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Abstract For f, g ∈ ωω let c∀
f,g be the minimal number of uniform g-splitting

trees needed to cover the uniform f -splitting tree, i.e., for every branch ν of the
f -tree, one of the g-trees contains ν. Let c∃

f,g be the dual notion: For every branch
ν, one of the g-trees guesses ν(m) infinitely often. We show that it is consistent that
c∃

fε ,gε
= c∀

fε ,gε
= κε forcontinuummanypairwisedifferentcardinalsκε andsuitablepairs

( fε, gε). For the proof we introduce a new mixed-limit creature forcing construction.
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0 Introduction

We continue the investigation in [4] of the following cardinals invariants:
Let f, g be functions from ω to ω such that f (n) > g(n) for all n and further-

more lim( f (n)/g(n)) = ∞. An ( f, g)-slalom is a sequence Y = (Y (n))n∈ω such
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50 J. Kellner, S. Shelah

that Y (n) ⊆ f (n) and |Y (n)| ≤ g(n) for all n ∈ ω. A family Y of ( f, g)-slaloms is
a (∀, f, g)-cover, if for all r ∈ ∏

n∈ω f (n) there is an Y ∈ Y such that r(n) ∈ Y (n)
for all n ∈ ω. The cardinal characteristic c∀

f,g is defined as the minimal size of a
(∀, f, g)-cover.

There is also a dual notion: A family Y of ( f, g)-slaloms is an (∃, f, g)-cover, if
for all r ∈ ∏

n∈ω f (n) there is an Y ∈ Y such that r(n) ∈ Y (n) for infinitely many
n ∈ ω. We define c∃

f,g to be the minimal size of an (∃, f, g)-cover

It is easy to see that ℵ0 < c∃
f,g ≤ c∀

f,g ≤ 2ℵ0 .
Answering a question of Blass related to [1], Goldstern and the second author [2]

showed how to force ℵ1 many different values to c∀
f,g . More specifically, assuming

CH and given a sequence ( fε, gε, κε)ε∈ℵ1 of natural functions fε, gε with “sufficiently
different growth rate” and cardinals κε satisfying κℵ0

ε = κε , there is a cardinality pre-
serving forcing notion that forces c∀

fε ,gε
= κε for all ε ∈ ℵ1. In [4] we additionally

forced c∃
fε ,gε

= c∀
fε ,gε

= κε .

In this paper, we improve 1 this result to continumm many characteristics c∃
fε ,gε

=
c∀

fε ,gε
in the extension (something which is a lot easier for c∀ only; this was done

in [3]).
So the main theorem is:

Main Theorem Assume that CH holds, thatμ=μℵ0 , and that κε <μ satisfies κℵ0
ε =

κε for all ε ∈ μ. Then there is an ωω-bounding, cardinality preserving forcing notion
P that forces the following: 2ℵ0 = μ, and there are functions fε, gε for ε ∈ μ such
that c∃

fε ,gε
= c∀

fε ,gε
= κε .

(We can find such μ and (κε)ε∈μ such that the κε are pairwise different. Then we get
continuum many pairwise different invariants in the extension.)

The construction builds on the theory of creature forcing, which is described in the
monograph [5] by Rosłanowski and the second author. However, this paper should
(at least formally) be quite self contained concerning creature forcing theory; we do
however (in 2.1) cite a result of [4].

This paper has two parts: In the first part, we introduce a new creature forcing
construction (to give some “creature keywords”: somewhat in between a restricted
product and an iteration, with countable support, basically a lim-inf construction but
allowing for lim-sup conditions as well). Using this construction, we get a much nicer
and more general proof of properness compared to the construction in [4].

This construction (actually a simple case, in particular a pure lim-inf case without
downwards memory) is used the second part to construct the required forcing. It turn
out that we can use very similar proofs to the ones in [4] to show that the forcing
notion constructed this way actually does what we want.

1 Note that once we have ℵ1 many different cardinals between ℵ0 and the continumm, then the continumm
has to be much bigger than ℵ1.

123



Creature forcing and large continuum 51

1 The creature forcing construction

1.1 The basic definitions

Definition 1.1 Let I ∗ be some (index) set, and for each i ∈ I ∗ and n ∈ ω fix a finite
set POSS∗=n,{i}.
For u ⊆ I ∗ and n ∈ ω we set

POSSn,u = {η : η is a function, dom(η)

= n × u, and η(m, i) ∈ POSS∗=m,{i} for all m ∈ n and i ∈ u}.

The name POSS is chosen because this is the set of possibile trunks of conditions, see
below.

We will use the following notation for restrictions of η ∈ POSSn,u : For 0 ≤ m ≤ n
and for w ⊆ u we use η � m ∈ POSSm,u, η � w ∈ POSSn,w and η � (m × w) ∈
POSSm,w (with the obvious meaning). We will sometimes identify an η ∈ POSSn,{i},
i.e., a function with domain n × {i}, with the according function with domain n.

Definition 1.2 VALn,u is the set of functions f : POSSn,u → POSSn+1,u satisfying
f(η) � n = η for all η ∈ POSSn,u .

(This is the set of possible elements of the value-set val(c) of an n-ml-creature, see
below.)

Definition 1.3 Fix n ∈ ω. An n-ml-creature parameter pn consists of

• K(n), the set of n-ml-creatures,
• the functions supp, suppls, nor, norls, val and �, all with domain K(n),

satisfying the following (for c ∈ K(n)):

(1) suppls(c) ⊆ supp(c) are finite 2 subsets of I ∗. We call supp(c) the support of c.
(2) nor(c) (called norm) and norls(c) are nonnegative reals. 3

(3) val(c) is a nonempty subset of VALn,supp(c).
For η ∈ POSSn,supp(c), we set c[η] := {f(η) : f ∈ val(c)}. So c[η] is a nonempty
subset of POSSn+1,supp(c), and every ν ∈ c[η] extends η.

(4) �(c), the set of ml-creatures that are stronger than (or: successors of) c, is a
subset of K(n) such that for all d ∈ �(c) the following holds:
(a) if d′ ∈ �(d), then d′ ∈ �(c) (i.e., � is transitive).
(b) c ∈ �(c) (i.e., � is reflexive).
(c) supp(d) ⊇ supp(c) and suppls(d) ∩ supp(c) ⊆ suppls(c).
(d) d[η] � supp(c) ⊆ c[η � supp(c)] for every η ∈ POSS(n, supp(d)).

2 We will later even require: There is a functions maxsupp : ω → ω such that every n-ml-creature csatisfies
|supp(c)| < maxsupp(n).
3 More particularly, elements of some countable set containing Q and closed under the functions we need,
such as ln etc. We can even restrict nor and norls to values in N. However, this sometimes leads to slightly
cumbersome and less natural definitions.
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52 J. Kellner, S. Shelah

Of course, with d[η] � supp(c) we mean {ν � supp(c) : ν ∈ d[η]}.

Remarks 1.4 • “ml” stands for “mixed limit” (the construction mixes lim-sup and
lim-inf aspects). “ls” stands for lim sup; suppls and norls will correspont to the
part of the forcing that corresponds to a lim-sup sequence. The objects supp and
nor will correspond to the lim-inf part.

• Our application will be a “pure lim-inf” forcing: We can completely ignore suppls

and norls, or, more formally, we can set suppls(c) = supp(c) and norls(c) = n for
all n-ml-creatures c.

• Usually we will also have: if d ∈ �(c) then nor(d) ≤ nor(c) and norls(d)
≤ norls(c), but this is not required for the following proofs.

• In our application (as well as in other potential applications) we will not really
use val(c) (i.e., a set of functions f each mapping every possible trunk η af height
n to one of height n + 1). Instead, we will only need (c[η])η∈POSSn,supp(c) (i.e., the
function that assigns to each η the (nonempty, finite) set of possible extensions
c[η]).
We can formalize this simplification in our framework as the following additional
requirement:
Assume that f ∈ VALn,supp(c) is such that for all η ∈ POSSn,supp(c) there is a g ∈
val(c) such that f(η) = g(η). Then f ∈ val(c). Or, in other words: f ∈ VALn,supp(c)
is in val(c) iff f(η) ∈ c[η] for all η ∈ POSSn,uc .

