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NON ELEMENTARY PROPER FORCING

Abstract. We introduce a simplified framework for ord-transitive modeisl &helah’s non
elementary proper (nep) theory. We also introduce a new eatitn for the countable
support nep iteration.

Introduction

In this paper, we introduce a simplified, self contained &aork for forcing with ord-
transitive models and for non elementary proper (nep) figrcand we provide a new
construction for the countable support nep-iteration.

Judah and Shelah [3] introduced the notion “Suslin propArforcing notion
Q C w¥ is Suslin proper if

1) “peQ’,“g< p’and“qL p’(i.e., pandqgare incompatible) are a};l% statements
(in some real parametey, and if

(2) for all contable transitive modeM (of some ZFC, a suficiently large fragment
of ZFC) that contain the parameteand for allpe QM := QN M there is aq< p
which is M-generic, i.e., forces that the generic filt@rmeets every maximal
antichainA e M of QM.

We always assume thhi(y) satisfies ZFC (for suficiently large regular cardi-
nalsy). Then every Suslin proper forcin@is proper. (Given an elementary submodel
N of H(y), apply the Suslin proper property to the transitive caapfN.) So Suslin
proper is a strengthening of properness for nicely definfaiotgngs.

Shelah [9] introduced a generalization of Suslin propercivhie callednon
elementary proper (nep) Actually, it is a generalization in two “directions”:

(&) In (1), we do not requireg e Q" and “p < g" to be defined b)@i statements,
but rather by some arbitrary formulas that happen to ligcgently (upwards)
absolutet

(b) In (2), we do not requirtM to be a transitive model, but rather a so-called ord-
transitive model (and we allow more general parameters

The motivation for (a) is straightforward: This way, we catlude forcing
notions that are not Suslin proper (such as Sacks forcingjiewe can still prove
many of the results that hold for Suslin forcing notions.

*Supported by Austrian Science Fund (FWF): P21651-N13 an8P328I113

1For incompatibility, we do not require absoluteness, algoitiwill be satisfied in the “natural” exam-
ples (but not, e.g., in nep iterations). Of course, accorthn(2), if p1 andp, are incompatible itM andq is
M-generic, then there cannot berag g, ps1, p2-
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Why is (b) useful? To “approximate” a forcing notiénby forcingsQM e M, it
is necessary tha is the union ofQM for all possible model#. (This is of course the
case ifQis Suslin proper: anp € Qs a real, and therefore element of some countable
transitiveM and thus oQ™ = QN M.) So if we allow only countable transitive models
M, we can only talk about forcing® that are subsets ¢f(N1). Of course there are
many other interesting forcing notions, such as iteratmiength> w,, products of
size > Np, or alternative creature forcing constructions of largeesetc. Switching
from transitive models to ord-transitive models allows agleal with some of these
forcings as well.

Note that such ord-transitive models can be useful infieidint (and simpler)
setting as well: Instead of considering a forcing definitamd the realization§V
andQM of this definition (inV and a countable mod@ll, respectively), we can just
use two arbitrary (and entirely fiierent) forcingsQ" € V andQY € M and require
that QM is an M-complete subforcing o®QV. In the transitive case this concept is a
central ingredient of Shelah’s oracle-cc [8, IV], and it d@applied to ord-transitive
models as well: An example is [2] (joint with Goldstern, Siteand Wohofsky), which
proves the consistency of the Borel Conjecture plus theBlagdl Conjecture. For this
construction, nep forcing is not required, but ord-tramsiimodels are. We very briefly
comment on this in Section 1.3.

To summarize:

e Just as Suslin proper, nep has consequences that are séiedaty all proper
forcing notions. So when we know that a forcing is nep and ast proper,
we know more about its behavior. And while nep implies allla# tiseful con-
sequences of Suslin proper, nep is more general (i.e., \Weakeme popular
forcings are nep, but not Suslin proper (e.g., Sacks fojcing
For example, let us say that)'preserves non-meager” @ forces that the
ground model reals are not meager (and analogously we d€&ipegserves non-
Lebesgue-null). Goldstern and Shelah [8, XVIII.3.11] @dwhat the proper
countable support iteratiorP{, Q,) of non-meager preserving forcing notions
preserves non-meager, provided that@llare Suslin proper.

Shelah and the author [5, 9.4] proved that the same pregartheorem holds
for Lebesgue-null instead of meager and that it isient to assume (nicely de-
finable) nep instead of Suslin proper. This has been applidtidslanowski and
Shelah in [7], which proves that consistently every reatfiom is continuous on
a set of positive outer Lebesgue measure.

e In particular, forcings that are not subsetdH{iX1) can be nep; for example big
countable support products. In particular, we get the ¥alg preservation the-
orem: under suitable assumptions, the countable suppmatittn of nep forcings
is nep.

An example of how this can be used is Lemma 4.24 of this paphis fact was
used by Shelah and Stegmss in [11, 4.5] to investigate Abelian groups).
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Section 1, p. 209: We definerd-transitive e-modelsM and their forcing exten-
sionsM[G].

Section 2, p. 217: We define the notionrdn elementary proper forcing: Q is
nep, if it is nicely definable and there are generic conddifor all countable
models. IfQ c 2, then it is enough to consider transitive models; otherwise
models such as in Section 1 are used.

Section 3, p. 224: We mention soragamples Rule of thumb: every nicely defin-
able forcing that can be shown to be proper is actually nep.alf give a
very partial counterexample to this rule of thumb.

Section 4, p. 236: We define (a simplified version of) tbentable support itera-
tion of nep forcings (such that the limit is again nep).

Most of the notion and results in this paper are due to Shalath{most likely)
can be found in [9], some of them explicitly (and sometimes more general setting),
some at least “in spirit”. However, the notation and manytécal details are dlierent:

In many cases the notation here is radically simplified, heeottases the notions are
just incomparable (for example the definition of nep-pan@meMost importantly, we
work in standard set theory, not in a set theory with ordiaalsirelements. The result
of Subsection 3.5 is due to Zapletal.

1. Forcing with ord-transitive models

Whenever we use the notatibh< H(y), we imply thatN is countable, and that is

a suficiently large regular cardinal. We writd(y) for the sets that are hereditarily
smaller thary andR, for the sets of rank less than (We will use the notatioW,, for
forcings extension of,, thea-th stage of some forcing iteration.)

1.1. Ord-transitive models

Let M be a countable set such thadl€) satisfies ZFC, a subset of ZFE.We do
not requireM to be transitive or elementary. ON denotes the class of alslinwe
use ON' to denote the set ot € M such thatM thinks thatx e ON; similarly for
other definable classes. This notation can formally be isistent with the following
notation (but as usual we assume that the reader knows whi@nvis used)? For a
definable set such as;, we usewg" to denote the elementof M such thatM thinks
thatx satisfies the according definition.

2We assume that ZFQzontains a sflicient part of ZFC, in particular extensionality, pairingoguct,
set-diference, emptyset, infinity and the existence of

3If M is not transitive, then for example the set {o € M : M E « € w1} will generally be diferent from
the elemeny € M such thatM F y = w;. In that casex¢ M.
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Definition 1.1. e M is ord-absolute, itwM = w, w € M, and ON' c ON (and
therefore ON' = M N ON).

e M is ord-transitive, if it is ord-absolute ande M \ ON impliesx c M.

An elementary submod® < H(y) is not ord-transitive. The simplest example
of an ord-transitive model that is not transitive is the oollapse of an elementary
submodel:

Definition 1.2. Define ord-cdf' : M — V as the transitive collapse ®fl fixing the
ordinals:
X if xe ON

ord-coM(x) = {{ord-cof"'(t) ‘texNnM} otherwise.
ord-col(M) := {ord-coM(x) : xe M}.
By induction one can easily show:
Fact 1.3. Assume thaM is ord-absolute and set= ord-coM, M’ := ord-col(M). Then

e i: M — M’ is ane-isomorphism.

i(X) € ON & x e ON. In particularM NON = M’ N ON.

M’ is ord-transitive.

i is the identity ff M is ord-transitive.

The ord-collapse “commutes” with the transitive collapse, the transitive col-
lapse of the ord-collapse & is the same as the transitive collapsévof

So if N < H(y) and H(y) £ ZFC*, then M = ord-col(N) is an ord-transitive
model. This example demonstrates that several simple fas{that are absolute for
transitive models), such agt 7', “ xUy = 7" and “xny = Z’, are not absolute for the
ord-transitive model$. However, a few simple properties are absolute: In particula
if a formulae(r) about real numbers is absolute for all transitive modéksntis abso-
lute for all ord-transitive models as well (which can easig/seen using the transitive
collaps, cf. the following Fact 1.5). We now mention somehafse absolute properties
for ord-transitive model$/:

e X w" is absolute; everii formula is absolute;

e “Finite sets” are absolutez = {x,y} is absolute, ifx e M and x is finite, then
xc M andM & “xis finite”. HM(Ro) = H(RXo).

4 p(X) is absolute” meanM e (M) iff V £ (M) for all mfrom M. Leti be the ord-collapse from an
elementary submod® to M. Setx = w1, y = {{0}} andz= xUy. Thenx e ON andz ¢ ON, soi(x) = x and
i(2) is countable. Thereforigx) Ui(y) #i(2), andi(x) € i(2). Also,i(2) Ni(X) # i(X).
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o If MEf:A— B, thenf: AnM — Bn M. If additionally M thinks thatf is
injective (or surjective), thei is injective (or surjective with respect to the new
image).

e Xe R, is upwards absolute. If additionalki¢ ON, then|x|<|a| is upwards abso-
lute.

o If eitherxe ON, orxNnON = 0, theny c x is absolute.

Instead of ord-transitive models, we could equivalentlg treinsitive models
with an (ordinal) labeling on the ordinals:

Definition 1.4. A labeled model is a pairM, f) consisting of a transitive, countable
ZFC* modelM and a strictly monotonic functioh: (M N ON) — ON satisfyingf (a) =
afora<w.
Given a labeled modeM, f), define a map: M — V by

i(%) = f(x) if xe O_N

{ily): ye x} otherwise.

Set uncolli, f) :=i[M].
Given an ord-transitive modeé¥, let j : M — M’ be the transitive collapse (a

isomorphism) and let : M’ N ON — ON be the inverse of. Define labeledcoll(l) ;=
(M7, ).

By induction, one can prove the following:

Fact 1.5. If M is an ord-transitive model, then labeledcMi(is a labeled model and
uncoll(labeledcolli)) = M. If (M, f) is a labeled model, then uncadll{ f) is an ord-
transitive model and labeledcoll(uncdi( f)) = (M, f).

We say that the ord-transitive model and the labeled modeM’, f’) corre-
spond to each other, ¥ = uncoll(M’, f’) or equivalently W', f) = labeledcollM).
So each ord-transitive model corresponds to exactly oredddbmodel and vice versa.

This also shows that is easy to create “weird” ord-transithodels; in particular
“a is successor ordinal” and similarly simple formulas areegelty not absolute for
ord-transitive models. We will generally not be interesteduch weird models:

Definition 1.6. Let M be ord-transitive.

e M is “successor-absolute”, it¥'is successor” ande’= 8+ 1" both are absolute
betweenM andV.

e Mis cfw-absolute, ifM is successor absolute and ‘ej= w” and “Ais a count-
able cofinal subset af” both are absolute betweévi andV.

