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COMPACT CARDINALS AND EIGHT VALUES IN CICHOŃ’S DIAGRAM

JAKOB KELLNER, ANDA RAMONA TĂNASIE, AND FABIO ELIO TONTI

Abstract. Assuming three strongly compact cardinals, it is consistent that

ℵ1 < add( ) < cov( ) < 𝔟 < 𝔡 < non( ) < cof( ) < 2ℵ0 .

Under the same assumption, it is consistent that

ℵ1 < add( ) < cov( ) < non() < cov() < non( ) < cof( ) < 2ℵ0 .

Introduction. We assume the reader is familiar with the definitions and some basic
properties (which can all be found, e.g., in [2]) of the cardinal characteristics in Cichoń’s
diagram:

cov( ) �� non() �� cof() �� cof( ) �� 2ℵ0

𝔟 ��

��

𝔡

��

ℵ1 �� add( ) ��

��

add() ��

��

cov() ��

��

non( )

��

An arrow between 𝔵 and 𝔶 indicates that ZFC proves 𝔵 ≤ 𝔶. Moreover,
max(𝔡, non()) = cof() and min(𝔟, cov()) = add(). These are the only
“simple” restrictions in the following sense: every assignment of ℵ1 and ℵ2 to the entries
of Cichoń’s diagram that honors these restrictions can be shown to be consistent. It
is more challenging to get more than two simultaneously different values, for recent
progress in this direction see, e.g., [4, 6, 11].

This article consists of two parts: In the first one, we present a finite support ccc
iteration 𝑃 4 forcing that ℵ1 < add( ) < cov( ) < 𝔟 < 𝔡 = 2ℵ0 (and actually
something stronger, cf. Lemmas 1.18 and 1.20). This is nothing new: The forcing and
all required properties were presented in [11]. We recall all the facts that are required for
our result, in a form convenient for our purposes.

In the second part, we investigate the (iterated) Boolean ultrapower 𝑃 7 of 𝑃 4. Assum-
ing three strongly compact cardinals, this ultrapower (again a finite support ccc iteration)
forces

ℵ1 < add( ) < cov( ) < 𝔟 < 𝔡 < non( ) < cof( ) < 2ℵ0 ,

i.e., we get the following values in the diagram (for some increasing cardinals 𝜆𝑖):
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𝜆2 �� �� �� 𝜆6 �� 𝜆7

𝜆3 ��

��

𝜆4

��

ℵ1 �� 𝜆1 ��

��

��

��

��

��

𝜆5

��

It seems unlikely that the large cardinals assumption is actually needed, but we would
expect a proof without it to be considerably more complicated.

The kind of Boolean ultrapower that we use was investigated in [10], and recently
applied, e.g., in [13] and [14] (where a Boolean ultrapower of a forcing notion is applied
to cardinal characteristics of the reals). Recently Shelah developed a method of using
Boolean ultrapowers to control characteristics in Cichoń’s diagram. The current arti-
cle is a relatively simple application of these methods. A more complicated one, in an
upcoming article [5] by Goldstern, Shelah and the first author, shows that all entries in
Cichońs diagram can be pairwise different.

§1. The initial forcing.

1.1. Good iterations. The forcing 𝑃 4 we are about to define has many pleasant prop-
erties because it is “good”, a notion first explored in [7] and [3]. We now recall the basic
facts of good iterations, and specify the instances of the relations we use.

ASSUMPTION 1.1. We will consider binary relations R on 𝑋 = 𝜔𝜔 (or on 𝑋 = 2𝜔)
that satisfy the following∶ There are relations R𝑛 such that R =

⋃
𝑛∈𝜔 R𝑛, each R𝑛 is a

closed subset (and in fact absolutely defined) of 𝑋 × 𝑋, and for 𝑔 ∈ 𝑋 and 𝑛 ∈ 𝜔, the
set {𝑓 ∈ 𝑋 ∶ 𝑓 R𝑛 𝑔} is nowhere dense. Also, for all 𝑔 ∈ 𝑋 there is some 𝑓 ∈ 𝑋 with
𝑓 R 𝑔.

We will actually use another space as well, the space  of strictly positive rational
sequences (𝑞𝑛)𝑛∈𝜔 such that

∑
𝑛∈𝜔 𝑞𝑛 ≤ 1. It is easy to see that  is homeomorphic to

𝜔𝜔, when we equip the rationals with the discrete topology and use the product topology.
We use the following instances of relationsR on 𝑋; it is easy to see that they all satisfy

the assumption (in case of 𝑋 =  we use the homeomorphism mentioned above):

DEFINITION 1.2. 1. 𝑋 = : 𝑓 R1 𝑔 if (∀∗𝑛 ∈ 𝜔) 𝑓 (𝑛) ≤ 𝑔(𝑛).
(We use “∀∗𝑛 ∈ 𝜔” for “(∃𝑛0 ∈ 𝜔) (∀𝑛 > 𝑛0)”.)

2. 𝑋 = 2𝜔: 𝑓 R2 𝑔 if (∀∗𝑛 ∈ 𝜔) 𝑓 ↾ 𝐼𝑛 ≠ 𝑔 ↾ 𝐼𝑛,
where (𝐼𝑛)𝑛∈𝜔 is the increasing interval partition of 𝜔 with |𝐼𝑛| = 2𝑛+1.

3. 𝑋 = 𝜔𝜔: 𝑓 R3 𝑔 if (∀∗𝑛 ∈ 𝜔) 𝑓 (𝑛) ≤ 𝑔(𝑛).

We say “𝑓 is bounded by 𝑔” if 𝑓 R 𝑔; and, for  ⊆ 𝜔𝜔, “𝑓 is bounded by ” if
(∃𝑦 ∈ ) 𝑓 R 𝑦. We say “unbounded” for “not bounded”. (I.e., 𝑓 is unbounded by 

if (∀𝑦 ∈ ) ¬𝑓 R 𝑦.) We call  an R-unbounded family, if ¬(∃𝑔) (∀𝑥 ∈ ) 𝑥R 𝑔, and
an R-dominating family if (∀𝑓 ) (∃𝑥 ∈ ) 𝑓 R 𝑥. Let 𝔟𝑖 be the minimal size of an Ri-
unbounded family, and 𝔡𝑖 of an Ri-dominating family.

We only need the following connection between Ri and the cardinal characteristics:

LEMMA 1.3. 1. add( ) = 𝔟1 and cof( ) = 𝔡1.
2. cov( ) ≤ 𝔟2 and non( ) ≥ 𝔡2.
3. 𝔟 = 𝔟3 and 𝔡 = 𝔡3.
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PROOF. (3) holds by definition. (1) can be found in [2, 6.5.B]. To prove (2), note that
for fixed 𝑔 ∈ 2𝜔 the set {𝑓 ∈ 2𝜔 ∶ ¬𝑔R2 𝑓} is a null set, call it 𝑁𝑔 . Let  be an R2-
unbounded family. Then {𝑁𝑔 ∶ 𝑔 ∈ } covers 2𝜔: Fix 𝑓 ∈ 2𝜔. As 𝑓 does not bound ,
there is some 𝑔 ∈  unbounded by 𝑓 , i.e., 𝑓 ∈ 𝑁𝑔 . Let 𝑋 be a non-null set. Then 𝑋 is
R2-dominating: For any 𝑔 ∈ 2𝜔 there is some 𝑥 ∈ 𝑋 ⧵ 𝑁𝑔 , i.e., 𝑔 R2 𝑥. ⊣

DEFINITION 1.4 ([7]). Let 𝑃 be a ccc forcing, 𝜆 an uncountable regular cardinal, and
R as above. 𝑃 is (R, 𝜆)-good, if for each 𝑃 -name 𝑟 ∈ 𝜔𝜔 there is (in 𝑉 ) a nonempty set
 ⊆ 𝜔𝜔 of size <𝜆 such that every 𝑓 (in 𝑉 ) that is R-unbounded by  is forced to be
R-unbounded by 𝑟 as well.

