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Cichoń’s maximum

By Martin Goldstern, Jakob Kellner, and Saharon Shelah

Abstract

Assuming four strongly compact cardinals, it is consistent that all en-

tries in Cichoń’s diagram (apart from add(M) and cof(M), whose val-

ues are determined by the others) are pairwise different; more specifically,

ℵ1 < add(N ) < cov(N ) < b < non(M) < cov(M) < d < non(N ) <

cof(N ) < 2ℵ0 .

Introduction

Independence. How many Lebesgue null sets are required to cover the real

line? Obviously countably many are not enough, as the countable union of null

sets is null; and obviously continuum many are enough, as
⋃
r∈R{r} = R.

The answer to our question is a cardinal number called the covering num-

ber of the null ideal, or cov(N ). As we have just seen,

ℵ0 = |N| < cov(N ) ≤ |R| = 2ℵ0 .

In particular, if the Continuum Hypothesis (CH) holds (i.e., if there are no

cardinalities strictly between |N| and |R|, or equivalently, if ℵ1 = 2ℵ0), then

cov(N ) = 2ℵ0 ; but without CH, the answer could also be some cardinal less

than 2ℵ0 . According to Cohen’s famous result [Coh63], CH is independent of

the usual axiomatization of mathematics, the Zermelo Fraenkel axioms of set

theory including the Axiom of Choice, abbreviated ZFC. That is, we can prove

that the ZFC axioms neither imply CH nor imply ¬CH. For this result, Cohen

introduced the method of forcing, which has been continuously expanded and

refined ever since. Forcing also proves that the value of cov(N ) is independent.

For example, cov(N ) = ℵ1 < 2ℵ0 is consistent, as is ℵ1 < cov(N ) = 2ℵ0 .
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114 MARTIN GOLDSTERN, JAKOB KELLNER, and SAHARON SHELAH

Cichoń’s diagram. The covering number cov(N ) is a so-called cardinal

characteristic of the continuum. Other well-studied characteristics include the

following:

• add(N ) is the smallest number of Lebesgue null sets whose union is not

null.

• non(N ) is the smallest cardinality of a non-null set.

• cof(N ) is the smallest size of a cofinal family of null sets, i.e., a family that

contains for each null set N a superset of N .

• Replacing “null” with “meager,” we can analogously define the characteris-

tics add(M), non(M), cov(M), and cof(M).

• In addition, we define b as the smallest size of an unbounded family, i.e., a

family H of functions from N to N such that for every f : N → N, there is

some h ∈ H that is not almost everywhere bounded by f .

Equivalently, b = add(K) = non(K), where K is the σ-ideal generated by

the compact subsets of the irrationals.

• d is the smallest size of a dominating family, i.e., a family H such that for

every f : N→ N, there is some h ∈ H such that (∃n ∈ N) (∀m > n)h(m) >

f(m).

Equivalently, d = cov(K) = cof(K).

• For the ideal ctbl of countable sets, we trivially get add(ctbl) = non(ctbl) =

ℵ1 and cov(ctbl) = cof(ctbl) = 2ℵ0 .

The characteristics we have mentioned so far,1 and the basic relations

between them, can be summarized in Cichoń’s diagram:

cov(N ) // non(M) // cof(M) // cof(N ) // 2ℵ0 .

b //

OO

d

OO

ℵ1
// add(N ) //

OO

add(M) //

OO

cov(M) //

OO

non(N )

OO

An arrow from x to y indicates that ZFC proves x ≤ y. Moreover, cof(M) =

max(d,non(M)) and add(M) = min(b, cov(M)). A (by now) classical series of

theorems [Bar84], [BJS93], [CKP85], [JS90], [Kam89], [Mil81], [Mil84], [RS83]

and [RS85] proves these (in)equalities in ZFC and shows that they are the only

ones provable. More precisely, all assignments of the values ℵ1 and ℵ2 to the

characteristics in Cichoń’s Diagram are consistent with ZFC, provided they

do not contradict the above (in)equalities. (A complete proof can be found in

[BJ95, Ch. 7].)

1There are many other cardinal characteristics (see, for example, [Bla10]), but the ones

in Cichoń’s diagram seem to be considered to be the most important ones.
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CICHOŃ’S MAXIMUM 115

Note that Cichoń’s diagram shows a fundamental asymmetry between the

ideals of Lebesgue null sets and of meager sets. (We will mention another one

in the context of large cardinals.) Any such asymmetry is hidden if we assume

CH, as under CH not only all the characteristics are ℵ1, but even the Erdős-

Sierpiński Duality Theorem holds [Oxt80, Ch. 19]: There is an involution

f : R→ R (i.e., a bijection such that f ◦ f = Id) such that A ⊆ R is meager if

and only if f ′′A is null.

So it is settled which assignments of ℵ1 and ℵ2 to Cichoń’s diagram are

consistent. It is more challenging to show that the diagram can contain more

than two different cardinal values. For recent progress in this direction, see,

e.g., [Mej13], [GMS16], [FGKS17], [KTT18].

The result of this paper is in some respect the strongest possible, as we

show that consistently all the entries are pairwise different (apart from the two

ZFC-provable equalities mentioned above). Of course one can ask more; see

the questions in Section 4.2 In particular, we use large cardinals in the proof.

Large cardinals. As mentioned, ZFC is an axiom system for the whole of

mathematics. A much “weaker” axiom system (for the natural numbers) is PA

(Peano arithmetic).

Gödel’s Incompleteness Theorem shows that a theory such as PA or ZFC

can never prove its own consistency. On the other hand, it is trivial to show in

ZFC that PA is consistent. (As in ZFC we can construct N and prove that it

satisfies PA.) We can say that ZFC has a higher consistency strength than PA.

One axiom of ZFC is INF, the statement “there is an infinite cardinal.”

If we remove INF from ZFC, we end up with a theory ZFC0 that can still de-

scribe concrete hereditarily finite objects and can be interpreted (admittedly

in a not very natural way) as a weak version of PA that has the same consis-

tency strength as PA.3 So we can say that adding an infinite cardinal to ZFC0

increases the consistency strength.

There are notions of cardinal numbers much “stronger” than just “infi-

nite.” Often, such large cardinal assumptions (abbreviated LC in the following)

have the following form:

There is a cardinal κ > ℵ0 that behaves towards the smaller cardinals

in a similar way as ℵ0 behaves to finite numbers.

A forcing proof shows, e.g.,

If ZFC is consistent, then ZFC+¬CH is consistent,

2Section 4 also contains information on some progress made since the paper was submitted.
3More concretely, ZFfin := ZFC0 + ¬INF can be seen to be “equivalent” to PA (i.e.,

mutually interpretable). This goes back to Ackermann [Ack37]; see the survey [KW07].
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116 MARTIN GOLDSTERN, JAKOB KELLNER, and SAHARON SHELAH

and this implication can be proved in a very weak system such as PA. However,

we cannot prove (not even in ZFC) for any large cardinal that

“if ZFC is consistent, then ZFC+LC is consistent”

because in ZFC+LC we can prove the consistency of ZFC. We say that LC has

a higher consistency strength than ZFC.

An instance of a large cardinal (in fact a very weak one, a so-called in-

accessible cardinal) appears in another striking example of the asymmetry

between measure and category. The following statement is equiconsistent with

an inaccessible cardinal [Sol70], [She84]:

All projective4 sets of reals are Lebesgue measurable.

In contrast, according to [She84] no large cardinal assumption is required to

show the consistency of

All projective sets of reals have the property of Baire.

So we can assume “for free” that all (reasonable) sets have the Baire prop-

erty, whereas we have to provide additional consistency strength for Lebesgue

measurability.

In the case of our paper, we require (the consistency of) the existence of

four compact cardinals to prove our main result. It seems unlikely that any

large cardinals are actually required; but a proof without them would probably

be considerably more complicated. It is not unheard of that ZFC results first

have (simpler) proofs using large cardinal assumptions; an example can be

found in [She04].

Annotated Contents. From now on, we assume that the reader is familiar

with some basic properties of the characteristics defined above, as well as with

the associated forcing notions Cohen, amoeba, random, Hechler and eventually

different, all of which can be found, e.g., in [BJ95].

This paper consists of three parts. In Section 1, we present a finite sup-

port ccc (countable chain condition) iteration P5 forcing that ℵ1 < add(N ) <

cov(N ) < b < non(M) < cov(M) = 2ℵ0 . This result is not new: Such

a forcing was introduced in [GMS16], and we follow this construction quite

closely. However, we need the Generalized Continuum Hypothesis (GCH) in

the ground model, whereas [GMS16] requires 2χ � λ for some χ < λ. Also,

we describe how the inequalities are “strongly witnessed” (see Definitions 1.8

and 1.15).

4This is the smallest family containing the Borel sets and closed under continuous images,

complements, and countable unions. In practice, all sets used in mathematics that are defined

without using AC are projective. Alternatively we could use the statement: “ZF (without

the Axiom of Choice) holds, and all sets of reals are Lebesgue measurable.”
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CICHOŃ’S MAXIMUM 117

In Section 2, we show how to construct (under GCH) for κ strongly com-

pact and θ > κ regular a “BUP-embedding” from κ to θ, i.e., an elementary

embedding j : V →M with critical point κ and cf(j(κ)) = |j(κ)| = θ such that

M is transitive and <κ-closed and such that j′′S is cofinal in j(S) for every

≤ κ-directed partial order S. For a ccc forcing P , we investigate j(P ) and show

that j(P ) forces the same values to some characteristics in Cichoń’s diagram

as P and different values to others, in a very controlled way — assuming that

there were “strong witnesses” for P forcing the initial values, as described in

Section 1.

