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ABSTRACT

We show how to construct, via forcing, splitting families that are pre-

served by a certain type of finite support iterations. As an application, we

construct a model where 15 classical characteristics of the continuum are

pairwise different, concretely: the 10 (non-dependent) entries in Cichoń’s

diagram, m(2-Knaster), p, h, the splitting number s and the reaping num-

ber r.

1. Introduction

In this paper we present a method to preserve certain splitting families along

finite support iterations. These splitting families are constructed via forcing,

using specific uncountable 2-edge-labeled graphs1 as support. The main appli-

cation of this method is a forcing model where many classical cardinal character-

istics of the continuum are pairwise different, including the splitting number s

and the reaping number r.

We assume that the reader is familiar with Cichoń’s diagram (Figure 1) con-

taining the characteristics that we will call Cichoń-characteristics. We also

investigate some of the characteristics in the Blass diagram [Bla10, p. 481].

Figure 2 illustrates both diagrams combined, along with all the ZFC-provable

inequalities that we are aware of. See [Bla10, BJ95] for the definitions and the

proofs for the inequalities (with the exception of cof(M) ≤ i, which was proved

in [BHHH04]). In the following, we only give the definitions of the non-Cichoń-

characteristics that we will investigate in this paper.

Definition 1.1: (1) For a, b ∈ [ω]ℵ0 , we define a ⊆∗ b iff a� b is finite;

(2) and we say that a splits b if both a∩ b and b�a are infinite, that is, a �∗ b
and ω � a �∗ b.

(3) F ⊆ [ω]ℵ0 is a splitting family if every y ∈ [ω]ℵ0 is split by some x ∈ F .

The splitting number s is the smallest size of a splitting family.

(4) D ⊆ [ω]ℵ0 is an unreaping family if no x ∈ [ω]ℵ0 splits every member of

D. The reaping number r is the smallest size of an unreaping family.

(5) D ⊆ [ω]ℵ0 is groupwise dense when:

(i) if a ∈ [ω]ℵ0 , b ∈ D and a ⊆∗ b, then a ∈ D,

(ii) if 〈In : n < ω〉 is an interval partition of ω then
⋃

n∈a In ∈ D for some

a ∈ [ω]ℵ0 .

1 A 2-edge-labeled graph is a simple graph whose edges are labeled by either 0 or 1.
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The groupwise density number g is the smallest size of a collection of

groupwise dense sets whose intersection is empty.

(6) The distributivity number h is the smallest size of a collection of dense

subsets of 〈[ω]ℵ0 ,⊆∗〉 whose intersection is empty.

(7) Say that a ∈ [ω]ℵ0 is a pseudo-intersection of F ⊆ [ω]ℵ0 if a ⊆∗ b for all

b ∈ F .

(8) The pseudo-intersection number p is the smallest size of a filter base of

subsets of [ω]ℵ0 without pseudo-intersection.

(9) The tower number t is the smallest length of a (transfinite) ⊆∗-decreasing

sequence in [ω]ℵ0 without pseudo-intersection.

(10) Given a class P of forcing notions, m(P) denotes the minimal cardinal κ

such that, for some Q ∈ P , there is some collection D of size κ of dense

subsets of Q without a filter in Q intersecting every member of D.

(11) Let P be a poset. A set A ⊆ P is k-linked (in P) if every k-element subset

of A has a lower bound in P. A is centered if it is k-linked for all k ∈ ω.

(12) A poset P is k-Knaster, if for each uncountable A ⊆ P there is a k-linked

uncountable B ⊆ A. And P has precaliber ℵ1, if such a B can be chosen

centered. For notational convenience, 1-Knaster means ccc, and ω-Knaster

means precaliber ℵ1.

(13) For 1≤k ≤ω denote mk :=m(k-Knaster) and m :=m1. We also set m0 :=ℵ1.

c

cov(N ) �� non(M) �� cof(M) �� cof(N )

��

b ��

��

d

��

add(N ) ��

��

add(M) ��

��

cov(M) ��

��

non(N )

��

ℵ1

��

c

cov(N ) �� non(M) �� �� cof(N )

��

b ��

��

d

��

add(N ) ��

��

��

��

cov(M) ��

��

non(N )

��

ℵ1

��

Figure 1. Cichoń’s diagram (left). In the version on the right,

the two “dependent” values add(M) = min{b, cov(M)} and

cof(M) = max{non(M), d} are removed; the “independent”

ones remain (nine entries excluding ℵ1, or ten including it).

An arrow x → y means that ZFC proves x ≤ y.
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ℵ1 m mk mω p

e

add(N )

cov(N )

non(N )

cof(N )

add(M) cov(M)

non(M) cof(M)

b d

h s

g

a r

u

i

c

Figure 2. Cichoń’s diagram and the Blass diagram combined.

An arrow x → y means that ZFC proves x ≤ y.

Below we list some additional properties of these cardinals. Unless noted

otherwise, proofs can be found in [Bla10].

Fact 1.2: (1) In [MS16] it was proved that p = t.2

(2) The cardinals add(N ), add(M), b, t, h and g are regular.

(3) cof(s) ≥ t (see [DS18]).

(4) 2<t = c.

(5) cof(c) ≥ g.

(6) For 1 ≤ k ≤ k′ ≤ ω, mk ≤ mk′ .

(7) For 1 ≤ k ≤ ω, mk > ℵ1 implies mk = mω (well-known but see, e.g.,

[GKMSb, Lemma 4.2]).

2 Only the trivial inequality p ≤ t is used in this text.
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This work contributes to the project of constructing a forcing model satisfying:

(♥) All the cardinals in Figure 2 are pairwise different,

with the obvious (ZFC provable) exception of the dependent entries

add(M) = min{b, cov(M)} and cof(M) = max{non(M), d}, and the Martin

axiom numbers m, mk for some 2 ≤ k < ω, and mω, which cannot have more

than one value > ℵ1; see Fact 1.2(7).

In this direction [GKS19] constructed a forcing model, using four strongly

compact cardinals, where all the ten (non-dependent) values of Cichoń’s dia-

gram are pairwise different (a situation we call Cichoń’s Maximum), as in

Figure 3(A). This was improved later in [BCM21] by only using three strongly

compact cardinals; finally in [GKMSa] it was shown that no large cardinals are

needed for Cichoń’s Maximum.

A model of Cichoń’s Maximum with the order as in Figure 3(B) was obtained

in [KST19]. Although this model initially required four strongly compact car-

dinals as well, the methods of [GKMSa] allow to remove the large cardinal

assumptions also here.

As a next step towards (♥), [GKMSb] proved:

Theorem 1.3 ([GKMSb]): Under GCH, for any k ∈ [1, ω), there is a cofinality

preserving poset Pk forcing that

(a) Cichoń’s Maximum holds with the order of Figure 3(a),

(b) ℵ1 = mk−1 < mk = mω < p < h < add(N ) (recall m0 := ℵ1).

An analogous result holds for the alternative order of Figure 3(b).

In this paper, we continue this line of work by including, in addition, s and r.

Main Theorem: Under GCH, for any k ∈ [2, ω) there is a cofinality preserving

poset which forces that the cardinals in Cichoń’s diagram, mk, p, h, s and r are

pairwise different. More specifically:

(a) Cichoń’s Maximum holds, in either of the orders of Figure 3.

(b) ℵ1 = mk−1 < mk = mω < p < h < add(N ).

(c) s can assume any regular value between p and b.

(d) r can assume any regular value in the dual position to s. Foe example, if

s<add(N ), then r can be any arbitrary regular [cof(N ), cfin] (see Section 7).

In both theorems above, item (b) can also be replaced by

ℵ1 < mω < p < h < add(N )

while mk = ℵ1 for all k < ω. Those are the only possible constellations of the

Knaster numbers, by Fact 1.2(7), unless you count m as the 1-Knaster-number:
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In contrast to Theorem 1.3 (where we do not control r, s), we cannot force

m > ℵ1 with the methods we use here. We cannot just iterate over all small ccc

forcings one by one to increase m, as our method requires that all iterands of

the forcing iteration have to be “homogeneous”. So instead of using a certain

small forcing Q̇ as iterand, we will use a finite support product over all variants

as iterand. So only if Q̇ (and therefore all variants) is Knaster,3 this product

can be used in a ccc iteration; accordingly we can increase the Knaster numbers

but not m itself.

c

cov(N )

���
��

��
��

��
�

non(M)

���
��

��
��

��
�

���
��

��
��

��
� cof(N )

��

b

��

d

add(N )

��

cov(M)

��

non(N )

��

ℵ1

��

(A) [GKS19, GKMSa]

c

cov(N ) �� non(M)

���
��

��
��

��
�

�� cof(N )

��

b

��������
d

add(N ) �� cov(M) �� non(N )

��������

ℵ1

��

(B) [KST19, GKMSa]

Figure 3. The two known consistent orders where all the (non-

dependent) values in Cichoń’s diagram are pairwise different.

(A) corresponds to the model in [GKS19], and (B) to the model

in [KST19] (both proven consistent in [GKMSa] without large

cardinals). Each arrow can be < or = as desired.

We remark that the full power of GCH is not required in the Main Theorem,

but we do need some assumption on cardinal arithmetic in the ground model.

See details in Section 7.

In order to include s and r in our main result, we need a new preservation the-

orem for splitting families. Previously, the following was known in the context

of FS (finite support) iterations:

[BD85] Hechler forcing (for adding a dominating real) preserves splitting fam-

ilies witnessing the property LCURsp(κ) for any uncountable regular κ

(see Section 3).

[JS88] Assuming CH, any FS iteration of Suslin ccc posets forces that the

ground model reals form a splitting family.

3 Or at least stays ccc in ccc extensions.
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In this paper we will use a splitting family obtained by a FS product of Hechler-

type posets (cf. [Hec72]) which we call GB; the support of GB is a graph B of

size ℵ1 with certain homogeneity properties. We then show that this splitting

family is preserved by certain FS iterations, which we will call “symmetric

Suslin-λ-small”. (Every FS iteration of Suslin ccc posets with parameters in

the ground model is such an iteration, but our application will not use such

“full” Suslin ccc forcings.)

Similar preservation techniques have appeared in different contexts. For

instance, concerning preservation of mad (maximal almost disjoint) families,

Kunen [Kun80] constructed, under CH, a mad family that can be preserved

by Cohen posets; afterwards, Steprāns [Ste93] showed that, after adding ω1-

many Cohen reals, there is a mad family of size ℵ1 that can be preserved in

further Cohen extensions; Fischer and Brendle [BF11] constructed a Hechler-

type poset HA with support (any uncountable set) A that adds a mad family

indexed by A, which can be preserved not only in further Cohen extensions

but after other concrete FS iterations, thus generalizing Steprāns’ result be-

cause Hω1 = Cω1 ; [FFMM18, Mej19a] showed that any such mad family added

by HA can be preserved by some general type of FS iterations, but the most

general result so far was shown in [BCM21]: Any κ-Fr-Knaster poset preserves

κ-strong-Md-families (with κ uncountable regular; the mad family added by Hκ

is of such type).

There are deep technical differences between the mad family added by this HA,

and the construction of a splitting family in this paper: No structure is needed

on A, and because of this it is clear that Hechler’s posets satisfy HA�HB when-

ever A ⊆ B; but we cannot guarantee GB0 � GB for our posets, whenever B0

is a subgraph of B. Also, GB itself does not add a splitting family, but it just

adds a set of Cohen reals {ηa : a ∈ B} over the ground model (recall that we

do not have intermediate extensions by restricting the support B). Hence, the

FS product (or iteration, which is the same, as the poset GB is absolute) of

size κ of such posets adds a splitting family of size κ (witnessing LCUR(κ))

formed by the previously mentioned Cohen reals. It is clear that just adding κ

many Cohen reals produces a splitting family satisfying LCUR(κ), but we need

to use FS support products of κ many GB (with B of size ℵ1, instead of just

one GB′ with B′ of size κ), and we need the graph structure on B, to be able

to guarantee the preservation of the new splitting family. The forcing structure
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is very important here because an isomorphism of names argument is required

for this preservation.

The strategy to prove the main theorem is similar to Theorem 1.3. We first

show how to construct a ccc poset that forces distinct values for the cardinals

on the left side of Cichoń’s diagram, including some of the other cardinal char-

acteristics (like s in this case). Afterwards, methods from [GKMSa, GKMSb]

are applied to this initial forcing to get the poset for the main theorem.

Annotated contents.

§2 We show how to construct, in ZFC, a suitable 2-graph. This is the type of

graph we use as support for GB.

§3 The LCU and COB properties are reviewed from [GKS19, GKMSa, GKMSb].

These describe strong witnesses to cardinal characteristics associated with a

definable relation on the reals. Examples of such cardinal characteristics are

the Cichoń-characteristics as well as s and r.

§4 We introduce the forcing GB, which has as support a suitable 2-graph B. We

look at FS iterations of ccc posets, in general, whose initial part is a FS product

of posets of the form GB where B is in the ground model. We define λ-small

history iterations (where on a dense set, conditions have <λ-sized history), as

well as symmetric iterations, and show that symmetric λ-small history iterations

allow us to control s (and later also r).

§5 We define Suslin λ-small iterations, which are λ-small history iterations,

and give consequences of these notions, as well as sufficient conditions to get

symmetric ones.

§6 Closely following [GKS19], we construct a symmetric Suslin-λ-small itera-

tion P0 that separates the cardinals on the left-hand side of the diagram, with

cov(M) = c and s = p.

§7 We show how the tools of [GKMSa, GKMSb] can be applied to P0, resulting

in a forcing that gives the main theorem.

§8 We discuss some open questions related to this work.
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2. Suitable 2-graphs

In this section we define and construct suitable 2-graphs.

Definition 2.1: Say that B := 〈B,R0, R1〉 is a 2-edge-labeled graph, abbre-

viated 2-graph, if

(i) R0 and R1 are irreflexive symmetric relations on B,

(ii) R0 ∩R1 = ∅.

In other words: Between two nodes x and y there is at most one edge, with

color 0 or 1.

Concerning 2-graphs, we define the following notions:

(1) If A ⊆ B, denote B|A := 〈A,R0|A, R1|A〉 where Re|A := Re ∩ (A×A).

(2) A partial function (or coloring) η from B into 2 respects B if

{η(a), η(b)} = {e}
whenever e ∈ 2, a, b ∈ dom η and aReb.

The 2-graph of Figure 4 does not have a coloring (with full domain) respecting

it.

A 2-graph B is a suitable 2-graph (S2G) if it satisfies, in addition,

(iii) |B| = ℵ1,

(iv) for e ∈ {0, 1}, B contains some Re-complete subset of size ℵ1,

(v) if a ∈ B and e ∈ {0, 1} then there is some η : B → 2 respecting B such

that η(a) = e.

(vi) For any a, b ∈ B, there is some automorphism f of B such that f(a) = b.

0

01

10

1

Figure 4. A finite 2-graph which cannot be respected by any

coloring.

Properties (iv) and (vi) imply for all b ∈ B and e ∈ {0, 1}:

(2.2) b is contained in an uncountable Re-complete subgraph of B.
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In the rest of this section we will show that an S2G exists.4

Remark 2.3: In our applications, we only need the following weakening of prop-

erty (v): for any t ∈ [B]<ℵ0 , a ∈ t and e ∈ 2, there is some η : t → 2 that

respects B such that η(a) = e. The only place where (the weakening of) (v) is

used is in the proof of Lemma 4.2(b).

Definition 2.4: Fix a 2-graph B.

(1) A finite partial function s : B → 2 with |dom s| ≥ 2 (which we may also

call “finite positive atomic type”) is realized by z ∈ B, if xRs(x)z for any

x ∈ dom s.

(2) Let D ⊆ B. We say D �− B if any such type s : D → 2 which is realized

in B is also realized in D.

Note that we require this only for “types” with at least two edges. So when

checking D �− B we can ignore all b ∈ B which have at most one edge to

elements of D.