Note that 𝜆-good trivially implies 𝜇-good if 𝜇 ≥ 𝜆 are regular.
How do we get good forcings? Let us just quote the following results:

LEMMA 1.5. A FS iteration of Cohen forcing is good for any (R, 𝜆), and the compo-
sition of two (R, 𝜆)-good forcings is (R, 𝜆)-good.
Assume that (𝑃𝛼,𝑄𝛼)𝛼<𝛿 is a FS ccc iteration. Then 𝑃𝛿 is (R, 𝜆)-good, if each 𝑄𝛼 is
forced to satisfy the following∶

1. For R = R1: |𝑄𝛼| < 𝜆, or 𝑄𝛼 is 𝜎-centered, or 𝑄𝛼 is a sub-Boolean-algebra of the
random algebra.

2. For R = R2: |𝑄𝛼| < 𝜆, or 𝑄𝛼 is 𝜎-centered.
3. For R = R3: |𝑄𝛼| < 𝜆.
PROOF. (R, 𝜆)-goodness is preserved by FS ccc iterations (in particular composi-

tions), as proved in [7], cf. [2, 6.4.11–12]. Also, ccc forcings of size <𝜆 are (R, 𝜆)-
good [2, 6.4.7], which takes care of the case of Cohens and of |𝑄𝛼| < 𝜆. So it remains
to show that (for 𝑖 = 1, 2) the “large” iterands in the list are (Ri, 𝜆)-good. For R1 this
follows from [7] and [8], cf. [2, 6.5.17–18]. For R2 this is proven in [3]. ⊣

LEMMA 1.6. Let 𝜆 ≤ 𝜅 ≤ 𝜇 be uncountable regular cardinals. After forcing with 𝜇
many Cohen reals (𝑐𝛼)𝛼∈𝜇, followed by an (R, 𝜆)-good forcing, we get: For every real 𝑟
in the final extension, the set {𝛽 ∈ 𝜅 ∶ 𝑐𝛽 is unbounded by 𝑟} is cobounded in 𝜅. I.e.,
(∃𝛼 ∈ 𝜅) (∀𝛽 ∈ 𝜅 ⧵ 𝛼) ¬𝑐𝛽 R 𝑟.

(The Cohen real 𝑐𝛽 can be interpreted both as Cohen generic element of 2𝜔 and as
Cohen generic element of 𝜔𝜔; we use the interpretation suitable for the relation R.)

PROOF. Work in the intermediate extension after 𝜅 many Cohen reals, let us call it
𝑉𝜅 . The remaining forcing (i.e., 𝜇 ⧵ 𝜅 many Cohens composed with the good forcing) is
good; so applying Definition 1.4 we get (in 𝑉𝜅) a set  of size <𝜆.

As the initial Cohen extension is ccc, and 𝜅 ≥ 𝜆 is regular, we get some 𝛼 ∈ 𝜅 such
that each element 𝑦 of  already exists in the extension by the first 𝛼 many Cohens, call
it 𝑉𝛼 . The set of reals 𝑀𝑦 bounded by 𝑦 is meager (and absolute). Any 𝑐𝛽 for 𝛽 ∈ 𝜅 ⧵ 𝛼
is Cohen over 𝑉𝛼 , and therefore not in 𝑀𝑦, i.e., not bounded by 𝑦. As this holds for all
𝑦, 𝑐𝛽 is unbounded by  , and thus, according to the definition of good, unbounded by 𝑟
as well. ⊣

In the light of this result, let us revisit Lemma 1.3 with some new notation:

DEFINITION 1.7. For 𝑖 = 1, 2, 3, 𝜆 > ℵ0 regular, and 𝑃 a ccc forcing notion, let
⊚i(𝑃 , 𝜆) stand for: “There is a sequence (𝑥𝛼)𝛼∈𝜆 of 𝑃 -names such that for every 𝑃 -name
𝑦 we have (∃𝛼 ∈ 𝜆) (∀𝛽 ∈ 𝜆 ⧵ 𝛼)𝑃 ⊩ ¬𝑥𝛽 Ri 𝑦.”
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LEMMA 1.8. ⊚i(𝑃 , 𝜆) implies 𝔟𝑖 ≤ 𝜆 and 𝔡𝑖 ≥ 𝜆. In particular∶
1. ⊚1(𝑃 , 𝜆) implies 𝑃 ⊩ ( add( ) ≤ 𝜆& cof( ) ≥ 𝜆 ).
2. ⊚2(𝑃 , 𝜆) implies 𝑃 ⊩ ( cov( ) ≤ 𝜆& non( ) ≥ 𝜆 ).
3. ⊚3(𝑃 , 𝜆) implies 𝑃 ⊩ ( 𝔟 ≤ 𝜆& 𝔡 ≥ 𝜆 ).
PROOF. The set {𝑥𝛼 ∶ 𝛼 ∈ 𝜆} is certainly forced to be Ri-unbounded; and given a

set 𝑌 = {𝑦𝑗 ∶ 𝑗 < 𝜃} of 𝜃 < 𝜆 many 𝑃 -names, each has a bound 𝛼𝑗 , so for any 𝛽 ∈ 𝜆
above all 𝛼𝑗 we get 𝑃 ⊩ ¬𝑥𝛽 Ri 𝑦𝑗 for all 𝑗; i.e., 𝑌 cannot be dominating. ⊣

1.2. Ground model Borel functions, partial random forcing. The following
lemma seems to be well known (but we are not aware of a good reference or an
established notation):

DEFINITION 1.9. Let 𝑄 be a forcing notion, and let 𝜂 be a 𝑄-name for a real. We say
that 𝑄 is “generically Borel determined (by 𝜂, via 𝐵)”, if

• 𝑄 consists of reals,
• the 𝑄-generic filter is determined by the real 𝜂, and moreover,
• 𝐵 ⊆ ℝ2 is a Borel relation such that for all 𝑞 ∈ 𝑄, 𝑄 ⊩ (𝐵(𝑞, 𝜂) ↔ 𝑞 ∈ 𝐺 ).

We investigate iterations of such forcings:

LEMMA 1.10. Assume that (𝑃𝛽,𝑄𝛽)𝛽<𝛼 is a FS ccc iteration such that each 𝑄𝛽 is
generically Borel determined (in an absolute way already fixed in 𝑉 ). Then for each
𝑃𝛼-name 𝑟 of a real, there is (in the ground model) a Borel function 𝐹 ∶ ℝ𝜔 → ℝ and
a sequence (𝛼𝑖)𝑖∈𝜔 of ordinals in 𝛼 such that 𝑃𝛼 forces 𝑟 = 𝐹 ((𝜂𝛼𝑖

)𝑖∈𝜔).
PROOF. We prove by induction on 𝛾 ≤ 𝛼:

• For all 𝑝 ∈ 𝑃𝛾 there is a Borel relation 𝐵𝑝 ⊆ ℝ𝜔 and a sequence (𝛼𝑝
𝑖 )𝑖∈𝜔 of elements

of 𝛾 such that 𝑃𝛾 ⊩ 𝐵𝑝((𝜂𝛼𝑝
𝑖
)𝑖∈𝜔) ↔ 𝑝 ∈ 𝐺𝛾 .

• For each 𝑃𝛾 -name 𝑟 of a real, there is a Borel function 𝐹 𝑟 and a sequence (𝛼𝑟
𝑖 )𝑖∈𝜔

of elements of 𝛾 such that 𝑃𝛾 ⊩ 𝑟 = 𝐹 𝑟((𝜂𝛼𝑝
𝑖
)𝑖∈𝜔).

The second item follows from the first, as we can use the countable maximal antichains
that decide 𝑟(𝑛) = 𝑚.

If 𝛾 is a limit ordinal, then 𝑃𝛾 has no new elements, so there is nothing to do.
So assume 𝛾 = 𝜁 + 1. By our assumption, 𝑄𝜁 is generically Borel determined

from 𝜂𝜁 via a Borel relation 𝐵𝜁 . Consider (𝑝, 𝑞) ∈ 𝑃𝜁 ∗ 𝑄𝜁 . This is in 𝐺𝛾 iff
𝑝 ∈ 𝐺𝜁 (which, by induction, is Borel) and 𝑞 ∈ 𝐺(𝜁). As 𝑞 is a real, it is forced that
𝑞 = 𝐵𝑞((𝛼𝑞

𝑖 )𝑖∈𝜔). Moreover, 𝑃𝜁 forces that 𝑄𝜁 forces that 𝑞 ∈ 𝐺(𝜁) iff 𝐵𝜁 (𝜂𝜁 , 𝑞) iff
𝐵𝜁 (𝜂𝜁 , 𝐵𝑞((𝛼𝑞

𝑖 )𝑖∈𝜔)). ⊣

DEFINITION 1.11. Given (𝑃𝛽,𝑄𝛽)𝛽<𝛼 as above, and some 𝑤 ⊆ 𝛼, we define the 𝑃𝛼-
name ℝ𝑤 to consist of all reals 𝑟 such that in the ground model there are a Borel function
𝐹 and a sequence (𝛼𝑖)𝑖∈𝜔 of elements of 𝑤 such that 𝑟 = 𝐹 ((𝜂𝛼𝑖

)𝑖∈𝜔).

