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Abstract We investigate the pressing down game and its relation to the Banach
Mazur game. In particular we show: consistently, there is a nowhere precipitous nor-
mal ideal I on ℵ2 such that player nonempty wins the pressing down game of length
ℵ1 on I even if player empty starts.
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We investigate the pressing down game and its relation to the Banach Mazur game.
Definitions (and some well known or obvious properties) are given in Sect. 1. The
results are summarized in Sect. 2. This paper continues (and simplifies, see 2.2) the
investigation of Pauna and the authors in [15].

We thank the referee for kindly pointing out an error and an embarrassingly large
number of typos.

After the submission of this paper it came to our attention that Gitik [6] already
proved Fact 6.1 of this paper, moreover he just requires a measurable cardinal (we
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478 J. Kellner, S. Shelah

use a supercompact). Nevertheless we include our proof in this paper, maybe the
construction could be of interest in other situations.

1 Definitions

We use the following notation:

• For forcing conditions q ≤ p, the smaller condition q is the stronger one. We stick
to Goldstern’s alphabetic convention [8, 1.2]: whenever two conditions are com-
parable the notation is chosen so that the variable used for the stronger condition
comes “lexicographically” later.

• Eκλ = {α ∈ κ : cf(α) = λ}.
• NSκ is the nonstationary ideal on κ .
• The dual of an ideal I is the filter {A ⊆ κ : κ\A ∈ I } and vice versa.
• For an ideal I on κ and a positive set A (i.e., A /∈ I ), we set I � A to be the ideal

generated by I ∪ {κ\A}.
We always assume that κ is a regular uncountable cardinal and that I is a<κ-com-

plete ideal on κ . Unless noted otherwise, we will also assume that I is normal.
We now recall the definitions of several games of length ω, played by the players

empty and nonempty. We abbreviate “having a winning strategy for G” with “winning
G” (as opposed to: “winning a specific run of G”).

First we define four variants of the pressing down game (this game has been used,
e.g., in [17]).

Definition 1.1 • PD(I ) is played as follows: Set S−1 = κ . At stage n, empty chooses
a regressive function fn : κ → κ , and nonempty chooses Sn , an fn-homogeneous
I -positive subset of Sn−1. Empty wins the run of the game if

⋂
n∈ω Sn ∈ I .

• PD∅(I ) is played like PD(I ), but empty wins the run if
⋂

n∈ω Sn = ∅.
• PDe(I ) is played like PD(I ), but empty can first choose S−1 to be an arbitrary

I -positive set.
• PD∅

e is defined analogously.

So we have four variants of the pressing down game, depending on two parame-
ters: whether the winning condition for player nonempty is “	=∅” or “/∈I ”, and whether
empty has the first move or not.

We now analogously define four variants of the Banach Mazur game:

Definition 1.2 • BM(I ) is played as follows: Set S−1 = κ . At stage n, empty
chooses an I -positive subset X of Sn−1, and nonempty chooses an I -positive sub-
set Sn of X . Empty wins the run if

⋂
n∈ω Sn ∈ I .

• The ideal game Id(I ) is played just like BM(I ), but empty wins the run if⋂
n∈ω Sn = ∅.

• BMne(I ) is played just like BM(I ), but nonempty has the first move.
• Idne(I ) is defined analogously.

More generally, we can define the Banach Mazur game BM(B) on a Boolean alge-
bra B: The players choose decreasing (nonzero) elements an ∈ B, nonempty wins
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More on the pressing down game 479

Fig. 1 The trivial implications
(for empty moving first)

if there is some (nonzero) b ∈ B smaller than all an . Then BM(I ) is equivalent to
the corresponding game BM(BI ) on the Boolean algebra BI = P(κ)/I (since I is
σ -complete), the same holds for BMne(I ) and BMne(BI ); we could equivalently use
the completion ro(BI ) instead of BI . Also the /∈I versions of the pressing down game
can be played modulo null sets, i.e., on the Boolean algebra BI , in the obvious way.
For the 	=∅ versions of the games, the version played on BI does not make sense.

In the /∈I version, the pressing down and Banach Mazur games have natural gen-
eralizations to other lengths δ: At a limit stages γ , we use

⋂
α<γ Sα instead of Sγ−1,

and empty wins a run iff this set is in I for any γ < δ. (i.e., nonempty wins a run iff
the run has length δ. So in this setting, the games defined above are the ones of length
ω+ 1.) For the 	=∅ versions of the games, lengths other than ω+ 1 seem less natural.

We are interested in the existence of winning strategies:

Definition 1.3 • We write b(G) for “nonempty wins G” and a(G) for “empty does
not win G”.

• The games G and H are equivalent, if b(G) ↔ b(H) and a(G) ↔ a(H).
• G is stronger than H , if b(G) → b(H) and a(G) → a(H).

We trivially get the following implications, see Fig. 1:

Facts 1.4 • b(G) → a(G) for all games.
• The Banach-Mazur game is stronger than the according pressing down game. E.g.,

BMne(I ) is stronger than PD(I ) etc.
• The /∈I version is stronger than the 	=∅ one. E.g., BM(I ) is stronger than Id(I )

etc.
• The version with empty choosing first is stronger. E.g., BM(I ) is stronger than

BMne(I ) etc.

We now list some well known (or otherwise obvious) facts about BM and precipi-
tous ideals1, see [5,9,11]:

Facts 1.5 • a(Id(I )) is equivalent to “I is precipitous”.
• a(Idne(I )) is sometimes called “I is somewhere precipitous”, and its failure “I is

nowhere precipitous”.
• A precipitous ideal on κ implies that κ is measurable in an inner model.

1 These facts do not require that I is normal.
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480 J. Kellner, S. Shelah

• b(BM(NSℵ2 � Eℵ2ℵ1
)) is equiconsistent to a measurable.

• “NSℵ1 is precipitous” is also equiconsistent to a measurable.
• b(Id(I )) implies κ > 2ℵ0 and Eκℵ0

∈ I .
• a(BM(I )) implies Eκℵ0

∈ I , and in particular κ > ℵ1.

Some obvious facts about PD (for normal ideals I, J ):

Facts 1.6 • In the pressing down games, we can assume without loss of generality
that nonempty chooses at stage n a set of the form Sn = f −1

n (αn)∩ Sn−1 for some
αn .2

• PD is monotone in the following sense: if J ⊇ I , then PD(J ) is stronger than
PD(I ). The same holds for PD∅, but not for PDe nor PD∅

e nor for any of the
Banach Mazur games.

• In particular, PD(I ) is stronger than PD(NSκ) for all normal I .
• Just as in the case of BM, b(PD∅) cannot hold for κ = ℵ1 (cf. 5.2).
• Other than in the case of Id, the property a(PDe) has no consistency strength

(cf. 2.1).

What is the effect of empty moving first?

Facts 1.7 • For the Banach-Mazur games, the distinction whether empty has the
first move or nonempty is a simple density effect: for example, nonempty wins
BMne(I ) iff there is some S ∈ I + such that nonempty wins BM(I � S); similarly
simple equivalences hold for empty winning; for characterizing BM in terms of
BMne; and for the 	=∅ version.

• We will see in Lemma 2.6 that this is not the case for the pressing down game.

The /∈I versions of BM and PD are in fact instances of the cut and choose game
introduced by Jech [12] (and its ancestor, the Ulam game):

Definition 1.8 The cut and choose game c&c(B, λ) on a Boolean algebra B is played
as follows: First empty chooses a nonzero element a0 of B. At stage n, empty chooses
a maximal antichain An below an of size at most λ, and nonempty chooses an element
an+1 from An . Nonempty wins the run if there is some nonzero b below all an .
c&c(B,∞) is played without restriction on the size of the antichains.

Let ro(B) denote the completion of the Boolean algebra B, and set BI = P(κ)/I .
The following can be found, e.g., in [4,13,19,20]:

Facts 1.9 • c&c(B,∞) is equivalent to c&c(ro(B),∞).3

• c&c(B,∞) is equivalent to the Banach Mazur game on B.
• In particular, c&c(BI ,∞) is equivalent to BM(I ).
• c&c(BI , κ) is equivalent to PDe(I ), cf. 3.2.

(However c&c(ro(BI ), κ) might be a stronger game.)