Fact 1.7. If M is cfw-absolute andM thinks thatx is countable, them c M.
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Proof. If x ¢ ON, thenx € M. So assume towards a contradiction tikat ON is
minimal with x¢ M (and x < wg"). M thinks thaty := x\ {0} (constructed inM) is
countable and cofinal ir. Sincey ¢ ON we knowy C M, SOX = [,y is a subset of
M, sincex was the minimal counterexample.) O

M is successor-absolutf the corresponding labeled mod@l{, f’) satisfies:
f(a+1) = f(@)+1 andf(6) is a limit ordinal for all limit ordinalss.

Remarkl.8. e We will see in the next section how to construct forcing exten
sions for ord-transitive modelll, or equivalently labeled modeldA(, f*): If
G is M-generic, ands’ the image under the transitive collapse (which will be
M’-generic), then the forcing extensidi[G] is just the ord-transitive model
corresponding toNI’[G’], f/). Such forcing extensions are the most important
“source” for ord-transitive models that are not just (thd-tnansitive collapse
of) an elementary model.

e In applications, we typically have to deal with ord-traiv&tmodels that are
internal forcing extensions of elementary models (i.etheaconstruction above
GisinV andM is the ord-collapse dil < H(x)).

¢ All such models are successor-absolute (and satisfy matiji@tal absolute-
ness properties). So for applications, it is enough to oolysier successor-
absolute models, and restrictions of this kind sometimdsematation easier.

e Ord-collapsedM of elementary submodels aregfabsolute. The same holds for
(internal) forcing extension®§I[G] by proper forcing notions. However, general
(internal) forcing extensionsl[G] will not be cfw-absolute: E.g. i3 is generic
for a Levy collapse, theM[G] will think that ‘”\1/ is countable. In some appli-
cations (such as the the preservation theorem mentionéeé introduction) it is
essential to use such collapses, therefore we generalhotaestrict ourselves
to cfw-absolute models. However, for other applicationsy-efbsolute models

are stfficient (e.g., for the application mentioned in Section 1.3).

Every ord-transitive model is hereditarily countable mioderdinals:

Definition 1.9. ¢ We define ord-clos by induction: ord-clod& xuU | {ord-closf) :
te x\ ON}.

e hco@) = {xe R, :|ord-clos)|< No}
e hco= Uyconhco@).

For example, ifx > w3, thenws is element of hcat), butw; U {{0}} or w1 \ {0}
are not.

Facts 1.10. e ord-clos(M) is the smallest ord-transitive supersei\bf
e An ord-absolute ZFGmodelM is ord-transitive ff ord-closM) = M.

e |f M is ord-transitive and countable, th&he hco.
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e If M is ord-transitive anc e M, then ord-closf) = ord-clog’(x) C M.

e “Xxehco()” is upwards absolute for ord-transitive models.

As already mentioned, there is an ord-transitive mddeiuch thatu\l’ is count-

able inM. SoM thinks thatw\l/ is not just element of hco (which is true \has well),
but that it can also be constructed as countable set (whietsis inV).

1.2. Forcing extensions

Forcing still works for ord-transitive models (but the awaion of names has to be
modified in the natural way). In the followingyl always denotes an ord-transitive
model.

Definition 1.11. Let M think that< is a partial order orP. So inV, < is a partial
order onPN M. ThenG is calledP-generic oveM (or just M-generic, ofP-generic),
if GAPN M is a filter onPn M and meets every dense subBet M of P.

To simplify notation, we will use the following assumption:

Assumption 1.12. PN ON is empty. (Then in particuld® € M, and we can writd®
instead ofP N M. Also, if Dc Pisin M, thenD c M.)

In Definition 1.11 we do not assunt& C P. This slightly simplifies notation
later on. ObvioushG is M-generic ff GNP is M-generic. One could equivalently
use maximal antichains, predense sets, or open dense stetsdof dense sets in the
definition (and one can omit the “filter” part if one requirbata maximal antichaiA
in M meets the filteG in exactly one point).

Let labeledcollM) = (M’, f") be the labeled model correspondingMig via the
transitive collapsg. LetG C P and set? := j(P) andG’ := j[G]. Since the transitive
collapse is an isomorphisr®, is P’-generic oveM’ iff G is P-generic oveM. In that
case we can form the forcing extensibH[G’] in the usual way, and defingl[G] =
uncoll(M’[G'], f’) as the ord-transitive model corresponding k' [G'], f). LetJ:
M[G] — M’[G’] be the transitive collapse, ardts inverse, then we can defiggG]™
as|(J(z)[G’]) for a P-namez in M. Elementarity shows that this is a “reasonable”
forcing extension.

We now describe this extension in more detail and using ttié¢ransitive model
M more directly:

Basic forcing theory shows: M is a transitive modeR € M, andG aP-generic
filter over M, then we can define the evaluation of names by

(1.1) 7[G] = {¢[G]: (¢.p) €7, pe G},

andM[G] will be a (transitive) forcing extension d¥l.

SLe.. If pge GNPNM, then there is a < p,qin GNPN M; and if D € M and M thinks thatD is a
dense subset ¢t (or equivalently:DN M is a dense subset 8n M) thenGN DN M is nonempty.
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This evaluation of names works for elementary submodelselk provided
thatG is not onlyN-, but alsoV-generic. More exactly: IN < H(y) containsP, and
if G is N- and \-generic, therN[G] is a forcing extension ol (and in particular end-
extension). Here it is essential thatis V-generic as well: IIN < H(y) andG e V is
N-generic (for any nontrivial forcing), thenN[G] is not an end-extension &, since
Ge®P(P)eN, butG ¢ N.

This can be summarized as follows:

Fact 1.13. Assume that eitheM is transitive ands is M-generic, or thaM < H(y)
andG is M- andV-generic. Then

e M[G] > M is an end-extensiér(i.e., if y e M[G] andy € xe M, theny € M), and
ONMICI = ONM,

e M[G] k ¢(7[G]) iff M E pI- ¢(z) for somep e G.
In the transitive casM[G] is transitive; and in the elementary submodel case, we get:
e (M[G].e,M) < (HVICl(y),e,HY (x)).

e Forcing extension commutes with transitive collapse: iLée the transitive
collapse ofM, and| of M[G]. Then| extendsi, i[G] is i[M] -generic and

I@MIC]] = 1[G

If one considers general ord-transitive candid&ie§.e., M is neither transitive
nor an elementary submodel), then Definition (1.1) does ravkwany more. For ex-
ample, ifM is countable and thinks thatis a standard name for the ordina!, then
7 c M is countable, se[G] will always be countable and flerent froma)\l’. This leads
to the following natural modification of (1.1):

Definition 1.14. Let G be P-generic oveM, and letM think thatz is aP-name.

G = X, if xe M&(ApeGNP)ME“pIrz =X’ .
i {g[GIM : @pe GNP)(g, p) € TN M} otherwise.

M[G] = {z[G]M : T € M, Mk “z is aP-name.

(Note that being #@-name is absolute.)

We usually just writer[G] instead oftr[G]M. There should be no confusion
which notion of evaluation we mean, 1.14 or (1.1), which we akso write ag[G]V:

e If M is transitive, thern[G]M = 7[G]".

6Any usual concept of forcing extension (with regard to pairs-models) will require thaM[G] is an
end-extension oM: If 7 is forced to be in som& with x € V, then the value of can be decided by a dense
set. Similarly, we getM is M[G] intersected with the transitive closure [df.
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e If M is elementary submodel (af@lis M- andV-generic), then we usgG]V.
(z[G]M does not lead to a meaningful forcing extensiohs.)

e If M is ord-transitive, then we ugg¢G]".

Remark1.15 The omission ofM in z[G]M should not hide the fact that for ord-
transitive modelsz[G]M trivially doesdepend orM: If for exampleM;NB = a < B
andM; thinks thatr is a standard name f@ry and if M, containsP, r anda, then then
7[GIM = B # z[G]M2.

7[G] is well-defined only ifG is M-generic, or at least a filter. (I contains
Po Lp p1, then there is (inVl) a namer and xg # X1 such thatp; forcest = x; for
i €{0,1}.)

If M is ord-transitive then the basic forcing theorem works ambugusing the
modified evaluation):

Tueorem 1.16. Assume tha¥l is ord-transitive and thd® is M-generic. Then
e M[G]is ord-transitive.
e M[G] > M is an end-extension. O\l = ONM.
e M[G] E ¢(z[G]) iff M £ pI- ¢(z) for somepe GNP.

Moreover, the transitive collapse commutes with the fayamtension: Letl’, f’)
correspond toM, andG’ the image ofs under the transitive collapse. TheMd'[(G'], f*)
corresponds td[G].

(The proofis a straightforward induction.) So forcing exg®ns of ord-transitive
models behave just like the usual extensions. For examglénmediately get:

CororLary 1.17. If M is countable and ord-transitive, théme “p - ¢(7)” i ff
M[G] E ¢(z[G]) for every M-generic filterG (in V) containingp.

Fact 1.18. Assume thaN is ord-transitive,M € N, P € M. Then the following are
absolute betweeN andV (for G € N andz € M):

e M is ord-transitive.
e Gis M-generic, and
e (assumingM is ord-transitive an is M-generic)r[G]M.

The last item means that we get the same valug[®™ whether we calculate
itin N or V. It doesnotmeanz[G]M = z[G]N. (If 7 is in M, thenz[G]N will generally
not be an interesting or meaningful object.)

7If M is not ord-transitive, e.gM < H(y), thenz[G]M does not lead to a meaningful forcing extension:
Let P be the countable partial functions fram to w1, and letG be M-generic G can additionally bé/-
generic as well). Lef € M be the canonical name for the generic fifrSoL[G]™ is countable. Since
is o-closed [[G]M € PV (P) € M, soM[G] (using the modified evaluation) is not an end-extensiow .of
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Let us come back once more to the proper case. By inductioneorank of the
names we get that the ord-collapse and forcing extensiommgen

Lemma 1.19. Assume tha < H(y), andP e N. Leti: N — M be the ord-
collapse.

e GC PisN-generic{fi[G] is M-generic.

e Assume thaG is N- andV-generic. Then the ord-collap$ef N[G] extends,
and! (z[G]) = (iG]

e If P C hco, then is the identity orP.

1.3. M-complete subforcings

In the rest of the paper, we will use ord-transitive modelthim context of definable
proper forcings (similar to Suslin proper). But first let usefly describe another,
simpler, setting in which ord-transitive models can be used

Let M be a countable transitive model a@Y a forcing notion inM. We say
thatQM is anM-complete subforcing of) € V, if QM is a subforcing ofQ and every
maximal antichairA e M of QM is a maximal antichain ifQ as well. So there are
two differences to the “proper” setting® and Q do not have to be defined by the
same formul&, and we do not just require that below every conditioM we find a
QM-generic condition irQ, but that already the empty condition@-generic?

For transitive models, this concept has been used for a omg tlt is, e.g.,
central to Shelah’s oracle-cc [8, 1V]. In oracle-cc forcirmme typically constructs a
forcing notionQ of sizeX; as follows: Construct (by induction @ne w1) an increasing
(non-continuous) sequence of countable transitive mddéléwve can assume thdt®
knows thata is countable), and forcing notior®* € M® such thatQ® C a (so Q* is
forcing equivalent to Cohen forcing, but this is not the tighy to think aboufQ®). We
require thatQ’ = | z; @ for limits 6 and thatQ?*! is an MA-complete superforcing
of Q%. We setQ = Up.,,, Q. So eachQ” will be M?-complete subforcing 0. So
we use the pairNI%, Q%) as an approximation to the final forcing notign Since we
use transitive models, th@ has to be subset &1(X1).