• We could have required the following, stronger property instead of 1.3.(4d) (how-
ever, in the case referred to in the previous item, the two versions are equivalent
anyway):
For all f ∈ val(d) there is some g ∈ val(c) such that for each η ∈ POSSn,supp(d)

f(η) � supp(c) = g(η � supp(c)).

• Our application will even have the following property: c[η] is essentially indepen-
dent of η; there is no “downwards memory”, the creature does not look at what is
going on below.
More exactly: We will define pn in a way so that for all η, η′ in POSSn,supp(c) and
ν ∈ c[η] the possibility η′ ∪ (ν ∩ ({n} × I )) is in c[η′].

• So while the application in this paper only uses a simpler setting, we give the proof
of properness for the more general setting. The reason is that this properness-proof
is not more complicated for the general case, and we hope that the general case
can be used for other applications.

Definition 1.5 A forcing parameter p is a sequence (pn)n∈ω such that each pn is an
n-ml-creature parameter. Given such a p, we define the forcing notion Qp: A condition
p consists of trnklg(p) ∈ ω, the n-ml-creatures p(n) for n ≥ trnklg(p) (i.e., p(n) is
in the K(n) defined by pn), and an object trunk(p) such that:

• supp(p(n)) ⊆ supp(p(n + 1)) for all n ≥ trnklg(p).
• We set dom(p) := ⋃

n∈ω supp(p(n)), and for i ∈ dom(p) we set trnklg(p, i) =
min{n ≥ trnklg(p) : i ∈ supp(p(n))}.
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Creature forcing and large continuum 53

• trunk(p) is a function with domain {(m, i) : i ∈ dom(p),m < trnklg(p, i)}
such that trunk(p)(m, i) is in POSS∗=m,{i}. For i ∈ dom(p), we set trunk(p, i)
= trunk(p) � {i} (which we identify with a function with domain trnklg(p, i)).

• lim infn→∞ nor(p(n)) = ∞.
• For each i ∈ dom(p) the set X = {norls(p(n)) : i ∈ suppls(p(n))} is unbounded,

in other words: lim sup(X) = ∞. In particular there are infinitely many n with
i ∈ suppls(p(n)).

For better readability, we will write supp(p, n) instead of supp(p(n)), and the same
for nor etc.

Note that Qp could be empty (for example, if all norms of ml-creatures are bounded
by a universal constant). In the following we will always assume that Qp is nonempty.

We still have to define the order on Qp. Before we can do this, we need another
notion: poss(p, n), the sets of elements of POSSn,dom(p) that are “compatible with p”:

Definition 1.6 For a condition p (or just an according finite sequence of creatures
together with a sufficient part of the trunk), we define poss(p, n) as a subset
of POSSn,dom(p) by induction on n. If n ≤ trnklg(p), then poss(p, n) contains
the singleton trunk(p) � (n × dom(p)). Otherwise poss(p, n) consists of those
ν ∈ POSSn,dom(p) such that ν is compatible 4 with trunk(p) and such that ν �
n×supp(p, n−1) ∈ p(n−1)[η � (n−1)×supp(p, n−1)] for someη ∈ poss(p, n−1).

Definition 1.7 For p, q ∈ Qp, we set q ≤ p if the following holds:

• trnklg(q) ≥ trnklg(p).
• If n ≥ trnklg(q) then

– q(n) ∈ �(p, n),
– supp(q, n) ∩ dom(p) = supp(p, n), (This implies: trnklg(q, i) is the maxi-

mum of trnklg(p, i) and trnklg(q) for all i ∈ dom(p).)
– suppls(q, n) ∩ dom(p) ⊆ suppls(p, n).

• trunk(q) extends trunk(p) (as function), i.e., trunk(q)(m, i) = trunk(p)(m, i)
whenever i ∈ dom(p) and m < trnklg(p, i).

• trunk(q) � (trnklg(q)× dom(p)) ∈ poss(p, trnklg(q)).

Remark 1.8 Note that our ml-creatures have an “answer” c[η] to all η ∈ POSSn,supp(c);
so in particular p(n) has answers to all η /∈ poss(p, n). In this respect, our creatures
carry a lot of seemingly irrelevant information. This is neccessary, however, to allow
simple proofs of properness and rapid reading: this way we can, e.g., start with a
condition p, then increase the trunk to some height h, strengthen this new condi-
tion to some q, and then “merge” p and q, by setting r(n) = p(n) for n < h and
r(n) = q(n) otherwise. This would not be possible if we dropped the information
about “impossible” η ∈ POSSn,supp(c) from the creatures.

Facts 1.9 • Assume that p is a Qp condition, n > trnklg(p), choose u such that
supp(p, n − 1) ⊆ u ⊆ dom(p) and η ∈ POSSn,u . Then we can modify p by

4 I.e., ν(m, i) = trunk(p)(m, i) for all m < min(n, trnklg(p, i)).
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54 J. Kellner, S. Shelah

enlarging the trunk-length to n and replacing part of the trunk by η. Let us call the
resulting creature p ∧ η. (More formally: trunk(p ∧ η)(m, i) = η(m, i) if m < n
and i ∈ u, and trunk(p)(m, i) otherwise.)

• p ∧ η ≤ p if η ∈ poss(p, n).
• {p ∧ η : η ∈ poss(p, n)} is predense below p.
• We set ˜ν

gen to be the name for
⋃

p∈G trunk(p). So Qp forces that ˜ν
gen is a function

with domain ω × J for some J ⊆ I ∗. Note that it is not guaranteed that J = I ∗.
(But p forces that dom(p) ⊆ J and that ˜ν

gen � (n × dom(p)) ∈ poss(p, n) for
all n ∈ ω.)

• If η ∈ poss(p, n), then p ∧ η � ϕ iff p � η ⊂ ˜ν
gen → ϕ.

One simple way to guarantee that J = I ∗ is the following: Given i ∈ I ∗ and a
creature c, we can strengthen c by increasing the support by (not much more than) {i}
while not decreasing the norm too much:

Lemma 1.10 Assume that for all i ∈ I ∗ there is an M ∈ ω and a u ∈ [I ∗]<ℵ0

containing i sucht that for all n > M and all c ∈ K(n) with nor(c) > M there is a
d ∈ �(c) such that

• nor(d) > nor(c)− M and norls(d) > norls(c)− M,
• supp(d) = supp(c) ∪ u and suppls(d) = suppls(c) ∪ u.

Then the domain of ˜ν
gen is forced to be ω × I ∗.

Proof Given p ∈ Qp and i ∈ I ∗ we can find a q ≤ p such that i ∈ supp(q): For
sufficiently large n we get nor(p, n) > M and dom(p) ∩ u ⊆ supp(p, n). So we can
set set q(n) = d ∈ �(p(n)) as above. ��

1.2 Properness: bigness and halving

Definition 1.11 • For c in K(n) and x > 0 we write d∈ �x+(c) if d∈ �(c), supp(d)
= supp(c), suppls(d)= suppls(c), nor(d)≥ nor(c)−x and norls(d)≥ norls(c)− x .

• The n-ml-creature c is (B, x)-big, if for all functions G : POSSn+1,supp(c) → B
there is a d ∈ �x+(c) and a G ′ : POSSn,supp(c) → B such that G(η) = G ′(ν) for
all η ∈ d[ν]. I.e., modulo d the value of G(η) only depends on η � n.

• K(n) is (B, x)-big, if all c ∈ K(n) with norm bigger than 1 are (B, x)-big. (Note
that we do not require that c has large norls.) 5

Definition 1.12 • A condition p decides a name ˜τ , if there is an element x ∈ V
such that p forces ˜τ = x̌ .

