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VARIANTS
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ABSTRACT. In this work we provide a combinatorial analysis of buckeursive trees, which have been introduced
previously as a natural generalization of the growth modetadirsive trees. Our analysis is based on the description
of bucket recursive trees as a special instance of so caliekkbincreasing trees, which is a family of combinatorial
objects introduced in this paper. Using this combinatoregdatliption we obtain exact and limiting distribution
results for the parameters depth of a specified element, dieeesof a specified element and degree of a specified
element.

1. INTRODUCTION

Recursive trees are one of the most natural combinatogal trodels with applications in several fields,
e.g., it has been introduced as a model for the spread ofrajidefor pyramid schemes, for the family trees of
preserved copies of ancient texts and furthermore it ideelto the Bolthausen-Sznitman coalescence model
(see, e.g., [5, 10]). A recursive tree withnodes is an unordered rooted tree, where the nodes arecidbgll
distinct integers from{1,2,...,n} in such a way that the sequence of labels lying on the uniqgtte fpam
the root node to any node in the tree are always forming ar&sing sequence. This implies that the root
node is always labelled by. Due to this description recursive trees are falling int® tbmbinatorial class of
increasing tree families, see, e.g., [1]. It is well knownd&asy to show by induction) that there éne— 1)!
different recursive trees with nodes. It is of particular interest in applications to asstihe random recursive
tree model and to speak about a random recursive treenwitbdes, which means that one of the — 1)!
possible recursive trees withnodes is chosen with equal probability, i.e., the probghiliat a particular tree
with n nodes is chosen is alwayg(n — 1)!.

The usefulness of this tree model relies at least in partherfdact that there also exists a probabilistic
description of random recursive trees via a simple stoahgsbwth rule: in order to get a random recursive
treeT” with n + 1 nodes one can choose a random recursive fr@gth n nodes and choose uniformly at
random one of the nodesv € T as a parent node and attach the nede 1 to v. Starting with nodd this
leads aften — 1 insertion steps (inserting successively the laBels. . ., n) to a random recursive tree with
nodes and easily explains that there @re- 1)! different recursive trees with nodes.

An interesting and natural generalization of random rdeersees has been introduced in [9], which are
called (random) bucket recursive trees. In this model ttees®mf a bucket recursive tree are buckets, which
can contain up to a fixed integer amountof 1 elements£ labels). A (probabilistic) description of random
bucket recursive trees is given by a generalization of thehststic growth rule for ordinary random recursive
trees (which are the special instarice: 1), where a tree grows by progressive attraction of increpisiteger
labels: wheninserting elememi-1 into an existing bucket recursive tree containingiements (i.e., containing
the labels{1,2,...,n}) all n existing elements in the tree compete to attract the elementl, where all
existing elements have equal chance to recruit the new alentiethe element winning this competition is
contained in a node with less tharelements (an unsaturated bucket or node), element is added to this
node, otherwise if the winning element is contained in a noile alreadyb elements (a saturated bucket or
node), element + 1 is attached to this node as a new bucket containing only #m@esitn + 1. Starting
with a single bucket as root node containing only elenidetids aftem — 1 insertion steps, where the labels
2,3,...,n are successively inserted according to this growth rule,go called random bucket recursive tree
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FIGURE 1. A bucket recursive tree of size = 20 with maximal bucket sizé = 3. The
elementj = 8 has deptH, 8 descendants and out-degtee

with n elements and maximal bucket sizeOf course, the above growth rule for inserting the element1
could also be formulated by saying that, for an existing lketickcursive tre& with n elements, the probability
that a certain node € T attracts the new element+ 1 is proportional to the number of elements contained
in v, let us sayk with 1 < k£ < b, and is thus given b)@. As the authors of [9] mention this growth rule for
random bucket recursive trees could model a variety of plessecruiting situations, as, e.g, for a business in
the service sector. Different bucketing strategies arerally used in data structures in computer science, as,
e.g., for the construction ofi-ary search trees (see, e.g., [2]).

The aim of this paper is to give also a combinatorial desionipbf bucket recursive trees generalizing
the one for ordinary recursive trees. We do this by genénglia class of weighted tree families, so called
simple families of increasing trees, to a class of buckeistrevhich we call families of bucket increasing trees.
Bucket recursive trees will then turn out to be a speciakinst of a bucket increasing tree family. The gain
of the combinatorial description provided here is that théural combinatorial decomposition of a bucket
recursive tree into a root bucket and its subtrees will lead tecursive description of several important tree
parameters in random bucket recursive trees. Often thibwtorial decomposition can be translated “almost
automatically” into certain equations (here mainly diffietial equations) for suitable generating functions.
Thus besides probabilistic techniques, as a descript@aflya-Eggenberger urn models or embedding into
continuous time branching processes (see, €.g., [8]).hwkly on the stochastic growth rule of random bucket
recursive trees and turn out to be very powerful for a varddtyarameters (like “extremal parameters” as the
so called height of the tree, see [9]), one is able to apply @shniques of analytic combinatorics (see, e.g.,
[4]), which itself turn out to be powerful for a variety of @aneters.

We illustrate the usefulness of this combinatorial desionipfor a detailed study of some important “local
parameters” for random bucket recursive trees. In pagicwke are interested in the effect of bucketing on
“label-based parameters” and we are going to answer thesmnding questions for the random variables
“depth” of element; (i.e., the number of edges from the root node to the node rongeelement;) denoted
by D,, ;, the number of “descendants” of elemgiie., the total number of elements with a labe)j contained
in the subtree rooted with the node containing elemgienoted byy,, ;, and the “out-degree” of elemeyt
(i.e., the out-degree of the node containing elemgaienoted byX, ; in a random bucket recursive tree with
n elements. Since the depth of noglén a random bucket recursive tree withelements is independent of
n, which is a consequence of the description via a stochastigth rule, we may restrict ourselves to a study
of the depth of the largest elementin a random bucket recursive tree withelements and thus to the r.v.
D,, .= D, ,. However, for all the parameters mentioned and all fixed makbucket sizes, we are able to
give a complete characterization of the limiting distributbehaviour and the phase changes appearing for all
regionsj = j(n), where the label < j < n is possibly growing with the total numberof inserted elements.
An example of a bucket recursive tree and the parametersdewead is given in Figure 1.

We remark that the effect of bucketing on some “global patansg in particular on the distribution of the

r.v. XL’“], which counts the number of nodes containing a certain nummbke k& < b of elements in a random
bucket recursive tree with elements, has been considered and described in [2, 9]. Bggdrameter it turns
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out that up to a maximal bucket-size< 26 the random vecto(rX,[l”, RN X,[f’]) satisfies (after suitable normal-
ization) a multivariate normal limit law, but fdr > 27 the behaviour changes and an oscillating behaviour of

the variance§/(X,[f]) appears.

The plan of the paper is as follows. In Section 2 we give thelinatorial description of bucket recursive
trees and in Section 3 we give limiting distribution resfiftisthe parameters depth, number of descendants and
node-degree of a specified element, which are all obtainadsing this combinatorial description of bucket
recursive trees. The proof of these results is given in Ses-6.

with X 2 v we denote the equality in distribution of two rX andY and we writeX, 9D, X for the

weak convergence (i.e., convergence in distribution) afquence of r.v.X,, to ar.v. X. We denote byd,, :=
> i 3 the harmonic numbers and byl = > 41 = ther-th order harmonic numbers. Furthermore,
we use the abbreviatio#,,,, — H, := 22:1 kﬁ for the continuation of the harmonic numbers for a
complexa € C\ {-1,-2,-3,...}. Moreover, the signless Stirling numbers of first kind areated by
[*] and the Stirling numbers of second kind are denoted by. With 2% := z(x —1)--- (# — k + 1) and

¥ :=x(x+1)---(x + k — 1) we denote the falling and rising factorials, respectively.