Section 3 contains the main result of this paper: Assuming four strongly

compact cardinals, we let k be the composition of four such BUP-embeddings,

mapping P5 to a ccc forcing P9. We then show that P9 forces

ℵ1 < add(N ) < cov(N ) < b < non(M)

< cov(M) < d < non(N ) < cof(N ) < 2ℵ0 ;

i.e., we get for increasing cardinals λi the constellation of Figure 1.

λ2
// λ4

// // λ8
// λ9.

λ3
//

OO

λ6

OO

ℵ1
// λ1

//

OO

//

OO

λ5
//

OO

λ7

OO

Figure 1. Our cardinal configuration. (The λi are increasing.)

Boolean ultrapowers as used in this paper were investigated by Mansfield

[Man71] and recently applied, e.g., by the third author with Malliaris [MS16]

and with Raghavan [RS], where Boolean ultrapowers of forcing notions are used

to force specific values to certain cardinal characteristics. Recently the third

author developed a method of using Boolean ultrapowers to control character-

istics in Cichoń’s diagram. A first (and simpler) application of these methods

is given in [KTT18].

We mention some open questions in Section 4.

Acknowledgments. We thank three anonymous referees for pointing out

several unclarities and typos, and we thank Moti Gitik and Diego Mej́ıa for

suggestions to improve the presentation.

1. The initial forcing

1.1. Good iterations and the LCU property. We want to show that some

forcing P5 results in x = λi for certain characteristics x. So we have to show two

“directions,” x ≤ λi and x ≥ λi. For most of the characteristics, one direction
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118 MARTIN GOLDSTERN, JAKOB KELLNER, and SAHARON SHELAH

will use the fact that P5 is “good” — a notion introduced by Judah and the

third author [JS90] and Brendle [Bre91]. We now recall the basic facts of good

iterations and specify the instances of the relations we use.

Assumption 1.1. We will consider binary relations R on X = ωω (or on

X = 2ω) that satisfy the following : There are relations Rk such that R =⋃
k∈ω Rk, each Rk is a closed subset (and in fact absolutely defined) of X ×X ,

and for g ∈ X and k ∈ ω, the set {f ∈ X : f Rk g} is nowhere dense (and of

course closed). Also, for all g ∈ X , there is some f ∈ X with f R g.

We will actually use another space as well, the space C of strictly positive

rational sequences (qn)n∈ω such that
∑
n∈ω qn ≤ 1. It is easy to see that C

is homeomorphic to ωω, when we equip the rationals with the discrete topol-

ogy and use the product topology. Let us fix one such (absolutely defined)

homeomorphism.

We use the following instances of relations R on X; it is easy to see that

they all satisfy the assumption. (For X1 = C, we use the homeomorphism

mentioned above.)

Definition 1.2.

(1) X1 = C: f R1 g if (∀∗n ∈ ω) f(n) ≤ g(n).

(We use ∀∗n as abbreviation for (∃n0) (∀n > n0).)

(2) Fix a partition (In)n∈ω of ω with |In| = 2n+1.

X2 = 2ω: f R2 g if (∀∗n ∈ ω) f � In 6= g � In.

(3) X3 = ωω: f R3 g if (∀∗n ∈ ω) f(n) ≤ g(n).

(4) X4 = ωω: f R4 g if (∀∗n ∈ ω) f(n) 6= g(n).

Note that Assumption 1.1 is satisfied, witnessed by the relations Rk
i de-

fined by replacing (∀∗n ∈ ω) with (∀n ≥ k).

We say “f is bounded by g” if f R g; and, for Y ⊆ ωω, “f is bounded by

Y” if (∃y ∈ Y) f R y. We say “unbounded” for “not bounded.” (That is, f is

unbounded by Y if (∀y ∈ Y)¬f R y.) We call X an R-unbounded family if

¬(∃g) (∀x ∈ X )xR g, and an R-dominating family if (∀f) (∃x ∈ X ) f Rx.

• Let bi be the minimal size of an Ri-unbounded family,

• and let di be the minimal size of an Ri-dominating family.

We only need the following connections between Ri and the cardinal char-

acteristics:

Lemma 1.3.

(1) add(N ) = b1 and cof(N ) = d1.

(2) cov(N ) ≤ b2 and non(N ) ≥ d2.

(3) b = b3 and d = d3.

(4) non(M) = b4 and cov(M) = d4.
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CICHOŃ’S MAXIMUM 119

Proof. (3) holds by definition. (1) can be found in [BJ95, 6.5.B]. (4) is a

result of [Mil82], [Bar87]; cf. [BJ95, 2.4.1 and 2.4.7].

To prove (2), note that for fixed f ∈ 2ω, the set {g ∈ 2ω : ¬f R2 g} is a

null set — call it Nf . Let F be an R2-unbounded family. Then {Nf : f ∈ F}
covers 2ω: Fix g ∈ 2ω. As g does not bound F , there is some f ∈ F unbounded

by g, i.e., g ∈ Nf . Let X be a non-null set. Then X is R2-dominating: For

any f ∈ 2ω, there is some x ∈ X \Nf , i.e., f R2 x. �

We will also use

Lemma 1.4 ([BJ95]). Amoeba forcing A adds a dominating element b̄ of C;

i.e., A  q̄R1 b̄ for all q̄ ∈ C ∩ V .

Proof. Let us define a slalom S to be a function S : ω → [ω]<ω such that

|S(n)| > 0 and
∑∞
n=1

|S(n)|
n2 <∞.

Amoeba forcing will add a null set covering all old null sets, and therefore

(according to [BJ95, 2.3.3]) a slalom S covering all old slaloms. Set an := |S(n)|
n2 ,

M :=
∑∞
n=1 an, set M ′ the smallest natural number ≥M , and set bn := an+1

M ′ .

Then it is easy to see that (bn)n∈ω ∈ C dominates every old sequence (qn)n∈ω
in C. �

Definition 1.5 ([JS90]). Let P be a ccc forcing, λ an uncountable regular

cardinal, and R as above. P is (R, λ)-good if for each P -name r ∈ ωω, there

is (in V ) a nonempty set Y ⊆ ωω of size <λ such that every f (in V ) that is

R-unbounded by Y is forced to be R-unbounded by r as well.

Note that λ-good trivially implies µ-good if µ ≥ λ are regular.

How do we get good forcings? Let us just note the following results:

Lemma 1.6. A finite support (henceforth abbreviated FS) iteration of Co-

hen forcing is good for any (R, λ), and the composition of two (R, λ)-good forc-

ings is (R, λ)-good.

Assume that (Pα, Qα)α<δ is an FS ccc iteration. Then Pδ is (R, λ)-good

if each Qα is forced to satisfy the following :

(1) For R = R1, |Qα| < λ, or Qα is σ-centered, or Qα is a sub-Boolean-algebra

of the random algebra.

(2) For R = R2, |Qα| < λ, or Qα is σ-centered.

(4) For R = R4, |Qα| < λ.

(Remark: For R3, the same holds as for R4 which, however, is of no use

for our construction.)

Proof. (R, λ)-goodness is preserved by FS ccc iterations (in particular,

compositions), as proved in [JS90]; cf. [BJ95, 6.4.11–12]. Also, ccc forcings of

size <λ are (R, λ)-good [BJ95, 6.4.7], which takes care of the case |Qα| < λ
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120 MARTIN GOLDSTERN, JAKOB KELLNER, and SAHARON SHELAH

(and, in particular, of Cohen forcing). So it remains to show that (for i = 1, 2)

the “large” iterands in the list are (Ri, λ)-good.

For R1, this follows from [JS90] and [Kam89]; cf. [BJ95, 6.5.17–18]. For R2,

this is proven in [Bre91], and as the proof is very short, we give it here: Write

Qα as union
⋃
k∈ω Q

k of centered sets. Given the Qα-name r, pick a countable

elementary submodel N containing r and Qα, and set Y = N ∩ 2ω. Assume

towards a contradiction that f is unbounded by Y, but is forced by p0 to be

bounded by r; i.e., p0 forces (∀n > n0)f � In 6= r � In. Now p0 may not be

in N , but there is some k0 ∈ ω such that p0 ∈ Qk0 . In N , we can pick for

each n ∈ ω some sn ∈ 2In such that no q ∈ Qk0 forces r � In 6= sn. (There are

only finitely many s ∈ 2In ; if each s is forbidden by some q, then the common

stronger element would prevent all possibilities for r � In.) So in N , we get

some g ∈ 2ω such that g � In = sn. As f is unbounded by Y (or equivalently,

by N), there is some n > n0 such that f � In = g � In = sn, which implies that

p0 (as an element of Qk0) does not force r � In 6= f � In, a contradiction. �

Lemma 1.7. Let λ ≤ κ ≤ µ be uncountable regular cardinals. After forc-

ing with µ many Cohen reals (cα)α∈µ, followed by an (R, λ)-good forcing, we

get that for every real r in the final extension, the set {α ∈ κ : cα is unbounded

by r} is cobounded in κ. That is, (∃α ∈ κ) (∀β ∈ κ \ α)¬cβ R r.

(The Cohen real cβ can be interpreted both as Cohen generic element of

2ω and as Cohen generic element of ωω; we use the interpretation suitable for

the relation R.)

Proof. Work in the intermediate extension after κ many Cohen reals; let

us call it Vκ. The remaining forcing (i.e., µ \ κ many Cohens composed with

the good forcing) is good; so applying the definition, we get (in Vκ) a set Y of

size <λ.