• ˜τ is n-decided by p, if p ∧ η decides ˜τ for each η ∈ poss(p, n).
• p essentially decides ˜τ , if ˜τ is n-decided by p for some n.

5 Of course there are some other natural definitions for bigness. We briefly mention two of them, however
the reader can safely skip this. In our setting, all these notions are more or less equivalent: Firstly, we will
assume that k := | POSSn,supp(c) | is “very small” compared to the bigness B. Secondly, val(c) will be
determined by the sequence (c[η]).
– The n-ml-creature c is weakly-(B, x)-big, if for all η ∈ POSSn,supp(c) and all G : c[η] → B there is a

d ∈ �x+(c) such that G � d[η] is constant.
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Creature forcing and large continuum 55

• Let ˜r : ω → ω be a Qp-name. p reads ˜r continuously, if p essentially decides

˜r(n) for all n.
• p rapidly reads ˜r (above M), if ˜r � n is n-decided by p for all n (bigger than M).

Sufficient bigness gets us from continuous to rapid reading:

Lemma 1.13 Fix B : ω → ω. Assume that

• K(n) is (
∏

m<n B(m), 1)-big for all n ∈ ω.
• p continuously reads6

˜r ∈ ∏
B.

• M ≥ trnklg(p), and nor(p,m) > 1 for all m ≥ M.

Then there is a q ≤ p such that

• trnklg(q) = trnklg(p), trunk(q) = trunk(p), and q(n) = p(n) for trnklg(p) ≤
n < M,

• q(n) ∈ �1+(p(n)) for n ≥ M,
• q rapidly reads ˜r . I.e., ˜r � n is n-decided by q for all n > M.

Proof For n ∈ ω, let h(n) ≥ 0 be maximal such that ˜r � h(n) is n-decided by p. So
h(n) is a weakly increasing, unbounded function. Set

xn,l = ˜r � min(h(n), l).

Note that xn,n is n-decided by p, and that there are at most
∏

m<l B(m) many possi-
bilities for xn,l .

For all n ≥ M , we define by downward induction for l = n, n − 1, . . . ,M + 1,M
the creatures dn,l ∈ �1+(p(l)) and the function ψn,l with domain poss(p, n):

• dn,n = p(n), ψn,n(η) is the value of xn,n as forced by p ∧ η.
• For l < n and η ∈ poss(p, l+1)we know by induction thatψn,l+1(η) is a potential

value for xn,l+1. Let ψ−
n,l+1(η) be the corresponding value of xn,l . Using bigness,

we get a dn,l ∈ �1+(p(l)) such that ψ−
n,l+1(η) only depends on η � l ∈ poss(p, l).

We set ψn,l(η � l) to be this value ψ−
n,l+1(η).

For every n ∈ ω, set yn = (val(dn,l), ψn,l)M≤l≤n . For all l there are only finitely many
values for val(dn,l) and for ψn,l . So the set of the sequences yn together with their
initial sequences form a finite splitting tree. Using König’s Lemma, we get an infinite
branch: A sequence (d∗

l , ψ
∗
l )l≥M such that d∗

l ∈ �1+(p(l)) and such that for all n the
sequence y∗

n = (val(d∗
l ), ψ

∗
l )M≤l<n is initial sequence of ym for some m > n.

We define q ≤ p by q(l) = p(l) for n < M and q(l) = d∗
l otherwise (and, of

course, trunk(q) = trunk(p)).

Footnote 5 continued
– The n-ml-creature c is (B, x)-big∗, if for all G : val(c) → B there is a d ∈ �x+(c) such that G restricted

to val(d) is constant.
We obviously get: (B, x)-big implies weakly-(B, x)-big.
Weakly-(B, x/k)-big implies (B, x)-big: We just iterate bigness for all η ∈ POSSn,supp(c), i.e., at most k
times.
(Bk , x)-big∗ implies (B, x)-big: Apply big∗ to the function that maps f ∈ val(c) to the sequence
(f(η))η∈POSSn,supp(c) .
6 I.e., ˜r is a name, p forces that ˜r(m) < B(m) for all m ∈ ω, and p continuously reads ˜r .
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Fix n > M . We claim that ˜r � n is n-decided by q.
Pick some m such that h(m) > n and some k such that y∗

m is initial sequence of yk .
Recall the inductive construction of dk,l :

Modulo p and dk,n, dk,n−1, . . . , dk,k any η ∈ poss(p, n) decides xk,n . (1.1)

Also, xk,n contains ˜r � n (since h(k) > n). In fact even h(m) > n, so ˜r � n is decided
by p ∧ ν for all ν ∈ poss(p,m). Therefore we can improve the previous equation:

Modulo p and dk,m−1, . . . , dk,k any η ∈ poss(p, n) already decides xk,n . (1.2)

Now recall that dk,m−1, . . . , dk,k are conditions in q, so xk,n (and therefore ˜r � n) is
n-decided by q. ��

To get properness, we need another well established creature forcing concept:

Definition 1.14 The n-ml-creature c is x-halving, if there is a half(c) ∈ �x+(c) sat-
isfying the following: If d ∈ �(half(c)) has non-zero norm, then there is a d′ (called
the un-halved version of d) satisfying:

• d′ ∈ �(c),
• supp(d′) = supp(d), and suppls(d′) = suppls(d),
• nor(d′) ≥ nor(c)− x and norls(d′) ≥ norls(c)− x ,
• d′[η] ⊆ d[η] for all η ∈ POSSn,supp(d). 7

K(n) is x-halving, if all c ∈ K(n) with nor(c) > 1 are x-halving. (Note that we do
not require norls(c) > 1.)

Definition 1.15 A forcing parameter p has sufficient bigness and halving, if there is
an increasing function maxposs : ω → ω such that for all n ∈ ω
(1) | poss(p, n)| < maxposs(n) for all p ∈ Qp.
(2) K(n) is (2, 1)-big.
(3) K(n) is 1/maxposs(n)-halving.

Remark 1.16 The natural way to guarantee (1) is the following: There is an increasing
function maxsupp : ω → ω such that for every n ∈ ω
• every n-ml-creature c satisfies |supp(c)| < maxsupp(n),
• there is an M(n) ∈ ω such that | POSS∗=m,{i} | < M(n) for all i ∈ I ∗ and m < n,

and
• maxposs(n) ≥ M(n)(n·maxsupp(n−1)).

A bit of care will be required to construct such creatures, since on the other hand we
will also need

7 An alternative, stronger definition would be: val(d′) ⊆ val(d). In the special case mentioned in Remark 1.4
these versions are equivalent.
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• the norm of a creature does not decrease by, say, more than 1 if we “make the
support twice as big” (we need this to prove ℵ2-cc, cf. Definition 1.20), and

• there is an n-ml-creature c with nor(c) ≥ n (this guarantees that Qp is nonempty).

Lemma 1.17 Assume that p has sufficient bigness and halving, that ˜τ is the name for
an element of V , that p0 ∈ Qp, that M0 ≥ trnklg(p0), n0 ≥ 1 and nor(p0,m) ≥
n0 + 2 for all m ≥ M0. Then there is a q ≤ p0 such that8

• q essentially decides ˜τ ,
• q(m) = p0(m) for trnklg(p0) ≤ m < M0,
• nor(q,m) ≥ n0 for all m ≥ M0.

Then the usual standard argument gives us properness and ωω-boundedness, and
Lemma 1.13 gives us rapid reading:

Corollary 1.18 Assume that p has sufficient bigness and halfing.

• Qp is proper and ωω-bounding. Moreover, for each condition p0 and name ˜r :
ω → ω there is a q ≤ p0 continuously reading ˜r .

• If additionally every K(n) is (
∏

m<n B(m), 1)-big, we get rapid reading: If ˜r is a
name for an element of

∏
B then for every p there is a q ≤ p such that ˜r � m is

m-decided by q for all m ∈ ω.

