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A SACKS REAL OUT OF NOWHERE

JAKOB KELLNER† AND SAHARON SHELAH‡

Abstract. There is a proper countable support iteration of length ù adding no new reals at finite stages

and adding a Sacks real in the limit.

§1. Introduction. Preservation theorems are a central tool in forcing theory:

Let (Pα ,
˜
Qα)α<ǫ be a forcing iteration. Assume that Qα is (forced to be)

nice for all α < ǫ. Then Pǫ is nice.1

A niceness (or preservation) property usually implies that the forcing does not
change the universe too much. Among the most important preservation theorems
are:

The finite support iteration of ccc forcings is ccc. [8]

and

The countable support iteration of proper forcings is proper. [6]

In this paper we investigate proper countable support iterations, so the limits are
always proper. Many additional preservation properties are preserved as well, for
example ùù-bounding (i.e., not adding an unbounded real). This is a special
instance of a general preservation theorem by the second author (“Case A” of
[7, XVIII §3]) which is also known as “first preservation theorem” [1, Section 6.1.B]
or “tools-preservation” [4, Section 5], see also [5, Theorem 2.4]. Many additional
preservation theorems for proper countable support iterations can be found in [7],
or, from the point of view of large cardinals, in [9].
We investigate iterations where all iterands are NNR, which means that they
do not add new reals. So the iterands (and therefore the limit as well) satisfy all
instances of tools-preservation. However, it turns out that the limit can add a new
real r. The first example was given by Jensen [3], and the phenomenon was further
investigated in [7, V]. So what do we know about the real r? We know that it has
to be bounded by an old real (i.e., a real in the ground model), corresponding to
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the iterable preservation property “ùù-bounding”. r will even satisfy the stronger
Sacks property. In particular r cannot be, e.g., a Cohen, random, Laver or Mathias
real. In the previously known examples, the proof that a new real r is added is rather
indirect and does not give much “positive” information about r. So it is natural to
ask which kind of reals can appear in proper NNR limits. Todd Eisworth asked this
question for the simplest and best understood real that satisfies the Sacks property,
the Sacks real. In this paper, we show that Sacks reals indeed can appear in this
way:

Theorem 1. There is an iteration (Pn ,
˜
Qn)n<ù such that each Qn is forced to be

proper and NNR and such that the countable support limit Pù adds a Sacks real.
Moreover, Pù is equivalent to S ∗ P′, where S is Sacks forcing and P′ is NNR.2

The Theorem can be interpreted in two ways:
On the one hand, it indicates limitations of possible preservation theorems: “Not
adding a Sacks real” is obviously not iterable (even with rather strong additional
assumptions).
On the other hand, it shows that Sacks forcing is exceptionally “harmless”: It
satisfies every usual iterable preservation property.3 So the Sacks model (the model
constructed by starting with CH and iterating ù2 Sacks forcings in a countable
support iteration) has all the corresponding properties as well.4

In a continuation of this work we will say more about the kind of reals that can
be added in limits of NNR iterations (e.g., generics for other finite splitting lim sup
tree forcings). It turns out that many of these reals can appear at limit stages, but
some of them not at stage ù, but only at later stages, e.g., ù2.
We thank a referee for suggesting several improvements in the presentation.

§2. Sacks conditions as squares of terms. In this section, we introduce the forcing
notionQ∗, which is forcing equivalent to Sacks forcing. We will later work withQ∗

in the proof of Theorem 1.
A Sacks condition (or Sacks tree) is a perfect tree T ⊆ 2<ù. Given T , we call a
node t a splitting node if t has two immediate successors in T .
Let Fn be the set of the n-th splitting nodes, cf. Figure 1. So t ∈ Fn means that t
is a splitting node and that there are n splitting nodes below t. Since T is perfect, Fn
is a front, which means that every branch through T meets Fn exactly once. Being
a front is stronger than just being a maximal antichain, and due to König’s Lemma
every front is finite.
A branch b through T is an element of 2ù and therefore a sequence (b0, b1, . . . )
for some bn ∈ {0, 1}. Intuitively speaking, we can describe “the arbitrary branch”
b of T by interpreting each bn to be a term tn(x0, . . . , xn), where the value of tn
(0 or 1) depends on xl for l ≤ n, and xl is a variable with values in {0, 1} that tells
us whether we choose the left (0) or right (1) path at the front Fl .

2We do not claim that P′ is proper.
3More exactly: Sacks forcing satisfies every propertyX such that: Every properNNR forcing satisfies

X , X is preserved under proper countable support iterations, and if P does not satisfy X , then P ∗
˜
Q

does not satisfy X either for any NNR Q.
4Of course this is already known for many of the popular properties, cf. [2] or [9], which shows that

in some respect Sacks forcing is the “most tame” forcing possible. This corresponds to the fact that all
of the usual cardinal characteristics (apart from the continuum) are ℵ1 in the Sacks model.
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Figure 1. Fn is the front of n-th splitting nodes.

A more formal description of terms can be found in Definition 2.4, but a simple
example is much more instructive: In the tree T of Figure 1, the sequence of terms
begins as follows:

t0 = x0, t1 =

{

x1 if x0 = 0,

1 otherwise,
t2 =











x2 if x0 = 0 and x1 = 0,

1 if x0 = 0 and x1 = 1,

x1 otherwise.

We will use the following notation:

Given a Sacks tree T , the sequence t̄ of terms defined as above is
called the canonical term sequence for T .

(2.1)

Let a be an assignment, that is a map that assigns each variable a value in {0, 1}.
Then a can be extended to evaluate terms t to t ◦ a ∈ {0, 1}, so we can evaluate the
term sequence t̄ = (t0, t1, . . . ) to

t̄ ◦ a := (t0 ◦ a, t1 ◦ a, . . . ) ∈ 2
ù.

If t̄ is the canonical term sequence for T and a an assignment, then t̄ ◦a is a branch
through T . Moreover, every branch can be obtained this way:

T = {t̄ ◦ a ↾ n : n ∈ ù, a an assignment}. (2.2)

The following property is trivial, but important: Fix n. Then there is a finite set
I such that we can determine the value that is assigned to xn by an assignment a
provided we know the values (ti ◦ a)i∈I . We denote this by the following: For a
canonical term sequence t̄,

each xn is determined by finitely many ti . (2.3)

(Proof: Let l be themaximum of the heights of the nodes in Fn. Set I = {0, . . . , l}.)
In the example above, x0 is determined by t0, and x1 by (t0, t1, t2), but not by
(t0, t1).
Let T ′ ⊆ T be a perfect subtree, and call the canonical term sequence (t′0, t

′
1, . . . ),

written as terms in the variables x′0, x
′
1, . . . . In the example of Figure 1, we get:

t′0 = 1, t
′
1 = 1, t

′
2 = x

′
0.

The frontsF ′
n “refine” Fn: If t ∈ F

′
n , then t ≥ s for a unique s ∈ Fn. So the variables

(x′0, . . . , x
′
l ) give at least as much information (about the branch) as (x0, . . . , xl ). In

other words, we can calculate the value of xn given the values (x′0, . . . , x
′
n), and we

write this dependence as a term φn(x
′
0, . . . , x

′
n). This defines a function (or: term

sequence) φ that assigns to each variable xn a term φn(x′0, . . . , x
′
n). We will call φ a

substitution. So for every assignment a of the variables x′, we get the same result
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when we apply a to the term sequence t̄′ as we get when we apply φ ◦ a to t̄. In
other notation, t̄′ = t̄ ◦ φ.
In the example, the substitution φ has the following values:

x0 = φ0(x
′
0) = 1, x1 = φ1(x

′
0, x

′
1) = x

′
0, . . .

It is easy to check that, e.g., t′2(x
′
0, x

′
1, x

′
2) = x

′
0 is indeed the same as t2(x0, x1, x2)

after applying the substitution φ, i.e., t′2 = t2 ◦ φ:

t2 =











x2 if x0 = 0 and x1 = 0,

1 if x0 = 0 and x1 = 1,

x1 otherwise.

t2 ◦ φ =







φ2 if 1 = 0 and x
′
0 = 0,

1 if 1 = 0 and x′0 = 1,

x′0 otherwise







= x′0.

Also, each x′j is determined by finitely many φi . This means: For each j there is
a finite set I such that the following holds: If a, b are assignments of {x′0, x

′
1, . . . }

that map x′j to different values, then (φi ◦ a)i∈I 6= (φi ◦ b)i∈I . (Proof: Pick l ∈ ù

such that each node in Fl is longer than every node in F
′
j+1, and set I = {0, . . . , l}.)