As the initial Cohen extension is ccc, and κ ≥ λ is regular, we get some

α ∈ κ such that each element y of Y already exists in the extension by the first

α many Cohens, call it Vα. The set of reals My bounded by y is meager (and

absolute). Any cβ for β ∈ κ \ α is Cohen over Vα, and therefore not in My,

i.e., not bounded by y, i.e., not by Y. So according to the definition of good,

each such cβ is unbounded by r as well for the given r. �

In light of this result, let us revisit Lemma 1.3 with some new notation,

the “linearly cofinally unbounded” property LCU:

Definition 1.8. For i = 1, 2, 3, 4, γ a limit ordinal, and P a ccc forcing

notion, let LCUi(P, γ) stand for the following:

There is a sequence (xα)α∈γ of P -names of elements of Xi (the domain

of the relation Ri) such that for every such P -name y,

(∃α ∈ γ) (∀β ∈ γ \ α)P  ¬xβ Ri y.
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CICHOŃ’S MAXIMUM 121

Lemma 1.9.

• LCUi(P, δ) is equivalent to LCUi(P, cf(δ)).

• If λ is regular, then LCUi(P, λ) implies bi ≤ λ and di ≥ λ.

In particular,

(1) LCU1(P, λ) implies P  ( add(N ) ≤ λ & cof(N ) ≥ λ ).

(2) LCU2(P, λ) implies P  ( cov(N ) ≤ λ & non(N ) ≥ λ ).

(3) LCU3(P, λ) implies P  ( b ≤ λ & d ≥ λ ).

(4) LCU4(P, λ) implies P  ( non(M) ≤ λ & cov(M) ≥ λ ).

Proof. Assume (αβ)β∈cf(δ) is increasing continuous and cofinal in δ. If

(xα)α∈δ witnesses LCUi(P, δ), then (xαβ )β∈cf(δ) witnesses LCUi(P, cf(δ)). And

if (xβ)β∈cf(δ) witnesses LCUi(P, cf(δ)), then (yα)α∈δ witnesses LCUi(P, δ), where

yα := xβ for α ∈ [αβ, αβ+1).

The set {xα : α ∈ λ} is certainly forced to be Ri-unbounded; and given

a set Y = {yj : j < θ} of θ < λ many P -names, each has a bound αj ∈ λ

so that (∀β ∈ λ \ αj)P  ¬xβ Ri yj , so for any β ∈ λ above all αj , we get

P  ¬xβ Ri yj for all j; i.e., Y cannot be dominating. �

Remark 1.10. Note that bi ≤ λ is equivalent to the existence of a sequence

(xα : α ∈ λ) with the property (∀y) (∃α)¬
Ä
xαRiy

ä
; such a sequence might be

called a “‘witness” for bi ≤ λ. In LCU we demand a stronger property; a

sequence (xα : α < λ) with this stronger property could informally be called

a “strong witness” for bi ≤ λ. Similarly, the next subsection introduces a

different notion, COB, corresponding to “strong witnesses” for di ≤ µ.

1.2. The initial forcing P5: Partial forcings and the COB property. As-

sume we have a forcing iteration (Pβ, Qβ)β<α with limit Pα, where each Qβ
is forced by Pβ to be a set of reals such that the generic filter of Qβ is de-

termined (in a Borel way)5 from some generic real ηβ. Fix some w ⊆ α. We

define the Pα-name Qα to consist of all random forcing conditions that can be

Borel-calculated from generics at w alone.

More explicitly,

Definition 1.11.

(a) q is in Qα if there are in the ground model V a countable subset u ⊆ w

and a Borel function B : Ru → R such that q = B( (ηβ)β∈u ) is a random

condition.

5More specifically, we require that the Borel function for Qβ is already fixed in the ground

model. For example, assume Qβ is random forcing, defined as the set of all positive pruned

trees T , i.e., trees T ⊆ 2<ω without leaves such that [T ] has positive measure. Then the

generic filter G for this forcing is determined by the generic real η (the random real), and G

consists of those trees T such that η ∈ [T ], which is a Borel relation. See [KTT18, §1.2] for

a formal definition and more details.
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122 MARTIN GOLDSTERN, JAKOB KELLNER, and SAHARON SHELAH

Being a random condition is a Borel property (if we fix some suitable

representation of random forcing). Accordingly, we can restrict ourselves

to the case that B is a Borel function whose image consists of random

conditions only.

(b) We call a pair (B, u) as above “a w-groundmodel-code” or just “code.”

Note that this code is a ground model object. So Qα consists exactly of

the evaluations of such codes.

(c) We call a condition (p, q) ∈ Pα ∗ Qα “determined at position α” if there

is a code (B, u) such that p forces that (B, u) is a code for q. (Note that

generally we only have a Pα-name for a code.) Given some (p, q), we can

obviously find p′ ≤ p such that (p′, q) is determined at α.

(d) We will later also consider so-called “groundmodel-code-sequences” for ele-

ments of Qα, that is, (in V ) a sequence (Bn, un)n∈ω of codes, where un is in

wα. Of course not every ω-sequence of Qα-conditions in the Pα-extension

is described by a ground model sequence. (In particular, there will only be

few ground model sequences, but many new ω-sequences in the extension.)

Clearly, in the Pα extension, Qα is a subforcing (not necessarily a complete

one) of the full random forcing, and if p, q in Qα are incompatible in Qα, then

they are incompatible in random forcing. (Two compatible conditions p, q

have a canonical conjunction p ∧ q (the intersection), and if p and q are both

Borel-calculated from w, then so is the intersection.) In particular, Qα is ccc.

We call this forcing “partial random forcing defined from w.” Analogously,

we define the “partial Hechler,” “partial eventually different”6 and “partial

amoeba” forcings. The same argument shows that these forcings are also ccc.

Assume that λ is regular uncountable and that µ < λ implies µℵ0 < λ.

Then |w| < λ implies that the sizes of the partial forcings defined by w are <λ.

We will assume the following throughout the paper:

Assumption 1.12. Let ℵ1 < λ1 < λ2 < λ3 < λ4 < λ5 be regular cardinals

such that µ < λi implies µℵ0 < λi. Furthermore, let λ3 be the successor of a

regular cardinal χ with χℵ0 = χ, and λ<λ4
5 = λ5.

We set δ5 = λ5 + λ5, and we partition δ5 \ λ5 into unbounded sets S1, S2,

S3 and S4. Fix for each α ∈ δ5 \λ5 some wα ⊆ α such that each {wα : α ∈ Si}
is cofinal 7 in [δ5]<λi .

The reader can assume that (λi)i=1,...,5, (Si)i=1,...,4 as well as (wα)α∈Si for

i = 1, 2, 3 have been fixed once and for all (let us call them “fixed parameters”),

6See 1.22 for the definition.
7That is, if α ∈ Si, then |wα| < λi, and for all u ⊆ δ5, |u| < λi, there is some α ∈ Si with

wα ⊇ u.
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whereas we will investigate various possibilities for w̄ = (wα)α∈S4 in Sec-

tions 1.3 and 1.4. (We will call such a w̄ that satisfies the assumption a

“cofinal parameter.”)

Definition 1.13. Let P5 = (Pα, Qα)α∈δ5 be the FS iteration, where Qα is

Cohen forcing for α ∈ λ5 and

Qα is the partial


amoeba

random

Hechler

eventually different

 forcing defined from wα if α is in


S1

S2

S3

S4.

According to Lemma 1.6, P5 is (λi,Ri)-good for i = 1, 2, 4, so Lemmas 1.7

and 1.9 give us

Lemma 1.14. LCUi(P5, κ) holds for i = 1, 2, 4 and each regular cardinal

κ in [λi, λ5].

So, in particular, P5 forces add(N ) ≤ λ1, cov(N ) ≤ λ2, non(M) ≤ λ4 and

cov(M) = non(N ) = cof(N ) = λ5 = 2ℵ0 ; i.e., the respective characteristics in

the left half of Cichoń’s diagram are small enough. It is easy to see that they

are also large enough:

For example, the partial amoebas and the fact that (wα)α∈S1 is cofinal

ensure that P5 forces add(N ) ≥ λ1. Let (Nk)k∈µ, ℵ1 ≤ µ < λ1 be a family

of P5-names of null sets. Each Nk is a Borel-code, i.e., a real, i.e., a sequence

of natural numbers, each of which is decided by a maximal antichain (labeled

with natural numbers). Each condition in such an antichain has finite support,

hence it only uses finitely many coordinates in δ5. So all in all we get a set w∗ of

size ≤µ that already decides all Nk. (That is, for each k ∈ µ, there are a Borel

function B in V and a sequence (αj)j∈ω in V of elements of w∗ such that Nk =

B(ηα0 , ηα1 , . . . ).) There is some β ∈ S1 such that wβ ⊇ w∗, and the partial

amoeba forcing at β sees all the null sets Nk and therefore covers their union.

We will reformulate this in a slightly cumbersome manner that can be

conveniently used later on, using the “cone of bounds” property COB:

Definition 1.15. For a ccc forcing notion P , regular uncountable cardinals

λ, µ and i = 1, 3, 4, let COBi(P, λ, µ) stand for the following:
There are a <λ-directed partial order (S,≺) of size µ and a sequence

(gs)s∈S of P -names for reals such that for each P -name f of a real, we

have
(∃s ∈ S) (∀t � s)P  f Ri gt.

So s is the tip of a cone that consists of elements bounding f .

