
The Journal of Symbolic Logic

Volume 74,Number 1,March2009

DECISIVE CREATURES AND LARGE CONTINUUM

JAKOB KELLNER∗ AND SAHARON SHELAH†

Abstract. For f, g ∈ ùù let c∀f,g be the minimal number of uniform g-splitting trees (or: Slaloms)

to cover the uniform f-splitting tree, i.e., for every branch í of the f-tree, one of the g-trees contains í.

c∃f,g is the dual notion: For every branch í, one of the g-trees guesses í(m) infinitely often.

It is consistent that c∃fǫ ,gǫ = c
∀
fǫ ,gǫ

= κǫ for ℵ1 many pairwise different cardinals κǫ and suitable pairs

(fǫ, gǫ).

For the proof we use creatures with sufficient bigness and halving. We show that the lim-inf creature

forcing satisfies fusion and pure decision. We introduce decisiveness and use it to construct a variant of the

countable support iteration of such forcings, which still satisfies fusion and pure decision.

§1. Introduction. In the paperMany simple cardinal invariants [3], Goldstern and
the second author construct a partial order P that forces pairwise different values
to ℵ1 many instances of the cardinal characteristic c∀f,g, defined as follows:

Let f, g ∈ ùù (usually we have f(n) > g(n) for all n). An (f, g)-slalom is a
sequence S = (S(n))n∈ù such that S(n) ⊆ f(n) and |S(n)| ≤ g(n). A family S of
(f, g)-slaloms is a (∀, f, g)-cover, if for all r ∈

∏

n∈ù f(n) there is an S ∈ S such

that r(n) ∈ S(n) for all n ∈ ù. We call the minimal size of a (∀, f, g)-cover c∀f,g.

We investigate the dual notion: A family S of (f, g)-slaloms is an (∃, f, g)-cover,
if for all r ∈

∏

n∈ù f(n) there is an S ∈ S such that r(n) ∈ S(n) for infinitely many

n ∈ ù. We call the minimal size of an (∃, f, g)-cover c∃f,g.
In [3], the following is shown:

Assume that CH holds, that (fǫ, gǫ)ǫ∈ù1 are sufficiently different, and

that κℵ0ǫ = κǫ for all ǫ ∈ ù1. Then there is a cardinal preserving partial
order P which forces that c∀fǫ,gǫ = κǫ for all ǫ ∈ ù1.

Similar results regarding c∃ as well as a perfect set of invariants were promised
to appear in a paper called 448a, which never materialized. A result for continuum
many different invariants of the form c∀fǫ,gǫ can be found in [4].

In this paper, we prove a version for countably many invariants c∃:

Theorem 1. Assume that CH holds, that (fǫ, gǫ)ǫ∈ù are sufficiently different, and
that κℵ0ǫ = κǫ for all ǫ ∈ ù. Then there is a cardinal preserving, ù

ù-bounding partial
order P which forces that c∃fǫ,gǫ = c

∀
fǫ,gǫ

= κǫ for all ǫ ∈ ù.

Received July 6, 2006.
2000Mathematics Subject Classification. 03E17;03E40.
∗ supported by a European Union Marie Curie EIF Fellowship, contract MEIF-CT-2006-024483.
† supported by the United States-Israel Binational Science Foundation (Grant no. 2002323), and by

the US National Science Foundation grant NSF-DMS 0600940, publication 872.

c© 2009, Association for Symbolic Logic

1943-5886/09/7401-0005/$4.20

73

74 JAKOB KELLNER AND SAHARON SHELAH

(See Section 7 for a definition of sufficiently different.)
We can also get ù1 many different invariants, but we do not know in the ground
model which invariants will be picked:

Theorem 2. Assume that CH holds, and that κℵ0ǫ = κǫ for all ǫ ∈ ù1. Then there
are pairs (fí , gí)í∈ù1 and there is a cardinal preserving, ù

ù-bounding partial order R
which forces: For each ǫ ∈ ù1 there is a í(ǫ) ∈ ù1 such that c∃fí(ǫ),gí(ǫ) = c

∀
fí(ǫ),gí(ǫ)

= κǫ.

In any case, if the κǫ are pairwise different, then in the forcing extension there are
infinitely many different cardinals below the continuum, i.e., 2ℵ0 > ℵù . Therefore
we cannot use countable support iterations. We cannot use finite support iterations
either (otherwise we add many Cohen reals, which makes c∀ too big). Instead, we
use a variant of the countable support product of lim-inf creature forcings. We do
not assume that the reader knows anything about creature forcing. However, we do
assume that the reader knows the definition of proper forcing (see, e.g., [2] or, for the
brave, [6]), and the fact that such forcings preserveù1. Alternatively, it is sufficient to
knowBaumgartner’s AxiomA (cf. [1]): it is easy to see that the forcings in this paper
all satisfy Axiom A, and Axiom A forcings (are proper and therefore) preserve ù1.
We write q ≤ p to say that q is stronger than p. We try to stick to Goldstern’s
alphabetic convention, i.e., whenever two conditions are compatible, the symbol
used for the stronger condition comes lexicographically later.
The theorems in this paper are due to the second author. The first author’s
contribution was to fill in some details, to ask the second author to fill in other
details, and to write the paper.
We thank a referee for very carefully reading the paper and pointing out amistake
and numerous unclarities.

Annotated contents. In the first part, we investigate lim-inf creature forcings:

Section 2, p. 75. We define the (one-dimensional) lim-inf creature forcing Q∗
∞.

Section 3, p. 77. We use bigness and halving to show thatQ∗
∞ satisfies pure deci-

sion (and fusion). This implies that Q∗
∞ is proper and ù

ù-bounding. We
also show rapid reading of certain names. The proofs in this section will
be generalized in Section 5.

Section 4, p. 83. We introduce decisiveness and use it to extend bigness to func-
tions defined on finite products of creatures. This allows us to show pure
decision for finite products of lim-inf creature forcings.

Section 5, p. 86. We define the forcing P, a variant of the countable support
product of lim-inf creature forcings, in such away that the proof of Section 3
still works with only few changes. We also get ℵ2-cc (assuming CH).

Section 6, p. 94. We show how to construct decisive creatures with sufficient big-
ness and halving.