So far, we used different variable symbols (xi and x′i ) for variables used in t̄ and t̄
′

(in the hope to make the concept of substitution a bit clearer). Of course this is not
necessary, and we will only use xi in the following. We will see that the following
partial order S∗ is equivalent to Sacks forcing: S∗ consists of sequences of terms
(ti )i∈ù using the variables xj (j ∈ ù) such that

(i) ti depends only on xj with j ≤ i , and

(ii) each xj is determined by finitely many ti .
(2.4)

The order is defined as follows: t̄′ is stronger than t̄, if there is a substitution φ such
that t̄′ = t̄ ◦ φ and

(i) φi only depends on xj with j ≤ i , and

(ii) each xj is determined by finitely many φi .
(2.5)

It is easy to check that ≤ is reflexive and transitive; and that ◦ is associative:
The identity substitution witnesses t̄ ≤ t̄; and if t̄′ = t̄ ◦ φ′ and t̄′′ = t̄′ ◦ φ′ then
t̄′′ = (t̄ ◦ φ) ◦ φ′ = t̄ ◦ (φ ◦ φ′).
We could omit (2.5)(ii): If φ is any substitution, and if t̄ and t̄ ◦φ both are in S∗,
then φ satisfies (ii) anyway.
Substitutions (as defined in (2.5)) are obviously exactly the same as conditions
in S∗ (as defines in (2.4)). This fact is not deep or of any real importance, but it
will simplify our notation. So let us describe this effect once more:
Assume that s̄ and t̄ both are conditions inS∗. We can interpret t̄ as a substitution
φ such that φn = tn . (I.e., tn(x′0, . . . , x

′
n) calculates the value of xn.) Then s̄ ◦ t̄

is again element of S∗ (and stronger than s̄). On the other hand, if t̄′ is stronger
than s̄ , then this is witnessed by a substitution φ, which we can in turn interpret as
element of S∗.
We can interpret a t̄ ∈ S∗ as continuous function from 2ù to 2ù, and map t̄ to its
image, or to the associated tree:

Lemma 2.1. Let Ψ map t̄ ∈ S∗ to {(t̄ ◦ a) ↾ n : n ∈ ù, a an assignment}. Then Ψ
is a surjective complete embedding (in particular order preserving) from S∗ into Sacks
forcing.
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Figure 2. We use a canonical ordering of ù ×ù. The node (1, 2)
corresponds to 7. The nodes (n,m) smaller than (1, 2) all satisfy
n +m ≤ 1 + 2 < 4, as in (2.8).

Proof. Ψ(t̄) is a perfect tree: Pick any s = (t̄ ◦ a) ↾ n ∈ Ψ(t̄). Note that
t0, . . . , tn−1 use a finite set A of variables. Pick xj /∈ A. Then xj is determined by
t0, . . . , tl−1 for some l . Pick assignments b, c extending a ↾ A such thatxj◦b 6= xj◦c.
Then (t̄ ◦b) ↾ l 6= (t̄ ◦c) ↾ l (otherwise they would determine the same value for xj),
so we get two incomparable nodes in Ψ(t̄) both extending s .
We see from (2.2) that Ψ is surjective. It is clear that Ψ preserves ≤.
Ψ preserves ⊥: Assume that Ψ(t̄) and Ψ(s̄) both contain the perfect tree T . By
thinning out T , we can assume the following: If l is the length of a node in Fn,
then t1(x̄), . . . , tl (x̄) determine xn, and the same holds for s̄ . Let r̄(x̄

′) ∈ S∗ be the
canonical sequence of T . So x′0 . . . x

′
n−1 determine a node in Fn, and therefore suf-

ficiently many t1, . . . , tl−1 to determine xn. This defines a substitution φ witnessing
that r̄ is stronger than t̄. The same applies to s̄ . ⊣

Of course Ψ is not injective. For example, if we simply interchange x0 and x1 in
a suitable sequence t̄, then we can still get a valid term sequence (different from the
original one), but the image under Ψ will be the same. In S∗, the index set of the
term sequence is ù. We will later need ù × ù-sequences; so we will just identify ù
with ù × ù, using a canonical order. See Figure 2.

ô : ù × ù → ù is defined by ô(n,m) = n +
1

2
(n +m)(n +m + 1). (2.6)

The bijection ô defines a linear order of ù × ù of order type ù:

(i, j)� (n,m) iff ô(i, j) ≤ ô(n,m). (2.7)

We will later use the following trivial fact:

If i + j < n and (i ′, j′)� (i, j) then i ′ + j′ < n. (2.8)

We now rewrite S∗ in the form of ù × ù-sequences:

Definition 2.2. Q∗ consists of squares of terms (tn,m)n,m∈ù using the variables
xi,j (i, j ∈ ù) such that

(i) tn,m depends only on xi,j with (i, j) � (n,m), and
(ii) each xi,j is determined by finitely many tn,m.

The order is defined as follows: t̄ is stronger than s̄ , if there is a condition φ ∈ Q∗

such that t̄ = s̄ ◦ φ.

Since Q∗ is isomorphic to S∗, Lemma 2.1 gives us:

Corollary 2.3. Q∗ is forcing equivalent to Sacks forcing.
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We now add the a formal definition of term, assignment and substitution:

Definition 2.4. • LetX be a set. Wewill call an element v ∈ X a variable (or:
variable symbol). We will interpret v as a “binary variable”, i.e., the value of v
is 0 or 1. In this paper, we will useX = {xi : i ∈ ù} andX = {xi,j : i, j ∈ ù}.

• An X -term t consists of 5 a sequence (v0, . . . , vl−1) for some 0 ≤ l < ù and
vi ∈ X , together with a function f: 2l → 2. (So for l = 0, the sequence
of variables is empty and the term is a constant.) We usually write terms as
t(v0, . . . , vl−1). Abusing notation, we identify the variable v with the “identity
term” corresponding to (v), Id.

• An assignment a is a function X → 2. Assignments extend to all X -terms in
the natural way. In other words, given an assignment a, we can apply a to a
term t to get an element of 2. We denote the result of applying a to a term (or
variable) t by t ◦ a ∈ 2.

• Similarly, a substitution φ maps X to X -terms. Equivalently, a substitution
is a sequence (φv)v∈X of X -terms indexed by X . Again, we can extend a
substitution to act on all X -terms, and we write t ◦ φ for the result. We can
also apply substitutions to sequences t̄ = (tv)v∈X of terms (indexed by X ),
the result t̄ ◦ φ is another sequences of terms indexed by X . The application
of substitutions is associative: For term sequences r̄, s̄ and t̄, all indexed by
X , we get r̄ ◦ (s̄ ◦ t̄) = (r̄ ◦ s̄) ◦ t̄.

• The variable (or term) s “is determined by the terms t0, . . . , tn” means that

(t0 ◦ a, . . . , tn ◦ a) = (t0 ◦ b, . . . , tn ◦ b) implies s ◦ a = s ◦ b

for all assignments a and b. In other words, if we know the value of t0, . . . , tn ,
we can infer the value of s .

• According to our formal definition, two terms that depend on different vari-
ables are distinct (even if these variables are not relevant). However, we will
only be interested in terms “as functions”, i.e., modulo the following equiv-
alence relation: t =∗ s means that t ◦ a = s ◦ a for all assignments a. In
particular, the last = sign in Definition 2.2 really means =∗ etc.

§3. A simple case. In the rest of the paper, ä always denotes a countable limit
ordinal.
In this section, we construct a proper, NNR countable support iteration and
argue that the limit adds a real that it is similar to a Sacks real (i.e., it adds a generic
object for a forcing that looks in some way similar to theQ∗ defined in the previous
section). In the rest of the paper, we deal with an analog (but notationally more
complicated) construction that actually adds a Sacks real.
So the purpose of this section is to give some idea of the constructions we use to
prove Theorem 1, using a somewhat simplified notation. The reader who does not
feel the need of such an introduction can safely continue with the next section.
We do not give any proofs in this section, but refer to the proofs of the more
general statements. Caution: We use the same symbols for the simpler objects in
this section and for the analog constructions in the rest of the paper.

5Formally we could let t be a triple (X, (v0, . . . , vl−1), f), to guarantee that X is disjoint to the terms

built from it.
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Figure 3. (a) q coheres with çn−1(ä+m). The gray area indicates
íä,n−1,m. (b) An element of R: pn,ä+m = xn,m. The term pn,α only
depends on xi,j with i < n. (c) Filling in the term x4,2 at at various
positions: In the bottom row, I4,2 contains 6 and 8; the 1 × ù-
blocks where the terms x4,2 are added (indicated by the gray area)
propagates up-left.

The forcing iteration will start with a preparatory forcing P̃, followed by
˜
Q0,

˜
Q1, . . . . P̃ ∗Pn stands for P̃ ∗Q0 ∗ · · ·∗Qn−1. We will also use the countable support

limit of P̃ ∗ Pn. Since all forcings are proper, this countable support limit is the
same as P̃ ∗ Pù , where Pù is the P̃-name for the countable support limit of the Pn .
The preparatory forcing adds cofinal subsets íä,n,m ⊆ ä of of order type ù for
every limit ordinal ä < ù1 and n,m ∈ ù. In more detail:

Definition 3.1. A condition p̃ in P̃ consists of a limit ordinal ht(p̃) ∈ ù1 and a
sequence (íä,n,m)0<ä<ht(p̃),n,m∈ù, such that íä,n,m ⊆ ä is cofinal and has order type ù,

and íä,n,m1 and íä,n,m2 are disjoint form1 6= m2. P̃ is ordered by extension.

So P̃ is ó-closed.

Definition 3.2. Q0 is (the P̃-name) for 2<ù1 , ordered by extension.

So Q0 is ó-closed as well, and adds the generic sequence ç0 ∈ 2ù1 .
Given P̃ ∗ Pn = P̃ ∗ Q0 ∗ · · · ∗ Qn−1 such that Qn−1 adds the generic sequence
çn−1 ∈ 2ù1 , we define the P̃ ∗ Pn-name Qn (see also Figure 3(a)):

Definition 3.3. Let q be a partial function from ù1 to 2, ä ⊆ dom(q). q and
çn−1 cohere at ä +m, if çn−1(ä +m) = q(α) for all but finitely many α ∈ íä,n−1,m.
Abusing notation, we just say q coheres with çn−1(ä +m).
We set q ∈ Qn, if q ∈ 2<ù1 and q coheres with çn−1(ä +m) for all ä ≤ dom(q),
m ∈ ù.

Lemma 3.4. The following is forced by Pn :

(i) If q ∈ Qn, q′ ∈ 2dom(q), and q′(α) = q(α) for all but finitely many α ∈ dom(q),
then q′ ∈ Qn.
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(ii) Qn is separative,6 and adds a generic sequence çn ∈ 2ù1 defined by
⋃

q∈G(n) q.