It is less clear how the 	=∅-versions of BM and PD relate to possible set-versions of
the cut-and-choose game. On natural candidate is a “set-partition” game:

2 This of course means: PD is equivalent to the game where nonempty is restricted to moves of this form.
3 But c&c(B, λ) will generally not be equivalent to c&c(ro(B), λ).
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More on the pressing down game 481

Definition 1.10 • c&cmin(I, λ) is played as follows: first, empty chooses some pos-
itive S−1. At stage n, empty partitions the set Sn−1 into at most λmany (arbitrary)
pieces, and nonempty chooses an I -positive4 piece Sn . Empty wins the run iff⋂

n∈ω Sn = ∅.
• In c&cmin(I,<κ) empty cuts into less than κ many (arbitrary) pieces.
• c&cmin

ne is defined as usual, i.e., S−1 = κ

The following is straigthforward:

Fact 1.11 PD∅
e (I ) is stronger than c&cmin(I,<κ), and c&cmin(I,<κ) is stronger than

c&cmin(I, 2).

Remark 1.12 Another variant: empty has to partition into positive pieces (of size at
most λ), and wins a run iff the intersection is in I . Let us call this game c&cset(I, λ)
(we will not need it in the rest of the paper). It is not entirely clear how this game
relates to the previous ones:
Obviously there can be at most κ many pieces, so c&cset(I,∞) = c&cset(I, κ).
For λ < κ it is easy to see that c&cset(I, λ) is equivalent to c&c(BI , λ).
Also, it is clear that c&cset(I, κ) is stronger than c&c(BI , κ), which is equivalent to
PDe(I ).
The relation of c&cset(I, κ) and BM(I ) is less clear. Of course, if I is κ+-saturated,
then c&cset(I, κ), c&c(BI , κ),PDe(I ) and BM(I ) are all equivalent, cf. 3.2 and 3.3.

Winning strategies for games on a Boolean algebra B have close connections to the
properties of B as Boolean algebra and as forcing notions, again see [4,13,19,20]:

Facts 1.13 • B having a σ -closed positive subset implies b(BM(B)).
• b(BM(B)) is also denoted by “B is strategically σ -closed” and implies that B is

proper.
• a(BM(B)) is equivalent to “B is σ -distributive”.

It is not surprising that we will get stronger connections if we assume that the B
has the form BI = P(κ)/I for a normal ideal I . We will mention only one example:

Fact 1.14 If BI is proper and κ > 2ℵ0 , then a(BM(I )) holds.

For a proof, see 3.5.

2 The results

Some of the facts for precipitous ideals can be shown (with similar proofs) for PD,
but there are of course strong differences as well:

Lemma 2.1 (1) b(c&cmin
ne (I, 2)) implies that κ is measurable in an inner model.

(2) So in particular, b(PD∅(I )) implies that as well.

4 Note that we allow empty to include I -null pieces into the partition, but we require nonempty to choose
a positive piece; otherwise nonempty always wins by picking right from the start an element α and then
always picking the piece containing α.
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Fig. 2 Some properties stronger than ∞-semi precipitous

(3) However, a(PDe(I )) has no consistency strength. In particular, for κ =
ℵ2, a(PDe(I )) is implied by C H for every I concentrated on Eℵ2ℵ1

.

(4) b(PD∅(I )) implies κ > 2ℵ0 and that I is not concentrated on Eκℵ0
.

The proofs can be found in 5.2, 5.3 and 5.5.
In this paper, we are not interested in the property “empty does not win the pressing

down game”, since it has no consistency strength. Also, the effect of who moves first
in Banach Mazur games is trivial. The remaining properties are pictured in Fig. 2. All
these properties are equiconsistent to a measurable (e.g., for I = NSℵ2 � Eℵ2ℵ1

). In
fact, they imply that I is ∞-semi precipitous, see Definition 4.1, which in turn implies
that κ is measurable in an inner model. We claim that none of the implications can be
reversed. In this paper, we will prove some strong instances of this claim by assuming
larger cardinals: we show

• b(PDe) does not imply precipitous, and
• a(BM) does not imply b(PD∅).
We also claim that (consistently relative to a measurable)

• b(Id) does not imply b(PD),

but we do not give a proof here. With these claims (for which we assume cardinals
larger than a measurable) it is then easy to check that no implication of Fig. 2 can be
reversed.

In [15], Pauna and the authors showed that, assuming the consistency of a measur-
able, b(PD(I )) does not imply b(BMne(I )) for I = NSℵ2 � Eℵ2ℵ1

. In fact, a slightly
stronger statement holds (with a simpler proof):

Lemma 2.2 It is equiconsistent with a measurable that b(PD(I )) holds (even for
length ω1) but a(Idne(I ))) fails for I = NSℵ2 � Eℵ2ℵ1

.

(For a proof, see 5.8.) Note that “a(Idne(I ))) fails” just means that I is nowhere
precipitous.

Of course, precipitous cannot generally imply a winning strategy for nonempty in
any game, since precipitousness is consistent with κ ≤ 2ℵ0 . However, we can get
counterexamples for κ > 2ℵ0 as well: Just adding Cohens destroys any winning strat-
egy for nonempty (for any ideal on ℵ2), but preserves precipitous. So we get (see 5.10
and 5.11):

Lemma 2.3 It is equiconsistent with a measurable that CH holds, NSℵ2 � Eℵ2ℵ1
is

precipitous but b(PD∅(J )) fails for any normal ideals J on ℵ2.
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More on the pressing down game 483

To see that not even a(BM(I )) implies any winning strategy for nonempty, we
assume CH and a ℵ3-saturated ideal I on ℵ2 concentrated on Eℵ2ℵ1

. Saturation is pre-
served by small forcings, in particular by adding some Cohens, and saturation (together
with CH) implies a(BM(I )). So we get:

Lemma 2.4 The following is consistent with CH plus an ℵ3-saturated ideal on
ℵ2: CH holds, a(BM(I )) holds for some I on ℵ2, but b(PD∅(J )) fails for any
normal J on ℵ2.

See 5.12. (It seems very likely that saturation is not needed for this, but the con-
struction might get considerably more complicated without it.)

As mentioned in Lemma 2.2 it is possible that b(PD(I )) holds for a nowhere pre-
cipitous ideal, i.e., for an ideal such that a(Idne(I )) fails. With a bit more work, we
even get b(PDe(I )):

Theorem 2.5 It is equiconsistent with a measurable that for κ = ℵ2 there is a nowhere
precipitous I such that b(PDe(I )) holds (even for length ω1).

(See Fact 6.1.)
Note that (as opposed to 2.3, 2.4) we just make a specific ideal non-precipitous, and

we do not destroy all precipitous ideals. It seems very hard (and may be impossible)
to do better: it is not known how to kill all precipitous ideals5 on, e.g., ℵ1 with “rea-
sonable” forcings.6 And it might be even harder to do so while additionally preserving
b(PDe(I )) for some ideals: by recent results by Gitik [7] (and later [3]) a ∞-semi
precipitous ideal does imply a normal precipitous ideal under in the absence of larger
cardinals and under some cardinal arithmetic assumptions.

2.1 Moving first

Let us now investigate the effect of whether empty moves first.
If we compare Ge and Hne for any games G and H , then these variants will be

different for trivial reasons: for example, b(BMne(I )) does not imply b(PD∅
e (I )): let

U be a normal ultrafilter on κ , Levy-collapse κ to ℵ2, and let I1 be the ideal generated
by the dual of U (which is concentrated on Eℵ2ℵ1

). Then nonempty wins BM(I1) and

therefore BMne(I ) as well for I = I1 + NSℵ2 � Eℵ2ℵ0
) as well. But nonempty can

never win PD∅
e (I ), since nonempty cannot win PD∅(NSℵ2 � Eℵ2ℵ0

). The same holds

for I = NSℵ2 (just use the model of b(BM(NSℵ2 � Eℵ2ℵ1
)).)

So the games are very different (for trivial reasons) when we change who has the
first move. However, for the Banach Mazur game, the effect of who moves first is a

5 Since we are only interested in normal ideals, it would be enough to kill all normal precipitous ideals.
This doesn’t help much, though; it is not known whether the existence of a precipitous ideal does imply
the existence of a normal precipitous one. Recently Gitik [3,6,7] proved some interesting results in this
direction.
6 More specifically, it is not known whether large cardinals imply a precipitous ideal on ℵ1, although
Woodins are not enough, cf. [18].
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simple density effect,7 as we have mentioned in 1.7. For example, b(BMne(I )) holds
iff b(BM(I � S)) holds for some positive S.

