→ Ỹ , with P{Ỹ = 1} = 1.

3.3. Results for the node-degree of a specified element.

Theorem 4. The limiting distribution behaviour of the random variableXn,j , which denotes the out-degree of
elementj in a random bucket recursive tree of sizen with maximal bucket sizeb, is, forn→ ∞ and depending
on the growth ofj, characterized as follows:

• The region forj small: j = o(n). The centered and normalized r.v.X∗
n,j is asymptotically Gaussian

distributed:

X∗
n,j :=

Xn,j − b(log n− log j)
√

b(log n− log j)

(d)−−→ N (0, 1).

• The central region forj: j → ∞ such thatj ∼ ρn, with 0 < ρ < 1. The r.v. Xn,j converges in

distribution to a discrete r.v.Xρ: Xn,j
(d)−−→ Xρ, where the probability generating functionpρ(v) :=

E
(

vXρ
)

is given by

pρ(v) = e−b(v−1) log ρ
b−1
∑

ℓ=0

(

b
b−ℓ−1

)

bHb

(

bv−1
b−ℓ−1

) +

b−1
∑

ℓ=0

b−1
∑

k=ℓ+1

(

b
b−ℓ−1

)(

b−ℓ−1
k−ℓ−1

)

(

1

(b−1
b−k)

− 1

(bv−1
b−k )

)

bHb

ρℓ+1(1 − ρ)b−1−ℓ.

• The region forj large: j → ∞ such thatn− j = o(n). The r.v.Xn,j converges to a random variable

X̃, which has all its mass concentrated at0: Xn,j
(d)−−→ X̃, with P{X̃ = 0} = 1.

4. DEPTH OF THE LARGEST ELEMENT

We consider now the random variableDn, which denotes the depth of elementn, i.e., the number of edges
lying on the path from the root node to the node that contains elementn, in a random bucket recursive tree of
sizen, i.e., containingn elements. The maximal bucket size is always denoted byb.

In order to studyDn for bucket recursive trees we consider first the corresponding random variableDn in a
bucket increasing tree family with arbitrary weight sequencesϕk andψk. To do this we introduce the bivariate
generating function

N(z, v) :=
∑

n≥1

∑

m≥0

P{Dn = m}Tn
zn−1

(n− 1)!
vm. (7)

To establish a functional equation forN(z, v) from the formal recursive equation (1) it is convenient to think of
specifically bicolored bucket increasing trees, where the elements contained in the nodes are colored as follows:
elementn in a size-n tree is coloredred and all elements with a label smaller thann are coloredblack. We are
thus interested in the depth of the red element. We consider now a specific bicolored bucket increasing treeT
of sizen and we assume that the root ofT has out-degreer ≥ 1 and the red element is not captured in the root
(thusn > b). Then the red element is located in one of ther subtrees of the root node, let us assume it is in the
first subtree. Let us consider now theser subtrees: after an order preserving relabelling each of thesubtrees
S1, . . . , Sr is itself a bucket increasing tree. The first subtree is againa bicolored tree containingn1 black
elements and one red element, whereas then2, . . . , nr elements in the subtreesS2, . . . , Sr are all colored black.
Since the labels of then1 +n2 + · · ·+nr black elements are distributed over the black elements inS1, . . . , Sr,
each specificr-tupleS1, . . . , Sr of colored increasing trees appears exactly

(

n1+n2+···+nr

n1,n2,...,nr

)

times when starting
from all possible bicolored trees of sizen. Thus a proper description of this combinatorial decomposition is
obtained when introducing univariate and bivariate generating functions, which are exponential in the variable
z that marks the black elements. For the bivariate case additionally the variablev counts the depth of the red
element.

Since the total weight of bicolored bucket increasing treeswith n−1 black elements (and thus sizen), where
the depth of the red element ism, is given byP{Dn = m}Tn their bivariate generating function is exactly given
by N(z, v) defined in (7). Of course, the total weight of bucket increasing trees withn elements, where all
elements are colored black, isTn leading to the exponential generating functionT (z). Thus the decomposition
described above withr− 1 unicolored trees and one bicolored tree yields to the functionT (z)r−1N(z, v). The
fact that the depth of the red element in the tree is one more than the depth of the red element in the subtree
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leads to a factorv. Since the red element can be in the first, second, . . . ,r-th subtree, we additionally get a
factorr. Furthermore, according to (1), the event that the root has out-degreer leads to a factorϕr. Summing
overr ≥ 1 leads to

∑

r≥1 vϕrT (z)r−1N(z, v) = vϕ′(T (z))N(z, v).
Since the elements labelled by1, 2, . . . , b contained in the root node are all colored black (fixingb elements

in a labelled object, i.e., the constructionB = {1} × {2} × · · · × {b} × A, leads tob differentiations for
the corresponding exponential generating functions:db

dzb = A(z)), equation (1) leads now to the following
differential equation of orderb for N(z, v):

∂b

∂zb
N(z, v) = vϕ′(T (z))N(z, v). (8)

The case that the element colored red is contained in the rootof the tree corresponds of course to the initial
conditions, but does not appear (explicitly) in the differential equation itself. The initial conditions of the
differential equation (8) are given as follows:

∂ℓ

∂zℓ
N(z, v)

∣

∣

∣

∣

v=0

=
∑

m≥0

P{Dℓ+1 = m}Tℓ+1v
m = Tℓ+1 = ψℓ+1, for 0 ≤ ℓ ≤ b− 1. (9)

Now we can specify the sequencesϕk = (b−1)!bk

k! andψk = (k− 1)! in above equations and obtain then for
bucket recursive trees the following differential equation together with the initial conditions for the bivariate
generating functionN(z, v):

∂b

∂zb
N(z, v) =

vb!

(1 − z)b
N(z, v),

∂ℓ

∂zℓ
N(z, v)

∣

∣

∣

∣

z=0

= ℓ!, for 0 ≤ ℓ ≤ b− 1. (10)

This homogeneous differential equation is of Cauchy-Euler-type and can be solved by plugging inN(z, v) =
1

(1−z)λ(v) with unspecifiedλ(v) into equation (10). This leads then to the indicial equation

λ(v)b − vb! = 0 or equivalently

(

λ(v) + b− 1

b

)

− v = 0. (11)

For our further analysis we require the behaviour of the solutionsλ(v) in a complex neighbourhood ofv = 1.
For v = 1 the corresponding indicial equation

(

λ+b−1
b

)

− 1 = 0, where we setλ := λ(1), has been studied in
[9] in the context of eigenvalues of a replacement matrix associated to bucket recursive trees. They have shown
that all solutionsλ1, λ2, . . . , λb are simple and when arranging the solutions in descending order of real parts
it holds

1 = λ1 > ℜ(λ2) ≥ ℜ(λ3) ≥ · · · ≥ ℜ(λb).