Let us first give a sketch of the (standard) argument of the Corollary:

Proof • ωω-bounding: Assume that ˜r is a name for a function from ω to ω and
that p0 is in Qp. Using the previous lemma, we iteratively construct Mn ∈ ω and
pn+1 ≤ pn such that
– Mn is big enough to satisfy the following: for some i ∈ dom(pn, n) (chosen

by suitable bookkeeping) there is an m < Mn such that i ∈ suppls(pn,m) and
norls(pn,m) > n. Also, Mn > trnklg(p0) = trnklg(pn) and nor(pn, k) >
n + 2 for all k ≥ Mn .

– pn+1(m) = pn(m) for all m < Mn ,
– nor(pn+1,m) > n for all m ≥ Mn .
– pn+1 essentially decides ˜r(n),This guarantees that the sequence of the pn’s has a limit q, which essentially
decides each ˜r(n). This in turn implies that (modulo q) there are only finitely
many possibilities for each ˜r(n), which gives us ωω-boundedness.

• Properness: Fix N ≺ H(χ) and p0 ∈ N . We need a q ≤ p which is N -generic,
i.e., which forces that ˜τ [G] ∈ N for all names for ordinals that are in N . Enu-
merate all these names as {˜τ 0, ˜τ 1 . . . }. Now do the same as above, but instead of

˜r(n) use τn ; and construct each pn inside of N . (The whole sequence of the pn’s
cannot be in N , of course.) Then q leaves only finitely many possibilities for each

˜τ n , each possibility being element of N , which gives properness. ��
Proof of Lemma 1.17 (a) Halving, the single step Se(p,M, n):

Assume that

8 Note that in contrast to the previous lemma, the supports of q(n) will generally be bigger than those of
p(n).
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• p ∈ P ,
• M ≥ trnklg(p),
• n ≥ 1, nor(p,m) > n for all m ≥ M .

We now define Se(p,M, n) ≤ p. Enumerate poss(p,M) as η1, . . . , ηl . So l ≤
maxposs(M). Set p0 = p. For 1 ≤ k ≤ l, pick pk such that

• trnklg(pk) = M and pk ≤ pk−1 ∧ ηk . (So in particular, trunk(pk) � dom(p) =
ηk .)

• For all m ≥ M, nor(pk,m) > n − k/maxposs(M).
• One of the following cases holds:

dec: pk essentially decides ˜τ , or
half: it is not possible to satisfy case dec, then pk(m) = half(pk−1(m)) for all

m > M .

So in case half, we get dom(pk)= dom(pk−1), but in case dec the domain will gen-
erally increase.

We now define q = Se(p,M, n) by q(m) = p(m) for m < M and q(m) = pl(m)
otherwise.9 Note that nor(q,m) > n − 1 for all m ≥ M .

(b) Iterating the single step:
Given p0, M0 and n0 as in the Lemma, we inductively construct pk and Mk for

k ≥ 1:

• Choose by some bookkeeping an α ∈ dom(pk−1).
• Choose

Mk > k + M0 (1.3)

big enough such that
– there is an l < Mk with α ∈ suppls(pk−1, l) and norls(pk−1, l) > k,
– nor(pk−1(m)) > k + n0 + 2 for all m > Mk .

• Let pk be Se(pk−1,Mk, k + n0 + 2).

Assuming adequate bookkeeping, the sequence pk has a limit q0 ≤ p0, and
nor(q0,m) > n0 + 1 for all m ≥ M0.

(c) Bigness, thinning out q0
We now thin out q0, using bigness in a way similar to the proof of Lemma 1.13.
For all n ∈ ω, we define by downward induction for l = n, n −1, . . . ,M0 +1,M0,

a subset �n,l of poss(q0, l) and ml-creatures dn,l ∈ �1+(q0(l)):

• dn,n = q0(n); and η ∈ �n,n iff q0 ∧ η essentially decides ˜τ .
• For l < n, we use bigness to get dn,l ∈ �1+(q0(l)) such that for all η ∈ poss(q0, l)

either dn,l [η] ⊆ �n,l+1 or dn,l [η] ∩�n,l+1 = 0. We set�n,l to be the set of those
η ∈ poss(q0, l) such that dn,l [η] ⊆ �n,l+1.

So by this construction we get: If η ∈ poss(q0,M0)∩�n,M0 then every ν ∈ poss(q0, n)
that extends η and is compatible with (dn,l)M0≤l<n satisfies q0 ∧ ν essentially
decides ˜τ .

If on the other hand

9 And, of course, we set trunk(q, i) = trunk(p, i) if i ∈ dom(p) and trunk(q, i) = trunk(pl , i) otherwise.
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• η ∈ poss(q0,M0) \�n,M0 ,
• ν is in poss(q0,M) for some M0 ≤ M ≤ n,
• ν extends η, and
• ν is compatible with (dn,l)M0≤l<M , then

q0 ∧ ν does not essentially decide ˜τ. (1.4)

We claim that there is some n0 ≥ M0 such that

poss(q0,M0) ⊆ �n0,M0 . (1.5)

Then we define q ≤ q0 by q(m) = dn0,m for M0 ≤ m ≤ n0 and q(m) = q0(m)
for m > n0. According to the definition of �n0,M0 , we know that q0 ∧ ν essentially
decides ˜τ for all ν ∈ poss(q, n0), so q essentially decides ˜τ . This finishes the proof
of the Lemma, since q satisfies the other requirements as well.

So it remains to show (1.5). For every n ∈ ω, we define the finite sequence

xn = (val(dn,l),�n,l)M0≤l≤n .

For each l, there are only finitely many possibilities for val(dn,l) and for �n,l , so
the set of the sequences xn together with their initial sequences form a finite split-
ting tree. Using König’s Lemma, we get an infinite branch. So we get a sequence
(d∗

l ,�
∗
l )M0≤l≤ω such that d∗

l ∈ �1+(q0(l)) and for all n there is an m > n such that
the sequence

x∗
n = (val(d∗

l ),�
∗
l )M0≤l≤n

is an inital sequence of xm .
We claim

poss(q0,M0) ⊆ �∗
M0
. (1.6)

Then we get (1.5) by picking any n0 such that �n0,M0 = �∗
M0

.
To show (1.6), assume towards a contradiction that there is some η0 ∈

poss(q0,M0)\�∗
M0

. Define q1 ≤ q0 by q1(l) = q0(l) if l < M0 and q1(l) = d∗
l other-

wise. Find an s ≤ q1∧η0 deciding ˜τ . Without loss of generality, trnklg(s) = Mk > M0
for some k, where Mk was chosen in (1.3). Also we can assume nor(s,m) > 2 for
all m > trnklg(s). Let trunk(s) extend some ν ∈ poss(q1,Mk) ⊆ poss(q0,Mk). In
particular, ν extends η0. We claim:

q0 ∧ ν does not essentially decide ˜τ (1.7)

Pick m such that xm extends x∗
Mk

. In particular, �m,M0=�∗
M0

, so η0 /∈ �m,M0 . Since
ν ∈ poss(q1,Mk), ν is compatible with the sequence val(d∗

l )M0≤l<Mk and val(d∗
l ) =

val(dm,l). So by (1.4) we get that q0∧ν does not essentially decide ˜τ . This proves (1.7).
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By (1.7) we know: when we were dealing with ν in stage k, we were in the half-
case. In particular, s is stronger than some pl

k−1 that resulted from halving pl−1
k−1. Let

M ′ be such that nor(s,m) > k + n0 + 2 for all m ≥ M ′. We can now un-halve s(m)
for all Mk ≤ m < M ′ (and leave it unchanged above M ′), resulting in a condition
s′ that is stronger than pl−1

k−1 and essentially decides ˜τ , a contradiction to the fact that
pl

k−1 was constructed using the half-case. So we have shown (1.6). ��
Remark 1.19 The proof actually shows that it is not required that all n-ml-creatures
are 1/maxposs(n)-halving. It is enough to have an infinite set w ⊆ ω such that for all
M ∈ w and n ≥ M every n-ml-creature is 1/maxposs(M)-halving. (Just choose all
the Mk in (1.3) to be in w.)