In the second part, we use the methods of Section 5 to prove Theorems 1 and 2:

Section 7, p. 96. We formulate the requirements for Theorem 1 and define P, a
variant the forcing in Section 5.

Section 8, p. 97. We show thatPǫ, a complete subforcing ofP, adds a c
∀
fǫ,gǫ
-cover

in V [GP]. This proves c∀fǫ,gǫ ≤ κǫ.

Section 9, p. 99. We show that in V [GP] there can be no c∃fǫ,gǫ -cover smaller

than κǫ: Otherwise we can find a condition q that rapidly reads (without

DECISIVE CREATURES AND LARGE CONTINUUM 75

using index â) a slalom
˜
S and forces that the generic real

˜
çâ at â meets

˜
S

infinitely often. We strengthen q such that the possible values for the
generic always1 avoid the slalom

˜
S, a contradiction.

Section 10, p. 101. We constructù1 many suitable pairs (fǫ, gǫ) the partial order
R, a modification of P, to show Theorem 2.

§2. Lim-inf creature forcings. Creature forcing in general is described in the
monographNormsonpossibilities I: forcingwith trees and creatures [5] byRosłanowski
and the second author. The forcing of the proof in [3] can be interpreted as creature
forcing as well, more specifically as a lim-sup tree creating creature forcing. We will
use lim-inf creatures instead. These forcings are generally more complicated than
the lim-sup case, and [5] shows that they can collapse ù1. In this paper, we will
require increasingly strong bigness and halving, which guarantees pure decision and
therefore properness.
We now describe the setting we use. Creature forcings are defined by a parameter,
the creating pair (K,Σ). We use the following objects:

• A functionH : ù → ù \ {0}.
• A strictly increasing function F : ù → ù such that F(0) = 0.
• For every n ∈ ù a finite set K(n).
• For each c ∈ K(n), a real number nor(c) ≥ 0, and a nonempty subset val(c)
of
∏

F(n)≤i<F(n+1)H(i).

• We additionally require that | val(c)| = 1 implies nor(c) = 0.

A c ∈ K(n) is called n-creature. The intended meaning of the n-creature c is
the following: the set of possible values for the generic object

˜
ç ∈

∏

i∈ù H(i)

restricted to the interval [F(n),F(n + 1)− 1] is the set val(c). nor(c) can be thought
of measuring the amount of “freedom” the creature c leaves on its interval. If c

determines its part of the generic real (i.e., if val(c) is a singleton) then nor(c) = 0
(i.e., c leaves no freedom). However, this intuition about nor(c) has to be used with
caution: In particular, val(d) ⊆ val(c) does generally not imply nor(d) ≤ nor(c).
We set K :=

⋃

n∈ù K(n).
In our application we will use F(n) = n, i.e., an n-creature lives on the single-
ton {n}.
We also have a function Σ : K→ P (K) satisfying:

• If c ∈ K(n) and d ∈ Σ(c) then d ∈ K(n).
• Σ is reflexive, i.e., c ∈ Σ(c).
• Σ is transitive, i.e., d ∈ Σ(c) and d

′ ∈ Σ(d) implies d′ ∈ Σ(c).
• If d ∈ Σ(c) then val(d) ⊆ val(c) and nor(d) ≤ nor(c).

The intended meaning is that Σ(c) is the set of creatures that are stronger than c.
To simplify notation later on, we extend the definitions of nor, val and Σ to
sequences s, t ∈

∏

F(n)≤i<F(n+1)H(n): We set

nor(t) := 0, val(t) := {t}, t ∈ Σ(c) iff t ∈ val(c), s ∈ Σ(t) iff s = t.

We now define the lim-inf forcing Q∗
∞(K,Σ):

1This is the reason we have to use lim-inf creature forcing instead of lim-sup: When we deal with c∀,
we have to “run away” from

˜
S infinitely often, and it is enough to assume that we have sufficient space

to do so infinitely often. But here we need sufficient space at every height.

76 JAKOB KELLNER AND SAHARON SHELAH

q

val(p(2)) ∋ q(2)

Σ(p(2)) ∋ q(3)

>

Id

Id

p q

> M

>M

=
F(2)

F(3)

F(4)

p

F(1)

0

3

2

1

(a) (b)

h

Figure 1. (a): q ≤ p, trnklh(p) = 2, trnklh(q) = 3. (b): q ≤M p.

Definition 2.1. A condition p ∈ Q∗
∞(K,Σ) consists of a trunk t ∈

∏

i<F(n)H(i)

for some n and a sequence (ci)i≥n such that ci ∈ K(i) and nor(ci) > 0 for all i ≥ n,
and lim(nor(ci)) =∞. We set trunk(p) := t, and the trunk-length trnklh(p) := n,
and we set

p(i) :=

{

ci if i ≥ n,

t ↾ [F(i),F(i + 1)− 1] otherwise.

So we can identify p with the sequence (p(i))i∈ù . The order on Q∗
∞ is defined by

q ≤ p if trnklh(q) ≥ trnklh(p) and q(i) ∈ Σ(p(i)) for all i .

So in particular q ≤ p implies that trunk(q) extends trunk(p), see Figure 1(a).
Of courseweassume that there are sufficiently large creatures, otherwiseQ∗

∞(K,Σ)
is empty.2

The forcing Q∗
∞(K,Σ) adds a generic real

˜
ç :=

⋃

p∈G trunk(p). Note that in
general the generic is not determined by

˜
ç, at least not in the usual way. This would

be true in some special cases,3 but we are interested in creating pairs with halving.
A note on the requirement

nor(p(i)) > 0 for each i ≥ trnklh(p) (2.1)

in the definition of Q∗
∞:

• We could drop (2.1), since in the resulting forcing notion the conditions that
additionally satisfy (2.1) are dense anyway.

• Because of (2.1), we are really only interested in creatures with norm> 0, so
we could restrict ourselves to creating pairs containing only such creatures.