An application of the implicit function theorem shows then (see, e.g., [11] for the corresponding treatment
of another algebraic equation) that all rootsλ1(v), λ2(v), . . . , λb(v) of (11) are simple in a complex neigh-
bourhood ofv = 1, i.e., for |v − 1| ≤ η with a certainη > 0, and that theλi(v) are analytic as func-
tions ofv. Sinceλi = λi(1) in above arrangement of the solutions in descending order, it further holds that
ℜ(λ1(v)) > ℜ(λi(v)), for all 2 ≤ i ≤ b, in a complex neighbourhood ofv = 1. From these considerations
follows that the general solution of the differential equation (10) is given by

N(z, v) =

b
∑

i=1

βi(v)

(1 − z)λi(v)
, (12)

with certain functionsβi(v), which are specified by the initial conditions. Plugging in the initial conditions
given by (10) into the general solution (12) leads then to thefollowing system ofb linear equations for theb
unknown functionsβi(v), 1 ≤ i ≤ b:

b
∑

i=1

λi(v)
ℓβi(v) = ℓ!, for 0 ≤ ℓ ≤ b− 1.

It can be seen easily by applying Cramer’s rule, which expresses theβi(v) as a quotient of determinants
involving the solutions of the indicial equationλi(v) (where the denominator can be transferred into the
Vandermonde-determinant), that the functionsβi(v) are in a neighbourhood ofv = 1 analytic functions of
v. Moreover, sinceN(z, 1) = T ′(z) = 1

1−z , which follows from the definition, one obtainsβ1(1) = 1 yield-
ing thatℜ(β1(v)) > 0 in a complex neighbourhood ofv = 1. We just remark (without showing here details)
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that by a precise study of the linear system of equations determiningβi(v) (analogous to computations carried
out in Section 5) one can obtain the following explicit formulæ for the functionsβi(v), 1 ≤ i ≤ b:

βi(v) =
1 − v

v(Hλi(v)+b−1 −Hλi(v)−1)(1 − λi(v))
.

In order to get an asymptotic expansion of the coefficients ofzn in N(z, v), which holds uniformly in a
complex neighbourhood ofv = 1, we can simply apply singularity analysis [3] to the representation (12). This
immediately leads to the expansion

[zn]N(z, v) =
β1(v)

Γ(λ1(v))
nλ1(v)−1 ·

(

1 + O
(

nλ2−1+ǫ
)

+ O
(

n−1
)

)

,

which holds uniformly for|v − 1| ≤ η, for certain constantsη, ǫ > 0; recall thatλ2 = λ2(1) is a root of the
indicial equation (11) forv = 1 with second largest real part. Thus we obtain the following expansion of the
moment generating functionE(eDns) of the random variableDn:

E(eDns) = [zn−1]N(z, es) = eU(s) logn+V (s) ·
(

1 + O(nλ2−1+ǫ) + O(n−1)
)

, (13)

with
U(s) = λ1(e

s), and V (s) = log
(

β1(e
s)
)

− log
(

Γ(λ1(e
s))
)

, (14)

which holds uniformly in a complex neighbourhood ofs = 0. A direct application of the so-called quasi-
power theorem (see [7]) leads then from (13) to the central limit theorem stated in Theorem 1 together with the
following asymptotic expansions of the expectation and thevariance ofDn:

E(Dn) = U ′(0) log n+ O(1), V(Dn) = U ′′(0) log n+ O(1).

From (14) we immediately get thatU ′(0) = λ′1(1) andU ′′(0) = λ′′1(1) + λ′1(1). To compute these values
one differentiates the indicial equation (11) w.r.t.v once or twice and evaluates atv = 1, where one takes into
account thatλ1(1) = 1. One obtains then

λ′1(v) =
b!

λ1(v)b
∑b−1
k=0

1
λ1(v)+k

, λ′′1(v) = −
2(λ′1(v))

2
∑

0≤i<j≤b−1
1

(λ1(v)+i)(λ1(v)+j)
∑b−1
k=0

1
λ1(v)+k

,

and thus after some easy manipulations with harmonic numbers:

λ′(1) =
1

Hb

, λ′′(1) =
H

(2)
b

H3
b

− 1

Hb

.

This completes the proof of Theorem 1.

5. NUMBER OF DESCENDANTS OF A SPECIFIED ELEMENT

5.1. The generating functions approach.We consider now the random variableYn,j , which denotes the
number of descendants of elementj, i.e., the total number of elements with a label≥ j contained in the subtree
rooted with the node containing elementj, in a random bucket recursive tree (with maximal bucket sizeb) of
sizen.

In order to studyYn,j for bucket recursive trees we consider first the corresponding random variableYn,j
in a bucket increasing tree family with arbitrary weight sequencesϕk andψk. To do this we introduce the
trivariate generating function

N(z, u, v) :=
∑

k≥0

∑

j≥1

∑

m≥0

P{Yk+j,j = m}Tk+j
zj−1

(j − 1)!

uk

k!
vm. (15)

To establish a functional equation forN(z, u, v) from the formal recursive equation (1) it is now convenient to
think of specifically tricolored bucket increasing trees, where the coloring is as follows: exactly one element is
coloredred, all elements with a label smaller than the red element are coloredblack, and all elements with a
label larger than the red element are coloredwhite. We are then interested in the number of descendants of the
red element, i.e., the number of black elements in the subtree rooted with the node containing the red element.
Let us consider such a tricolored bucket increasing treeT and assume that the out-degree of the root node ofT
is r ≥ 1.
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We further assume that the red element ofT is not contained in the root node. Then the red element is
located in one of ther subtrees of the root ofT ; let us assume that it is in ther-th subtree. Let us now consider
theser subtrees. After order preserving relabellings, each subtreeS1, . . . , Sr is an bucket increasing tree by
itself. The first subtree is again a tricolored bucket increasing tree with one red,j1 black andk1 white elements,
whereas the remainingr − 1 subtrees are only bicolored in such a way that the elements with theji smallest
labels (with2 ≤ i ≤ r and0 ≤ ji ≤ |Si|) are colored black and the remainingki elements in the subtrees
are colored white. Then such a specificr-tupleS1, . . . , Sr of colored bucket increasing trees appears exactly
(

j1+···+jr
j1,...,jr

)(

k1+···+kr

k1,...,kr

)

times, where the labels of thej1 + · · · + jr black elements and thek1 + · · · + kr white
elements are distributed over the black and white elements in S1, . . . , Sr in an order preserving fashion.

Of course, this corresponds to a tricolored bucket increasing treeT of size |T | = j + k + 1 with j =
j1 + · · · + jr black elements andk = k1 + · · · + kr white elements.

We introduce now generating functions, which are exponential in both variablesz andu, wherez marks the
black elements andumarks the white elements,f(z, u) =

∑

j,k≥0 fj,k
zjuk

j!k! for sequencesfj,k andf(z, u, v) =
∑

j,k,m≥0 fj,k,m
zjuk

j!k! v
m for sequencesfj,k,m, wherev counts the number of descendants of the red element.

With this setting, the total weight of all suitably tricolored bucket increasing trees withj black andk white
elements, where the number of descendants of the red elementis exactlym, is given byP{Yj+k+1,j+1 =
m}Tj+k+1, and thus its generating function is given by

∑

k≥0

∑

j≥1

∑

m≥0

P{Yk+j,j = m}Tk+j
zj−1uk

(j − 1)!k!
vm = N(z, u, v),

whereas the total weight of suitably bicolored bucket increasing trees withj black andk white elements is
Tk+j and its generating function is given by

∑

k≥0

∑

j≥0

Tk+j
zjuk

j!k!
= T (z + u).