If we want to investigate larger forcing notions, we can tryise ord-transitive
models instead. For example, in [2] we use a forcing itereffie: (Py, Qu)e<w, (Where
eachQ, consists of conditions ik (N1)), and we “approximateP by pairs (M*, P¥),
whereMX is a countable ord-transitive model aMX thinks thatP* is a forcing iter-
ation of Iengthw‘z’. Instead of assuming th&}, is a subforcing ofP,,, it is more
natural to assume (inductively) that egh can be canonically (and in particullst*-
completely) embedded int8,, and thatP, forces thatQX[GZ] (evaluated by the in-
ducedPX-generic filter 5X]) is an M*[GX]-complete subforcing of,. We show that

8They do not have to be nicely definable at all, and furthern@¥feand Q can be entirely dferent:
E.g.,QM could be Cohen forcing iM andQ could be (equivalent to) random forcingVh
%n the proper case, this is equivalent © IS ccc”.
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given PX in a countable ord-transitive mode!* we can find variants of the finite sup-
post and the countable support iteratidghsuch thatP* canonically embeds int®
(and we show that some preservation theorems that are knawprdper countable
support iterations also hold for this variant of countahipgort). For this application
it is enough to consider af-absolute models.

In the current paper, we do something very similar (in the segfing, i.e., the
definablgproper framework), in Sections 4.1 and 4.3. Let us agairsstitee obvious
difference: In the nep case, we use definable forcings,@ni the evaluation in
MX[GX] of the same formula that defin€g, in V[G,], and we just get that below (the
canonical image of) eaghe PX there is somé/*-genericq € P,,.

In particular, the application of non-wellfounded model$d] does not use any
of the concepts that are introduced in the rest of this paper.

2. Nep forcing

2.1. Candidates

We now turn our attention to definable forcings. More pattidy, we will require that
for all suitable (ord-transitive) modeM, “x € Q" is upward absolute betweevi and
V.10 Also, we will require that for alk € Q there is a modeW knowing thatx € Q. This
is only possible ifQ c hco (since every countable ord-transitive model is heaeitiit
countable modulo ordinals), but it is not required tQat H(X1) (as it is the case when
using countable transitive models only).

It is natural to allow parameters other than just reals. Tlewing is a simple
example of a definable iteration using a functionw; — 2 as parameterfg, Qg)s<w,
is the countable support iteration such tQgtis Miller forcing if p(8) = 0 and random
forcing if p(8) = 1.

Once we use such a paramepemwe of course cannot assume thas in the
model M (sinceM is countable and ord-transitive). Instead, we will assuhat ¥
contains its own versiopy of the parameter; in our example we would require that
6 :=wY € M and thatM thinks thatpy is a function froms to 2, (so really domgy) =

1
6N M) and we require thaty (B) = p(B) for all € M.

More generally we definep‘is a nep parameter” by induction on the rafks
a nep-parameter, and

Definition 2.1. p is a nep-parameter, ifis a function with domai € ON andp(a) is
a nep-parameter for all € 8.

Let M be an ord-transitive model. Then, is the M-version ofp, if dom(py) =
dom{p) N M andpy (@) is the M-version ofp(a) for all @ € dom(y).

In other words: A nep-parameter is just an arbitrary setttweyewith a heredi-
tary wellorder.

10There are useful notions similar to nep without this propeExamples for such forcings appear natu-
rally when iterating nep forcings, cf. Subsection 4.1.
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If M containspy, thenM thinks thatpy is a nep-parameter (anddf= dom(),
thenB € M andM thinksg = dom(pwm)).

We can canonically code a reglan ordinal, or a subset of the ordinals as a
nep-parameter.

Definition 2.2. Let p be a nep-parameteM is a (ZFC, p)-candidate, ifM is a count-
able, ord-transitive, successor absolute model of Z&@ containgy, the M-version
of p.

We can require many additional absoluteness conditiongdadidates, e.g.,
the absoluteness of the canonical codingrof «, or cfw-absoluteness. The more
conditions we require, the less candidates we will get, the weaker the properness
notion “for all candidates, there is a generic condition'gi@ng to be. In practice
however, these distinctions do not seem to matter: All nepifigs will satisfy the
(stronger) dicial definition, and for all applications weaker versionfiises.

To be more specific: Most applications will only use propsenfor candidates
M that satisfy

(2.1) M is an internal forcing extension of an elementary submédel

More exactly: We start wittN < H(y), pick someP € N, set (', P’) = ord-col(N, P),
and letG € V be P’-generic oveN’. Some application might also use

(2.2) M is an elementary submodel irPaextension, for a--completeP.

More exactly: LetP beo-complete, pick in thé-extensionv[G] someN < HVICl(y)
and letN’ be the ord-collapse. The¥ is inV (and an ord-transitive model).

Of course all these models satisfy a variety of absolutepesserties (such
as the canonical coding efx « etc). So for all applications, it would be enough to
consider candidates that satisfy (2.1) (or some exoticiegtn might need (2.2)),
but we we do not make the properties (2.1) or (2.2) part of tfieial definition of
“candidate”, since both properties are much more compgatéind less absolute) than
just “M is a countable, ord-transitive ZF@nodel”.

Note however that generally we caatassume that the used in (2.1) is proper
or even justwi-preserving. For example in the application in [5], we né&etb be
a collapse ofX;. So in particular we can not assume that all candidates ave cf
absolutene.

We will only be interested in the normal case:

Definition 2.3. ZFC* is normal, ifH(y) £ ZFC* for suficiently large regulag.

Sometimes we will assume that ZF& element of a candidatd. This allows
us to formulate, e.g.,M thinks thatM’ is a candidate”. We can guarantee this by
choosing ZFCrecursive, or by coding it into.

Lemma 2.4. 1. (Assuming normality.) IN < H(y) containsp, and M, pm)
is the ord-collapse of, p), thenM is candidate angdy, is the M-version ofp.
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2. The statementspy is the M-version ofp” is absolute between transitive uni-
verses. Ifpy is the M-version ofp, andM thinks thatM’ is ord-transitive and
thatpy- is the M’-version ofpy, thenpy- is the M’-version ofp.

3. If M[G] is a forcing extension oM, andpy the M-version ofp, thenpy is also
the M[G]-version ofp.

4. Forxe hco, a nep parameterand a theony in the languagée, c*, c’}, the exis-
tence of a candidatie! containingx such that i, €, x, py) satisfiesT is absolute
between universes containinQ’ (and, of coursex,p andT).

This is straightforward, apart from the last item, whicHduals from the follow-
ing modification of Shoenfield absoluteness.

Remark2.5. Shelah’s paper [9] uses another notion of nep-parametdr Wit defini-
tion, for everyp andM there is exactly ondl-versionpy of p, but this is not the case
for Shelah’s notion. (There, a candidate is defined as paiipy;) such thaty € M is
some Mversion ofp.) Both notions satisfy Lemma 2.4.

LemMma 2.6. Assume that

e Sis a set of sentences in the first order language using th#oreleymbole and
the constant symbots', c¥,

e ZFC' C ZFC,

e L’ is atransitive ZFC-model (set or class) containing Zﬁoil’, p, andS,

e xehcd.

If in V there is a (ZFC, p)-candidateM containingx such that i1, e, x, pm) E S, then
there is such a candidate lir.

Proof. We call such a candidate a good candidate. So we have to show:
(2.3) If there is a good candidate V) then there is one ib’.

Just as in the proof of Shoenfield absoluteness, we will shaiva good candidatel
corresponds to an infinite descending chain in a partialrofdéefined inL’. (Each
node ofT is a finite approximation tdM). Then we use that the existence of such a
chain is absolute.

We define for a nep-parametger

(2.4) f-closg) = {y(a) : ac dom)u | | f-closty(a).
aedom(y)

So everyz € f-clos(y) is again a nep-parameter.
Fix in L’ for everyy € ({x} Utrans-closk)) \ ON an enumeration

(2.5) y={fY(n): new)}.
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Also in L’, we fix somes > w\l’ bigger than every ordinal ifix} U trans-closg) and
bigger than domy) for everyy € f-clos(p) U {p}.

We can assume th& contains ZFC as well as the sentence™is a nep-
parameter”. We use (ib’) the following fact:

Let S be a theory of the countable (first-order) languale Then there
is a theoryS’ (of a countable languagé€s > Ls) such that the deduc-
tive closure ofS’ is a conservative extension 8f and every sentence in
S’ has the form{(x1)(¥x2) ... (VXn)(3Y) ¥ (X1, ..., Xn,y) for some quantifier
free formulay (using new relation symbols &).

So we fixS” and£’, consisting of relation symboR (i € w) of arity r; > 1, and
constant symbols; (i € w). We can assume that there are constant symbols ford
for each natural number. We can further assume

e p=C%,cr=CP,

Rp = RE(X,y) expresseg ey,

Ry = R%9M(x,y) expressesx is a function and domq = y”,

R, = R€195(x) expresses € f-clos(c?) U {c"},

e R3 = RON(X) expresses e ON.

We setL = {Ry...Ri_1,Cp...Ci-1}. and fix an enumerationp()ic,, of all sen-
tences irS” such that; is a£{-sentence. We now define the partial ordieas follows:
A nodet € T consists of the natural numbe, the sequences! and ®)i<, and
the following functions with domaim': ord-vaf, x-val', p-val', and rk such that the
following is satisfied:

e n' > 4. We interpren' = {0,...,nt — 1} to be the universe of the following -
structure:c! € n' is thet-interpretation of; andR' ¢ (n')" is thet-interpretation
of R foralli < nt.

e ord-val : nt - suU{ng. If ¢ is the constant symbol for sonma < w, then
ord-val(c) = m. If ord-val(a) # na, then we have the followind®°N'(a) holds,

andRe'(b, a) holds if ord-val(b) € ord-val(a). (Where we use the notation that
na¢y for ally.)

e x-val': n' - {x} Utrans-closk) U{na} such thai-val'(c*!) = x. If x-val'(a) ¢ ONU
{na}, thenRE'(b,a) iff x-vali(b) € x-val'(@). If x-val'(a) € ON, thenx-vall(a) =
ord-val(a).

. p—valtt: nt - {p} uft—clos(p) U {ne}} such thatp-val'(c"') = p andyp-val'(a) # na iff
Ri-Clos'(q). If RF€195'(3) andRA°™ (a, b), then ord-va(b) = dom(p-vall(a)).

o rk!: nt > §is a rank-function. I.e., iR€'(a,b), then rk(a) < rki(b).
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We sett >7 t’ if

e n' >n!, and all the interpretations and functiongtirare extensions of the ones
in t. (So we will omit the indices$ andt’.)

e If i <n', andy;j € S’ is the sentencevy)...(Yx)3y)¥(Xy), then for alld in n'
there is ab e n' such that’ & (&, b).

e Assume that < n', a< nt andx-val(@) =y ¢ ONN{na. Then there is & < ny
such thax-val(b) = f¥(i), cf. (2.5).

Then we get the following:
e T is a partial order.

e The definition ofT can be spelled out ib’, the definition is absolute, and every
node ofT is element olL’. SoT is element ol’.

e In particularT has an infinite descending chainlihiff T has one irv.
¢ T has an infinite descending chaifithere is a good candidate.

Let us show just the last item: Clearly, a suitable candidigfines an infinite de-
scending chain: GiveM, we can extend it to aB’-model (sinceS’ is a conservative
extension ofS) and find a rank function rk foM. Then we can construct a chain as a
subset of those nodés T that correspond to finite subsetsMf To every such we
just have to put enough elements ittdo witness the requirements.