• Alternatively, we could omit the concept of trunk from the definition al-
together. Instead, we could assume the following: For all c ∈ K(n) and
all s ∈ val(c) there is a d ∈ Σ(c) such that val(d) = {s} (and therefore

2We need: For each l ∈ ù there is an n ∈ ù such that for all m > n there is some m-creature with
norm at least l .
3If nor(c) is a function of val(c) and val(d) ⊆ val(c) implies d ∈ Σ(c), then the generic filter is

determined by
˜
ç. This assumption is reasonable (and is satisfied in many creature forcing constructions),

but it is incompatible with halving, as defined in the next section.

DECISIVE CREATURES AND LARGE CONTINUUM 77

nor(d) = 0). However, this is not the “right” way to think about crea-
ture forcing, and this version could not be generalized to our variant of the
countable support product.

In the rest of the section, we briefly comment on how our setting fits into the
framework of creature forcing developed in [5]:
A pair (K,Σ) as above is a creating pair as defined in [5, 1.2]. It satisfies the
following additional properties:

• finitary [5, 1.1.3]: H(n) and Σ(c) are always finite.
• simple [5, 2.1.7]: Σ is defined on single creatures only.4

• forgetful [5, 1.2.5]: val(c) does not depend on values of the generic real
outside of the interval of c.5

• nice and smooth [5, 1.2.5]: A technical requirement that is trivial in the case
of forgetful simple creating pairs.

In [5] two main frameworks for forcings are examined: creature forcings [5, 1.2.6]
(defined by a creating pair [5, 1.2.2]) and tree creature forcings [5, 1.3.5] (defined
via a tree-creating pair [5, 1.3.3]). So in this paper we deal with creature forcings.6

In [5] several ways to define forcings from a creating pair are introduced. One
example is lim-sup creature forcingQ∗

w∞ defined in [5, 1.2.6]. Many simple cardinal
invariants [3] uses (a countable support product of) such forcings. The lim-inf case
Q∗

∞ is generally harder to handle, and [5, 1.4.5] proves thatQ
∗
∞ can collapse ù1. In

the rest of [5], Q∗
∞ is only considered in a special case (incompatible with simple)

whereQ∗
∞ is actually equivalent to other forcings that are better behaved (cf. [5, p23

and 2.1.3]). We will introduce additional assumptions (increasingly strong bigness
and halving) to guarantee thatQ∗

∞ is proper andù
ù-bounding. These assumptions

will actually make Q∗
∞ similar to Q∗

f of [5].

§3. Bigness and halving, properness of Q∗
∞. We will now introduce properties

that guarantee thatQ∗
∞ is proper.

Definition 3.1. Let 0 < r ≤ 1, B ∈ ù.

• c is (B, r)-big if for all functions F : val(c)→ B there is a d ∈ Σ(c) such that
nor(d) ≥ nor(c)− r and F ↾ val(d) is constant.7

• K(n) is (B, r)-big if every c ∈ K(n) with nor(c) > 1 is (B, r)-big.
• c is r-halving,8 if there is a half(c) ∈ Σ(c) such that

4In non-simple creating pairs we can have something like d ∈ Σ({c1, c2}), e.g., c1 could live on the
interval I1, c2 on I2, and d is c1 and c2 “glued together”.
5In the general case, val(c) is defined as a set of pairs (u, v) where v ∈

Q

i<F(n+1) H(i) and

u = v ↾ F(n). The intended meaning is that c implies: If the generic object
˜
ç restricted to F(n) is u,

then the possible values v for
˜
ç ↾ F(n + 1) are those v such that (u, v) ∈ val(c). Then “c is forgetful” is

defined as: If (u, v) ∈ val(c) and u′ ∈
Q

i<F(n) H(i) then (u
′, v) ∈ val(c). So in the forgetful case val(c)

and {v : (∃u) (u, v) ∈ val(c)} carry the same information. In this paper we call the latter set val(c), for
simplicity of notation.
6Actually every simple forgetful creating pair can be interpreted as tree-creating pair as well. The

resulting tree-forcing however is different from the creature forcing: the creature forcing corresponds to
the “homogeneous” trees only.
7This is a variant of, but technically not quite the same as, [5, 2.2.1].
8cf. [5, 2.2.7]. The original definition used nor(half(c)) ≥ nor(c)/2 instead of nor(c) − r, therefore

the name halving.

78 JAKOB KELLNER AND SAHARON SHELAH

– nor(half(c)) ≥ nor(c)− r, and
– if d ∈ Σ(half(c)) and nor(d) > 0, then there is a d

′ ∈ Σ(c) such that
nor(d′) ≥ nor(c)− r and val(d′) ⊆ val(d).

• K(n) is r-halving, if all c ∈ K(n) with nor(c) > 1 are r-halving.

So given c and d ∈ Σ(half(c)) as in the definition of halving, we can “un-halve”
d to get d

′. Note that this d
′ generally is not in Σ(half(c)), although val(d′) ⊆

val(d) ⊆ val(half(c)).
Every creature is (1, r)-big. If r′ is smaller than r, then (B, r′)-bigness implies
(B, r)-bigness, and r′-halving implies r-halving. We also get:

If c is (B, r)-big and 0 < r < nor(c), then B < | val(c)|. (3.1)

An example for creatures with bigness and halving (and themuch stronger property
decisiveness) can be found in Section 6.
We now show that increasing bigness and halving implies properness:

Theorem 3.2. Set ϕ(<n) :=
∏

i<F(n)H(i) and r(n) := 1/(nϕ(<n)). If K(n) is

(2, r(n))-big and r(n)-halving for all n, then Q∗
∞(K,Σ) is ù

ù-bounding and proper
and preserves the size of the continuum (in the following sense: in the extension, there
is a bijection between the reals and old reals).

So in particular, CH is preserved.

Note 3.3. Only the growth rate of r is relevant here. In particular: Fix some
ä > 1. Then the theorem remains valid if we replace (2, r(n))-big and r(n)-halving
with the weaker condition (2, ä · r(n))-big and ä · r(n)-halving. Also, it does not
make any difference if we require bigness and halving only for those creatures with
norm bigger than ä (instead of for all creatures with norm bigger than 1).

Note that ϕ(<n) is the number of possible values for
˜
ç ↾ F(n), or equivalently

the number of possible trunks with trunk-length n.
We also set

ϕ(≤n) = ϕ(<n + 1)

and

ϕ(=n) = ϕ(≤n)/ϕ(<n) =
∏

F(n)≤i<F(n+1)

H(i).