The following is straightforward:

FACT 1.12. • Set (in 𝑉 ) 𝜇 = (|𝑤|+2)ℵ0 . Then it is forced thatℝ𝑤 has cardinality
≤𝜇.

• If 𝑤′ ⊇ 𝑤, then (it is forced that) ℝ𝑤′
⊇ ℝ𝑤.
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• If 𝑤 is the increasing union of (𝑤𝛼)𝛼∈𝛾 with cf(𝛾) ≥ 𝜔1, then (it is forced that)
ℝ𝑤 =

⋃
𝛼∈𝛾 ℝ𝑤𝛼 .

• For every 𝑃𝛼-name 𝑟 of a real there is a countable 𝑤 such that (it is forced that)
𝑟 ∈ ℝ𝑤.

DEFINITION 1.13. Let 𝔹 be (the definition of) random forcing, i.e., positive pruned
trees 𝑇 , ordered by inclusion. Given (𝑃𝛽,𝑄𝛽)𝛽<𝛼 as above, 𝑤 ⊆ 𝛼, we define the 𝑃𝛼-
name 𝔹𝑤 ∶= 𝔹 ∩ℝ𝑤 and call it “partial random forcing defined from 𝑤”.

Clearly 𝔹𝑤 is a subforcing (not necessarily a complete one) of 𝔹, and if 𝑝, 𝑞 in 𝔹𝑤

are incompatible in 𝔹𝑤 then they are incompatible in random forcing. In particular 𝔹𝑤

is ccc.
Note that 𝔹𝑤 is forced to be generically Borel determined, in way already fixed in 𝑉 :

The generic real 𝜂 is defined by {𝜂} =
⋂
{[𝑠] ∈ 𝐺 ∶ 𝑠 ∈ 2<𝜔}, and the Borel relation

by “𝜂 ∈ [𝑇 ]”.

REMARK 1.14. In this section, we have provided a very explicit notion of “partial
random”, using Borel functions. The use of Borel functions is not essential, we could use
any other method of calculating reals from generic reals at certain restricted positions,
provided this method satisfies Facts 1.12. One such alternative definition has been used
in [6]: We can define the subforcing 𝑃𝛼 ↾ 𝑤 of 𝑃𝛼 in a natural way, and require that it
is a complete subforcing (which is a closure property of 𝑤). Then we can take 𝑄𝛼 to be
random forcing as evaluated in the 𝑃𝛼 ↾ 𝑤-extension.

While this approach is basically equivalent (and may seem slightly more natural than
the artificial use of Borel functions), it has the disadvantage that we have to take care of
the closure property of 𝑤.

DEFINITION 1.15. Analogously to “partial random”, we define the “partial Hechler”
and “partial amoeba” forcings.

These forcings are generically Borel determined as well.

1.3. The initial forcing 𝑃 4. Assume that 𝜆 is regular uncountable and 𝜇 < 𝜆 implies
𝜇ℵ0 < 𝜆. Then |𝑤| < 𝜆 implies that the size of a partial forcing defined by 𝑤 is <𝜆.

DEFINITION 1.16. Assume GCH and let 𝜆1 < 𝜆2 < 𝜆3 < 𝜆4 be regular cardinals.
Set 𝛿4 = 𝜆4 + 𝜆4. Partition 𝛿4 ⧵ 𝜆4 into unbounded sets 𝑆1, 𝑆2, and 𝑆3. Fix for each
𝛼 ∈ 𝛿4 ⧵ 𝜆4 some 𝑤𝛼 ⊆ 𝛼 such that each {𝑤𝛼 ∶ 𝛼 ∈ 𝑆𝑖} is cofinal in [𝛿4]<𝜆𝑖 .1

We now define 𝑃 4 = (𝑃𝛼,𝑄𝛼)𝛼∈𝛿4
to be the FS ccc iteration which first adds 𝜆4 many

Cohen reals, and such that for each 𝛼 ∈ 𝛿4 ⧵ 𝜆4,

if 𝛼 is in

⎧⎪⎨⎪⎩

𝑆1

𝑆2

𝑆3

⎫⎪⎬⎪⎭
, then 𝑄𝛼 is the partial

⎧⎪⎨⎪⎩

amoeba
random
Hechler

⎫⎪⎬⎪⎭
forcing defined from 𝑤𝛼 .

The forcing results in 2ℵ0 = 𝜆4, which follows from the following easy and well-
known fact:

1I.e., if 𝛼 ∈ 𝑆𝑖 then |𝑤𝛼 | < 𝜆𝑖, and for all 𝑢 ⊆ 𝛿4, |𝑢| < 𝜆𝑖 there is some 𝛼 ∈ 𝑆𝑖 with 𝑤𝛼 ⊇ 𝑢.
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LEMMA 1.17. Let (𝑃𝛼,𝑄𝛼)𝛼<𝛿 be a FS ccc iteration of length 𝛿 such that each 𝑄𝛼 is
forced to consist of real numbers, and set 𝜆(𝛿) ≔ (2 + 𝛿)ℵ0 . Then 𝑃𝛿 ⊩ 2ℵ0 ≤ 𝜆(𝛿).

PROOF. By induction on 𝛿, we show that there is a dense subforcing of 𝐷𝛿 ⊆ 𝑃𝛿 of
size ≤𝜆(𝛿). Then the continuum has size at most 𝜆(𝛿) (as each name of a real corresponds
to a countable sequence of antichains, labeled with 0, 1, in 𝑃𝛿 , without loss of generality
in 𝐷𝛿).

For 𝛿 + 1, 𝐷𝛿 ⊆ 𝑃𝛿 is dense and has size ≤𝜆(𝛿), and 𝑄𝛿 is forced to have size ≤𝜆(𝛿).
Without loss of generality we can identify 𝑄𝛿 with a subset of 𝜆(𝛿). Let 𝐷𝛿+1 consist of
(𝑝, 𝛼̌) ∈ 𝑃𝛿+1 such that 𝑝 ∈ 𝐷𝛿 forces 𝛼 ∈ 𝑄𝛿 .

For 𝛿 limit, the union of 𝐷𝛼 is dense in 𝑃𝛿 =
⋃

𝛼∈𝛿 𝑃𝛼 . ⊣

According to Lemma 1.5 𝑃 4 is (Ri, 𝜆𝑖)-good for 𝑖 = 1, 2, 3, so Lemmas 1.6 and 1.8
gives us:

LEMMA 1.18. ⊚i(𝑃 4, 𝜅) holds for 𝑖 = 1, 2, 3 and each regular cardinal 𝜅 in [𝜆𝑖, 𝜆4].
So in particular, 𝑃 4 forces add( ) ≤ 𝜆1, cov( ) ≤ 𝜆2, 𝔟 ≤ 𝜆3 and cof( ) =

non( ) = 𝔡 = 2ℵ0 .
THEOREM 1.19 ([11], Theorem 2). 𝑃 4 forces add( ) = 𝜆1, cov( ) = 𝜆2, 𝔟 = 𝜆3,

and 𝔡 = 𝜆4 = 2ℵ0 .
PROOF. It is easy to see that the partial amoebas take care of add( ) ≥ 𝜆1: Let

(𝑁𝑖)𝑖∈𝜇, ℵ1 ≤ 𝜇 < 𝜆1 be a family of 𝑃 4-names of null sets. Each 𝑁𝑖 is a Borel code,
i.e., a real, and therefore Borel-computed from some countable set 𝑤𝑖 ⊆ 𝛿4. The union
of the 𝑤𝑖 is a set 𝑤∗ of size ≤𝜇 that already Borel-decides all 𝑁𝑖. There is some 𝛽 ∈ 𝑆1

such that 𝑤𝛽 ⊇ 𝑤∗, so the partial amoeba forcing at 𝛽 sees all the null sets 𝑁𝑖 and
therefore covers their union.

Analogously one proves cov( ) ≥ 𝜆2 and 𝔟 ≥ 𝜆3. ⊣

We will reformulate the proof for cov( ) in a cumbersome manner that can be
conveniently used later on:

LEMMA 1.20. Let ⊞2(𝑃 , 𝜆, 𝜇) stand for∶ “𝑃 is a ccc forcing notion, and there is a
<𝜆-directed partial order (𝑆, ≺) of size 𝜇 and a sequence (𝑟𝑠)𝑠∈𝑆 of 𝑃 -names for reals
such that for each 𝑃 -name 𝑁 of a null set (∃𝑠 ∈ 𝑆) (∀𝑡 ≻ 𝑠)𝑃 ⊩ 𝑟𝑡 ∉ 𝑁 .”