On the other hand, a chain defines a candidate: The union atiihetures in
the chain is aL’-structureM’ and anS’-model. The function rk defines a rank &ff.
So we can define by induction on this rank a funcfioM’ — V the following way:

i = ord-val@ if ord-val(x) # na
~ [i(y): yex} otherwise.
We setM’ = i[M]. By induction,i is an isomorphism betweei(, RE, RON, xM’, pM")
and M, €,0N, x, pn), i.e., thatM is the required good candidate.

Remark?.7. o If pis a real, then the transitive collapse of a candidate still i
candidate. So i is a real andS as above, the existence of an appropriate
candidate is equivalent to the existence of a transitivelickate, which is eg%
statement (in the parametars, S).

e There is also a notion of non-wellfounded non elementary-ifiepw) forcing,
cf. [10], where candidates do not have to be wellfoundednThe existence of
a candidate (with a real parameter) is ev@}atatement.
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2.2. Non elementary proper forcing

We investigate forcing notion® defined with a nep-parameter Q = {X: peq(X, p)}.

If M is a (ZFC,p)-candidate, we assume that i the class{x : pcq(X, pm)} is a
set, which we will denote b@V. Generally such " does not have to be a subset
of M, but to simplify notation (as in Assumption 1.12) we assuhag @ is disjoint

to ON (we can assume that this requirement is explicitlyestan the formulapeg).
ThenQM c M. Analogously, we assume that< p iff ¢<o(g, p,p), and that inM,
{(p,9) : ¥<o(a, p,pm)} is & quasiorder oM. We writeq <M pfor M £ ©<0(0, P, Pm).
Additionally we require that these formulas are upward®ohis. To summarize:

Definition 2.8. e M. is a candidate itM, means the followingM; is a candidate,
M, is either a candidate &> =V, M1 € My, andM» knows thatMVl; is countable.

e ¢(X) is upwards absolute for candidates meangvi{fis a candidate iM,, ae
M1, andMs E ¢(a), thenMy E ¢(a).

e Aforcing Q is upwards absolutely defined by the nep-parametiéthe follow-
ing is satisfied:
In V and all (ZFC, p)-candidatesM, ¢.q defines a set ang<q defines a qua-
siorder on this set, angkg andy<g are upwards absolute for candidates.

As usual, we define:

Definition 2.9. q € Q is Q-generic overM (or just: M-generic), ifq forces that (the
V-generic filter)Gq is QM-generic oveiM.

Recall that G is M-generic” is defined in 1.11. Of cours8g will generally
not be a subset @M.

Note that ‘p e Q", “q < p” and therefore p || " are upward absolute, but
is not. (It will be absolute in most simple examples of nepeiiag, but typically not
in nep-iterations or similar constructions using nep fogsi as building blocks). This
effect is specific for nep forcing, it appears neither in promecihg (since forN <
H(y), incompatibility always is absolute), nor in Suslin proggnce the absoluteness
of incompatibility is part of the definition).

Since. is not absolute,(is M-generic” is generallyotequivalent to tj forces
that all densé® in M meetG”. (The V-genericG is not necessarily @ -filter.)

Now we can finally define:

Definition 2.10. Q is a non elementary proper (nep) forcing for (ZF®), defined by
formulaspeq(X, v), p<(X.Y, p), if

e Qis upwards absolutely defined for (ZF®)-candidates, and
o for all (ZFC*, p)-candidatesvl and for allp e QM there is arM-genericq < p.

Sometimes we will denote theand ZFC belonging toQ by pg and ZFC’(‘2 and
denote a (ZFg, po)-candidate by Q-candidate”.

We will only be interested in normal forcings:
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Definition 2.11. A nep-definitionQ is normal, if
e ZFC' is normal (cf. 2.3),
e QchcoinV and in all candidates (cf. 1.9),

e “pe Q”and “q < p” are absolute betweeX and H(y) (for suficiently large
regulary).

If ZFC* is normal, then the ord-collapse collapse of &hy H(y) containingp
is a candidate. So we get:

Lemma 2.12. IfQis normal, then for any € Q there is a candidatél such that
ge QM. If Qis normal and nep, theqQ is proper.

Proof. This follows directly from Lemma 2.4 (and the fact that in tthefinition of
proper one can assume that the elementary submodels cantarbitrary fixed pa-
rameter, see e.g. [1, Def. 3.7]). O

As already mentioned, we are only interested in normal figgi and we will
later tacitly assume normality whenever we say a forcings. n

Remark2.13 However, it might sometimes make sense to investigate womal nep
forcings. Of course such forcings do not have to be propereXemple can be found
in [9, 1.19]: We assume CH i, and define a forcing for which we get generic
conditions not for all ZFC models, but for all models of2 = N,. This forcing can
collapseN;.

2.3. Some simple properties

Shoenfield absoluteness 2.6 immediately gives us many siogges of absoluteness.
We just give an example: 19 is upward absolutely defined and normal, tlien p is
equivalent to “there is a candidat thinking thatq < p”. So in particular:

CororrLary 2.14. Assume that’ is an extension o¥ with the same ordinals,
and thaQis (normal) nep iV as well as ivV’. Thenpe Q, q< pandp|| g are absolute
betweenVv andV’. (But “Ais a maximal antichain” is only downwards absolute from
V' toV.)

The basic theorem of forcing can be formulated as: For aitramgountable
modelM andP in M

(2.6) [MEpro()]iff
[M[G] E ¢(z[G]) for every M-generic filterG € V containingp].

(And there always is at least ohd-generic filterG € V containingp.)
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By 1.17 we get the following:

(2.7) If M is a countable, ord-transitive model aR& M, then (2.6) holds.

With the usual abuse of notation, the essential propertyaydgr forcing can be
formulated as follows: 1M is an elementary submodel Bif(y) andQ in M is proper,
then

(2.8) [MEpo()] iff
[M[G] E ¢(z[G]) for every M- andV-generic filterG containingp] .

(And there always is at least ohd- andV-generic filter containingp.)
For nep forcings we get exactly the same:

(2.9) If Q is nep andV a Q-candidate, then (2.8) holds.

If M1 is a candidate itM», andq is Q-generic oveiM1, theng does not have to
be generic oveM, (sinceM, can see more dense sets). Of course, the other direction
also fails: Ifgis M2-generic, then generally it is nd;-generic (corresponding to the
fact in non-ccc proper forcing that not evevygeneric filter has to bél-generic):M;
could think thatD is predense, butl, could know thaD is not, orM; could think that
p1 L p2, but My sees thap; || p2. Even for very simpleQ satisfying thatL is absolute
“{p;i : | € w}is a maximal antichain” need not be upwards absolute (inrastito Suslin
proper forcing, see example 3.10).

3. Examples

There are oodles of examples nep forcings. Actually:

Rute or THums 3.1. Every nicely definable forcing notion that can be proien
be proper is actually nep.

This rule does not seem to be quite true. A very partial p@kcdunterexample
is 3.17. However, the rule seems to hold in most cases, arairte=ceven truer if the
proof of properness uses some form of pure decision andrfusig., foro-closed or
Axiom A. (And in these cases, the proof of the nep propertyss a trivial modification
of the proof of properness.)

Overview of this section:

e Transitive nep forcing: The forcings is a set of reals, thénitéon uses only a
real parameter. In this case it is enough to consider tigesiandidates.

3.1 Suslin proper and Sustin

3.2 A specific example from the theory of creature forcing.
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e Non-transitive nep: The forcings are not subset$i(iR1), and we have to use
non-transitive candidates.
3.3 Trival exampleso-closed forcings.
3.4 Products of creature forcings and similar construstion

Other examples of of non-transitive nep forcings are itenat of nep forcings.
We will investigate countable support iterations in theti®ecs.

o Additional topics:

3.5 Nep, creature forcing, and Zapletal's idealized fagcin
3.6 Counterexamples: forcings that are not nep.

3.1. Suslin proper forcing

Assume thaQ) C w® is defined using a real parameter

In this case it is enough to consider transitive candidaSesh a candidate is
just a countable transitive model of ZF€ontainingp.!!

The first notion of this kind was the following:

Definition 3.2. A (definition of a) forcingQ is Suslin in the real parameteyif pe Q,
q< pandp L qarei(p).

For Suslin forcings, the nep property is called “Suslin gndp

Definition 3.3. e Qis Suslin proper, ifQ is Suslin and nep. l.e., for every (transi-
tive) candidateVl and everyp € QM there is arM-genericq < p.

e Qis Suslin ccc, ifQ is Suslin and ccc.

Suslin ccc implies Suslin proper (in a very strong and alisolay, cf. [3]).

It seems unlikely that Suslin plus proper implies Suslinpem but we do not have a
counterexample. Cohen, random, Hechler and Amoeba foace§uslin ccc. Mathias
forcing is Suslin proper.

Some forcings are not Suslin proper just because incomliigtis not Borel,
for example Sacks forcing. This motivated a generalizatib8uslin proper, Suslih
[1, p. 357]. ltis easy to see that every Susliorcing is nep as well, and that many
popular tree-like forcings are Sustire.g., Laver, Sacks and Miller [4].

3.2. An example of a creature forcing

A more general framework for definable forcings is creatoreifg, presented in the
monograph [6] by Rostanowski and Shelah. They introduceymaays to build basic

More specifically, the straightforward proof shows thathis tase Q is nep” — i.e. “nep with respect
to all ord-transitive models” — is equivalent toQ'is nep with respect to all transitive models”.
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forcings out of creatures, and use such basic forcings istoactions such as products
or iterations.

Typically, the creatures are finite and the basic creaturerfg consist ofw-
sequences (or similar hereditarily countable objects atlereatures. The proofs
that such forcings are proper actually give nep. We dematestinis éect on a specific
example (that will also be used in Subsection 3.5). Thisifipeexample is in fact
Suslin proper, but other simple (and similarly defined) trsmaforcing notions are nep
but not Suslin proper.

We fix a sifficiently fast growing? functionF : w — w and set

(3.2) k= [ FG)-

j<i
Definition 3.4. An i-creature is a function : £(a) — w such that
e acC F(i) is nonempty.
e ¢ is monotonic, i.e.b c cc aimpliesg(b) < ¢(c).
¢ ¢ has bigness, i.eg(buU c) < max(@(b),¢(c)) + 1 for allb,c c a.
e ¢(0) =0 andgp({x}) < 1forallxea.

We set val$) := a, nor@) = ¢(a), and we callp; stronger thanpg, or: ¢1 < ¢o, if
val(¢1) € val(po) andg1(b) < ¢o(b) for all b C val(g,).

For everyg andx € val(¢) there is a stronger creatugé with domain{x}. For
eachi, there are only finitely maniscreatures.

Another way to write bigness is:
(3.2) If b=c1Uc, C athen eithek(cy) > ¢(b) — 1 or ¢(cy) = ¢(b) — 1.

Definition 3.5. A conditionp of P is a sequencei))ic., such thatp(i) is ani-creature

and liminfi_, \ki*/nor(p(i)) = oo. A conditionq is stronger tharp, if g(i) is stronger
thanp(i) for all i.

Given ap € P, we can define the trunk gf as follows: Letl be maximal such
that val(p(i)) is a singletor{x;} for all i < 1. Then the trunk is the sequencg)(,.

We define thé>-namey) to be the union of all trunks of conditions in the generic
filter. For everyn, the set of conditions with trunk of length at least (open) dense.
If g < pthen the trunk ofy extends the trunk op. Sop is the name of a real, more
specificallyy € [Tie., F(i)-

P is nonempty: For example, the following is a valid conditioral(p(n)) =
F(n), andp(n)(b) = log,(Ibl) .