2. COMBINATORIAL DESCRIPTION OF BUCKET RECURSIVE TREES

2.1. Bucket increasing tree families. Our basic objects are rooted ordered trees (the order oftteees of

a node is of relevance), where the nodes are “buckets” withtager capacity, with 1 < ¢ < b for a given
maximal integer bucket-size > 1 and the additional restriction, that all internal nodes.(inon-leaves) in
the tree must be saturated, while the leaves might be eittterated or unsaturated. We always call a node
with capacityc(v) = b “saturated” and otherwise “unsaturated”. A tree definedis Way is called a bucket
ordered tree with maximal bucket-size It will be convenient to define for bucket ordered trees tiae |

of atreeT via [T| = ", c(v), wherec(v) ranges over all vertices df. An increasing labelling of a bucket
ordered tredl’ is then a labelling ofl’, where the label§1,2,...,|T|} are distributed amongst the nodes of
T, such that the following conditions are satisfiéd: every nodev contains exactly(v) labels,(i¢) the labels
within a node are arranged in increasing ordéy,) each sequence of labels along any path starting at the root
is increasing.

Then a clas§ of a family of bucket increasing trees with maximal buckiees can be defined in the follow-
ing way. A sequence of non-negative numbss),>o with ¢y > 0 and a sequence of non-negative numbers
1,12, ...,y is used to define the weight(T") of any bucket ordered trég by w(7") := [[, w(v), where
w(v) ranges over all vertices @f. The weightw(v) of a nodev is given as follows, wheréd(v) denotes the
out-degree (i.e., the number of children) of nade

w(v) = {“"d“”’ T =0
wc(v), if C(’U) <b.
Thus for saturated nodes the weight is dependent on theagueed and described by the sequepgewhereas
for unsaturated nodes the weight is dependent on the cggacitdescribed by the sequengge
Furthermore,£(T') denotes the set of different increasing labellings of tlee ¥ with distinct integers
{1,2,...,|T|}, where L(T) := |L(T)| denotes its cardinality. Then the famijf consists of all tree§”
together with their weighta)(7") and the set of increasing labelling$T').
For a given degree-weight sequerigg ), >0 with a degree-weight generating functio(y) := >, ., otk
and a bucket-weight sequenge, . . . , ¢, _1, we define now the total weights ky, := Zm:n w(T) - L(T).
It is then not difficult to show that the exponential genemgtiunctionT'(z) := " -, Tn;—, of the total
weightsT, is characterized by the following differential equatioroofierb: -
b

d

L) = P(T(2)), @
T7(0)=0, T®(0) =1, for 1<k<b-1.

This could be done by setting up a recurrence for the totag s, :

n—=b
= >
L= er 2. T T (/ﬂ,kg, . k) forn 2% @

r>0 ki+:+k.-=n—>b
ki,..kr>1
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and treat it by introducing the exponential generating fioncI’(z).

However it is advantageous for such enumeration problemsgoribe a family of increasing tregsby the
following formal recursive equation:

T =11 - (DUt -2 DU -+ Uthp_q - (2D U
0o - (LU - (R[[)Xx T U - (2 XT*T Ups-(2-DXxT*«T+«TU--- (3)
= - (DUt - DU -+ Utpy - (D U (1D x o(T),

where (12 ) denotes a bucket of capacitylabelled by1, 2, ..., k, x the cartesian product, the partition
product for labelled objects, and(7) the substituted structure (see, e.g., [13]). Then therdifféal equa-
tion (1) follows immediately by translating equation (3t his formal description will turn out to be useful
in particular when considering certain parameters in buicieeasing trees; see Sections 4-6.

2.2. Description of bucket recursive trees as a bucket increasmtree family. In the following we will
show that bucket recursive trees can be considered as andartket increasing tree family. We claim that the
family of bucket recursive trees can be modeled, e.qg., byguie following degree-weight and bucket-weight
sequences (the choice of the sequences leading to buckesivectrees is not unique):

(b—1)1p*
TR
To show that this choice of sequences is actually a modeldokdt recursive trees we have to show that this
combinatorial familyZ” of bucket increasing trees has the same stochastic grolethsuucket recursive trees,
namely: given an arbitrary bucket increasing tfleec 7 of size|T| = n, then the probability that a new
element: + 1 is attracted by a node € T with capacityc(v) = k must be given byf;.

We use now the notatio — 7’ to denote thafl” is obtained froml" with |T| = n by incorporating
element: + 1, i.e., either by attaching elememtt 1 to a saturated node < T at one of thel(v) + 1 possible
positions (recall that bucket increasing trees are peritiefinrordered trees and thus the order of the subtrees
is of relevance) by creating a new bucket of capatitontaining element + 1 or by adding element + 1
to an unsaturated node< T by increasing the capacity efby 1. If we want to express that nodee T
has attracted the element+ 1 leading fromZ" to 7" we use the notatiofi % T”. If there exists a stochastic
growth rule for a bucket increasing tree fanify then it must hold that for a given tréee 7 of size|T| =n
and a given node € T the probabilitypr(v), which gives the probability that elementt 1 is attracted by
nodev € T'is given as follows:

for k>0, Yp=(k=1), for 1<k<b-1.

/ w(Tl)

_ ZT/ET:TL)T’ w(T") _ ZT’ET'TLT’ w(T)
pr(v) = SEELIZT L o) @
>rerrtw(T) D FeT T w(T)

For a certain tred” with T = T andu € T the quotient of the weight of the tredsandT is by the
definition of bucket increasing trees given as follows, veh&e define for simplicity), := ¢q:
w(T) _ 1/)1%, for c(u) =b and d(u) =k,
w(T) B for c(u) =k < b.
For a given tred” € 7 we define bymy, := |[{u € T : ¢(u) = k < b}| the number of unsaturated nodesiof

with capacityk < b and byny := |[{u € T : ¢(u) = b and d(u) = k}| the number of saturated nodesof
with out-degree: > 0. It holds then

n:Z kak+b2nk

ueT k>0

and (where we use that there adre- 1 possibilities of attaching a new node to a saturated nodeT" with
out-degreel(u) = k):

= -1

Z ; Zm warl +an k—‘v‘l)wl(p:;:l.

TGT:T—»T k=1 k>0
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Thus if one chooses the weights = (k — 1)! andyy, = M we obtain further
w(l)
Z T kmk—i—wlan k:—i—l kak—i-bz:nk—n.
TeT T—T w( ) k=1 k>0 k>0

Furthermore by choosing these weightsand);, we get

w(T” (k+ 1Dt =b,  for c(v) =b and d(v) =k,
y e {

o w(D) = for c(v) =k <b,
T eT:T—T'

and thus

T'eT - T->T"

Therefore we have shown that by choosing the weight segeefice= (k — 1)! and ¢, = (b—%bk the
probability pr(v) that in a bucket increasing trgeof size|T'| = n the nodev with capacityc(v) = k attracts
element: + 1 is always given b)/%, which coincides with the stochastic growth rule for budlestursive trees.

We obtain then from equation (1) that the exponential geimgrdunctionT'(z) = >, -, Tn% of the
total-weightT;, of bucket recursive trees of sizesatisfies the differential equation B

db

_ bT'(z
@T(Z) = (b— 1)1’ (5)
with initial conditions7'(0) = 0 and %T(z) T (k—1)!,for1 < k < b—1. The solution of this equation
is given by -
T(z) = log —E:n—lLf. (6)

n>1

Hence the total weight of all size-bucket recursive trees is given By, = (n — 1)!.