Lemma 1.16. For i = 1, 3, 4, COBi(P, λ, µ) implies

P  ( bi ≥ λ& di ≤ µ ).
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Proof. The set (gs)s∈S is a dominating family of size µ, so di ≤ µ. To show

bi ≥ λ, assume (fα)α∈θ is a sequence of P -names of length θ < λ. For each fα,

there is a cone of upper bounds with tip sα ∈ S, i.e., (∀t � sα)P  fα Ri gt. As

S is <λ-directed, there is some t above all tips sα. Accordingly, P  fα Ri gt
for all α; i.e., {fα : α ∈ θ} is not unbounded. �

So, for example, COB1(P, λ, µ) implies λ1 ≤ b1 = add(N ), etc. The

definition and lemma would work for i = 2 as well, but this would not be

useful8 as we do not have b2 ≤ cov(N ). So instead, we define COB2 separately:

Definition 1.17. For P , λ and µ as above, let COB2(P, λ, µ) stand for the

following:

There are a <λ-directed partial order (S,≺) of size µ and a sequence

(gs)s∈S of P -names for reals such that for each P -name f of a null set,

we have (∃s ∈ S)(∀t � s)P  gt /∈ f .

Lemma 1.18.

(1) COB1(P, λ, µ) implies P  ( add(N ) ≥ λ& cof(N ) ≤ µ ).

(2) COB2(P, λ, µ) implies P  ( cov(N ) ≥ λ& non(N ) ≤ µ ).

(3) COB3(P, λ, µ) implies P  ( b ≥ λ& d ≤ µ ).

(4) COB4(P, λ, µ) implies P  ( non(M) ≥ λ& cov(M) ≤ µ ).

Proof. The cases i 6= 2 are direct consequences of Lemmas 1.3 and 1.16.

The proof for i = 2 is analogous to the proof of Lemma 1.16. �

Lemma 1.19. COBi(P5, λi, λ5) holds (for i = 1, 2, 3, 4).

Proof. Set S = Si and s ≺ t if ws ( wt. As λi is regular, (S,≺) is <λi-

directed. Let gs be the generic added at s (e.g., the partial random real in

case of i = 2, etc). A P5-name f depends (in a Borel way) on the subsequence

of generics indexed by a countable set w∗ ⊆ δ. Fix some s ∈ Si such that

ws ⊇ w∗. Pick any t � s. Then wt ⊇ ws, so wt contains all information to

calculate f , so we can show that P  f Ri gt. Let us list the possible cases:

i = 2: A partial random real gt will avoid the null set f . i = 3: A partial

Hechler real gt will dominate f . i = 4: A partial eventually different real gt
will be eventually different from f . As for i = 1, we use9 Lemma 1.4. �

To summarize what we know so far about P5,

• COBi holds for i = 1, 2, 3, 4, so the left-hand characteristics are large.

8More specifically, this definition would give us the property gt /∈ f only for the null sets

of the specific form f = {h : ¬rR2 h} = Nr for some r ∈ 2ω, whereas we will define COB2 to

deal with all names f of null sets.
9Alternatively, we could use, instead of amoeba, some other Suslin ccc forcing that more

directly adds an R1-dominating element of C.
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• LCUi holds for i = 1, 2, 4, so the left-hand characteristics other than b are

small.

However, LCU3 (corresponding to “b small”) is missing, and we cannot get it by

a simple “preservation of (R3, λ3)-goodness” argument. Instead, we will argue

in the following two subsections that it is possible to choose the parameter

(wα)α∈S4 in such a way that LCU3 holds as well.

1.3. Dealing with b without GCH. In this subsection, we follow (and slightly

modify) the main construction of [GMS16]. In this subection (and this subsec-

tion only) we will assume the following (in addition to Assumption 1.12, i.e.,

in particular, to the assumption λ3 = χ+):

Assumption 1.20 (This subsection only). 2χ = |δ5| = λ5.

Set S0 = λ5 ∪ S1 ∪ S2 ∪ S3. So δ5 = S0 ∪ S4, and P5 is an FS ccc

iteration along δ5 such that α ∈ S0 implies |Qα| < λ3, i.e., |Qα| ≤ χ. Let us

fix Pα-names

(1.21) iα : Qα → χ injective

(for α ∈ S0). Note that we can strengthen each p ∈ P5 to some q such that

α ∈ supp(q) ∩ S0 implies q � α  iα(q(α)) = ̌ for some j ∈ χ.

For α ∈ S4, Qα is a partial eventually different forcing. At this point, we

should specify which variant of this forcing we actually use.10

Definition 1.22.

• Eventually different forcing E consists of all tuples (s, k, ϕ), where s ∈ ω<ω,

k ∈ ω, and ϕ : ω → [ω]≤k satisfies s(i) /∈ ϕ(i) for all i ∈ dom(s).

• We define (s′, k′, ϕ′) ≤ (s, k, ϕ) if s ⊆ s′, k ≤ k′, and ϕ(i) ⊆ ϕ′(i) for all i.

• The generic object g∗ =
⋃

(s,k,ϕ)∈GE s is a function such that each condition

(s, k, ϕ) forces that s is an initial segment of g∗, and g∗(i) /∈ ϕ(i) for all i.

• We call s ∈ ω<ω the “stem” of (s, k, ϕ) and k ∈ ω the “width.”

A density argument shows that g∗ will be eventually different from all

functions f : ω → ω from V .

The following is easy to see:

• If p, q ∈ E are compatible, then they have a greatest lower bound.

• Any finite set of conditions with the same stem has a lower bound (again

with the same stem). So E is σ-centered.

• If q = (s′, k′, ϕ′) and p = (s, k, ϕ) and s′ extends s, then p and q are

compatible if and only if s′(i) /∈ ϕ(i) for all i ∈ dom(s′).

10In the previous subsection it did not matter which variant we use.
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• If a condition q∗ = (s∗, k∗, ϕ∗) is compatible with each condition in a finite

set B ⊆ E, and s∗ extends s for each (s, k, ϕ) ∈ B, then the set B ∪ {q∗}
has a lower bound. (Use s∗ as stem, and take the pointwise union of all ϕ

that occur in B ∪ {q∗}.)
We will not force with E, but with a partial version of E. In the Pα-extension

(for α ∈ S4), this partial forcing Qα = E′ is a (generally not complete) sub-

forcing of E that is easily seen to be closed under conjunctions (i.e., under

the partial operation “greatest lower bound” of finite sets of conditions). Note

that this implies that compatibility is absolute between E and E′, and that the

previous items also hold for E′. For later reference, let us explicitly state the

last item:

Fact 1.23. Assume E′ ⊆ E is closed under conjunctions. If a condition

q∗ = (s∗, k∗, ϕ∗) in E′ is compatible with each condition in a finite set B ⊆ E′,
and s∗ extends s for each (s, k, ϕ) ∈ B, then the set B∪{q∗} has a lower bound

in E′.
Definition 1.24. Let D be a non-principal ultrafilter on ω, and let p̄ =

(pn)n∈ω = (s, k, ϕn)n∈ω be a sequence of conditions in E with the same stem

and the same width. We define limD p̄ to be (s, k, ϕ∞), where for all i and all

j we have j ∈ ϕ∞(i)⇔ {n : j ∈ ϕn(i)} ∈ D.

The following is easy to see: limD p̄ ∈ E and if q ≤ limD p̄, then the

set B := {n ∈ ω : pn compatible with q} is in D. (Proof. Note that q =

(s′, k′, ϕ′) ≤ limD p̄ = (s, k, ϕ∞). So for each i ∈ dom(s′), s′(i) /∈ ϕ∞(i), and by

the definition of the limit, Ai := {n : s′(i) /∈ ϕn(i)} ∈ D. If n ∈ ⋂
i∈dom(s′)A

i,

then pn is compatible with q.)

As B is defined using only compatibility, the statement still holds for

compatibility preserving subforcings. We state it for later reference in the

following form:

Fact 1.25. Assume that E′ is a subforcing of E closed under conjunc-

tions, let p̄ be a sequence of E′ conditions with the same stem and width, and

assume that limD(p̄) ∈ E′ and that q ≤E′ limD(p̄). Then B := {n ∈ ω :

pn compatible with q} is in D.

Definition 1.26.

• A “partial guardrail” is a function h defined on a subset of δ5 such that

h(α) ∈ χ for α ∈ S0 ∩ dom(h), and h(α) ∈ ω<ω × ω for α ∈ S4 ∩ dom(h).

• A “countable guardrail” is a partial guardrail with countable domain. A

“full guardrail” is a partial guardrail with domain δ5.

We will use the following lemma, which is a consequence of the Engelking-

Kar lowicz theorem [EK65] on the density of box products (cf. [GMS16, 5.1]):
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Lemma 1.27 (As |δ5| ≤ 2χ and χℵ0 = χ). There is a family H∗ of full

guardrails with |H∗| = χ, such that each countable guardrail is extended by

some h ∈ H∗. We will fix such an H∗ and enumerate it as (h∗ε)ε∈χ.

Note that the notion of guardrail (and the density property required in

Lemma 1.27) only depends on χ, δ5, S0 and S4, i.e., on fixed parameters. Thus

we can fix an H∗ that will work for all cofinal parameters w̄ = (wα)α∈S4 .

Once we have decided on w̄, and thus have defined P5, we can define the

following:

Definition 1.28. A condition p ∈ P5 follows the full guardrail h if

• for all α ∈ S0 ∩ dom(p), the empty condition of Pα forces that p(α) ∈ Qα
and iα(p(α)) = h(α) (where iα is defined in (1.21)), and

• for all α ∈ S4 ∩ dom(p),

– p�α forces that the pair of stem and width of p(α) is equal to h(α) and,

moreover,

– p is determined at α.11

As we are dealing with an FS iteration, the set of conditions p determined

at each position α ∈ dom(p) is easily seen to be dense (by induction). So note

that

• the set of conditions p such that there is some guardrail h such that p follows

h, is dense; while

• for each fixed guardrail h, the set of all conditions p following h is centered

(i.e., each finitely many such p are compatible).