(iii) If n > 0, then Qn is not ó-closed.
(iv) Qn is proper and NNR, i.e., Qn adds no new real.

For a proof, see Lemmas 4.7, 4.9 and 4.11. Note that (i)–(iii) are very easy, and
(iv) is straightforward (but a bit cumbersome).

Lemma 3.5. P̃ ∗Pù adds a new real. In particular, the P̃-generic element í̄ together
with (çn(m))n,m∈ù determines the generic filter.

Proof. If we know íù,n−1,m and çn(l) for all l ∈ ù, then we can determine
çn−1(ù +m). So if we know all íä,n,m and all çn(m) for ä < ù1, n,m ∈ ù, then we
can by induction on α < ù1 calculate all çn(α) for n ∈ ù. ⊣

We now define a dense subforcing R of P̃ ∗ Pù . See Figure 3(b). We use the
notion of variable, term, assignment and substitution, as in Definition 2.4, for the
set of variables X = {xi,j : i, j ∈ ù}.

Definition 3.6. R =
⋃

ä<ù1
Rä+ù . A condition p in Rä+ù consists of p̃ and p̄

such that

• p̃ ∈ P̃, ht(p̃) = ä + ù.
• p̄ = (pn,α)n∈ù,α∈ä+ù .
• pn,ä+m is the term xn,m.
• For α < ä, pn,α is a term using only variables xi,j with i < n.
• For α ≤ ä limit and n,m ∈ ù, pn,α+m = pn+1,æ for all but finitely many
æ ∈ íα,n,m.

We identify two conditions p and q if p̃ = q̃ and pn,α =∗ qn,α for all n ∈ ù,
α < ä.
We can interpret p ∈ R as a condition (p̃, p(0), p(1), . . . ) in P̃ ∗ Pù : After
forcing with P̃ ∗Pn, we have the generic sequences (çi)i<n . This defines a canonical
assignment of xi,j for i < n, namely xi,j := çi(ä + j). This assignment evaluates

(pn,α)α<ä to a condition in Qn (assuming that p̃ is element of the P̃-generic filter),
and we define p(n) to be that condition. Using this identification, we get:

Lemma 3.7. R is a dense subset of P̃ ∗ Pù .

For a proof, seeLemma5.8. Theproof is again a bit cumbersome, anduses similar
arguments (chains of countable elementary submodels) as the proof of 3.4(iv).
Note the following simple properties for p ∈ Rä+ù :

• If ä = ù, we get (∀n,m)(∃∞k)pn+1,k = xn,m.
• If ä = ù + ù, we get (∀n,m)(∃∞k)pn+2,k = xn,m.
• If ä = ù · ù, then we get (∀n,m)(∃∞n′)(∃∞m′)pn′,m′ = xn,m.

Actually, the last item holds for all ä ≥ ù ·ù, which can easily be seen by induction;
and we get some kind of converse as well:

Lemma 3.8. Assume that (ri,j)i,j∈ù is a matrix of terms such that

(i) ri,j depends only on xn,m with n < i ,
(ii) (∀n,m)(∃∞n′)(∃∞m′)rn′,m′ = xn,m
(iii) (∀n)(∃∞k)rn,k = 0.

Then there is a p ∈ Rù·ù+ù such that ri,j = pi,j for all i, j ∈ ù.

6That is, for every p ∈ Q there are q1, q2 ≤ p such that q1 ⊥ q2.
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Proof (sketch). We have to define a suitable p̃ (i.e., the sequence
(íα,n,m)α≤ù,n,m∈ù) as well as pi,α for i ∈ ù and ù ≤ α < ù ·ù.
We deal with one variable after the other, see Figure 3(c). Assume we are dealing
with xn,m. Set

In,m = {n′ ≥ n + 2: (∃∞k)rn′,k = xn,m}.

According to (ii), In,m is infinite. We define íù·ù,n,m ⊆ [ù,ù · ù[ such that

íù·ù,n,m ∩ [i ·ù, (i + 1) · ù[

contains a single element (not used so far) if i+m+1 ∈ In,m and is empty otherwise.
We set rn+1,α = xn,m for all α ∈ íù·ù,n,m; and propagate the xn,m diagonally down.
We repeat the same construction for all the other xn,m, and then set all the
remaining terms rn,α = 0. To get coherence for these points as well, we just define
the remaining í’s in a way so that they only point to r’s that are 0. At height ù, we
use (iii) to do this, at other heights we just have to make sure to leave enough space
when choosing the elements of íä,n,m. ⊣

We now describe how to “stack” a condition on top of another one to get a
stronger condition. See Figure 5(b) for a graphical illustration.

• If we “cut away the bottom part” of a condition q ∈ Rä+ä′+ù at height ä, then
we get a condition q′ ∈ Rä′+ù . Formally we can define q

′ as follows:
– â ∈ q̃′α,n,m iff ä + â ∈ q̃ä+α,n,m.
– q′n,α = qn,ä+α .

We denote this q′ by q ↾ [ä, ä + ä′ + ù].
• We can stack any condition q′ ∈ Rä′+ù on top of some condition p ∈ Rä +ù,
resulting in some q ∈ Rä+ä′+ù such that q ↾ [ä, ä + ä′ + ù] = q′. Formally, q
is defined as follows:
– q̃ ↾ ä = p̃.
– For α < ä′, we set ä + â ∈ q̃ä+α,n,m iff â ∈ q̃′α,n,m.
– For α < ä′, we set qn,ä+α = q

′
n,α.

– We define the substitution φ by φn,m = q′n,m, and set qn,α = pn,α ◦ φ for
all α < ä.

We denote this q by p � q′.

It is clear that p � q′ ≤ p (interpreted as element of P̃ ∗ Pù). The converse is true
as well:

If q ≤ p, then either q = p or q = p � q′,
where q′ = q ↾ [ht(p),ht(q)].

(3.1)

The proof of (3.1) uses the following simple fact: For every p ∈ R,

every partial assignment of every finite A ⊆ {xi,j : i, j ∈ ù}

is compatible with p.
(3.2)

In other words, if f: ù × ù → 2 is a finite partial function, then it is compatible
with p (interpreted as element of P̃ ∗Pù) that çn(ä +m) = f(n,m) for all (n,m) ∈
dom(f).
Given a p ∈ Rä (we assume ä ≥ ù · ù), we can map p to the square of terms
ó(p) = (pn,m)n,m∈ù . Then ó maps R to Q∗∗ in an order preserving way, where Q∗∗

is defined as follows:
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Definition 3.9. Q∗∗ is the set of all sequences t̄ = (ti,j )i,j∈ù of terms such that

(i) tn,m depends only on xi,j with i < n,
(ii) (∀n,m)(∃∞n′)(∃∞m′)tn′,m′ = xn,m,

t̄ ≤ s̄ , if there is a substitution φ such that:

(iii) ti,j = si,j ◦ φ for all i, j ∈ ù.
(iv) φn,m only depends on xi,j with i ≤ n.

Lemma 3.10. R (or equivalently: P̃ ∗ P̃ù) adds a generic filter for Q∗∗.

Note that Q∗∗ looks somewhat similar to the Q∗ defined in the previous section.
For Q∗ instead of Q∗∗, the Theorem is the main part of Theorem 1. In the rest
of the paper, we will modify the constructions so that we actually end up with Q∗

instead of Q∗∗.

Proof (sketch). We already mentioned that ó : R → Q∗∗ preserves ≤. Assume
that G is R-generic over V , and define

G∗∗ = {t̄ ∈ Q∗∗ : (∃p ∈ G)ó(p) ≤ t̄}.

It is enough to show the following:

For p ∈ R there is a s̄ ≤Q∗∗
ó(p) such that for all t̄ ≤ s̄ then there

is an q ≤R p such that ó(q) ≤ t̄.
(3.3)

Then the Lemma follows: First note that G∗∗ does not contain incompatible el-
ements, since ó is order preserving. Now assume that D ⊆ Q∗∗ is dense, and
(towards a contradiction) that p forces that G∗∗ does not meet D. Then pick some
t̄ ≤ s̄ in D and some q as above, contradiction.
To show (3.3), we define s̄ ∈ Q∗∗ via the substitution φ witnessing s̄ ≤ ó(p),
defined as follows: For each n, let (φn,m)m∈ù enumerate (with infinite repetitions)
the constant term 0 and all variables xi,j with i < n. Soφmaps xn,m to the termφn,m.
Now pick any t̄ that is stronger than s̄ , witnessed by some substitution ø. Note
that φ ◦ ø satisfies the requirements of Lemma 3.8. So there is a q′ ∈ R such that
ó(q′) = φ ◦ ø. Then p � q′ is as required. ⊣

In the rest of the paper, we will modify the constructions of this section in such a
way that we end up with Q∗ instead of Q∗∗. It turns out that this does not require
any new concepts, just a more awkward notation.

§4. The NNR iteration. In the rest of the paper, ä always denotes a countable
limit ordinal.
First we define a ó-closed preparatory forcing P̃, which gives us for every limit
α ∈ ù1 a subset of α of order type ù and some simple coding sequences.

Definition 4.1. p̃ ∈ P̃ if for some ht(p̃) < ù1, p̃ consists of sequences

íä,n,m, jä,n,m, and fä,n,m,k for ä < ht(p̃), m, n, k ∈ ù,

such that

• each íä,n,m is a cofinal, unbounded subset of ä of order type ù.
• m1 6= m2 implies that íä,n,m1 and íä,n,m2 are disjoint.
• jä,n,m is an increasing function from ù to ù.
• fä,n,m,k is a surjective function from 2

[jä,n,m(k),jä,n,m(k+1)−1] to 2.