1.3 ℵ2-cc

To preserve all cofinalities, we will use ℵ2-cc in addition to properness. To guarantee
that Qp is ℵ2-cc, we need additional properties of p and we have to assume CH in the
ground model.

We will argue as follows: Assume towards a contradiction that A is an antichain of
size ℵ2. By a standard 
-system argument we can assume that any two conditions in
A have (more or less) disjoint domain; we assume that there are only continuum many
different conditions “modulo isomorphism of the domain”; and then we have to argue
that two identical (modulo domain) conditions with disjoint domain are compatible.

There are many ways to achieve this, one sufficient conditions is the following:

Definition 1.20 Fix n ∈ ω. The n-creature-parameter p(n) has the local 
-property,
if we can assign one of continuum many10 “local types” to each pair (c, ī), where c
is an n-ml-creatue and ī : |supp(c)| → supp(c) is bijective, such that the following
holds:
If

• (c1, ī1) and (c2, ī2) are as above and have the same local type,
• nor(c1) = nor(c2) > 1 and norls(c1) = norls(c2),
• the enumerations ī1 and ī2 agree on supp(c1) ∩ supp(c2).

More formally: if i ∈ supp(c1) ∩ supp(c2), then there is an m such that ī1(m) =
ī2(m) = i ,

then there is a d ∈ �(c1) ∩ �(c2) such that

• supp(d) = supp(c1) ∪ supp(c2) and suppls(d) = suppls(c1) ∪ suppls(c2),
• nor(d) ≥ nor(c1)− 1 and norls(d) ≥ norls(c1)− 1.

Lemma 1.21 Assume CH and that p(n) has the local 
-property for all n. Then Qp

is ℵ2-cc.

Proof Assume towards a contradiction that A is an antichain of size ℵ2. We can assume
that there is a 
 ⊆ I ∗ such that dom(p) ∩ dom(q) = 
 for all p �= q in A, and that
| dom(p)| = M ≤ ω for all p ∈ A. Pick for all p ∈ A a bijection ī p : M → dom(p).

10 In practise, we can get finitely many.
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We can also assume that the following objects and statements do not depend on the
choice of p ∈ A for i
 ∈ 
,m < M and n ∈ ω:

• The trunk of p “modulo the enumeration of the domain”, i.e., trnklg(p), trnklg
(p, ī p(m)) and trunk(p, ī p(m)).

• The norms, nor(p, n), norls(p, n).
• The local type of (p(n), j̄ p

n ), where j̄ p
n is ī p restricted to supp(p, n). 11

• Whether ī p(m) ∈ supp(p, n).
• Whether ī p(m) = i
.

Now pick p �= q in A. We show towards a contradiction that p and q are compat-
ible: Pick h such that nor(p, n) > 1 for all n ≥ h. The local types of (p(n), j̄ p

n ) and
(q(n), j̄ q

n ) are the same. If i
 ∈ supp(p, n) ∩ supp(q, n), then i
 = ī p(m) = ī q(m)
for some m < M , and ī p(k) ∈ supp(p, n) iff ī q(k) ∈ supp(q, n) for all k ≤ m,
therefore i
 = j̄ p

n (l) = j̄ q
n (l) for some l. So we can apply the local 
 property and

get d ∈ �(p(n))∩ �(q(n)). The sequence of these creatures, together with the union
of the stems of p and q, form a condition r ≤ p, q. ��

2 Continuum many invariants

We now apply this creature forcing construction (actually, only the pure lim-sup case
and the simplified setting described in Remark 1.4) to improve the result of Decisive
Creatures [4]. We have to make sure to define the ml-creatures and the norms in a way
to satisfy sufficient bigness and halfing (see Definition 1.15 and the Remark following
it). Once we have done this, it turns out that the rest of the proof of the Main Theorem
is a rather straightforward modification of the proof in [4].

2.1 Atomic creatures, decisiveness

We will build the ml-creatures from simpler creatures, which we call atomic creatures.
An atomic parameter is a tuple a = (A,K, val, nor,�) such that

• A is a finite set.
• K is a finite set (the set of a-atomic creatures),
• val, nor and � are functions with domain K

such that for all a-atomic creatures w ∈ K the following holds:

• nor(w) ≥ 0,
• val(w) ⊆ A is nonempty,
• �(w) is a subset of K,
• w ∈ �(w); and if w2 ∈ �(w1) and w3 ∈ �(w2) then w3 ∈ �(w1),
• if v ∈ �(w) then val(v) ⊆ val(w) and nor(v) ≤ nor(w),
• if | val(w)| = 1 then nor(w) < 1.

11 More formally, j̄ p
n : |supp(p, n)| → supp(p, n) is defined by j̄ p

n (l) = ī p(k) for the minimal k such

that ī p(k) ∈ supp(p, n) \ ¯j p
n ”l.
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As usual we get notions of bigness and halving, as well as decisiveness as introduced
in [4]:

• v ∈ �x+(w) means v ∈ �(w) and nor(v) > nor(w)− x .
• w ∈ K is (B, x)-big, if for all F : val(w) → B there is a v ∈ �x+(w) such that

F � val(v) is constant.
• w is hereditary (B, x)-big, if every v ∈ �(w) with norm at least 1 is (B, x)-big.
• The atomic parameter a is (B, x)-big, if every w ∈ K with norm at least 1 is

(B, x)-big.
• w ∈ K is x-halving, if there is a half(w) ∈ �x+(w) such that for all v ∈ �(half(w))

with norm bigger than 0 there is a v′ ∈ �x+(w)with val(v′) ⊆ val(v). We call this
v′ “unhalved version of v”, or we say that we “unhalve v” to get v′.

• The atomic parameter a is x-halving, if every w ∈ K with norm bigger than 1 is
x-halving.

• w ∈ K is (K ,m, x)-decisive, if there are v−, v+ ∈ �x+(w) such that

| val(v−)| ≤ K and v+ is hereditarily (2K m
, x)-big. (2.1)

v− is called a K -small successor, and v+ a K -big successor of w.
• w is (m, x)-decisive if w is (K ,m, x)-decisive for some K .
• K is (m, x)-decisive if every w ∈ K with nor(w) > 1 is (m, x)-decisive.
• An atomic-parameter is M-nice with maximal norm m, if it is (2M , 1/M2)-big,

1/M-halving and (M, 1/M2)-decisive and m = max(nor(w) : w ∈ K).

Facts 2.1 (1) Given M,m ∈ ω there is an M-nice atomic-parameter with maximal
norm m.
Another way to formulate this:
For all M,m ∈ ω there is a K (M, n) ∈ ω such that for all k > K (M, n) there
is an atomic-parameter a = (A,K, val, nor,�) which is M-nice with maximal
norm m such that A = k.

(2) Assume that an atomic paramter is M-nice, that nor(wi ) > 2 for all i ∈ M ,
and that F : ∏

i∈M val(wi ) → 2M . Then there are vi ∈ �
1/M
+ (wi ) such that

F �
∏

i∈m val(vi ) is constant.

Proof This is shown in [4]: (1) is Lemma 6.1, (2) is Corollary 4.4. ��

2.2 The forcing

Definition 2.2 We define by induction on n ∈ ω the natural numbers maxposs(n),
maxnor(n), maxsupp(n), Bmin(n), k∗(n), gmin(n) and f max(n); as well as fn,m and
gn,m for m ∈ k∗(n):

(1) Set f max(−1) = maxsupp(−1) = 1.
(2) Set maxposs(n) = 1 + ( f max(n − 1))n maxsupp(n−1).

(By induction, we will see that | poss(p, n)| < maxposs(n) for every
condition p.)
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(3) Set maxnor(n) = 1 + 2n·maxposs(n).
(This will later be used to guarantee there is an n-ml-creature with norm n, i.e.,
that Qp is nonempty.)