Definition 1.29. • A “∆-system with root ∇ following the full guardrail

h” is a family p̄= (pi)i∈I of conditions all following h, where (dom(pi) : i∈ I)

is a ∆-system with root ∇ in the usual sense (so ∇ ⊆ δ5 is finite).

• We will be particularly interested in countable ∆-systems. Let (pn : n ∈ ω)

be such a ∆-system with root ∇ following h, and assume that D̄ = (Dα :

α ∈ u) is a sequence such that u ⊇ ∇ ∩ S4 and each Dα is a Pα-name of

an ultrafilter on ω. Then we define the limD̄ p̄ to be the following function

with domain ∇:

– If β ∈ ∇∩S0, then limD̄ p̄(β) is the common value of all pn(β). (Recall

that this value is already determined by the guardrail h.)

– If α ∈ ∇∩S4, then limD̄ p̄(α) is (forced by P5
α to be) limDα(pn(α))n∈ω.

Note that in general, limD̄ p̄ will not be a condition in P5: For α ∈ S4∩∇,

the object limD̄ p̄(α) will be forced to be in the eventually different forcing E,

but not necessarily in the partial eventually different forcing Qα ⊆ E.

11This was defined in 1.11(c); we already know in V a code (B, u) that evaluates to p(α).
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Also note the following: If p̄ is a countable ∆-system, and α ∈ ∇∩S4, then

(pn(α))n∈ω is a ground-model-code-sequence (see Definition 1.11(d)). This

follows trivially from the definition of “pn follows h” and the fact that p̄ is

in V .

Recall that we assume all of the parameters defining P5 = (Pα, Qα)α∈δ5
to be fixed, apart from (wα)α∈S4 . Once we fix wα for α ∈ S4 ∩β, we know Pβ.

Lemma/Construction 1.30. We can construct by induction on α ∈ δ5

the sequences (Dε
α)ε∈χ and, if α ∈ S4, also wα, such that

(a) Each Dε
α is a Pα-name of a nonprincipal ultrafilter extending

⋃
β<αD

ε
β .

(b) For each countable ∆-system p̄ in Pα that follows the guardrail h∗ε ∈ H∗,
lim(Dε

β
)β<α p̄ is in Pα · · ·

(c) · · · and forces that Ap̄ := {n ∈ ω : pn ∈ Gα} is in Dε
α.

(d) (If α ∈ S4) wα ⊆ α, |wα| < λ4, and for all ground-model-code-sequences12

for elements of Qα, the Dε
α-limit is forced to be in Qα as well (for all

ε ∈ χ).

(Actually, the set of wα satisfying this is an ω1-club set in [α]<λ4 .13)

Proof. (b) for α limit : The root of a ∆-system is finite and therefore below

some β < α, so the limit exists (by induction) already in Pβ.

(a) and (c) for α limit : It is enough to show, for each ε ∈ χ, that Pα
forces that the following generates a proper filter (i.e., any finite intersection

of elements of this set is nonempty):⋃
β<α

Dε
β ∪ {Ap̄ : p̄ is a countable ∆-system following h∗ε and

lim(Dε
β

)β<α p̄ ∈ Gα}.

(Then we let Dε
α be any ultrafilter extending this set.)

So assume towards a contradiction that q ∈ Pα forces that A ∩ Ap̄0 ∩
· · · ∩ Ap̄n−1 = ∅, where A ∈ Dε

β0
for some β0 < α (we can assume β0 is

already decided in V ) and p̄i as above with q ≤ lim(Dε
β

)β<α p̄
i for i < n.

Let β1 < α be the maximum of the union of the roots of the p̄i, and set

β2 := max(supp(q)) and γ := max(β0, β1, β2)+1. By the induction hypothesis,

q forces A′ := A ∩ ⋂
i<nAp̄i�γ ∈ Dε

γ (as lim(Dε
β

)β<γ p̄
i � γ = lim(Dε

β
)β<α p̄

i, since

the root lies below γ). As A′ is a Pγ-name, we can find q′ ≤ q in Pγ and

` ∈ ω such that q′  ` ∈ A′. We now find q′′ ≤ q′ in Pα by defining q′′(β)

for each element β of the finite set
⋃
i<n supp(pi`) \ γ. For such β in S0, the

guardrail gives a specific value h∗ε(β) ∈ Qβ, which we use for q′′(β) as well. For

12See Definition 1.11(d).
13That is, for each w∗ ∈ [α]<λ4 , there is a wα ⊇ w∗ satisfying (d), and if (wi)i∈ω1 is an

increasing sequence of sets satisfying (d), then the limit wα :=
⋃
i∈ω1

wi satisfies (d) as well.
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β ∈ S4, all conditions pi`(β) (where defined) have the same stem and width

h∗ε(β); hence there is a common extension q′′(β).

Clearly q′′ forces that ` is in the allegedly empty set, the desired contra-

diction.

(b) for α = γ + 1 successor: Assume the nontrivial case, γ ∈ S4. Write

the ∆-system as (pi, qi)i∈ω with (pi, qi) ∈ Pγ ∗ Qγ . As noted above, (qn)n∈ω
is a ground-model-code-sequence, and by induction (d) holds for wγ . So it is

forced that the Dε
γ-limit q∗ of the qn is in Qγ . Again by induction, the limit

p∗ of the pn exists as well, and (p∗, q∗) is the required limit.

(a) and (c) for α = γ+1 successor: We again have to show that Pα forces

that the following is a filter base for each ε ∈ χ:

Dε
γ ∪ {Ap̄ : p̄ is a countable ∆-system following h∗ε and lim(Dε

β
)β<α p̄ ∈ Gα}.

As above, assume that q forces A ∩Ap̄0 ∩ · · · ∩Ap̄n−1 = ∅.
We can assume that q � γ forces that q(γ) is stronger than the limit of all

p̄i(γ) (for i < n). Thus, by Fact 1.25, each Bi := {` ∈ ω : q(γ) compatible

with pi`(γ)} is forced to be in Dε
γ .

By induction, q � γ forces that A′ := A ∩ ⋂
i<nAp̄i�γ ∈ Dε

γ , and therefore

it also forces that B′ = A′ ∩ ⋂
i<nBi is in the ultrafilter and, in particular,

nonempty. Work in the Pγ-extension by some generic filter containing q � γ.

Fix some ` ∈ B′. By the definition of Bi, q(γ) is compatible with each pi`(γ)

for i < n. According to Fact 1.23 there is a common lower bound q′′.

Note that q � γ Pγ q
′′ Qγ ` ∈ Ap̄i . That is, q � γ ∗ q′′ ≤ q forces that `

is an element of the allegedly empty set.

(d) For any w ⊆ α, let Qw be the (Pα-name for) the partial eventually

different forcing defined using w. Start with some w0 ⊆ α of size <λ4. There

are |w0|ℵ0 many ground-model sequences in Qw
0
. For any ε and any such

sequence, the Dε
α-limit is a real; so we can extend w0 by a countable set to

some w′ such that Qw
′

contains the limit. We can do that for all ε ∈ χ

and all sequences, resulting in some w1 ⊇ w0 still of size <λ4. We iterate

this construction and get wi for i ≤ ω1, taking the unions at limits. Then

wα := wω1 is as required, as Qα := Qwα =
⋃
i<ω1

Qwi .

So this proof actually shows that the set of wα with the desired property

is an ω1-club. �

After carrying out the construction of this lemma, we get a forcing notion

P5 satisfying the following:

Lemma 1.31. LCU3(P5, κ) for κ ∈ [λ3, λ5], witnessed by the sequence

(cα)α<κ of the first κ many Cohen reals.
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Proof. We want to show that for every P5-name y, there are coboundedly

many α ∈ κ such that P5  ¬cα ≤∗ y.

Assume that p∗ forces that there are unboundedly many α ∈ κ with

cα ≤∗ y, and enumerate them as (αi)i∈κ in increasing order (so, in particular,

αi ≥ i). Pick pi ≤ p∗ deciding αi to be some βi, and also deciding ni such that

(∀m ≥ ni) cαi(m) ≤ y(m). We can assume that βi ∈ dom(pi). Note that βi is

a Cohen position (as βi < κ ≤ λ5), and we can assume that pi(βi) is a Cohen

condition in V (and not just a Pβi-name for such a condition). By thinning

out, we may assume

• all ni are equal to some n∗;

• (pi)i∈κ forms a ∆-system with root ∇;

• βi /∈ ∇, hence all βi are distinct.

(For any β ∈ κ, at most |β| many pi can force αi = β, as pi forces that αi ≥ i
for all i.)

• pi(βi) is always the same Cohen condition s, without loss of generality of

length n∗∗ ≥ n∗; otherwise extend s.

Pick the first ω many elements (pi)i∈ω of this ∆-system. Now extend each

pi to p′i by extending the Cohen condition pi(βi) = s to s_i (i.e., forcing

cαi(n
∗∗) = i). Note that (p′i)i∈ω is still a countable ∆-system, following some

new countable guardrail and therefore some full guardrail h∗ε ∈ H∗.
Accordingly, the limit lim(Dεα)α∈δ5

p̄′ forces that infinitely many of the p′i
are in the generic filter. But each such p′i forces that cαi(n

∗∗) = i ≤ y(n∗∗), a

contradiction. �

1.4. Recovering GCH. For the rest of the paper we will assume the fol-

lowing for the ground model V (in addition to Assumption 1.12):

Assumption 1.32. GCH holds.