P̃ is ordered by extension.
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Figure 4. (a) çn coheres with çn−1(ä+m) above k0 = 2. íä,n−1,m
is indicated by the gray area, jä,n−1,m corresponds to the partition
of this area, fä,n−1,m,k calculates gä,n−1,m,k . (b) There are condi-
tions which determine the gray values, but these conditions are
not dense. (c) No condition can determine all gray values. (d) A
typical condition in P̃ ∗ P3: The gray area indicates the domain,
all the values are “constants”.

Lemma 4.2. P̃ is ó-closed, and forces that 2ℵ0 = ℵ1.

Proof. In the P̃-extensionV ′ defineAä by l ∈ Aä iff ä+2l ∈ íä+ù,0,0. By a simple
density argument, {Aä : ä < ù1} contains all old reals and therefore all reals. ⊣

Fix ä, n,m, k. Given íä,n−1,m, jä,n−1,m and fä,n−1,m,k , we define the function
gä,n−1,m,k : 2

ä → {0, 1} the following way, cf. Figure 4(a):
Fix çn ∈ 2ä . For i ∈ ù, let æi be the i-th element of íä,n−1,m. Set bi = çn(æi ).
So b̄ = (bi)i∈ù ∈ 2ù. Look at b̄ ↾ [jä,n−1,m(k), jä,n−1,m(k + 1) − 1]. This is a
0-1-sequence of appropriate length, so we can apply fä,n−1,m,k . We call the result
gä,n−1,m,k(çn). To summarize: Let æi be the i-th element of íä,n−1,m. Then we define

gä,n−1,m,k(ç) = fä,n−1,m,k((ç(æi ))jä,n−1,m(k)≤i<jä,n−1,m(k+1)).

We will be interested in sequences (çn)n∈ù that cohere with respect to gä,n,m,k . We
again refer to Figure 4(a):

Definition 4.3. Let çn−1 and çn be partial functions from ù1 to 2, ä + m ∈
dom(çn−1), ä ⊆ dom(çn), k0 ∈ ù. We say that çn−1 and çn cohere at ä +m above
k0, if çn−1(ä +m) = gä,n−1,m,k(çn) for all k ≥ k0. We say that çn−1 and çn cohere at
ä +m, if they cohere above some k0. Abusing notation, we also say that çn coheres
with çn−1(ä +m).

Let G̃ be P̃-generic over V , and define in V [G̃ ] the forcing notion Q0:

Definition 4.4. p ∈ Q0 iff p ∈ 2ht(p) for some ht(p) < ù1. Q0 is ordered by
extension.

So Q0 is ó-closed and adds the generic ç0 ∈ 2ù1 . Assume that n ≥ 1, P̃ ∗ Pn =
P̃ ∗Q0 ∗ · · · ∗Qn−1, andQn−1 adds the generic sequence çn−1 ∈ 2ù1 . Let G̃ ∗Gn be
P̃ ∗ Pn-generic over V . In V [G̃ ∗Gn], we define Qn the following way:
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Definition 4.5. p ∈ Qn iff p ∈ 2ht(p) for some limit ordinal ht(p) < ù1 and çn−1
and p cohere everywhere, i.e., at all ä+m < ht(p)+ù. Qn is ordered by extension.

Notation 4.6. We denote the P̃-generic filter by G̃ , we set P̃ ∗Pn = P̃ ∗Q0 ∗ · · · ∗
Qn−1, with generic filter G̃ ∗ Gn . Since P̃ is proper, the countable support limit of
P̃ ∗ Pn is the same as P̃ ∗ Pù , where Pù is the P̃-name for the countable support
limit of the Pn. The generic filter of P̃ ∗ Pù is denoted by G̃ ∗ Gù ; and G(n) is the
Qn-generic filter (a P̃ ∗ Pn+1-name, or equivalently a P̃ ∗ Pn-name for a Qn-name).

Lemma 4.7. The following is forced by P̃ ∗ Pn:

(i) Conditions can be finitely modified : If q ∈ Qn, q′ ∈ 2dom(q) and q′(α) = q(α)
for all but finitely many α ∈ dom(q), then q′ ∈ Qn.

(ii) If p ∈ Qn and â > ht(p) is a limit ordinal, then there is a q ≤ p with ht(q) = â .
In particular, Qn adds the generic object çn =

⋃

G(n) ∈ 2ù1 (which in turn
determines the generic filter G(n)).

(iii) Qn is separative (and in particular nontrivial ), and not ó-closed for n ≥ 1.

Proof. (i) is trivial.
(ii) Let (äi , mi )i∈ù enumerate all pairs (ä,m) such that ht(p) < ä ≤ â and
m ∈ ù. Define an increasing sequence pi of partial functions from â to {0, 1}:
Set p0 = p. For i > 0, assume that dom(pi−1) = ht(p) ∪

⋃

j<i íäj ,n−1,mj . Then

íäi ,n−1,mi ∩ dom(pi−1) is finite:

• If j < i and äj = äi , then mj 6= mi and íäi ,n−1,mi and íäj ,n−1,mj are disjoint.
• If j < i and äj 6= äi , then íäi ,n−1,mi ∩ íäj ,n−1,mj are finite (since íä,n−1,m is a
cofinal subset of ä of order type ù).

• For the same reason, íäi ,n−1,mi ∩ ht(p) is finite.

Therefore we can extend pi−1 to some pi by adding values at íäi ,n,mi \ dom(pi) that
cohere with çn−1(äi +mi). (Recall that fäi ,n−1,mi ,k is onto.) Set pù =

⋃

pn, and fill
in arbitrary values (e.g., 0) at â \ dom(pù). This gives a q ≤ p with ht(q) = â .
(iii) follows from (i) and (ii). ⊣

Remark 4.8. For this proof, as well as for most of the following, the preparatory
forcing P̃ is not necessary: The definition of Qn works for any reasonably defined
sequences í̄, j̄, f̄. Only in Section 6 we need that these sequences are generic.
(Guessing with, e.g., a ♦-sequence is not enough, as discussed in Section 7.)

Lemma 4.9. (çn)n∈ù is determined by G̃ and (çn(m))n,m∈ù . In particular, P̃ ∗ Pù
adds a new real.

Of course, we do not use any particular property of the countable support limit
here. More generally, we get:
Assume V ′ is an extension of V that contains some G̃ and a sequence (G(n))n∈ù
such that G̃ is P̃-generic overV andG(n) isQn-generic overV [G̃ ∗Gn]. Fix ä < ù1,
n0 ∈ ù and f: ù → ù and set

x = (çn(α))n≥n0 ,ä+f(n)<α<ä+ù .

Then (Gn)n∈ù is in V [G̃, x].
See Figure 4(c).
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Proof. By induction on 1 ≤ h ≤ n0, each çn(α) is determined for n ≥ n0 − h,
ä+ù ·h ≤ α < ä+ù · (h+1). By induction on limit ordinals ä+ù ·n0 < ä′ < ù1,
each çn(α) is determined for ä + ù · n0 < α < ä′. ⊣

Remark 4.10. For all n0 ∈ ù and f: ù → ù, there are conditions in P̃ ∗ Pù that
determine all çn(m) for n < n0 or m < f(n), cf. Figure 4(b). (The reason is that
P̃ ∗ Pn0 does not add new reals, as we will see in the next lemma, and that each
Qn-condition can be modified at finitely many places.) However, these conditions
are not dense. (For exactly the same reason: There is a condition p0 stating that
(çn(0))n∈ù codes (çn ↾ ù)n∈ù, via a simple injection from ù × ù to ù. Then
according to the last Lemma, no p′ ≤ p0 can determine all çn(0).)

Lemma 4.11. P̃ ∗ Pn forces that Qn is proper and does not add a new ù-sequence
of ordinals.

Proof. Work in V ′ = V [G̃ ∗Gn] and fix some large regular cardinal ÷∗.
Let N∗ ≺ HV

′

(÷∗) be a countable elementary submodel containing G̃, çn−1 and
p0 ∈ Qn. Set ä

∗ = N∗ ∩ù1. Let (Di)i∈ù list all dense subsets of Qn that are in N
∗,

and assume D0 = Qn. It is enough to show the following:

There is a q ≤ p0 with ht(q) = ä∗ such that q is stronger than some
pi ∈ Di ∩N∗ for every i ∈ ù.

(4.1)

Then q is in particularN∗-generic, which shows thatQn is proper. And if
˜
f ∈ N∗ is

a name for a function from ù to the ordinals, then the value of
˜
f(n) is determined

in the dense setDi(n) for some i(n) ∈ ù an therefore by q. This shows that no new
˜
f

is added by Qn.
So let us prove 4.1. Pick (in V ′) a sequence (Ni)i∈ù and a large, regular ÷ ∈ N∗

such that:

• Ni ∈ N
∗.

• Ni ≺ H (÷) is countable.
• N0 contains çn−1 and p0, Ni+1 contains Ni and Di+1.

Set âi = Ni ∩ ù1. So supi∈ù(âi) = ä
∗.

Fix (in V ′) any ç∗ ∈ Qn of height ä∗. In particular ç∗ coheres with çn−1(ä∗+m)
for all m. Set

ui = {α ∈ íä∗ ,n−1,m : m < i, âi ≤ α < âi+1}.