Ther−1 bicolored trees and the tricolored bucket tree lead then to the expressionT (z+u)r−1N(z, u, v). Since
the red element can be in the first, second,. . . , r-th subtree, we additionally get a factorr. Furthermore, the
event that the root has out-degreer leads to a factorϕr. Summing over allr ≥ 1 leads thus to

∑

r≥1 rϕrT (z+

u)r−1N(z, u, v) = ϕ′(T (z + u))N(z, u, v). Since the elements labelled by1, 2, . . . , b contained in the root
node are all colored black (which again means thatb elements in a labelled object are fixed), equation (1) leads
thus to the following differential equation of orderb for N(z, u, v):

∂b

∂zb
N(z, u, v) = ϕ′(T (z + u))N(z, u, v). (16)

The cases, where the red element is contained in the root of the tree do not appear explicitly in the differential
equation itself, but will be described by the initial conditions. SinceP{Yn,j = n+ 1 − j} = 1, for 1 ≤ j ≤ b
(if elementj is contained in the root node then all elements with a label≥ j are descendants ofj), we obtain
the following initial conditions, for0 ≤ ℓ ≤ b− 1:

∂ℓ

∂zℓ
N(z, u, v)

∣

∣

∣

∣

z=0

=
∑

k≥0

∑

m≥0

P{Yk+ℓ+1,ℓ+1 = m}Tk+ℓ+1
uk

k!
vm =

∑

k≥0

Tk+ℓ+1
uk

k!
vk+1

= v
∑

n≥ℓ+1

Tn
(uv)n−ℓ−1

(n− ℓ− 1)!
= vT (ℓ+1)(uv). (17)

Now we can specify the sequencesϕk = (b−1)!bk

k! andψk = (k − 1)! in equations (16) and (17) and obtain
then for bucket recursive trees the following differentialequation together with the initial conditions for the
trivariate generating functionN(z, u, v):

∂b

∂zb
N(z, u, v) =

b!

(1 − z − u)b
N(z, u, v),

∂ℓ

∂zℓ
N(z, u, v)

∣

∣

∣

∣

z=0

=
vℓ!

(1 − uv)ℓ+1
, for 0 ≤ ℓ ≤ b−1. (18)
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5.2. The exact distribution. In order to obtain the exact distribution of the r.v.Yn,j we will give the exact
solution of the homogeneous differential equation (18), which is again of Cauchy-Euler-type. Plugging in
N(z, u, v) = 1

(1−z−u)λ with unspecifiedλ into equation (18) leads to the indicial equation

λb − b! = 0 or equivalently

(

λ+ b− 1

b

)

− 1 = 0. (19)

As mentioned in Section 4 this equation has been studied in [9], where it has been shown that all solutions
λ1, λ2, . . . , λb are simple and when arranging them in descending order of real parts it holds1 = λ1 >
ℜ(λ2) ≥ ℜ(λ3) ≥ · · · ≥ ℜ(λb). Thus the general solution of (18) is given by

N(z, u, v) =
b
∑

i=1

βi(u, v)

(1 − z − u)λi
, (20)

with certain functionsβi(u, v), which are specified by the initial conditions as given in (18). When plugging in
the initial conditions into (20) this leads to the followingsystem of linear equations for the unknown functions
βi(u, v), 1 ≤ i ≤ b:

b
∑

i=1

λℓiβi(u, v)

(1 − u)λi+ℓ
=

vℓ!

(1 − uv)ℓ+1
, for 0 ≤ ℓ ≤ b− 1.

Using the abbreviations

γi := γi(u, v) :=
βi(u, v)

(1 − u)λi
, and sℓ := sℓ(u, v) :=

(1 − u)ℓv

(1 − uv)ℓ+1
, (21)

we obtain the following system of linear equations for the unknownγi, 1 ≤ i ≤ b:
b
∑

i=1

(

λi + ℓ− 1

ℓ

)

γi = sℓ, for 0 ≤ ℓ ≤ b− 1. (22)

To get explicit solutions for theγi we apply Cramer’s rule to (22) and write the solutionsγi, 1 ≤ i ≤ b, as a
quotient of determinants:

γi =

λ0
1 . . . λ0

i−1 0!s0 λ0
i+1 . . . λ0

b

λ1
1 . . . λ1

i−1 1!s1 λ1
i+1 . . . λ1

b
...

...
...

...
...

λb−1
1 . . . λb−1

i−1 (b− 1)!sb−1 λb−1
i+1 . . . λb−1

b

·

λ0
1 . . . λ0

i . . . λ0
b

λ1
1 . . . λ1

i . . . λ1
b

...
...

...

λb−1
1 . . . λb−1

i . . . λb−1
b

−1

. (23)

Using elementary relations between the Stirling numbers and the factorials (see, e.g., [6]) and the abbrevia-
tion

cℓ :=

ℓ
∑

k=0

{

ℓ

k

}

(−1)ℓ−kk!sk, for 0 ≤ ℓ ≤ b− 1, (24)

we obtain from (23) after elementary transformations the following representation of the solutionsγi, 1 ≤ i ≤
b:

γi = Q
[1]
i ·Q[2]

i ,

whereQ[1]
i ,Q[2]

i are the following quotients of determinants:

Q
[1]
i :=

λ0
1 . . . λ0

i−1 λ0
i+1 . . . λ0

b

λ1
1 . . . λ1

i−1 λ1
i+1 . . . λ1

b
...

...
...

...
λb−2

1 . . . λb−2
i−1 λb−2

i+1 . . . λb−2
b

·

λ0
1 . . . λ0

i . . . λ0
b

λ1
1 . . . λ1

i . . . λ1
b

...
...

...
λb−1

1 . . . λb−1
i . . . λb−1

b

−1

Q
[2]
i :=

λ0
1 . . . λ0

i−1 c0 λ0
i+1 . . . λ0

b

λ1
1 . . . λ1

i−1 c1 λ1
i+1 . . . λ1

b
...

...
...

...
...

λb−1
1 . . . λb−1

i−1 cb−1 λb−1
i+1 . . . λb−1

b

·

λ0
1 . . . λ0

i−1 λ0
i+1 . . . λ0

b

λ1
1 . . . λ1

i−1 λ1
i+1 . . . λ1

b
...

...
...

...
λb−2

1 . . . λb−2
i−1 λb−2

i+1 . . . λb−2
b

−1

.
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SinceQ[1]
i is a quotient of Vandermonde-determinants it is evaluated easily:

Q
[1]
i =

∏

1≤p<q≤b,i 6=p,i 6=q(λq − λp)
∏

1≤p<q≤b(λq − λp)
=

(−1)b−i
∏

1≤p≤b,i 6=p(λi − λp)
.

When expanding thei-th column in the numerator ofQ[2]
i we obtain

Q
[2]
i =

b−1
∑

ℓ=0

cℓ(−1)ℓ+1+iqi,ℓ,

with

qi,ℓ :=

λ0
1 . . . λ0

i−1 λ0
i+1 . . . λ0

b
...