(Note that this is incompatible with Assumption 1.20.)

Recall that all parameters used to define P5 are fixed, apart from w̄ =

(wα)α∈S4 .

Lemma 1.33. We can choose w̄ such that LCU3(P5, κ) holds for all regular

κ ∈ [λ3, λ5].

For the proof, we will use the following easy observation:

Lemma 1.34. Assume χ is a cardinal and B a set and X0 ∈ [B]χ, R is

a χ+-cc forcing notion, and C is an R-name such that the empty condition

forces that C is an ω1-club subset of [B]χ. Then there is a set X ⊇ X0 (in the

ground model) such that the empty condition forces X ∈ C .
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Proof. By induction, choose (in the ground model) sequences Xα, X̃α for

α < ω1 such that Xα is in [B]χ, the sequence of the Xα is increasing with α,

X̃α is an R-name, and the empty condition forces the following: “X̃α is in

C and is a superset of Xα, and the sequence of the X̃α is increasing (not

necessarily continuous).” Moreover, the empty condition forces X̃α ⊆ Xα+1.

(In a limit step γ, we set Xγ =
⋃
α<γ X

α, and in a successor step α + 1, we

use χ+-cc to cover the name X̃α.) Then X =
⋃
α∈ω1

Xα is as required. �

Proof of Lemma 1.33. Let R be a <χ-closed χ+-cc partial order that forces

2χ=λ5. In the R-extension V ∗, Assumption 1.20 holds, and Assumption 1.12

still holds for the fixed parameters.14

So in V ∗, we can perform the inductive Construction 1.30, where now

“ground model” refers to V ∗, not V (e.g., when we talk about determined

positions, or ground-model-code-sequences, etc.). Actually, we can construct

in V the following, by induction on α ∈ δ5, and starting with some cofinal

w̄initial = (winitial
α )α∈S4 in V ,

• An R-name (Dε
α)ε∈χ (forced to be constructed) according to 1.30(a,b,c).

• If α ∈ S4, some wα ⊇ winitial
α in V such that R forces wα satisfies 1.30(d).

(We can do this by Lemma 1.34, as the set of potential wα’s is an ω1-clubset

of [α]<λ4 .)

So we get in V a cofinal parameter w̄ satisfying the following: In the R-

extension V ∗, the same parameters define a forcing (call it P∗,5) satisfying

LCU3(P∗,5, κ) in V ∗.

P∗,5 is basically the same as P5. More formally,

In the R-extension V ∗, P5 = (Pα, Qα)α<δ5 (the iteration constructed

in V ) is canonically densely embedded into P∗,5 = (P ∗α, Q
∗
α)α<δ5 (the

iteration constructed in V ∗ using the same parameters).

Proof. By induction, we show (in the R-extension) that P ∗α forces that Q∗α
(evaluated by the P ∗α-generic) is equal to Qα (evaluated by the induced Pα-

generic, as per induction hypothesis). Every element of Q∗α is a Borel function

(which already exists in V ) applied to the generics at a countable sequence of

indices in wα (which also already exists in V ).

This implies

In V , LCU3(P5, κ) holds for all κ ∈ [λ3, λ5], witnessed by the first κ many

Cohen reals.

14In particular, (wα)α∈Si is still cofinal in [δ5]<λi : For i = 1, 2, the forcing R does not add

any new elements of [δ5]<λi as R is λi-closed; for i = 3, any new subset of δ5 of size θ < λ3

is contained in a ground model set of size at most θ × χ < λ3, as R is χ+-cc.
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132 MARTIN GOLDSTERN, JAKOB KELLNER, and SAHARON SHELAH

Proof. Let y be a P5-name of a real. In V ∗, we can interpret y as P∗,5-

name, and as LCU3(P∗,5, κ) holds, we get (∃α ∈ κ) (∀β ∈ κ \ α)P∗,5  cβ �∗ y,

where cβ is the Cohen added at β. As χ < κ, there is in V an upper bound

α∗ < κ for the possible values of α. For any β ∈ κ \ α∗, we have (in V )

P5  cβ �∗ y (by absoluteness). �

To summarize,

Theorem 1.35. Assuming GCH and given λi as in Assumption 1.12,

we can find parameters15 such that the FS ccc iteration P5 as defined in 1.13

satisfies, for i = 1, 2, 3, 4,

• LCUi(P5, κ) holds for any regular cardinal κ in [λi, λ5];

• COBi(P5, λi, λ5) holds.

So, in particular, P5 forces add(N ) = λ1, cov(N ) = λ2, b = λ3, non(M) = λ4

and cov(M) = d = non(N ) = cof(N ) = λ5 = 2ℵ0 .

For the rest of the paper, we fix these parameters and thus the forcing P5.

2. Boolean ultrapowers

In Sections 2.1 and 2.2 we describe how to get an elementary embedding

(which we call a BUP-embedding) j : V → M with cr(j) = κ and cf(j(κ)) =

|j(κ)| = θ, assuming κ is strongly compact and θ > κ is a regular cardinal with

θκ = θ.

In Sections 2.3 and 2.4 we show how to use such embeddings to transform

a ccc forcing P to j(P ) while preserving some of the values forced to the entries

of Cichoń’s diagram (and changing others).

2.1. Boolean ultrapowers. Boolean ultrapowers generalize ordinary ultra-

powers by using arbitrary Boolean algebras instead of the power set algebra.

We assume that κ is strongly compact and that B is a κ-distributive, κ+-

cc, atomless complete Boolean algebra. Then every κ-complete filter in B can

be extended to a κ-complete ultrafilter U .16 Also, there is a maximal antichain

A0 in B of size κ such that A0∩U = ∅ (i.e., U is not κ+-complete).17 For now,

fix some κ-complete ultrafilter U .

The Boolean algebra B can be used as forcing notion. As usual, V (or the

ground model) denotes the universe we “start with.” In the following, we will

not actually force with B (and in this subsection and the following subsection,

15That is, we set δ5 = λ5 + λ5, and we find (Si)i=1,...,4 and w̄ = (wα)α∈δ5 .
16For this, neither κ+-cc nor atomless is required, and κ-complete is sufficient. The proof

is straightforward; the first proof that we are aware of has been published in [KT64].
17Proof. Let A be a maximal antichain in the open dense set B \ U , by κ+-cc |A| ≤ κ.

Also, A cannot have size <κ, as otherwise it would meet the κ-complete U .
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we will not force with anything, rather we always remain in V ), but we still use

forcing notation. In particular, we call the usual B-names “forcing names.”

A BUP-name (or labeled antichain) x is a function A→ V whose domain

is a maximal antichain of B. We may write A(x) to denote A. Each BUP-

name corresponds to a forcing name18 for an element of V . We will identify the

BUP-name and the corresponding forcing name. In turn, every forcing name

τ for an element of V has a forcing-equivalent BUP-name. In particular, there

is a standard BUP-name v̌ for each v ∈ V .

We can calculate, for two BUP-names x and y, the Boolean value [[x = y]].

We call x and y equivalent if [[x = y]] ∈ U (the κ-complete ultrafilter fixed

above).

For example, any two standard BUP-names for the same v ∈ V trivially

are equivalent (as 1B ∈ U). So we can speak (modulo equivalence) of the

standard BUP-name for v.

The Boolean ultrapower M− consists of the equivalence classes [x] of BUP-

names x; and we define [x] ∈− [y] by [[x ∈ y]] ∈ U . We are interested in the

∈-structure (M−,∈−). We let j− : V →M− map v to [v̌].

Given BUP-names x1, . . . , xn and an ∈-formula ϕ, there is a well-defined

truth value [[ϕV (x1, . . . , xn)]]. (It is the weakest element of B forcing that in

the ground model ϕ(x1, . . . , xn) holds, which makes sense as x1, . . . , xn are

guaranteed to be in the ground model.)

A straightforward induction (which can be found in [KTT18, §2]) shows
•  Loś’s theorem: (M−,∈−) |= ϕ([x1], . . . , [xn]) if and only if [[ϕV (x1, . . . , xn)]]

∈ U ;

• j− : (V,∈)→ (M−,∈−) is an elementary embedding;

• in particular, (M−,∈−) is a ZFC model.

As U is σ-complete, (M−,∈−) is well-founded. So we let M be the tran-

sitive collapse of (M−,∈−), and let j : V →M be the composition of j− with

the collapse. We denote the collapse of [x] by xU . So, in particular, v̌U = j(v).

Facts 2.1.

• M |= ϕ(xU1 , . . . , x
U
n ) if and only if [[ϕV (x1, . . . , xn)]] ∈ U . In particular,

j : V →M is an elementary embedding.

• If |Y | < κ, then j(Y ) = j′′Y . In particular, j restricted to κ is the identity.

M is closed under <κ-sequences.

• j(κ) 6= κ, i.e., κ = cr(j).

As we have already mentioned, an arbitrary forcing name for an element

of V has a forcing-equivalent BUP-name, i.e., a maximal antichain labeled with

18More specifically, to the forcing name {(

‘

x(a), a) : a ∈ A(x)}.
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elements of V . If τ is a forcing name for an element of Y (Y ∈ V ), then without

loss of generality τ corresponds to a maximal antichain labeled with elements

of Y . We call such an object y a “BUP-name for an element of j(Y )” (and not

“for an element of Y ,” for the obvious reason: unlike in the case of a forcing

extension, yU is generally not in Y , but, by definition of ∈−, it is in j(Y )).

Lemma 2.2. If the partial order (S,≤) is ≤κ-directed, then j′′S is cofinal

in j(S).