We remark that we have introduced here the more general caabial objects “bucket increasing trees” to
describe bucket recursive trees by using specific weightesemes ¢y, )i >0 andi, . . ., ¢,_1 for the following
reasons(i) the combinatorial decompositions used in Sections 4-6foolarbitrary weight sequences and thus
for general bucket increasing trees and seem to be moreawaarg for them.(i:) it seems to be interesting
(and it is planned by the authors) to study the effect of btiogealso for other increasing tree families, as, e.qg.,
for growth models with a “preferential attachment rule’digeneralized plane-oriented recursive trees.

3. RESULTS FOR LABEL-BASED PARAMETERS

Here we give our main results for the exact and asymptotiatiebr of the parameters depth of element
the number descendants of elemgand the out-degree of elemejin a random bucket recursive tree of size
n (and fixed maximal bucket-siZg. In the formulation of the theorems there will appear nurabe, with
1 <i < b, which are given by the roots of the equation

A bl =AA+1)---(A+b—1)—bl =0.

To formulate our limiting distribution results we use theaton .\ (0, 1) for a standard normal distributed
r.v. and®(z) for its distribution function. Furthermore we use the niotaty(a, b) and5(a, b) for a Gamma
and Beta distributed r.v. with parametersandb, respectively, andNegBin(m, p) for a negative binomial
distributed r.v. with parameters andp.
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3.1. Results for the depth of the largest element.

Theorem 1. The random variableD,,, which denotes the depth of the node that contains elementa
random bucket recursive tree of sizewith maximal bucket sizk is asymptotically normal distributed with

rate of convergencé ( @)'
D, —E(D,) 1
sup [P ————— <z; — ®(2)| = O — ).
xeg { V(Dn,) } @) (\/1ogn>
Moreover, the expectatidii( D,,) and the varianc&' (D,,) of D,, have the following asymptotic expansions:
1 (2)
E(D,) = I logn + O(1), V(D,) = H3 logn + O(1).

3.2. Results for the number of descendants of a specified element.

Theorem 2. The exact distribution of the random varial¥§, ;, which denotes the number of descendants
of elementj in a random bucket recursive tree of sizevith maximal bucket sizg is for2 < j < n and
1 <m <n+1-jgiven as follows:

b b—1 (A,;+b—1) (A,;-_l,—j—Q) (£+m—1) (n—m—e—l)

]P){Yn’ — m} — b—(—1 j*l 4 jfenf_Q .
’ ;; (2)(5_5)(HAi+b—1 —H/\iﬂ)(j,ll)

Furthermore, it hold®{Y,, 1, = n} = 1.

Theorem 3. The limiting distribution behaviour of the random varialdg ; is, forn — co and depending on

the gI’OWth ij, characterized as follows:
Y

e The region forj > 2 fixed. The normalized r\f"—f converges in distribution to a r.\;: Yng i

whereY; has densityf; (z):

9 b (Ai-i-b—l) (/\i-}-j—2)
fo z) 25 — 1)(J , )Z bt-1l/) gt , for0<az <l

i=1 (b) (b— 5)(H>\i+b—1 — Hy,—1)

ThusY} is given as a beta distributed random varlabl@ ﬂ( i, 7—K;), where the first parameter

is given by the random variablg; € {0,1,...,b— 1}, which is dlstnbuted as follows:
b (/\H-b—l) (/\i{rj—2)
P{K; =} =Y bot=1/% -1 , foro<e<b-—1.

i=1 (2) (b—O)(Hx;+o-1 — Hx,—1)

e The region forj small: j — oo such thaty = o(n). The normalized r.v%Yn’j converges in distribution
toarv.Y: 1Y, ; 9, Y, whereY has densityf(z):

b—

Z €+1'Hb

=0

ThusY is given as a gamma distributed random vanab]é = 'y(K 1), where the first parameter is
given by a Zipf distributed random variabl€ € {1,...,b}: P{K =i} = %
e The central region forj: j — oo such thatj ~ pn, with0 < p < 1. The rv.Y, ; converges in

distribution to a discrete r.vY,: Y, ; @, Y,, where the probability mass function ¥ is given by

b—1 (e+m)

P{Y, =m} = Z ¢+ D,

’+1(1 —p)ml form=1,2,...

ThusY, — 1 is given as a negative binomial-distributed random varéshl, — 1 @ NegBin(K, p),

where the first parameter is given by a Zipf distributed ramd@riableK € {1,...,b}: P{K =i} =
1

iHy
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e The region forj large: j — oo such thath — j = o(n). The r.v.Y,, ; converges to a random variable
¥, which has all its mass concentratediaty,, ; ‘2 v, with P{¥ = 1} = 1.
3.3. Results for the node-degree of a specified element.

Theorem 4. The limiting distribution behaviour of the random variabtg, ;, which denotes the out-degree of
elementj in a random bucket recursive tree of siz&vith maximal bucket sizg is, forn — oo and depending
on the growth ofj, characterized as follows:

e The region forj small: j = o(n). The centered and normalized rX.; ; is asymptotically Gaussian
distributed: .
X = X’rb,j B b(logn - log]) ﬂm/\/'((),l)
b(logn —log j)
e The central region forj: j — oo such thatj ~ pn, with0 < p < 1. The rv. X,, ; converges in

distribution to a discrete rv.X,: X, ; 9, X,, where the probability generating functign(v) :=

E(v**) is given by
b(r—1)1 Z b 2 1 bi:l bijl (b—2—1) (Z:fzj) ((ﬁ;) - (b{vi;)) ™
Pp(v) = e TeEr T [ bu—1y 1 + ' —p (1
be bvl 1 0=0 k=£+1 bH)

e The region fOU large: j — oo such thatr — j = o(n). The r.v.X,, ; converges to a random variable

X, which has all its mass concentrated®tX,, ; -2 X, with P{X = 0} = 1.

b—1-¢

—p)

4. DEPTH OF THE LARGEST ELEMENT

We consider now the random variallg,, which denotes the depth of elementi.e., the number of edges
lying on the path from the root node to the node that contdemmentn, in a random bucket recursive tree of
sizen, i.e., containing: elements. The maximal bucket size is always denoteld by

In order to studyD,, for bucket recursive trees we consider first the correspmndindom variablé,, in a
bucket increasing tree family with arbitrary weight sequessp,, andv;,. To do this we introduce the bivariate
generating function

-1
N(zv) =Y > P{D, =m}T, ( i V"™, (7)
n>1m>0

To establish a functional equation (=, v) from the formal recursive equation (1) it is convenient tioidof
specifically bicolored bucket increasing trees, where @ents contained in the nodes are colored as follows:
element in a sizen tree is coloreded and all elements with a label smaller thamre coloredlack We are
thus interested in the depth of the red element. We consmleranspecific bicolored bucket increasing tfée
of sizen and we assume that the rootBhas out-degree > 1 and the red element is not captured in the root
(thusn > b). Then the red element is located in one of theubtrees of the root node, let us assume it is in the
first subtree. Let us consider now thessubtrees: after an order preserving relabelling each o$tiérees
S1,...,5, is itself a bucket increasing tree. The first subtree is agdiicolored tree containing, black
elements and one red element, Wherea&tzhe. ., n, elements in the subtreés, ..., S, are all colored black.
Since the labels of the; + ns + - - - + n,. black elements are distributed over the black elemenss n. ., S,
each specifie-tuple Sy, . .., S, of colored increasing trees appears exa(,’i ’jj; I" ) times when starting
from all possible blcolored trees of size Thus a proper description of this combinatorial decontjmsis
obtained when introducing univariate and bivariate getimegdunctions, which are exponential in the variable
z that marks the black elements. For the bivariate case addlty the variables counts the depth of the red
element.