In the rest of this section we set P = Q∗
∞(K,Σ).

We use a standard pure decision argument:
Let val(p,<n) denote Πi<n val(p(i)), the set of possible values (modulo p) for

˜
ç ↾ F(n). The size of this set is at most ϕ(<n).

We define for every s ∈ Πi<F(n)H(i) a condition p ∧ s : trnklh(p ∧ s) =
max(n, trnklh(p)), and

(p ∧ s)(i) :=

{

s ↾ [F (i), F (i + 1)− 1] if i < n,

p(i) otherwise.

We use this notion mostly for s ∈ val(p,<n). In this case, p ∧ s ≤ p. Note that

{p ∧ s : s ∈ val(p,<n)} is predense under p, (3.2)

DECISIVE CREATURES AND LARGE CONTINUUM 79

which implies for all s ∈ val(p,<n)

p ∧ s ϕ iff p (s <
˜
ç → ϕ). (3.3)

q ≤∗ p means that q forces p to be in the generic filter.

q ≤∗ p implies val(q,<n) ⊆ val(p,<n). (3.4)

It is important to note that val(q(i)) ⊆ val(p(i)) for all i does not imply q ≤∗ p
(or even just q ‖ p), since val(d) ⊆ val(c) does not imply d ∈ Σ(c). (This would
contradict halving.) However, the following does follow from (3.2):

If val(q(i)) ⊆ val(p(i)) for all i ≤ h and q(i) ∈ Σ(p(i)) for all i > h, then q ≤∗ p.
(3.5)

Let
˜
ô be a name of an ordinal. p <n-decides

˜
ô, if p ∧ s decides9

˜
ô for all

s ∈ val(p,<n). q essentially decides
˜
ô, if p <n-decides

˜
ô for some n.

So if p essentially decides
˜
ô, then we can calculate the value of

˜
ô from a finite set

of possible trunks of p. So (3.3) and (3.4) imply:

If p <n-decides
˜
ô, and q ≤∗ p, then q <n-decides

˜
ô. (3.6)

We also get:

If q ∧ s essentially decides
˜
ô for each s ∈ val(q,<n), then so does q. (3.7)

We define the following (non-transitive) relations ≤n (n ∈ ù) on P:

q ≤n p if q ≤ p and there is an h ≥ n such that q ↾ h = p ↾ h and

nor(q(i)) ≥ n for all i ≥ h.
(3.8)

(Cf. Figure 1(b) on page 76).

Proof of Theorem 3.2. We will show the following properties:

• q ≤0 p implies q ≤ p, and q ≤n+1 p implies q ≤n p.
• (Fusion.) For every sequence p0 ≥0 p1 ≥1 p2 ≥ . . . there is a q stronger than
each pn.

• (Pure decision.) For every name
˜
ô of an ordinal, n ∈ ù, and p ∈ P, there is

a q ≤n p essentially deciding
˜
ô.

Then the standard argument can be employed to show Theorem 3.2:

• ùù-bounding: Let
˜
f be the name for a function from ù into ordinals and

p ∈ P. Set p0 = p. If pn is already constructed, choose pn+1 ≤n+1 pn
essentially deciding

˜
f(n). Fuse the sequence into some q. Then modulo q

there are only finitely many possibilities for each
˜
f(n).

• Proper: Let N ≺ H (÷) be countable and contain P and p0. Let (
˜
ôn)n∈ù list

the P-names of ordinals that are in N . Choose (in N) pn+1 ≤n pn such that
pn+1 essentially decides

˜
ôn . If q ≤ pn for all n, then q is is N -generic.

• The size of the continuum: So for every p in P and P-name
˜
r for a real there is

a q ≤ p continuously reading
˜
r. This means that

˜
r is calculated by a function

eval :
⋃

n∈ù

val(q,<n)→ 2<ù.

9i.e., there is an αs ∈ V such that p ∧ s forces
˜
ô = α̌s .

80 JAKOB KELLNER AND SAHARON SHELAH

dec/
half

dec/
half

dec/
half

p p0

≥ · −r

· · · pl−1p1

≥M
≥M

≥ · −r
≥ · −r

≥M

S(p,M)

bign

Figure 2. The basic construction S(p,M).

(Since each
˜
r(m) is determined by val(q,<M) for someM .) There are only

2ℵ0 many such functions, and |P| = 2ℵ0 many conditions.

So we just have to show pure decision and fusion. Fusion is easy: Let (pn)n∈ù
satisfy pn+1 ≤n+1 pn. Set q(n) = pn(n). Then q is in P: Fix anyM ∈ ù. There is
an h > M such that

nor(pM (m)) ≥M for all m ≥ h. (3.9)

Then (3.9) holds for pM+1 as well, and for each pk with k > M , and therefore for q.
Clearly, q ≤ pn for each n.
It remains to be shown that P satisfies pure decision.
Let
˜
ô be the name of an ordinal.

The basic construction S(p,M):
Assume that trnklh(p) = n and M ∈ ù. We define S(p,M) the following way,
see Figure 2:
Enumerate val(p,≤n) as s0, . . . , s l−1. So l ≤ ϕ(=n). Set p−1 = p. Given pk ,
define pk+1 ∈ P as follows: trunk(pk+1) = sk+1, pk+1 ≤ pk ∧ sk+1, and there is an
hk+1 such that

• if n < m < hk+1, then nor(pk+1(m)) ≥ nor(pk(m)) − r(m),
• if m ≥ hk+1, then nor(pk+1(m)) ≥M ,

and such that additionally one of the following two cases holds:

dec: pk+1 essentially decides
˜
ô, or

half: it is not possible to satisfy “dec” (for any choice of hk+1), then pk+1(m) =
half(pk(m)) for all m > n.