• ⊞2(𝑃 , 𝜆, 𝜇) implies 𝑃 ⊩ ( cov( ) ≥ 𝜆& non( ) ≤ 𝜇 ).
• ⊞2(𝑃 4, 𝜆2, 𝜆4) holds.
PROOF. cov( ) ≥ 𝜆: Fix <𝜆 many 𝑃 -names 𝑁𝛼 of null sets. Each real has a “lower

bound” 𝑠𝛼 ∈ 𝑆, i.e., 𝑃 ⊩ 𝑟𝑡 ∉ 𝑁𝛼 whenever 𝑡 ≻ 𝑠𝛼 . Let 𝑡 ≻ 𝑠𝛼 for all 𝛼 (this is possible
as 𝑆 is directed). So 𝑃 ⊩ 𝑟𝑡 ∉ 𝑁𝛼 for every 𝛼, i.e., the union doesn’t cover the reals.
non( ) ≤ 𝜇, as the set of all 𝑟𝑠 is not null: For every name 𝑁 of a null set there is

some 𝑠 ∈ 𝑆 such that 𝑃 ⊩ 𝑟𝑠 ∉ 𝑁 .
For 𝑃 4, we set 𝑆 = 𝑆2, 𝑠 ≺ 𝑡 if 𝑤𝑠 ⊆ 𝑤𝑡, and we let 𝑟𝑠 be the partial random real

added at 𝑠. A 𝑃 4 name for a null set 𝑁 depends (in a Borel way) on a countable index
set 𝑤∗ ⊆ 𝛿4. Fix some 𝑠 ∈ 𝑆2 such that 𝑤𝑠 ⊇ 𝑤∗, and pick any 𝑡 ≻ 𝑠. Then 𝑤𝑡 contains
all information to calculate the null set 𝑁 , and therefore the partial random 𝑟𝑡 over 𝑤𝑡

will avoid 𝑁 . ⊣

§2. The Boolean ultrapower of the forcing.
2.1. Boolean ultrapowers. Boolean ultrapowers generalize regular ultrapowers by

using arbitrary Boolean algebras instead of the power set algebra.
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ASSUMPTION 2.1. 𝜅 is strongly compact, 𝐵 is a 𝜅-distributive, 𝜅+-cc, atomless
complete Boolean algebra.

LEMMA 2.2 ([9]). Every 𝜅-complete filter on 𝐵 can be extended to a 𝜅-complete
ultrafilter 𝑈 .2

PROOF. List the required properties of 𝑈 as a set of propositional sentences in 𝜅 (a
propositional language allowing conjunctions and disjunctions of any size <𝜅), using
atomic formulas coding 𝑏 ∈ 𝑈 and 𝑏 ∉ 𝑈 for 𝑏 ∈ 𝐵. ⊣

ASSUMPTION 2.3. 𝑈 is a 𝜅-complete ultrafilter on 𝐵.
LEMMA 2.4. There is a maximal antichain 𝐴0 in 𝐵 of size 𝜅 such that 𝐴0 ∩ 𝑈 = ∅.

In other words, 𝑈 is not 𝜅+-complete.
PROOF. Let 𝐴0 be a maximal antichain in the open dense set 𝐵 ⧵ 𝑈 . As 𝐵 is 𝜅+-cc,

𝐴0 has size ≤𝜅. It cannot have size <𝜅, as 𝑈 is 𝜅-complete and therefore meets every
antichain of size <𝜅. ⊣

The Boolean algebra𝐵 can be used as forcing notion. As usual, 𝑉 denotes the universe
we start with, sometimes called the ground model. In the following, we will not actually
force with 𝐵 (or any other p.o.); we always remain in 𝑉 , but we still use forcing notation.
In particular, we call the usual 𝐵-names “forcing names”.

DEFINITION 2.5. A BUP-name (or: labeled antichain) 𝑥 is a function 𝐴 → 𝑉 whose
domain is a maximal antichain. We may write 𝐴(𝑥) to denote 𝐴.

Each BUP-name corresponds to a forcing-name3 for an element of 𝑉 . We will identify
the BUP-name and the corresponding forcing-name. In turn, every forcing name 𝜏 for
an element of 𝑉 has a forcing-equivalent BUP-name.

In particular, we can calculate, for two BUP-names 𝑥 and 𝑦, the Boolean value
⟦𝑥 = 𝑦⟧.4

DEFINITION 2.6. • Two BUP-names 𝑥 and 𝑦 are equivalent, if ⟦𝑥 = 𝑦⟧ ∈ 𝑈 .
• For 𝑣 ∈ 𝑉 , let 𝑣̌ be a BUP-name-version of the standard name for 𝑣 (unique up to

equivalence).
• The Boolean ultrapower 𝑀− consists of the equivalence classes [𝑥] of BUP-names

𝑥; and we define [𝑥] ∈− [𝑦] by ⟦𝑥 ∈ 𝑦⟧ ∈ 𝑈 .
• 𝑗− ∶ 𝑉 → 𝑀− maps 𝑣 to [𝑣̌].

We are interested in the ∈-structure (𝑀−,∈−).
Given BUP-names 𝑥1,… , 𝑥𝑛 and an ∈-formula 𝜑, the truth value ⟦𝜑𝑉 (𝑥1,… , 𝑥𝑛)⟧

is well defined (it is the weakest element of 𝐵 forcing that in the ground model
𝜑(𝑥1,… , 𝑥𝑛) holds, which makes sense as 𝑥1,… , 𝑥𝑛 are guaranteed to be in the ground
model).5

2For this, neither 𝜅+-cc nor atomless is required, and it is sufficient that 𝐵 is 𝜅-complete.
3More specifically, to the forcing-name {(𝑥(𝑎), 𝑎) ∶ 𝑎 ∈ 𝐴(𝑥)}.
4We can calculate ⟦𝑥 = 𝑦⟧ more explicitly as follows: Pick some common refinement 𝐴′ of 𝐴(𝑥) and 𝐴(𝑦).

This defines in an obvious way BUP-names 𝑥′ and 𝑦′ both with domain 𝐴′: For 𝑎 ∈ 𝐴′ we set 𝑥′(𝑎) = 𝑥(𝑎̃)
for 𝑎̃ the unique element of 𝐴(𝑥) above 𝑎. Then ⟦𝑥 = 𝑦⟧ is

⋁
{𝑎 ∈ 𝐴′ ∶ 𝑥′(𝑎) = 𝑦′(𝑎)} (which is independent

of the refinement 𝐴′).
5Equivalently, we can explicitly calculate ⟦𝜑𝑉 (𝑥1,… , 𝑥𝑛)⟧ as follows: Chose a common refinement 𝐴′

of 𝐴(𝑥1),… , 𝐴(𝑥𝑛), and set ⟦𝜑𝑉 (𝑥1,… , 𝑥𝑛)⟧ to be
⋁
{𝑎 ∈ 𝐴′ ∶ 𝜑(𝑥′1(𝑎),… , 𝑥′𝑛(𝑎))}; where again the

BUP-names 𝑥′𝑖 are the canonically defined BUP-names with domain 𝐴′ that are equivalent to 𝑥𝑖.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2018.17
Downloaded from https://www.cambridge.org/core. IP address: 80.109.105.131, on 02 Aug 2018 at 17:14:16, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2018.17
https://www.cambridge.org/core


COMPACT CARDINALS AND EIGHT VALUES IN CICHOŃ’S DIAGRAM 797

LEMMA 2.7. • Łoś’s theorem∶ (𝑀−,∈−) ⊨ 𝜑([𝑥1],… , [𝑥𝑛]) iff ⟦𝜑𝑉 (𝑥1,… , 𝑥𝑛)⟧
∈ 𝑈 .

• 𝑗− ∶ (𝑉 ,∈) → (𝑀−,∈−) is an elementary embedding.
• In particular, (𝑀−,∈−) is a ZFC model.

PROOF. Straightforward by the definition of equivalence and of [𝑥] ∈− [𝑦], and by
induction (using that 𝑈 is a filter for 𝜑 ∧ 𝜓 and for ∃𝑣𝜑(𝑣), and that it is an ultrafilter
for ¬𝜑). For elementarity, note that 𝑀− ⊨ 𝜑([𝑥̌1],… , [𝑥̌𝑛]) iff ⟦𝜑𝑉 (𝑥̌1,… , 𝑥̌𝑛)⟧ ∈ 𝑈
iff 𝑉 ⊨ 𝜑(𝑥1,… , 𝑥𝑛). ⊣

LEMMA 2.8. (𝑀−,∈−) is wellfounded.