...
...

...
λℓ−1

1 . . . λℓ−1
i−1 λℓ−1

i+1 . . . λℓ−1
b

λℓ+1
1 . . . λℓ+1

i−1 λℓ+1
i+1 . . . λℓ+1

b
...

...
...

...
λb−1

1 . . . λb−1
i−1 λb−1

i+1 . . . λb−1
b

·

λ0
1 . . . λ0

i−1 λ0
i+1 . . . λ0

b

λ1
1 . . . λ1

i−1 λ1
i+1 . . . λ1

b
...

...
...

...
λb−2

1 . . . λb−2
i−1 λb−2

i+1 . . . λb−2
b

−1

.

These considerations lead to the following representationof γi:

γi =
1

∏

1≤p≤b,i 6=p(λi − λp)

b−1
∑

ℓ=0

cℓ(−1)b−1−ℓqi,ℓ, for 1 ≤ i ≤ b. (25)

Next we are going to simplify the expressions appearing in (25). The quotient of determinantsqi,ℓ has the
following representation (this can be obtained, e.g., whenwriting qi,ℓ as a Schur-function and applying the
Jacobi-Trudi-identity, see, e.g., [12]):

qi,ℓ = eb−1−ℓ(λ1, . . . , λi−1, λi+1, . . . , λb), for 0 ≤ ℓ ≤ b− 1, (26)

whereer(x1, . . . , xn), denotes ther-th elementary symmetric polynomial with variablesx1, . . . , xn which is
defined ase0 = 1, ander =

∑

i1<i2<···<ir xi1xi2 · · ·xir , for integersr ≥ 1.

Furthermore by using the factorizationλb − b! = (λ− λ1)(λ− λ2) · · · (λ− λb) we obtain the identity

(λ− λi)

b−1
∑

ℓ=0

(−1)b−1−ℓeb−1−ℓ(λ1, . . . , λi−1, λi+1, . . . , λb)λ
ℓ = λb − b!.

This leads to the following evaluation of the elementary symmetric polynomials appearing in (26):

(−1)b−1−ℓeb−1−ℓ(λ1, . . . , λi−1, λi+1, . . . , λb) = [λℓ]
λb − b!

λ− λi
= [λℓ]

(λb − λbi
λ− λi

+
λbi − b!

λ− λi

)

= [λℓ]
λb − λbi
λ− λi

= [λℓ]

∑b
k=1

[

b
k

]

(λk − λki )

λ− λi
= [λℓ]

b−1
∑

ℓ=0

λℓ
b
∑

k=ℓ+1

[

b

k

]

λk−1−ℓ
i =

b
∑

k=ℓ+1

[

b

k

]

λk−1−ℓ
i ,

and thus to the formula

qi,ℓ = (−1)b−1−ℓ
b
∑

k=ℓ+1

[

b

k

]

λk−1−ℓ
i . (27)

Furthermore when considering the derivative of the indicial polynomialP (λ) := λb − b! =
∏b
p=1(λ− λp)

w.r.t. λ and evaluating atλi we obtain the identity

P ′(λi) = λbi

b−1
∑

k=0

1

λi + k
= b!(Hλi+b−1 −Hλi−1) =

∏

1≤p≤b,i 6=p
(λi − λp). (28)

Plugging in equations (24), (27) and (28) into (25) we obtainafter easy manipulations the following formula
for γi:

γi =
1

b!(Hλi+b−1 −Hλi−1)

b−1
∑

r=0

r!srAb,r(λi), (29)
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where the functionAb,r(x) is defined as follows:

Ab,r(x) :=
b−1
∑

ℓ=r

{

ℓ

r

}

(−1)ℓ−r
b
∑

k=ℓ+1

[

b

k

]

xk−1−ℓ.

By applying basic identities for Stirling numbers, which can be found, e.g., in [6], one obtains that the
functionAb,r(x) satisfies the recurrence

Ab,r(x) = (b− 1 + x)Ab−1,r(x), for b− 1 > r,

with initial valueAr+1,r(x) = 1. Thus when iterating this equation we get the following simple expression for
Ab,r(x):

Ab,r(x) = (b− 1 + x)b−1−r. (30)

Combining (29) and (30) we obtain thus the following exact formulæ for the unknown functionsγi:

γi =

b−1
∑

r=0

sr

(

λi+b−1
b−r−1

)

(

b
r

)

(b− r)(Hλi+b−1 −Hλi−1)
, for 1 ≤ i ≤ b. (31)

Together with (20) and (21) we obtain then the following exact expression for the trivariate generating
functionN(z, u, v):

N(z, u, v) =

b
∑

i=1

b−1
∑

ℓ=0

ηi,ℓ (1 − u)λi+ℓv

(1 − uv)ℓ+1(1 − z − u)λi
, (32)

with constants

ηi,ℓ :=

(

λi+b−1
b−ℓ−1

)

(

b
ℓ

)

(b− ℓ)(Hλi+b−1 −Hλi−1)
, (33)

whereλ1, . . . , λb are the roots of the indicial equationλb − b! = 0 arranged in decreasing order of their real
parts. We remark that due toλ1 = 1 we obtain in particularη1,ℓ = 1

(ℓ+1)Hb
.

Thus, using the definition (15), we immediately obtain by extracting coefficients from (32) an exact formula
for the probability that the numberYn,j of descendants of elementj in a bucket recursive tree of sizen is equal
tom:

P{Yn,j = m} =
(j − 1)!(n− j)!

Tn
[zj−1un−jvm]N(z, u, v)

=
1

(

n−1
j−1

)

b
∑

i=1

b−1
∑

ℓ=0

ηi,ℓ[z
j−1un−jvm]

(1 − u)λi+ℓv

(1 − uv)ℓ+1(1 − z − u)λi

=
1

(

n−1
j−1

)

b
∑

i=1

b−1
∑

ℓ=0

ηi,ℓ

(

j − 1 + λi − 1

j − 1

)

[un−jvm]
v

(1 − u)j−1−ℓ(1 − uv)ℓ+1

=
1

(

n−1
j−1

)

b
∑

i=1

b−1
∑

ℓ=0

ηi,ℓ

(

j − 1 + λi − 1

j − 1

)(

m− 1 + ℓ

ℓ

)

[un−j−m+1]
1

(1 − u)j−1−ℓ

=
1

(

n−1
j−1

)

b
∑

i=1

b−1
∑

ℓ=0

ηi,ℓ

(

j − 1 + λi − 1

j − 1

)(

n− 1 + ℓ

ℓ

)(

n−m− ℓ− 1

j − 2 − ℓ

)

=

b
∑

i=1

b−1
∑

ℓ=0

(

λi+b−1
b−ℓ−1

)(

λi+j−2
j−1

)(

ℓ+m−1
ℓ

)(

n−m−ℓ−1
j−ℓ−2

)

(

b
ℓ

)

(b− ℓ)(Hλi+b−1 −Hλi−1)
(

n−1
j−1

) , for j ≥ 2 and 1 ≤ m ≤ n+ 1 − j. (34)

Of course, it also holdsP{Yn,1 = n} = 1 and this completes the proof of Theorem 2.
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5.3. Limiting distribution results. An advantage of the approach presented leading to the exact distribution
of the r.v.Yn,j under consideration is that by using these exact results theasymptotic behaviour ofYn,j can be
described in a quite precise manner, wherej = j(n), with 1 ≤ j ≤ n, is possibly growing inn. Of course,
the asymptotic behaviour ofYn,j is dependant on the “growth function”j(n) and leads to four regions, where
different limiting distributions are occuring. Since the asymptotic results are essentially following from (34)
by applying Stirling’s asymptotic formula for the factorials:

n! = nne−n
√

2πn
(

1 + O(n−1)
)

, (35)

we will not carry out here every step of these straightforward computations.