Lemma 2.5: Let B = 〈B,R0, R1〉 be a 2-graph and A �− B. Then:

(a) If η : A → 2 respects B and c ∈ B � A, then η can be extended to some

η′ : A ∪ {c} → 2 that respects B.

(b) If in addition B|A satisfies (v) of Definition 2.1 then, whenever c ∈ B � A

and e ∈ 2, there is some η′ : A∪{c} → 2 that respectsB such that η′(c) = e.

(c) Now assume that all elements of B � A have edges only to elements of A,

i.e., (B �A)2 ∩ (R0 ∪R1) = ∅. Then under the assumptions of (a), we can

extend η to some η′′ : B → 2; and under (b) we can find some η′′ : B → 2

with η′′(c) = e.

Proof. (a): By contradiction: Assume that η cannot be extended in such a

way, which means that there are x = y in A such that xR0c, yR1c, η(x) = 0

and η(y) = 1. Since A �− B, there is some z ∈ A such that xR0z and yR1z,

but this contradicts that η respects B.

4 Using saturation, it is easy to see that it is enough to show the weaker result that a “weak

S2G” exists, where for “weak S2G” we replace the requirement that the three sets (B

and the two complete subsets) have size ℵ1, with the requirement that they are infinite.

We could then work in L, use the fact that a weak S2G exists and find an ωV
1 -saturated

model B for it; due to saturation the three sets have size ωV
1 ; and by absoluteness B is

actually an S2G in V .

However, as the construction for a weak S2G is not any easier than the construction for

S2G, we do not use saturation.
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(b): Assume x0R1−ec for some x0 ∈ A. Then, by Definition 2.1(v), there is

some η : A→ 2 respecting B such that η(x0) = 1 − e. By (a) we can extend it

to η′ : A ∪ {c} → 2, and η′(c) has to be e.

So now we assume that c only has e-connections to A (if any). It is enough

to show that there is some η coloring A which assigns 1 − e to all neighbours

of c in A: Then we can again extend it by setting η′(c) = e.

Say that p : wp → A is a 0-1-path if it satisfies

(i) 0 < wp ≤ ω,

(ii) p(0)Rec,

(iii) if n < wp and n ≡ i mod 2 then p(n)R|1−e−i|p(n+ 1), that is,

p(0) R1−e p(1) Re p(2) R1−e p(3) · · · .
It is clear that, whenever p : wp → A is a 0-1 path, then there is a unique

ηp : ran p → 2 respecting B such that ηp(p(0)) = 1 − e. Some such coloring

exists, as we assume Definition 2.1(v) for B|A. Uniqueness is clear: as p(0) gets

color 1−e, p(1) has to have color e, etc., i.e. ηp(p(n)) = e iff n is odd. Note that

(2.6) ηp(p(n)) = j implies that the edge from p(n) to p(n− 1) has color 1− j

(where we set p(−1) := c).

Let A′ ⊆ A be the union of (the ranges of) all 0-1-paths. We first show

that there is a unique ηc : A′ → 2 respecting B such that ηc(x) = 1 − e

whenever xRec.

Uniqueness is clear: Each node in A′ lies on a 0-1-path, which determines its

color. Set ηc to be the union of the ηp for all 0-1-paths p. So it is enough to

show that ηc is a function and that it respects B.

ηc is a function: Assume that p, q are 0-1-paths, m < wp and n < wq and

p(m) = q(n). If p(0) = q(0) then there is some η0 : A → 2 respecting B with

η0(p(0)) = 1 − e, and this η0 must extend both ηp and ηq, hence

ηp(p(m)) = ηq(q(n)) = η0(p(m)).

So assume p(0) = q(0), so in particular p(0)Rec and q(0)Rec. As A �− B,

there is some z ∈ A such that p(0)Rez and q(0)Rez. We can choose η1 : A→ 2

respecting B such that η1(z) = e. This implies η1(p(0)) = η1(q(0)) = 1 − e,

hence η1 extends both ηp and ηq, so

ηp(p(m)) = ηq(q(n)) = η1(p(m)).



12 M. GOLDSTERN ET AL. Isr. J. Math.

ηc respects B: Assume towards a contradiction that there are 0-1-paths

p, q, m < wp, n < wq and j < 2 such that ηc(p(m)) = ηc(q(n)) = j and

p(m)Rjq(n). It cannot be that p(0) = q(0) because there is some η0 : A → 2

respecting B with η0(p(0)) = 1 − e, and such η0 must extend both ηp and

ηq. Hence p(0) = q(0). As before, A �− B implies that there is some z ∈ A

such that p(0)Rez and q(0)Rez, and there is an η1 : A → 2 respecting B such

that η1(z) = e. Since η1 extends both ηp and ηq, η1(p(m)) = η1(q(n)) = j

and p(m)Rjq(n), a contradiction.

It remains to be shown that ηc can be extended to all of A. For this, choose

any η2 : A → 2 respecting B, and define η : A → 2 by η(x) := ηc(x) if x ∈ A′,
or η(x) := η2(x) otherwise. We claim that η respects B. Assume otherwise, i.e.,

there are x ∈ A′, y ∈ A � A′ and j < 2 such that xRjy and η(x) = η(y) = j.

Since x ∈ A′, there is some 0-1-path p such that x = p(n). By (2.6) ηc(x) = j

implies that the edge between p(n) and p(n − 1) is 1 − j, but this means that

we can extend p�n to y and get another 0-1-path, a contradiction to y /∈ A′.
(c): First note that, whenever A ⊆ A′ ⊆ B, A′ �− B: Assume b ∈ B�A′. As

there are no connections between b and A′ �A, any finite type over A′ realized

by b is a type over A, which is realized in A as A �− B.

Therefore, we can construct η′′ by Zorn’s Lemma or by induction (starting

with a suitable η′ as in (b), if required).

Theorem 2.7: There exists a suitable 2-graph.

Proof. We are going to construct, using forcing notation,5 two relations R∗
0

and R∗
1 on ω1 such that 〈ω1, R

∗
0, R

∗
1〉 becomes a S2G. Define the poset P whose

conditions are tuples p = 〈Bp, Rp
0, R

p
1,W

p
0 ,W

p
1 , L

p, Ap〉 satisfying the following:

(C1) Bp := 〈Bp, Rp
0, R

p
1〉 is a 2-graph with Bp ⊆ ω1 countable.

(C2) For each e ∈ 2, W p
e ⊆ Bp is infinite and Rp

e-complete, and W p
0 ∩W p

1 = ∅.

(C3) Lp = {ηpa,e : (a, e) ∈ Bp × 2} where ηpa,e : Bp → 2 respects Bp and

ηpa,e(a) = e, for any (a, e) ∈ Bp × 2.

(C4) Ap = {fp
a,b : (a, b) ∈ Cp} such that Cp ⊆ Bp×Bp and, for any (a, b) ∈ Cp:

(F1) fp
a,b : Dp

a,b → Dp
a,b is a bijection,

(F2) a, b ∈ Dp
a,b and fp

a,b(a) = b,

(F3) for any x, y ∈ Dp
a,b and e ∈ 2, xRp

ey iff fp
a,b(x)Rp

ef
p
a,b(y),

(F4) Dp
a,b �− Bp.

5 Equivalently we could formulate it as an inductive construction, taking care of ℵ1-many

requirements in ω1-many steps.
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Order P by q ≤ p iff the following is satisfied:

(O1) Bp is a 2-subgraph of Bq, and Bp �− Bq,

(O2) Cp ⊆ Cq and W q
e ∩Bp = W p

e for e ∈ 2,

(O3) for any a ∈ Bp and e ∈ 2, ηpa,e ⊆ ηqa,e, and

(O4) for any (a, b) ∈ Cp, fp
a,b ⊆ f q

a,b.

Note that P = ∅. Indeed, choose disjoint W •
0 ,W

•
1 ⊆ ω1 of size ℵ0, and define

B• := 〈B•, R•
0, R

•
1〉 where B• := W •

0 ∪W •
1 and, for e ∈ 2, xR•

ey iff x, y ∈ W •
e . It

is easy to construct an L• such that 〈B•, R•
0, R

•
1,W

•
0 ,W

•
1 , L

•, ∅〉 is a condition

in P.

Recall that, for any σ-closed poset and arbitrary ℵ1-many dense subsets, there

is a filter intersecting these dense sets. So, after showing that P is σ-closed, we

can obtain a suitable 2-graph from a filter intersecting suitable dense sets.

P is σ-closed: Let 〈pn : n < ω〉 be a decreasing sequence of conditions in P.

Denote Bpn = Bn, Rpn

0 = Rn
0 , and so on. Set B :=

⋃
n<ω B

n, Re :=
⋃

n<ω R
n
e

and We :=
⋃

n<ωW
n
e for e ∈ {0, 1}, B := 〈B,R0, R1〉, and C :=

⋃
n<ω C

n.

For (a, b) ∈ C set

fa,b :=
⋃

n≥m

fn
a,b

where m = min{n < ω : (a, b) ∈ Cn}. For a ∈ B and e ∈ 2, set

ηa,e :=
⋃

n≥m

ηna,e

where m = min{n < ω : a ∈ Bn}. Put

L := {ηa,e : (a, e) ∈ B × 2}, A := {fa,b : (a, b) ∈ C},
and q := 〈B,R0, R1,W0,W1, L,A〉.

It is easy to see that q ∈ P and that it is stronger than each pn.

The following sets are dense in P:

(I) Da∗ := {p ∈ P : a∗ ∈ Bp} for any a∗ ∈ ω1.

Let p ∈ P and assume a∗ /∈ Bp. We define q ≤ p in Da∗ as follows:

(i) Bq := Bp ∪ {a∗};

(ii) Rq
e := Rp

e and W q
e := W p

e for e ∈ {0, 1};

(iii) Cq := Cp;

(iv) f q
a,b := fp

a,b for all (a, b) ∈ Cp.

Obviously we can extend each old ηqa,e (by assigning an arbitrary value e to a∗),

and picking two such extensions for e = 0, 1 we get the required ηqa∗,e.
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It is clear that Bp �− Bq, as the new node has no edges. This implies that

Dq
(a,b) = Dp

(a,b) �− Bq,

as �− is transitive (the same argument will apply to the following dense sets

as well).

(II) Ea∗,b∗ := {p ∈ P : (a∗, b∗) ∈ Cp} for any a∗, b∗ ∈ ω1.

Without loss of generality assume that p ∈ P and a∗, b∗∈Bp, but (a∗, b∗) /∈Cp.

We want to find some q ≤ p in Ea∗,b∗ . When a∗ = b∗, it is enough to set

f q
a∗,b∗ = idBp , Cq := Cp ∪ {(a∗, a∗)}, and leave the other components as in p.

So assume that a∗ = b∗.

The set Bq will be the union of Z many copies of Bp, where b∗ in the m-th

copy is identified with a∗ in the m+1-th copy. In more detail: Denote B0 := Bp.

Find a sequence 〈B′
m : m ∈ Z � {0}〉 of pairwise disjoint subsets of ω1 of size

ℵ0 and disjoint to B0. Set a0 := a∗, a1 := b∗, and for m ∈ Z � {0, 1} choose

pairwise different am ∈ ω1 �
(
B0 ∪

⋃
m∈Z�{0}B

′
m

)
. For m = 0 put

Bm := B′
m ∪ {am, am+1}.

Note that, for any m,n ∈ Z, if |m− n| > 1 then

Bm ∩Bn = ∅ and Bm ∩Bm+1 = {am+1}.
Choose a bijection gm:Bm�{am+1}→Bm+1�{am+2} such that gm(am)=am+1,

and let

f q
a∗,b∗ = f :=

⋃
m∈Z

gm,

which is a bijection from

Bq :=
⋃
m∈Z

Bm

onto itself. Define for e ∈ 2 and x, y ∈ Bq, xRq
ey iff:

x = y, they belong to the same (unique) Bm and f (−m)(x)Rp
ef

(−m)(y).

It is clear that Bp = B0 �− Bq, as any x ∈ Bq � Bp has connections to at

most one node in Bp (to either a∗ or b∗).

We set W q
e := W p

e and Cq := Cp ∪ {(a∗, b∗)}, and leave the partial automor-

phisms in p unchanged, i.e., f q
a,b := fp

a,b for (a, b) ∈ Cp.

It is now enough to show that we can extend every old ηpa,e to ηqa,e : Bq → 2,

and find for each new b ∈ Bq and e ∈ 2 a suitable ηqb,e.
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Assume η0 := ηpa,e ∈ Lp. We extend η0 in the following way: Let e1 :=ηpa,e(a1).

Set η1 := ηpa1,e1 ∈ Lp. We now extend η0 to B1 by setting η(f(x)) := η1(x)

for x ∈ B0; and continue by induction (to the right and also to the left). In

more detail: define ηn : Bn → 2 and η−n : B−n → 2 by recursion on n ∈ ω

as ηn+1 := ηpa,ηn(an+1)
◦ f−(n+1) and η−(n+1) := ηpb,η−n(a−n)

◦ fn+1 (we already

have η0 from the start). All these functions are compatible, so we can define

ηqa,e :=
⋃
m∈Z

ηm,

and it is clear that it respects Bq.

Similarly, we get new ηqa,e for a ∈ Bq �Bp. Concretely,

ηqa,e := ηqf−m(a),e ◦ f−m

wherem is the one with minimum absolute value such that a∈Bm, and ηqf−m(x),e

is defined as in the previous paragraph.

(III) E′
a∗,b∗,c∗ := {p ∈ P : (a∗, b∗) ∈ Cp, c∗ ∈ Dp

a∗,b∗} for any a∗, b∗, c∗ ∈ ω1.

Without loss of generality, assume p ∈ P, (a∗, b∗) ∈ Cp and c∗ ∈ Bp �Dp
a∗,b∗ .

Denote Dp := Dp
a∗,b∗ . Let c0 := c∗ and, for m ∈ Z � {0}, choose pairwise

different cm ∈ ω1 � Bp. Set Dq := Dp ∪ {cm : m ∈ Z} and f : Dq → Dq

extending fp
a∗,b∗ such that f(cm) := cm+1. Define q as follows:

(i) Bq := Bp ∪ {cm : m ∈ Z � {0}};

(ii) a new node cn has an Re-edge to fn(x) iff c0 = c∗ has an Re-edge to x;

(iii) W q
e := W p

e ;

(iv) Cq := Cp;

(v) f q
a∗,b∗ = f (with Dq

a∗,b∗ = Dq), and the other partial automorphisms are

unchanged (i.e., for (a, b) ∈ Cq � {(a∗, b∗)}, f q
a,b := fp

a,b).

Bp �− Bq: Let s : Bp → 2 be a type realized by cn (n = 0). Then actually

dom(s) ⊆ Dp, as cn only has connections to Dp. As Dp �− Bp, and the type

s′ := s ◦ fn is realized by c∗ = c0, we know that s′ is realized by some z ∈ Dp.

Then s is realized by fn(z) ∈ Dp ⊆ Bp.

Dq
a∗,b∗ = Dq �− Bq: If x ∈ Bq �Dq, then x ∈ Bp and has edges only to Bp.

So any s : Dq → 2 realized by x has domain in Dp, and as Dp �− Bp, this s is

realized in Dp ⊆ Dq.

To see that we can extend all old ηpa,e to ηqa,e : Bq → 2, and that we can find

ηqcm,e for e < 2 and m = 0, it is enough to note that all the assumptions in

Lemma 2.5(c) are met (where we use A = Bp and B = Bq).
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(IV) E′′
α,e := {p ∈ P : ∃b∗ ∈W p

e (b∗ ≥ α)} for α < ω1 and e ∈ 2.

Choose b∗ ∈ ω1 � (Bp ∪ α) and define q such that

(i) Bq := Bp ∪ {b∗}, and the new node b∗ is Re-connected to exactly the

nodes in W p
e , and has no R1−e-connections,

(ii) W q
e := W p

e ∪ {b∗} and W q
1−e := W p

1−e,

(iii) Cq := Cp,

(iv) f q
a,b := fp

a,b for all (a, b) ∈ Cp.