Since the total weight of bicolored bucket increasing treigls n — 1 black elements (and thus sizg where
the depth of the red elementis, is given byP{ D,, = m}T,, their bivariate generating function is exactly given
by N(z,v) defined in (7). Of course, the total weight of bucket incregdrees withn elements, where all
elements are colored black, 3 leading to the exponential generating functibfx). Thus the decomposition
described above with— 1 unicolored trees and one bicolored tree yields to the fondfi(z)" ! N (z,v). The
fact that the depth of the red element in the tree is one mane tie depth of the red element in the subtree
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leads to a factop. Since the red element can be in the first, second,r-th,subtree, we additionally get a
factorr. Furthermore, according to (1), the event that the root ikslegree- leads to a factop,.. Summing
overr > 1leads toy " -, v, T(2)""'N(z,v) = v/ (T(2))N(z,v).

Since the elements labelled by?2, . .. , b contained in the root node are all colored black (fixbrgjements
in a labelled object, i.e., the constructith= {1} x {2} x --- x {b} x A, leads tob differentiations for
the corresponding exponential generating functioﬁg‘g: = A(z)), equation (1) leads now to the following
differential equation of orddr for N(z,v):

ab

0zb
The case that the element colored red is contained in theofdbe tree corresponds of course to the initial
conditions, but does not appear (explicitly) in the diffetial equation itself. The initial conditions of the
differential equation (8) are given as follows:

N(z,v) = v¢'(T(2))N(z,v). 8

ae
SNz = > P{Dsr =m}Toqv™ =Togr = g1, for 0<€<b—1. (9)
v=0 ;>0
Now we can specify the sequencegs = (b_k%)'bk andyy, = (k —1)!in above equations and obtain then for

bucket recursive trees the following differential equattogether with the initial conditions for the bivariate
generating functiodV (z, v):

ob vb! 0"

ﬁN(Z,'U) = WN(Z7U)7 W 220:£!7 for Oﬁfﬁb—l (10)
This homogeneous differential equation is of Cauchy-Etylpe and can be solved by plugging¥y(z, v) =

W with unspecified\(v) into equation (10). This leads then to the indicial equation

N(z,v)

Av)? —wbl=0  orequivalently <>\(U) Jg b- 1) —v=0. (11)
For our further analysis we require the behaviour of thetgmig A\(v) in a complex neighbourhood of= 1.
Forv = 1 the corresponding indicial equatioiﬁ*fj‘l) — 1 =0, where we seh := \(1), has been studied in
[9] in the context of eigenvalues of a replacement matriveissed to bucket recursive trees. They have shown
that all solutions\{, Ao, ..., A\, are simple and when arranging the solutions in descenditey @f real parts
it holds

1= /\1 > %()\2) > %(/\3) > > %(/\b)
An application of the implicit function theorem shows theseé, e.g., [11] for the corresponding treatment
of another algebraic equation) that all rootgv), A2(v), ..., Ay(v) of (11) are simple in a complex neigh-
bourhood ofv = 1, i.e., for|v — 1| < 5 with a certainp > 0, and that the\;(v) are analytic as func-
tions ofv. Since); = X;(1) in above arrangement of the solutions in descending ordkenther holds that
R(A1(v)) > R(N;(v)), forall 2 < i < b, in a complex neighbourhood of = 1. From these considerations
follows that the general solution of the differential edqoat(10) is given by
b

Bi(v)
N = —_— 12
(271}) ; (1_2))\1(11)7 ( )
with certain functions3;(v), which are specified by the initial conditions. Plugging lire tnitial conditions
given by (10) into the general solution (12) leads then tofthlewing system ofb linear equations for thé

unknown functiong’; (v), 1 < ¢ < b:
b
> XN Bi(w) =2, for 0<e<b-1.
i=1

It can be seen easily by applying Cramer’s rule, which exq@eshes;(v) as a quotient of determinants
involving the solutions of the indicial equatiok;(v) (where the denominator can be transferred into the
Vandermonde-determinant), that the functighsv) are in a neighbourhood of = 1 analytic functions of

v. Moreover, sinceV(z,1) = T'(z) = 1L, which follows from the definition, one obtairt (1) = 1 yield-

ing thatf(8;(v)) > 0 in a complex neighbourhood of= 1. We just remark (without showing here details)
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that by a precise study of the linear system of equationsm@iang 5;(v) (analogous to computations carried
out in Section 5) one can obtain the following explicit fodaeufor the functionss; (v), 1 <i < b:

Bi(w) —
i\U) = .
V(H), (v)+b—1 — Hx,(0)—1)(1 = Xi(v))

In order to get an asymptotic expansion of the coefficients"oin N(z, v), which holds uniformly in a
complex neighbourhood af = 1, we can simply apply singularity analysis [3] to the repreagon (12). This
immediately leads to the expansion

n _ ﬂ1(’U) A1 (v)—1 Ao —14€ -1
[z ]N(z’v)iil“()\l(v))n <1+O(n )+ O(n )),
which holds uniformly forlv — 1| < 7, for certain constants, e > 0; recall that\o = A\2(1) is a root of the

indicial equation (11) fow = 1 with second largest real part. Thus we obtain the followixgaasion of the
moment generating functidi(e”»*) of the random variabl®,,:

E(BD"S) _ [Znil]N(Z,es) — eU(s) log n+V (s) . (1 + O(TL)\271+E) + O(Tlil)), (13)

with
U(s) = M(e®), and V(s)=log (ﬁl(es)) —log (F(Al(es))), (14)
which holds uniformly in a complex neighbourhood ©f= 0. A direct application of the so-called quasi-

power theorem (see [7]) leads then from (13) to the centrat theorem stated in Theorem 1 together with the
following asymptotic expansions of the expectation andvéréance ofD,,:

E(D,,) = U'(0)logn + O(1), V(Dy) =U"(0)logn + O(1).

From (14) we immediately get th&t’(0) = A\ (1) andU"”(0) = A/(1) + A} (1). To compute these values
one differentiates the indicial equation (11) w.n.tonce or twice and evaluateswat= 1, where one takes into
account thaf; (1) = 1. One obtains then

2 1
() = bl i) = 2 () Zo<i<j<b 1 4() ORISR
1 I 1 - 9
Ar(v ) Zk 0 /\1(v)+k Zk 0 /\1(v)+k
and thus after some easy manipulations with harmonic nusnber
1 7? 1
)\/ 1) = — AH 1) = b - 7
W=gp YO=Fr -

This completes the proof of Theorem 1.

5. NUMBER OF DESCENDANTS OF A SPECIFIED ELEMENT

5.1. The generating functions approach.We consider now the random variall§ ;, which denotes the
number of descendants of elemeénie., the total number of elements with a labelj contained in the subtree
rooted with the node containing elemenin a random bucket recursive tree (with maximal bucket &)za&f
sizen.