The region forj fixed. Stirling’s formula (35) leads for fixedj ≥ 2 from the exact formula (34) immediately
to the following asymptotic evaluation:

P{Yn,j = m} =
1

n

b
∑

i=1

b−1
∑

ℓ=0

ηi,ℓ

(

λi + j − 2

j − 1

)

(j − 1)

(

j − 2

ℓ

)

(m

n

)ℓ(

1 − m

n

)j−ℓ−2

×
(

1 + O
( 1

m

)

+ O
( 1

n−m

)

)

.

Thus, settingx := m
n

, we obtain for fixedj ≥ 2 the local expansion

P{x ≤ Yn,j

n
< x+ 1

n
}

1
n

= fj(x)
(

1 + O
( 1

xn

)

+ O
( 1

(1 − x)n

)

)

,

with

fj(x) :=

b
∑

i=1

b−1
∑

ℓ=0

ηi,ℓ(j − 1)

(

λi + j − 2

j − 1

)(

j − 2

ℓ

)

xℓ(1 − x)j−ℓ−2

=

b−1
∑

ℓ=0

xℓ(1 − x)j−ℓ−2(j − 1)

(

j − 2

ℓ

) b
∑

i=1

(

λi+b−1
b−ℓ−1

)(

λi+j−2
j−1

)

(

b
ℓ

)

(b− ℓ)(Hλi+b−1 −Hλi−1)
.

This implies that one obtains forn−
1
2 ≤ x ≤ 1 − n−

1
2 the uniform local approximation

P{x ≤ Yn,j

n
< x+ 1

n
}

1
n

= fj(x)
(

1 + O(n−
1
2 )
)

,

which also shows for the regionj fixed the corresponding limiting distribution result in Theorem 3.

The region forj small: j → ∞ such thatj = o(n). For this region Stirling’s formula (35) gives the asymptotic
expansion

P{Yn,j = m} =

b−1
∑

ℓ=0

(

ℓ+m−1
ℓ

)(

n−m−ℓ−1
j−ℓ−1

)

(

n−1
j−1

) η1,ℓ
(

1 + O(j−1) + O(jℜλ2−1)
)

=
b−1
∑

ℓ=0

(

ℓ+m−1
ℓ

)(

n−m−ℓ−1
j−ℓ−2

)

(

n−1
j−1

)

(ℓ+ 1)Hb

(

1 + O(j−1) + O(jℜλ2−1)
)

=
j

n

b−1
∑

ℓ=0

(n−m)!(n− j)!

n!(n−m− j)!

(mj

n

)ℓ 1

(l + 1)!Hb

×
(

1 + O(j−1) + O(jℜλ2−1) + O(m−1) + O(mn−1) + O(jn−1)
)

=
j

n

b−1
∑

ℓ=0

e−
jm
n

(jm

n

)ℓ 1

(ℓ+ 1)!Hb

×
(

1 + O(j−1) + O(jℜλ2−1) + O(m−1) + O(mn−1) + O(jn−1) + O(jm2n−2) + O(j2mn−2)
)

.
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Settingx := jm
n

we obtain forj → ∞ with j = o(n) the local expansion

P{x ≤ j
n
Yn,j < x+ j

n
}

j
n

= f(x)

×
(

1 + O
(

j−1
)

+ O
(

jℜλ2−1
)

+ O
( j

n

)

+ O
(x

j

)

+ O
(x2

j

)

+ O
(jx

n

)

+ O
( j

xn

)

)

,

with

f(x) :=
b−1
∑

ℓ=0

e−xxℓ
1

(ℓ+ 1)!Hb

.

For
√

j
n
≤ x ≤ min

(

j
1
4 ,
√

n
j

)

this gives the uniform local approximation

P{x ≤ j
n
Yn,j < x+ j

n
}

j
n

= f(x)
(

1 + O
(

j−
1
2

)

+ O
(

jℜλ2−1
)

+ O
(

√

j

n

)

)

,

which leads for the regionj → ∞ such thatj = o(n) to the corresponding limiting distribution result in
Theorem 3.

The central region forj: j → ∞ such thatj ∼ ρn, with 0 < ρ < 1. For ǫ ≤ j
n
≤ 1 − ǫ, with an arbitrary

ǫ > 0, we obtain with (35) the asymptotic expansion

P{Yn,j = m} =
b−1
∑

ℓ=0

(

ℓ+m−1
ℓ

)(

n−m−ℓ−1
j−ℓ−2

)

(

n−1
j−1

)

(ℓ+ 1)Hb

(

1 + O(n−1) + O(nℜλ2−1)
)

,

which leads for everym ≥ 1 fixed to the following local approximation:

P{Yn,j = m} =

b−1
∑

ℓ=0

(

ℓ+m−1
ℓ

)

(ℓ+ 1)Hb

( j

n

)ℓ+1(
1 − j

n

)m−1(
1 + O(n−1)

)

.

Thus, for j
n
∼ ρ with 0 ≤ ρ < 1, one obtains that for everym ≥ 1:

P{Yn,j = m} →
b−1
∑

ℓ=0

(

ℓ+m−1
ℓ

)

(ℓ+ 1)Hb

ρℓ+1(1 − ρ)m−1,

which shows the discrete limit law for this region presentedin Theorem 3.

The region forj large: j → ∞ such thatn−j = o(n). Forn−j = o(n) equation (35) leads to the asymptotic
expansion

P{Yn,j = 1} =
b−1
∑

ℓ=0

(

n−ℓ−2
j−ℓ−2

)

(

n−1
j−1

)

(ℓ+ 1)Hb

(

1 + O(n−1) + O(nℜλ2−1)
)

.