Bp �− Bq: Let s : Bp → 2 be realized by b∗. This implies that dom s ⊆ W p
e

and s(x) = e for all x ∈ dom s. Since W p
e is infinite, there is some z ∈ W p

e ⊆ Bp

such that xRp
ez for all x ∈ dom s.

Given any old ηpa,e, we can extend it to a function ηqa,e with domain Bq by

Lemma 2.5(a); and for arbitrary e ∈ 2, we get ηqb∗,e by Lemma 2.5(b). (Again,

we use A = Bp and B = Bq.)

Let D be the collection of all dense sets defined above. Since P is σ-closed

and |D| = ℵ1, there is some filter G ⊆ P intersecting all the dense sets in D.

Set R∗
e :=

⋃
p∈GR

p
e and Ue :=

⋃
p∈GW

p
e for e ∈ {0, 1}. Since G ∩ Da = ∅

and G ∩ Ea,b = ∅ for any a, b ∈ ω1, we have

⋃
p∈G

Bp = ω1 and
⋃
p∈G

Cp = ω1 × ω1.

Set B := 〈ω1, R
∗
0, R

∗
1〉, which is a 2-graph. It is clear that Bp is a 2-subgraph

of B for any p ∈ G. On the other hand, E′′
α,e ∩G = ∅ for all α < ω1 and e ∈ 2,

which implies that Ue is an R∗
e-complete subset of ω1 of size ℵ1. Even more,

Ue ∩Bp = W p
e for any p ∈ G, and U0 ∩ U1 = ∅.

For a ∈ ω1 and e ∈ 2 set

ηa,e :=
⋃

{ηpa,e : a ∈ Bp, p ∈ G}.

It is routine to check that ηa,e : ω1 → 2 respects B. This guarantees (v) of

Definition 2.1.

For a, b ∈ ω1, set

fa,b :=
⋃

{fp
a,b : (a, b) ∈ Cp, p ∈ G}.

Since G ∩ E′
a,b,c = ∅ for any c ∈ ω1,

⋃
p∈GD

p
a,b = ω1 and fa,b is a B-

automorphism. This shows property (vi) of Definition 2.1. Therefore, B is

a S2G.



Vol. TBD, 2021 PRESERVATION OF SPLITTING FAMILIES 17

3. Cardinal characteristics, COB and LCU

Many classical characteristics can be defined by the framework of relational

systems as in, e.g., [Voj93, Bla10]. Say that R := 〈X,Y,R〉 is a relational

system if X and Y are non-empty sets, and R is a relation. The following

cardinal characteristics are associated with R:

d(R) := min{|D| : D ⊆ Y and ∀x ∈ X ∃y ∈ D (xRy)};

b(R) := min{|F | : F ⊆ X and ¬∃y ∈ Y ∀x ∈ X (xRy)}.
In this work, we are particularly interested in relational systems R such that

(RS1) X and Y are subsets of Polish spaces Z0 and Z1, respectively, and abso-

lute for transitive models of ZFC (e.g. they are analytic);

(RS2) R ⊆ Z0 × Z1 is absolute for transitive models of ZFC (e.g., analytic

in Z0 × Z1).

When these properties hold we say that R is a relational system of the

reals. In all the cases explicitly mentioned throughout this paper, X and Y

are Polish spaces themselves and R is Borel in X × Y . In this case, there is no

problem to identify X = Y = ωω, and we call R, or rather the characteristics

b(R) and d(R), Blass-uniform (cf. [GKMSb, §2]).

Example 3.1 ([Voj93, 2.2.2] or [Bla10, §4 & §5]): The splitting number s and

the reaping number r are Blass-uniform: Denote Rsp := 〈2ω, [ω]ℵ0 , Rsp〉 where

xRspy iff x�y is constant except in finitely many points of y. Then s = b(Rsp)

and r = d(Rsp).6

Also all Cichoń-characteristics are Blass-uniform. The Blass-uniform rela-

tional systems we use for these characteristics are (as in the Cichoń’s Maxi-

mum constructions) in some instances slightly different from the “canonical”

ones. See, e.g., [BCM21, Ex. 2.16], [Mej19b, Ex. 2.10] and [GKS19, §1] for the

definition of the Blass-uniform relational systems corresponding to the Cichoń-

characteristics.

As in [GKMSa] we also look at relational systems S = 〈S, S,≤〉 where ≤ is an

upwards directed partial order on S. Here cp(S) := b(S) is the completeness

of S, and cof(S) := d(S) is the cofinality of S. Recall that, whenever S has no

greatest element, cp(S) ≤ cof(S), and equality holds when the order is linear.

6 It would be more natural to consider the relational system 〈[ω]ℵ0 , [ω]ℵ0 , R〉 where xRy

iff either x ⊇∗ y or ω � x ⊇∗ y, but Rsp is more suitable in our proofs. It is not hard to

see that both relational systems are Tukey-equivalent.
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The following is a very useful notion to calculate the value of cardinal char-

acteristics (specially in forcing extensions).

Definition 3.2 (cf. [GKS19, §1]): Fix a directed partial order S = 〈S,≤〉 and a

relational system R = 〈X,Y,R〉. Define the property:

Cone of bounds.

COBR(S) means: There is a family ȳ = {yi : i ∈ S} ⊆ Y such that

∀x ∈ X ∃ix ∈ S ∀j ≥ ix (xRyj).

When L = 〈L,≤〉 is a linear order, we additionally define

Linear cofinally unbounded.

LCUR(L) means: There is a family x̄ = {xi : i ∈ L} ⊆ X such that

∀y ∈ Y ∃i ∈ L ∀j ≥ i (¬(xjRy)).

In the following remarks we address very natural characterizations and con-

sequences of these properties.

Remark 3.3 (Tukey connections and COB): Let ȳ be a witness of COBR(S). By

the definition of COBR(S) we have that the functions f : X → S and g : S → Y ,

defined by f(x) := ix and g(i) := yi, form a Tukey connection from R into S.

So we conclude that

COBR(S) holds iff R ≤T S,

where ≤T denotes the Tukey order.

Remark 3.4 (Duality and LCU): Let R = 〈X,Y,R〉 be a relational system. The

dual of R is the relational system R⊥ := 〈Y,X,R⊥〉 where uR⊥v ⇔ ¬(vRu).

It is clear that d(R⊥) = b(R) and b(R⊥) = d(R). Also, given a linear order L,

LCUR(L) iff COBR⊥(L).

Hence, by Remark 3.3,

LCUR(L) iff R⊥ ≤T L.

When L has no greatest element, L⊥ is Tukey-equivalent to L, so

LCUR(L) iff L ≤T R.

Although LCU is a particular case of COB, they are used with different roles in

our applications, so it is more practical to use different notations.

As a direct consequence of these remarks:



Vol. TBD, 2021 PRESERVATION OF SPLITTING FAMILIES 19

Lemma 3.5 (cf. [GKS19, §1]): Let R be a relational system, S a directed partial

order and let L be a linear order without greatest element. Then:

(a) COBR(S) implies cp(S) ≤ b(R) and d(R) ≤ cof(S).

(b) LCUR(L) implies b(R) ≤ cp(L) = cof(L) ≤ d(R).

In our applications we aim to force COBR(S) and LCUR(L) for a given re-

lational system of the reals R; this will help us compute the value of b(R)

and d(R) in generic extensions. For this purpose, the following variation of

Definition 3.2 is very practical.

Definition 3.6 ([GKMSa]): Let R = 〈X,Y,R〉 be a relational system of the reals,

S = 〈S,≤S〉 a directed partial order, L = 〈L,≤L〉 a linear order, and let P be a

forcing notion. Define the following properties:

COBR(P, S): There is a family ˙̄y = {ẏi : i ∈ S} of P-names of members of Y V P

such that, for any P-name ẋ of a member of XV P

, there is some i ∈ S such that

�P ∀j ≥S i (ẋRẏj).

LCUR(P, L): There is a family ˙̄x = {ẋi : i ∈ L} of P-names of members of XV P

such that, for any P-name ẏ of a member of Y V P

, there is some i ∈ L such that

�P ∀j ≥L i (¬(ẋjRẏ)).

Remark 3.7: Concerning the properties COBR(P, S) and LCUR(P, L), the rela-

tional system R (i.e., both base sets as well as the relation) are interpreted in

the generic extension (this is why we required these objects to be definable),

while S and L are taken as sets in the ground model (not interpreted).

It is clear that COBR(P, S) implies �P COBR(S). Although the converse is

not true in general, it holds in the cases we are interested in, when P is ccc and

cp(S) is uncountable. More precisely, if cp(S) is uncountable and P is cp(S)-cc

then COBR(P, S) is equivalent to �P COBR(S). Moreover, P forces

cp(S)V
P

= cp(S)V and cof(S)V
P

= cof(S)V ,

so, by Lemma 3.5, in the generic extension COBR(S) implies

cp(S)V ≤ b(R) and d(R) ≤ cof(S)V .

Likewise, LCUR(P, L) implies �P LCUR(L), and the converse holds when-

ever L has no greatest element, cof(L) is uncountable and P is cof(L)-cc.

However, the restriction “cp(S) is uncountable and P is cp(S)-cc” is not

required for the following result.



20 M. GOLDSTERN ET AL. Isr. J. Math.

Lemma 3.8 ([GKMSa, Lemma 1.3]): Let R be a relational system of the reals,

S a directed partial order without greatest element, and let P be a forcing

notion. If μ = cp(S)V and λ = cof(S)V , then:

(a) COBR(P, S) implies �P“μ ≤ b(R) and d(R) ≤ |λ|”.
(b) If L = S is a linear order, then LCUR(P, L) implies

�P “b(R) ≤ |λ| ≤ λ ≤ d(R)”.

4. Preserving splitting families with symmetric iterations

4.A. The single forcing GB. Using suitable 2-graphs, we define a poset

which will be used as factor for the forcing adding the splitting families we aim

to preserve.

Definition 4.1: Let B = 〈B,R0, R1〉 be a suitable 2-graph. Define the forc-

ing GB whose conditions are functions p : Fp × np → {0, 1} where Fp ∈ [B]<ℵ0

and np < ω (also demand Fp = ∅ iff np = ∅). The order is defined by q ≤ p iff

(i) p ⊆ q,

(ii) for each k ∈ [np, nq), the map Fp → 2, a �→ q(a, k) respects B, that is, if

e ∈ {0, 1}, a, b ∈ Fp, and aReb, then {q(a, k), q(b, k)} = {e}.

For a ∈ B denote by η̇a the name of the generic real added at a, that is, GB

forces that, for any k<ω, η̇a(k)=e iff p(a, k)=e for some p in the generic set.

For p ∈ GB denote supp p := Fp.

Lemma 4.2: Let B = 〈B,R0, R1〉 be a suitable 2-graph. Then:

(a) GB is σ-centered.

(b) For any a ∈ B, GB forces that η̇a is Cohen over V .

(c) Any p ∈ GB forces that, for any k ≥ np, the map Fp → 2, a �→ η̇a(k)

respects B, that is, if e ∈ {0, 1}, a, b ∈ Fp and aReb, then η̇a(k) and η̇b(k)

cannot both be e at the same time.

(d) Assume for i ∈ {1, 2}:
• e ∈ {0, 1}, pi ∈ GB, ci ∈ Fpi , c1Rec2,

• Q is a poset, GB �Q,

• ḃ is a Q-name of an infinite subset of ω,

• qi ≤ pi in Q and qi �Q η̇ci�ḃ ≡ e.

Then q1 and q2 are incompatible.

(e) If f : B → B is a B-automorphism, then f̂ : GB → GB defined by

f̂(p)(α, n) = p(f−1(α), n) (where Ff̂(p)
:= f [Fp]) is a p.o.-automorphism.
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Proof. To see (a), first note that since |B × ω| = ℵ1, by Engelking–Kar�lowicz

[EK65] there is a countable set H ⊆ 2B×ω such that any finite partial function

from B×ω into 2 can be extended by some member of H . For h ∈ H and n < ω,

let Ch,n := {p ∈ GB : p ⊆ h and np = n}. It is clear that Ch,n is centered and

GB =
⋃
h∈H

⋃
n<ω

Ch,n,

so GB is σ-centered.

(b): Consider Cohen forcing C := 2<ω ordered by end-extension. For a ∈ B

define pra : GB → C such that, for any p ∈ GB, pra(p) := 〈p(a, k) : k < np〉
if a ∈ supp p, or pra(p) is the empty sequence otherwise. It is enough to show

that pra is a forcing projection, that is,

(i) for any p, q ∈ GB, if q ≤ p then pra(q) ⊇ pra(p),

(ii) for any p ∈ GB and s ∈ C, if s ⊇ pra(p) then there is some q ≤ p in GB

such that pra(q) ⊇ s (even pra(q) = s),

(iii) pra[CB] is dense in C (even pra is onto).

Property (i) is easy, (ii) follows by Definition 2.1(v), and (iii) follows by (ii) and

the fact that pra(∅) = 〈 〉.
(c): By the definition of the order of GB.

(d): Assume q ∈ Q is stronger than q1 and q2, so

q � “{k < ω : η̇c1(k) = η̇c2(k) = e} is infinite”.

Hence, there is some p ∈ GB stronger than p1 and p2 forcing the same, but this

contradicts (c) because c1, c2 ∈ Fp and c1Rec2.

(e) is straightforward.

Remark 4.3: The obvious restriction of GB to, say, the first two coordinates, is

not a projection, and GB is not a FS iteration of length ω1 in any natural way.

Assume, e.g., we restrict to {0, 1} ⊆ B = ω1, and B contains an e-colored edge

from node e to node 2 for e ∈ {0, 1}. Start with a condition p : {0, 1, 2}×n→ 2

(for, e.g., n = 1), restrict it to p− = p�{0, 1} and extend it to p′ ∈ GB�{0,1} by

setting p′(e, n) = e for e ∈ {0, 1}. Then there is no q ∈ GB, q ≤ p, compatible

with p′.

We will use FS iterations where the first step is given by a FS product of

posets of the form GB as above. It is clear that, if B is a S2G in the ground

model, then it is still a S2G in any extension preserving ω1. On the other hand,
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constructing GB from B is absolute for transitive models of ZFC, so any finite

support product of posets of the form GB is forcing equivalent to their finite

support iteration (as long as the sequence of 2-graphs lives in the ground model).

4.B. Suitable iterations, nice names and automorphisms. We now in-

troduce some notions associated with these iterations, relevant for the preser-

vation of splitting families.

From this point on, products of ordinals (such as ω1π) should be interpreted

as ordinal products.

Definition 4.4: A suitable iteration is defined by the following objects:

(I) A cardinal π0 > 0.

(II) For each δ < π0, a S2G Bδ = 〈Bδ, Rδ,0, Rδ,1〉 with Bδ := [ω1δ, ω1(δ+ 1)),

(III) an ordinal π ≥ π1 := ω1π0,

(IV) a FS ccc iteration P of length 1 + (π − π1) where the first iterand is the

FS product of the GBδ
for δ < π0, called Pπ1

, and the following iterands

are indexed by ξ ∈ π � π1 and are ccc posets called Q̇ξ.

As usual, we denote with Pξ the result of the iteration up to ξ (for π1 ≤ ξ ≤ π),

and use P to denote either Pπ or the whole iteration (or its definition). See

Figure 5 for an illustration.

| | | | | | |

0 ω1δ

GBδ

ω1(δ + 1) π1 = ω1π0

Q̇π1

π1 + 1 α

Q̇α

α+ 1 π

Figure 5. A suitable iteration. π1 = ω1π0 is partitioned into

π0-many intervals of length ω1, and Bδ := [ω1δ, ω(δ + 1)), the

set of vertices of the graph Bδ, is the δ-th interval of this parti-

tion. A suitable iteration is a FS product of the GBδ
for δ < π0,

followed by a FS iteration of ccc posets. The iterands of the

FS iteration that follow are indexed by α ∈ [π1, π).

Remark 4.5: Note that we could also view Pπ1 as (the result of) a FS-iteration

of length π0 (instead of length 1, as we do in the definition). Then we would get

an iteration P of π0 + (π−π1). However, Pπ1 is not a FS iteration of length π1,

at least not with natural iterands; see Remark 4.3.