(4) Set maxsupp(n) = 1 + 2maxnor(n).
(We will later define the n-ml-creatures so that |supp(c)| ≤ maxsupp(n) for all
c ∈ K(n).)

(5) Pick Bmin(n) large with respect to maxsupp(n).
More specifically: larger than f max(n−1)n f max(n−1)1+(n maxsupp(n))

and larger than
2 maxsupp(n)2.

(6) Pick k∗(n) large with respect to Bmin(n), which means that we can fix a Bmin(n)-
nice atomic paramter an,∗ = (k∗

n ,Kn,∗, valn,∗, norn,∗,�n,∗) with maximal
norm maxnor(n). (Use 2.1(1).)

(7) Pick gmin(n) = gn,0 large with respect to k∗(n).
More specifically, we will need: larger than f max(n−1)n maxsupp(n)·maxposs(n)·
k∗(n)maxsupp(n) and than f max(n − 1)n f max(n−1).

(8) Pick fn,m large with respect to gn,m , which means that we can fix an gn,m-nice
atomic parameter an,m = ( fn,m,Kn,m, valn,m, norn,m,�n,m) with maximal
norm maxnor(n). (Again, use 2.1(1).)

(9) Pick gn,m+1 large with respect to fn,m .

More specifically, we need: larger than ( fn,m)
fn,m

k∗(n)
.

(10) Set f max(n) = fn,k∗(n)−1.

We choose an index set I ∗ containing μ and sets Iε for all ε ∈ μ:

• For every ε in μ, pick some Iε of size κε such that μ and all the Iε are pairwise
disjoint. Set I ∗ = μ ∪ ⋃

ε∈μ Iε .
• We define ε : I ∗ \ μ → I ∗ by ε(α) = ε for α ∈ Iε . A subset u of I ∗ is ε-closed,

if for all ε(α) ∈ u for all α ∈ u \ μ.

For ε ∈ μ we set POSS=m,{ε} to be k∗(m), and for α ∈ I ∗ \ μ we set POSS=m,{α}
to be f max(m).

Definition 2.3 We define the ml-parameter p(n): An n-ml-creature c is a triple
(uc, w̄c, dc) satisfying the following:

• uc ⊂ I ∗ is nonempty, ε-closed, and of size at most maxsupp(n).
• w̄c consists of the sequences (wc

ε)ε∈uc∩μ and (wc
α,k)α∈uc∩Iε ,k∈val(wc

ε
) such thatwc

ε

is an an,∗-atomic-creature and wc
α,k is an an,k-atomic-creature. We will write Ac

ε

(or Ac
α,k) for val(wc

ε) (or val(wc
α,k), respectively).

• dc ∈ R≥0.12

Given such an ml-creature c, we define the creature-properties of c as follows:

• supp(c) := uc.
• val(c) is the set of those f ∈ VALn,uc that satisfy the following for all η ∈

POSSn,uc : If ε ∈ uc∩μ, then f(η)(n, ε) ∈ Ac
ε , and ifα ∈ uc∩Iε and f(η)(n, ε) = k

then f(η)(n, α) ∈ Ac
α,k .

12 We could restrict this to a countable set; moreover given w̄c we can even restrict dc to a finite set.
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• nor(c) := (1/maxposs(n)) · log2
[
minnor(c)− log2(|supp(c)|)− d

]
, where we

set minnor to be the minimum of the norms of all atomic creatures used, i.e.,

minnor(c) := min
({norn,∗(wc

ε) : ε ∈ u ∩ μ} ∪ {norn,k(w
c
α,k) :

α ∈ u ∩ Iε, k ∈ Ac
ε}

)
. (2.2)

(If nor(c) would be negative or undefined when calculated this way, we set it 0.)
• suppls(c) := supp(c) and norls(c) := n (so here we have the pure lim-inf case).

So our ml-creatures have rather “restricted memory”, they do not “look down” at
all, and horizontally only “look from α to ε(α)”. More exactly:

Fact η ∈ poss(p, n) iff

• η is compatible with trunk(p),
• for all m with trnklg(p) ≤ m < n, c := p(m), and α ∈ Iε ∩ supp(c) we have:

η(m, ε) ∈ Ac
ε and η(m, α) ∈ Ac

α,η(m,ε .

Lemma 2.4 • K(n) is ( f max(n − 1)n f max(n−1), 1)-big.
• K(n) is 1/maxposs(n)-halving.
• p satisfies the local 
-property.
• The generic element lives on all of I ∗ (i.e., the domain of the generic sequence is

ω × I ∗).

So we can use Lemma 1.21 and Corollary 1.18 (since maxposs(n) witnesses that p
has sufficient bigness and halving, as defined in 1.15), and get:

Corollary 2.5 Qp is proper, ωω-bounding and ℵ2-cc. If p ∈ Qp forces that r(n) <
f max(n) f max(n) for all n, then there is a q ≤ p that n-decides r � n for all n.

Proof (Proof of Lemma 2.4) First note a few obvious facts: For all n-ml-creatures c,
we have

∣
∣POSSn,supp(c)

∣
∣ ≤ f max(n − 1)n maxsupp(n) (2.3)

and for a condition p we get, according to 2.2(2),

|poss(p, n)| ≤ f max(n − 1)n maxsupp(n−1) < maxposs(n), (2.4)

According to 2.2(4), we get: If |supp(c)| ≥ maxsupp(n)/2, then

nor(c) ≤ 1/maxposs(n) log2
(
maxnor(n)− log2(maxsupp(n))+ 1

) = 0. (2.5)

The local 
 property: We only have to check that “taking the union of identical
creatures with disjoint domains” decreases the norm by at most one, the rest is just
notation:

Given an n-ml creature (uc, w̄c, dc) and an enumeration ī : |uc| → uc, we define
the local type to contain the following information for m,m′ < |uc|: dc, |uc|, whether
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ī(m) ∈ μ, whether ε(ī(m)) = ī(m′), and the sequence of the atomic creatures (enu-
merated by ī). 13 Take c1 and c2 as in the Definition 1.20 of the local
 property. Since
nor(c1) > 1, we know by (2.5) that |supp(c)| < maxsupp(n)/2. So we can define the
n-ml-creature d by dd = dc1 = dc2 ; ud = uc1 ∪ uc2 ; and for ε ∈ μ we set wd

ε to be
w

c1
ε or wc2

ε , whichever is defined (if both are defined, they have to be equal, since the
type is the same); and in the same way we define wd

α,k for α ∈ Iε and k ∈ Ad
ε .

As already mentioned, the only thing we have to check is that nor(d) ≥ nor(c)− 1
(for c = c1 or c = c2, which does not make any difference). Since d consists of the
same atomic creatures as c, we get minnor(d) = minnor(c), and therefore

nor(d) ≥ 1/maxposs(n) log2
(
minnor(d)− log2(2|supp(c)|)− d

)

≥ 1/maxposs(n) log2
((

minnor(c)− log2(|supp(c)|)− d
)
/2

)

= nor(c)− 1/maxposs(n).

The domain of the generic: Given α ∈ I ∗, we can just enlarge any n-ml-crea-
ture creature c = (uc, w̄c, dc) in the following way: Increase the domain by α and (if
α /∈ μ) additionally by ε(α), and pick for the new positions atomic creatures with norm
maxnor(n). The same argument as for the local
-property shows that the norm of the
new creature decreases by at most 1/maxposs(n). So we can modify any condition to
a stronger condition with a domain containing α (as in Lemma 1.10).

Halving: Halving follows directly from the definition of the norm: Given c =
(uc, w̄c, dc), set half(c) = (uc, w̄c, d ′) with

d ′ = dc + 1/2
[
minnor(c)− log2(supp(c))− dc] .

Fix d = (ud, w̄d, dd) ∈ �(half(c)) (so in particular, dd ≥ d ′). We can unhalve d to
d̃ = (ud, w̄d, dc). Straightforward calculations show that the halving properties are
satisfied. In particular: If nor(d) > 0, then

minnor(d)− log2(supp(d))− dd > 1.