Each ui is finite. We will construct q such that q ⊇ ç∗ ↾ ui for all i ≥ 1. This
guarantees that q coheres with çn−1(ä∗ +m) for all m ∈ ù.
Assume that pi ∈ Ni ∩Di is already defined. We extend it to pi+1 ∈ Ni+1 ∩Di+1:
The finite sequence ç∗ ↾ ui+1 is in Ni+1, so we can7 (in Ni+1) extend pi first to some
p′ ⊇ ç∗ ↾ ui+1 in Qn. Then extend p′ to pi+1 ∈ Di+1 ∩Ni+1.
Set q =

⋃

i∈ù pi . Then q is in Qn: We already know that q coheres with
çn−1(ä∗ + m). For α < ä∗, let i be such that α < âi . Then q extends pi+1 which
coheres with çn−1(α +m). ⊣

As an immediate consequence we get the following fact, illustrated in Figure 4(d):

7by using 4.7(i,ii).
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Corollary 4.12. The conditions (p̃, p0, . . . , pn−1) of the following form are dense
in P̃∗Pn: ht(p̃) = ä+ù ·(n−1) for some ä, and inV there is a sequence (p′0, . . . , p

′
n−1)

such that p′i ∈ 2
ä+ù·(n−1−i) and pi is the standard name8 for p′i .

§5. A dense subset. Wewill nowuse the notions of variable, termand substitution
as defined in Definition 2.4. The set of variables we use is {xn,m : n,m ∈ ù}.
Assume that p̄ is a sequence of terms (pn,α)n∈ù,α<ä . InV [G̃ ], p̄ can be interpreted
as a promise that the generic sequence (çn)n∈ù is compatible with p̄, i.e., that there
is an assignment a such that pn,α ◦ a = çn(α) for all n ∈ ù,α < ä. Of course such
a promise can be inconsistent, for example if ä = ù and each pn,m is (the constant
term) 0.

Definition 5.1. R =
⋃

ä<ù1
Rä+ù . A condition p in Rä+ù consists of p̃ and p̄

such that:

• p̃ ∈ P̃, ht(p̃) = ä + 1 (or equivalently ä + ù).
• p̄ = (pn,α)n∈ù,α<ä+ù .
• pn,ä+m is the term xn,m.
• If α < ä, then pn,α is a term that only depends on xl,k with l < n.
• For every m, n ∈ ù and α ≤ ä limit there is a k0 < ù such that for all
assignments a, we get that (pn+1,æ ◦ a)æ<α coheres with pn,α+m ◦ a above k0.

We interpret terms are functions, not syntactical objects, so we identify two
elements p, q of Rä+ù if they satisfy p̃ = q̃ and pn,α =

∗ qn,α for all n, α; see
Definition 2.4.
Elements of R can be interpreted as statements about the generic sequence:

Definition 5.2. The canonical assignment acä assigns the value çn(ä +m) to the

variable xn,m. (So acä is a P̃ ∗ Pù-name.) We also use acä as a P̃ ∗ Pn-name for the
partial assignment that maps çl (ä +m) to the variable xl,m for all l < n.

Definition 5.3. Let i : R→ P̃ ∗Pù map p ∈ Rä+ù to (p̃, q(0), q(1), . . . ) defined
as follows: For each n, q(n) is the P̃ ∗ Pn-name for the sequence (pn,α ◦ acä )α<ä .

Lemma 5.4. (i) i(p) actually is a condition in P̃ ∗ Pù .
(ii) i(p) is the truth value (in ro(P̃ ∗ Pù) of the following statement: p̃ ∈ G̃ , and p̄
is compatible with the generic sequence ç̄.

(iii) In particular, this truth value is positive. Moreover, the truth value remains
positive if we additionally assign specific values for finitely many of the variables
xn,m.

Here, “p̄ is compatible with the generic sequence ç̄” means: There is some
assignment a such that pn,α ◦ a = çn(α) for all α < ä+ù. Since pn,ä+m = xn,m, the
only assignment that can ever witness compatibility is the canonical assignment acä .
More formally, and slightly stronger, we can formulate the last item as: Given
f: ù → ù and (bn,i)n∈ù,i<f(n) with bn,i ∈ {0, 1}, the truth value of the following
statement is non-zero:

8With “standard name for x” (x in the groundmodel) wemean the (canonical) name x̌ that evaluates
to x for all generic filters.
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• p̃ ∈ G̃ ,
• pn,α ◦ acä = çn(α) for all α < ä + ù,
• and additionally çn(ä + i) (or equivalently xn,i ◦ acä ) is bn,i for all n ∈ ù and
i < f(n).

Proof. (i) it follows from the definition of R that each q(n) is a valid condition
in Qn. (ii) The canonical assignment is the only assignment that can possibly
witness compatibility. (iii) Given f and bn,i as above, we can just extend q(n) to
be the name of some condition q′ in Qn of height ä+ù (instead of just ä) such that
q′(ä+ i) = bn,i for all i < f(n). For this we need, as usual, just Lemma 4.7(i,ii). ⊣

Remark 5.5. • It is easy to see (similarly to 4.7) that Rä+ù is nonempty
for all ä. We will only prove this (implicitly) for “stationary many” ä, in
Lemma 5.8: ó ′′R is dense in P̃ ∗ Pù .

• In view of this Lemma, the proof of (iii) can be compared to Remark 4.10:
Whilewe cannot densely determine the gray area ofFigure 4(b), we candensely
determine such an area shifted up to some ä.

If α < ä, then pn,α can be calculated from finitely many pl, ä+m with l < n (since
pn,α is a term using variables xl,m, l < m, and pl, ä+m = xl,m). We can also calculate
values in the other direction:

Lemma 5.6. (i) pn,α is determined by finitely many xl,k with l < n.
(ii) xn,m can be determined by finitely many pl,k with l > n, k ∈ ù.

More generally, we get (cf. Figure 5(a)): If p ∈ Rä+ù and â < ä (not necessary a
limit), then every pn,α with â +ù ≤ α < ä +ù can be determined by finitely many
pl,æ with l > n, â < æ < â + ù. More precisely: There is a k ∈ ù and a sequence
(li , æi )i<k such that li > n, â < æi < â+ù and for all assignments a, b the following
holds: If pn,α ◦ a 6= pn,α ◦ b, then (pli ,æi ◦ a)i<k 6= (pli ,æi ◦ b)i<k .

Proof. By induction on α: Assume α = â+ù+m. Then (pn+1,æ)æ<â+ù coheres
with pn,α above some k0, so we can use fâ+ù,n,m to get pn,α. Now assume that the
statement is true for allα < í, í limit. Ifα = í+m, thenpn,α again is determined by
the values of certain pl,æ with l > n, â < æ < í, each of which in turn is determined
(by induction) by finitely many pl ′,æ′ with â < æ

′ < â + ù. ⊣

We can identify R with a subset of P ∗ Pù :

Lemma 5.7. i : R→ P̃ ∗ Pù is injective.

Proof. Fix p ∈ Rä+ù , q ∈ Rä′+ù , p 6= q. If p̃ 6= q̃, then i(q) 6= i(p). So assume
that p̃ = q̃ (in particular ä′ = ä). Since p 6= q, there is an (n, α) and a (finite,
partial) assignment a such that qn,α ◦ a 6= pn,α ◦ a. According to 5.4(iii), i(q) is
compatible with a. Let r ≤ i(q) force that the generic sequences are compatible
with a. Then r forces that i(p) is not in the generic filter, since it determines a
different value for çn(α) than i(q). ⊣

So we can interpret R as a subset of P ∗Pù ; and we usually do so, that is, we will
may just write p instead of i(p) and R instead of i ′′R, as in the following:

Lemma 5.8. R ⊆ P ∗ Pù is dense.

The proof is a bit cumbersome, but really just a modification of the proof of
Lemma 4.11.
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ȳȳ

x̄

q′

p

q = p � q′

n

n n

φ

Id

φ

Figure 5. Elements of R. (a) Dependence in both directions,
according to Lemma 5.6. (b) Conditions can be stacked to get
stronger conditions. If on the other hand q is stronger than p,
then it can be split accordingly.

Proof. Fix (p̃, p(0), p(1), . . . ) ∈ P̃ ∗Pù , and a countable N∗ ≺ H (÷∗) contain-
ing (p̃, p(0), p(1), . . . ). Set ä∗ = N∗ ∩ù1. It is enough to show:

There is a q ∈ Rä∗+ù such that i(q) ≤ (p̃, p(0), p(1), . . . ). (5.1)

The P̃ ∗ Pn-condition (p̃, p(0), . . . , p(n)) will be denoted by p ↾ n. For q ∈ R and
n ∈ ù, we set

q(n) = (qn,α)α<ä∗+ù and q ↾ n := (q̃, q(0), q(1), . . . , q(n − 1)).

Just as q can be interpreted as a condition in P̃ ∗Pù in a canonical way (cf. 5.4), we
can interpret q ↾ n as a condition in P̃ ∗ Pn . In particular, “q ↾ n forces ϕ” means
the following:

If G̃ ∗Gn is P̃ ∗Pn-generic over V , if G̃ contains q̃ and if ç0, . . . , çn−1 are
compatible with (ql,α)l<n,α<ä∗+ù , then ϕ holds in V [G̃ ∗Gn].

Let us call an antichain E in P̃ ∗ Pn nice, if every condition e in E has the form
of Corollary 4.12. These conditions are dense, so we get:

For all n ∈ ù, X ∈ V and all
˜
ô such that P̃ ∗ Pn forces that

˜
ô ∈ X̌

there is a nice maximal antichain B deciding
˜
ô. I.e., for each b ∈ B

there is an xb ∈ X such that b forces
˜
ô = xb .

(5.2)

The induction hypothesis. We will construct q̃ in Q̃ of height ä∗ + ù and, by
induction on n ≥ 0, the condition q(n)—i.e., the terms (qn,α)α<ä∗ depending on
variables xi,j with i < n—such that the following holds:

(i) q ↾ (n + 1) satisfies the conditions on elements of Rä∗+ù .
(ii) q ↾ (n + 1) is P̃ ∗ Pn+1-generic over N∗.
(iii) q ↾ (n + 1) is stronger than (p̃, p(0), . . . , p(n)).
(iv) q ↾ (n+1) decides every nice maximal antichain E of P̃ ∗Pn+1 inN∗ by finite

case distinction.
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More formally: Item (i) means

(i)′ for all m ∈ ù and α ≤ ä∗ limit there is a k0 < ù such that for all assignments
a, we have that (qn,æ ◦ a)æ<α coheres with qn−1,α+m ◦ a above k0.