PROOF. This is the standard argument, using the fact that 𝑈 is 𝜎-complete:
Assume [𝑥𝑛+1] ∈− [𝑥𝑛] for 𝑛 ∈ 𝜔. Choose a common refinement 𝐴 of the antichains

𝐴(𝑥𝑛), Again, let 𝑥′𝑛 be the BUP-names with domain 𝐴 equivalent to 𝑥𝑛. So, by our
assumption, 𝑢𝑛 ≔ ⟦𝑥𝑛+1 ∈ 𝑥𝑛⟧ =

⋁
{𝑎 ∈ 𝐴 ∶ 𝑥′

𝑛+1(𝑎) ∈ 𝑥′𝑛(𝑎)} is in 𝑈 for each 𝑛.
As 𝑈 is 𝜎-complete, there is some 𝑢 ∈ 𝑈 stronger than all 𝑢𝑛. This implies: If 𝑎 ∈ 𝐴 is
compatible with 𝑢, then 𝑎 is compatible with 𝑢𝑛 (for all 𝑛), and therefore 𝑥′

𝑛+1(𝑎) ∈ 𝑥′𝑛(𝑎)
for all 𝑛, a contradiction. ⊣

DEFINITION 2.9. Let 𝑀 be the transitive collapse of (𝑀−,∈−), and let 𝑗 ∶ 𝑉 → 𝑀
be the composition of 𝑗− with the collapse. We denote the collapse of [𝑥] by 𝑥𝑈 . So in
particular 𝑣̌𝑈 = 𝑗(𝑣).

LEMMA 2.10. • 𝑀 ⊧ 𝜑(𝑥𝑈
1 ,… , 𝑥𝑈

𝑛 ) iff ⟦𝜑𝑉 (𝑥1,… , 𝑥𝑛)⟧ ∈ 𝑈 . In particular,
𝑗 ∶ 𝑉 → 𝑀 is an elementary embedding.

• If |𝑌 | < 𝜅, then 𝑗(𝑌 ) = 𝑗′′𝑌 . In particular, 𝑗 restricted to 𝜅 is the identity. 𝑀 is
closed under <𝜅-sequences.

• 𝑗(𝜅) ≠ 𝜅. I.e., 𝜅 = cr(𝑗).
PROOF. If [𝑥] ∈ 𝑗−(𝑌 ), then we can refine the antichain 𝐴(𝑥) to some 𝐴′ such that

each 𝑎 ∈ 𝐴′ either forces 𝑥 = 𝑦 for some 𝑦 ∈ 𝑌 , or 𝑥 ∉ 𝑌 . Without loss of generality
(by taking suprema), we can assume different elements 𝑎 of 𝐴′ giving different values
𝑦(𝑎); i.e., 𝐴′ has size |𝑌 |+1 < 𝜅. So 𝑈 selects an element 𝑎 of 𝐴′, and as ⟦𝑥 ∈ 𝑌 ⟧ ∈ 𝑈 ,
this element 𝑎 proves that [𝑥] = 𝑗−(𝑦(𝑎)).

We have already mentioned that there is a maximal antichain 𝐴0 = {𝑎𝑖 ∶ 𝑖 ∈ 𝜅} of
size 𝜅 such that 𝐴0 ∩ 𝑈 = ∅. The BUP-name 𝑥 with 𝐴(𝑥) = 𝐴0 and 𝑥(𝑎𝑖) = 𝑖 satisfies
[𝑥] ∈− 𝑗−(𝜅), but is not equivalent to any 𝑣̌; so 𝜅 ≤ 𝑥𝑈 < 𝑗(𝜅). ⊣

As we have already mentioned, an arbitrary forcing-name for an element of 𝑉 has
a forcing-equivalent BUP-name, i.e., a maximal antichain labeled with elements of 𝑉 .
If 𝜏 is a forcing-name for an element of 𝑌 (𝑌 ∈ 𝑉 ), then without loss of generality 𝜏
corresponds to a maximal antichain labeled with elements of 𝑌 . We call such an object
𝑦 a “BUP-name for an element of 𝑗(𝑌 )” (and not “for an element of 𝑌 ”, for the obvi-
ous reason: unlike in the case of a forcing extension, 𝑦𝑈 is generally not in 𝑌 , but, by
definition of ∈−, it is in 𝑗(𝑌 )).

2.2. The algebra and the filter. We will now define the concrete Boolean algebra
we are going to use:
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DEFINITION 2.11. Assume GCH, let 𝜅 be strongly compact, and 𝜃 > 𝜅 regular.
𝑃𝜅,𝜃 is the forcing notion adding 𝜃 Cohen subsets of 𝜅. More concretely: 𝑃𝜅,𝜃 consists

of partial functions from 𝜃 to 𝜅 with domain of size <𝜅, ordered by extension. Let 𝑓 ∗ ∶
𝜃 → 𝜅 be the name of the generic function.
𝜅,𝜃 is the complete Boolean algebra generated by 𝑃𝜅,𝜃 .

Clearly 𝜅,𝜃 is 𝜅+-cc and 𝜅-distributive, as 𝑃𝜅,𝜃 is even 𝜅-closed.

LEMMA 2.12. There is a 𝜅-complete ultrafilter 𝑈 on 𝐵 = 𝜅,𝜃 such that
(a) The Boolean ultrapower gives an elementary embedding 𝑗 ∶ 𝑉 → 𝑀 . 𝑀 is

closed under <𝜅-sequences.
(b) The elements 𝑥𝑈 of 𝑀 are exactly (the collapses of equivalence classes of) 𝐵-

names 𝑥 for elements of 𝑉 ; more concretely, a function from an antichain (of size
𝜅) to 𝑉 . We sometimes say “𝑥𝑈 is a mixture of 𝜅 many possibilities”.

Similarly, for 𝑌 ∈ 𝑉 , the elements 𝑥𝑈 of 𝑗(𝑌 ) correspond to the 𝐵-names 𝑥 of
elements of 𝑌 , i.e., antichains labeled with elements of 𝑌 .

(c) If |𝐴| < 𝜅, then 𝑗′′𝐴 = 𝑗(𝐴). In particular, 𝑗 restricted to 𝜅 is the identity.
(d) 𝑗 has critical point 𝜅, cf(𝑗(𝜅)) = 𝜃, and 𝜃 ≤ 𝑗(𝜅) ≤ 𝜃+.
(e) If 𝜆 > 𝜅 is regular, then max(𝜃, 𝜆) ≤ 𝑗(𝜆) < max(𝜃, 𝜆)+.
(f) If 𝑆 is a <𝜆-directed partial order, and 𝜅 < 𝜆, then 𝑗′′𝑆 is cofinal in 𝑗(𝑆).
(g) If cf(𝛼) ≠ 𝜅, then 𝑗′′𝛼 is cofinal in 𝑗(𝛼), so in particular cf(𝑗(𝛼)) = cf(𝛼).
PROOF. We have already seen (a)–(c).
(d): For each 𝛿 ∈ 𝜃, 𝑓 ∗(𝛿) is a forcing-name for an element of 𝜅, and thus a BUP-

name for an element of 𝑗(𝜅). Let 𝑥 be some other BUP-name for an element of 𝑗(𝜅),
i.e., an antichain 𝐴 of size 𝜅 labeled with elements of 𝜅. Let 𝛿 ∈ 𝜃 be bigger than the
supremum of supp(𝑎) for each 𝑎 ∈ 𝐴. We call such a pair (𝑥, 𝛿) “suitable”, and set
𝑏𝑥,𝛿 ≔ ⟦𝑓 ∗(𝛿) > 𝑥⟧. We claim that all these elements form a basis for a 𝜅-complete
filter. To see this, fix suitable pairs (𝑥𝑖, 𝛿𝑖) for 𝑖 < 𝜇 where 𝜇 < 𝜅; we have to show that⋀

𝑖∈𝜇 𝑏𝑥𝑖,𝛿𝑖
≠ 𝟘. Enumerate {𝛿𝑖 ∶ 𝑖 ∈ 𝜇} increasing (and without repetitions) as 𝛿𝑗 for

𝑗 ∈ 𝛾 ≤ 𝜇. Set 𝐴𝑗 = {𝑖 ∶ 𝛿𝑖 = 𝛿𝑗}. Given 𝑞𝑗 , define 𝑞𝑗+1 ∈ 𝑃𝜅,𝜃 as follows: 𝑞𝑗+1 ≤ 𝑞𝑗 ;
𝛿𝑗 ∈ supp(𝑞𝑗+1) ⊆ 𝛿𝑗 ∪ {𝛿𝑗}; and 𝑞𝑗+1 ↾ 𝛿𝑗 decides for all 𝑖 ∈ 𝐴𝑗 the values of 𝑥𝑖

to be some 𝛼𝑖; and 𝑞𝑗+1(𝛿𝑗) = sup𝑖∈𝐴𝑗
(𝛼𝑖) + 1. For 𝑗 ≤ 𝛾 limit, let 𝑞𝑗 be the union of

{𝑞𝑘 ∶ 𝑘 < 𝑗}. Then 𝑞𝛾 is stronger than each 𝑏𝑥𝑖,𝛿𝑖
.