In order to studyy,, ; for bucket recursive trees we consider first the correspmndindom variablé’, ;
in a bucket increasing tree family with arbitrary weight seqcesp,, andvy,. To do this we introduce the
trivariate generating function

L=l gk
(z,u,v) Z Z Z P{Yyt;,; = m}T,H_J( iR ™ (15)
k>0 3j>1m>0

To establish a functional equation fdf(z, u, v) from the formal recursive equation (1) it is now convenient t
think of specifically tricolored bucket increasing treesiane the coloring is as follows: exactly one element is
coloredred, all elements with a label smaller than the red element al@ewblack and all elements with a
label larger than the red element are colonddte. We are then interested in the number of descendants of the
red element, i.e., the number of black elements in the saibteted with the node containing the red element.
Let us consider such a tricolored bucket increasingitemd assume that the out-degree of the root nod@ of
isr > 1.
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We further assume that the red element/ofs not contained in the root node. Then the red element is
located in one of the subtrees of the root @f; let us assume that it is in theth subtree. Let us now consider
theser subtrees. After order preserving relabellings, each seldtr, ..., S, is an bucket increasing tree by
itself. The first subtree is again a tricolored bucket insiegitree with one red; black andk; white elements,
whereas the remaining— 1 subtrees are only bicolored in such a way that the elemettitstiag j; smallest
labels (with2 < ¢ < r and0 < j; < |S;|) are colored black and the remainikgelements in the subtrees
are colored white. Then such a specifituple S, . . ., .S, of colored bucket increasing trees appears exactly
(et (Rt J,g’“ ) times, where the labels of thie + - - - + j,. black elements and thg + - - - + k, white

J1seeesdr ki1,
elements are distributed over the black and white elemartig,i. . ., S, in an order preserving fashion.

Of course, this corresponds to a tricolored bucket mcrtgaB‘eeT of size|T| = j+ k+ 1withj =
j1+---+ j- black elements and = k; + - - - + k,. white elements.

We introduce now generating functions, which are expoaeintiboth variables andu, wherez marks the
black elements andmarks the white elementg(z, u) = Zj,kZO fjkz;,—}jf for sequenceg; . andf(z,u,v) =
> i km>0 fj,hmzji—zfvm for sequenceg; 1., wherev counts the number of descendants of the red element.

With this setting, the total weight of all suitably tricotat bucket increasing trees wijtblack andk white
elements, where the number of descendants of the red elesexactlym, is given byP{Y; 1 41 =
m}T; k41, and thus its generating function is given by

Z]lk:

ZZZP{Yk+]J_m}Tk+]( )'k' m:N(Z7U‘7@)7

k>0j7>1m>0

whereas the total weight of suitably bicolored bucket iasieg trees withj black andk white elements is
T+, and its generating function is given by

S>3 kﬂ T(z + u).

k>04>0

Ther—1 bicolored trees and the tricolored bucket tree lead themat@xpressio’ (z+u)" "t N(z,u, v). Since

the red element can be in the first, second, r-th subtree, we additionally get a factar Furthermore, the
event that the root has out-degreleads to a factop,.. Summing over alt > 1 leads thust® -, r¢, T(z +
u)""IN(z,u,v) = ¢'(T(z + u))N(z,u,v). Since the elements labelled kty2, ..., b contained in the root
node are all colored black (which again means trelements in a labelled object are fixed), equation (1) leads
thus to the following differential equation of ordefor N (z, u, v):

b
0zt

The cases, where the red element is contained in the roat &gl do not appear explicitly in the differential
equation itself, but will be described by the initial comalits. SinceP{Y,, ; =n+1—j} =1,for1 <;j <b
(if element; is contained in the root node then all elements with a labglare descendants ¢j, we obtain
the following initial conditions, fob < ¢ < b — 1:

82

N(z,u,v) = @' (T(z +u))N(z,u,v). (16)

@N(Z,U,U) => Y P{Yigrr11 = "L}Tk+é+1 Y ZTk+£+1 i oh
z=0  k>0m>0 k>0
uv n—~_—1
=v ) T ((n_)g_l)' = o7 D (wo). (17)
n>0+1 ’

Now we can specify the sequences = (b’k;,)'bk andyy, = (k — 1)! in equations (16) and (17) and obtain

then for bucket recursive trees the following differengiguation together with the initial conditions for the
trivariate generating functioiV(z, u, v):
ob b! o* vl

@N(zﬂhv) :mN(z,um), 7N(Z,’U/,’U> :m, for 0 </ <b-1. (18)
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5.2. The exact distribution. In order to obtain the exact distribution of the r¥, ; we will give the exact
solution of the homogeneous differential equation (18)ictwhs again of Cauchy-Euler-type. Plugging in

N(z,u,v) = m with unspecified\ into equation (18) leads to the indicial equation

Al —bl=0 orequivalently (A + Z B 1) —1=0. (19)
As mentioned in Section 4 this equation has been studied]jm{®ere it has been shown that all solutions
A1, Ag,..., Ay are simple and when arranging them in descending order ofpeets it holdsl = A\, >
R(A2) > R(A3) > --- > R(Xp). Thus the general solution of (18) is given by

b
ﬁi(ua U)
N = — 2
() =3 g (20)

=1
with certain functions3; (u, v), which are specified by the initial conditions as given in)(A&hen plugging in
the initial conditions into (20) this leads to the followisgstem of linear equations for the unknown functions
Gi(u,v),1 < <b:

P
AiBi(u, v) vl
Z (1 —u)ritt = 0= w0)er” for 0 <£<b-1.

Using the abbreviations

L _ Bilu,v) _ _ (1-u)
i =i (u,v) := A= and s := sp(u,v) := S (21)
we obtain the following system of linear equations for th&nown-;, 1 < i < b:
b
4 0—1
Z(Al—i_; )71»:34, for0</¢<b-1. (22)
i=1

To get explicit solutions for the; we apply Cramer’s rule to (22) and write the solutiopsl < i < b, as a

guotient of determinants:
—1

AN 0'so NN AN N
AL AL 1ls DY IR Vi DY IR VD v

Vi = . . . . . : . . (23)
N AT )l AR AT AT N

Using elementary relations between the Stirling numbedstha factorials (see, e.g., [6]) and the abbrevia-

tion
l

co = Z {E}(l)“k!sk, for 0<¢<b-—1, (24)

k
k=0
we obtain from (23) after elementary transformations thiefang representation of the solutions, 1 < i <
b:

7= Q7
whereQE”, Q?] are the following quotients of determinants:
/\? /\%1 Agfﬂ Ag A? /\%) Ag !
ol M A M e N AL e Ay
VTP i S VA NURD Gatll D VS BRI VSNSRI Vo
—1
NN @ M N NN N
0F A AL e AL N A AL AL, N
NTU AT e AU NTH AR AT A L N
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SinceQE” is a quotient of Vandermonde-determinants it is evaluassilye

Hlép<q§b,i¢p7i#q()‘q — ) _ (—1)>
[licpeqgcs(Aa =) [icp<nizp(Ni = Ap)

When expanding th&th column in the numerator coi?[.z] we obtain

QM =

K 1
Z + —HQ'L,Ev

=0
with
)\(1) e )\?71 )\?+1 )\2
ﬁE 1 /E 1 ps 1 ZE . i\\? i‘?—l i%—l ig !
Qi = i\\}:_‘rl e i;:& ip_;,_l . ill?_‘_l .1 cee i1 2.—&-1 . .b
1 oo i—1 i1l e b : : : :
; : : PN D S A L RN Vo
N L
These considerations lead to the following representation:
- 1 § _1)b-1-¢,. for 1<i<b (25)
T Mgy i —2) & =" e <i<b.

Next we are going to simplify the expressions appearing %).(Zhe quotient of determinangs, has the
following representation (this can be obtained, e.g., wieting ¢; , as a Schur-function and applying the
Jacobi-Trudi-identity, see, e.g., [12]):

Gio = e€p—1—0(A1, .. s Nic1, A1, .., ), for 0 <2 <b—1, (26)

wheree,.(z1, ..., z,), denotes the-th elementary symmetric polynomial with variables . .., x,, which is
defined agy = 1, ande, = Zi1<i2<-~<ir Xi X4y - - - T, fOrintegerse > 1.