This is not the case for the pressing down games. Of course we still get:

• b(PDe(I )) holds iff b(PD(I � S)) holds for all S ∈ I +.
• The same holds for PD∅

e .

But unlike the Banach Mazur case, we can have the following:

Lemma 2.6 It is equiconsistent with a measurable that b(PD(I )) holds but b(PDe(I �
S)) fails for all positive S, e.g., for I = NSℵ2 .

(See 5.8.) So in other words, b(PD(I )) can hold but for all positive S there is a
positive S′ ⊆ S such that b(PD(I � S′)) fails.

3 Empty not winning

Lemma 3.1 • CH implies a(PD(I )) for every I on ℵ2 that is not concentrated on
Eℵ2ℵ0

.

• More generally, if λℵ0 < κ for all λ < κ , then empty wins PD(I ) iff Eκ>ω ∈ I .
• So if I is concentrated on Eκ>ω (and the same cardinal assumptions hold) then

a(PDe(I )) holds.

Proof Assume that I is concentrated on Eκℵ0
. Just as in [5], it is easy to see that empty

wins PD(I ): for every α ∈ Eκℵ0
, let (seq(α, n))n∈ω be a cofinal sequence in α. Let Fn

map α to seq(α, n). If empty plays Fn at stage n, then the intersection can contain at
most one element.

So assume towards a contradiction that Eκ>ω /∈ I and that empty has a winning
strategy for PD(I ). The strategy assigns sets Xt and regressive function ft to nodes t
in the tree T = κ<ω in the following way:

For t = 〈〉, set X〈〉 = κ and let f〈〉 be empty’s first move. For α ∈ κ , set X(α) =
f −1
t (α). Note that α is a valid response for nonempty iff X(α) is positive. Generally,

fix t ∈ T . We can assume by induction that one of the following cases hold:

• t corresponds to a partial run rt with (positive) partial result Xt ; then we set ft to
be empty’s response to rt .

• Xt ∈ I ; then we set ft ≡ 0.

In both cases we set Xt	α = Xt ∩ f −1
t (α).

Let b be a branch of T (i.e., b ∈ κω). We set Xb = ⋂
n∈ω Xb�n .

Assume that b corresponds to a run of the game; this is the case iff Xb�n is I -positive
for all n. Then Xb ∈ I , since empty uses the winning strategy. If b does not correspond
to a run, then Xb ∈ I as well. So

Xb ∈ I for all branches b (1)

7 In games of length bigger than ω + 1 however it does make a substantial difference who moves first at
limits.
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Xb and Xc are disjoint for different branches b, c; and for all γ ∈ κ there is exactly
one branch bγ such that γ ∈ Xbγ . We assume γ 	= 0 from now on. By definition, for
all n

fbγ �n(γ ) = bγ (n)

Since fbγ �n is regressive, bγ (n) < γ for all n ∈ ω. In other words, bγ ∈ γ ω.
Fix an injective function φ : κω → κ . Since γ ℵ0 < κ for γ < κ , we can find a

club C such that

φ′′γ ω ⊆ γ for all γ ∈ C ∩ Eκ>ω.

This defines a regressive function g : C ∩ Eκ>ω → κ by g(γ ) = φ(bγ ). Since I is
normal and does not contain Eκ>ω, there is a positive set S and a ζ ∈ κ (or equivalently
a branch b of T ) such that g(γ ) = ζ , i.e., bγ = b for all γ ∈ S. This implies that
S ⊆ Xb is positive, a contradiction to (1). ��

Lemma 3.2 If I is normal, then PDe is equivalent to c&c(BI , κ).

Proof A regressive function defines a maximal antichain in BI of size at most κ . On
the other hand, let A be a maximal antichain of size λ ≤ κ . We can choose pairwise
disjoint representatives (Si )i∈λ for the elements of A, and define

f (α) =
{

1 + i if α ∈ Si and 1 + i < α,

0 otherwise.

f −1(0) ∈ I . (Otherwise there is an Si in A such that T = Si ∩ f −1(0) ∈ I +, pick
α ∈ T \(1 + i + 1), contradiction.) So the partition A is equivalent to the regressive
function f . ��

Together with 1.9 we get:

Corollary 3.3 If I is normal and κ+-saturated, then BM(I ) and PDe(I ) are equiva-
lent. The same holds for BMne(I ) and PD(I ).

If I is κ+-saturated, then it is precipitous, i.e., a(Id(I )) holds [10, 22.22]. However,
I can be concentrated on Eκℵ0

(for example, κ could be ℵ1), which negates a(BM(I )).
However, with Lemma 3.1 we get:

Corollary 3.4 If I is κ+-saturated, λℵ0 < κ for all λ < κ , and I is normal and
concentrated on Eκ>ℵ0

, then a(BM(I )) holds.

In the rest of the section, we show that properness implies a(BM(I )). This is not
needed for the rest of the paper.

For any Boolean algebra B, b(BM(B)) implies that B is proper (as a forcing notion),
cf. e.g. [12, Thm. 7]. For Boolean algebras of the form BI = P(κ)/I we also get:
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Lemma 3.5 Assume κ > 2ℵ0 . If BI is proper then a(BM(I )) holds.

Normality of I is not needed, just <κ-completeness.

Proof Assume towards a contradiction that τ is a winning strategy for empty. Let
p0 ∈ I + be empty’s first move according to τ . Pick N ≺ H(χ) countable containing
I and τ (and therefore p0), and let q ≤ p0 be N -generic. In other words, if D ∈ N is
a predense subset of I +, then q is (mod I ) a subset of

⋃
(D ∩ N ). Therefore

X = q ∩
⋂{⋃

(D ∩ N ) : D ⊆ I + is predense and D ∈ N
}
,

is positive. We set

Y =
⋃

{
⋂

n∈ω
An : (∀n ∈ ω) An ∈ N ∩ I +,

⋂

n∈ω
An ∈ I

}

Y ∈ I , since |[N ]ℵ0 | < κ . So we can pick some

δ∗ ∈ X \Y .

We now construct a run of the game such that every initial segment is in N . Assume
that we already know the initial segment of the first n −1 stages, and that this segment
is in N . Then empty’s move An given by τ is in N as well. We further assume that
δ∗ ∈ An . (This is true for n = 0, since δ∗ ∈ q ≤ p0.) For any I -positive B ⊆ An let
empty’s response be f (B). The set

D = {κ\An} ∪ { f (B) : B ⊆ An positive}

is dense in I + and is in N . Since δ∗ ∈ X , δ∗ ∈ ⋃
(D ∩ N ), i.e. there is some B ∈ N

such that δ∗ ∈ f (B). Let B be nonempty’s move.
So δ∗ will be in the intersection Z = ⋂

n∈ω An , and since empty wins the run,
Z ∈ I . Since each An is in N , we get Z ⊆ Y . This contradicts δ∗ ∈ Z . ��

4 ∞-semi precipitous ideals

Definition 4.1 A κ-complete ideal I on κ is called (normally) ∞-semi precipitous,
if there is some partial order P which forces that there is a (normal) wellfounded,
nonprincipal, κ-complete V -ultrafilter containing the dual of I .

Donder, Levinski [2] introduced the notion of λ-semi precipitous, and Ferber and Gitik
[3] extended the notation to ∞-semi precipitous. Another name, “weakly precipitous”,
is used for this notion in [1]. However, Jech uses the term “weakly precipitous” for
another concept, cf. [2,13].

We will see in Lemma 5.5 that b(PD∅(I )) implies that I is normally ∞-semi pre-
cipitous. This will establish the consistency strength of b(PD∅(I )):
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Lemma 4.2 If there is an ∞-semi precipitous ideal on κ , then κ is measurable in an
inner model.

This is of course no surprise: the proof is a simple generalization of the proof [9,
Theorem 2] for precipitous; Jech and others have used in fact very similar generaliza-
tions. (E.g., in [13] it is shown more or less that pseudo-precipitous ideals are ∞-semi
precipitous.)