This way we construct pk for each 0 ≤ k < l . At each step 0 ≤ k < l , we have
one of the cases “dec” or “half”. This gives a function F : val(p(n))→ {dec,half},
and we use bigness to thin out p(n) and get some d ∈ Σ(p(n)) such that F ↾ val(d)
is constant and nor(d) ≥ nor(p(n))− r(n).
Note that in this construction we have to assume that nor(pk(m)) > 1 for all

−1 ≤ k < l − 1 andm > n, otherwise we cannot halve pk(m). Also, nor(p(n)) has
to be bigger than 1, otherwise we cannot use bigness. Let S(p,M) be undefined if
these conditions are not met. If the conditions are met, we define q = S(p,M) as

DECISIVE CREATURES AND LARGE CONTINUUM 81

follows:

q ↾ n = p ↾ n = trunk(p), q(n) = d, q(m) = pl−1(m) form > n.

We call q halving, if the constant value of F ↾ val(q(n)) is “half”. We will show
that q cannot be halving.
If q is not halving, i.e., if the constant value is “dec”, then q essentially decides

˜
ô:

If s ∈ val(q,≤n), then s = sk for some k < l , and q ∧ s ≤ pk essentially decides
˜
ô.

Now use (3.7).
Some properties of S(p,M):
If q = S(p,M) is defined, then it satisfies the following:

nor(q(n)) ≥ nor(p(n))− r(n). (3.10)

If m > n, then nor(q(m)) ≥ min(M,nor(p(m))) − ϕ(=n) · r(m). (3.11)

If q is halving, then no q′ ≤ q with trunk-length n + 1 essentially decides
˜
ô.
(3.12)

To see (3.12), assume that q′ is a counterexample. So q′ ≤ q ∧ sk ≤ pk for
some 0 ≤ k < l , and nor(q′(m)) > 0 for all m > n. Since q is halving, pk was
produced by halving pk−1. Pick an h such that nor(q′(m)) > M for all m ≥ h.
For n < m < h, pk(m) = half(pk−1(m)) and q′(m) ∈ Σ(q(m)) ⊆ Σ(pk(m)), so
we can un-halve q′(m) to get some dm ∈ Σ(pk−1(m)) with val(dm) ⊆ val(q′(m))
and nor(dm) ≥ nor(pk−1(m)) − r(m). But then we could have chosen a deciding
condition r instead of pk : Define r(m) = äm for n < m < h and r(m) = q′(m)
otherwise. According to (3.5), r ≤∗ q. (3.6) implies that r essentially decides

˜
ô,

a contradiction. This shows (3.12).
S(p,M) essentially decides:
We assume that S(p,M) is halving and get a contradiction the following way: We
show that the “successors” of q with increased stem have to be halving as well,
and we can fuse them into some qù. But there will be a q′ ≤ qù deciding

˜
ô,

a contradiction. In more detail:

If trnklh(p) = n, nor(p(m)) > 3 for all m ≥ n and ifM > 3, then
S(p,M) exists and is not halving.

(3.13)

Assume towards a contradiction that S(p,M) is halving (or does not exist). Set
qn−1 = p. Assume that for k ≥ n − 1, we have already defined qk . We set
Mk =M + k + 1− n (note thatMn−1 =M), and define q

k+1 the following way:
List val(qk,≤k) as s0, . . . , s l−1. So l ≤ ϕ(≤k). Set r−1 = qk . Given ri−1, set

ri = S(ri−1 ∧ s i ,Mk) (3.14)

(if defined). So ri has trunk-length k + 1. Define qk+1(m) to be qk(m) for m ≤ k
and rl−1(m) otherwise.
So in particular, qn = S(p,M).
If qk+1 is defined, then (3.10) and (3.11) imply:

• qk+1(m) = qk(m) for m ≤ k.
• nor(qk+1(k + 1)) ≥ nor(qk(k))− ϕ(≤k) · r(k + 1).
• nor(qk+1(m)) ≥ min(Mk ,nor(q

k(m))) − ϕ(≤k + 1) · r(m) for m > k + 1.

82 JAKOB KELLNER AND SAHARON SHELAH

So in any case, we get for all m ∈ ù

nor(qk+1(m)) ≥ min(Mk ,nor(q
k(m)))− ϕ(<m) · r(m). (3.15)

Iterating this l many steps (note that qk(m) remains constant if k ≥ m) we get for
all m:

nor(qk+l (m)) ≥ min(Mk ,nor(q
k(m))) −min(l, m − k) · ϕ(<m) · r(m), (3.16)

and since r(m) = 1/(m · ϕ(<m)), we get

nor(qk+l (m)) ≥ min(Mk ,nor(q
k(m))) − 1. (3.17)

If we set k = n−1, this shows that nor(qk+l(m)) ≥ 2 for all l ∈ ù, and that therefore
qk+l+1 is defined. Also, if we define qù by qù(m) = qm(m), then qù ∈ P: Given
N ∈ ù, pick k such thatMk > N +1 and pick h > k such that nor(q

k(m)) > N +1
for allm > h. Ifm > h, i.e., m = k + l for some l > 0, then qù(m) = qk+l(m), and
nor(qk+l (m)) ≥ min(Mk ,nor(q

k(m)) − 1 > N .
Also, qù ≤ qk for all k ∈ ù.
The property (3.12) of S can by induction be generalized to any k ≥ n (recall
that q = S(p,M) = qn).

No q′ ≤ qk with trunk-length k + 1 essentially decides
˜
ô. (3.18)

For k = n this is (3.12). We assume that (3.18) holds for k and show it for k + 1.
Assume q′ is a counterexample. q′ is stronger than some of the ri (0 ≤ i < l) used
in (3.14) to construct qk+1. ri = S(ri−1 ∧ s i ,Mk) has trunk-length k + 1 and is
stronger than qk , so we can apply (3.18) to see that ri cannot essentially decide

˜
ô.

So ri is halving. Using (3.12), we see that no q′ ≤ ri with trunk-length k + 2
essentially decides

˜
ô, a contradiction.