As 𝜅 is strongly compact, we can extend the 𝜅-complete filter generated by all 𝑏𝑥𝑖,𝛿𝑖

to a 𝜅-complete ultrafilter 𝑈 . Then the sequence (𝑓 ∗(𝛿)𝑈 )𝛿∈𝜃 is strictly increasing (as
(𝑓 ∗(𝛿), 𝛿′) is suitable for all 𝛿 < 𝛿′) and cofinal in 𝑗(𝜅) (as we have just seen); so
cf(𝑗(𝜅)) = 𝜃.

(e): We count all BUP-names for elements of 𝑗(𝜆). As we can assume that the
antichains are subsets of 𝑃𝜅,𝜃 , which has size 𝜃, and as 𝜆 is regular and GCH holds,
we get |𝑗(𝜆)| ≤ [𝜃]𝜅 × 𝜆𝜅 = max(𝜃, 𝜆).

(f): An element 𝑥𝑈 of 𝑗(𝑆) is a mixture of 𝜅 many possibilities in 𝑆. As 𝜅 < 𝜆, there
is some 𝑡 ∈ 𝑆 above all the possibilities. Then 𝑗(𝑡) > 𝑥𝑈 .

(g): Set 𝜇 = cf(𝛼), and pick an increasing cofinal sequence 𝛽 = (𝛽𝑖)𝑖∈𝜇 in 𝛼. 𝑗(𝛽)
is increasing cofinal in 𝑗(𝛼) (as this is absolute between 𝑀 and 𝑉 ). If 𝜇 < 𝜅, then
𝑗′′𝛽 = 𝑗(𝛽), otherwise use (f). ⊣

2.3. The ultrapower of a forcing notion. We now investigate the relation of a forc-
ing notion 𝑃 ∈ 𝑉 and its image 𝑗(𝑃 ) ∈ 𝑀 , which we use as a forcing notion over 𝑉 .
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(Think of 𝑃 as being one of the forcings of Section 1; it has no relation with the Boolean
algebra 𝐵.)

Note that as 𝑗(𝑃 ) ∈ 𝑀 and 𝑀 is transitive, every 𝑗(𝑃 )-generic filter 𝐺 over 𝑉 is
trivially generic over 𝑀 as well, and we will use absoluteness between 𝑀[𝐺] and 𝑉 [𝐺]
to prove various properties of 𝑗(𝑃 ).

LEMMA 2.13. If 𝑃 is 𝜅-cc, then 𝑗 gives a complete embedding from 𝑃 into 𝑗(𝑃 ). I.e.,
𝑗′′𝑃 is a complete subforcing of 𝑗(𝑃 ), and 𝑗 is an isomorphism from 𝑃 to 𝑗′′𝑃 .

PROOF. It is clear that 𝑗 is an isomorphism onto 𝑗′′𝑃 : By definition the order <𝑗(𝑃 ) on
𝑗(𝑃 ) is 𝑗(<𝑃 ), and by elementarity 𝑝 ≤𝑃 𝑞 iff 𝑗(𝑞) <𝑗(𝑃 ) 𝑗(𝑝). Also, 𝑝 ⟂ 𝑞 is preserved:
𝑀 ⊨ 𝑝 ⟂𝑗(𝑃 ) 𝑞 by elementarity, so 𝑝 ⟂𝑗(𝑃 ) 𝑞 holds in 𝑉 (as 𝑗(𝑃 ) ∈ 𝑀 and 𝑀 is
transitive).

It remains to be shown that each maximal antichain 𝐴 of 𝑃 is preserved, i.e., 𝑗′′𝐴 ⊆
𝑗(𝑃 ) is predense.

By our assumption, |𝐴| < 𝜅, so 𝑗′′𝐴 = 𝑗(𝐴) (by Lemma 2.12(c)), which is maximal
in 𝑀 (by elementarity) and thus maximal in 𝑉 (by absoluteness). ⊣

Accordingly, we can canonically translate 𝑃 -names into 𝑗(𝑃 )-names, etc.
For later reference, let us make this a bit more explicit: Let 𝑔 be a 𝑃 -name for a real

(i.e., an element of 𝜔𝜔). Each 𝑔(𝑛) is decided by a maximal antichains 𝐴𝑛, where 𝑎 ∈ 𝐴𝑛

forces 𝑔(𝑛) = 𝑔𝑛,𝑎 ∈ 𝜔. Then the 𝑗(𝑃 )-name 𝑗(𝑔) corresponds to the antichains

𝑗(𝐴𝑛) = 𝑗′′𝐴𝑛, and 𝑗(𝑎) forces 𝑗(𝑔)(𝑛) = 𝑔𝑛,𝑎 for each 𝑎 ∈ 𝐴𝑛. (2.1)

LEMMA 2.14. If 𝑃 = (𝑃𝛼,𝑄𝛼)𝛼<𝛿 is a finite support (FS) ccc iteration of length 𝛿,
then 𝑗(𝑃 ) is a FS ccc iteration of length 𝑗(𝛿) (more formally∶ it is canonically equivalent
to one).

PROOF. 𝑀 certainly thinks that 𝑗(𝑃 ) = (𝑃 ∗
𝛼 , 𝑄∗

𝛼)𝛼<𝑗(𝛿) is a FS iteration of length 𝑗(𝛿).
By induction on 𝛼 we define the FS ccc iteration (𝑃𝛼, 𝑄̃𝛼)𝛼<𝑗(𝛿) and show that 𝑃 ∗

𝛼 is
a dense subforcing of 𝑃𝛼: Assume this is already the case for 𝑃 ∗

𝛼 . 𝑀 thinks that 𝑄∗
𝛼 is

a 𝑃 ∗
𝛼 -name, so we can interpret it as a 𝑃𝛼-name and use it as 𝑄̃𝛼 . Assume that (𝑝, 𝑞) is

an element (in 𝑉 ) of 𝑃𝛼 ∗ 𝑄̃𝛼 . So 𝑝 forces that 𝑞 is a name in 𝑀; we can increase 𝑝 to
some 𝑝′ that decides 𝑞 to be the name 𝑞′ ∈ 𝑀 . By induction we can further increase 𝑝′

to 𝑝′′ ∈ 𝑃 ∗
𝛼 , then (𝑝′′, 𝑞′) ∈ 𝑃 ∗

𝛼+1 is stronger than (𝑝, 𝑞). (At limits there is nothing to do,
as we use FS iterations.)

𝑗(𝑃 ) is ccc, as any 𝐴 ⊆ 𝑗(𝑃 ) of size ℵ1 is in 𝑀 (and 𝑀 thinks that 𝑗(𝑃 ) is ccc). ⊣

Similarly, we get the following:

• If 𝜏 = 𝑥𝑈 is in 𝑀 a 𝑗(𝑃 )-name for an element of 𝑗(𝑍), then 𝜏 is a mixture of 𝜅
many 𝑃 -names for an element of 𝑍 (i.e., the BUP-name 𝑥 consists of an antichain
𝐴 ⊆ 𝐵 labeled, without loss of generality, with 𝑃 -names for elements of 𝑍).

(This is just the instance of “each 𝑥𝑈 ∈ 𝑗(𝑌 ) is a mixture of elements of 𝑌 ”,
where we set 𝑌 to be the set6 of 𝑃 -names for elements of 𝑍.)

• A 𝑗(𝑃 )-name 𝜏 for an element of 𝑀[𝐺] has an equivalent 𝑗(𝑃 )-name in 𝑀 .
(There is a maximal antichain 𝐴 of 𝑗(𝑃 ) labeled with 𝑗(𝑃 )-names in 𝑀 . As 𝑀

is countably closed, this labeled antichain is in 𝑀 , and gives a 𝑗(𝑃 )-name in 𝑀
equivalent to 𝜏 .)

6Formally: We set 𝑌 to be some set that contains representatives of each equivalence class of 𝑃 -names of
elements of 𝑍.
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• In 𝑉 [𝐺], 𝑀[𝐺] is closed under <𝜅 sequences.
(We can assume the names to be in 𝑀 and use <𝜅-closure.)

• In particular, every 𝑗(𝑃 )-name for a real, a Borel-code, a countable sequence of
reals, etc., is in 𝑀 (more formally: has an equivalent name in 𝑀).