Proof We assume that there is a forcing P and a name ˜D for the V -generic filter. In
particular:

P forces that in V [G] there is an elementary embedding j : V → M

for some transitive class M in V [G]. (2)

If we are only interested in consistency strength, we can use Dodd-Jensen core
model theory as a black-box: (2) is equiconsistent to a measurable cardinal, which fol-
lows immediately, e.g., from [10, 35.6] and the remark after [10, 35.14]: K V = K V [G],
and there is a measurable iff there is an elementary embedding j : K → M (which
also implies M = K ). However, this only tells us that there is some ordinal which is
measurable in an inner model, and not that this ordinal is indeed κ .

To see this, we can either use more elaborate core model theory (as pointed out
by Gitik, cf. [21, 7.4.8,7.4.11]). Alternatively, we can just slightly modify the proof
of [9, Theorem 2] (which can also be found in [10, 22.33]). We will do that in the
following: Let K be the class of strong limit cardinals μ such that cf(μ) > κ and
μ > |P|. Let (γn)n∈ω be an increasing sequence in K such that |K ∩ γn| = γn . Set
A = {γn : n ∈ ω} and λ = sup(A).

By a result of Kunen, it is enough to show the following:

There is(in V ) an iterable, normal, fine L[A]-ultrafilter W such

that every iterated ultrapower is wellfounded. (3)

We have a name ˜D for the V -generic filter. ˜D does not have to be normal, but there
is some p0 ∈ P and α0 ≥ κ such that p0 forces that [Id] = α0. We set

J = {x ⊆ κ : p0 � x /∈ ˜D}, and

U = {x ∈ P(κ) ∩ L[A] : x /∈ J }.

U is generally not normal, but the normalized version of U will be as required.
Uis an L[A]ultrafilter: Let x ⊆ κ be in L[A]. We have to show: x or κ\x are in J .

• There is a formula ϕ and a finite E ⊆ κ ∪ K such that (in L[A]) α ∈ x iff α < κ

and ϕ(α, E, A).
• Assume G is P-generic over V and contains p0. [Id] = α0, so x ∈ ˜D[G] iff
α0 ∈ j (x).

• By elementarity (in V [G]) α0 ∈ j (x) iff j (L[A]) thinks that ϕ(α0, j (E), j (A)).
But j (μ) = μ for every μ ∈ K .
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• So we get x ∈ ˜D[G] iff (in L[A]) ϕ(α0, E, A) holds, independently of G (provided
G contains p0). In other words, if there is some generic G such that x ∈ ˜D[G],
then x ∈ ˜D[G] for all generic G (containing p0); i.e. p0 forces that x ∈ ˜D[G]; i.e.
κ\x ∈ J .

• Assume that x is not in J . Then there is some q ≤ p0 forcing that x ∈ ˜D. So
κ\x ∈ J .

Uis<κ-complete, fine and wellfounded: Pick λ < κ and (xα)α∈λ in L[A] such that
each xα ∈ U . Then p0 forces that κ\xα /∈ ˜D, and therefore that

⋃
κ\xα /∈ ˜D (since

˜D is a <κ-complete ultrafilter).
This also shows that (in V ) the intersection of ℵ0 many U -elements is nonempty;
which implies that every iterated ultrapower is wellfounded (provided iterability).

Uis iterable: Let (in L[A]) (xα)α∈κ be a sequence of subsets of κ . Let G be
P-generic over V and contain p0. In V [G], xα ∈ ˜D[G] iff α0 ∈ j (xα). The sequence
( j (xα))α∈κ is in L[ j (A)], and therefore also the set {α ∈ κ : α0 ∈ jG(xα)}. But
L[ j (A)] = L[A].

normalizing: Since we now know that U is wellfounded, we know that there is
some f : κ → κ in L[A] representing κ . Set W = f∗(U ). Then W is as required. ��

The following follows easily from Kunen’s method of iterated ultrapowers (see,
e.g., [15, 4.3] for a proof):

Lemma 4.3 Assume V = L[U ], where U is a normal ultrafilter on κ . Let V ′ be a
forcing extension of V and D ∈ V ′ a normal, wellfounded V -ultrafilter on κ . Then
D = U.

This implies:

Corollary 4.4 In L[U ], the dual of U is the only normal precipitous ideal on κ; and
every ideal on κ that is normally ∞-semi precipitous is a subideal of the dual of U.

We will also need the following:

Lemma 4.5 If I is a <κ-complete ideal, P a κ-cc forcing notion, and cl(I ) the
P-name for the closure of I in V [G], then P preserves the following properties: I is
precipitous, I is not precipitous, and I is nowhere precipitous.

Proof This has been known for a long time, cf. e.g. [14]: “not precipitous” is equiva-
lent to the existence of a decreasing sequence of functionals starting at some positive
set S0 (this corresponds to: S0 forces that there is an infinite decreasing sequence in
the ultrapower, the sequence of functionals witnesses this). A κ-cc forcing preserves
maximality (below S0) of an antichain in BI , and therefore the decreasing sequence
of functionals. “Nowhere precipitous” is equivalent to the existence of a decreasing
sequence of functionals starting with κ , which again is preserved by P . ��

5 Nonempty winning

Let us assume that nonempty has a winning strategy in PD∅(I ) (or a similar game
such as PD(I )). A valid sequence is a finite initial sequence of a run of the game
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PD∅, where nonempty uses his strategy. So a valid sequence w has the form
( f0, α0, f1, α1, . . . , fn−1, αn−1), where fi is a regressive function and αi the value
chosen by the strategy. In particular Si = ⋂

j≤i f −1
j (α j ) is I -positive for each i < n.

We set

A(w) = Sn−1 =
⋂

j<n

f −1
j (α j ).

Definition 5.1 P∗ is the set of valid sequences ordered by extension. (A longer
sequence is stronger, i.e., smaller in the P∗-order.)

So if w < v, then A(w) ⊆ A(v). If w0 > w1 > w2 > · · · is an infinite decreasing
sequence in P∗, then

⋃
i∈ω wi represents a run of the game, so the result

⋂
i∈ω A(wi )

has to be nonempty (or even positive in the case of a PD-strategy).

Lemma 5.2 b(PD∅) implies κ > 2ℵ0 .

Actually, we can even restrict nonempty to play functions f : κ → {0, 1}. In other
words, it is enough to assume b(c&cmin(I, 2)), cf. Definition 1.10.

Proof The proof is the same as [5, §1]: we assume otherwise and identify κ with a
subset X of [0, 1] without a perfect subset. We claim:

For all w ∈ P∗ and n ∈ ω there are disjoint open intervals I1

and I2 of length ≤1/n and w1, w2 < w such that A(w1) ⊆ I1 and

A(w2) ⊆ I2. (4)

Assume that (4) fails for some v0 and n0. Given v < v0 and n > n0, we fix a partition
of [0, 1] into n many open intervals of length 1/n and the (finite) set of endpoints.
By splitting A(v)n + 1 many times, empty can guarantee that A(w) has to be subset
of one of the intervals for some w < v. Since (4) fails, there has to be for each n
a fixed element I (n) of the partition such that for all v < v0 there is a w < v with
A(w) ⊆ I (n).

⋂
I (n) can contain at most one point x , so the empty player can con-

tinue v0 by first splitting into {x} and A(v0)\{x}; and then extending each vn−1 to vn

such that A(vn) ⊆ I (n). Then the intersection is empty. This shows (4).
So we can fix an order preserving functionψ from 2<ω to P∗ such that A(ψ(s	0))

and A(ψ(s	1)) are separated by intervals of length ≤1/|s| for all s ∈ 2<ω. Then
every η ∈ 2ω is mapped to a run of the game, and since nonempty wins, there is some
rη ∈ ⋂

n∈ω A(ψ(η � n)). This defines a continuous, injective mapping from 2ω into
X and therefore a perfect subset of X . ��

Clearly a(PD) fails if I is concentrated on Eκℵ0
, and this was used in [5] to show

that in this case b(Idne(I )) fails as well. A similarly easy proof gives:

Lemma 5.3 b(PD∅(I )) fails if I is concentrated on Eκℵ0
.
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Proof Assume otherwise. Fix for each α ∈ Eκℵ0
a normal cofinal sequence

(seq(α, n))n∈ω, and let gi : κ → κ map α to seq(α, i). We first show a variant of
(4):

For all w there are v1, v2 ≤ w in P∗ such thatA(v1) ∩ A(v2) = ∅. (5)

Assume otherwise. Then for each i there is a fixed βi such that nonempty responds
with βi whenever empty plays gi in any v ≤ w. Set δ = sup{βi : i ∈ ω}, and let
empty play the following response to w:

f (α) =
{

0 if α ≤ δ,

min{n : seq(α, n) > δ} otherwise.