Let us mention some notation:
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Notation 4.6: (1) A real-number-poset is a poset whose universe is a subset of

the set of real numbers. For simplicity, we identify the “set of real numbers”

with the power set of ω.

(2) For notational simplicity we will often identify Pζ+1 (a set of partial func-

tions) with Pζ ∗ Q̇ζ (a set of pairs (p, q) with p ∈ Pζ and p � q ∈ Q̇ζ).

(3) Similarly, we will not distinguish between sequences of names and names of

sequences.

We now define the “support” supp(p) ⊆ π of a condition p (as opposed to the

domain dom(p), which is, as we are dealing with a FS iteration, a finite subset

of the index set {0} ∪ (π � π1)). We will also define the “history” H of a name

and of a condition:

Definition 4.7: Let P be a suitable iteration.

(1) For p ∈ Pπ1 set

supp(p) :=
⋃

δ∈dom p

supp(p(δ)) ⊆ π1.

For p ∈ P, set

supp p := supp(p(0)) ∪ (dom(p) � {0})

(or just dom(p), if 0 /∈ dom(p)).7

(2) For p ∈ P and a P-name τ , we define H(p) ⊆ π and H(τ) ⊆ π as follows:

(i) For p ∈ Pπ1 , H(p) := supp p.

For ξ ≥ π1 we define H by recursion on ξ for p ∈ Pξ and for a Pξ-name τ .

(We assume that H(r) has been defined for all r ∈ Pζ for π1 ≤ ζ < ξ and

H(σ) for all Pζ-names for π1 ≤ ζ < ξ):

(ii) For ξ = ζ + 1 and p ∈ Pζ+1,

H(p) :=

⎧⎨
⎩
H(p�ζ) if ζ /∈ supp p,

H(p�ζ) ∪ {ζ} ∪H(p(ζ)) if ζ ∈ supp p.

(Here, H(p(ζ)) is defined because p(ζ) is a Pζ-name.)

7 Recall that according to our indexing, dom(p) is a finite subset of {0} ∪ (π � π1) (where

we interpret a FS condition p as a partial function from the index π0 with finite domain

dom(p)). Recall that q := p(0) ∈ Pπ1 , which is the FS product of GBδ
for δ < π0. So q

has a finite domain dom(q) ⊆ π0, and if δ ∈ dom(q), then q(δ) ∈ GBδ
, so Xδ = supp(q(δ))

(in the sense of the forcing GBδ
) is a finite subset of [ω1δ, ω1(δ + 1)). According to our

definition, supp(q) =
⋃

δ∈dom(q) Xδ.
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(iii) When ξ > π1 is limit and p ∈ Pξ, then H(p) has already been defined

(because p ∈ Pζ for some ζ < ξ).

(iv) For any Pξ-name τ define (by ∈-recursion on τ)

H(τ) :=
⋃

{H(σ) ∪H(p) : (σ, p) ∈ τ}.
Note that H(x̌) = ∅ for any standard name x̌.8

Remark: H is not a “robust” notion: � τ = τ ′ does not imply H(τ) = H(τ ′).
Still, it is a very natural and useful notion, which has appeared (in slightly dif-

ferent contexts) many times in forcing theory: If τ is a Pπ-name, then H(τ) ⊆ π

is the set of coordinates the name τ “depends on”, more concretely, τ can be

calculated (by a function defined in V ) from the sequence of generic objects at

the indices in H(τ).

In the case of FS iterations where all iterands are real-number-posets (as

in [She00, GKS19]), H(p) is countable for p in a dense set; and “hereditarily

nice names” for reals will also have countable history. In this paper we have to

use hereditarily <λ-names (even for nice names of reals); the reason is indicated

in Remark 4.16.

Let us fix some notation regarding the well-known “nice names”:

Definition 4.8: Let A and B be subsets of P.

(1) A P-name ṙ is a nice name for a subset of ω, determined by A, if ṙ has the

form
⋃

n∈ω{(ň, q) : q ∈ An}, where each An is a (possibly empty) antichain

in P, and A =
⋃

n∈ω An.

(2) Analogously, Q̇ is a nice name for a real-number-poset of size <λ,

determined by B, if there is a μ < λ such that Q̇ is a sequence 〈ṙi〉i∈μ of

nice names for subsets of ω determined by Ai, together with a

sequence 〈ẋi,j〉i,j∈μ of nice names for elements in {0, 1} depending on an an-

tichain A′
i,j (where ẋi,j = 1 codes ri ≤Q rj),

9 and B =
⋃

i∈μAi∪
⋃

i,j∈μA
′
i,j .

8 A standard name x̌ = {(y̌,�) : y ∈ x} (for x ∈ V ) hereditarily only uses the weakest

condition �, which in our case (an iteration) is the empty partial function; accordingly

H(x̌) = ∅. If the reader prefers a different formal definition of FS iteration, then they

should modify the definition of H to make sure that H(x̌) = ∅.
9 A nice name ẋ of a member of {0, 1} depending on an antichain C ⊆ P (allowed to be

empty) has the form ẋ = {(0̌, p) : p ∈ C}. Note that p � ẋ = 1 for all p ∈ C, and q � ẋ = 0

for any q ∈ P incompatible with all the members of C. Moreover, H(ẋ) =
⋃

p∈C H(p).
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So in this case

(4.9) H(ṙ) =
⋃
p∈A

H(p), and H(Q̇) =
⋃
p∈B

H(p).

It is well known that every name of a subset of ω has an equivalent nice name.

Moreover, as we can choose the conditions of the antichains in any given dense

set, we get the following:

Fact 4.10 (As P is ccc): Let D ⊆ P be dense and let λ be a cardinal with

uncountable cofinality.

(a) For any P-name of a real there is an equivalent nice name determined by

A ⊆ D with |A| ≤ ℵ0.

(b) For any name of a poset of size <λ consisting of reals, there is an equivalent

nice name determined by a set B ⊆ D with |B| < λ.

Every automorphism of B induces an automorphism of GB; see Lemma 4.2(e).

Therefore, a π0-sequence h of such automorphisms induces an automorphism

of the (FS) product Pπ1 . Such an automorphism can sometimes be naturally

extended to the whole iteration P (which will allow isomorphism-of-names ar-

guments and subsequently show LCUsp).

What do we mean by “naturally extend”? Recall that, whenever f : P → P

is an automorphism on some poset P , and τ is a P -name, f sends τ to the

P -name

f∗(τ) := {(f∗(σ), f(p)) : (σ, p) ∈ τ}.
Also, (f−1)∗(f∗(τ)) = τ ; and p � ϕ(τ) iff f(p) � ϕ(f∗(τ)) whenever p ∈ P and

ϕ(x) is a formula. If Q̇ is a P -name and P � f∗(Q̇) = Q̇, then we can certainly

extend f to P ∗ Q̇. We say that P is h-symmetric, if this is the case in all steps

of the iteration:

Definition 4.11: Let P be a suitable iteration.

(1) A bijection h : π1 → π1 is a 2G-automorphism if, for each δ < π0, h�Bδ

is an automorphism of Bδ.

(2) Such an h defines an automorphism ĥπ1 of Pπ1 → Pπ1 , by

ĥπ1(p) := 〈f̂δ(p(δ)) : δ ∈ dom p〉
where fδ := h�[ω1δ, ω1(δ + 1)) is the automorphism of Bδ induced by h,

and f̂δ is defined as in Lemma 4.2(e).
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(3) We say P is h-symmetric if the following inductive construction defines

ĥξ : Pξ → Pξ for all π1 ≤ ξ ≤ π:

(i) For ξ = ζ + 1, we require that �Pζ
ĥ∗ζ(Q̇ζ) = Q̇ζ . (Otherwise the

construction fails.) We then define ĥζ+1 : Pζ+1 → Pζ+1 by

ĥζ+1(p�ζ, p(ζ)) = (ĥζ(p�ζ), ĥ∗ζ(p(ζ))).

(ii) For ξ > π1 limit, set ĥξ :=
⋃

ζ<ξ ĥζ .

In this case set ĥ := ĥπ, which is an automorphism of P.

(4) For any δ < π0 and any pair (a, b) ∈ Bδ, fix a 2G-automorphism hδa,b such

that hδa,b(a) = b and hδa,b�Bζ is the identity for any ζ = δ. We can pick

such hδa,b by Definition 2.1(vi).

(5) Let H∗ be the group generated by the hδa,b above. So |H∗| = max{π0,ℵ1}.

Note also that for all h ∈ H∗ and δ ∈ π0 we have h[Bδ] = Bδ, and that

supp(h) :=
⋃{Bδ : h�Bδ = idBδ

, δ < π0} has size ≤ℵ1.

(6) We say that P is symmetric if P is h-symmetric for every h ∈ H∗.

In isomorphism-of-names arguments it is relevant to know when a condition

or a name remains unchanged after applying an automorphism ĥ. The following

states a sufficient condition:

Lemma 4.12: Assume that P is h-symmetric and π1 ≤ ξ ≤ π.

(a) If p ∈ Pξ and h�(H(p) ∩ π1) is the identity, then ĥξ(p) = p.

(b) If τ is a Pξ-name and h�(H(τ) ∩ π1) is the identity, then ĥ∗ξ(τ) = τ .

(c) Let g := h−1. Then P is g-symmetric and ĝξ = ĥ−1
ξ .

Proof. We show the three statements by induction on ξ.

For (a), we use a case distinction: Assume ξ=π1. If p∈Pπ1 thenH(p)=supp p,

and whenever h is the identity on supp p, it is clear that ĥπ1(p) = p. The

limit step is also immediate (there are no new conditions, and for names use

∈-induction).

For the successor step ξ = ζ + 1, assume p ∈ Pζ+1 and that h is the identity

on H(p) ∩ π1. If ζ /∈ supp p, then we have p ∈ Pζ , so ĥζ+1(p) = ĥζ(p) = p by

the induction hypothesis. So assume ζ ∈ supp p. Then

H(p) = H(p�ζ) ∪ {ζ} ∪H(p(ζ)),

so by induction hypothesis ĥζ(p�ζ) = p�ζ and ĥ∗ζ(p(ζ)) = p(ζ), thus ĥζ+1(p) = p.
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We now show (b) by ∈-induction on τ . If (σ, p) ∈ τ then H(σ)∪H(p) ⊆ H(τ),

so by induction hypothesis and (a), ĥ∗ξ(σ) = σ and ĥξ(p) = p. Hence

ĥ∗ξ(τ) = {(ĥ∗ξ(σ), ĥξ(p)) : (σ, p) ∈ τ} = {(σ, p) : (σ, p) ∈ τ} = τ.

For (c), the steps ξ = π1 and ξ > π1 limit are easy, so we deal with the

successor step ξ = ζ+1. So assume that ĝζ is defined and ĝζ = ĥ−1
ζ . Since ĥξ is

defined, �Pζ
ĥ∗ζ(Q̇ζ) = Q̇ζ , which implies �Pζ

ĝ∗ζ (Q̇ζ) = Q̇ζ , so ĝζ+1 is defined;

and for any p ∈ Pξ,

ĝξ(ĥξ(p)) = (ĝζ(ĥζ(p� ζ)), ĝ∗ζ (ĥ∗ζ(p(ζ)))) = p,

so ĝξ = ĥ−1
ξ .

4.C. A digression: Self-indexed products. How to construct a symmetric

iteration P? We have to make sure that at each step ζ the iterand Q̇ζ is invariant

under ĥ for all h ∈ H∗. One case that will be useful: Q̇ζ is a (ccc) FS product

such that whenever Q̇ is one of the factors, then ĥ∗(Q̇) is also one.

But there is a technical difficulty here: We need �Pζ
ĥ∗(Q̇ζ) = Q̇ζ (i.e., really

equality, not just isomorphism; as we want to get an actual automorphism

of Pζ+1). This is not possible if we “naively” index the product with an ordinal.

For example, assume Q̇0, Q̇1 are such that

�Pζ
ĥ∗(Q̇i) = Q̇1−i = Q̇i.

Then Q̇0 × Q̇1 (the product with index set {0, 1}) is not a valid choice for Qζ,

as

�Pζ
ĥ∗(Q̇0 × Q̇1) = Q̇1 × Q̇0 = Q̇0 × Q̇1.

So instead, we define (in the extension) the FS product
∏F of a set F of

posets as the set of all finite partial functions p from F into
⋃F satisfying

p(Q) ∈ Q for all Q ∈ dom(p). We call this object the self-indexed product

of the set F .

In our framework, we start with a ground model set Ξζ of Pζ-names of posets.

In the Pζ-extension we let F be the set of evaluations of the names in Ξζ , and

let Q̇ζ be the self-indexed product of F .
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Assume that all automorphisms from H∗ can be extended up to ζ.10 We

assume that Ξζ is closed under each h ∈ H∗, i.e., Q̇ ∈ Ξζ implies ĥ∗ζ(Q̇) ∈ Ξζ .

So as Ξζ is also closed under the inverse of h, by Lemma 4.12(c) we even get

ĥ∗ζ [Ξζ ] = Ξζ .

So in particular ĥ∗ζ [Ξζ ] and Ξζ evaluate to the same set and thus yield the same

self-indexed product, i.e., � ĥ∗ζ(Q̇ζ) = Q̇ζ .

We record this fact for later reference:

Fact 4.13: Assume that Q̇ζ is a “self-indexed” product of Ξζ , and that Q̇ ∈ Ξζ

implies ĥ∗ζ(Q̇) ∈ Ξζ for all h ∈ H∗. Then P forces ĥ∗ζ(Q̇ζ) = Q̇ζ , so we can extend

each h ∈ H∗ to Pζ ∗ Q̇ζ .

We additionally assume that each factor is (forced to be) a real-number-poset.

Assume that (p, q) ∈ Pζ ∗ Q̇ζ. We can densely assume that p decides the finite

domain of q, more specifically, the11 finite set y ⊆ Ξζ such that p forces that

dom(q) is (the set of evaluations of) y. Also, for each Q̇ ∈ y, we can assume

that q(Q̇) is a nice name for a real, determined by some AQ̇. As usual, we can

use a given dense set D ⊆ Pζ instead of Pζ .

For later reference:

Fact 4.14: Assume that Q̇ζ is a “self-indexed” product of Ξζ as described

above, that each factor is forced to be a set of reals, and that D ⊆ Pζ is dense.

If (p, q) ∈ Pζ ∗ Q̇ζ , then there is a (p′, q′) ≤ (p, q) such that p′ ∈ D decides the

(finite) dom(q′), and each q′(Q̇) is a nice name determined by some AQ̇ ⊆ D.

So in particular

(4.15) H((p′, q′)) = H(p′) ∪ {ζ} ∪
⋃

Q̇∈dom(q′)

(
H(Q̇) ∪

⋃
r∈AQ̇

H(r)

)
.

Remark 4.16: This is the reason hereditarily countable nice names are not suf-

ficient in our setting to describe reals: Even the index Q̇ in such a product Q̇ζ

is too complicated. However, as all the self-indexed products Q̇ζ we use will

have factors Q̇ of size <λ, it turns out we can restrict ourselves to hereditarily

<λ-names (this will be the dense set P∗
ζ of Definition 5.3).

10 For this part all the properties of H∗ are not required; it is just enough that h ∈ H∗

implies h−1 ∈ H∗.
11 Or rather: a finite set, as different names in Ξζ might evaluate to the same object, i.e.,

index.
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4.D. Symmetric small history iterations preserve splitting families.

We are finally ready to prove the central fact about preservation of splitting

families.

Definition 4.17: Let λ be an uncountable cardinal.

(1) A condition q ∈ P is λ-small, if |{δ < π0 : H(q) ∩Bδ = ∅}| < λ.

(2) A suitable iteration P has λ-small history if, for any p ∈ P, there is a

λ-small q ≤ p.

So in particular if P has λ-small history and ẋ is a name of a subset of ω,

then there is an equivalent nice name ḃ which only uses λ-small conditions; and

if μ ≥ λ has uncountable cofinality, then

(4.18) |{δ < π0 : H(ḃ) ∩Bδ = ∅}| < μ.