Furthermore by using the factorizatiof — b! = (A — A;)(A — A2) --- (A — \;) we obtain the identity
(A=A lkzl(q)b*l*‘eb_l_ml, UD VENTD VIPTORRND 14 ) i Uy
This leads to the foIIowmgZ e(z/aluanon of the elementary sygtric polynomials appearing in (26):
AP — p! B [/\q()\b A N AL — pl ) _ P\E]Ab A

— b—1-¢ . . = U =
(-1 eh—1-0(A1, s Aim 1, Aig 1, Ap) [)\])\_)\Z_ N T Py

b b

_ ke E’](A GINISES mAfM: 3 mA

£=0 k={+1 k={+1

and thus to the formula ,
1 )
D D P @n
k=¢+1

Furthermore when considering the derivative of the indliptdynomial P(\) := AP — bl = szl()\ - )
w.r.t. A and evaluating a; we obtain the identity

)\bz/\ TE W Hx+b-1 — Hy,—1) = H (N = Ap)- (28)
1<p<b,i#p
Plugging in equations (24), (27) and (28) into (25) we obgdiar easy manipulations the following formula
for ;.
b—1

1
P = T‘!S7-A r >\z , 29
’y b!<H)\i+bfl _ H)\ifl) ; b7 ( ) ( )
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where the functiord, ,-(x) is defined as follows:
b—1 ¢ b b
Ap () = Z {r}(—l)z_r Z L{J gh1=L,
l=r k=(+1

By applying basic identities for Stirling numbers, whichndae found, e.g., in [6], one obtains that the
function 4; ,-(x) satisfies the recurrence

Apr(x)=0b—-14+x)Ap_1,(x), forb—1>r,

with initial value 4,41 ,.(z) = 1. Thus when iterating this equation we get the following dergxpression for
Ab,r(x):

Apr(z) = (b—1+z)=t=, (30)

Combining (29) and (30) we obtain thus the following exactrfalee for the unknown functionsg:

— 5
Vi = Sy ch , for 1<i<b. (31)
; (?)(b*”")(HAﬁb—l —Hy,—1)

Together with (20) and (21) we obtain then the following éxexpression for the trivariate generating
function N (z, u, v):

b
ie (1 —u)ity
N0 =3 2 g e (32)
1=1 £=0
with constants
iy
Ni = = 7 (33)
(Z) (b - g)(H)\/ﬁH)fl - H/\l.,l)
where), ..., \, are the roots of the indicial equatiod — b! = 0 arranged in decreasing order of their real

parts. We remark that due #q = 1 we obtain in particulan, , = m

Thus, using the definition (15), we immediately obtain byasting coefficients from (32) an exact formula
for the probability that the numbéf, ; of descendants of elemenin a bucket recursive tree of sizgis equal
tom:

1\ — i) _
]P){Y’LJ :m} - W[zjilunfjv"n]]\](z,lhv)
b b—1
1 . . (1 _ u)ki-‘rf,u
= . j—1, n—j, m
(7;:11) ;gm’é[z e ](l—uv)g-irl(l—z—u)&
b b—1
_ 1 3—1+/\ — 1\ ey "
= (?:11) ;%ﬁzé( . ) v™ I—U)j 1— l(l_uv)e+1
b b—1
_ 1 J—l—l—)\—l m—=1+0\ iy L
- (0 ;%TM( ] )( ) ](17u>j717€
b b—1
1 j—l—l—)\—l (n—1+€>( _g_1>
(? 1);;;771@( ‘ j—2-Y
b b-1 >\+b 1) (Ai+j—2) (Z+m—1)(n—m—£—1)
Z bfz1 j—1 [ Jf—fl , for7>2 and 1<m<n+1-j. (34)
== (0= O(Hy4p-1 — H, _1)(?71)

Of course, it also holdB{Y,, 1 = n} = 1 and this completes the proof of Theorem 2.
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5.3. Limiting distribution results. An advantage of the approach presented leading to the eistiibdtion

of the r.v.Y,, ; under consideration is that by using these exact resulsymptotic behaviour df;, ; can be
described in a quite precise manner, where j(n), with 1 < j < n, is possibly growing im. Of course,
the asymptotic behaviour &f, ; is dependant on the “growth functioti{n) and leads to four regions, where
different limiting distributions are occuring. Since thgyanptotic results are essentially following from (34)
by applying Stirling’s asymptotic formula for the factdga

nl=n"e "V 27m(1 + O(nil)), (35)

we will not carry out here every step of these straightfods@mputations.

The region foryj fixed. Stirling’s formula (35) leads for fixeg > 2 from the exact formula (34) immediately
to the following asymptotic evaluation:

Pt =158 (0o S

i=1 £=0

1 1
1 — .
x( +an)—%0(n_7nn
Thus, settingr := “*, we obtain for fixedj > 2 the local expansion

P{r < T2i <z 1} 1

B fj(l“)(l + O(%) + O(m))v

1
n

with

_ o 9 b (Aij-b:ll) (/\7;;]1_2)
er(lwuol)(]g )Z b—2

i=1 (2)(6 —O)(Hyx -1 — Hy,—1)

This implies that one obtains far 2 < z < 1 — n~2 the uniform local approximation

Pz < Mmi < gy 1y

= fi(2)(1+ O(n"%)),

1
n

which also shows for the regigifixed the corresponding limiting distribution result in Tiem 3.

The region forj small: j — oo such thatj = o(n). For this region Stirling’s formula (35) gives the asymptoti
expansion

J —! (n—m)!(n—7)! mj.e 1
_EZ nl(n —m — j)! (n) I+ 1)H,

=0
X (1 + 000G+ O(jw‘rl) +O(m™ )+ O(mn™h) + O(jnil))
b—1

0N gmy 1
7nZe (n)(Z—i—l)!Hb

£=0
x (1+0G™ 1) + OG**H +Om™Y) + O(mn™Y) + O(jn~Y) + O(im?*n~2) + O(j*mn=?)).
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Settingz := % we obtain forj — oo with j = o(n) the local expansion

P{z < 7Y <+ L}
i STEAY

n

2

(14067 + 0™ ) +0() +0() + 0(F) +0() +OD)),

with

Z K—l—l'Hb

For % <z < min (ﬁ, \/?j) this gives the uniform local approximation

Plz <1V,;<z+1}

S = f(o) (14037 + 0™ 1)+<9(\ﬁ)),

n

which leads for the regiop — oo such thatj = o(n) to the corresponding limiting distribution result in
Theorem 3.

The central region forj: j — oo such thatj ~ pn, with0 < p < 1. Fore < £ < 1 — ¢, with an arbitrary
e > 0, we obtain with (35) the asymptotic expansion
b—1 (IZJHZ*I) (nfm[lfl)
P{Y,; =m} = 122 2 (14 0™+ 0n™eh)),
! ; ("") e+ 1)H,

which leads for everyn > 1 fixed to the following local approximation:

b—1 E-‘rml

. .7 £+1 l m—1 1
P{Y,,; = 2 €+1Hb 2) (=) (1 0mT).

Thus, forZ ~ pwith 0 < p < 1, one obtains that for every, > 1:

b—1 (£+m71

P = = 2 e

which shows the discrete limit law for this region preseritedheorem 3.

The region forj large: j — oo such thath — j = o(n). Forn—j = o(n) equation (35) leads to the asymptotic
expansion
b— n l— 2)

Z ‘ J — (TS +0(n7Y) + O™ ).