• If each iterand is forced to consist of reals, then 𝑗(𝑃 ) forces the continuum to have
size at most |2 + 𝑗(𝛿)|ℵ0 .

(This follows from Lemma 1.17 as 𝑗(𝑃 ) also satisfies that each iterand consists
of reals.)

2.4. Preservation of values of characteristics.
LEMMA 2.15. Let 𝜆 be a regular uncountable cardinal and 𝑃 a ccc forcing.

(a) Let 𝔵 be either add( ) or 𝔟. If 𝑃 ⊩ 𝔵 = 𝜆 and 𝜅 ≠ 𝜆, then 𝑗(𝑃 ) ⊩ 𝔵 = 𝜆.
(b) Let 𝔶 be either cof( ) or 𝔡. If 𝑃 ⊩ 𝔶 ≥ 𝜆 and 𝜅 < 𝜆, then 𝑗(𝑃 ) ⊩ 𝔶 ≥ 𝜆.
(c) Let (𝔵, 𝔶) be either (𝔟, 𝔡) or (add( ), cof( )). Then we get the following∶

If 𝑃 ⊩ ( 𝜅 < 𝔵& 𝔶 ≤ 𝜆 ) then 𝑗(𝑃 ) ⊩ 𝔶 ≤ 𝜆.

PROOF. (a) We formulate the proof for add( ); the proof for 𝔟 is the same.
Let 𝑁̄ = (𝑁𝑖)𝑖<𝜆 be 𝑃 -names for an increasing sequence of null sets such that

⋃
𝑖<𝜆 𝑁𝑖

is not null. So in particular for every 𝑃 -name 𝑁 of a null set: (∃𝑖0 ∈ 𝜆) (∀𝑖 ∈ 𝜆⧵ 𝑖0)𝑃 ⊩
𝑁𝑖 ⊈ 𝑁 . (We can choose the 𝑖0 in 𝑉 due to ccc.)

Therefore𝑀 thinks that the same holds for the sequence 𝑗(𝑁̄) of 𝑗(𝑃 )-names of length
𝑗(𝜆). So whenever 𝑁 is a 𝑗(𝑃 )-name of a null set, we can assume without loss of gener-
ality that 𝑁 ∈ 𝑀 , so 𝑀 thinks that from some 𝑖0 on it is forced that 𝑁𝑖 ⊈ 𝑁 , which is
absolute.

As 𝜅 ≠ 𝜆, we know that 𝑗′′𝜆 is cofinal in 𝑗(𝜆). So (since the sequence 𝑗(𝑁̄) is
increasing) we can use (𝑗(𝑁𝑖))𝑖∈𝜆 and get the same property.

This shows that 𝑗(𝑃 ) ⊩ add( ) ≤ 𝜆.
For the other inequality, fix some 𝜒 < 𝜆, and (𝑁𝑖)𝑖<𝜒 a family of 𝑗(𝑃 )-names for null

sets (without loss of generality each name is in 𝑀), and 𝑝 ∈ 𝑗(𝑃 ).
• CASE 1: 𝜅 ≥ 𝜆. Then the sequence (𝑁𝑖)𝑖<𝜒 (as well as 𝑝) is in 𝑀 , and 𝑀 ⊧(

𝑝 ⊩
⋃

𝑁𝑖 null
)
; which is absolute.

• CASE 2: 𝜅 < 𝜆. Every 𝑁𝑖 is a “mixture” of 𝜅 many 𝑃 -names for null sets, so there
is a single 𝑃 -name 𝑁 ′

𝑖 such that 𝑃 forces 𝑁 ′
𝑖 is superset of all the names involved.

Therefore, 𝑗(𝑃 ) forces that 𝑗(𝑁 ′
𝑖 ) ⊇ 𝑁𝑖. And 𝑃 forces that

⋃
𝑖<𝜒 𝑁 ′

𝑖 is null, i.e.,
covered by some null set 𝑁∗. Then 𝑗(𝑃 ) forces that 𝑗(𝑁∗) covers

⋃
𝑖<𝜒 𝑁𝑖.

(b) We show that a small set cannot be dominating: Fix a sequence (𝑓𝑖)𝑖<𝜒 of 𝑗(𝑃 )-
names of reals, with 𝜒 < 𝜆. Each 𝑓𝑖 corresponds to 𝜅 < 𝜆 many possible 𝑃 -names. As
𝜒 < 𝜆, there is a 𝑃 -name 𝑔 unbounded by all 𝜒 × 𝜅 < 𝜆 many possible 𝑃 -names. So if
𝑓 is any of the possibilities, then 𝑃 forces 𝑔 ≰∗ 𝑓 ; and thus 𝑗(𝑃 ) forces 𝑗(𝑔) ≰∗ 𝑓𝑖 for
all 𝑖. So 𝑗(𝑃 ) forces 𝔡 ≥ 𝜆.

The same proof works for cof( ) (using “the null set 𝑔 is not a subset of any of the
possible null sets”).

(c) For (𝔵, 𝔶) = (𝔟, 𝔡): Fix a 𝑃 -name of a dominating family 𝑓 = (𝑓𝑖)𝑖∈𝜆.
We claim that 𝑗(𝑃 ) forces that 𝑗′′𝑓 = (𝑗(𝑓𝑖))𝑖<𝜆 is dominating. Let 𝑟 be a 𝑗(𝑃 )-name

of a real, i.e., a mixture of 𝜅 many possibilities (each possibility corresponding to a 𝑃 -
name for a real). As 𝑃 ⊩ 𝜅 < 𝔟, 𝑃 forces that these reals cannot be unbounded, i.e.,
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there is a 𝑃 -name 𝛼 ∈ 𝜆 such that 𝑓𝛼 is forced to dominate all the possibilities. By
absoluteness, 𝑗(𝑃 ) ⊩ 𝑗(𝑓𝛼) >∗ 𝑟.

It remains to be shown that 𝑗(𝑃 ) ⊩ 𝑗(𝑓𝛼) ∈ 𝑗′′𝑓 . (Note that 𝛼 is just a 𝑃 -name.)
Fix a maximal antichain 𝐴 in 𝑃 deciding 𝛼, i.e., 𝑎 ∈ 𝐴 forces 𝛼 = 𝛼(𝑎). As 𝑗 maps 𝑃
completely into 𝑗(𝑃 ), 𝑗′′𝐴 is a maximal antichain in 𝑗(𝑃 ). So 𝑗(𝑃 ) forces that exactly
on 𝑗(𝑎) for 𝑎 ∈ 𝐴 is in the generic filter, cf. (2.1). Accordingly 𝑗(𝑓𝛼) = 𝑗(𝑓𝛼(𝑎)) ∈ 𝑗′′𝑓 .

The proof for cof( ) is the same. ⊣

For the other direction of the invariants, and the pair (cov( ), non( )), we use the
following two lemmas, which are reformulations of results of Shelah.7

Recall Definition 1.7 (which is useful because of Lemma 1.8 and satisfied for the
initial forcing according to Lemma 1.18).

LEMMA 2.16. Assume ⊚i(𝑃 , 𝜆). Then ⊚i(𝑗(𝑃 ), cf(𝑗(𝜆))).
So if 𝜅 ≠ 𝜆, then ⊚i(𝑗(𝑃 ), 𝜆), and if 𝜅 = 𝜆, then ⊚i(𝑗(𝑃 ), 𝜃).

PROOF. Let 𝑦̄ = (𝑦𝛼)𝛼<𝜆 be the sequence of 𝑃 -names witnessing ⊚i(𝑃 , 𝜆). Note that
𝑗(𝑦̄) is a sequence of length 𝑗(𝜆); we denote the 𝛽-th element by (𝑗(𝑦̄))𝛽 . So 𝑀 thinks: For
every 𝑗(𝑃 )-name 𝑟 of a real (∃𝛼 ∈ 𝑗(𝜆)) (∀𝛽 ∈ 𝑗(𝜆) ⧵ 𝛼) ¬(𝑗(𝑦̄))𝛽 Ri 𝑟. This is absolute.
In particular, pick in 𝑉 a cofinal subset 𝐴 of 𝑗(𝜆) of order type cf(𝑗(𝜆)) =∶ 𝜇. Then
𝑗(𝑦̄) ↾ 𝐴 witnesses that ⊚i(𝑗(𝑃 ), 𝜇) holds. ⊣

We have seen in Lemma 1.20 that ⊞2(𝑃 4, 𝜆2, 𝜆4) holds and implies that 𝑃 4 forces
cov( ) ≥ 𝜆2 and non( ) ≤ 𝜆4 (the latter being trivial in the case of 𝑃 4).