Theorem 4.19: Let P be a symmetric suitable iteration with λ-small history.

Assume ℵ1 ≤ λ ≤ μ ≤ π0 are cardinals with μ regular. Then LCURsp(Pπ, μ)

holds, and it is witnessed by {η̇ω1δ : δ < μ}.
Proof. Towards a contradiction, assume that there are p ∈ P and a P-name ḃ

of an infinite subset of ω such that

p � |{δ < μ : η̇ω1δ�ḃ is eventually constant}| = μ.

Find F ∈ [μ]μ, n0 < ω and e ∈ {0, 1} such that, for any δ ∈ F , there is

some pδ ≤ p in P such that ω1δ ∈ supp(pδ) and pδ � η̇ω1δ�(ḃ � n0) ≡ e.

We can assume that ḃ is a nice name, more particularly that (4.18) holds,

and we can also assume that p is λ-small. So there is some δ0 ∈ F such that

Bδ0 ∩ (H(p) ∪H(ḃ)) = ∅.

Put a := ω1δ0 ∈ Bδ0 . By (2.2), a is contained in an uncountable Rδ0,e-

complete U ⊆ Bδ0 . Recall that by the definition of “symmetric”, there is

for each c ∈ U a 2G-automorphism hc ∈ H∗ such that hc(a) = c and such

that hc�Bδ is the identity for all δ = δ0. Hence, by Lemma 4.12, ĥcπ(p) = p

and (ĥcπ)∗(ḃ) = ḃ, therefore p′c := ĥcπ(pδ0) ≤ p and, since (ĥcπ)∗(η̇a) = η̇c,

p′c � η̇c�(ḃ � n0) ≡ e.

Lemma 4.2(d) implies that 〈p′c : c ∈ U〉 must be an antichain, which contradicts

that Pπ is ccc.

Remark 4.20: The same argument shows that, for any g ∈ ∏
δ<μBδ (in the

ground model), {η̇g(δ) : δ < μ} witnesses LCURsp(Pπ, μ).
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5. Suslin-λ-small iterations

We now investigate suitable iterations where the iterand Q̇ζ at step ζ > 0 (i.e.,

after the initial FS product) is

(1) either a restricted (also called partial) Suslin ccc poset (e.g., random

forcing evaluated in some V P
−
ζ for some complete subforcing P−

ζ of Pζ);

(2) or the FS product of (in our application: at most |π|-many) <λ-size posets

of reals.

More formally:

Definition 5.1: Let λ be an uncountable cardinal. A Suslin-λ-small iteration

(abbreviated Sλs) is a suitable iteration P with the following properties:

(S1) π � π1 is partitioned into two sets Σ and Π.

(S2) For ξ ∈ Σ,

(i) P−
ξ is a complete subposet of Pξ,

(ii) Sξ is a definition of a Suslin ccc poset (with parameters in the ground

model),

(iii) Q̇ξ is a Pξ-name for (Sξ)
V

P
−
ξ

.

(S3) For ξ ∈ Π,

(i) Ξξ is a set in the ground model,

(ii) each element of Ξξ is a Pξ-name Q̇ for a poset of size12 <λ consisting

of reals,

(iii) Q̇ξ is (the Pξ-name for) the FS product of Ξξ.

Remark 5.2: Regarding (S3), recall that our setting requires Q̇ξ (to be forced

by Pξ) to be ccc (as suitable iterations have to be ccc). In contrast, in (S2), Q̇ξ

will be always ccc “for free” (in V Pξ as well as in V P
−
ξ ), as it is an evaluation of

a Suslin ccc definition (see [JS88]).

We now show that we can replace such an iteration 〈P′
ζ , Q̇

′
ζ : ζ ∈ π〉 with an

isomorphic version 〈Pζ , Q̇ζ : ζ ∈ π〉: The only difference will be in steps ζ ∈ Π,

where we select (hereditarily) nice names for the factors Q̇ ∈ Ξζ and make

sure that Q̇ζ is self-indexed. In addition, we will define a dense subset P∗ of

hereditarily λ-small conditions, an extended “refined history domain” π+, and

12 That is, each element of Ξξ is forced to have size <λ, whereas the cardinality of Ξξ may

be as large as we want.
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a “refined history” H∗ : P∗ → P(π+). These are formalized in the following

notions.

Definition 5.3: Let λ be an uncountable cardinal. A tidy Suslin-λ-small iter-

ation is a Suslin-λ-small iteration P with the following additional components

and properties:

(1) For ξ ∈ π � π1, P∗
ξ is a dense subset of Pξ.

(2) P∗
π1

= Pπ1 .

(3) If ξ ∈ Σ and p ∈ P∗
ξ+1, then p�ξ ∈ P∗

ξ , p(ξ) is a nice P∗
ξ-name of a real and

�Pξ
p(ξ) ∈ Sξ ∩ V P

−
ξ .

(4) For ξ ∈ Π, Ξξ is composed of nice P∗
ξ-names for real-number-posets of

size <λ (see Definition 4.8(2)). In addition, if p ∈ P∗
ξ+1 then the following

is satisfied:

(i) p�ξ ∈ P∗
ξ .

(ii) dom p(ξ) is decided by p�ξ, that is, p�ξ �P∗
ξ
“dom p(ξ) = dpξ” for some

finite dpξ ⊆ Ξξ.

(iii) For each Q̇ ∈ dom p(ξ), p(ξ, Q̇) is a nice P∗
ξ-name of a real and �P∗

ξ

p(ξ, Q̇) ∈ Q̇.

(iv) p(ξ) = 〈p(ξ, Q̇)) : Q̇ ∈ dom p(ξ)〉 (in particular, p(ξ) is a P∗
ξ-name).

(5) If π1 ≤ ξ < π then P∗
ξ ⊆ P∗

ξ+1.

(6) If γ ∈ (π1, π] is limit then

P∗
γ =

⋃
ξ<γ

P∗
ξ.

Denote P∗ := P∗
π.

Note that tidy Sλs iterations are coherent in the sense that P∗
η ∩ Pξ = P∗

ξ for

any π1 ≤ ξ ≤ η ≤ π. Conditions (5) and (6) were included to guarantee this.

Definition 5.4: Let P be a tidy Sλs iteration.

(1) For π1 ≤ ξ ≤ π define the refined history domain

ξ+ = ξ ∪
⋃

ζ∈ξ∩Π

{ζ} × Ξζ .

(2) For p ∈ P∗ and a P∗-name τ we define the refined history H∗(p) ⊆ π+

and H∗(τ) ⊆ π+ as follows. For π1 ≤ ξ ≤ π we define H∗ by recursion on

ξ for p ∈ P∗
ξ and for a P∗

ξ-name τ .

(i) For p ∈ P∗
π1

, H∗(p) := H(p).
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(ii) For ξ = ζ + 1 and p ∈ P∗
ζ+1, H∗(p) = H∗(p�ζ) when ζ /∈ supp p,

otherwise:

• if ζ ∈ Σ then

H∗(p) := H∗(p�ζ) ∪ {ζ} ∪H∗(p(ζ));

• if ζ ∈ Π then

H∗(p) := H∗(p�ζ)∪{ζ}∪ ({ζ}× dom(p(ζ)))∪
⋃

Q̇∈dom(p(ζ)

(H∗(Q̇)∪H∗(p(ζ, Q̇)).

(iii) When ξ > π1 is limit and p ∈ P∗
ξ , then H∗(p) has already been defined

(because p ∈ Pζ for some ζ < ξ).

(iv) For any P∗
ξ-name τ define, by ∈-recursion,

H∗(τ) :=
⋃

{H∗(σ) ∪H∗(p) : (σ, p) ∈ τ}.
Tidy Sλs iterations have many features that ease its manipulation, in partic-

ular, they have λ-small history.

Lemma 5.5: Let P be a tidy Sλs iteration with λ regular. Then, for any p ∈ P∗:

(a) |H∗(p)| < λ.

(b) H(p) = H∗(p) ∩ π.
(c) H(τ) = H∗(τ) ∩ π for any P∗

π-name τ .

In particular, P has λ-small history.

Proof. We prove (a), (b) and (c) simultaneously for all p ∈ P∗
ξ by recursion on

π1 ≤ ξ ≤ π. It is clear that (c) follows from (b).

In the case ξ = π1, H∗(p) = supp p = H(p), which is finite.

For the successor step ξ = ζ + 1, assume ζ ∈ supp p. If ζ ∈ Σ then p(ζ) is a

nice P∗
ζ-name of a real, so it is determined by some countable A ⊆ P∗

ζ . Hence

H∗(p) = H∗(p�ζ) ∪ {ζ} ∪
⋃

{H∗(r) : r ∈ A}

so, by induction hypothesis, |H∗(p)| < λ.

Now assume ζ ∈ Π. Since any Q̇ ∈ Ξζ is a nice P∗
ζ-name for a real-number-

poset of size < λ, it is determined by some BQ̇ of size < λ. Hence

H∗(Q̇) =
⋃

s∈BQ̇

H∗(s), and |H∗(Q̇)| < λ,
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the latter by induction hypothesis. On the other hand, for any Q̇ ∈ dom p(ζ),

p(ζ, Q̇) is a P∗
ζ-name of a real, so it is determined by some countable AQ̇ ⊆ P∗

ζ .

Hence

H∗(p(ζ, Q̇)) =
⋃

r∈AQ̇

H∗(r),

which have size <λ by induction hypothesis. As

H∗(p) = H∗(p�ζ) ∪ {ζ} ∪ ({ζ} × dom p(ζ)) ∪
⋃

Q̇∈dom p(ζ)

(H∗(Q̇) ∪H∗(p(ζ, Q̇))),

we get |H∗(p)| < λ. On the other hand, since p(ζ) = 〈p(ζ, Q̇) : Q̇ ∈ dom p(ζ)〉,

H(p(ζ)) =
⋃

Q̇∈dom p(ζ)

(H(Q̇) ∪H(p(ζ, Q̇))),

so we can deduce (b). The limit step is immediate.

As promised, we show that any Suslin-λ-small iteration is isomorphic to a

tidy one.

Lemma 5.6: If λ is regular uncountable, then any Suslin-λ-small iteration is

isomorphic to a tidy Sλs iteration.

Proof. By recursion on π1 ≤ ξ ≤ π we construct the tidy iteration up to Pξ,

along with its components, and the isomorphism iξ : P′
ξ → Pξ. We also guar-

antee that iξ extends iζ for any π1 ≤ ζ < ξ.

Case ξ = π1: Set P∗
π1

= Pπ1 = P′
π1

and let iπ1 be the identity function.

Case ξ = ζ + 1 with ζ ∈ Σ: As iζ : P′
ζ → Pζ is an isomorphism, we let

P−
ζ = iζ [P′−

ζ ], which is clearly a complete subforcing of Pζ, and evaluate Sζ ac-

cordingly. Note that iζ can be extended to an isomorphism iζ+1 : P′
ζ+1 → Pζ+1

in a natural way.

We define P∗
ζ+1 as the set of pairs (p, q̇) where p ∈ P∗

ζ , q̇ is a P∗
ζ nice name for

a real, and p � q̇ ∈ Sζ ∩ V P
−
ζ . This is dense according to Fact 4.10(a).

Case ξ = ζ + 1 with ζ ∈ Π: Fix a Q̇′ in Ξ′
ζ . As i∗ζ(Q̇′) is forced by Pζ to

have size <λ, according to Fact 4.10(b), there is an equivalent P∗
ζ-nice name Q̇

determined by BQ̇ ⊆ P∗
ζ of size <λ. Let Ξζ be the set of all these names, and

define Q̇ζ to be the self-indexed FS product of the Q̇ in Ξζ . We can obtain the

isomorphism iξ+1 in a natural way.
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We define P∗
ζ+1 to consist of the (p, q̇) as in Fact 4.14 (using D = P∗

ζ).

Case ξ > π1 limit: As P is a FS iteration, we (have to) set Pξ =
⋃

ζ<ξ Pζ ; and

we set P∗
ξ :=

⋃
ζ<ξ P

∗
ζ and iξ :=

⋃
ζ<ξ iζ .

For later reference, note: Assume that we can extend some 2G-automorphism

f to Pζ , and that Q̇ ∈ Ξζ . Set supp(f) :=
⋃{Bδ : f�Bδ = idBδ

}. Then

(5.7) supp(f) ∩H∗(Q̇) = ∅ implies f̂∗
ξ (Q̇) = Q̇.

This follows from Lemmas 4.12(b) and 5.5(c).

In our applications, P−
ξ has the following form.

Definition 5.8: Let P be a tidy Sλs iteration. For any X ⊆ π+, define

P∗�X := {p ∈ P∗
π : H∗(p) ⊆ X}.

Note that generally P∗�X will not be a complete subforcing of P∗; but we will

only be interested in the case where it is; see Lemma 5.15.

Lemma 5.9: Let P be a tidy Sλs iteration with λ uncountable regular, and

let μ ≥ λ be regular and ℵ1-inaccessible.
13 If X ⊆ π+ and |X | < μ then

|P∗�X | < μ.

Proof. By induction on ξ ∈ [π1, π] we show that, whenever X ⊆ ξ+ has size <μ,

|P∗�X | < μ. For ξ = π1, it is clear that |P∗�X | = max{|ω ×X |, 1} < μ.

For limit ξ > π1, P∗�X =
⋃

η∈c P
∗�(X ∩ η+) where c is a cofinal subset of ξ

of size cof(ξ). If cof(ξ) < μ then |P∗�X | < μ because it is a union of <μ many

sets of size <μ; if cof(ξ) ≥ μ then X ⊆ η+ for some η < ξ, so |P∗�X | < μ by

induction hypothesis.

For the successor step ξ = ζ + 1, assume X ⊆ (ζ + 1)+ and X � ζ+ (the

non-trivial case). Put X0 := X ∩ ζ+. By induction hypothesis, |P∗�X0| < μ

and, since μ is ℵ1-inaccessible, there are at most |P∗�X0|ℵ0 < μ many nice

P∗�X0-names of reals.

Let p ∈ P∗�X . If ξ ∈ Σ then p(ξ) is a nice P∗�X0-name of a real; if ξ ∈ Π,

then p(ξ) is determined by a finite partial function from ({ξ} × Ξξ) ∩ X into

the set of nice P∗�X0-names of reals, and there are <μ-many such finite partial

functions. Hence, |P∗�X | < μ.

13 Recall that a cardinal μ is κ-inaccessible if θν < μ for any cardinals θ < μ and ν < κ.
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Corollary 5.10: Let P be a tidy Sλs iteration with λ regular.

(a) P has λ-small history.

(b) Every p ∈ P∗ is an element of P∗�X from some X ⊆ π+ of size <λ.

(c) For every P-name of a real there is an equivalent P∗�X-name for some

X ⊆ π+ of size <λ.

(d) Assume that |π|ℵ0 = |π|, that λ ≤ |π|+, and that |Ξζ | ≤ |π| for each ζ ∈ Π.

Then |P∗| ≤ |π|.
Proof. (a) follows from Lemma 5.5(a),(b); (b) follows from Lemma 5.5(a) (using

X := H∗(p)); and (c) follows from (b) (use a nice P∗-name for a real).

For (d), set μ = |π|+ (the cardinal successor). Note that μ is <ℵ1-inaccessible

because |π|ℵ0 = |π|, and

|π+| ≤ |π| × sup
ζ∈Π

{|Ξζ |} ≤ |π| < μ.

Therefore |P∗| = |P∗�π+| < μ by Lemma 5.9 (for X = π+).

In our applications, P−
ξ = P∗�Cξ with Cξ ⊆ ξ+ for all ξ ∈ Σ. We will now

show how to build symmetric Sλs-iterations:

Definition 5.11: Let P be a tidy Sλs iteration, and let h : π1 → π1 be a 2G-

automorphism.