£=0

Since we further obtain for this region the expansion

(?4{7;) J e+l n—j
o = (5) T (1+0(m™h) =1+0(—=) =1+0(1),
(o) m n
we have shown that for the regign— oo such thati = o(n) it holds
P{Y,, =1} — 1,

and this proves the degenerate limit law in the correspanpart of Theorem 3.
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6. NODE-DEGREE OF A SPECIFIED ELEMENT

6.1. The generating functions approach.Now we consider the random variablg, ;, which denotes the
out-degree of elemerit i.e., the out-degree of the node containing elemjgimt a random bucket recursive tree
(with maximal bucket sizé) of sizen. Again, in order to studyX,, ; for bucket recursive trees we consider
first the corresponding random variat¥g, ; in a bucket increasing tree family with arbitrary weightsences
pr andyy, and introduce the trivariate generating function

L=l gk

(z,u,v) := ZZZP{X"‘*‘“ m}Tk_,_J( )'Z' o™ (36)
E>07>1m>0
It can be verified easily that the arguments in Subsectiorids.the r.v. Y, ; leading to the differential equa-
tion (16) for the corresponding generating function (15pakork for X, ; and the generating function (36).
Thus the trivariate generating function defined by (36) aldtsfies the differential equation (16) (but, of course,
with different initial conditions):
8b
0zb
We remark that one could also argue thtz, u, v) defined by (36) has to satisfy (37), sin&g ; andY, ; sat-
isfy, apart from different initial values, the same recaae, which is obtained from the natural decomposition
(3) of bucket increasing trees.
As we will see, in order to obtain the initial conditions féretgenerating functioiV(z, u,v) we have to
study the degree distribution of the root of a random buakaEiasing tree with elements. Lef?,, denote the
random variable counting the out-degree of the root & v) the following bivariate generating function:

R(u,v):=>_ > P{R, = m}T (38)

n>1m>0

N(z,u,v) = ¢'(T(z +u))N(z,u,v). (37)

By using the combinatorial decomposition (3) of bucket&asing trees one easily obtains tRét:, v) satisfies
the following differential equation:
ab
v) =Y ert" (T ()" = p(uT(u)), (39)
k>0
with initial conditions

4

R(0,v) =0, and a—R(u,v)

Bt = > P{Ry=m}Tw™ =T,, for 1<{<b-1.
u

u=0 m>0

We further use thaR,, @ Xn,j, forl < j < b (elementsl,?2,...,b are all contained in the root node),
which gives the following description of the initial conidibs corresponding to (37):
aé k
@N(zvuvv) = Z Z P{Xkter1,041 = m}Tk+£+1 Y
2=0 k>0m>0
uk 8Z+1
=3 Y P{Rijepr = m}Thyri175 V" = g Rlw ), for 0<e<b—1.
k>0m>0

Now we specify our findings for the instance of bucket remarsiees and obtain tha{ (z, u, v) satisfies
the following differential equation together with the iaitconditions:

8b b aé 8€+1 ‘
—N =— N —N = — <lL<b-1.
550 (z,u,v) A=z —ap (z,u,v), E; (z,u,v) . 8u”1R(u’U)’ or 0</¢<b
(40)
Moreover, the functiorR(u, v) satisfies the differential equation
ob (b—1)!
wR(U»U) = A (41)
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with initial conditions

4

R(0,v) =0, and 8—R(um)

Sul ={-1 for1<e<b-1. (42)
u

u=0

Of course, equation (41) can be solved by integration andklaéter adapting to the initial conditions (42)
to the following explicit solution:

1 12 1 1
Ru,vz 1 - = Tho—1\ Uk— 1N " 43
() = S0 s b§(>(<b k) M) o) @3

6.2. The exact distribution. Since the differential equation (40) coincides apart frém initial conditions
with equation (18) we can proceed as in Subsection 5.2 tarobtaexact solution ofV(z, u,v). We obtain
thus

S Biwv)
N = 7 44
() =2 (44)
for the general solution of equation (40) (with unspecifigaidtionss; (u, v)). Adapting to the initial conditions
leads to the following system of linear equations for thecfions3; (u, v), for 1 <+ < b:

b
Z(Ai Jrfl)’yi(u,v)—Sg(u,v), for 0</¢<b—-1, (45)
i=1
where we used the abbreviations
Bi(u,v 1—w)t ottt
vi(u,v) = (1£u)2’ and sp(u,v) := %WR(U,’U).

This system of linear equations (45) has been solved in $tibeés.2 leading to the solutions

b—1 ()\.r‘rb*l)

vilu,v) =) sp(u,v) botol , for 1<i<hb.
ez:; ()b — O)(Hn4p-1 — Hr,—1)

Therefore we obtain the following solution 8f(z, «, v) defined by (36):

b—1 Ai+b—1 . i+ 41
N(z,u,v)zz (i) Sl X aulR(U»U)
i=1 £=0 g' b O)(Hx,40—1 — Hx,—1) (1 —2—u)* ou’
Ait+b— )
zb: — ( b +Z 11) (1 - u)/\ﬁ_é (46)
000 O(Hy o1 — Hyor) (=2 =)
b—
( (24D ()t D) Zl (b—f—l)( 11 )uk_e_l)
b bbvz 11 1 — )bv=brtrd b k=0+1 k—t-1 (2:11) (bbu:kl)

Extracting coefficients from (46) leads thus directly to tbikowing exact solution of the probability gener-
ating functionp,, ;(v) := 33, 5 P{X,; = mpv™ = Cl—ll)[zﬂ"lu"‘j]N(z,u,v) of the out-degree,, ; of

. . . ']_
elementj in a random bucket recursive tree of size

b b—1 ()\i+b—1) (j—2+)\1,) (n+bu—b—1)

pn,'(v) = —— J-1 n_Jj -
’ ;f o b(Hx -1 — Ha, —1)( )(bbill)
o (DG (@~ ) €5 Gt
2 - .

i=1 £=0 k=(+1 b(Hx; b1 — HAi—l)(j—1)
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6.3. Limiting distribution results. Again, since we have a detailed description of the behawbtine r.v.
X, ; (now via the probability generating functign ;(v)) we are also able to give a quite detailed description
of the limiting behaviour ofX,, ; for all regionsl < j < n depending on the growth gf= j(n). Essentially
we also only require Stirling’s formula (35) for the factls together with asymptotic equivalents and bounds
for the harmonic numberd,, andH,(f) of first and second order. Since the asymptotic consideratiequired

to prove our limiting distribution results are essentiatyaightforward, but nevertheless lengthy when figured
out in detail, we will here only sketch these computations.

The region forj small: j = o(n). To obtain a limiting distribution result for this region wesfi compute exact
formulee for the expectatiofi(X,, ;) = p;, ;(1) and the varianc® (X, ;) = pl; ;(1) + p}, ;(1) — (v}, ;(1))*.
They are given as follows:

b—1 ()\i+b71> (j72+)\i)

b—l—1 j—1

it im0 (Hivo—1 — Ha, *1)(1221)

S A [t [ [ sy Y P
Hy o1 = Hy 1) () (52)

(
V(Xp;) = b(Hp1 — Hj_1) = *(H, — H?))

Jj—1

(Hy—1 — Hy)

b b—1 b-—-1 )\+b 1) (b—é—l) (j—_2+)\1;)( n'—k—l )
B 2b(H»n_1 *Hj—l ZZ b /—1 k—0—1 j—1 n—j—k+04+1
l=

(Hp—1 — Hi—1)

i=1 £=0 k=0+1 (Hx;4b-1 — HAi—l)(Z:;i) (?:11)
b b—1 (>2;-+€b 11) (g .2+1)‘1) , ,
+ ZZ T o ey C(Hea — Ho)* + (HZ, = H?)) = (H,_, — Hy))
i=1 f= Ai+b—1 Ai— )(bfefl)
NS bz (i) Goo) 020 (k)
i=1 =0 k=f+1 (Hx;+b-1 _H/\i—l)(ll:i) (7:11)

x (b((Hy—1 — Hy1)? + (HP, — H))) = (Hy_1 + Hy 1))
(zb: S (e L ey | ) [ a0y
i=1 £=0 k=(+1 (HAﬁb*l_H/\z‘*l)(l}n):lt)(?j)

e GRS

——~ (Hy—1 — Hy)
= oo (Hx4o-1 — Hy, (G50
By using (35) and the symptotlc expansions

(Hy—1 — Hi—1)

2

2
H,=logn+~v+0®™?), and H® = %Jr(?(n’l), (48)
one easily obtains the expansions

E(X, ;) =b(logn —logj) + O(1), and V(X, ;) ="b(logn —Ilogj)+ O(1),
where the bound on the remainder term holds uniformly forlakk j < n andn > 1. In other words

there exist constants, andd;, independent ofi andn, such thaiE(X,, ;) — b(logn — logj)| < ¢ and
|V(X,,;) —b(logn —log j)| < dp, forall1 < j <n.