And item (iv) means: For every nice maximal antichain E of P̃ ∗ Pn+1 in N∗ there
is an lE ∈ ù, a sequence (eE0 , . . . , e

E
lE−1) of elements of E ∩ N∗ and a sequence

(tE0 , . . . , t
E
lE−1) of terms using only variables xi,j with i < n+1 such that q ↾ (n+1)

forces the following:

(iv)′ There is exactly one k < lE such that tEk ◦ acä∗ = 1 (cf. 5.2), and e
E
k ∈ G̃ ∗Gn

for this k.

This implies the following (where we apply Lemma 5.4(iii)):

(v) For all partial assignments b of the (finitely many) variables used in any of the
tEk there is exactly one k < l

E such that tEk ◦ b = 1.

Note that (iii) (for all n) implies (5.1).
Step 1: Finding q̃. First extend p̃ to p̃′ such that ht(p̃′) = ä∗ and such that for
every dense subset D of P̃ in N∗ there is an d ∈ D ∩ N∗ weaker that p̃′ (this is
possible since P̃ is ó-closed). In particular, p̃′ is P̃-generic over N∗, and if E ⊆ P̃
is a maximal antichain in N∗, then p̃′ decides the e ∈ E that will be in the generic
filter (and e ∈ N∗).9

We further extend p̃′ to q̃ by adding some arbitrary value at ä∗. So ht(q̃) = ä∗+1
(or equivalently ä∗ + ù).
Step 2: Finding q(0). This case, n = 1, is simple since Q0 is ó-closed.
We have to define the (constant) terms (q0,α)α<ä∗ . Let (Di)i∈ù enumerate all
P̃-names in N∗ for open dense subsets of Q0, such thatD0 = Q0
We now define rn and sn for n ∈ ù such that:

(a) rn is a P̃-name in N∗, forced by p̃ to be a Q0 condition and element of Dn.
(b) sn is a 0-1-sequence in N∗, forced by q̃ to be rn .
(c) rn+1 is forced to extend sn.

Set r0 = p(0). This satisfies (a). Given an rn satisfying (a), note that P̃ does

not add new countable sequences of ordinals. So every condition in QN
∗[G̃ ]
0 , in

particular rn, already exists in the ground modelN
∗. So rn is decided by a maximal

antichain, and therefore by q̃, to be some sequence sn ∈ N∗; satisfying (b). Also,
since sn ∈ 2<ù1 ∩ N∗, we can find in N∗ a P̃-name rn+1 for an element of Dn+1
extending sn.
Fix α < ä∗, and set q0,α to be the term with constant value sn(α) (for sufficiently
large n). This defines q(0). So q̃ forces that that q(0) isQ0-generic overN∗[G̃ ], i.e.,
(q̃, q(0)) is P̃ ∗ P1-generic over N∗ and forces that (p̃, p(0)) ∈ G̃ ∗ G1. So (i)–(iii)
are satisfied. Now fix some nice, maximal antichain E ⊂ P̃ ∗P1 such that E ∈ N∗.
Every e ∈ E is of the form (ẽ, e(0)) for a 0-1-sequence e(0) in V . If e ∈ N∗, then ẽ
and e(0) have height less than ä∗. In particular, every e ∈ E ∩N∗ is either extended

9So p̃′ decides “everything” aboutN∗[G̃ ]. Of course,N∗[G̃ ] is not an element ofV (since it contains,
e.g., G̃). But every formula aboutN∗[G̃ ] (with parameters inN∗) is already decided in V “modulo p̃′”,
since every such formula is decided by an antichain. We can find such a strong p̃′ since P̃ is ó-complete,
and we can do the same for P̃ ∗ P1. However, for n ≥ 1, Qn is not ó-complete, and we will not be able
to decide everything with the generic condition q(n); but we will still be able to decide “modulo finite
case distinction”.
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by (q̃, q(0)) or is incompatible with it. Since E ∈ N∗ is a maximal antichain, and
since (q̃, q(0)) is P̃ ∗ P1-generic over N∗, we know that there has to be exactly one
e∗ ∈ E compatible with (q̃, q(0)), and e∗ ∈ N∗. In other words, (q̃, q(0)) decides
the element e∗ ∈ E ∩N∗ that is going to be in G̃ ∗G1. So to satisfy (iv)′, we can set
lE = 1, tE0 = 1, e

E
0 = e

∗.
Step 3: The successor step. Now things get a bit more complicated, since Qn is
not ó-closed any more. We assume that the induction hypothesis (i)–(iv) holds for
n − 1. So we already have q ↾ n want to find qn,α for 0 ≤ α < ä∗. As previously, we
let (Di)i∈ù enumerate all P̃ ∗Pn-names inN∗ for open dense subsets ofQn (and we
set D0 = Qn).
First we fix (in V ) a term-sequence (t∗α)α∈

S

m∈ù íä∗ ,n−1,m
such that:

• If α ∈ íä∗ ,n−1,m, then t
∗
α only depends on xn−1,m.

• For all m ∈ ù, the sequence t̄∗ coheres with qn−1,ä∗+m (which is just xn−1,m)
above some k0.

• For every â < ä∗, the partial sequence t̄∗ ↾ â uses only finitely many variables.

We can find such a sequence since the fä∗,n−1,m,k defined by q̃ are surjective and the
íä∗ ,n−1,m are disjoint (for different m) cofinal subsets of ä

∗ of order type ù.
We will construct in V by induction on i ∈ ù

• a finite set vi of variables xl,j with l < n,

• for every (partial) assignment a of vi a P̃ ∗ Pn-name rai in N
∗,

• a finite set wi of variables xl,j with l < n,
• for every assignment b of wi a 0-1-sequence sbi in N

∗,
• an ordinal âi < ä

∗,

such that the following holds:

(a) vi+1 ⊇ wi ⊇ vi .
(b) If a is an assignment of vi , then r

a
i is a name (in N

∗) for an element of Di .
(c) If b is an assignment of wi and a its restriction to vi , then (q ↾ n)&b forces10

sbi = r
a
i .

Set w0 = ∅. So there is only one assignment, the empty one, of w0. We set
r∅0 = p(n).

11 Assume that for some i ≥ 0 we already have wi , and rai for all

assignments a of wi . Fix a. Note that P̃ ∗ Pn does not add any new countable
sequences of ordinals, so according to (5.2) rai is decided by a nicemaximal antichain

E of P̃ ∗ Pn in N
∗. Using item (iv) of the induction hypothesis, we choose the

sequences (eE0 , . . . , e
E
lE ) of and (t

E
0 , . . . , t

E
lE ). Let v

′ be the (finite) set of variables

used in any of the tEk . Set v
a
i = wi ∪ v

′. Let b be an assignment of vai extending a.
According to (v), there is a unique k ≤ lE such that tEk ◦b = 1. We call this element
k(b). The element eE

k(b)
determines rai to be a specific 0-1-sequence of V , and we

10For x ∈ P̃ ∗Pn , x&b is the truth value (in ro(P̃ ∗Pn)) of the following statement: x ∈ G̃ ∗Gn , and
b is compatible with ç0, . . . , çn−1, i.e., for every xl,k ∈ wi , we have çl, ä∗+k = xl,k ◦ b. For this notation

we can use x = p ↾ n, and also x = q ↾ n, since we can canonically interpret q ↾ n as element of P̃ ∗Pn .
11More formally, we should set

r∅0 =

(

p(n) if p(n) ∈ Qn ,

∅ otherwise,

since p(n) is forced to be in Qn by p ↾ n, not by the empty condition.
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call this sequence sbi . Note that s
b
i ∈ N∗. We can do this for all assignments a

of wi , and set vi =
⋃

vai .

We still have to construct âi , wi+1 and rbi+1. We pick in N
∗ a P̃ ∗ Pn-name N

for a countable elementary submodel of HV [G̃∗Gn](÷) containing Di+1 and all the
(finitely many) sbi . Since N ∩ ù1 is an P̃ ∗ Pn-name for an ordinal, there are only
finitely many possibilities modulo q ↾ n, and we can choose âi ∈ N∗ ∩ ù1 larger
than every possibility for N ∩ù1.
The terms t∗α for α < äi use only a finite set w

′ of variables (of the form xn−1,m).
Set wi+1 = vi ∪ w

′. Fix an assignment a of wi+1 and let b be the restriction to vi .
Fix the index set

I = {α < âi : (∃j ≤ i)α ∈ íä∗ ,n−1,j}.

The finite set I is in N∗. Set

x̄ = (t̄∗ ◦ b) ↾ I.

This is a finite partial function in N∗ from I to {0, 1}. We define the P̃ ∗ Pn-name
rai+1 in N

∗ by the following construction in N∗[G̃ ∗ Gn]: (Let d be some fixed
element of Di+1.)

• Assume that â ′ = N ∩ ù1 < âi . (Otherwise set rai+1 = d .)

• Assume that sbi is a Qn-condition. (Otherwise set r
a
i+1 = d .)

• InN , extend sbi to someQn-condition containing x̄ ↾ (â ′ \ht(sbi )). (As usual,
use 4.7 inside N .)

• Again in N , pick some condition rai+1 in Di+1 extending s
′. In particular, ri+1

has height less than âi .