Since we further obtain for this region the expansion
(

n−ℓ−2
j−ℓ−2

)

(

n−1
j−1

) =
( j

n

)ℓ+1(
1 + O(n−1)

)

= 1 + O
(n− j

n

)

= 1 + o(1),

we have shown that for the regionj → ∞ such thatj = o(n) it holds

P{Yn,j = 1} → 1,

and this proves the degenerate limit law in the corresponding part of Theorem 3.
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6. NODE-DEGREE OF A SPECIFIED ELEMENT

6.1. The generating functions approach.Now we consider the random variableXn,j , which denotes the
out-degree of elementj, i.e., the out-degree of the node containing elementj, in a random bucket recursive tree
(with maximal bucket sizeb) of sizen. Again, in order to studyXn,j for bucket recursive trees we consider
first the corresponding random variableXn,j in a bucket increasing tree family with arbitrary weight sequences
ϕk andψk and introduce the trivariate generating function

N(z, u, v) :=
∑

k≥0

∑

j≥1

∑

m≥0

P{Xk+j,j = m}Tk+j
zj−1

(j − 1)!

uk

k!
vm. (36)

It can be verified easily that the arguments in Subsection 5.1for the r.v. Yn,j leading to the differential equa-
tion (16) for the corresponding generating function (15) also work forXn,j and the generating function (36).
Thus the trivariate generating function defined by (36) alsosatisfies the differential equation (16) (but, of course,
with different initial conditions):

∂b

∂zb
N(z, u, v) = ϕ′(T (z + u))N(z, u, v). (37)

We remark that one could also argue thatN(z, u, v) defined by (36) has to satisfy (37), sinceXn,j andYn,j sat-
isfy, apart from different initial values, the same recurrence, which is obtained from the natural decomposition
(3) of bucket increasing trees.

As we will see, in order to obtain the initial conditions for the generating functionN(z, u, v) we have to
study the degree distribution of the root of a random bucket increasing tree withn elements. LetRn denote the
random variable counting the out-degree of the root andR(u, v) the following bivariate generating function:

R(u, v) :=
∑

n≥1

∑

m≥0

P{Rn = m}Tn
un

n!
vm. (38)

By using the combinatorial decomposition (3) of bucket increasing trees one easily obtains thatR(u, v) satisfies
the following differential equation:

∂b

∂ub
R(u, v) =

∑

k≥0

ϕkv
k(T (u))k = ϕ(vT (u)), (39)

with initial conditions

R(0, v) = 0, and
∂ℓ

∂uℓ
R(u, v)

∣

∣

∣

∣

u=0

=
∑

m≥0

P{Rℓ = m}Tℓvm = Tℓ, for 1 ≤ ℓ ≤ b− 1.

We further use thatRn
(d)
= Xn,j , for 1 ≤ j ≤ b (elements1, 2, . . . , b are all contained in the root node),

which gives the following description of the initial conditions corresponding to (37):

∂ℓ

∂zℓ
N(z, u, v)

∣

∣

∣

∣

z=0

=
∑

k≥0

∑

m≥0

P{Xk+ℓ+1,ℓ+1 = m}Tk+ℓ+1
uk

k!
vm

=
∑

k≥0

∑

m≥0

P{Rk+ℓ+1 = m}Tk+ℓ+1
uk

k!
vm =

∂ℓ+1

∂uℓ+1
R(u, v), for 0 ≤ ℓ ≤ b− 1.

Now we specify our findings for the instance of bucket recursive trees and obtain thatN(z, u, v) satisfies
the following differential equation together with the initial conditions:

∂b

∂zb
N(z, u, v) =

b!

(1 − z − u)b
N(z, u, v),

∂ℓ

∂zℓ
N(z, u, v)

∣

∣

∣

∣

z=0

=
∂ℓ+1

∂uℓ+1
R(u, v), for 0 ≤ ℓ ≤ b− 1.

(40)
Moreover, the functionR(u, v) satisfies the differential equation

∂b

∂ub
R(u, v) =

(b− 1)!

(1 − u)bv
, (41)
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with initial conditions

R(0, v) = 0, and
∂ℓ

∂uℓ
R(u, v)

∣

∣

∣

∣

u=0

= (ℓ− 1)!, for 1 ≤ ℓ ≤ b− 1. (42)

Of course, equation (41) can be solved by integration and leads after adapting to the initial conditions (42)
to the following explicit solution:

R(u, v) =
1

b
(

bv−1
b

)

(1 − u)bv−b
+

1

b

b−1
∑

k=1

(

b

k

)

(

1
(

b−1
b−k
) − 1

(

bv−1
b−k

)

)

uk − 1

b
(

bv−1
b

) . (43)

6.2. The exact distribution. Since the differential equation (40) coincides apart from the initial conditions
with equation (18) we can proceed as in Subsection 5.2 to obtain an exact solution ofN(z, u, v). We obtain
thus

N(z, u, v) =
b
∑

i=1

βi(u, v)

(1 − z − u)λi
(44)

for the general solution of equation (40) (with unspecified functionsβi(u, v)). Adapting to the initial conditions
leads to the following system of linear equations for the functionsβi(u, v), for 1 ≤ i ≤ b:

b
∑

i=1

(

λi + ℓ− 1

ℓ

)

γi(u, v) = sℓ(u, v), for 0 ≤ ℓ ≤ b− 1, (45)

where we used the abbreviations

γi(u, v) :=
βi(u, v)

(1 − u)λi
, and sℓ(u, v) :=

(1 − u)ℓ

ℓ!

∂ℓ+1

∂uℓ+1
R(u, v).

This system of linear equations (45) has been solved in Subsection 5.2 leading to the solutions

γi(u, v) =
b−1
∑

ℓ=0

sℓ(u, v)

(

λi+b−1
b−ℓ−1

)

(

b
ℓ

)

(b− ℓ)(Hλi+b−1 −Hλi−1)
, for 1 ≤ i ≤ b.

Therefore we obtain the following solution ofN(z, u, v) defined by (36):

N(z, u, v) =
b
∑

i=1

b−1
∑

ℓ=0

(

λi+b−1
b−ℓ−1

)

ℓ!
(

b
ℓ

)

(b− ℓ)(Hλi+b−1 −Hλi−1)

(1 − u)λi+ℓ

(1 − z − u)λi

∂ℓ+1

∂uℓ+1
R(u, v)

=

b
∑

i=1

b−1
∑

ℓ=0

(

λi+b−1
b−ℓ−1

)

ℓ!
(

b
ℓ

)

(b− ℓ)(Hλi+b−1 −Hλi−1)

(1 − u)λi+ℓ

(1 − z − u)λi
(46)

×
(

(

b
ℓ+1

)

(ℓ+ 1)!

b
(

bv−1
b−ℓ−1

)

(1 − u)bv−b+ℓ+1
+

(

b
ℓ+1

)

(ℓ+ 1)!

b

b−1
∑

k=ℓ+1

(

b− ℓ− 1

k − ℓ− 1

)

(

1
(

b−1
b−k
) − 1

(

bv−1
b−k

)

)

uk−ℓ−1

)

.

Extracting coefficients from (46) leads thus directly to thefollowing exact solution of the probability gener-
ating functionpn,j(v) :=

∑

m≥0 P{Xn,j = m}vm = 1

(n−1
j−1)

[zj−1un−j ]N(z, u, v) of the out-degreeXn,j of

elementj in a random bucket recursive tree of sizen:

pn,j(v) =
b
∑

i=1

b−1
∑

ℓ=0

(

λi+b−1
b−ℓ−1

)(

j−2+λi

j−1

)(

n+bv−b−1
n−j

)

b(Hλi+b−1 −Hλi−1)
(

n−1
j−1

)(

bv−1
b−ℓ−1

)

+

b
∑

i=1

b−1
∑

ℓ=0

b−1
∑

k=ℓ+1

(

λi+b−1
b−ℓ−1

)(

b−ℓ−1
k−ℓ−1

)

(

1

(b−1
b−k)

− 1

(bv−1
b−k )

)

(

j−2+λi

j−1

)(

n−k−1
n−j−k+ℓ+1

)

b(Hλi+b−1 −Hλi−1)
(

n−1
j−1

) . (47)
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6.3. Limiting distribution results. Again, since we have a detailed description of the behaviourof the r.v.
Xn,j (now via the probability generating functionpn,j(v)) we are also able to give a quite detailed description
of the limiting behaviour ofXn,j for all regions1 ≤ j ≤ n depending on the growth ofj = j(n). Essentially
we also only require Stirling’s formula (35) for the factorials together with asymptotic equivalents and bounds
for the harmonic numbersHn andH(2)

n of first and second order. Since the asymptotic considerations required
to prove our limiting distribution results are essentiallystraightforward, but nevertheless lengthy when figured
out in detail, we will here only sketch these computations.