. ) (e
12t is enough to assurig(i) > 2 ').
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Lemma 3.6. P satisfies fusion and pure decision,B@s w®-bounding and nep
(and in particular proper).

Sketch of proof.This is an simple case of [7, 2.2]. We give an overview of theofir
which uses the creature-forcing concepts of bigness amnihigal

Bigness:Assume thad is ani-creature with nogf) > 1, and thaf : val(¢) — 2.
Then there is @& < ¢ such that nogf) > nor(@) — 1 and such thaf | val(y) is constant.

(This follows immediately from (3.2).)

Halving: Let ¢ be ani-creature. Then there is aereature halff) < ¢ such that

¢ nor(half@)) > [nor(@)/2].

e If y < half(¢) and nor{) > 0, then there is &’ < ¢ such that nowf’) > [nor(¢)/2]
and val{’) c val(y).

(Proof: Define half$) by val(half)) = val(¢) and half¢)(b) = max(Q ¢(b) — nhor()/2]).
Giveny as above, we sdit:= val(y) and defing)’ by val@y’) = b andy’(c) = ¢(c) for
allcch. Then

0 <nor(y) = ¢(b) < half(g)(b) = ¢(b) - Lnor(@) /2],

so nor¢/’) = ¢(b) > nor()/21.)
Fusion: We deflneq <mpby:q<p,qlm=p| m, and foralln>meitherqg(n)

is equal top(n) or \'7nor(q(n)) >m. If (pn)new IS @ Sequence of conditions such that
Pn+1 <n+1 Pn, then there is a canonical limit, < pp.

Set posp,n) = [Ti<nVval(p(n)). Forse pos(p,n), we construcip A s< p by en-
larging the stem op to bes (or, if the stem was larger thamto begin with, then the
stem extendsand we sepA s=p). The sefpAs: se pos(,n)} is predense undqg.
Let D be an open dense set. We say thassentially is irD, if there is am € w such
thatp A se D for all se pos(p,n).

Pure decision:For pe P, ne w andD C P open dense there istg<y, p essen-
tially in D.

Then the rest follows by a standard argument:

Nep Note thatp € P andq < p andq <k p are Borel (sop L g is absolute;
actually L is Borel as well, i.e.P is Suslin proper). Fix a transitive modi# and
a po € PM. Enumerate all the dense setsNhasDj,D,.... Givenp, € M, pick in
M somepn:1 <n+1 Pn €Ssentially inDpy1. In 'V, build the limit p, < po. Thenp, is
M-generic: LetG be aP-generic filter ovelV containingp,,. Fix me w. We have to
show thatG N M meetsDy,. Note thatG containspn, (sincep, < pm). In M, there is
ann € w such thatpy A se Dy, for all s€ pos(m,n). The definitions of pog{m,n) as
well aspm A sare absolute betweavt andV, the set poggm, n) is finite (and therefore
subset oM), the sef{pmA S: s€ pos(m,n)} is predense (iV), sopm A se G for some
Se pos(m,n). So we geGNMN Dy, # 0.

Continuous readingf names and therefotg’-boundingfollows equally easily.
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It remains to show pure decision. Fixn andD and setpg = p. Given pm, we
constructpm,1 as follows:

e Choose
(3.3) hm > n+msuch that \k'*/nor(pm(l)) >n+2mfor all | > hy,.

e Enumerate pogt,) assy,...,Sv. Note thatM < k;';m, according to (3.1).
e Setpd = pm. Givenpk;l, pick p&, such that

— nor(pK,(1)) > (n+2m)% /2% for all | > h,.

— PK(1) = pm(l) for | < h,
— Eitherpk, A s¢ is essentially irD (deciding case), or it is not possible to find
such a condition thep (1) = half(pk;(1)) for all | > hy, (halving case).

*

e Setpm1to bep). In particular, \k'/nor(pmﬂ(l)) > (n+2m)/2 for all | > hy,.

Let p,, be the limit of all thepy,,. For everyn € w define by downward induction on
h=n,n-1,...,hg theh-creatures,, and sets\nn C pos(., h) in the following way:

e Annis the set ose pos(p,,n) such thatp,, A sis essentially irD.

e Assumehp < h < n. So for all se pos(p,,,h) some of the extensions in sfto
pos(@,, h+1) will be in Apne1 While others will be not. By shrinking,,(h) at
mostki many times, each time using bigness, we can guarantee éhastiting
h-creatureg, satisfies: For alls € pos(p,,h) either all extension compatible
with ¢np are inAppe1 Or NO extension is. Setpp to be the set of thosesuch

that the extensions all are i n.+1. Note that {k*rzpn,h >1/2 frpu,(h).

For eachh, there are only finitely many possibilities fay, , andgn h, SO using Konig's
lemma, we can get a sequenge, A. h)hy<h<w Such that for allN there is am > N
such that
(3.4) @<, M) = (Prp. Anp) forallhg <h < N.

We claim

(3.5) Aspg = POS(w, ho)

Then we choose anysuch thatAnp, = A« n, and defingy by

() ifl<hgorl>n
q(l) = {p 0 o
éin  Otherwise.

Theng essentially is irD, according to (3.5) and the definition af, .
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So it remains to show (3.5). Assume towards a contradictiahste pos(p,) \
A.ny. Letq be the condition with stems and the creatures{n)n,<n<». Pick some
r<ginbD.

Let s’ be the trunk of. Sos extendss. Let h be the length of'. Without loss
of generality, we can assume that

(3.6) Ynore() > 2 foralll > h

and thath = hy, for somem, wherehy, is the number picked in (3.3) to constryst, .
In particular,s’ = s, for somek, so

(3.7) r<p
We know thatr € D. This implies that

(3.8) I’ := pk, A 5 essentially is irD (andr <r’).

Assume otherwise. Then pi¢k > hy, such that i nor(r(l)) > (n+2m)/2 for alll > H.
For hm < | < H, we can unhalve(l) to get some (1) with norm at least nog;1)/2 >
(n+2m)N /2%, Then the condition consisting of trusk the creatures(l for hm <1< H
andr(l) for | > H would be a suitable condition for the deciding case, a cdittian
to the fact that we are in the halving case. This shows (3.8).

Note thatp, A S’ < pk A S, so by (3.8) we get than, A S essentially is irD.
We can now derive the desired contradiction:

(3.9) P, A S is not essentially iD.

Proof: Assume otherwise, i.e., for sorNeeverys”’ € pos(p,,, N) extendings’ is in D.
Pickn> N as in (3.4). Then according to the definition/f,, we gets € Anp,, and
thereforese Anp,, @ contradiction. This shows (3.9). O

3.3. o-closed forcing notions

The simplest (and not very interesting) examples of nonsitive nep-forcings are the
o-closed ones. We use the following obvious fact:

Fact 3.7. Assume thaf is upwards absolutely defined, thatis upwards absolute as
well (and therefore absolute) and ttgais o-closed (inV). ThenQ is nep.

It is not enough to assume th@is ccc (inV and all candidates) instead of
o-closed, see Example 3.17.

So the following definition of) = {f : w1 — w1 partial, countablgis nep:

Example 3.8. DefineQ by p = w; andf € Qif f : p — pis a countable partial function.
ThenQ s nep.
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Note that we cannot use; in the definition directly, since there are candidates
M such thatw}! > Y. Neither could we usé : @ — p, @ € p, since such arf in
a candidateM really has domaim N M, which is generally not an ordinal (i.e., this
definition would not be upwards absolute).

More generally, we can get the examples:

Example 3.9. Assume thatp codes the ordinalg” and A°, and setQ = {f : x* —
AP partial, countable(ordered by extension). The&pis nep.

This example shows that a nep forcing can look completédfeidint in diterent
candidates: Assumé = wj; andA® = w». SoinV, Q collapsesv, to wy. LetN < H(y),
M = ord-col(N), andMg € V a forcing-extension o for the collapse ofv1 tow. Then
Mg is a candidate, anilp thinks thatw\l’ is countable, s@ is trivial in Mg. If M1 e V
is a forcing-extension o¥ for the collapse ofv; to w1, then inM; Q is isomorphic to
the set of countable partial functions fram to w1.

A slight variation (stillo-closed):

Example 3.10. Setp = w1, Q= {f : p » LN 2 partial, countable(ordered by exten-
sion). ThenQ is nep, and there is a candidd#® which thinks thatA is a countable
maximal antichain oQM, butA is not maximal inv.

Proof. xe L is upwards absolute, s@,, <q and_Lq are upwards absolute. Cleay
is o-closed inV. SoQ is nep. Assum& = L, and pick soméN < L, for « regular. Set
M = ord-col(N). In L, constructM’ as a forcing-extension d¥ for the collapse ofv;
to w. ThenM’ thinks LN 2“ is countable, i.e., thd(0,X) : x e LN 2} is a countable
maximal antichain. O

Another, trivial example for a countable antichain with redssolute maximality
is the (trivial) forcing defined b = {1g}U(LN2¥) andx<yiffy=1g or x=y.

3.4. Non-transitive creature forcing

Some creature forcing constructions use a countable supmatuct (or a similar con-
struction) built from basic creature forcings. In the usefses these forcings can be
shown to be proper, and the proof usually also shows nep. @uédvtake the index
set of the product to be an ordingland choose the nep paramepewith domaink
such that(«) is the nep-parameter (a real) for the basic creature fgscly .

To give the simplest possible example:

Lemma 3.11. The countable support product (of any size) of Sacksrfgs is
nep.

Proof. Again, the standard proof of properness works. First soneion: A splitting
node is a node that has two immediate successors.nThesplitting frontF! of a
perfect tre€l C 2<“ s the set of splitting nodas= T such that has exactlyn splitting
nodes below it. Note tha/ is a front (i.e., it meets every branch) and therefore finite
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(sinceT has finite splitting). Lek be the index set of the product. So a conditjpn
consists of a countable domain dgh€ « and for every e dom(p) a perfect trego(i).
In particular,g < p means dont) 2 dom(p) andq(i) < p(i) for all i e dom(p).

Foruc « finite, q <ny pmeansq < p, andFPY = F3O for alli e u.

Fusion: If we use some simple bookkeeping, we can guaransatsequence
Pr+1 <nu, Pn has a limitp,. (Itis enough to make sure that thgare increasing
and that_ ¢, Un covers domg,,).)

For u ¢ dom(p) finite, we set pagp,n) = [Ticu Frﬁ’(i) (a finite set). Fom €
pos,(p,n) there is a canonicg A n < p defined in the obvious way (we increase
some trunks).

Pure decision: given a conditign some finiteu € dom(p), somen € w and an
open dense s&, we can strengthep to someq <, p such thaigA n € D for
all 7 € pos,(q. n).

To show this, just enumerate pég n+ 1) asvo,...,vm-1, S€tPo = P, given pm
find p’ < pAvmin D and then sepm,1 to bep’ “abovevy,” and py, “on the parts
incompatible withvy,". Then setg = pw.

This implies nep: Let the forcing parametecodex (e.g.,p : «k — {0}). Then we
can defineP to consist of all countable partial functiopswith domain domyg)
such thatp(a) is a perfect tree for alk e dom(p). This is an absolute definition,
and compatibility is absolute.