We use now the abbreviations
tn; = b(logn —logj) and o, ;:=+/b(logn —logj), (49)

and consider the normalized r.v.

Xpi — lini
X; = ot Hng (50)

and the moment generating function

Ko g X
E(BSX:LJ‘) =e W SE(e on.j 8) =e TmI%p, i(e7nd). (51)
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We will consider the two summands of the probability geriagafunctionp,, ;(v) as given by (47) sepa-
rately and use thus the abbreviations:

b b—1 )\ +b71) (j72+)\i) (n+bv7b71>
p Z b -1 j—1 n—j
nj i1 im0 P(Hx -1 — H, *1)( )(bbve 11)
gt g B (gt~ ) O
p — .
n’] i=1 =0 k=0+1 b<H/\i+b71 - H/\ﬁl)(?,ll)

We assume now that = o(n) and considee—f’w‘spf’]j(e#u‘) for a reals fixed. Using the asymptotic
expansions

n—k—1
J—24 N\ (0 i kres1) j 1 1 1
( i1 > = O(l) JTL——1~_ - = O(ﬁ)’ and b—1\  [bv—1 = 0(7)’
J (j—l) 2w o) Tn,j
we obtain that
—0n s = J

e n,J pf] ( n,j ) = O( 5), (52)

which will turn out to be negligible compared ¢g s p[ ] (eTJ).

We consider now the contribution @ﬁ ) and spllt the considered range= o(n) into the regions

j > lognandj < logn. We first assume thgt> log n. By a direct application of Stirling’s formula (35) we
obtain then the following expansion, which holds uniforratpundv = 1:

ph)(v) = K (v)e(vDlegn=losd) (1 4 O((log n)™2 1) + O((log n) 1)),

with

bHy(v — 1)

SinceK (v) = 1+ O(v — 1) we obtain forj = o(n) such thatj > logn and for everys fixed the asymptotic
expansion

K(v) =

e=7mi%p [1] (eﬁ) — 7 (1+O((log n)%’\rl) + (’)(a;;)). (53)

Second we assume that< logn. Using a Taylor-series expansion around- ¢77 = 1 we obtain for
this region ands fixed the expansions

be7ni —1 B b—1 1 j—i—be#d—b—l B loglogn
<b€1)_(l)€1)(1_‘_0(\/10gn))7 ( j—1 )_1—~_(/)(\/logn)7

n-i—be?:—b—l b( #,j_l)]g ( 1
_ e esn (14 o(—L)),
< n—1 ) ¢ - (\/1ogn)

Using them we obtain the expansion

s >\7‘,+b—1) (j—2+>\7‘,>

; . b ( A
e_U“vjsp[l],(egvlL,_j ) _ 6_0"L’jseb(egn’7 —1)logn Z Z b—4—1 7j—1 _
" = =g b(Hy -1 — Hy, 0G5

loglogn
(1+0( Jozn ))-

Since we have fof < logn ands fixed the expansions

s 2
Un,j:\[b\/@(l—ﬁ-o(loig)in)), and e7ni —1= —> + 32 _|_(’)( 1 )7

ong 200, (logn)?

we further get

(1] " > = ()2:717711) (j7‘2+1)\i) loglogn
e T, (eTh ) = €T L _(1+0 : (54)
( ) 1:1621)(H)\ +b—1 —H)\ 71)<bﬁzi1) ( ( \/IOW ))
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But due to the binomial identity
— Gremr) {0, for A +# 1,

bHy, for A=1,

the double sum appearing in (54) evaluates:to
b—1 (/\r&-b—l) (j—2+xi)

Xb:z b—o—1 )" 21 1
b(Hx,+o—1 — Hx—1)( bl )

i=1 £=0 b—(—1

Therefore we obtain fof = o(n) such thatj < logn and for everys fixed the asymptotic expansion

oy [ (w2 loglog n
e Py (emi) =ez <1+(9( m)) (55)

Combining the prewous results (52), (53) and (55) we obtaam for the whole regior = o(n) the moment
generatmg functiof(eXn.i%) = e=mi%p,, n,j(e7mi) of the r.v. X, ; converges pointwise for evesyfixed to

=, which is the moment generating function of a standard nbdis&ibuted random variable. This suffices
to show thatX, ; = M converges in distribution to a standard normal distributedand proves the

corresponding part of Theorem 4.

The central region forj: j — oo such thatj ~ pn, with0 < p < 1. We assume now that < % <1-—k¢
with € > 0, and we assume further thats in a (complex) neighbourhood &f Then we obtain the following
asymptotic expansions:

i—24 N - . 1+0mn™Y, i=1,
=N 1140 =
< J—1 ) 7+ oG) O(n™—1), 2<i<b,

(D B

n— - i\ bv— (
G @
(nfj-fiiﬂ) _ (i)€+1 (1- Z)’““l(l n O(n—l))
(52 n n '
Using them we get from (47) the following asymptotic expansif p,, ;(v), which holds uniformly fore <
2 <1 — einacomplex neighbourhood of= 1:

( b(v—1) log L bif (b ? 1)
pnj(v) = | TR YT s
’ £=0 be(b 1)

b—(—1

1+ 0(n 1)) = e P-DIgw (14 0(n™)),

b—1
+
{=0 k

=

L ) ED (Em ) o
b—k b—k J\e+1 JI\k—£-1
b, (g) - g)

I
~

+1

x (1+0(Mn™ ")+ O(n%’\rl)).

This shows that, foj ~ pn with 0 < p < 1, the probability generating functiagm, ;(v) converges uniformly
in a complex neighbourhood of= 1 to a functionp,(v) given as follows:

1 (5_2_1) (ll::f’j) ((g‘_l}c) B (bﬁikl)) 041

b b—1 b—
. —b(v 1) log p b {— 1 b—1—+¢
Pp ( ) Z bu 1 +Z P (1_p) .
o bH (") oL +1 bH,

(56)
Since this also shows that for this region the moment geingratinctionE(eX~7%) = p, ;(e®) converges
pointwise in a real neighbourhood of= 0 to the moment generating functi@{eX~*) = p,(e*) of ar.v. X,,,
we obtain that, for ~ pn with 0 < p < 1, X, ; converges in distribution to a discrete rX, with probability
generating functiomp, (v). Thus the corresponding part in Theorem 4 is proven.
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The region forj large: j — oo such thath — j = o(n). For the regiom — j = o(n) we obtain the following
asmyptotic expansions:

(”;fgl) —14o1) and (n_T}:]Z:jH) _ Jo(, for k>0+1,
(?:11) ’ (?:11) 1+o(1), for k=¢+1.

Using these expansions leads then,jfer oo such that: — j = o(n), to

Thus, for this regionX,, ; converges in distribution to a degenerate &y, with P{X = 0} = 1, as stated in
the corresponding part of Theorem 4.
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