LEMMA 2.17. Assume ⊞2(𝑃 , 𝜆, 𝜇). If 𝜅 > 𝜆, then ⊞2(𝑗(𝑃 ), 𝜆, |𝑗(𝜇)|); if 𝜅 < 𝜆, then
⊞2(𝑗(𝑃 ), 𝜆, 𝜇).

PROOF. Let (𝑆, ≺) and 𝑟̄ witness ⊞2(𝑃 , 𝜆, 𝜇).
𝑀 thinks that

for each 𝑗(𝑃 )-name 𝑁 of a null set

(∃𝑠 ∈ 𝑗(𝑆)) (∀𝑡 ∈ 𝑗(𝑆)) 𝑡 ≻ 𝑠 → 𝑗(𝑃 ) ⊩ (𝑗(𝑟̄))𝑡 ∉ 𝑁, (∗)

which is absolute.
If 𝜅 > 𝜆, then 𝑗(𝜆) = 𝜆, and 𝑗(𝑆) is 𝜆-directed in 𝑀 and therefore in 𝑉 as well, and

so we get ⊞2(𝑗(𝑃 ), 𝜆, |𝑗(𝜇)|).
So assume 𝜅 < 𝜆. We claim that 𝑗′′𝑆 and 𝑗′′𝑟̄ witness ⊞2(𝑗(𝑃 ), 𝜆, 𝜇). 𝑗′′𝑆 is isomor-

phic to 𝑆, so directedness is trivial. Given a 𝑗(𝑃 )-name 𝑁 , without loss of generality
in 𝑀 , there is in 𝑀 a bound 𝑠 ∈ 𝑗(𝑆) as in (∗). As 𝑗′′𝑆 is cofinal in 𝑗(𝑆) (according
to Lemma 2.12(f)), there is some 𝑠′ ∈ 𝑆 such that 𝑗(𝑠′) ≻ 𝑠. Then for all 𝑡′ ≻ 𝑠′, i.e.,
𝑗(𝑡′) ≻ 𝑗(𝑠′), we get 𝑗(𝑃 ) ⊩ 𝑗(𝑟𝑡) ∉ 𝑁 . ⊣

2.5. The main theorem. We now have everything required for the main result:

THEOREM 2.18. Assume GCH and that ℵ1 < 𝜅7 < 𝜆1 < 𝜅6 < 𝜆2 < 𝜅5 < 𝜆3 < 𝜆4 <
𝜆5 < 𝜆6 < 𝜆7 are regular, 𝜅𝑖 strongly compact for 𝑖 = 5, 6, 7. Then there is a ccc order
𝑃 7 forcing

add( ) = 𝜆1 < cov( ) = 𝜆2 < 𝔟 = 𝜆3 <

< 𝔡 = 𝜆4 < non( ) = 𝜆5 < cof( ) = 𝜆6 < 2ℵ0 = 𝜆7.

7S. Shelah, personal communication.
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PROOF. Let 𝑗𝑖 ∶ 𝑉 → 𝑀𝑖 be the Boolean ultrapower embedding with cf(𝑗(𝜅𝑖)) = 𝜆𝑖

(for 𝑖 = 5, 6, 7). Recall that 𝑃 4 is an iteration of length 𝛿4. We set 𝑃 5 ≔ 𝑗5(𝑃 4), 𝑃 6 ≔

𝑗6(𝑃 5), and 𝑃 7 ≔ 𝑗7(𝑃 6); and 𝛿5 ≔ 𝑗5(𝛿4), 𝛿6 ≔ 𝑗6(𝛿5) and 𝛿7 ≔ 𝑗7(𝛿6).
It is enough to show the following:

(a) 𝑃 𝑖 is a FS ccc iteration of length 𝛿𝑖 and forces 2ℵ0 = 𝜆𝑖 for 𝑖 = 4, 5, 6, 7.
(b) 𝑃 𝑖 ⊩ ( add( ) = 𝜆1 & 𝔟 = 𝜆3 & 𝔡 = 𝜆4 ) for 𝑖 = 4, 5, 6, 7.
(c) 𝑃 𝑖 ⊩ non( ) ≥ 𝜆5 for 𝑖 = 5, 6, 7.

𝑃 𝑖 ⊩ cof( ) ≥ 𝜆6 for 𝑖 = 6, 7.
𝑃 𝑖 ⊩ cov( ) ≤ 𝜆2 for 𝑖 = 4, 5, 6, 7.

(d) 𝑃 𝑖 ⊩ cof( ) = 𝜆6 for 𝑖 = 6, 7.
(e) 𝑃 𝑖 ⊨ ( cov( ) ≥ 𝜆2 & non( ) ≤ 𝜆5 ) for 𝑖 = 4, 5, 6, 7.

(a) was shown in Section 2.3.
(b): For 𝑃 4 this is Theorem 1.19. For 𝑃 5 use Lemma 2.15 (using for 𝔡 that 𝜅5 < 𝜆3).

Using the same lemma again we get the result for 𝑃 6 and 𝑃 7 (using that 𝜅𝑖 < 𝜆3 for
𝑖 = 6, 7 as well.)

(c): As 𝜅5 > 𝜆2, we have ⊚2(𝑃 4, 𝜅5) (by Lemma 1.18), and thus ⊚2(𝑃 5, 𝜆5) (by
Lemma 2.16, as cf(𝑗5(𝜅5)) = 𝜆5), so 𝑃 5 ⊩ non( ) ≥ 𝜆5 (Lemma 1.8). Repeating the
same argument we get ⊚2(𝑃 𝑖, 𝜆5) for 𝑖 = 6, 7 (as 𝜅𝑖 ≠ 𝜆5 for 𝑖 = 6, 7).

Analogously, as 𝜅6 > 𝜆1, we start with ⊚1(𝑃 4, 𝜅6), get ⊚1(𝑃 5, 𝜅6) (as 𝜅5 ≠ 𝜅6) and
then ⊚1(𝑃 6, 𝜆6) (as cf(𝑗6(𝜅6)) = 𝜆6) and ⊚1(𝑃 7, 𝜆6) (again as 𝜅7 ≠ 𝜆6). So we get thus
𝑃 𝑖 ⊩ cof( ) ≥ 𝜆6 for 𝑖 = 6, 7.

Similarly, ⊚2(𝑃 4, 𝜆2) holds, which is preserved by all embeddings, so we get
cov( ) ≤ 𝜆2.

(d): As 𝑃 6 forces the continuum to have size 𝜆6, the previous item implies 𝑃 6 ⊩
cof( ) = 𝜆6. And as in (b), this implies the same for 𝑃 7 (as 𝜅7 < 𝜆1, the value of
add( )).

(e): ⊞2(𝑃 4, 𝜆2, 𝜆4) holds (cf. Lemma 1.20). So by Lemma 2.17 for the case 𝜅 > 𝜆,
and as |𝑗5(𝜆4)| = 𝜆5, according to Lemma 2.12(e), ⊞2(𝑃 5, 𝜆2, 𝜆5) holds. I.e., 𝑃 5 forces
cov( ) ≥ 𝜆2 and non( ) ≤ 𝜆5 (the latter being trivial as the continuum has size 𝜆5).
For 𝑖 = 6, 7, the same lemma, now for the case 𝜅 < 𝜆, gives ⊞2(𝑃 𝑖, 𝜆2, 𝜆5), i.e., 𝑃 𝑖

forces cov( ) ≥ 𝜆2 and non( ) ≤ 𝜆5. ⊣

2.6. An alternative. In the same way we can prove the consistency of

ℵ1 < add( ) < cov( ) < non() < cov() < non( ) < cof( ) < 2ℵ0 .

(I.e., we can replace 𝔟 and 𝔡 by non() and cov(), respectively.)
For this, we use the following relation as R3:

𝑓 R3 𝑔, if 𝑓, 𝑔 ∈ 𝜔𝜔 and (∀∗𝑛 ∈ 𝜔) 𝑓 (𝑛) ≠ 𝑔(𝑛).

By a result of [1, 12] (cf. [2, 2.4.1 and 2.4.7]) we have

non() = 𝔟3 and cov() = 𝔡3.

As before, we use that an iteration where each iterand has size <𝜆3 is (R3, 𝜆3)-good.
To define 𝑃 4, we use partial eventually different (instead of partial Hechler) forcings.
Unlike for (𝔟, 𝔡), we do not know whether non() = 𝜆 is generally preserved if

𝜅 ≠ 𝜆 and cov() = 𝜆 is preserved if 𝜅 is small; but we can use the same argument for
(non(), cov()) that we have used for (cov( ), non( )). So we can get the analog
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of Lemma 1.20 that proves that non() is large and cov() small; and ⊚3 implies that
non() is small and cov() large.
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