Proof. Let xU be some element of j(S); without loss of generality we can

assume that x is a labeled antichain that only uses elements of S as labels.

The size of the antichain is at most κ, so all labels have some common upper

bound s0. Then [[x ≤ s0]] is 1B, and thus in U ; so (M−,∈−) |= [x] ≤ š0, i.e.,

j(s0) ≥ xU as required. �

For later reference, let us summarize what we know about j in the form

of a definition.

Definition 2.3. A BUP-embedding is an elementary embedding j : V →M

(M transitive) with critical point κ, such that M is <κ-closed and such that

j′′S is cofinal in j(S) for every ≤κ-directed partial order S.

So the embedding j defined as above for a κ-distributive, κ+-cc atomless

complete Boolean algebra and a κ-complete ultrafilter U is a BUP-embedding.

Lemma 2.4. Let j be a BUP-embedding with cr(j) = κ.

• If |A| < κ, then j′′A = j(A).

• If S is a <λ-directed partial order for some regular λ < κ, then j(S) is

<λ-directed.

• If cf(α) 6= κ , then j′′α is cofinal in j(α) and so, in particular, cf(j(α)) =

cf(α).

Proof. For the second item, use that M believes that j(S) is <λ-directed

and that M is <κ-closed. For the last item, assume cf(α) = λ 6= κ, witnessed

by some strictly increasing cofinal function f : λ→ α. If λ < κ, then M thinks

that j(f) is strictly increasing cofinal from j(λ) = λ to j(α), which is absolute.

If λ > κ, then α is a ≤κ-directed (linear) order, so j′′α is cofinal in j(α). So

j′′f , i.e., (j(ζ), j(f(ζ)))ζ∈λ, witnesses that cf(j′′λ) = cf(j′′α) = cf(j(α)), and

cf(j′′λ) = cf(λ) = λ (as these orders are isomorphic). �

2.2. The algebra and the filter. For a strongly compact cardinal, we can

get large cf(j(κ)) as follows:

Lemma 2.5. Let κ be strongly compact, θ > κ and cf(θ) > κ. Then there

is a BUP-embedding j with cr(j) = κ such that

(1) cf(j(κ)) = cf(θ) and j(κ) ≥ θ;
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(2) |j(µ)| ≤ max(µ, θ)κ for any µ;

(3) in particular, if θκ = θ and κ ≤ µ ≤ θ, then |j(µ)| = θ.

We will use this in the following form:

Definition 2.6. A “BUP-embedding from κ to θ” is a BUP-embedding j

with critical point κ such that cf(j(κ)) = |j(κ)| = θ. (In particular, κ and θ

are regular.)

The lemma immediately implies

Corollary 2.7. Assume κ is strongly compact and θ > κ is a regular

cardinal such that θκ = θ. Then there is a BUP-embedding j from κ to θ. (In

addition, |j(µ)| = θ whenever κ ≤ µ ≤ θ.)

Proof of Lemma 2.5. Let B be the complete Boolean algebra generated by

the forcing notion Pκ,θ consisting of partial functions from θ to κ with domain

of size <κ, ordered by extension. Clearly B is <κ-distributive (as Pκ,θ is even

<κ-closed) and κ+-cc.

The forcing adds a canonical generic function f∗ : θ → κ. So for each

δ ∈ θ, f∗(δ) is a forcing name for an element of κ, and thus a BUP-name for

an element of j(κ).

Let x be some other BUP-name for an element of j(κ), i.e., an antichain

A of size κ labeled with elements of κ. As Pκ,θ is dense in B \ {0B}, we

can assume that A ⊆ Pκ,θ. Let δ ∈ θ be bigger than the supremum of the

domain of a for each a ∈ A. We call such a pair (x, δ) “suitable” and set

bx,δ := [[f∗(δ) > x]]. We claim that these elements generate a κ-complete filter.

To see this, fix suitable pairs (xi, δi) for i < µ < κ; we have to show that∧
i∈µ bxi,δi 6= 0. Enumerate {δi : i ∈ µ} increasing (and without repetitions)

as δ` for ` ∈ γ ≤ µ. Set A` = {i : δi = δ`}. Given q`, define q`+1 ∈ Pκ,θ as

follows: q`+1 ≤ q`; δ
` ∈ supp(q`+1) ⊆ δ` ∪ {δ`}; and q`+1 � δ` decides for all

i ∈ A` the values of xi to be some αi; and q`+1(δ`) = supi∈A`(αi) + 1. This

ensures that q`+1 is stronger than bxi,δi for i ∈ A`. For any limit ordinal ` ≤ γ,

let q` be the union of {qk : k < `}. Then qγ is stronger than each bxi,δi .

As κ is strongly compact, we can extend the κ-complete filter generated

by all bxi,δi to a κ-complete ultrafilter U . Then the sequence f∗(δ)Uδ∈θ is strictly

increasing (as (f∗(δ), δ′) is suitable for all δ < δ′) and cofinal in j(κ) (as we

have just seen); so cf(j(κ)) = cf(θ) and j(κ) ≥ θ.
To get an upper bound for j(µ) for any cardinal µ, we count all possible

BUP-names for elements of j(µ). As we can assume that the antichains are

subsets of Pκ,θ, which has size θ<κ, we get the upper bound |j(µ)| ≤ [θ<κ]κ ×
µκ = max(θ, µ)κ. �

2.3. The ultrapower of a forcing notion. We now investigate the relation

of a forcing notion P ∈ V and its image j(P ) ∈ M , which we use as forcing
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notion over V . (Think of P as being one of the forcings of Section 1; it has no

relation with the Boolean algebra B used to construct j.)

Note that as j(P ) ∈ M and M is transitive, every j(P )-generic filter G

over V is trivially generic over M as well, and we will use absoluteness between

M [G] and V [G] to prove various properties of j(P ).

Lemma 2.8. Let j : V → M be elementary, M transitive and <κ-closed

with cr(j) = κ. Assume that P is ν-cc for some ν < κ.

(1) j(P ) is ν-cc.

(2) If τ is (in V ) a j(P )-name for an element of M [G], then there is a j(P )-

name σ in M such that the empty condition forces σ = τ .

(3) In particular, every j(P )-name for a real, a Borel-code, a countable se-

quence of reals, etc., is in M (more formally : has an equivalent name

in M ).

(4) M [G] is <κ-closed in V [G].

(5) If ξ < κ and P forces 2ξ = λ, then j(P ) forces 2ξ = |j(λ)|.
(6) j′′P , which is isomorphic to P via j, is a complete subforcing of j(P ).

Proof. (1) If A ⊆ j(P ) has size ν, then A ∈ M , and by elementarity M

thinks that A is not an antichain, which is absolute.

(2) τ corresponds to (A, f) where A ⊆ j(P ) is a maximal antichain and

f : A → M maps a to a j(P )-name in M . As j(P ) is ν-cc and M <κ-closed,

(A, f) is in M and we can interpret in M (A, f) as a j(P )-name σ.

This immediately implies (3) and (4). Given a j(P )-name τ for a ζ-sequence

of elements of M [G], ζ < κ, we can interpret τ as a ζ-sequence of names (τi)i<ζ ,

and find for each τi an equivalent j(P )-name σi in M . As M is <κ-closed, the

sequence (σi)i<ζ is in M and defines a j(P )-name in M equivalent to τ .

(Furthermore, if τ is a j(P )-name for a <κ-sequence in M [G], we can use

the fact that κ is regular and that j(P ) is κ-cc to get a bound ζ < κ for the

length of τ .)

(5) M [G] thinks that |2ξ| = j(λ), and 2ξ ∩ V [G] = 2ξ ∩M [G].

(6) It is clear that j′′P is an incompatibility-preserving subforcing of j(P ):

j(p) ≤ j(q) in j′′P if and only if p ≤ q in P (by definition) if and only if M

thinks that j(p) ≤ j(q) in j(P ) (by elementarity) if and only if this holds

in V (by absoluteness). The same argument works for compatibility instead

of ≤. Similarly, assume A ⊆ j′′P is a maximal antichain. By definition,

B := j−1(A) ⊆ P is one as well and, in particular, of size <ν. Therefore

j(B) = B, and by elementarity M thinks that B ⊆ j(P ) is maximal, which

holds in V by absoluteness. �

To round off the picture, let us mention the following fact (which is, how-

ever, not required for the rest of the paper):
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Lemma 2.9. If P = (Pα, Qα)α<δ is a finite support (FS) ccc iteration of

length δ, then j(P ) is an FS ccc iteration of length j(δ). (More formally, it is

canonically equivalent to one.)

Proof. M certainly thinks that j(P ) = (P ∗α, Q
∗
α)α<j(δ) is an FS iteration of

length j(δ). By induction on α, we define the FS ccc iteration (P̃α, Q̃α)α<j(δ)
and show that P ∗α is a dense subforcing of P̃α. Assume this is already the case

for P ∗α. Then M thinks that Q∗α is a P ∗α-name, so we can interpret it as P̃α-

name and use it as Q̃α. Assume that (p, q) is an element (in V ) of P̃α ∗ Q̃α. So

p forces that q is a name in M ; we can strengthen p to some p′ that decides q

to be the name q′ ∈M . By induction we can further strengthen p′ to p′′ ∈ P ∗α,

and then (p,′′ q′) ∈ P ∗α+1 is stronger than (p, q). (At limits there is nothing to

do, as we use FS iterations.)

According to Lemma 2.8(1), j(P ) is ccc. �

2.4. Preservation of values of characteristics. Recall Definition 1.8 of

LCUi and Definitions 1.15 and 1.17 of COBi.