If nonempty responds to f with m, then empty can play gm as next move, nonempty
has to respond with βm < δ, but

g−1
m (βm) = {α : seq(α,m) = βm}

is disjoint to f −1(m), a contradiction. This shows (5).
Now fix N ≺ H(χ) of size less than κ containing the strategy as well as all gn and

such that N ∩ κ = δ ∈ Eκℵ0
. We define a sequence w0 > w1 > · · · in P∗ such that

each wi is in N : Using (5) in N , we get a w0 ∈ N ∩ P∗ such that δ /∈ A(w0). Given
wn−1, let wn ∈ N be the continuation where empty played the regressive function

fn(α) =
{

0 if α < seq(δ, n)
gn(α) otherwise.

(Note that seq(δ, n) < δ is in N for all n.) Assume that ν ∈ ⋂
n∈ω A(wn). Then

ν ≥ seq(δ, n) for all n, so ν ≥ δ. On the other hand, gn(ν) ∈ N for all n, so ν ≤ δ.
But δ /∈ A(w0), a contradiction. ��

Of course this shows the following: b(PD∅(I )) implies b(PD∅(I � Eκ>ℵ0
)) (since

empty can just cut κ into Eκℵ0
and Eκ>ℵ0

as a first move).

Recall that b(PD∅(I )) for any I implies b(PD∅(NS)) (due to monotonicity). So the
last lemma gives:

Corollary 5.4 b(PD∅(I )) is equivalent tob(PD∅(I � Eκ>ℵ0
))and impliesb(PD∅(NS))

and b(PD∅(NS � Eκ>ℵ0
)).

Lemma 5.5 b(PD∅(I )) implies that I is normally ∞-semi precipitous.
b(c&cmin(I,<κ)) implies that I is ∞-semi precipitous.

Proof We define the P∗-name ˜U by X ∈ ˜U iff X ⊇ A(w) for some w ∈ G P∗ .

• P∗ forces that ˜U is a V -ultrafilter: Given any w ∈ P∗ and X ∈ V , player empty
can respond to w by cutting into X and A(w)\X .
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• In the c&cmin case, P∗ forces that ˜U is<κ-complete: Assume that (in V ) X is the
disjoint union of (Xi )i∈λ, λ < κ . Then empty can responds to w by cutting into
{Xi : i ∈ λ} ∪ {A(w)\X}.

• In the case of PD, P∗ forces that ˜U is V -normal: If f ∈ V is regressive, then
empty can play f as response to any w.

• P∗ forces that ˜U is wellfounded: Assume towards a contradiction that w forces
that (

˜
fn)n∈ω are functions (in V ) from κ to the ordinals such that

˜An = {α :
˜
fn+1(α) < ˜

fn(α)}

is in ˜U for all n ∈ ω. Setw−1 = w. Assume that we already havewn (for n ≥ −1).
Pick some w′

n+1 < wn deciding
˜
fn+1 to be some f ′

n+1 ∈ V . So w′
n+1 forces that

Xn+1 := ⋂
l≤n+1 ˜Al = ⋂

l≤n+1 A′
l (a set in V ) is in ˜U . In particular, there is some

wn+1 stronger thanw′
n+1 such that A(wn+1) ⊆ Xn+1. The sequence (wn)n∈ω cor-

responds to a run of the game. Since nonempty follows the strategy, there is some
α ∈ ⋂

n∈ω A(wn). wn+1 forces α ∈ Xn+1, i.e., f ′
n+1(α) < f ′

n(α). This gives an
infinite decreasing sequence, a contradiction. ��

Together with 4.4, we get:

Corollary 5.6 In L[U ], nonempty does not win PD∅(NSκ � S) for any S /∈ U. In
particular, b(PD(NSκ)) holds (even for the game of length κ), but b(PD∅

e (NSκ � S))
fails for every stationary S. Also, and a(Id(NSκ � S)) fails, i.e., NSκ is nowhere
precipitous.

We can use a Levy Collapse to reflect this situation down to, e.g., ℵ2. We first list
some properties of the Levy collapse. Assume that κ is inaccessible, θ < κ regular,
and let Q = Levy(θ,< κ) be the Levy collapse of κ to θ+: A condition q ∈ Q is
a function defined on a subset of κ × θ , such that | dom(q)| < θ and q(α, ξ) < α

for α > 1, (α, ξ) ∈ dom(q) and q(α, ξ) = 0 for α ∈ {0, 1}. Given α < κ , define
Qα = {q : dom(q) ⊆ α× θ} and πα : Q → Qα by q �→ q � (α× θ). The following
is well known:

• If q � p ∈ G, then q ≤ p (i.e. ≤∗ is the same as ≤).
• Q is κ-cc and < θ -closed.
• In particular, if p forces that C ⊆ κ is club, then there is a club C0 ∈ V such that

p forces C0 ⊆ C . The ideal generated by NSV
κ in V [G] is N SV [G]

κ .

We also need the following simple fact (see, e.g., [15, 6.2] for a proof):

Let I be a normal ideal concentrated on Eκ≥θ , let T be I -positive,

p ∈ Q andpα ≤ p for all α ∈ T . Then there is an I -positive T ′ ⊆ T

and a q ≤ psuch that πα(pα) = q for all α ∈ T ′. (6)

So in particular, every q ′ ≤ q is compatible with pα for all but boundedly many
α ∈ T ′.

We will also use:
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Lemma 5.7 Let κ be inaccessible and T ⊂ κ be stationary. The Levy collapse pre-
serves ¬b(PD∅(NSκ � T )). The same holds for PD.

Proof Assume towards a contradiction that q forces that nonempty does have a win-
ning strategy in V [G]. We describe a winning strategy in V : assume empty plays f0
(in [V ]). Let q0 ≤ q decide that in V [G] nonempty chooses α0 as response to f0
according to the winning strategy in V [G]. So q0 forces that f −1

0 (α0) ∩ T is station-
ary, therefore f −1

0 (α0) ∩ T is stationary in V . Generally, let qn ≤ qn−1 decide that
nonempty plays αn as response to fn . Since Q is σ -closed, there is a qω < qn for all
n. So qω forces that

⋂
f −1
n (αn) ∩ T is stationary. ��

Starting with L[U ] and using a Levy collapse we get:

Corollary 5.8 Consistently relative to a measurable, b(PD(NSℵ2)) holds (even for
length ℵ1) but b(PD∅

e (NSℵ2 � S)) fails for every stationary S, and NSℵ2 is nowhere
precipitous.

Proof Assume V = L[U ] and let Q = Levy(ℵ1,<κ) be the Levy collapse of κ to
ℵ2.

To see that NSℵ2 is forced to be nowhere precipitous, note that <κ-cc implies
clV [G](NSV

κ ) = NSV [G]
κ and use 4.5.

In V [G], clV [G](U ) is a normal filter such that the family of positive sets has a
σ -closed dense subset [5]. Let I be the dual ideal. So nonempty wins BM(I ), and
therefore PDe(I ) and PD(NSκ) (even of length ℵ1).

It remains to be shown that b(PD∅
e (NSℵ2 � S)) fails in V [G] for all station-

ary S. Assume towards a contradiction that some p forces that ˜S is stationary and
b(PD∅(NSκ � S′)) holds for all stationary S′ ⊆ ˜S. According to 5.4 we can assume

˜S ⊆ Eℵ2ℵ1
. Set

T0 = {α ∈ κ : p 	� α /∈ ˜S}

T0 ⊆ Eκ≥ℵ1
is stationary. Fix some stationary T ⊆ T0 not in U ; and for α ∈ T fix

some pα ≤ p forcing α ∈ ˜S. Apply (6) to T , the nonstationary ideal and (pα)α∈T .
This results in q ≤ p and T ′ ⊆ T stationary.

q � S′ := T ′ ∩ ˜S is stationary. (7)

Otherwise some q1 ≤ q forces that S′ is nonstationary. Then there is in V a club C and
a q2 ≤ q1 forcing that S′ ∩C = ∅. Pick α ∈ T ′ ∩C such that pα and q2 are compatible.
Then q3 ≤ pα, q2 forces that α ∈ T ′ ∩ C ∩ ˜S, a contradiction. This shows (7).