The region forj small: j = o(n). To obtain a limiting distribution result for this region we first compute exact
formulæ for the expectationE(Xn,j) = p′n,j(1) and the varianceV(Xn,j) = p′′n,j(1) + p′n,j(1) − (p′n,j(1))2.
They are given as follows:

E(Xn,j) = b(Hn−1 −Hj−1) −
b
∑

i=1

b−1
∑

ℓ=0

(

λi+b−1
b−ℓ−1

)(

j−2+λi

j−1

)

(Hλi+b−1 −Hλi−1)
(

b−1
b−ℓ−1

) (Hb−1 −Hℓ)

+

b
∑

i=1

b−1
∑

ℓ=0

b−1
∑

k=ℓ+1

(

λi+b−1
b−ℓ−1

)(

b−ℓ−1
k−ℓ−1

)(

j−2+λi

j−1

)(

n−k−1
n−j−k+ℓ+1

)

(Hλi+b−1 −Hλi−1)
(

b−1
b−k
)(

n−1
j−1

) (Hb−1 −Hk−1),

V(Xn,j) = b(Hn−1 −Hj−1) − b2(H
(2)
n−1 −H

(2)
j−1)

− 2b(Hn−1 −Hj−1)

b
∑

i=1

b−1
∑

ℓ=0

b−1
∑

k=ℓ+1

(

λi+b−1
b−ℓ−1

)(

b−ℓ−1
k−ℓ−1

)(

j−2+λi

j−1

)(

n−k−1
n−j−k+ℓ+1

)

(Hλi+b−1 −Hλi−1)
(

b−1
b−k
)(

n−1
j−1

) (Hb−1 −Hk−1)

+
b
∑

i=1

b−1
∑

ℓ=0

(

λi+b−1
b−ℓ−1

)(

j−2+λi

j−1

)

(Hλi+b−1 −Hλi−1)
(

b−1
b−ℓ−1

)

(

b((Hb−1 −Hℓ)
2 + (H

(2)
b−1 −H

(2)
ℓ )) − (Hb−1 −Hℓ)

)

−
b
∑

i=1

b−1
∑

ℓ=0

b−1
∑

k=ℓ+1

(

λi+b−1
b−ℓ−1

)(

b−ℓ−1
k−ℓ−1

)(

j−2+λi

j−1

)(

n−k−1
n−j−k+ℓ+1

)

(Hλi+b−1 −Hλi−1)
(

b−1
b−k
)(

n−1
j−1

)

×
(

b((Hb−1 −Hk−1)
2 + (H

(2)
b−1 −H

(2)
k−1)) − (Hb−1 +Hk−1)

)

−
(

b
∑

i=1

b−1
∑

ℓ=0

b−1
∑

k=ℓ+1

(

λi+b−1
b−ℓ−1

)(

b−ℓ−1
k−ℓ−1

)(

j−2+λi

j−1

)(

n−k−1
n−j−k+ℓ+1

)

(Hλi+b−1 −Hλi−1)
(

b−1
b−k
)(

n−1
j−1

) (Hb−1 −Hk−1)

−
b
∑

i=1

b−1
∑

ℓ=0

(

λi+b−1
b−ℓ−1

)(

j−2+λi

j−1

)

(Hλi+b−1 −Hλi−1)
(

b−1
b−ℓ−1

) (Hb−1 −Hℓ)

)2

.

By using (35) and the asymptotic expansions

Hn = log n+ γ + O(n−1), and H(2)
n =

π2

6
+ O(n−1), (48)

one easily obtains the expansions

E(Xn,j) = b(log n− log j) + O(1), and V(Xn,j) = b(log n− log j) + O(1),

where the bound on the remainder term holds uniformly for all1 ≤ j ≤ n andn ≥ 1. In other words
there exist constantscb and db independent ofj andn, such that|E(Xn,j) − b(log n − log j)| ≤ cb and
|V(Xn,j) − b(log n− log j)| ≤ db, for all 1 ≤ j ≤ n.

We use now the abbreviations

µn,j := b(log n− log j) and σn,j :=
√

b(log n− log j), (49)

and consider the normalized r.v.

X∗
n,j :=

Xn,j − µn,j
σn,j

(50)

and the moment generating function

E
(

esX
∗

n,j

)

= e
−µn,j

σn,j
s
E
(

e
Xn,j
σn,j

s)

= e−σn,jspn,j(e
s

σn,j ). (51)
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We will consider the two summands of the probability generating functionpn,j(v) as given by (47) sepa-
rately and use thus the abbreviations:

p
[1]
n,j(v) :=

b
∑

i=1

b−1
∑

ℓ=0

(

λi+b−1
b−ℓ−1

)(

j−2+λi

j−1

)(

n+bv−b−1
n−j

)

b(Hλi+b−1 −Hλi−1)
(

n−1
j−1

)(

bv−1
b−ℓ−1

) ,

p
[2]
n,j(v) :=

b
∑

i=1

b−1
∑

ℓ=0

b−1
∑

k=ℓ+1

(

λi+b−1
b−ℓ−1

)(

b−ℓ−1
k−ℓ−1

)

(

1

(b−1
b−k)

− 1

(bv−1
b−k )

)

(

j−2+λi

j−1

)(

n−k−1
n−j−k+ℓ+1

)

b(Hλi+b−1 −Hλi−1)
(

n−1
j−1

) .

We assume now thatj = o(n) and considere−σn,jsp
[2]
n,j(e

s
σn,j ) for a reals fixed. Using the asymptotic

expansions
(

j − 2 + λi
j − 1

)

= O(1)

(

n−k−1
n−j−k+ℓ+1

)

(

n−1
j−1

) = O
( j

n

)

, and
1

(

b−1
b−k
) − 1

(

bv−1
b−k

) = O
( 1

σn,j

)

,

we obtain that

e−σn,jsp
[2]
n,j(e

s
σn,j ) = O

(

√

j

n

)

, (52)

which will turn out to be negligible compared toe−σn,jsp
[1]
n,j(e

s
σn,j ).

We consider now the contribution ofp[1]
n,j(v) and split the considered rangej = o(n) into the regions

j > log n andj ≤ log n. We first assume thatj > log n. By a direct application of Stirling’s formula (35) we
obtain then the following expansion, which holds uniformlyaroundv = 1:

p
[1]
n,j(v) = K(v)eb(v−1)(log n−log j)

(

1 + O((log n)ℜλ2−1) + O((log n)−1)
)

,

with

K(v) =
v − 1

(bv−1
b−1 )

bHb(v − 1)
.