Lemma 2.10. Assume19 that P is ccc and that j is a BUP-embedding with

critical point κ. Then

(1) LCUi(P, δ) implies LCUi(j(P ), j(δ)). Thus if λ 6=κ regular, then LCUi(P, λ)

implies LCUi(j(P ), λ).

(2) Assume COBi(P, λ, µ). If κ > λ, then COBi(j(P ), λ, |j(µ)|); if κ < λ, then

COBi(j(P ), λ, µ).

Proof. (1) Let x̄ = (xα)α<δ be the sequence of P -names that witnesses

LCUi(P, δ). So M thinks the following: For every j(P )-name y of a real, we

have
(∃α ∈ j(δ)) (∀β ∈ j(δ) \ α)¬

Ä
(j(x̄))β Ri y

ä
.

This is absolute, so j(x̄) witnesses LCUi(j(P ), j(δ)).

The second claim follows from the fact that LCUi(j(P ), j(δ)) is equivalent

to LCUi(j(P ), cf(j(δ))) and that cf(j(λ)) = λ for regular λ 6= κ.

(2) Let (S,≺) and ḡ witness COBi(P, λ, µ). M thinks that

(∗)
for each j(P )-name f , (∃s ∈ j(S)) (∀t ∈ j(S)) ( t � s→ j(P )  f Ri j(ḡ)t )

(or, in the case i = 2, j(P )  j(ḡ)t /∈ f , where f is the name of a null set).

This is true in V as well: If f is a j(P )-name for a real, then we can assume

f ∈M , and so we can find s ∈ j(S) such that for all t � s, M [G] |= f Ri j(ḡ)t,

which holds in V [G] as well, as Ri is absolute.

19For most of the lemma, the requirements of Lemma 2.8 are sufficient. We use ccc only

to simplify notation as we do not have to indicate where we calculate cofinalities (in V or

the j(P ) extensions V [G]). We need BUP-embedding for the last part of (2) only.
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If λ < κ, then j(λ) = λ, and j(S) is λ-directed in M and therefore in V

as well, so we get COBi(j(P ), λ, |j(µ)|).
So assume λ > κ. We claim that j′′(S) and j′′ḡ witness COBi(j(P ), λ, µ).

Since j′′S is isomorphic to S, directedness is trivial. Given a j(P )-name f of

a real, without loss of generality in M , there is in M a cone with tip s ∈ j(S)

as in (∗). As j′′S is cofinal in j(S), there is some s′ ∈ S such that j(s′) � s.

Then for all t � s′, i.e., j(t) � j(s′), we get j(P )  f Ri j(gt) (or, in case i = 2,

j(P )  j(gt) /∈ f). �

We list the specific cases that we will use:

Corollary 2.11. Let j be a BUP-embedding from κ to θ.

(a) LCUi(P, λ) for a regular λ 6= κ implies LCUi(j(P ), λ).

(b) LCUi(P, κ) implies LCUi(j(P ), θ).

(c) COBi(P, λ, µ) for κ > λ and κ ≤ µ ≤ θ implies COBi(j(P ), λ, θ).

(d) COBi(P, λ, µ) for κ < λ implies COBi(j(P ), λ, µ).

3. A finite iteration of BUP-embeddings

We now have everything required for the main result.

Theorem 3.1. Assume GCH and that ℵ1 < κ9 < λ1 < κ8 < λ2 < κ7 <

λ3 < κ6 < λ4 < λ5 < λ6 < λ7 < λ8 < λ9 are regular, λ3 is a successor of

a regular cardinal, λi is not successor of a cardinal with countable cofinality

for i = 1, 2, 4, 5, and κi strongly compact for i = 6, 7, 8, 9. Then there is a ccc

forcing notion P9 resulting in

add(N ) = λ1 < cov(N ) = λ2 < b = λ3 < non(M) = λ4 < cov(M)

= λ5 < d = λ6 < non(N ) = λ7 < cof(N ) = λ8 < 2ℵ0 = λ9.

Proof. For i = 6, . . . , 9, let ji be a BUP-embedding from κi to λi, i.e.,

cf(ji(κi)) = |ji(λi)| = λi. (Such an embedding exists according to Corol-

lary 2.7.)

We use P5 of Theorem 1.35 and set Pi+1 := ji+1(Pi) for i = 5, 6, 7, 8. In

particular, P9 = j9(j8(j7(j6(P5)))).

We enumerate the relevant characteristics of Cichoń’s diagram as x1, . . . , x8
in the desired increasing order as displayed in Figure 1. For i = 1, . . . , 4 (i.e.,

xi in the left half), we set i∗ := 9− i (so xi∗ is the dual of xi in the right half).

Recall that according to Lemmas 1.9 and 1.18, LCUi(λ) implies xi ≤ λ

and xi∗ ≥ λ. Furthermore, COBi(λ, µ) implies xi ≥ λ and xi∗ ≤ µ.

Claim. P9 forces 2ℵ0 = λ9.

Proof. By induction on i = 5, . . . , 8, each Pi+1 forces 2ℵ0 = ji+1(λi) = λi+1

(according to Lemma 2.8(5) and Corollary 2.7).

Claim. LCUi(P9, λi) holds for i = 1, . . . , 4 as well as LCU4(P9, λ5).
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Proof. The statements hold for P5 by Theorem 1.35 and are preserved

by Corollary 2.11(a). This implies xi ≤ λi for i = 1, . . . , 4, as well as x5 =

cov(M) ≥ λ5.

Claim. LCUi(P9, λi∗) holds for i = 1, 2, 3.

Proof. Note that κi∗+1 < λi < κi∗ < λ5. So LCUi(P5, κi∗) holds (Theo-

rem 1.35). This implies LCUi(P`, κi∗) for ` = 5, . . . , i∗ − 1 (Corollary 2.11(a)),

then LCUi(P`, λi∗) for ` = i∗ (Corollary 2.11(b)), and then again LCUi(P`, λi∗)
for ` = i∗ + 1, . . . , 9 (again Corollary 2.11(a)). This implies x` ≥ λ` for

` = 6, 7, 8.

Claim. COBi(P9, λi, λi∗) holds for i = 1, 2, 3, 4.

Proof. COBi(P5, λi, λ5) holds by Theorem 1.35. It implies COBi(P`, λi, λ`)
for ` = 5, . . . , i∗ (while κ` > λi) (Corollary 2.11(c)), then COBi(P`, λi, λi∗) for

` = i∗ + 1, . . . , 9 (Corollary 2.11(d)). This implies xi ≥ λi for i = 1, . . . , 4 as

well as x` ≤ λ` for ` = 5, . . . , 8. �

4. Questions

The result poses some obvious questions. (Since the initial submission of

the paper, some of the questions found (partial) answers, which we mention

in the following.)

(a) Can we prove the result without using large cardinals?

It would be quite surprising if compact cardinals are needed, but a proof

without them will probably be a lot more complicated.

Answers.

• Gitik [Git19] points out that certain extender embeddings are BUP-em-

beddings, and that a variation of superstrongs is sufficient to construct the

BUP-embeddings required in our construction.

• [BCM18] (building on [Mej19a]) gives a construction that requires only three

(instead of four) strongly compact cardinals.

• Finally, in [GKMS19a] it is shown that we can indeed get the result without

large cardinals.

(b) Does the result still hold for other specific values of λi, such as λi = ℵi+1?

In our construction, the regular cardinals λi for i = 4, . . . , 9 can be chosen

quite arbitrarily (above the compact κ6, that is). However, ℵ1, λ1, λ2 and λ3

each have to be separated by a compact cardinal (and furthermore λ3 has to

be a successor of a regular cardinal).

Answer. In [GKMS19a] it is shown that any choice of regular cardinals

is possible (in particular, λi = ℵi+1). We also show that we can replace any

number of instances of < by =.
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(c) Are other linear orders between the characteristics of Cichoń’s diagram con-

sistent?

Note that in this paper, we use an FS ccc iteration of length δ with

uncountable cofinality, (cf. 2.9), which always results in non(M) ≤ cof(δ) ≤
cov(M). Under these restrictions, there are only four possible assignments. Of

course there are a lot more20 possibilities to assign λ1, . . . , λ8 to Cichoń’s dia-

gram in a way that satisfies the known ZFC-provable (in)equalities. Figure 2(b)

is an example. Such orders require entirely different methods. (Even to get just

the five different values ℵ1 = λ1 = λ2 = λ3 = λ4 = λ5 < λ6 < λ7 < λ8 < λ9 in

this figure turned out to be rather involved [FGKS17, §11].)

Partial answer. Another of the orders compatible with FS ccc iterations,

the one of Figure 2(a), is consistent [KST19]. See also [Mej19b]. (A different

initial forcing gives the modified ordering of the left hand side; then the same

construction and proof as in this paper gives us the whole diagram.)

λ3
// λ4

// // λ8
// λ9

λ2
//

OO

λ7

OO

ℵ1
// λ1

//

OO

//

OO

λ5
//

OO

λ6

OO

(a) An ordering compatible with FS ccc.

λ2
// λ7

// // λ8
// λ9

λ4
//

OO

λ5

OO

ℵ1
// λ1

//

OO

//

OO

λ3
//

OO

λ6

OO

(b) Another one, incompatible with FS ccc.

Figure 2. Alternative orderings of the cardinal characteristics.

(d) Is it consistent that other cardinal characteristics that have been studied,21

in addition to the ones in Cichoń’s diagram, have pairwise different values

as well?

Partial answer. In [GKMS19b], it is forced that additionally ℵ1 < m <

p < h < add(N ) holds.
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