On the other hand, there is a q′ ≤ qù deciding
˜
ô. Set k = trnklh(q) − 1. Then

q′ ≤ qù ≤ qk contradicts (3.18).
Pure decision:
Given p ∈ P and M ∈ ù, pick n such that p(m) > M + 5 for all m ≥ n.
Similarly to above, enumerate val(p,<n) as s0, . . . , s l−1, set r−1 = p and rk+1 =
S(rk ∧ sk+1,M + 5). Define q by q ↾ n = p ↾ n and q(m) = rl−1(m) for m ≥ n.
Just as in (3.15), nor(q(m)) ≥ min(M +5,nor(p(m)))−1 > M +4 form > n, i.e.,
q ≤M p. As we already know by (3.13), each rk essentially decides

˜
ô, so by (3.7),

q essentially decides
˜
ô as well. ⊣

A simple modification of the proof leads to a stronger property: Using the same
ϕ and r as in the previous theorem, we get:

Theorem 3.4. Assume that g : ù → ù \ 1 is monotonously increasing, that
˜
í is

a P-name and that p ∈ P forces that
˜
í(n) < g(n) for all n. If each K(n) is

(g(n) + 1, r(n))-big and r(n)-halving, then there is a q ≤ p which <n-decides
˜
í(n)

for all n.

We call this phenomenon rapid reading.

Proof. We modify the last proof in the following way:
The basic construction S(p, l,M): We again assume that n = trnklh(p), and use
the notation S(p, l,M) (for l ≤ n) for the same construction as S(p,M), where we
set
˜
ô =

˜
í(l), and instead of trying to essentially decide

˜
ô, we try to decide it. So

instead of the two cases “dec” and “half”, we get g(l) + 1 many cases: “0”, . . . ,

DECISIVE CREATURES AND LARGE CONTINUUM 83

“g(l)− 1”, and (if none of these cases can be satisfied) “half”. Since l ≤ n and g is
increasing, we can use (g(n)+1, r(n))-bigness instead of just (2, r(n))-bigness, and
we again get a homogeneous d. If S(p, l,M) is not halving, then it decides

˜
í(l).

Some properties of S(p, l,M): We again get (3.10) and (3.11), and in (3.12) we
replace “essentially decides

˜
ô” with “decides

˜
í(l)”, i.e., we get:

If q is halving, then no q′ ≤ q with trunk-length n + 1 decides
˜
í(l).

S(p, l,M) decides: We again construct qk, each time trying to decide
˜
ô = g(l)

(independently of k). So (3.14) now reads:

ri = S(ri−1 ∧ s i , l,Mk).

(Here we only need (g(l) + 1, r(k))-bigness). Again we get (3.17), and therefore
each qk (and qù) is defined, and (3.18) now tells us

No q′ ≤ qk with trunk-length k + 1 decides
˜
ô.

But there is some q′ ≤ qù deciding
˜
ô, a contradiction.

So far we know the following:

If trnklh(p) = n, nor(p(m)) > 3 for m ≥ n, andM > 3, then

S(p, n,M) exists and decides
˜
í(n).

(3.19)

Rapid reading: Instead of the part on pure decision, we proceed as follows: Given
p ∈ P, we can assume (by enlarging the stem) that nor(p(m)) > 5 for all m >
trnklh(p). We set k0 = trnklh(p) − 1 and qk0 = p′. We now construct qk and qù

just as above, but this time using

ri = S(ri−1 ∧ s i , k + 1,Mk).

As in (3.17) we see that ri , qk and qù exist. ri has sufficient norm and trunk-length
k + 1, so by (3.19) each ri decides

˜
í(k + 1). This implies that qk+1 (and therefore

qù as well) ≤k-decides
˜
í(k + 1). ⊣

Note that P has size continuum, and in particular it is (2ℵ0)+-cc. Together with
proper, that gives us:

Lemma 3.5. Under CH and the assumptions of Theorem 3.2, P preserves all cardi-
nals (and cofinalities) and the size of the continuum.

§4. Decisiveness, properness of finite products. In this section, we fix a finite set I
and for every i ∈ I a creating pair (Ki ,Σi).
The product forcing

∏

i∈I Q∗
∞(Ki ,Σi) is equivalent to Q∗

∞(KI ,ΣI), where the
creating pair (KI ,ΣI) is defined as follows: An n-creature c ∈ KI (n) corresponds
to an |I |-tuple (ci)i∈I such that ci ∈ Ki(n). val(c) =

∏

i∈I val(ci), nor(c) =

min({nor(ci) : i ∈ I }), and d = (di)i∈I is in Σ(c) if di ∈ Σ(ci) for all i ∈ I .10

10So an n-creature “lives” on the product
Q

i∈I [Fi (n),Fi (n+1)− 1]. This does not fit our restrictive
framework, so we could just “linearize” the product. Assume I ∈ ù, i.e., I = {0, . . . , I − 1}. Set
FI (n) :=

P

i∈I Fi (n) and write it in the following way:

FI (0)

| {z }

F0(1)

| {z }

F1(1)

. . . | {z }

FI−1(1) FI (1)

| {z }

F0(2)

. . .

Now it should be clear how to formally defineHI , KI , ΣI etc.

84 JAKOB KELLNER AND SAHARON SHELAH

If each Ki(n) is r-halving, then KI (n) is r-halving as well: We can set half(c) :=
(half(ci))i∈I . This satisfies Definition 3.1 of halving: Assume that d ∈ Σ(half(c))
and nor(d) > 0. So d = (di)i∈I , di ∈ Σ(ci), and nor(di) > 0 for all i ∈ I . We can
un-halve each di to some d

′
i , and set d

′ = (d′i)i∈I . Then d
′ is as required.

However, KI will not satisfy bigness, since a function F :
∏

i∈I val(ci) → 2 can
generally not be written as a product of functions Fi : val(ci) → 2. So to handle
bigness we have to introduce a new notion:

Definition 4.1. Let 0 < r ≤ 1, B,K, n > 0.

• c is hereditarily (B, r)-big, if every d ∈ Σ(c) with nor(d) > 1 is (B, r)-big.
• c is (K, n, r)-decisive, if there are d−, d+ ∈ Σ(c) such that nor(d−),nor(d+) ≥
nor(c)− r, | val(d−)| ≤ K and d

+ is hereditarily (2K
n

, r)-big.
d
− is called a K-small successor, and d

+ a K-big successor of c.
• c is (n, r)-decisive if c is (K, n, r)-decisive for some K .
• K(n) is (n, r)-decisive if every c ∈ K(n) with nor(c) > 1 is (n, r)-decisive.

An example for decisive, halving creatures can be found in Section 6.