(1) Let ξ ∈ Π. We say that Ξξ is closed if, whenever h ∈ H∗ and ĥξ can be

defined (see Definition 4.11), Q̇ ∈ Ξξ implies ĥ∗ξ(Q̇) ∈ Ξξ (where H∗ is the

group of 2G-automorphisms fixed in Definition 4.11(5)).

(2) We say that C ⊆ π+ is closed if, for any h ∈ H∗, it satisfies:

(i) For any δ < π0, Bδ ∩C = ∅ implies Bδ ⊆ C.

(ii) For any ξ ∈ Π, whenever ĥξ can be defined, if (ξ, Q̇) ∈ C then

(ξ, ĥ∗ξ(Q̇)) ∈ C and ξ ∈ C.

Lemma 5.12: Assume that P is a tidy Sλs iteration such that the following

requirements are satisfied:

(I) For any ξ ∈ Π, Ξξ is closed.

(II) For any ξ ∈ Σ, P−
ξ = P∗�Cξ where Cξ ⊆ ξ+ is closed.

Then we get:

(a) P is symmetric (i.e., h-symmetric for all h ∈ H∗).
(b) ĥ[P∗�C] = P∗�C for all closed C ⊆ π+.
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Of course we will have to also make sure that the assumption “P is a tidy

Sλs-iteration” is satisfied. The nontrivial points of these assumptions are:

(I-b) For ζ ∈ Π the FS product Qζ is ccc. (In our case this will be trivial, as

all factors Q̇ will be Knaster.)

(II-b) For ζ ∈ Σ, P∗�Cζ is a complete subforcing of P∗. We will see in

Lemma 5.15 how to achieve this.

Proof. By induction on ξ ∈ [π1, π] we show that ĥξ can be defined for any

h ∈ H∗ (towards (a)), and that (b) is valid for any closed C ⊆ ξ+.14

Case ξ = π1: It is clear that ĥπ1 can be defined; (b) is clear because h[Bδ] = Bδ

for any δ < π0 and h ∈ H∗.

Case ξ = ζ + 1 with ζ ∈ Σ: (a): Note that

� ĥ∗ζ(Qζ) = ĥ∗ζ(SV
P
∗�Cζ

ζ ) = SV
ĥζ [P∗�Cζ ]

ζ

(as Sζ only uses parameters from the ground model), which is Q̇ζ by induction

hypothesis (as we assume that Cζ is closed). So we can extend ĥζ to ĥζ+1.

(b): Note that ξ+ = ζ+ ∪ {ζ}, so if C ⊆ ξ+ is closed (and not already a

subset of ζ+), then C = C′ ∪ {ζ} with C′ closed, and (p, q̇) ∈ P∗�C means

that p ∈ P∗�C′ and q̇ is a nice P∗�C′-name for an element of Q̇ζ. Then ĥ∗ζ(q̇) is

a nice ĥζ [P∗�C′]-name for an element of ĥ∗ζ(Q̇ζ), which is by induction hypoth-

esis a nice P∗�C′-name for an element of Q̇ζ , i.e., ĥζ+1((p, q̇)) ∈ P∗�C. This

shows that ĥξ[P∗�C] ⊆ P∗�C. As this is also true for the inverse of h (because

h−1 ∈ H∗), by Lemma 4.12(c) we get equality.

Case ξ = ζ + 1 with ζ ∈ Π: First note that, by induction hypothesis,

ĥζ [P∗
ζ ] = P∗

ζ because P∗
ζ = P∗�ζ+ and ζ+ is closed.

(a): Since Q̇ζ is a P∗
ζ-name for the self-indexed FS product of the (evaluated)

set Ξζ = {Q̇ : Q̇ ∈ Ξζ}, ĥ∗ζ(Q̇ζ) is the P∗
ζ-name for the self-indexed FS product

of the (evaluated) set

ĥ∗ζ [Ξζ ] = {ĥ∗ζ(Q̇) : Q̇ ∈ Ξζ}.
But as the ground model set of names {ĥ∗(Q̇) : Q̇ ∈ Ξζ} is identical to the

ground model set of names Ξζ , their evaluations are identical as well (because Ξξ

is closed under inverses, and by Lemma 4.12(c)). In other words, ĥ∗ζ(Q̇ζ) = Q̇ζ,

and ĥζ can be extended to Pξ.

14 In this proof we only use that h ∈ H∗ implies h−1 ∈ H∗.
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(b): Assume that C⊆ξ+=ζ+∪{ζ}∪({ζ}×Ξζ) is closed, and that (p, q̇)∈P∗�C
(but to avoid the trivial case, not in P∗

ζ). This means that p ∈ P∗�C′

for C′ = C ∩ ζ+, and it determines dom(q̇) = {Q̇1, . . . , Q̇n}, such that all

(ζ, Q̇i) are in C (and each q̇(Q̇i) is a nice P∗�C′-name). Then ĥζ(p) ∈ P∗�C′

by induction hypothesis, and it determines dom(ĥ∗ζ(q̇)) = {ĥ∗ζ(Q̇1), . . . , ĥ∗ζ(Q̇n)}
(and each ĥ∗ζ(q̇)(Q̇i) is a P∗�C′-nice name). Accordingly ĥξ((p, q̇)) ∈ P∗�C as

required.

We conclude that ĥξ[P∗�C] ⊆ P∗�C, but equality holds because the same is

true for h−1.

Case ξ limit: By induction hypothesis, ĥζ is defined for all ζ < ξ, so ĥξ is

defined (as its union). On the other hand, if C ⊆ ξ+ is closed then

C =
⋃
ζ<ξ

C ∩ ζ+

where each C ∩ ζ+ is closed, so ĥξ[P∗�C] = P∗�C by induction hypothesis.

We address some few facts about closed sets.

Lemma 5.13: Let P be a symmetric tidy Sλs iteration. Then:

(a) The union of closed sets is closed.

(b) If A ⊆ π+ has size <μ, with μ ≥ max{λ,ℵ2} uncountable regular, then the

closure A of A (the smallest closed set containing A) has size <μ.

Proof. Property (a) is straightforward. We show by induction on ξ ∈ [π1, π]

that (b) holds for any A ⊆ ξ+.

Case ξ = π1: A =
⋃{Bδ : Bδ ∩ A = ∅}. So |A| = ℵ1 × |A| < μ.

Case ξ = ζ + 1 with ζ ∈ Σ: If A ⊆ ξ+ has size <μ, then A ⊆ (A ∩ ζ+) ∪ {ζ}
has size <μ.

Case ξ = ζ + 1 with ζ ∈ Π: For h ∈ H∗, set

supp(h) =
⋃

{Bδ : h�Bδ = idBδ
}.

Let A∗ be the closure of⋃
{H∗(Q̇) ∩ π1 : (ζ, Q̇) ∈ A}.

H∗(Q̇) has size <λ ≤ μ by Lemma 5.5(c), and therefore also the set A∗ has

size <μ.
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It is clear that A ⊆ (A ∩ ζ+) ∪ {ζ} ∪X for

X := {(ζ, ĥ∗(Q̇)) : (ζ, Q̇) ∈ A, h ∈ H∗}.
Since H∗ is a group, {ζ} ∪X is closed. We claim that we get the same set X if

we replace H∗ with

H′ := {g ∈ H∗ : supp(g) ⊆ A∗}.
As H′ has size <μ (recall that | supp(g)| ≤ ℵ1 for any g ∈ H∗), we get |A| < μ,

as required.

Note that for f ∈ H∗ and (ζ, Q̇) ∈ A, by (5.7) supp(f) ∩ A∗ = ∅ implies

f̂∗
ζ (Q̇) = Q̇.

And for h ∈ H∗, there is a g ∈ H′ such that f := g−1 ◦ h satisfies

supp(f) ∩ A∗ = ∅.
(Basically, g�A∗ = h�A∗ and g�(π1 �A∗) is the identity.) So f̂∗(Q̇) = Q̇, which

implies

ĝ∗(Q̇) = ĝ∗(f̂∗(Q̇)) = ĥ∗(Q̇),

as required.

Case ξ limit: If cof(ξ) ≥ μ, then A ⊆ ζ+ for some ζ < ξ, so |A| < μ

by induction hypothesis. Otherwise, A =
⋃

ζ∈I A ∩ ζ+ for some witness I of

cof(ξ), so again |A| < μ.

Lemma 5.14: To satisfy assumption (I) of Lemma 5.12 for ξ ∈ Π, the following

is sufficient, while assuming (I) and (II) for ζ < ξ:

(I’) For some formula ϕ(x, y) using only parameters from the ground model and

some κξ ≤ λ, Ξξ is the set of all nice P∗
ξ-names Q̇ for <κξ-sized forcings

consisting of reals such that �P∗
ξ
ϕ(Q̇, ξ).

Proof. By the assumption and Lemma 5.12, Pξ is symmetric and h∗ξ [P∗
ξ ] = P∗

ξ

for any h ∈ H∗ (because P∗
ξ = P∗�ξ+).

Let Q̇ be such a nice P∗
ξ-name. Then ĥ∗ξ(Q̇) is also a nice P∗

ξ-name,

and �P∗
ξ
ϕ(ĥ∗ξ(Q̇), ξ) as ϕ only uses ground model parameters (i.e., standard

names).

As mentioned, we need closed C ⊆ π+ that define complete subforcings. For

this we use the following result:



Vol. TBD, 2021 PRESERVATION OF SPLITTING FAMILIES 39

Lemma 5.15: Let P be as in Lemma 5.12, and let μ > λ be regular and ℵ1-

inaccessible.

(a) For A ⊆ π+ of size <μ there is some closed C ⊇ A of size <μ, such that

P∗�C � P∗.
(b) The closed sets C ∈ [π+]<μ that satisfy P∗�C � P∗ form a λ-club.

The proof is just a standard Skolem-Löwenheim type closure argument:

Proof. (a) Using Corollary 5.10(b) we can fix a function f : (P∗
π)2 → [π+]<λ

such that if p and q are compatible then there is some r ≤ p, q in P∗�f(p, q).

Also, we can fix a function g : (P∗
π)≤ω → [π+]<λ such that, whenever

p̄ = 〈pn : n < w〉 (w ≤ ω)

is a non-empty antichain but not maximal in Pπ, then there is some q ∈ P∗�g(p̄)

with q ⊥ pn for any n < w. By recursion on α < λ, define

A′
α := A ∪ A<α ∪

⋃
p,q∈P∗�A<α

f(p, q) ∪
⋃

p̄∈(P∗�A<α)≤ω

g(p̄)

where

A<α :=
⋃
ξ<α

Aξ;

and let Aα := A′
α be the closure (see Lemma 5.13). So |Aα| < μ, and we can

set C :=
⋃

α<λAα, which is as desired because any countable sequence in P∗�C
is a countable sequence in P∗�Aα for some α < λ.

(b) Let 〈Bi : i ∈ λ〉 be an increasing sequence of closed subsets of π+

such that P∗�Bi is a complete subforcing of P∗. Set B :=
⋃

i∈λBi. Accord-

ing to 5.13(a) B is closed. Assume that A ⊆ P∗�B is a maximal antichain.

Any p, q ∈ A are incompatible in P∗�Bi for some i, and therefore in P∗. Due

to ccc, A is countable, and by Corollary 5.10(b) there is an i < λ such that

A ⊆ P∗�Bi. Therefore A is maximal in P∗.

Corollary 5.16: With the same hypothesis of Lemma 5.15, if P ⊆ P∗
π has

size <μ, then there is some P− � P∗
π of size <μ such that

P ⊆ P−.

Proof. Apply Lemma 5.15 to A :=
⋃

p∈P H
∗(p).
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We now summarize what we already know about the construction that we

are going to perform in the next section:

Corollary 5.17: Let λ be regular uncountable and assume λ≤|π|, |π|<λ = |π|,
and that π � π1 is partitioned into Σ and Π. We inductively construct a (tidy)

Sλs iteration P as follows:

(Σ) As step ζ ∈ Σ, we pick a (definition of a) Suslin-ccc forcing Sζ , some

ℵ1-inaccessible κζ > λ, and some Cζ in the λ-club set [ζ+]<κζ of

Lemma 5.15, and set Qζ = SV
P
∗�Cζ

. (So P−
ζ = P∗�Cζ .)

(Π) Fix a formula ϕ(x, y) with parameters in the ground model. At step

ζ ∈ Π, pick some regular uncountable κζ ≤ λ and let Q̇ζ be (a suitable

name for) the FS product of all Knaster real-number-posets of size <κζ

satisfying ϕ(x, ζ).

Then (inductively) Pξ is a well defined ccc forcing for π1 ≤ ξ ≤ π, and

(a) LCUsp(Pξ, μ) holds for any regular λ ≤ μ ≤ π0,

(b) Pξ forces that the continuum has size below |π|.
Proof. Each Q̇ζ is forced to be ccc (by either absoluteness or the Knaster as-

sumption), so we get a valid iteration (and we assume that we choose the names

for the iterands such that we get a tidy Sλs-iteration).

LCU follows from Lemmas 5.14 and 5.12(a), and Theorem 4.19.

For the size of the continuum, we use Corollary 5.10(d) to show by induc-

tion that |P∗
ξ | ≤ |π|: Assume this already is the case for ζ ∈ Π, then Ξζ

consists of nice P∗
ζ-names for <λ-sized real-number-forcings, and there are only

|P∗
ζ |<λ ≤ |π| many such nice names.

6. The forcing construction for the left hand side

In this section, we prove the first step of the main theorem: Theorem 6.11,

which gives the independence results for the left hand side. After the work

we have done in the previous sections, this is basically a simple variant of the

construction in [GKS19].
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6.A. Preliminaries.

Notation 6.1: Denote

(bi, di) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(add(N ), cof(N )) if i = 1,

(cov(N ), non(N )) if i = 2,

(b, d) if i = 3,

(non(M), cov(M)) if i = 4,

(s, r) if i = sp.

As in [GKS19, GKMSa], for i ∈ {1, 2, 3, 4, sp} consider Blass-uniform

relational systems RLCU
i and RCOB

i such that, following in Example 3.1,

RLCU
sp = RCOB

sp = Rsp and ZFC proves15

b(RCOB
i ) ≤ bi ≤ b(RLCU

i ) and d(RLCU
i ) ≤ di ≤ d(RCOB

i ).

We abbreviate COBRCOB
i

by COBi, and LCURLCU
i

by LCUi.

For completeness, we review the posets we use in our construction.

Definition 6.2: Define the following forcing notions (where the forcing in item (i)

is designed to increase bi):

(1) Amoeba forcing A is the poset whose conditions are subtrees T ⊆ 2<ω

without maximal nodes such that [T ], the set of branches of T , has measure

<1
2 (with respect to the Lebesgue measure of 2ω). The order is ⊇.

(2) Random forcing B is the poset whose conditions are subtrees T ⊆ 2<ω

without maximal nodes such that [T ] has positive measure. The order is ⊆.

(3) Hechler forcing is D := ω<ω×ωω ordered by (t, y) ≤ (s, x) iff s ⊆ t, x ≤ y

(pointwise) and t(i) ≥ x(i) for all i ∈ |t|� |s|.
(4) Eventually different forcing is

E := ω<ω ×
⋃
n<ω

(
[ω]≤n

)ω

ordered by (t, ψ) ≤ (s, ϕ) iff s ⊆ t, ∀i < ω(ϕ(i) ⊆ ψ(i)) and t(i) /∈ ϕ(i) for

all i ∈ |t|� |s|.
(sp) Let F be a base of a (free) filter on ω. Mathias–Prikry forcing on F

is MF := {(s, x) ∈ [ω]<ℵ0 × F : max(s) < min(x)} (here max(∅) := −1)

ordered by (t, y) ≤ (s, x) if s ⊆ t, y ⊆ x and t� s ⊆ x.

15 In more detail, RLCU
i = RCOB

i except when i = 2. If we follow [BCM21] we can also

consider RLCU
2 = RCOB

2 .
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For each of the posets above it is easy to construct a 1-1 function from the

poset into ωω. So, until the end of this section, the posets above are seen

as subsets of ωω. Moreover, the posets (1)–(4) are Suslin ccc, and they are

homeomorphic to a Borel subset of ωω (and the order is Borel as well).