This ends the construction. We can summarize all the possibilities of sai (α) into
the term qn,α (depending on the variables in vi). This defines q(n).
It remains to be shown that q ↾ n + 1 satisfies the induction hypothesis.
For (i)′, first assume α < ä∗. Let Di be the set of conditions of length ≥ α. Let
qn−1,α+m be determined by the finite set v of variables, and set v′ = v ∪ vi . Fix
an assignment b of v′. In particular b determines qn−1,α+m as well as q(n) ↾ α,

since q(n) “extends” sb
′

i ∈ Di (where b′ is the restriction of b to vi). Since q ↾ n
is compatible with the finite assignment b, we know that q(n) ◦ b ↾ α coheres with
qn−1,α+m ◦ b above some kb0 . So we can set k0 to be the maximum of all the k

b
0 for

all assignments b of v′.
Now assume α = ä∗ and m ∈ ù. Pick ã ∈ íä∗ ,n−1,m \ âm. Look at the term qn,ã .
According to the construction,

qn,ã ◦ b = s
b′

i (ã) ◦ b = t
∗
α ◦ b

for all assignments b, and therefore q(n) coheres with xn−1,m.
Let us now show (iv). Let E ∈ N∗ be a nice, maximal antichain of P̃ ∗Pn+1. Let
D be the P̃ ∗ Pn-name for the following open dense subset of Qn

D = {q ≤ e(n) : e ∈ E, e ↾ n ∈ G̃ ∗Gn}.

We know that D appears as some Di in the list of dense sets in N∗. Fixing an
assignment a of vi , we get sai in N

∗ such that sai ∈ Di [G̃ ∗Gn]. We set

Aa = {e ↾ n : e ∈ E, e(n) ⊆ sai }.
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This is a nice P̃ ∗ Pn-antichain and maximal under (q ↾ n)&a. We can extend it to
a nice maximal antichain Ba . By induction hypothesis, we can determine modulo
q ↾ n the element b of Ba chosen by G̃ ∗ Gn filter by finite case distinction. Then
b⌢sai is the element of E chosen by G̃ ∗Gn+1. Combining the finite case distinction
for the sai with the finite case distinctions for the according B

a gives the desired
result. ⊣

Since R is a subset of P̃ ∗ Pù , it is also a partial order (and since it is dense, it is
forcing equivalent to P̃ ∗ Pù). We now show that we can interpret the order on R
in a different way, using substitutions of terms:

Definition 5.9. Let p ∈ Rä+ù and q ∈ Rä′+ù . We call q term-stronger than
p, if either p = q or if the following holds: q̃ ≤ p̃ (in particular ä′ ≥ ä), and
pn,α ◦ φ =∗ qn,α for all α < ä and for the substitution φ defined by φn,m = qn,ä+m.

(Again, recall thatwe interpret terms as functions, so we use =∗ as defined in 2.4.)

Lemma 5.10. The condition q ∈ R is term-stronger than p ∈ R iff i(q) ≤ i(p).

Proof. Assume that q is not term-stronger than p. If q̃ is not stronger than p̃
in P̃, then i(q) cannot be stronger than i(p). So assume q̃ ≤ p̃. According to the
definition of term-stronger, ql,α =

∗ pl,α ◦ φ fails for some l, α. These terms depend
on finitely many variables xn,m, and there is a partial assignment a of these variables
such that ql,α ◦ a 6= pl,α ◦ φ ◦ a. According to Lemma 5.4(iii), we can force the
generic sequence to be compatible with q and a. Then i(q) is in the generic filter,
but i(p) is not, contradicting i(q) ≤ i(q). ⊣

If q′ is a condition, then (q′n,m)n,m∈ù can be interpreted as substitution: For
p ∈ Rä+ù and q

′ ∈ Rä′+ù , we can stack q
′ on top of p—overlapping at [ä, ä +ù[—

to get a condition q ∈ Rä+ä′+ù stronger thanp, cf. Figure 5(b). Wewrite q = p � q′.
More precisely:

Definition 5.11. For p ∈ Rä+ù and q
′ ∈ Rä′+ù , we define the condition q = p �

q′ in Rä+ä′+ù as follows

• q̃ ↾ (ä + 1) = p̃.
• q̃(α) for α ≥ ä + ù is defined the following way:

íqä+α,n,m = {ä + â : â ∈ íq
′

α,n,m},

jqä+α,n,m = j
q′

α,n,m,

fqä+α,n,m,k = f
q′

α,n,m,k.
• qn,ä+α = q

′
n,α.

• If α < ä, then qn,α = pn,α ◦ φ for the substitution φ defined by φn,m = q′n,m.

Fact 5.12. (i) If p ∈ Rä+ù and q
′ ∈ Rä′+ù , then p � q′ is stronger than p.

(ii) If q ∈ Rä+ä′+ù is stronger than p ∈ Rä+ù , then we can “split” q into p ∈ Rä+ù
and q′ ∈ Rä′+ù such that q = p � q′.

Remarks 5.13. • Of coursewe generally cannot split a condition at every level:
If q ∈ Rä′′+ù and ä

′ < ä′′, then we generally do not get q = p � q′ for some
p ∈ Rä′+ù .

• The Fact shows that for all q ∈ R there are only finitely many p ≥ q, see
Figure 6(a).



A SACKS REAL OUT OF NOWHERE 71

2100 1 2210
(a)

q

p2

p1

2100 1 2210
0 x

x

x

0

0

0

(b)

q

p2

p1

Figure 6. (a) If q is stronger thanp1 andp2, then q2,m is constant
for all m. (The gray area indicates constant terms; the P̃ parts are
not displayed.) (b) If p1, p2 are compatible (i.e., weaker than
some q), they do not have to be comparable.

• Note that two compatible conditions generally are not comparable, see Fig-
ure 6(b). (Otherwise, according to the previous item, R would be isomorphic
to a tree of height ù and therefore collapse the continuum.)

• The situation is similar to Q∗ defined in Section 2: The conditions that are
stronger than some p ∈ R are exactly those with another condition q′ ∈ R
stacked on top.

§6. Sacks reals as squares of terms again. We will now investigate the relation of
R and Q∗. Given a p ∈ R, we can restrict p to an ù × ù-matrix of terms:

Definition 6.1. For p ∈ R, set ó(p) = (pn,m)n,m∈ù .

Note that

ó(p � q′) = ó(p) ◦ ó(q′). (6.1)

So stacking q′ on top of p translates to applying ó(q′) (as substitution) to ó(p).
Generally ó(p) will not be element of Q∗, and for a t̄ ∈ Q∗ there generally is
no p ∈ R such that ó(p) = t̄. The reason is that some obvious conditions on the
term-matrix are incomparable: In Q∗, we require

ti,j only depends on xn,m such that (n,m)� (i, j),

whereas every ó(p) obviously satisfies

pi,j only depends on xn,m such that n < i .

We will now define a dense subset R′ ⊆ R such that ó ′′R′ ⊆ Q∗, and such that
R′ adds a Q∗-generic object. This proves the first part of Theorem 1, since Q∗ is
forcing equivalent to Sacks forcing and R′ is (as a dense subset) equivalent to R,
which in turn is dense in P ∗ Pù . So P ∗ Pù adds a Sacks real.

Lemma 6.2. (i) There is an r∆∈Rù·ù+ù such that ó(r∆)∈Q∗ and ó(p � r∆)∈Q∗

for all p ∈ R.
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(ii) There is an rmult ∈ Rù·ù+ù such that for all φ ∈ Q∗ there is an r ∈ Rù·ù+ù with
ó(rmult) ◦ φ = ó(r).

We postpone the proof to the end of the section. We set

R′ = {p � r∆ : p ∈ R}.

This is a dense subset of R, since p � r∆ ≤ p for all p. As a consequence of the
previous Lemma, we get:

Corollary 6.3. (a) If l ∈ R′ and p ≤R l , then ó(p � r∆) ≤Q∗
ó(l).

(b) If p ∈ R′ then there is an s̄ ≤ ó(p) such that for all t̄ ≤ s̄ then there is an q ≤ p
in R′ such that ó(q) ≤ t̄.

(c) The forcing notion R′ adds a generic for Q∗. So P̃ ∗ Pù adds a Sacks real.

Proof of the Corollary. (a) Assume that p = l � q′. Then ó(p � r∆) =
ó(l) ◦ ó(q′ � r∆); and ó(q′ � r∆) is an element of Q∗ and therefore witnesses that
ó(p � r∆) is stronger than ó(l).
(b) Set s̄ = ó(p � rmult � r∆), and let φ witnesses t̄ ≤ s̄ , i.e., φ ∈ Q∗ and

t̄ = s̄ ◦ φ = ó(p) ◦ ó(rmult) ◦ ó(r∆) ◦ φ.

ó(r∆) ◦ φ ∈ Q∗, so by Lemma 6.2(ii), there is an r ∈ R such that

ó(r) = ó(rmult) ◦ ó(r∆) ◦ φ, so

ó(p � r) = ó(p) ◦ ó(r) = s̄ ◦ φ = t̄.

Set q = p � r � r∆. Then q ∈ R′ and q ≤ p. Furthermore,

ó(q) = ó(p � r) ◦ ó(r∆) = t̄ ◦ ó(r∆) ≤ t̄.