By our assumption, p forces that nonempty wins PD∅(NS � S′). But b(PD∅(NSκ �
T ′)) fails in V (since T ′ ⊂ T and T /∈ U ), therefore b(PD∅(NSℵ2 � T ′)) fails
in V [G] according to 5.7, and by monotonicity b(PD∅(NSℵ2 � S′)) fails as well, a
contradiction. ��

We will now force nonempty not to win PD. For simplicity we will assume CH and
look at κ = ℵ2. It turns out that it is enough to add ℵ1 many Cohen reals (actually,
many similar forcing also work). First we need another variant of (4) or (5):
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Lemma 5.9 Assume CH and b(PD∅(NSℵ2)). For each v ∈ P∗ there are F ′(v) ≤ v

and F ′′(v) ≤ v such that A(F ′(v)) and A(F ′′(v)) are disjoint.

(We can choose F ′(v) and F ′′(v) to be immediate successors of v, i.e. we just have
to choose two regressive functions f ′ and f ′′ as empty’s moves.)

Proof We fix an injection φ : [ℵ2]ℵ0 → ℵ2. Let S = C ∩ Eℵ2
ω1 (for some clubset C)

consist of ordinals α such that φ′′[α]ℵ0 ⊆ α. For each α ∈ S, pick a normal cofinal
sequence γ α : ω1 → α. For i ∈ ω1 set gi (α) = φ({γ α( j) : j ≤ i}) for α ∈ S; and
set gi (α) = 0 for α /∈ S. So for all i ∈ ω1, gi is a regressive function. If α 	= β then
gi (α) 	= gi (β) for some i ; and gi (α) 	= gi (β) implies g j (α) 	= g j (β) for all j > i .

Let x(i) be the strategy’s response to v	gi , We can identify x(i)with the sequence
φ−1x(i) = (γi,k)k≤i . So for all α with gi (α) = x(i) we get γ α(k) = γi,k for k ≤ i .

Case A: There are k < i < j < ω1 such that γi,k 	= γ j,k . Then set F ′ = gi and
F ′′ = g j . If α ∈ g−1

i (x(i)) and β ∈ g−1
j (x( j)), then γ α(k) 	= γ β(k), so in particular

α 	= β.
Case B: Otherwise, all the sequences (γi,k)i≤k cohere for all i ∈ ω1, so let (γ̃k)k∈ω1

be the union of these sequences, with supremum α̃ < ω2. So for all α 	= α̃ in S there is
some k(α) ∈ ω1 such that γ α(k(α)) 	= γ̃k(α)). Set k(α) = 0 for α ∈ ω1 ∪ {α̃} ∪ω2\S.
So k is a regressive function. Let l be the strategy’s response to v	k. Set F ′ = k
and F ′′ = gl . If α ∈ k−1(l) and β ∈ g−1

l x(l), then γ β(l) = γ̃l which is different to
γ α(l). ��
Lemma 5.10 Assume CH. Let Pω1 be the forcing notion adding ℵ1 many Cohen reals.
Then Pω1 forces ¬b(PD∅(NSℵ2)).

(The same holds for any other CH preserving ω1-iteration of absolute ccc forcing
notions.) Note that since PD∅ is monotone, b(PD∅(I )) fails for all ideals I on ℵ2.

Proof Assume that p ∈ Pω1 forces that ˜τ is a winning strategy for nonempty for the
game PD∅(I ).

Let Pα be the complete subforcing of the first α Cohen reals. Pω1 forces that
Lemma 5.9 holds. We fix the according Pω1 -names ˜F

′ and ˜F
′′. Let N ≺ H(χ) be

countable and contain p, ˜τ, ˜F
′ and ˜F

′′. Set ε = N ∩ ω1. If Gω1 is Pω1 -generic over
V , then Gε = Gω1 ∩ Pε is Pω1 -generic over N (and Pε-generic over V ).

So in Nε = N [Gε] = N [Gω1], we can evaluate the correct values of ˜τ, ˜F
′ and

˜F
′′ for all valid sequences v in Nε (i.e., the resulting values are the same as the ones

calculated in Vω1 = V [Gω1 ]).
In Vω1 , pick any real r /∈ Vε . Using r , we now define by induction a run b of

the game such that each initial segment is in Nε : Assume we already have the valid
sequence u ∈ Nε . Extend u with ˜F

′(u) if r(n) = 0, and to F ′′(u) otherwise.
So b ∈ Vω1 is a run of the game according to τ ; nonempty wins the run; so there is

some δ ∈ ⋂
n∈ω A(b � n). But we can in Vε use this δ to reconstruct (by induction) the

run b and therefore the real r : Assume we already know r � n and the corresponding
valid sequence u = b � n. Then δ is element of exactly one of A(F ′(u)) or A(F ′′(u)),
which determines r(n) as well as the sequence corresponding to b � (n + 1). ��

On the other hand, adding Cohens, as any κ-cc forcing, preserves precipitousness
(and non-precipitousness) of an ideal, cf. 4.5. So we get:
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Corollary 5.11 a(Id(I )) does not imply b(PD∅(NS)).

If we assume CH and an ℵ3-saturated normal ideal on ℵ2 saturated on Eℵ2ℵ1
, we get

the following:

Corollary 5.12 (Saturated ideal.) a(BM(I )) does not imply b(PD∅(NS)).

Proof Since Pω1 has size ℵ1 < ℵ2, cl(I ) remains ℵ3-saturated. So in V [G], we can
use 3.4 to see that a(BM(cl(I ))) holds. ��

6 b(PDe) for a nonprecipitous I

We have seen that b(PD(I )) can hold for a nowhere precipitous ideal I . It is a bit harder
to show that there can be a nowhere precipitous ideal I that even satisfies b(PDe(I )).

Fact 6.1 The following is consistent relative to κ measurable: I0 is nowhere precip-
itous, and for every I0-positive set S the dual to I0 � S can be extended to a normal
ultrafilter.

Note that this implies b(PDe(I0)), even for the game of length κ .
And as usual, we can use a Levy collapse to reflect these properties to ℵ2:

Lemma 6.2 Start with a universe V as in Fact 6.1. After collapsing κ to ℵ2, we get:
cl(I ) is nowhere precipitous and satisfies b(PDe(cl(I ))) (even for the game of length
ℵ1).

Proof Nowhere precipitous follows from 4.5. Let S be a P-name for a cl(I )-positive
set and p ∈ P . Will show:

In V there is a normal ultrafilter U and a q ≤ p forcing that S is

cl(U )-positive. (8)

Then according to the usual argument, the cl(U )-positive sets have a σ -closed dense
subset, so nonempty wins BM(cl(U ) � S), and—since cl(U ) extends cl(I )—non-
empty wins PD(I � S) (even for length ℵ1).

To prove (8), set T = {α ∈ Eκ≥ℵ1
: p 	� α /∈ S}. T is I -positive. For each α ∈ T

pick a witness pα ≤ p. Let q, T ′′ be as in (6) and pick a normal ultrafilter U containing
T ′′. We have to show that q forces S to be cl(U )-positive. Assume otherwise, and pick
q ′ ≤ q and A ∈ U such that q ′ forces A ∩ S = ∅. Then q ′ ∈ Qα for some α < κ . Pick
β ∈ T ′′ ∩ A\α. Then pβ and q ′ are compatible, a contradiction to pβ � β ∈ S. ��

After this paper was submitted, it came to our attention that Fact 6.1 follows directly
from a construction of Gitik, using only a measurable: In his paper Some patholog-
ical examples of precipitous ideals [6], he constructs a non-precipitous filter U∗ as
intersection of normal ultrafilters (see p. 502 and Lemma 3.3).

We still give our proof of Fact 6.1 in the rest of the paper, using a supercompact and
assuming GCH in the ground model, since the construction itself might be of some
interest.
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We will split the proof into several lemmas: first we define the forcing S(κ) as limit
of Pα . We also define dense subsets P ′

α of the Pα . Then we define the forcing notion
Rκ+1, by doing the usual Silver-style preparation with reverse Easton support. This
forcing notion is as required: In the extension, we define 6.6 the ideal I0 and show that
Fact 6.1 holds (6.9 and 6.10).