Fix p= po € M. Enumerate aBg,Dj,... all sets inM such thatM thinks D; is
dense. Giverpm-1 € M, pick a suitableuy and find inM somepm <y,.m Pm-1
such thatpm A s € Dy, for all se pos,(p,m). InV, fuse the sequence inf,.
Thenp, < pis M-generic:

Assume thats containsp,, an thereforep,. We know thatpm A sis in G for
somes € pog, (Pm,M). ThenpmAs€ DnNMNG.

With similar standard arguments we g&t-bounding. O

3.5. Idealized forcing

Zapletal [12] developed the theory of (proper) forcing ans of the fornP, = Borel/I
for (definable) ideal$. (A smaller set is a stronger condition.) The generic filbgr
of such forcing notions is always determined by a canonieakgc real,. How does
nep and creature forcing fit into this framework?

According to the Rule of Thumb 3.1, madst which can be shown to be proper,
are in fact nep. But we do not know of any particular theoremsoointerexam-
ples.
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e In particular, we do not know whether there is a good charizetéion of the
(definable) ideal$ such thatP, is nep. (Even assuming thBt is proper, which
is a tricky property in itself, cf. [12, 2.2].)

e Most nicely definable forcing notions with hereditarily edable conditions such
that the generic object is determined by a real are equivabesomeP,, and
[12] proves several theorems in that direction. (E.g., imynecc cases there is
a natural generic real, and the idéadan be taken to consist of those Borel sets
that are forced not to contain the generic.) However, thezenatural examples
of creature forcings where the generic filter is determingd lgeneric real and
yet the forcing is not of the forr®,. The next lemma gives an example.

e Many of the nice consequences that we get for (transitivp) foecings also
follow for forcings of the formP; (not assuming nep, but sometimes other addi-
tional properties). For example the preservation Theofm.A] mentioned in
the introduction corresponds to [12, 6.3.3].

The following lemma is due to Zapletl.

Lemma 3.12. LetP be the forcing of subsection 3.2.
1. The generic filteG is determined by the generic real
2. (R.p) is not equivalent to a forcing of the fornP(, 7).

To make this precise, we have to specify what we mean withitatgnt”. We
use the following version:

Definition 3.13. A forcing notionP together with theP-namey are equivalent td
(with the canonical generic reg), if there areP-namesG| andn; and aP,-nameG’
such thatP forces:G; is theP,-generic filter ovel/ corresponding to the generic real
171, andG’[G{]p, =G.

I.e., we can reconstruct thegeneric filterG by evaluating thé; -nameG’ with
the P,-generic filterG; .
In particular, this implies

(3.10) ¢peP)(Aq<p)(ABeP)qrpBeG| & Bip, peG'.

We will need the following straightforward fact:

Lemma 3.14. Assume thatR(n) is equivalent toP;, and that there is a Borel
function f such that-p 7y = f(;7). Then the canonical map: P; — ro(P) defined by

B+ [ € Bllp is a dense embedding, where we 3et(B :1-p 5y ¢ BVIC]}.

13jindfich Zapletal, personal communication, November 2007.
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Proof. Given p € P, we need somé such that O« [y € B] < p. Letq, B.,g be as
in (3.10), and seB = f~1B. In particularB -p, pe G, so

neBiff f() =€ Biff 5jf € Biff Be G|, which impliesp e G'[G]],
i.e.,peG. Also,qip Be G|, soq< [y B] < p. O
A density argument together with [12, 3.3.2] gives the fellog:

Lemma 3.15. Assume thaP is w® bounding and has Borel reading of names
with respect to thé>-namey and that B, ;) is equivalent tdP,. Fix po € P. Then there

isap:1 < posuchthat’ ={pe P: p< p1} satisfies the following: For alb there is a
compact se€ such that G¢ [[57 € Cllrop) < p.

Borel reading means: For @nameg for a real and alp € P there is a Borel
function f and ag < p forcing thatr = f(y).

Note that the forcing of Subsection 3.2 has Borel readingr{@ontinuous read-
ing) of names from the canonical geneyic

Proof. Given po € P, there is somep; < p and f Borel such thaip; forcesy; to be
f(17). So according to Lemma 3.14, the canonical embedding; — ro(P’) is dense
for J={B: p rp ¢ BVI®l} andP’ = {p < py}. Givenpe P, find some Borel-cod®
such thatp(B) < p. [12, 3.3.2] gives a-positive compact subset &t O

Proof of 3.12. Proof of (1).
We will use the following property of norms, cf. Definitiord3.

For normsgo, ¢1 with val(go) Nval(p1) # 0 there is a weakest norm

(3.11) @0 A ¢1 stronger than bothg ande; .

Proof: We defina) = ¢g A ¢1 the following way: val{) = val(¢o) Nnval(p1) andy(b)
is defined by induction on the cardinality bf If |b| < 1, theny(b) = min((b) =
mingo(b), #1(b)). Otherwisey(b) = min(X(b)), for

X(b) = {go(b), 1(b)} U {1+ max(bo), ¥(b1)) : boU b1 = b}.

We have to show that is a norm: Bigness follows imediately from the definition. It
remains to show monotonicity. We show by inductionton

(Ve b)y(c) < y(b)

l.e., ¥me X(b))y(c) < m. Form= ¢o(b), we havey(c) < ¢o(c) < ¢o(b) = m. The same
holds form = ¢1(b). So assumen =1+ max((bo),¥(b1)), without loss of generality
for nonempty and disjoirttg, b;. Thenbgnc ¢ bandb; nc ¢ b, so by definitions(c) <
1+ max(y(bo N c),¥(br N c)) which is (by induction) at most-£ maxg/(bp), ¥ (b1)) = m.

On the other hand it is clear thetis the biggest possible norm that is smaller
thango and¢;. So we get (3.11).



234 J. Kellner

We will also need:
(3.12) (b cval(go A ¢1)) (Abo, b1)b=boUbsy & (¢o A ¢p1)(b) > maxpo(bo), 1(P1))

Proof: Again, writey for ¢g A ¢1. By induction onlb|: If w(b) = ¢o(b), we can
setbg = b andb; = 0. Analogously fory(b) = ¢1(b). If w(b) = 1+ max(co),¥(c1))
for co ¢ b and ¢y ¢ b, then by inductiony(co) > maxpo(d3).1(d3)) and y(cy) >
maxpo(d?), 1(d7)), so we can settp = dJud andb; = djud;. Then

¥(b) =1+max((co), ¢/(c1)) = 1+max@o(dp), ¢o(d). 41(dg), #1(cg))
¢o(dgud))

(because of bigness @f), and analogously(b) > ¢1(dé v di). This shows (3.12).

For compatiblep,q € P we can defingAqby (pAg)(i) = p(i) Aq(i). This is the
weakest condition stronger than bgilandg. An immediate consequence of (3.11) is:
p L gis equivalent to

(3.13) (Ane w) val(p(n)) Nnval(g(n))) = 0 or
(3b C w infinite) (AM € w) (YN € b) nor(p(n) A g(n)) < Mk

An obvious candidate for reconstructing the generic fieirom the generic
realy (that works with many tree-like forcings) would be the set

Ho={peP: e[ [valpm)).

New

However, due to the halving property Bf this fails miserably: There are incompatible
conditionsqg andr with val(g(n)) = val(r(n)) for all n. More specifically, we get the
following: For all p there is amr < p such that

(3.14) r 1 half(p), and val¢(n)) < val(half(p)(n)) for all n.

Proof: Setg(n) = half(p). Pick for all suficiently largen somea, € val(q(n)) such that
g(n)(an) = 2. Using the halving property, we can find for alsomeg¢, < p(n) such
that val@,) C a, and norfy,) > nor(p(n))/2. Setr = (dn)new- Thenr andg cannot be
compatible, sincg(n)(val(r(n))) is bounded. This shows (3.14).

Back to the proof. First note the following: Fixe P. Let X(p) be the set of
all sequenceb = (bn)neqg Whered is an infinite subset af) andby, C val(p(n)) such that

{ f? p(n)(b,) : ne d} is bounded. Fix somb e X(b). Thenp forces that; is not in the
set

(3.15) Npp=1{ve l—l val(p(n)) : (3”n e d)v(n) € by}.

nNew
Proof: Assume towards a contradiction that sophe: p forcesy € Ny . So there is a
boundM such thaip’(n)(bn) < M for all ne d. Fix N(n) such that nog§’ (1)) > (n+1+
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M)K > 1+ (n+M)X foralll > N(n). For alll > N(n) we getp(I)(val(p)) \ by) > (n+ M)
(by bigness). Lep” be the conditiorp’(l) T (val(p) \ bn) for | € (b\ N(0)). Thenp”
forces thay ¢ N\, a contradiction. This shows (3.15).

We claim that the following defines:

(3.16) H=Hon{peP: (Ybe X(p)NV) ¢ Nyph

H 2 G by (3.15), so it is enough to show that @ll, p» € H are compatible. Sdd, =
val(p1(n)) nval(p2(n)). Note thatb, is nonempty, sinces, p2 € Hp. So according
to (3.13) we can assume towards a contradiction that thewaolh holds (inV):

(Ab C w infinite) (AM € w) (Yn € b) nor(p(n) A q(n)) < Mk,

According to (3.12), we get},c2 such thatt Uc2 = b, andpi(n)(c)) < M forne b
andi € {0,1}. We assumed that¢ N, @, i.e.,p(n) € ct for only finitely manyn. The

same is true foc?, a contradiction. This shows (3.16) and therefore item (1).

Note that to construdk from 7, we use the (complicated) sety; compare
that with the much easier constructiontdd.

Proof of (2).

Let us assume towards a contradiction tRas equivalent tdP. So it satisfies

the assumptions of Lemma 3.15. Rixe P/, and sefq = half(p). Let C be compact
such that

(3.17) 0+ [peCl<q.

Then[],e, val((n)) c C, sinceC is closed. Let < p be incompatible taj such that
val(r(n)) c val(g(n)) as in (3.14). Ther]xe, Vval(r(n)) ¢ C, thereforer - € C. So
r <* qby (3.17), which contradicts L g. O

3.6. Counterexamples

Being nep is a property of the definition, not the forcing. ©ticse we can find for
any given proper forcing a definition which is not nep (takg dafinition that is not
upwards absolute). For the same trivial reasons, a forabgdlutely equivalent” to a
nep forcing doesn't have to be nep itself. For example:

Example 3.16. There are upward absolute definitions of (trivial) forcirgQ s.t. in
V and all candidates? is a dense suborder &, P is nep butQ is not nep.

Proof. Pick p e LN 2“ and a candidat®ly that thinksp ¢ L. DefineP = {1, p1, p2},
x<pyiffy=1orx=y. SetQ = PU{q:, 02} and define the order 0@ by: 1< g < p;,
and ifp e L, then alsgp, < g1 andp; < g2. These definitions are upwards absolute and
Pis nep. HoweverMg £ “q1 L g2”. But everyQ-generic Filter ovel containsg; and
02, so there cannot be@-generic condition oveM. O

If Q <andL arezi andQis ccc, therQ is Suslin ccc, and therefore (transitive)
nep. (One of the reasons is that in E:‘Plecase it is absolute for countable antichains to
be maximal.) This is not true anymore if the definition@fs justE%:
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Example 3.17. Let Q be random forcing i ordered by inclusion, i.e.,
Q={relL:risaBorel-code for a non-null-get

ThenpeQis Z% andq < pandp L g are (relatively) Borel, and i and all candidates
Qs ccc. ButQ is not nep.