Lemma 4.2. (1) If c is (n, r)-decisive (i.e., c is (K0, n, r)-decisive for some K0),
then for every K ∈ ù there is either a K-big successor or a K-small successor
of c.

(2) If c is (K, n, r)-decisive and hereditarily (B, r)-big, and if nor(c) > 1 + r, then
B < K .

(3) Assume that K(n) is (n, r)-decisive and (B, r)-big for some B ≥ 1, that ä ∈ ù
and that nor(c) > 1 + ä · r. Then there is a hereditarily (EXP(B, n, ä), r)-big
d ∈ Σ(c) such that nor(d) ≥ nor(c) − ä · r, where EXP(B, n, 0) = B and
EXP(B, n,m + 1) = 2EXP(B,n,m)

n

.
(4) In particular, if K(n) is (n, r)-decisive and nor(c) > 1 + r, then there is a
hereditarily (2, r)-big d ∈ Σ(c) such that nor(d) ≥ nor(c)− r.

(5) We can avoid small sets without decreasing the norm too much: Assume that
K(n) is (n, r)-decisive and (B, r)-big for some B ≥ 1, that ä ∈ ù and that
nor(c) > 1+(ä+1)·r. IfX ⊆ val(c) has size less thanEXP(B, n, ä), then there
is a d ∈ Σ(c) such that nor(d) ≥ nor(c)− (ä+1) · r and val(d) is disjoint toX .

Proof. (1) If K ≤ K0, use d
−, otherwise use d

+. (2) The K-small successor d−

is B-big, and | val(d−)| < K . Now use (3.1). (3) Set d
+
0 = c. Assume that d+i

is defined and has norm bigger than 1. So d
+
i is decisive, i.e., there is a Ki and a

Ki -small successor d
−
i+1 and aKi -big successor d

+
i+1. According to (2),K0 > B, and

Ki+1 > 2K
n
i ≥ EXP(B, n, i + 1). In particular, d+ä is hereditarily EXP(B, n, ä)-big.

(4) Every creature is (1, r)-big. (5) follows from (3): First get a (EXP(B, n, ä), r)-
big creature d0, then use the function F that maps val d0 to X ∪ {NotInX} and thin
out d0 to get an F -homogeneous d. ⊣

We now show by induction on k: If the n-creatures are (k, r)-decisive, then we
can generalize bigness to k-tuples.

Lemma 4.3. Assume that k,m, t ≥ 1, 0 < r ≤ 1, c0, . . . , ck−1 ∈ K(n) and F satisfy
the following:

• nor(ci) > 1 + r · (k − 1),
• K(n) is (k, r)-decisive and each ci is hereditarily (2m

t

, r)-big, and
• F is a function from

∏

i∈k val(ci) to 2
mt .

DECISIVE CREATURES AND LARGE CONTINUUM 85

Then there are d0, . . . , dk−1 ∈ K such that

• di ∈ Σ(ci),
• nor(di) ≥ nor(ci)− r · k, and
• F ↾

∏

i∈k val(di) is constant.

Proof. The case k = 1 follows directly from Definition 3.1 of (2m
t

, r)-big (deci-
sive is not needed). So assume the lemma holds for k, and let us investigate the case
k + 1.

ck is (k + 1, r)-decisive, i.e., there is anM such that ck is (M,k + 1, r)-decisive.
So 4.2(2) implies

M > 2m
t

. (4.1)

According to 4.2(1), for each ci (i < k) we can pick some di that is either anM -
small successor or anM -big successor of ci (since each ci is (k + 1, r)-decisive). If
d0 isM -small, then we let dk be theM -big successor of ck , otherwise theM -small
one. (For ck we have both options, since ck is (M,k + 1, r)-decisive.)
This gives a sequence (di)i∈k+1 satisfying di ∈ Σ(ci) and nor(di) ≥ nor(ci) − r.
Set S := {i ∈ k+1: di isM -small}, andL := (k+1)\S. So {L,S} is a non-trivial
partition of k + 1, since 0 and k are in different sets. If i ∈ S, then | val(di)| < M ,

if i ∈ L then di is hereditarily 2M
k+1

-big.
Set Y :=

∏

i∈S val(di). |Y | ≤M
|S|. So we can write Y as {y1, . . . , yM |S|}.

Define F ∗ on
∏

i∈L val(di) by

F ∗(x) := (F (x⌢y1), . . . , F (x
⌢yM |S|)).

So (using (4.1) for the last inequality) we get:

| image(F ∗)| ≤ | image(F)|M
|S|

≤ 2m
tM |S|

< 2M
|S|+1

.

For i ∈ L, di is hereditarily 2M
k+1

-big and therefore 2M
|S|+1

-big, and |L| ≤ k.
Thereforewe can apply the induction hypothesis to k′ := |L|,m′ :=M , t′ := |S|+1,
F ′ := F ∗ and c

′
i := di for i ∈ L. This gives us (d′i)i∈L such that

• d
′
i ∈ Σ(di) ⊆ Σ(ci),

• nor(d′i) ≥ nor(di)− r · k
′ ≥ nor(ci)− r(k + 1), and

• F ∗ ↾
∏

i∈L val(d
′
i) is constant, say (F

∗∗(y1), . . . , F ∗∗(yM |S|)).

F ∗∗ is a function from Y =
∏

i∈S val(di) to 2
mt . Now we apply the induction

hypothesis again, this time to k′′ := |S| < k + 1,m′′ := m, t′′ = t, F ′′ := F ∗∗, and
c
′′
i := di for i ∈ S. This gives us (d′i)i∈S such that

• d
′
i ∈ Σ(di) ⊆ Σ(ci),

• nor(d′i) ≥ nor(di)− r · k
′′ ≥ nor(ci)− r(k + 1), and

• F ∗∗ ↾
∏

i∈S val(d
′
i) is constant.

Then (d′i)i≤k is as required. ⊣

According to 4.2(3), we can increase the hereditary bigness by decreasing the
norm. So we get (again setting EXP(B, n, 0) = B and EXP(B, n,m + 1) =
2EXP(B,n,m)

n

):

86 JAKOB KELLNER AND SAHARON SHELAH

Corollary 4.4. Fix ä ≥ 1. Assume that k ≥ 1, 0 < r ≤ 1, K(n) is (k, r)-decisive
and (B, r)-big, nor(ci) > 1 + r · (ä + k − 1) for 0 ≤ i < k and F :

∏

i∈k val(ci) →
EXP(B, k, ä). Then there are di ∈ Σ(ci) with F -homogeneous product such that
nor(di) ≥ nor(ci)− r · (ä + k).