6.1 The basic forcing

So let us assume that κ is an inaccessible cardinal, and define S(κ) as the limit of
the <κ-support iteration (Pa, Qa)a∈κ+ of length κ+ defined the following way: by
induction on a, we define Qa together with the Pa-names Ba ⊆ κ, ga : κ → κ + 1
and the Pa+1-names Aa ⊆ κ, fa : κ → κ:

We identify the tree T = (κ+)<ω of finite κ+-sequences with κ+ such that the root
is identified with 0. We can assume that a <T b implies a < b (as ordinals in κ+).
We write a �T b or b �T a to denote that b is immediate T -successor of a. So for all
a ∈ κ+ there are κ+ many b with a �T b. For b 	= 0 we also write prec(b) to denote
the (unique) a such that a �T b.

Assume we already have defined Pa , and the Pb+1-names Ab, fb for all b < a.
Then in V [G Pa ], we define Ba, ga, Qa and the Qa-names fa, Aa :

• If a = 0, we set ga(α) = κ for all α ∈ κ , and Ba = κ .
• Otherwise, we use some bookkeeping8 to find a B0

a ⊆ Aprec(a), and we set:

Ba = B0
a\∇b<a: prec(b)=prec(a)Ab, and we set ga = fprec(a). (9)

• A condition p of Qa is a function f p : β p → κ such that β p ∈ κ and for all
α ∈ β p:
− if α /∈ Ba or ga(α) = 0 then f p(α) = 0,
− otherwise f p(α) < ga(α).
− Additionally, if a = 0 we require f p(α) > 0.

• We define the order on Qa by q ≤ p if f q ⊇ f p.
• We set fa to be the canonical Qa-generic, i.e.,

⋃
q∈G f q .

• We set Aa = {α ∈ κ : f (α) > 0}. (So A0 = κ , and Aa ⊆ Ba ⊆ B0
a .)

Note that to write the diagonal union in (9), we have to identify the index set with
κ . Different identifications lead to the same result modulo club. In particular, we get:

If b < a and prec(b) = prec(a) then Ba ∩ Ab is nonstationary. (10)

Obviously Qa is <κ-closed. We now define P ′
a by induction on a ∈ κ+ and show

(in the same induction) that P ′
a is <κ-closed and can be interpreted to be a dense

subset of Pa . A condition p ∈ P ′
a is a function from u × β to κ such that:

8 We just need to guarantee that Pκ+ forces: For every a ∈ T and every subset B of Aa there is a b �T a

such that B0
b = B. Note that Ab ⊆ B ⊆ Aa .
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• β ∈ κ .
• u is a subset of a of size <κ .
• c �T b implies max(1, p(c, α)) > p(b, α).
• p(b, α) > 0 implies that p � b forces (as element of Pb)9 that α ∈ Bb.
• If 0 ∈ u, then p(0, α) > 0 for all α < β.

We can interpret p ∈ P ′
a to be a condition in Pa in the obvious way; in particular we

can define the order on P ′
a to be the one inherited from Pa .

Lemma 6.3 • P ′
a is a dense subset of Pa.

• The order on P ′
a (as inherited from Pa) is the extension relation.

• P ′
a is <κ-closed.

• Pa is strategically <κ-closed.

Proof By induction on a (formally, the definition of P ′
a has to be done in the same

induction as well). It is clear that P ′
a is closed and that the order is extension. We have

to show that P ′
a is dense in Pa . We do that by case distinction on cf(a):

The case cf(a) ≥ κ is trivial.
The successor case: Assume a = b + 1 and p ∈ Pa . Then by induction we know
that Pb is strategically κ closed, so we can strengthen p � b to some p′ ∈ P ′

b deciding
p(b) to be some f p. We can assume that the height of p′ is at least the height of f p,
and we can extend f p up to the height of p′ by adding zeros on top. Then p′ together
with f p is a condition of P ′

a stronger than p.
The case cf(a) < κ , i.e., a = sup(bi : i ∈ λ) for some bi < a and λ < κ . We assume
p ∈ Pa . We define by induction on i ∈ λ decreasing conditions p′

i ∈ P ′
bi

stronger
than p � bi . (By induction we know that Pbi is <κ-closed, so p̃i = ⋃

l<i p′
l is in Pbi

and, by induction, stronger than p � supl<i bl . So we can extend p̃i to an element of
Pbi stronger than p � bi .) ��

6.2 The silver style iteration

We now use the basic forcing S(κ) in a reverse Easton iteration, the first part acting
as preparation to allow the preservation of measurability. This method was developed
by Silver to violate GCH at a measurable, and has since been established as one of
the basic tools in forcing with large cardinals. We do not repeat all the details here, a
more detailed account can be found in [10, 21.4]. Note that here we do not just need
to preserve measurability or supercompactness (for this, we could just use Laver’s
general result [16]), we need specific properties of the Silver iteration.

Fix a j : V → M such that

M is closed under κ++-sequences. (11)

In particular, cf( j (κ)) > κ+.
We will use the reverse Easton iteration (Ra, S(a))a≤κ , for S(a) defined as above.

Rκ is the preparation that allows us to preserve measurability (and we will not need it for

9 By induction, we already know that P ′
b is dense in Pb .
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anything else); we will look at Rκ∗Pa for a ≤ κ+, and in particular at Rκ+1 = Rκ∗Pκ+
(recall that S(κ) = Pκ+ ). We claim that Rκ+1 forces what we want. We will also use
j (Rκ ∗ Pa) ∈ M . We get the usual properties:

• The definition of R is sufficiently absolute. In particular, we can (in M) factorize
j (Rκ+1) = R j (κ)+1 as Rκ+1 ∗ R′, where R′ is the quotient forcing Rκ+1

j (κ)+1. Note

that R′ is <κ+++-closed (in M and therefore in V as well).
• Assume that G is Rκ+1-generic over V (and M). M[G] is closed (as subset of

V [G]) under κ+-sequences. In particular, κ+ is the same (and also equal to 2κ ) in
V, V [G] and M[G].

• For p ∈ Rκ+1, the domain of j (p) is in κ ∪ { j (κ)}, moreover j (p) � κ = p � κ
and j (p)( j (κ)) is isomorphic to p(κ) such that a ∈ dom(p(κ)) is mapped to
j (a). The image of G under j is element of V [G] and subset of M of size κ+,
therefore element of M[G]. For p ∈ G we can split in M the condition j (p) into
p � κ (which is in G anyway) and j (p(κ)). We can assume that G actually is
Rκ ∗ P ′

κ+ -generic (since P ′
κ+ is dense in Pκ+ ). Then j (p(κ)) is a P ′

j (κ+)-condition.

So in M[G], the set { j (p(κ)) : p ∈ G} is a directed subset of P ′
j (κ+) of size

κ+, therefore the union is a P ′
j (κ+)-condition qG , a matrix of height κ (which is

less than j (κ), so no contradiction to the definition of P ′
a) and with domain j ′′κ+

(which has size κ+ < j (κ)M[G]). We call this condition qG , the minimal G-master
condition.

• In M[G], we call q ∈ R′ a G-master condition if it is stronger than qG .
• If H contains some G-master condition and is R′-generic over V [G] (and there-

fore M[G] as well), then we can extend in V [G][H ] the embedding j to V [G] →
M[G][H ] by setting j (τ [G]) = j (τ )[G][H ]. This defines in V [G][H ] a normal
ultrafilter U = {A[G] : κ ∈ j (A)[G][H ]} over V [G]. Since R′ is sufficiently
closed, U is already element of V [G].

Definition 6.4 In V [G], a ∈ κ+ is called a positive index, if

(∀ζ < j (κ)) (∃q G-master condition) q � (κ ∈ j (Ba) & j (ga)(κ) > ζ). (12)

Otherwise, a is called a null-index.