Proof. Pick in L a (transitive) candidat® such thatM thinks thatwi (and therefore
Q) is countable. In particular there is for eath w a maximal antichaim\, in M such
thatu(Xn) < 1/nfor Xn = Uaea, @ (Of courseM thinks thatX, is not inL. But really
it is, simply becaus# c L.) Take anyg e QV, and pickn such that In < u(q). Then
g =g\ Xn is positive and inL, and a generic filter containingf does not meet the
antichainA. O

It is however not clear wheth&) could not have another definition that is nep,
or at least whethe@ is forcing-equivalent to a nep forcing. If is very small (or
very large) inV, thenQ is Cohen (or random, respectively) and thus equivalent to a
nep forcing notion. IV’ is an extension o¥ = L by a random real, then i\’ the
forcing Q (which is “random forcing inL”) seems to be more complicated (it adds an
unbounded real, but no Cohen). We do not know whether in #88@ is equivalent
to a nep forcing.

4. Countable support iterations

This section consists of three subsections:

4.1 We introduce the basic notation and preservation theoW¥e get generic con-
ditions for the limit, but not an upwards absolute definitadnhe forcing notion.

4.2 We introduce an equivalent definition of the iteratiorickihis upwards absolute.
So the limit is again nep.

4.3 We modify the notions of Subsection 4.1 to subsets of tdaals, and give a
nice application.

For this section, we fix a sequend®,{).cc Of forcing-definitions and a nep-
parametem coding the parameters)qce, i.€., p is a nep-parameter with domaén
andp(«) is the nep-parameter used to defipefor eacha € €. (So we assume that the
sequence of defining formulas and parameters live in thengrouwodel.)

To further simplify notation, we also assume that candslatee successor-
absolute, i.e., & is successor” and the functian— « + 1 are absolute for all can-
didates.

Remark4.1 This assumption is not really necessary. Without it, weljase to use M
thinks thata = £ + 1” instead of just & = £ + 1" in the definition ofGM etc., similarly
to 4.20.
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Also, we assume the following (which could be replaced byke&eaonditions,
but is satisfied in practice anyway):

¢ In every forcing extension of, eachQ, is normal nep (for ZFCcandidates).

e We only start constructions with candidatdssuch that generic extensiok§G]
satisfy ZFC .14

4.1. Properness without absoluteness

We use the following notation: For any forcing notians™ p meangy- pe G.

Definition 4.2. Let M be a candidate.

e Ps is the countable support iteration (in other terminologyie dimit of)
(Po, Qa)aes (for all g < €). We useG, to denote theP,-generic filter over,
andG(«) for the Q,-generic filter oveN[P,].

e PMis the element oM so thatM thinks: PM is the countable support iteration
of the sequencel,).cs (for € en M).

In certainP.-extensions oY the generic filtes defines a canonic&-generic
GM overM:

Definition 4.3. GivenG c P, we defineGM by induction one € en' M by using the
following definition, provided it results in BM-generic filter ovemM. In that case we
say ‘G is (M, P,)-generic”. OtherwiseGM (andG[’}" for all 8 > @) are undefined.

o If a=¢+1,thenGy! consists of alp € Py such thap I ¢ € G} andp(¢)[G}'] €
G(0)- ' '

e If a is a limit, thenGM is the set of allp € PM such thatp I £ € G?" for all
leanM.

Definition 4.4. e Assume thaG is (M,P,)-generic and’ € an M. Then we set
M

M M7 . M M H M[GZ] i
GM () = {g[Gg 1: (Ap) pu(_{,g)eGGl}. l.e.,GM(¢)isthe usan{ * “-generic
filter overM[Gg"] as defined irM[GM].

e qis (M,P,)-generic means thaj € P, forces that theP,-generic filterG is
(M,P,)-generic. Ifpe PM (or if pis just aPM-name (inM) for somePM-
condition), therg is (M, P,, p)-generic, ifq additionally forces thap € GM (or
that p[GM] e GM, resp.).

The following is an immediate consequence of the definition:

1Formally we can require thal satisfies some stronger ZF@nd that ZFC proves that every formula
of ZFC" is forced by all countable support iterations of forcingstteé form Q,. Also, we assume that
ZFC proves thaH(y) satisfies ZFC for sufficiently large regulay, and that ZFC proves that the defining
formulas are absolute betwe¥randH (y).
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M

M[GM]
Facts 4.5. e If e MNa, thenGM(0) = Q,  NG().
e If qis (M, P, p)-generic and € Mna, thenq | £ is (M, P, p I {)-generic.
GM is absolute in the following sense:

Lemma 4.6. Assume thaM, N are candidates i, M € N, V' is an extension
of V, @ €e Mne¢, andG c P, is an element of/” which is (N, P,)-generic.

1. GM (in V") is the same a&\)M (in N[GN]). In other words, thé?M-filter calcu-
lated inV’ from G is the same as theM-filter calculated irN[GN] from GN.

2. In particularG, is (M, P,)-generic ff N thinks thatG('}‘ is (M, P,)-generic.

3. If G is (M, P,)-generic and- a PM-name (inM), then “x = 7[GM]” is absolute
betweerN[GN] and V.

Proof. By induction ona € en M: (2) follows from (1) by definition, and (3) from (1)
using 1.18.

Assumer=.+1. ThenpeGMiffp e GEA and p(g)[Gé’l"] eG() iff N[G?‘] E
plce G{M (by induction hypothesis 1) ari\sl[G?‘] E p({)[Gg"] € GN(¢) (by induction
hypothesis 3 and the fact thM[Gé'i"] E g€ Q, implies N[G'g‘] Fge Q).

Now assume is a limit. Thenpe GM iff (p 1 ¢ € Gg" forall ) if (Nep e
G?" for all ¢) (by induction hypothesis 1}fiN £ pe GM. O

So here we use th&}, is upwards absolutely defined¥jG,], and thatM[G?"] €
N[G’g‘] both are candidates.
~ The definitions are compatible with ord-collapses of eletagnsubmodels:

Lemma 4.7. LetN < H(y), M = ord-col(N), and letG be P,-generic ovelV.
Then

1. Gis N-genericititis (M, P,)-generic.
If Gis N-generic andy,7 € N, then
2. peGifford-colN(p) e GM,
3. ord-colN®el(7[G]) = (ord-colN(z))[GM];
4. in particular, M[GM], M, €) is the ord-collapse of[G,], N, €).

Proof. The image ofx under the ord-collapse (of the appropriate model, i.eheell
or N[G]) is denoted by’. Induction ona:

(1,2 successon, = ¢ +1.) Assume thaG | P, =: G, is P,-generic oveiN. Fix
pePyNN. ThenpeGiff{ p [ e G, andp()[G,] € G(2) }iff {p' I { € Gy (according
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to induction hypothesis (2)) annl(g)[G(M] € G(¢) (according to induction hypothesis
(3)) 110iff p' e GM.

(1,2 limit) Assume thaG, is P,-generic oveN for all £ e anN. Fix pe P, NN.
peGiff{ pl¢eG,forallfeanN }iff p’ eGé’)" for all £ € anM } (by hypothesis
(2)) iff p e GM.

(3) Induction on the depth of the name
Let Ae N be a maximal antichain deciding whethes V (and if so, also the value of
7). Assumeae ANGNN. If aforcesy = X for xe V, thenM thinks thata’ € GQ" forces
7’ to bex’ €V, so we get’[GM] = X. If aforces thatr ¢ V, then

TIGY1={Z'[GY]: (o p) e TN, p € GY} = {(¢[G])" : (o> p) e7NN,pe G}

(by induction). It remains to be shown that this is the ortlagase ofz[G] = {¢[G] :
o € 7}. For this it is enough to note that for allG] € 7[G] N N[G] thereisa {,p) e T
such thatp € G andg[G] = p[G].

O

P, satisfies (a version of) the properness condition for catdid

Lemma 4.8. For every candidatel andp € PM there is an 1, P,, p)-genericq
such that don) € M Nna.

The proof is more or less the same as the iterability of progss given in
[1]. Since we will later need a “canonical” version of the pfowe will introduce the
following notation:

Definition 4.9. For a < ¢, let gen, be aP,-name for a function such that the fol-
lowing is forced byP,: If M is a candidatey : w — M surjective, andp € QM then
gen,(M, o, p) is anM-generic element o®V[®] stronger tharp.

(It is clear that such functions exist, since we assumeRpdbrces thatQ, is
nep. Later we will assume that we can pick gémsome absolute way, cf. 4.13).

Fora < B < ¢, let Pg/, denote the set dP,-namesp for elements o such
thatP, forcesp | « € G,. (l.e.,Pg/, is aP,-name for the quotient forcing.) As usual,
we can define thél-version: p € P/’;"/a means thap is a PM-name (inM) for a P[’;,"—
condition, and ifG is (M, P,)-generic, themp[GM] @ € GM.

Lemma 4.8 is a special case of the following:

INpucTion LEmma/DerintTion 4.10. Assume thaM is a candidateg : w —» M
surjectivea,Be M,a <<€ pE Pﬁ"’/'a, gis (M, P,)-generic, and that dom)C an M.
We define the canonicaM, o, Ps, p)-extensiong® of g such thatq" € Pz andqg* is
(M, Pg, p)-generic and dongf) € M Np.

Proof. Induction ong € M.

15ysing the fact that thap({)[G,] € Q; is hereditarily countable modulo ordinals and therefore not
changed by the collapse
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Successor stgp= ¢+ 1: By induction we have the canonicai(o,P,,p I {)-
extensiong* € P;. In particular,g* forces thatM’ := M[GQVM] is a candidate and

that p’ := p(Q)[G}'] € QE"'. By applyingo to the PY'-names inM, we get a canon-
ical surjectiono” : w — M’. We define the canonic@-extensiong** to be g+ U
(¢.gen(M’,0”, p’)). Assume thaGg containsg*™. ThenG?’I is PgM—generic and con-

tainsp ' £. If AC Pﬁ’;" is (in M) a maximal antichain, then

A ={al):acAalieGlic Q?[Gy]

is a maximal antichain irM[Gg"]. Since gep(M’, p) is in G(¢), there is exactly one
a e ANnG(), i.e., there is exactly onee AN G,g'/l' Soqg** is really (M, P, p)-generic.

Limit step: Assumer = ag < @1... is cofinal inMNnpB. SetDg = Pg" and let
(Dn)new €numerate th@[’}"—dense subset iM. (Note that we get this enumeration
canonically fromo.) First we define ffn)ne., such thatpg = p, pn € P/’;’}an, and M
thinks that)P} forces

e pne Dy,
® Pn-1 [ an€GY implies py < pn-1.

Then we pickg=0-1 Cgp € q; ... such thaby is the canonicalll, o, Py,,.,, Pn [ @n+1)-
generic extension of theV(, P,,,)-genericg,. We sefg* := Uney, On.

By induction we get:
e Qnis (M,Py,.,.Pm [ @n+1)-generic for allm<n.
e o forcesp[GY 1< pm[G) |1(in Pﬁ'}") form<l<n+1.
gtis G[';" is (M, Pg, p)-generic: LeiG beV-generic and contaiqg*.

. Gg" meetsDh: pn[Gg"] € G/'}", sincepn[G['}"] P ame1 € G/g" forallm>n.

e Letr,sbe incompatible irP[’;". In M, the set

D={peP}': @ <p)@teir,shpI{ i te Gl cPy

is dense, and ip DnGl’;",thenp rgeGQ",sot e GY, andtngg".

We repeat Lemma 4.8 with our new notation:

CoroLLARY 4.11. Given a candidatel, o : w — M surjective, and € PM, we
can define the canonical genegie genM, o, P, p). Also, dom@) € M Na.
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SoP, satisfies the properness-clause of the nep-definition. Mem@, is not
nep, since the statemenp € P,” is not upwards absolute.