To calculate nor(d̃), we use

minnor(d)− log2(supp(d))− dc > 1 + dd − dc ≥ 1 + d ′ − dc >

> 1/2
[
minnor(c)− log2(supp(c))− dc] .

So nor(d̃) ≥ nor(c)− 1/maxposs(n).
Bigness: Let cbe an n-ml-creature. Set B := f max(n−1)n f max(n−1). To show (B, 1)-

bigness, we pick some G : POSSn+1,supp(c) → B, and we have to find a d ∈ �1+(c)
such that G only depends on η � n. (More formally: there is a G ′ : POSSn,supp(c) → B
such that G(η) = G ′

0(ν) for all η ∈ d[ν].)

13 More formally: the sequences (wc
ī(m)

)m<|u|,ī(m)∈μ and (wc
ī(m),k

)m<|u|,ī(m)/∈μ,k∈Ac
ε(ī(m))

.

123



66 J. Kellner, S. Shelah

Set S = POSSn,supp(c) and M = ∏
ε∈supp(c)∩μ Ac(ε). (S and M stand for “small”

and “medium”, respectively.) Note that according to (2.3) and 2.2(7),

|S × M | ≤ f max(n − 1)n maxsupp(n) · k∗(n)maxsupp(n) < gmin(n). (2.6)

If we fix η ∈ S and x ∈ M , then G can be written as a function from
∏
α∈supp(c)\μ

Ac
α,x(ε(α)) to B.

We get:

• All the atomic creatures involved are gmin(n)-nice.
• |supp(c) \ μ| < maxsupp(n) < gmin(n).
• B < 2gmin(n).

So we can apply Fact 2.1(2) and get successors vα ∈ �
1/gmin(n)
+ (wc

α,x(ε(α))) such that
G is constant (with respect to the new creatures).

We can iterate this for all (η, x) ∈ S × M , each time decreasing the norm of some
of the atomic creatures on supp(c) \ μ by at most 1/gmin(n). By (2.6), in the end we
get vα,k ∈ �1+(wc

α,k) for all α ∈ uc \ μ and k ∈ Ac
ε(α) such that (modulo these new

creatures) G only depends on (η, x) ∈ S × M ; or, in other words, G can be written as
function fomr M to BS .

It remains to get rid of the dependence on M . For this, just note that all the atomic
creatureswc

ε (for ε ∈ uc∩μ) are Bmin(n)-nice, maxsupp(n) < Bmin(n) and Bmin(n) >
BS , so we can find successors on which G is constant. ��

2.3 Proof of the main theorem

Definition 2.6 • νi := ˜ν
gen � {i} for all i ∈ I ∗. (We interpret νi as a function from

ω to ω.)
• fε(n) := fn,νε(n) for ε ∈ μ, and analogously for gε .
• c∀

ε := c∀
fε ,gε

for ε ∈ μ, and analogously for c∃
ε .

So Qp forces that νε(n) < k∗(n) for all n ∈ ω, and that να(n) < fε(n) for all but
finitely many n. (There might be finitely many exceptions, since the initial trunk at α
might not fit to the initial trunk at ε(α).)

To prove the main theorem, it is enough to show the following:

Qp forces 2ℵ0 = μ and c∃
ε = c∀

ε = κε for all ε ∈ μ.

This will be done in Lemmas 2.7, 2.3 and 2.12.

Lemma 2.7 Qp forces 2ℵ0 = μ.

Proof First note that trivially all νi are different: Fix p ∈ Qp and i �= j in I ∗. We
already know that Qp forces that the domain of the generic is ω × I ∗, in particular
we can assume that i, j ∈ dom(p). Choose n so that nor(p, n) > 1. In particular, all
the atomic creatures involved have norm bigger than 1 and therefore more than one
possible value. So we can choose an η ∈ poss(p, n + 1) such that η(n, i) �= η(n, j).
Then p ∧ η forces νi �= ν j .
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This shows that the continuum has size at least μ in the extension.
Due to continuous reading of names, every real r in the extension corresponds to a

condition p in Qp together with a continuous way to read r off p.
More formally: For each n ∈ ω there are h(n) ∈ ω and a function eval(n) :

poss(p, h(n)) → ω such that p∧η forces ˜r(n) = eval(n)(η) for all η ∈ poss(p, h(n)).
Since there are only μℵ0 = μ many such pairs of conditions and continuous read-

ings, there can be at most μ many reals in the extension. ��
We now mention a simple but useful property of the atomic creatures:

Lemma 2.8 Assume w0 and w1 are two atomic creatures that appear in some

n-ml-creature c. Then there are vi ∈ �
2/Bmin(n)
+ (wi ) (for i ∈ {0, 1}) such that

val(v0) ∩ val(v1) = ∅.

Proof Apply decisiveness to get successors ws of w0 and wb of w1 (or the other way
round) such that the norms decrease by at most 1/Bmin(n) and | val(ws)| < K and
wb is hereditarily K + 1-big for some K ∈ ω.

[In more detail: Since w0 is decisive, there is a natural number K such that there
is a K -small successor ws

0 as well as a K -big successor wb
0 of w0. On the other hand,

again using decisiveness, w1 has a successor w′
1 that is either K -small (then we set

ws = w′
1 and wb = wb

0) or K -big (then we set wb = w′
1 and ws = ws

0).]
Enumerate val(ws) as {x0, . . . , xK−1}, and define G from val(wb) to K + 1 as

follows: If l ∈ val(wb) is equal to xk (for some k ∈ K ), then set G(l) = k + 1.
Otherwise, set G(l) = 0.

Using K +1-bigness, we get a G-homogeneous successor v ofwb, i.e., G � val(v) is
constant m for some m ∈ K +1. Of course m has to be 0. (Otherwise val(v) = {xm+1}
is a singleton and therefore nor(v) = 0.) Therefore val(v) ∩ val(ws) = ∅, so v and
ws are the required successors w0 and w1. ��

A simple application of this Lemma gives us “separated support”:

Lemma 2.9 For p ∈ Qp there is a q ≤ p such that q(n) ∈ �1+(p(n)) for all

n ≥ trnklg(q) and Aq(n)
ε0 ∩ Aq(n)

ε1 = ∅ for all n and ε0 �= ε1 in supp(q, n) ∩ μ.

Proof Fix n and a pair ε0 �= ε1 in supp(p, n) ∩ μ. According to Lemma 2.8, we can
find vεi ∈ �

2/B(n)
+ (w

p(n)
εi ) for i ∈ {0, 1} with disjoint values. Iterate this for all pairs

in supp(p, n) ∩ μ (note that there are less than maxsupp(n)2 < Bmin(n)/2 many,
according to 2.2(5)). ��
Lemma 2.10 Fix ε0 ∈ μ. Then Qp forces that c∀

ε0
≤ κε0 .

Proof Set I ′ = {ε0} ∪ Iε0 . We will show that in the Qp extension of V the family
of those ( fε0 , gε0)-slaloms that can (in V ) be read continuously from I ′ alone form
a ∀-cover. This proves the Lemma, since there are only κℵ0

ε0 = κε0 many continuous
readings on I ′.

Assume that r is a name for an element of
∏

fε0 . Fix p ∈ Qp. Using Corollary 2.5,
without loss of generality we can assume that p rapidly reads r (i.e., r � n is n-decided
by p) and that it satisfies separated support as in the previous Lemma.
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We will construct a q ≤ p and a name for an ( fε0 , gε0)-slalom Y that can be con-
tinuously read from q � I ′ such that q forces r(n) ∈ Y (n) for all but finitely many
n ∈ ω. (This proves the Lemma.)

Fix n0 such that nor(p, n) > 2 for all n ≥ n0 and set q(n) = p(n) for n < n0. We
construct Y (n) and q(n) by induction on n ≥ n0. We set supp(q, n) := supp(p, n)
and trunk(q) := trunk(p). I.e., the supports and trunks do not change at all. So by
induction poss(q, n) ⊆ poss(p, n).