SinceK(v) = 1 + O(v − 1) we obtain forj = o(n) such thatj > log n and for everys fixed the asymptotic
expansion

e−σn,jsp
[1]
n,j(e

s
σn,j ) = e

s2

2

(

1 + O
(

(log n)ℜλ2−1
)

+ O
(

σ−1
n,j

))

. (53)

Second we assume thatj ≤ log n. Using a Taylor-series expansion aroundv = e
s

σn,j = 1 we obtain for
this region ands fixed the expansions

(

be
s

σn,j − 1

b− ℓ− 1

)

=

(

b− 1

b− ℓ− 1

)

(

1 + O
( 1√

log n

)

)

,

(

j + be
s

σn,j − b− 1

j − 1

)

= 1 + O
( log log n√

log n

)

,

(

n+ be
s

σn,j − b− 1

n− 1

)

= eb(e
t

σn,j −1) log n
(

1 + O
( 1√

log n

)

)

.

Using them we obtain the expansion

e−σn,jsp
[1]
n,j(e

s
σn,j ) = e−σn,jseb(e

s
σn,j −1) log n

b
∑

i=1

b−1
∑

ℓ=0

(

λi+b−1
b−ℓ−1

)(

j−2+λi

j−1

)

b(Hλi+b−1 −Hλi−1)
(

b−1
b−ℓ−1

)

(

1 + O
( log log n√

log n

))

.

Since we have forj ≤ log n ands fixed the expansions

σn,j =
√
b
√

log n
(

1 + O
( log log n

log n

)

)

, and e
s

σn,j − 1 =
s

σn,j
+

s2

2σ2
n,j

+ O
( 1

(log n)
3
2

)

,

we further get

e−σn,jsp
[1]
n,j(e

s
σn,j ) = e

s2

2

b
∑

i=1

b−1
∑

ℓ=0

(

λi+b−1
b−ℓ−1

)(

j−2+λi

j−1

)

b(Hλi+b−1 −Hλi−1)
(

b−1
b−ℓ−1

)

(

1 + O
( log log n√

log n

)

)

. (54)
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But due to the binomial identity

b−1
∑

ℓ=0

(

λ+b−1
b−ℓ−1

)

(

b−1
b−ℓ−1

) =

{

0, for λ 6= 1,

bHb, for λ = 1,

the double sum appearing in (54) evaluates to1:

b
∑

i=1

b−1
∑

ℓ=0

(

λi+b−1
b−ℓ−1

)(

j−2+λi

j−1

)

b(Hλi+b−1 −Hλi−1)
(

b−1
b−ℓ−1

) = 1.

Therefore we obtain forj = o(n) such thatj ≤ log n and for everys fixed the asymptotic expansion

e−σn,jsp
[1]
n,j(e

s
σn,j ) = e

s2

2

(

1 + O
( log log n√

log n

)

)

. (55)

Combining the previous results (52), (53) and (55) we obtainthat for the whole regionj = o(n) the moment

generating functionE(eX
∗

n,js) = e−σn,jspn,j(e
s

σn,j ) of the r.v.X∗
n,j converges pointwise for everys fixed to

e
s2

2 , which is the moment generating function of a standard normal distributed random variable. This suffices
to show thatX∗

n,j =
Xn,j−µn,j

σn,j
converges in distribution to a standard normal distributedr.v. and proves the

corresponding part of Theorem 4.

The central region forj: j → ∞ such thatj ∼ ρn, with 0 < ρ < 1. We assume now thatǫ ≤ j
n
≤ 1 − ǫ,

with ǫ > 0, and we assume further thatv is in a (complex) neighbourhood of1. Then we obtain the following
asymptotic expansions:

(

j − 2 + λi
j − 1

)

= jλi−1
(

1 + O(j−1)
)

=

{

1 + O(n−1), i = 1,

O(nℜλi−1), 2 ≤ i ≤ b,
(

n+bv−b−1
n−j

)

(

n−1
j−1

) =
1

(

j
n

)bv−b
(

1 + O(n−1)
)

= e−b(v−1) log j
n

(

1 + O(n−1)
)

,

(

n−k−1
n−j−k+ℓ+1

)

(

n−1
j−1

) =
( j

n

)ℓ+1(
1 − j

n

)k−ℓ−1(
1 + O(n−1)

)

.

Using them we get from (47) the following asymptotic expansion of pn,j(v), which holds uniformly forǫ ≤
j
n
≤ 1 − ǫ in a complex neighbourhood ofv = 1:

pn,j(v) =

(

e−b(v−1) log j
n

b−1
∑

ℓ=0

(

b
b−ℓ−1

)

bHb

(

bv−1
b−ℓ−1

)

+

b−1
∑

ℓ=0

b−1
∑

k=ℓ+1

(

b
b−ℓ−1

)(

b−ℓ−1
k−ℓ−1

)

(

1

(b−1
b−k)

− 1

(bv−1
b−k )

)

bHb

( j

n

)ℓ+1(
1 − j

n

)k−ℓ−1









×
(

1 + O(n−1) + O(nℜλ2−1)
)

.

This shows that, forj ∼ ρn with 0 < ρ < 1, the probability generating functionpn,j(v) converges uniformly
in a complex neighbourhood ofv = 1 to a functionpρ(v) given as follows:

pρ(v) := e−b(v−1) log ρ
b−1
∑

ℓ=0

(

b
b−ℓ−1

)

bHb

(

bv−1
b−ℓ−1

) +
b−1
∑

ℓ=0

b−1
∑

k=ℓ+1

(

b
b−ℓ−1

)(

b−ℓ−1
k−ℓ−1

)

(

1

(b−1
b−k)

− 1

(bv−1
b−k )

)

bHb

ρℓ+1(1 − ρ)b−1−ℓ.

(56)
Since this also shows that for this region the moment generating functionE(eXn,js) = pn,j(e

s) converges
pointwise in a real neighbourhood ofs = 0 to the moment generating functionE(eXρs) = pρ(e

s) of a r.v.Xρ,
we obtain that, forj ∼ ρn with 0 < ρ < 1,Xn,j converges in distribution to a discrete r.v.Xρ with probability
generating functionpρ(v). Thus the corresponding part in Theorem 4 is proven.
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The region forj large: j → ∞ such thatn− j = o(n). For the regionn− j = o(n) we obtain the following
asmyptotic expansions:

(

n−b−1
n−j

)

(

n−1
j−1

) = 1 + o(1), and

(

n−k−1
n−j−k+ℓ+1

)

(

n−1
j−1

) =

{

o(1), for k > ℓ+ 1,

1 + o(1), for k = ℓ+ 1.

Using these expansions leads then, forj → ∞ such thatn− j = o(n), to

P{Xn,j = 0} = pn,j(0) = 1 + o(1). (57)

Thus, for this region,Xn,j converges in distribution to a degenerate r.v.X̃, with P{X̃ = 0} = 1, as stated in
the corresponding part of Theorem 4.
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