Remark4.12 There are two obvious reasons why € P,” is not upwards absolute:
First of all, names look entirely fierent in various candidates. For exampleMif
thinks thatz is the standard name fay;, then a bigger candidatd will generally
see thatr is not a standard name far;. So if Q is the (trivial) forcing{w1}, then a
condition inPx Q is a pair {,q), whereP is (essentially) a standaRiname forw;. So

if M thinks that @,q) € PxQ, thenN (or V) will generally not think that §,q) € P= Q.
So we cannot use the formula & P,” directly. We will use pairs {4, p) instead, where
M is a candidate ang € PM. Another way to circumvent this problem would be to
use absolute names for hco-objects (inductively definedttisg with, e.g., “standard
name fore”, and allowing “name for union of¥)ic,,” etc). The second reason is that
forcing is generally not absolute (even when we use absaolnges):M can wrongly
think thatp forces thaty, < qs, i.e., that f,g) < (p,d) in P+ Q. We will avoid this by
interpreting M, p) to be acanonical(M, P, p)-generic.

4.2. The nep iteration: properness and absoluteness.

Now we will construct a version d®, that is forcing equivalent to the usual countable
support iteration and upwards absolutely defined. We wilchi» construct generics
in a canonical way, so we assume the following:

Assumption 4.13. There is an absolute (definition of a) function gesuch thatP,
forces: IfM is a candidatey : w — M surjective andp € QM then gen(M, o, p) is
QM-generic oveM and stronger thap.

Definition 4.14. PP consists of tuplesN, o, p), whereM is a candidatey : w — M
surjective, angp € PV,

So “x e PI°™ obviously is upwards absolute.

We will interpret M, o, p) as the “canonicaM-generic condition forcing that
pe GM”. (Generally there are many generic conditions, and incatibfe ones, so we
have to single out a specific one, the canonical generic,@mtiis we need 4.13).

Recall the construction of gen from Definitiuemma 4.10. If we use Assump-
tion 4.13, we get:

CoroLLARY 4.15. gen P°P — P, is such that
1. genM, o, p) is (M, P,, p)-generic

2. If M,N are candidatesvl,o € N, andG is (N, P,)-generic, then gél(M, o, p) €
GN iff gen’(M, o, p) € G.

(Here, gel is the result of the construction 4.10 carried out indijand anal-
ogously forV.) Of course gen cannot really be upwards absolute (i.e.anaat have
ge(M, o, p) = gen’ (M, o, p)), sincex € P, is not upwards absolute. However, (2)
gives us a sflicient amount of absoluteness.
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Proof. (1) is clear. For (2), just go through the construction ofatjain and check by
induction that this construction is reallyffigiently “canonical”, i.e., absolute. 0O

If o1 # o2 both enumerateM, then we do not require gel(o1,p) and
gen(M, o, p) to be compatible.

Let us first note that a function gen as above also satisfie®libaing:

CoroLLARY 4.16. 1. If N thinks that g <* gemM(M,om.p), then
gen’(N,on,q) <* ger! (M,om, p).

2. fN<H(), peN, and N/, p’) is the ord-collapse of\, p), ando”’ : w —» N’ is
surjective, then gelN’,o”, p’) <* p.

Proof. (1) AssumeG, contains ge(N,on,q). SoG, is (N, P,)-generic ands) con-
tainsq and therefore géh(M, oy, p). So by 4.15(2)G,, contains gel(M, om, p).

(2) Assume that th¥-generic filterG contains gerl{’,o”, p’). Then by defini-
tion, GN' is N’-generic and containg’. SoG is N-generic and containg, according
to 4.7. O

Now we can define:

Definition 4.17. (M2, 02, p2) <"®P(My1,01, p1) means: My,o1 € My, and My thinks
that (M1 is a candidate and thapp <* ger2(My, o1, p1).

By Corollary 4.16(1)<"¢Pis transitive. It follows:

Tueorem 4.18. 1. gen :R)°P <"eP) _ (P,,<*) is a dense embedding.

2. (P3P <"P) is nep.
Proof. (1)

o If (Mz,02,p2) <" (My,01,p1), then genifz,o2,p2) <* genMy, o1, 1)
by 4.16(1).

o If ( M2, 02, p2) J-nep(Ml’o-l’ pl)! then genMZ’ g2, p2) L” genq\ﬂl, g1, pl):
Assume that|<* gen(M;, o, pi) (i € {1,2}). LetN < H(y) containgandM;, o, pi,
and let M3, p3) be the ord-collapse ofN,q) ando3 : w — M3 surjective. Then
(M3, 03, p3) <"*P(M;, o, pi).

e genis dense: Fop € P, pick anN < H(y) containingp and let N, p’) be the
ord-collapse of |, p). Then genll’, p’) <* p, according to 4.16.2.

(2): The definitions ofP"®P and <"¢P are clearly upwards absolute. Nf is a
candidate and thinks (M, p) € P"®P, then (N, gerlN(M, p)) <"®P (M, p) is N-generic:

AssumeG"ePis aP"¢P-generic filter ovel containing {, g) (for someq). Since
gen is a dense embeddir@}¢P defines &P,-generic filterG, overV, andG, contains
gen@N,q). This implies thatG, is (N, P,)-generic.
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We have to show thad"e9n PeBN js preBN_generic ovelN. In N, the mapping
gerl : P"eBN _, PN is dense, an@) is PN-generic oveN. So the seG’ = {(M,p) :
geM(M, p) € GN} is P"RN-generic oveiN. But (M, p) € G’ iff (M, p) € G, according
t0 4.15(2). O

Remark4.19 So the properties 4.15(1) and 4.16(1) are enough to showPtiBtan

be densely embedded inRy. But 4.15(2) is needed to show tHalt*P actually is nep:
OtherwisePPstill is an upwards absolute forcing definition, and for gvee (P"eP)M
there is ag < p in P"®Pforcing that there is anR"™P)M-generic filter oveM, namely
the reverse image d8M under gef' but this filter doesn't have to be the same as
G"ePn (pnep)M.

4.3. lterations along subsets oé

As before we assume thadf).c. is a sequence of forcing-definitions.
We can of course define a countable support iteration aloey esubset of e:

Pw, the c.s.-iteration ofQ,),cw alongw, is defined by induction ot € w: Py,
consists of functionp with countable domaic wna. If « is thew-successor of,
thenp € Pyno iff p [ £ € Puny @andZ ¢ dom(p) or p(¢) is aPwn;-name for for an object
in Qq. If & is aw-limit, then p e Pyn, iff p I { € Pyny forall f e anw.

Of course this notion does not bring anything new: Assyngee is the order
type ofw, and leti : 8 — w be the isomorphism. TheR,, is isomorphic to the c.s.-

iteration Ry, Qi(e))a<s-
We can calculat®,, insideM and extend our notation to that case:

Definition 4.20. Let M be a candidatey C €, we M.
e P, is the countable support iteration along the onger
° PV'\C' is the forcingPy, as constructed iM.

e v coversw (with respect taM) if e 2 v2 wnN M.
(If w¢ ON, then this is independent &, sincew C M for each candidat®!.)

e If v coversw, andG, C Py, then we defin&,, by the following induction on
a € en M, provided this results in B} -generic filter oveM. OtherwiseGM,,
is undefined. Lepe PM . If M thinks thatwn e has no last element, then
PEG un If PTBEGY,, ;forall e anM. If wna has the last elemept

thenpeGM,  iffprBe G{)"_)Wﬁﬁ and p(ﬂ)[G\“,’meﬁ] € Gy(B).

e A G, such thaG), , is defined is calledNl, Py)-generic.

e Assume thaGy is (M, Py)-generic and’ e wn M. Then we set

GWLw(0) = 1IG ] - IPPU (. 9) € G-
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If v coversw, qe Py, andp is aP)'-condition (orp is just in M a PM-name for

a PM-condition), theng is (M, Py_w, p)-generic ifq forces thatGy is (M, Py)-

generic ancp e GM,, (or p[GM, ] e GM, .., resp.).

The same proofs as 4.6, 4.7 and 4.8 give us the accordindsésupP,,:

LemMma 4.21. Assume thaf’ is an extension of

M andN are candidates i, M € N,

v e N andu coversv with respect td\,

e we M, M e N andN thinks thatM is a candidate and thatoversw with respect
to M,

e Gy eV is (N,Py)-generic.
Then we get:

1. InV, v coversw with respect tavl.

2. If CevnN, thenG () = Q1% nGy(0).

3. GM,,)Y = (GM,, NG,

4. In particularG is (M, Py_w)-generic ff N[G]\, ] thinks thatG}\.,, is (M, Py_)-
generic.

5. If Gy is (M,Py)-generic andr a P)-name inM, thenz[GM,,] (calculated in
V[G,]) is the same ag[G)',,,]M (calculated ilN[G),,]).

6. If qis (N,Pyv, p)-generic andr € en N, thenq [ @ is (N, Pyre—vnae, P | @)-
generic.

Lemma 4.22. LetN < H(y), ve N, (M,w) = ord-col(\,Vv),'6 and letG, be P,-
generic ovel. Then

1. Gy is N-generic it it is (M, Py_w)-generic.
If Gy is N-generic andp,z € N, then

2. peGyiff ord-colMN(p) e GM,,,, and

3. ord-coMN®(7[G,]) = (ord-colN(z))[GM,,.].

Lemma 4.23. If M is a candidatew € M, v coversw, andp € P, then there is
a (M, Py_,w, p)-genericqg € P,.

1650 eithev=vN N orw=ve ON
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We give the following Lemma (used f@ =Mathias in [11]) as an example for
how we can use this iteration:

Lemma 4.24. LetB = (Bi)ier be a sequence (i) of Borel codes. LeQ, = Q
be the same nep forcing (definition) for alk e. If P,,, forces( B = 0, thenP, forces
N B=0.

Proof. We assume thgf) B =0 is forced byP., and therefore by alP, for a € w;.
We additionally assume towards a contradiction that

(4.1) Po e 70 € ﬂ B..

We fix a “countable version” of the namg: Let No < H(x) containyo and po. Let
(Mo, 775, ) be the ord-collapse oNp, 70, Po). Setw = eN N = €N Mo. In particular,
w is countable.

Sincew coverse with respect toMp, we can find an Mo, Pw-., pp)-generic
conditionqg in Py. Underqgp we can define the,,-name

1 ~M
(4.2) 7= 1o[Gu ]
So wheneveq is in aGy-generic filter, then[Gy] is the same aggJ[G\,'\C'gE .

_ Py is isomorphic toP, for some countable, so we know tha®,, forcesz ¢
( B. In particular, we can find g < gp and anig € | such that

(4.3) G-z ¢ Bj,.

Let N1 < H(x) contain the previously mentioned objects. In particwar Nj.
Let (M1, P’,§) be the ord-collapses oNg, Py, ). By elementarityP’ = P\,“\f'l. Sincee
coversw, we can find anil, P_.w, qp)-generic conditiorg in Pe.

Let G be aP.-generic filter oveV containingas. Setr = 70[G]. Sor €N B
by (4.1). On the other hand;= r'[G] is not in By, for G := G™%,,. Also, = 1j5[Gw°, ].
It remains to show that = f. This follows from transitivity (see Lemma 4.21), i.e.,
GMo =M and the fact thaBM, = GM°, and from elementarity (see Lemma 4.7),
ie., G\/IO[GE"O], Mo) is the ord-collapse ofNp[G], Np). O
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