(c) Let G ′ beR′-generic over V . We show that the following set isQ∗-generic filter
over V :

G∗ = {r̄ ∈ Q∗ : (∃q ∈ G
′)ó(q) ≤ r̄} (6.2)

First note that G∗ does not contain incompatible elements: Assume that r̄1 and r̄2
are in G∗. Then there are l1, l2 ∈ G ′ such that ó(li) ≤ ri . Since G ′ is a filter, there
is some p ≤ l1, l2 in G

′. The set

{p′ � r∆ : p′ ≤ p}

is dense below p, so there is some q = p′ � r∆ inG ′. According to (a), the q satisfies
ó(q) ≤ ó(l1), ó(l2).
Now assume that D ⊆ Q∗ is dense, and (towards a contradiction) that p forces
thatG∗ does not meet D. Then pick s̄ as in (b), pick t̄ ≤ s̄ inD and pick q again as
in (b). So q forces that ó(p) ≤ t is in G∗, a contradiction. So we know that (6.2) is
generic. ⊣

It remains to prove Lemma 6.2. All these facts are easy to see, but a bit
cumbersome to write down formally. So the reader might be better off draw-
ing a picture than reading the proof. Fix an injective function from ù<ù to ù,
(a1, . . . , al ) 7→ pa1, . . . , alq, with coinfinite range.



A SACKS REAL OUT OF NOWHERE 73

The construction of r∆. All we need is a r∆ ∈ Rù·ù+ù satisfying the following:

r∆n,m only depends on variables xi,j such that i + j < n. (6.3)

Then, if we stack r∆ on top of any p ∈ Rä+ù , the resulting q = p � r∆ will
satisfy (6.3) as well. Also, every element q of R satisfies that each xi,j depends on
finitely many qn,m for n,m ∈ ù, according to Lemma 5.6(ii). Therefore ó(p � r∆)
will satisfy all requirements for an element of Q∗, which proves Lemma 6.2(i).
We now construct r∆.

• When defining r̃∆, only the í part is nontrivial; we set each jα,n,m : ù → ù and
fα,n,m,k : 2→ 2 to be the identity function for all α, n,m, k.

12

• We deal with one variable at a time. Assume that we deal with xn0,m0 .
• Set íù·ù,n0,m0 = {ù · k + pn0, m0q : k > m0}.
For α ∈ íù·ù,n0,m0 , we set r

∆
n0+1,α

= xn0,m0 .
• If n = n0 + l for some l ≥ 1, if m = pa0, a1, . . . , alq with a0 = n0, a1 = m0,
and if k > m0− l , then set íù·(k+1),n,m = {ù · k+ pa0, . . . , al , jq : j ∈ ù}, and

for α ∈ íù·(k+1),n,m, we set r
∆
n+1,α = xn0,m0 .

• We repeat this for all xi,j . (Note that the íα,n,m defined for different m will be
disjoint).

• So far, whenever we have defined some íâ,n,m to contain α, we also guaranteed
that r∆n+1,α and r

∆
n,â+m are the same variable.

• We now set all r∆n,α that are undefined so far to be the constant term 0, and
define every íâ,n,m that is undefined so far in a way such that every member
α of íâ,n,m satisfies r

∆
n+1,α = 0. (Here, we use that the coding function has

coinfinite range.)

It is easy to see that the object r∆ defines this way is element ofR. Each r∆n,α is either

an xn0,m0 or 0. If r
∆
n,m = xn0,m0 , then n > m0 + n0. Given n, r

∆
n,m = 0 for infinitely

many m.

The construction of rmult. We will first show the following:

Lemma 6.4. If (pn,m)n,m∈ù satisfies

1. pn,m is a term depending only on xi,j with i < n,
2. (∀n) (∃∞m)pn,m = 0,
3. (∀i, j) (∃∞n) (∀M ) (∃m0 . . . mk > M )xi,j is determined by pn,m0 , . . . , pn,mk ,

then there is a q ∈ Rù·ù+ù such that ó(q) = p̄.

Proof. The proof is very similar to the preceding construction. The reader might
just consult Figure 3(c).
Assume we have such a sequence p̄. We have to define q ∈ Rù·ù+ù. We already
know that qn,m = pn,m for n,m ∈ ù.
We more or less repeat the construction above, to get all qn,α and all íâ,n,m, but
only for â ≥ ù + ù, and we deal with íù,n,m later. Assume we are dealing with
xn0,m0 . Set

In0,m0 = {n′ ≥ n0 + 2: (∀M ) (∃m
′
0 . . . m

′
k > M )

xn0,m0 is determined by pn′,m′
0
, . . . , pn′,m′

k
}.

12This corresponds to the simpler version of P̃ in Section 3.
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According to assumption (3), In0,m0 is infinite.
For all α > ù limit and all n,m, k we will set jα,n,m and fα,n,m,k to be the identity
functions.
We set

íù·ù,n0,m0 = {i · ù + pn0, m0q : i +m0 + 1 ∈ In0,m0}.

(So íù·ù,n0,m0 ∩ [i · ù, (i + 1) · ù[ contains a singleton if i +m0 + 1 ∈ In0,m0 , and is
empty otherwise.) We set qn0+1,α = xn0,m0 for all α ∈ íù·ù,n0,m0 ; and “propagate the
xn0,m0 diagonally down”: If n = n0+ l for some l ≥ 1, if i > 0 and i+m+ l ∈ In0,m0 ,
and if m = pa0, a1, . . . , alq such that a0 = n0, a1 = m0, then set

í(i+1)·ù,n,m = {i ·ù + pa0, . . . , al , jq : j ∈ ù}.

We iterate this for all xn0,m0 , and set all qn,α that have not been defined in this
process to be the constant term 0. Also we set the íâ,n,m for â > ù that have not
been defined yet to contain only α > ù such that qn+1,α = 0. (Remember that the
coding had coinfinite range.)
So we have all qn,α and all íâ,n,m, jâ,n,m and fâ,n,m,k for â > ù.
We still have to define íù,n,m, jù,n,m and fù,n,m,k. For this, we use a simple
book-keeping: At stage i , there are only finitely many pairs (n,m) for which any
of these objects are already partially defined. For all of these (n,m), we also have:
íù,n,m is defined up to height Mn,m, jù,n,m is defined up to some hn,m such that
jù,n,m(hn,m − 1) = Mn,m − 1 fù,n,m,k is defined for exactly the k < hn,m. LetM be
the maximum of allMn,m for a given stage.
The book-keeping gives us an (n0, m0) and an (n,m) such thatqn,ù+m = xn0,m0 . By
our construction, we know that xn0,m0 can be determined by finitely many and arbi-
trary large qn+1,m′ . Fix m′

0, . . . , m
′
l−1 bigger thanM such that qn+1,m′

0
, . . . , qn+1,m′

l−1

determines xn0,m0 . Extend íù,n,m′ to contain exactly {m′
0, . . . , m

′
l}, continue jù,n,m′

by setting jù,n,m′(hn,m) = Mn,m + l − 1 and define fù,n,m′,hn,m so that it calculates
xn0,m0 .
At the end, again set the íù,n,m that have not been defined in this process to
contain only m′ such that qn+1,m′ = 0. To be able to do this, we use at height ù
assumption (2). ⊣

We can now define rmult: We can take any condition in R satisfying

• rmultn,m only depends on xi,j with i + j < n.
• Every xi,j with i+ j < n, as well as the constant 0 term, occurs infinitely often
in {rmultn,m : m ∈ ù}.

If we set p̄ = rmult ◦ φ for some φ ∈ Q∗, we get:

• pn,m only depends on xi,j with i + j < n. (Due to (2.8).) So we satisfy (1).
• For all n, infinitely many pn,m are 0. So we satisfy (2).
• xi,j is determined by (φli ,ki )i∈I . Fix any n bigger than max(li + ki : i ∈ I ).
Then xi,j is determined by finitely many pn,m (where we can pick the m’s
arbitrarily large). So we satisfy (3).

So rmult ◦ φ satisfies all assumptions of the previous Lemma, and we get a q as
desired.
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§7. The quotient forcing. It might look tempting to assume 3 to construct the
coding sequences í̄, j̄, f̄ instead of using the preparatory forcing. (We just have
to “guess” correctly sufficiently often for the proofs to work.) However, this is
not possible: Otherwise, Sacks forcing would be equivalent to Pù (since Pù adds
a Sacks real s which in turn determines the Pù-generic filter Gù). But Sacks reals
are minimal, and the Q0 generic ç0 ∈ 2

ù1 is not in the ground model V . Therefore
V [s] = V [ç0], a contradiction to the fact that V [ç0] does not add new reals.
In particular, if we look at Pù in V [G̃ ], then Pù does not add a Sacks real (over
V [G̃ ]), just a Sacks real over V .
So P̃ ∗ Pù adds a Sacks real s but is not equivalent to Sacks forcing, and s does
not determine the P̃-generic object G̃ . However, every new ù-sequence is already
added by s :

Lemma 7.1. If G̃ ∗ Gù is P̃ ∗ Pù-generic over V , and if r ∈ V [G̃ ∗ Gù] is an
ù-sequence of ordinals, then r ∈ V [s]. Here we set s = (ç̄n(m))n,m∈ù , the Sacks real
over V .

Proof. If q̃ ∈ G̃ has height ä, then s together with q̃ determines Gn up to height
ä for all n (just as in Lemma 4.9). So if N ≺ H (÷) and q̃ ∈ G̃ has height N ∩ ù1,
then s together with q̃ determines whether r ∈ G̃ ∗Gù for any r ∈ R ∩N .
Assume towards a contradiction that p ∈ R forces that

˜
f is an ù-sequence

of ordinals not added by s . Choose an N ≺ H (÷) containing p,
˜
f, and an N -

generic q ≤ p. Each
˜
f(n) is decided by some maximal antichain A ∈ N . But for

each a ∈ A ∩ N , s together with q̃ determines whether a is in G . In particular,

˜
f[G ] ∈ V [s]. ⊣

This proves the second part of Theorem 1: SinceR forces that there is some Sacks
real over V and since Sacks forcing is homogeneous, R can be factored as Sacks
composed with some P′. Since the Sacks real already adds all new ù-sequences, P′

is NNR.
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