In the proof of Theorem 6.6 we deal with special restrictions of the posets

(1)–(4) under sets of reals of the following form.

Definition 6.3: Let λ ≥ ℵ1 be a cardinal. Say that E ⊆ ωω is λ-elementary

if E = ωω ∩ N for some regular χ ≥ (2ℵ0)+ and some N � Hχ of size <λ,

where Hχ denotes the collection of hereditarily <λ-size sets.

We look at posets of the form S∩E where S is a poset as in (1)–(4) and E ⊆ ωω

is λ-elementary. Note that, whenever χ ≥ (2ℵ0)+, N � Hχ and E = ωω ∩N ,

we have S ∩E = SN . Therefore:

Fact 6.4: Let E ⊆ ωω be elementary. Then:

(1) The poset A∩E adds a (code of a) Borel measure zero set that contains all

Borel null sets with Borel code in E.

(2) The generic real added by B ∩ E evades all Borel null sets with Borel code

in E.

(3) The generic real added by D ∩ E dominates all the functions in E.

(4) The generic real added by E∩E is eventually different from all the functions

in E.

We now show how to modify the forcing construction in [GKMSb, §4 & §5]

to include LCUsp and COBsp, by performing a construction according to the

previous section, in particular to Corollary 5.17. We will assume the following:

Assumption 6.5: k0 ∈ [2, ω]; λm ≤ λ1 ≤ λ2 ≤ λ3 < λ4 are uncountable regular

cardinals, λ5 ≥ λ4 is a cardinal, λ3 = χ+, λm ≤ λsp ≤ λ3 regular, such that

χ<χ = χ ≥ ℵ1, λ<λ4
5 = λ5, and λi is ℵ1-inaccessible whenever λi > λsp and

1 ≤ i ≤ 4.

Our intention is to show the following:

Goal 6.6: There is a ccc poset P of size λ5 such that, for any i ∈ {1, 2, 3, 4, sp},
(a) LCUi(P, θ) holds for any regular λi ≤ θ ≤ λ5,

(b) there is some directed Si with cp(Si)=λi and |Si|=λ5 such that COBi(P, Si)

holds,
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(c) P forces p = s = λsp and c = λ5,

(d) P forces mk = ℵ1 for any k ∈ [1, k0), and mk = λm for any k ∈ [k0, ω].16

The way to achieve this is parallel to [GKS19, §1]: As a first step we give

the “basic construction” in Lemma 6.8, using “simple bookkeeping” (which is

described by parameters C̄ = 〈Cα〉α∈Σ in the ground model). This gives us

everything apart from LCU3 (i.e., we do not claim that b remains small). This

first step contains the only new aspect of the construction: As we use a variant

of the construction according to the previous section, we get LCUsp.

The next steps are just as in [GKS19, §1.3 & §1.4]. In Lemma 6.10 we

remark: Assuming 2χ ≥ λ5 (in addition to Assumption 6.5), we can choose

the bookkeeping parameters C̄ in such a way that the resulting forcing satisfies

LCU3 and thus all of Goal 6.6.

And finally we show Theorem 6.11: without the assumption 2χ ≥ λ5 (while

assuming 6.5) we can also get all of Goal 6.6. Why do we need to supress

the assumption 2χ ≥ λ5 from Lemma 6.10? Because we can then additionally

control the right-hand side characteristics in Section 7, using the method of

elementary submodels from [GKMSa].

In the following proof, we deal with the case 2 ≤ k0 < ω and λm > ℵ1. In

Section 6.D we mention the necessary changes for the remaining cases.

6.B. The basic forcing construction. To each 1 ≤ i ≤ 4 associate a Suslin

ccc poset as follows: S1 = A, S2 = B, S3 = D, and S4 = E.

Set λ := λsp. Let i∗ be the minimal i such that λi > λ. Note that 1 ≤ i∗ ≤ 4.

Set I1 := {i∗, . . . , 4} and I0 := {m, p} ∪ {1, 2, 3, 4}� I1.

Set π0 := λ5 (so π1 = ω1 · λ5), and π := π1 + λ5 + λ5. Partition the final

λ5-interval of π, i.e. π� (π1 + λ5), into sets Πi (i ∈ I0) and Σi (i ∈ I1), each of

size λ5.

We construct a tidy Sλ-s iteration, using

Σ := {π1 + α : α < λ5} ∪
⋃
i∈I1

Σi and Π :=
⋃
i∈I0

Πi.

We will satisfy the requirements of Corollary 5.17, so in particular inductively

we will have |P∗
ξ | = λ5 (and so Pξ � c = λ5) for all ξ.

(I1) At stage ζ ∈ [π1, π1 + λ5) (in particular, ζ ∈ Σ), we just add Cohen

reals. More formally, to fit our framework, we set Sζ = C = ω<ω (Cohen

16 Note that λm = ℵ1 is allowed.
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forcing). Let Cζ := ∅, which is closed and satisfies that P−
ζ := P∗

ζ�Cζ (i.e.,

the set containing only the empty condition) is a complete subforcing of P∗
ζ .

And SV
P
−
ζ

ζ is Cohen forcing in the ground model, which is Cohen forcing

in any extension by absoluteness.

(I2) Assume ζ ∈ Πi (for some i ∈ I0).

(i) When i = m, let Ξζ be the family of all nice P∗
ζ-names of real-number-

posets of size <λm that are forced (by P∗
ζ) to be k0-Knaster.

(ii) When i = p, let Ξζ be the family of all nice P∗
ζ-names of real-posets

of size <λ that are forced to be σ-centered.

(iii) When i ∈ {1, 2, 3} ∩ I0, we consider Ξξ as the family of nice P∗
ζ-

names of all smaller-than-λi versions of Si in the P∗
ζ-extension, i.e.,

the forcings of the form

Q = Si ∩ E where E is λi-elementary

as in Definition 6.3. Note that Si, and therefore also every variant

Si ∩ E, is linked and therefore Knaster.

(I3) If ζ ∈ Σi (for some i ∈ I1, so λi > λ), we pick (by suitable bookkeeping)

a Cζ ⊆ ζ+ as in Lemma 5.15(b), i.e., |Cζ | < λi, P
−
ζ := P∗�Cζ � P∗

ζ , and

we set Sζ := SV
P
−
ζ

i . (Here, suitable bookkeeping just means: For every

K ∈ [π+]<λi there is some index ζ such that Cζ ⊇ K.)

We can now show that the construction does what we want, apart from

keeping b small.

First let us note that sometimes it is more convenient to view P as a FS ccc

iteration, where we first add the λ5-many GB forcings (of size ℵ1), then the

λ5-many Cohen reals, and then the rest of the iteration, where we interpret

each FS product Qζ for ζ ∈ Πi as a FS iteration with index set λ5 = |Ξi|. So

all in all we can represent P as a FS iteration

(6.7)

〈P ′
α, Q̇

′
α〉α∈δ′ of length δ′ = λ5 + λ5+Σζ∈π�(λ5+λ5)δ

′
ζ ,

with δ′ζ :=

⎧⎨
⎩
λ5 if ζ ∈ Πi,

1 otherwise.

For each α < λ5 +λ5, |Q̇′
α| ≤ ℵ1, and for each α ≥ λ5 +λ5 in δ′, we say that Q̇′

α

“is of type i” for i ∈ {m, p, 1, 2, 3, 4}, if either Q̇′
α = Q̇ζ for the respective ζ ∈ Σi,

or if Q̇′
α is a factor Q̇ of Q̇ζ for the respective ζ ∈ Πi. Note that P ′

λ5
= Pπ1 .
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Lemma 6.8: The construction above satisfies Goal 6.6, apart from possibly

LCU3.

Proof. c = λ5: as we use a construction following Corollary 5.17.

Item (a) for i = sp, i.e., LCUsp: This also follows from Corollary 5.17, and

implies �P s ≤ λ.

p = s = λ: To see p ≥ λ it is enough to show (in fact, equivalent, by Bell’s

theorem [Bel81]): For every σ-centered poset Q′ of size <λ (and contained

in ωω), and any collection D of size <λ of dense subsets of Q′, there is a

Q′-generic set over D. Any such Q′ and D are forced to be already in the

Pα-extension for some α < π. Pick some ζ ∈ Πp larger than α. Then a name Q̇

for Q′ is used as factor of Pζ , i.e., in Pζ+1 there is a Q̇-generic object (over D).

ZFC shows p ≤ s, and as s ≤ λ we get equality.

Item (a) for i ∈ {1, 2, 4}, i.e., LCUi: This is exactly as in [GKS19, §1.2]. For this

argument we interpret P as the iteration 〈P ′
α, Q̇

′
α〉α∈δ′ of (6.7). However, we

work in the Pπ1-extension (i.e., the P ′
λ5

-extension). So we investigate the forcing

which first adds λ5 many Cohens, and then a FS iteration of the iterands Q′
α.

As in [GKS19, §1.2], we now argue that each such Q′
α is (RLCU

i , λi)-good.17 So

let us quickly check the cases (they are all summarized in [GKS19, Lemma 1.6],

and use results from [JS90], [Kam89], [Bre91]). To get (RLCU
1 , λ1)-good:

• IfQ′
α is of type m or type 1, thenQ′

α has size<λ1 and thus is (RLCU
i , λ1)-

good (for any i ∈ {1, 2, 3, 4}).

• IfQ′
α is of type p, 3 or 4, thenQ′

α is σ-centered, and therefore (RLCU
1 ,ℵ1)-

good.

• If Q′
α is of type 2, then it is a subalgebra of the measure algebra, and

thus (RLCU
1 ,ℵ1)-good.

For (RLCU
2 , λ2)-good the argument is even simpler: All Q′

α have size <λ2 or

are σ-centered; and for (RLCU
4 , λ4)-good the argument is trivial, as all Q′

α have

size <λ4.

So this argument shows that, in the intermediate model V Pπ1 , the rest P ′ of

the forcing satisfies LCUi(P
′, λi), witnessed by the Cohen reals

{ηα : α ∈ [π1, π1 + λi)}.
17 The notion (R, θ)-good was introduced by Judah–Shelah [JS90] and Brendle [Bre91],

definitions can also be found in [GKS19, Def. 1.5], [GMS16, Def. 3.2] or [BJ95, Def.

6.4.4].
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This implies by definition of LCU that in the ground model LCUi(P, λi) holds,

witnessed by the same Cohen reals.

Item (b) for i ∈ I1, i.e., COBi: This is also basically the same as in [GKS19,

§1.2], where this time we argue from the ground model V , not the intermediate

model V Pπ1 . We define the partial order Si to have domain Σi, ordered by

ζ1 ≤Si ζ2 iff Cζ1 ⊆ Cζ2 .

Note that Cζ is in [π+]<λi , |π+| = λ5, and our bookkeeping ensures that Si is

<λi-directed. Corollary 5.10(c) together with the fact that λ ≤ λi shows that

our bookkeeping will catch every real in the P-extension. Therefore Si, and the

generics added at stages in Si, witness the COB property.

Item (b) for i ∈ I0 ∩ {1, 2, 3}: This is very similar: Let Si be the set of pairs

(ζ, Ė) such that ζ ∈ Πi and Ė is a nice P∗
ζ-name of a λi-elementary subset of ωω.

We order Si as follows: (ξ1, Ė1) ≤i (ξ2, Ė2) iff ξ1 ≤ ξ2 and the empty condition

forces that Ė1 ⊆ Ė2.

For (ζ, Ė) ∈ Si, Si∩Ė forms part of the FS product Q̇ζ , so Pζ+1 adds a Si∩Ė-

generic object ẏζ,Ė as in Fact 6.4. We show that Si and {ẏζ,Ė : (ζ, Ė) ∈ Si}
witness COBi.

Let ṙ be a P∗-name of a real, then ṙ is a P∗
ξ0

-name of a real for some ξ0 < π,

and there is some Ė0 such that (ξ0, Ė0) ∈ Si and �Pξ0
ṙ ∈ Ė0. Hence, whenever

(ξ, Ė) ∈ Si is above (ξ0, Ė0), �P ṙ ∈ Ė so ẏξ,Ė is generic over ṙ.

And for any <λi-sequence 〈Ej : j ∈ J〉 of nice names for λi-elementary

sets Ej we can find a nice name for a λi-elementary set E ⊇ ⋃
j∈J Ej . This

shows that Si is <λi-directed.

Item (b) for i = sp, i.e., COBsp: This is basically the same: Among the σ-

centered forcings that we use as factors in step ζ of type p, there are Mathias–

Prikry forcings MḞ on (free) filter bases of size <λ. In more detail: Assume Ḟ

is a P∗
ζ-name for a filter base of size <λ, so set Q̇ := MḞ . Then Q̇ is σ-centered

and adds a real which is not split by any set in Ḟ .

So let Ssp be the set of pairs (ζ, Ḟ ) such that ζ ∈ Πp and Ḟ is a nice P∗
ζ-

name of a filter base of size <λ. Set (ξ1, Ḟ1) ≤p (ξ2, Ḟ2) iff ξ1 ≤ ξ2 and the

empty condition forces that Ḟ1 ⊆ Ḟ2 ∪ Ḟ d
2 , where F d := {ω � x : x ∈ F}. For

(ξ, Ḟ ) ∈ Sp, let ẏξ,Ḟ be the Pξ+1-name of the generic real added by MḞ . It

follows that Sp and {ẏξ,Ḟ : (ξ, Ḟ ) ∈ Sp} witness COBsp.

Item (d) is exactly the same as in [GKMSb, Lemma 4.7].
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To guarantee b ≤ λ3, we have to make sure that the large iterands (i.e.,

the forcings of size ≥ λ3) do not destroy LCU3 (small forcings are, as usual,

harmless). In our construction, the only large forcings are the partial eventually

different forcings at steps ζ ∈ Σ4. For these forcings, we introduce in [GKS19]

(based on [GMS16]) ultrafilter-limits and use them to preserve LCU3. The same

argument works here.

Remark 6.9: Note that in the proof of Lemma 6.8 we do not require the hy-

potheses χ = χ<χ and λ3 = χ+ from Assumption 6.5. These will be used to

guarantee LCU3 in the following subsection.

If in Assumption 6.5 we consider λ3 = λ4 (instead of λ3 < λ4), then the

same proof of Lemma 6.8 guarantees Goal 6.6 in full (i.e., including LCU3).

When λsp = λ4, in the forcing construction above we have

Σ = [π1, π1 + λ5).

6.C. Dealing with b.

Lemma 6.10: In addition to Assumption 6.5 we suppose that 2χ ≥ λ5. Then

we can choose Cζ for all ζ ∈ Σ4 such that LCU3(P, κ) holds for all regular

κ ∈ [λ3, λ5]. Moreover, in the inductive construction, for each ζ ∈ Σ4 there is a

λ-club of [ζ+]<λ4 such that we can choose Cζ from this club set.

Proof. This is analogous to [GKS19, §1.3], in particular to Lemma/Construction

1.30. We will only remark on the required changes. Again we interpret P

as in (6.7).

We work from the ground model, not in the intermediate Pπ1-extension. Ac-

cordingly, we have to incorporate the initial segment of the iteration Pπ1 = P ′
λ5

into the argument. This is no problem, as we just have to deal with another

type of small forcing, the Q̇′
α for α < λ5, which all have size ℵ1.

Of course, E′ := EV
P
∗
ζ�Cζ

is closed under conjunctions of conditions, i.e.,

satisfies the assumptions of [GKS19, Fact 1.25]. And instead of “ground model

code sequences” we use “nice P∗
ζ�Cζ -names”.

The crucial part of the old proof is [GKS19, Lemma 1.30(d)]. There, we use

the notation wα ⊆ α, and Qα are those E-conditions that can be calculated in

a Borel way from the generics with indices in wα, i.e., Qα = E ∩ V P∗�wα ; and

we show that the set of “suitable” wα is an ω1-club in [α]<λ4 , where “suitable”
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means: If we have a ground-model-sequence of (nice) Qα-names, then the Dε
α-

limit (a well-defined condition in eventually different forcing) is also element

of Qα (for all ε ∈ χ).