Here we interpret Ba and ga as Rκ ∗ Pa-names in the canonical way, so the j-images
are R j (κ) ∗ Pj (a)-names. In particular, whether κ ∈ j (Ba) & j (ga)(κ) > ζ holds is
already decided in the R j (κ) ∗ Pj (a) extension, so we can assume that the G-master
condition q of the definition only consists of the required minimal master condition
qG “from j (a) onwards”, more exactly we can assume:

• q ∈ R j (κ)+1 is factorized as x ∗y, for x ∈ R j (κ) and y is R j (κ)-name for a condition
in P ′

j (κ+).
• x forces that ( j (b), α) is not in the domain of the matrix y for any b ≥ a and
α ≥ κ .

In particular, we can extend q to a master condition q ′ forcing that

j ( fb)(κ) = 0 for all b ≥ a. (13)
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Similarly, we can extend q to a master condition q ′ forcing that

j ( fa)(κ) = ζ and j ( fb)(κ) = 0 for all b > a. (14)

Lemma 6.5 If a is null and b >T a, then b is null as well. Also, 0 is a positive index.

Proof Pick ζ < j (κ) such that every master condition forces j (ga)(κ) < ζ or κ /∈
j (Ba). But the empty condition forces j (gb)(κ) ≤ j (ga)(κ) and j (Bb) ⊆ j (Ba). ��
Definition 6.6 In V [G], we define the ideal I0 by A ∈ I0 iff there is an X ⊆ κ+ of
size κ consisting of null-indices such that

A ⊆ ∇i∈X Bi modulo a club set.10 (15)

Lemma 6.7 I0 is a normal ideal on κ

Proof Assume that Ai ∩ Ci ⊆ ∇l∈Xi Bl for all i ∈ κ . Then (∇i∈κ Ai ) ∩ �i∈κCi ⊆
∇l∈⋃

Xi Bl modulo a club set. ��
By elementarity, if q is a G-master condition and if ϕ(c, Bα[G], gα[G]) holds in

V [G] for some c ∈ V , then for all H containing q we get in M[G][H ]

ϕ( j (c), j (Bα)[G][H ], j (gα)[G][H ]). (16)

Lemma 6.8 In V [G] the following holds: If a is a positive index, then Aa is I0-positive.

Note that this implies: a is a positive index iff Ba is a I0-positive set; and I0 is
nontrivial (since 0 is a positive index).

Proof Assume otherwise, and fix an appropriate X and a club set C , i.e.,

Aa ∩ C ⊆ ∇i∈X Bi . (17)

Since X consists of null-indices, there is for each b ∈ X a ζb < j (κ) such that every
master condition forces κ /∈ j (Bb) or j (gb)(κ) < ζb. Since cf( j (κ)) > κ , we can
find an upper bound ξ for all ζb. So every master condition forces

κ ∈ j (Bb) implies j (gb)(κ) < ξ for all b ∈ X. (18)

Since a is a positive index, we can find a master condition q forcing κ ∈ j (Ba) and
j (ga)(κ) > ξ + 1. According to (14) we can extend q to q ′ such that

j ( fa)(κ) > ξ and j ( fc)(κ) = 0 for all c > a. (19)

10 As mentioned above, ∇i∈X Bi is only defined modulo a club set, since X is not canonically isomorphic
to κ (it is just a subset of κ+ of size κ). To avoid ambiguity, we just fix from now on for each such X a
bijection to κ and make ∇i∈X Bi well defined; still we use “subset modulo club set” in the definition on I0.
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Since C is club, κ is forced to be in j (C). So q ′ forces κ ∈ j (Aa) ∩ j (C). Accord-
ing to (17), Aa ∩ C ⊆ ∇b∈X Bb holds in V [G], so q ′ forces κ ∈ j (Aa) ∩ j (C) ⊂
j (∇b∈X Bb). Let Z be the sequence (Bb)b∈X . Recall that we fixed (in V [G]) some
bijection i of κ to X , to make ∇Z well defined. So j (∇Z) uses j (i), a bijection from
j (κ) to j (X); and κ ∈ j (∇Z) means: There is an α < κ such that κ ∈ j (Z) j (i)(α).
Note that j (Z) j (i)(α) = j (Bi(α)) and set b = i(α) ∈ X . So

κ ∈ j (Bb) for some b ∈ X (in particular, bis null-index). (20)

We further extend q ′ to some q ′′ deciding the b of (20). So q ′′ forces

κ ∈ j (Aa ∩ Bb) for the null-index b. (21)

We will get a contradiction by case distinction on the position of b relative to a in the
tree T :

• b <T a: This contradicts the fact that b is a null-index and a not.
• a �T b: Then gb = fa , and q ′′ forces that κ ∈ j (Bb) and j (gb)(κ) ≥ j ( fa)(κ) >

ξ > ζb, contradicting (18).
• a�T c and c <T b: Then c is (as an ordinal) bigger than a, and q ′′ forces κ /∈ j (Ac).

So κ /∈ j (Bb) ⊆ j (Ac).
• So a and b have to be incomparable in T , and there is some node c where a and b

split. Let a′ and b′ the according immediate T -successors of c. So a′ �T c, b′ �T

c, a′ ≤T a, b′ ≤T b and a′ 	= b′. Let m be the minimum of a′, b′ (as ordinals) and
m the maximum. According to (10) Am ∩ Bm is nonstationary, so κ /∈ j (Am ∩ Bm).
So (21) implies that b′ = b = m. Also j (gb)(κ) = j ( fc)(κ) ≥ j ( fa)(κ) > ξ

according to (19) which contradicts (18). ��
Lemma 6.9 In V [G], empty has a winning strategy for Idne(I0).

Proof Assume that we have a partial run of the game of length n, corresponding to
the node a in T , and empty has played Xn as last move, which is a subset of Aa .
Assume that nonempty plays the I0-positive set B0 ⊆ Aa . Let b �T a be such that
Xn+1 := Ab ∩ B0 is I0-positive, and let Xn+1 be empty’s answer (and b be the new
T -node corresponding to the new partial run). This is a winning strategy since fn(α)

decreases along every branch of T . It remains to be shown that we can find a b�T a as
above: B0 itself is enumerated as B0

c by the bookkeeping at some stage c �T a. Recall
that Bc = B0

c \∇d<c,d�T a Ad . If Bc is positive, then we can set b = c. Otherwise,
since B0

c is positive, some B0
c ∩ Ad has to be positive for some d < c, d �T a (since

I0 is normal); and we can set b = d. ��
It remains to be shown:

Lemma 6.10 In V [G], for every I0-positive X there is a normal ultrafilter D1 extend-
ing the dual of I0 and containing X.

Proof It is enough to show: If Y is I0-positive, then there is a master condition q
forcing

κ ∈ j (Y ) and κ /∈ j (Bb) for all null-indices b. (22)
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Let X be the set of indices a such that Y ∩ Aa is I0-positive. Assume a ∈ X . We will
use Y ∩ Aa as B0

b for some b �T a. We have to distinguish two cases:

Case 1 There is a positive c �T a such that Bc ⊆ Y . In particular, this will be the
case if b itself is positive, i.e. if Bb = B0

b\∇c<b,c�T a Ac is I0-positive.
Case 2 There is no such c. In particular, in this case b is a null-index, so Y ∩ Aa

is covered (modulo I0) by ∇c<b,c�T a Ac. Then c /∈ X for any c ≥ b such
that c �T a. So at most κ many immediate T -successors of a are in X ; and
Y ∩ Aa is covered (modulo I0) by ∇c�T a,c∈X Ac as well.

We claim that Case 1 has to occur for some a. Otherwise, X is a subtree of T such
that every node has at most κ many successors, i.e., there are only κ many branches
through X . By induction on n,Y is covered (module I0) by ∇c∈X, T -height(c)=n Ac. But
for any branch b, the set

⋂
n∈ω Ab(n) is empty (witnessed by the decreasing sequence

fb(n)), a contradiction.
So we can pick a T -minimal b such that Case 1 holds. Note that | j ′′κ+| < cf( j (κ)).

For every null-index c there is a witness ξc < j (κ), so there is a universal bound ξ .
Since b is a positive index, we can find a master condition q forcing j (gb)(κ) > ξ and
κ ∈ j (Bb). Recall that Bb ⊆ Y (mod I0), so q forces that κ ∈ j (Y ). We now extend
q to q ′ so that it forces κ /∈ j (Ac) for all c > b. Then q ′ is as required: κ /∈ j (Bc) for
any null-index c, by a similar case distinction as in the proof of Lemma 6.8. ��
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