Let us denote the n-ml-creature p(n) by c. We have to define the n-ml-creature q(n)
(let us call it d) with ud = uc (call it u). We set dd := dc. Onμ, we do not change any-
thing: For ε ∈ u ∩μwe setwd

ε := wc
ε (call itwε , and set Aε := val(wε) = Ac

ε = Ad
ε ).

It remains to definewd
α,k ∈ �1+(wc

α,k) forα ∈ u∩ Iε and k ∈ wε . Then, since the norms
of all the atomic creatures only decrease by 1, we know that nor(d) will definitely be
bigger than nor(c)− 1, as required.

Let T (for “trunk”) be the set of pairs (η, x) such that η ∈ poss(q, n) and x ∈∏
ε∈u∩μ Aε .

|T | ≤ gmin(n). (2.7)

We now partition supp(c) \μ into sets called S, M, L (small, medium, large): Set
M = supp(c) ∩ Iε0 . Using separated support, we know that every ε �= ε0 in u ∩ μ
satisfies either x(ε) < x(ε0) (then we put all elements of Iε∩u into S) or x(ε) > x(ε0)

(then we put them into L).
Rapid reading implies that (modulo the pair (η, x)) the natural number r(n) can be

interpreted as a function

r(n) :
∏

S

×
∏

M

×
∏

L

→ fn,x(ε0).

where we set (for X ∈ {S,M, L})
∏

X

:=
∏

α∈X

Aα,x(ε(α)).

Our goal is to get a name Y (n) for a small subset of fn,x(ε0) that only depends on M
and and contains r(n).

First note that we can rewrite r(n) as a function

r(n) :
∏

L

→ f �S×�M
n,x(ε0)

.

Using the fact that the atomic creatures in L are nice enough, 14 we can find succes-
sors of these creatures that evaluate r(n) to a constant value, and such that the norms

14 They all satisfy gn,x(ε0)+1 niceness, and in 2.2(9) we assumed that gn,x(ε0)+1 is bigger than f
∏

S ×∏
M

n,x(ε0)
,

since
∏

S × ∏
M has size less than f k∗(n)

n,x(ε0)
. Now use Fact 2.1(2). So the norms decrease at most by

1/gn,x(ε0)+1 < 1/gmin(n).
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decrease by less than 1/gmin(n). We define w′
α,x(ε) to be these successors for ε ∈ L;

and leave the other atomic creatures unchanged. Now for every y ∈ �M there are only
|�S| many possible values for r(n), call this sets of possible values Y (η, x, y).

Iterate this procedure for all pairs (η, x) ∈ T . The same atomic creature may be
decreased more than once, but at most gmin(n) many times, according to (2.7). So
in the end, the norms of the resulting atomic creatures decrease by less than 1. This
finishes the definition of q(n).

We still have to define Y (n) as a function from the possible values (k0, y0) on
{ε0} ∪ Iε0 , i.e., as a function with domain {(k0, y0) : k0 ∈ Aε0 , y0 ∈ ∏

α∈Iε0
Ad
α,k0

}.
We set Y (n) to be

⋃
(η,x)∈T, x(ε0)=k0

Ỹ (η, x, y0). This set has size less than gn,k0 , as

required. 15 ��
Lemma 2.11 Fix |J | ≤ maxsupp(n) and for each i ∈ J an atomic creature wi that

is (maxsupp(n), 1/gmin(n))-decisive. Then there are w′
i ∈ �

1/k∗(n)
+ (wi ) for all i ∈ J

and a linear order ≤J on J such that each w′
i is hereditarily

∏
j<J i | val(wi )| big.

Proof For any i ∈ J , apply decisiveness to the atomic creature wi . This gives some
Ki and a Ki -big as well as a Ki -small successor of wi . Pick the i with a minimal Ki ,
let this i be the first element of the<J -order, set w′

i to be the Ki -small successor, and
pick for all other j the K j -big successor. Repeat this construction for J \ {i}.

So in the end we order the whole set J , decreasing each creature at most maxsupp(n)
many times by at most 1/gmin(n). ��

It remains to be shown:

Lemma 2.12 Qp forces that c∃
ε0

≥ κε0 .

Proof Note that it is forced that fε0(n)/gε0(n) converges to infinity, therefore (by the
usual diagonalization) it is forced that c∃

ε0
> ℵ0. So if κε0 = ℵ1 there is nothing to do.

So assume that ℵ1 ≤ λ < κε0 and assume towards a contradiction that some p0
forces {Yζ : ζ ∈ λ} is an ∃-cover.

For each ζ ∈ λ we can find a maximal antichain Aζ below p0 such that every
condition in Aζ rapidly reads Yζ . Let D be the union of the domains of all elements
of any of the Aζ for ζ ∈ λ. Due to ℵ2-cc, D has size |ℵ0 × ℵ1 × λ| = λ which is less
than κε0 . So we can pick a β ∈ Iε0 \ D and a p1 ≤ p0 deciding the Yζ that ∃-covers
νβ . From now an, we will call Yζ just Y . Pick some p ≤ p1 that is stronger than some
element of Aζ . To summarize:

• p restricted to dom(p)\{β} rapidly reads Y . (I.e., Y does not depend on the values
at β.)

• p forces that Y (n) is a subset of fε0(n) of size less than gε0(n) for all n,
• p forces that there are infinitely many n such that νβ(n) ∈ Y (n).

We will now derive the desired contradiction: We will find an n0 ∈ ω and a q ≤ p
forcing that νβ(n) /∈ Y (n) for all n ≥ n0.

15 |Y (η, x, y)| ≤ |�S |, so |Y (n)| ≤ |T ×�S | ≤ maxposs(n) · k∗(n)maxsupp(n) · f
maxsupp(n)
n,k0−1 , which is

smaller than gn,k0 according to 2.2(9).
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Pick n0 such that nor(p, n) > 2 for all n ≥ n0. We will construct q(n) =: d by
induction on n ≥ n0. Denote p(n) by c. We set trunk(q) := trunk(p) and ud := uc

(call it u), so the supports and the trunks do not change at all, and by induction
poss(q, n) ⊆ poss(p, n). We also set dd := dc. On μ, nothing changes: For ε ∈ u ∩μ
set wd

ε := wc
ε (call it wε , and set Aε = val(wε) = Ac

ε = Ad
ε ).

It remains to construct wd
α,k ∈ �1+(wc

α,k) for α ∈ u ∩ Iε and k ∈ Aε .
Let T (for “trunk”) consist of all pairs (η, x) such that η ∈ poss(q, n) and η ∈∏
ε∈u∩μ Aε . Note that |T | is smaller than gmin(n), as already stated in (2.7).
Given (η, x) in T , we apply the previous Lemma to J := u \ μ and the sequence

(wc
α,x(ε(α)))α∈J . This gives us successor creatures (w′

α)α∈J as well as an order <J of
J . Partition J into S = {i <J β}, {β}, and L = {i >J β}.

So (given η and x), we can write Y (n) (which does not depend on β) as a function
from

∏
α∈L val(w′

α) × ∏
α∈S val(w′

α) to the family of subsets of fn,x(ε0) of size less
than gn,x(ε0). Therefore we can use bigness to once more strenghen the atomic crea-
tures indexed by L and thus remove the dependence of Y (n) from L . We now take
the union Ỹ of all the remaining possibilities for Y (n) and get a set of size less than
gn,x(ε0) · | ∏α∈S val(w′

α)|, which is smaller than the bigness of w′
β . So (just as in the

proof of Lemma 2.8) we can strengthen this creature w′
β to be disjoint to Ỹ .

As usual, we now iterate this construction for all pairs (η, x) ∈ T . The resulting
n-ml-creature q(n) guarantees that νβ(n) is not in Y (n), as required. ��
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