The same argument gives us the following for our new framework: We can

perform the construction of Lemma 6.8 and, at all indices ζ of type 4, the set

of “suitable” Cζ ∈ [ζ+]<λ4 is a λ-club, where suitable now means the following

(recall that we have Q̇ζ = EP∗
ζ�Cζ ): For any sequence of nice P∗

ζ�Cζ-names for

elements of E,18 the Dε
α-limit of this sequence is forced to be in Q̇ζ as well.

Here, we only get a λ-club and not an ω1-club, as only for increasing unions

of length λ we have

⋃
i∈λ

(P∗
ζ�Ci) = P∗

ζ�
( ⋃

i∈λ

Ci

)
.

Also, we now have to choose Cζ not only in this λ-club, but in the intersec-

tion with the λ-club of Lemma 5.15(b) (so that we get a closed Cζ such that

P∗
ζ�Cζ � P∗

ζ as required for our construction).

The same argument as in the old proof (Lemma 1.31 there) then shows:

Whenever all Cζ are chosen “suitably” (for all ζ of type 4), we get LCU3.

Theorem 6.11: Assumption 6.5 is enough to find a P as required for Goal 6.6.

Proof. Let R be the poset of partial functions r : χ× λ5 → {0, 1} with domain

of size <χ (ordered by extension). As we assume χ<χ = χ, this poset is χ+-cc,

and obviously <χ-closed, so it does not change any cofinalities. As in the old

proof, at each step ζ of type 4 in the inductive construction of P, we can go

into the R-extension of the ground model, use Lemma 6.10 to get a suitable C0
ζ

(above some initial set given by the usual bookkeeping), find in V some C̃0
ζ such

that C0
ζ is forced to be a subset. Now we iterate this λ many times (not just ω1

as in the old proof), taking unions at limits, and use the fact that the “suitable”

parameters Cζ are closed under λ-unions (they form a λ-club in [ζ+]<λ4).

This way we get a sequence of parameters Cζ in the ground model, such

that if we define in the R-extension a forcing P′ using these parameters we get

LCU3(P′, κ); a simple absoluteness argument [GKS19, Lemma 1.33] then shows

that these parameters will already define in V a forcing P with LCU3(P, κ).

18 Note: as |Cζ | < λ4, and λ4 is ℵ1-inaccessible, there are <λ4 many such sequences;

cf. Lemma 5.5 (and 5.9).
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Note: We do not interpret Ξζ (for ζ ∈ Π) in the R-extension, but use it with

the same meaning it has in V . So P′ may not be symmetric in the R-extension,

but this is not important here: We are only interested in LCU3(P′, κ) in this

argument, and we do not claim that P′ in the R-extension satisfies the other

properties we have already shown for P. And for LCU3(P′, κ), any iterand that

has size <λ3 is unproblematic.

Remark 6.12: It is not necessary to restrict λ3 to a successor cardinal in Assump-

tion 6.5. To allow regular λ3 in general, we forget about χ in Assumption 6.5

and just assume that λ<λ3
3 = λ3 > ℵ1. In this way, Lemma 6.10 is valid by

assuming 2λ3 ≥ λ5 instead, and Theorem 6.11 is true when replacing χ by λ3

in the proof (i.e., R gets modified and it forces 2λ3 ≥ λ5). No further changes

in the proofs (even in those from [GKS19]) are needed to justify this.

On the other hand, can we allow λ3 = ℵ1 in Assumption 6.5? (So all cardinals

except λ4 and λ5 are ℵ1.) Although we can make the construction in this case,

now the forcings GBδ
have size λ3 = ℵ1, so they could destroy LCU3(P,ℵ1).

An alternative to deal with this problem is to perform a similar iteration with

π0 = 0 (so π1 = 0, that is, no initial FS product of GB is used) and guarantee

LCUR∗(P, κ) for any regular κ ∈ [ℵ1, λ5] with the methods of this subsection

(i.e. the methods from [GKS19, §1.3 & §1.4]) adapted to R∗, where R∗ is the

Blass-uniform relational system from [KW96] (see also [Mej13, Example 2.19])

such that

b(R∗) = max{b, s} and d(R∗) = min{d, r}.

6.D. The other constellations for the Knaster numbers. So far we

have assumed that λm > ℵ1 and that k0 < ω. We now remark on how to prove

the other cases:

Case λm = ℵ1. We only change I0 := {p} ∪ {i ∈ [1, 4] : λi ≤ λ} (so (I2)(i)

is excluded in the construction). Check details in [GKMSb, Lemma 4.7]. Note

that here the value of k0 is irrelevant.

Case k0 = ω and λm > ℵ1. Force with Pcal,λm ∗ P where Pcal,λm is the

precaliber ℵ1 poset from [GKMSb, §5] and P is the forcing resulting from the

construction above (in the Pcal,λm -extension).19

19 For i = m, recall that “ω-Knaster” abbreviates “precaliber ℵ1”.
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6.E. The alternative order of the left side. The construction of

[KST19, §2] for the alternative order of the left side of Cichoń’s diagram can

also be adapted in the situation of the previous theorems. This is just inter-

changing the order of the values of b and cov(N ), that is, instead of forcing

cov(N ) = λ2 ≤ b = λ3, we force

b = λ3 < cov(N ) = λ2.

See also [Mej19b] for the weakening of the hypothesis GCH:

Theorem 6.13: Theorem 6.11 (and Goal 6.6) is still valid when, in Assump-

tion 6.5, we replace λ1 ≤ λ2 ≤ λ3 < λ4 by λ1 ≤ λ3 < λ2 < λ4.
20

Remark 6.12 also applies in this situation.

7. 15 values

In this section, we review some tools from [GKMSa, GKMSb] and show how

they are used to control the cardinal characteristics other than s. We describe

the forcing constructions but we omit the details in the proofs, since these are

exactly as in the cited references.

We use the notions of m-like cardinal characteristic and h-like characteristic

from [GKMSb, §3]. We do not need to recall their definition, but we only need

some of their properties and to know that the cardinals mk (1 ≤ k ≤ ω) are

m-like, h and g are h-like, and p and t are of both types.

Lemma 7.1 ([GKMSb, Cor. 3.5]): Let κ be an uncountable regular cardinal,

λ a cardinal, x a cardinal characteristic, and let P be a κ-cc poset that forces

x = λ (so λ is a cardinal in the P extension). If M � Hχ (with χ a large

enough regular cardinal) is <κ closed and contains (as elements) P, κ, λ and the

parameters of the definition of x, then P ∩M is a complete subposet of P and:

(i) If x is m-like and λ ≥ κ, then P ∩M � x ≥ κ.

(ii) If x is m-like and λ < κ, then P ∩M � x = λ.

(iii) If x is h-like, then P ∩M � x ≤ |λ ∩M |.

20 As in [KST19, §2], the relational system RLCU
2 corresponding to this result is not the

same as the one for Theorem 6.11. Although this is a relational system of the reals, it is

not Blass-uniform.
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Lemma 7.2 ([GKMSb, Lemma 6.3]): Assume:

(1) κ ≤ ν are uncountable regular cardinals, P is a κ-cc poset.

(2) μ = μ<κ ≥ ν and P forces c > μ.

(3) For some relational systems of the reals R1
i (i ∈ I1) and some regular

λ1i ≤ μ: P forces LCUR1
i
(λ1i )

(4) For some relational systems of the reals R2
i (i ∈ I2), and some directed

order S2
i with b(S2

i ) = λ2i ≤ μ and |S2
i | ≤ ϑ2i ≤ μ: P forces COBR2

i
(S2

i ).

(5) For some m-like characteristics yj (j ∈ J) and λj < κ: �P yj = λj .

(6) For some m-like characteristics y′k (k ∈ K): �P y′k ≥ κ.

(7) |I1 ∪ I2 ∪ J ∪K| ≤ μ.

Then there is a complete subforcing P∗ of P of size μ forcing:

(a) yj = λj , y
′
k ≥ κ, LCUR1

i
(λ1i ) and COBR2

i′
(λ2i′ , ϑ

2
i′) for all i ∈ I1, i

′ ∈ I2,

j ∈ J and k ∈ K;

(b) c = μ and g ≤ ν.

We are now ready to prove the main result of this paper. We use Notation 6.1

and the following assumption for all the results in this section.

Assumption 7.3:

(1) μm ≤ μp ≤ μ0 ≤ μ1 ≤ μ2 ≤ · · · ≤ μ8 are uncountable regular.

(2) μ9 ≥ μ8 is a cardinal such that μ<μ0

9 = μ9.

(3) 0 ≤ i0 ≤ 2, μsp ∈ [μi0 , μi0+1] and μr ∈ [μ8−i0 , μ9−i0 ] are regular.

(4) There are eleven regular cardinals θ0 > · · · > θ10 > μ9 such that θ<θi
i = θi

for any i < 11, θi is ℵ1-inaccessible for i ∈ {1, 3, 5, 7}, θ3 = χ+
3 and

χ3 = χ<χ3

3 .21

Note that, under GCH, assumption (4) is irrelevant, and μ<μ0

9 = μ9 is equiv-

alent to

cof(μ9) ≥ μ0.

The Main Theorem for Figure 3(A) is proved in two steps through the fol-

lowing two results.

21 We could further weaken the assumption depending on the value i0. For example, in

case i0 = 1, θi is required ℵ1-inaccessible only for i ∈ {1, 3, 5}. Also, it is enough that

θ<θ1
0 = θ0 (here, θ0 could be singular), and θ3 is not needed successor according to

Remark 6.12. For more pedantic weakenings, see [GKMSa, Rem. 3.5].
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Theorem 7.4: Under Assumption 7.3, for any k0 ∈ [2, ω] there is a ccc poset P1

such that, for any i ∈ {1, 2, 3, 4, sp},
(a) LCUi(P1, θ) holds for θ ∈ {μi, μ9−i}, where μsp := μs and μ9−sp := μr.

(b) There is some directed Si with cp(Si) = μi and cof(Si) = μ9−i such that

COBi(P1, Si) holds.

(c) P1 forces p = g = μ0 and c = μ9.

(d) P1 forces mk = ℵ1 for any k ∈ [1, k0), and mk = μm for any k ∈ [k0, ω].

Proof. We deal with the case i0 = 1, that is, μ1 ≤ μsp ≤ μ2 (any other case is

similar). We rewrite the sequence

μ1 ≤ μsp ≤ μ2 ≤ μ3 ≤ μ4 ≤ μ5 ≤ μ6 ≤ μr ≤ μ7 ≤ μ8 ≤ μ9 as

ϑ10 ≤ ϑ8 ≤ ϑ6 ≤ ϑ4 ≤ ϑ2 ≤ ϑ1 ≤ ϑ3 ≤ ϑ5 ≤ ϑ7 ≤ ϑ9 ≤ ϑ11,

and let 〈θj : j < 11〉 be cardinals as in Assumption 7.3(4) ordered by

ϑ11 < θ10 < θ9 < · · · < θ0

as shown in Figure 6.

Let P0 be the ccc poset obtained by application of Theorem 6.11 to λm = μm,

λ1 = θ9, λsp = θ7, λ2 = θ5, λ3 = θ3, λ4 = θ1 and λ5 = θ0. In particular, this

forces the top diagram of Figure 6 and item (d). We show how to construct

a complete subforcing of P0 that satisfies the statement of the theorem, in

particular, it forces the bottom diagram of Figure 6.

For 1 ≤ n ≤ 10 and α < ϑn define Mn,α fulfilling:

• Mn,α � Hχ (for a fixed large enough regular χ) and it contains (as ele-

ments) the sequences of θ’s and ϑ’s, P0 and the directed sets associated

with the COB properties forced by P0.

• The sequences 〈Mm,ξ : ξ < ϑm〉 for 1 ≤ m < n and 〈Mn,ξ : ξ < α〉
belong to Mn,α.

• Mn,α is <θn closed of size θn.

Set

Mn :=
⋃

α<ϑn

Mn,α and M+ :=

10⋂
n=1

Mn.

Exactly as in the proof of [GKMSa, Thm. 3.1] one can show that M+ � Hχ,

M+ is <ϑ10-closed, and P′ := P0 ∩ M+ is a ccc poset that forces (a), (b)

and c = θ10. Even more, P′ forces (d) and p ≥ ϑ10 by Lemma 7.1.

The desired poset is a complete subposet P1 of P′ of size ϑ11 obtained by

direct application of Lemma 7.2 (to κ = ν = μ0 and μ = ϑ11).
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Figure 6. The cardinals ϑn and θn are increasing along the

arrows. The upper diagram shows the situation forced by P0,

and the lower diagram shows the one forced by P1. (s can be

anywhere between p and b.)

Theorem 7.5: Under Assumption 7.3, for any k0 ∈ [2, ω] there is a cofinality

preserving poset P such that, for any i ∈ {1, 2, 3, 4, sp}, it satisfies (a), (b) and

(d), and P forces p = μp, h = g = μ0 and c = μ9.



54 M. GOLDSTERN ET AL. Isr. J. Math.

Proof. Let Q := μ
<μp

p ordered by end extension, and let P1 be the poset con-

structed in Theorem 7.4. Exactly as in the proof of [GKMSb, Thm. 7.4],

P := P1 ×Q is as required.

In the same way, we can prove the Main Theorem corresponding to Fig-

ure 3(B). In this case, the initial forcing P0 is obtained from Theorem 6.13.

Theorem 7.6: Both Theorems 7.4 and 7.5 are valid when Assumption 7.3 is

modified in the following way:

(i) We replace the order of the regular cardinals in (1) by

μm ≤ μp ≤ μ0 ≤ μ1 ≤ μ3 ≤ μ2 ≤ μ4 ≤ μ5 ≤ μ7 ≤ μ6 ≤ μ8.

(ii) In (3), we consider i0 ∈ {0, 1}, but μsp ∈ [μ1, μ3] and μr ∈ [μ6, μ8] when

i0 = 1.

(iii) In (4), instead of θ3 = χ+
3 and χ<χ3

3 = χ3, assume θ5 = χ+
5 and χ<χ5

5 = χ5.

8. Discussions

One obvious question is:

Question 1: How to separate additional cardinals from Figure 2?

Another one:

Question 2: How to get other orderings, where non(M) > cov(M)?

This is not possible with FS ccc iterations, as any such iteration whose length

has uncountable cofinality δ forces non(M) ≤ cof(δ) ≤ cov(M), so alternative

methods are required. A creature forcing method based on the notion of deci-

siveness [KS09, KS12] has been developed in [FGKS17] to separate five char-

acteristics in Cichón’s diagram, but this method is restricted to ωω-bounding

forcings, i.e., results in d = ω1. An unbounded decisive creature construction

might be promising. Alternatively, Brendle proposed a method of shattered

iterations,22 which also may be a way to solve this problem.

Question 3: Are our main results (specifically, Theorems 6.11, 6.13, 7.4, 7.5

and 7.6) valid for k0 = 1? I.e., can we force m > ℵ1?

22 J. Brendle, personal communication.
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For k0 ≥ 2 there was no problem to include, in our iterations, FS products of

k0-Knaster posets since they are still k0-Knaster (hence ccc), but we cannot just

use FS products of ccc posets because they do not produce ccc posets in general.

In particular, we do not know how to modify Theorem 6.11 to force m > ℵ1.

Question 4: Is it consistent with ZFC that b < s < non(M) < cov(M)?

In this paper s ≤ b; and forcing s > b is much more difficult, since Mathias–

Prikry posets may add dominating reals. Shelah [She84] proved the consistency

of b = ℵ1 < s = c = ℵ2 by a countable support iteration of proper posets. Much

later, Brendle and Fischer [BF11] constructed an FS iteration via a matrix

iteration to force ℵ1 < b = κ < s = c = λ for arbitrarily chosen regular κ < λ.

However, in this latter model, non(M) = cov(M) = c. It is not clear how to

adapt Brendle’s and Fischer’s methods to our methods and produce a poset for

the previous question.
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