Proof. By first decreasing the norms by at most ä · r, we can assume that each ci

is hereditary EXP(B, k, ä)-big. Now use Lemma 4.3. (Note that EXP(B, n, ä) is of
the form 2m

t

for some m and t.) ⊣

Every creature is (1, r)-big, and EXP(1, n, 1) = 2. So we get for ä = 1:

Corollary 4.5. Assume that k ≥ 1, 0 < r ≤ 1, K(n) is (k, r)-decisive, nor(ci) >
1 + r · k for 0 ≤ i < k and F :

∏

i∈k val(ci) → 2. Then there are F -homogeneous
di ∈ Σ(ci) such that nor(di) ≥ nor(ci)− r · (k + 1).

In other words: If we assume that Ki(n) is (|I |, r)-decisive for all i ∈ I , then
every c ∈ KI (n) with nor(c) > 1 + r · |I | is (2, r · (|I | + 1))-big.
In particular, we get pure decision for the finite product:

Corollary 4.6. Set ϕ(<n) :=
∏

i∈I

∏

m<Fi (n)
Hi(m), and r(n) := 1/(nϕ(<n)).

Assume that for all i ∈ I and n ∈ ù, Ki(n) is (|I |, r(n))-decisive and r(n)-halving.
Then

∏

i∈I Q∗
∞(Ki ,Σi) is ù

ù-bounding and proper and preserves the size of the con-
tinuum. Under CH,

∏

i∈I Q∗
∞(Ki ,Σi) is ℵ2-cc and preserves all cardinals.

Proof.
∏

i∈I Q∗
∞(Ki ,Σi) = Q∗

∞(KI ,ΣI). KI (n) is r(n)-halving and (2, r(n) ·
(|I |+1))-big according to Corollary 4.5. (Actually we get bigness only for creatures
with norm bigger than 1 + r · |I | instead of 1.) Now use Theorem 3.2 and the Note
following it. Note that

∏

i∈I Q∗
∞(Ki ,Σi) has size 2

ℵ0 . ⊣

Remark: Decisiveness is quite costly: To be able to apply the last corollary, we
will have to make the n-th level much larger than levels before, i.e.,

∏

Fi (n)≤m<Fi (n+1)

Hi(m)≫
∏

j∈I

∏

m<Fi (n)

Hj(m)

for all i ∈ I . In our application this will have the effect that we can separate (f, g)
and (f′, g ′) only if their growth rates are considerably different. It is very likely that
with a more careful and technically more complicated analysis one can construct
forcings that can separate cardinal invariants for pairs that are not so far apart, but
this would need other concepts than decisiveness.

§5. A variant of the countable support product. We now define P, a variant of the
countable support product of lim-inf creature forcings. We want to end up with a
forcing notion that also satisfies fusion, pure decision and ℵ2-cc (under CH). This
will give preservation of all cardinals. We will also need rapid reading of names.
Let I be the index set of the product. We will use α and â for elements of I .

Assumption 5.1. Fix a set I and for every α ∈ I , a creating pair (Kα ,Σα). We
assume that for each n there is an upper bound m(n) for |

∏

Fα(n)≤i<Fα(n+1)
Hα(i)|,

and set ϕ(=n) := m(n)n , ϕ(≤n) :=
∏

m≤n ϕ(=m) and ϕ(<n) :=
∏

m<n ϕ(=m).

We define the set P in the following way: (The last paragraph of this sections
contains an explanation on how we ended up with this particular definition.)

DECISIVE CREATURES AND LARGE CONTINUUM 87

Definition 5.2. Aconditionp inP consists of a countable subset dom(p) of I , of
objects p(α, n) for α ∈ dom(p), n ∈ ù, and of a function trnklh(p) : dom(p)→ ù
satisfying the following (α ∈ dom(p)):

• If n < trnklh(p, α), then p(α, n) ∈
∏

Fα(n)≤i<Fα(n+1)
(Hα(i)).

⋃

n<trnklh(p) p(α, n) is called trunk of p at α.

• If n ≥ trnklh(p, α), then p(α, n) ∈ Kα(n) and nor(p(α, n)) > 0.
• | supp(p, n)| < n for all n > 0, where we set

supp(p, n) := {α ∈ dom(p) : trnklh(p, α) ≤ n}.

• Moreover, limn→∞(| supp(p, n)|/n) = 0.
• limn→∞(min({nor(p(α, n)) : α ∈ supp(p, n)})) =∞.

So in particular, for α ∈ dom(p) the sequence (p(α, n))n∈ù is in Q∗
∞(Kα ,Σα).

Note that now there is an essential difference between a part t of the trunk and
creature c with val(c) = {t}: The trunks do not prevent the minimum of the norms
at height h to be large.

Remarks.

• For the proof of Theorem 1, we will additionally fix a function trnklhmin:
I → ù and add the following requirement to the definition of P:

trnklh(p, α) ≥ trnklhmin(α).

This does not change any of the following properties of P (or their proofs).
• For the proof of Theorem 2, we will define the forcing R so that a condition
p picks for each α ∈ dom(p) one of several possibilities for a creating pair
(Kα ,Σα). It turns out that this does not change anything either, apart from
the fact that Rǫ is not a complete subforcing of R any more, i.e., Lemma 5.5
fails. Lemma 5.4 still holds but needs a new proof. The rest of the proofs
still work without changes.

As outlined, we have to modify the order usually used in the product:

Definition 5.3. q ≤ p if

• dom(q) ⊇ dom(p),
• if α ∈ dom(p) and n ∈ ù, then q(α, n) ∈ Σ(p(α, n)),
• trnklh(q, α) = trnklh(p, α) for all but finitely many α ∈ dom(p).

Note thatq ≤ p implies that then trnklh(q, α) ≥ trnklh(p, α) for allα ∈ dom(p).
Figure 3 shows one way to visualize q ≤ p.
If I is finite then P is just the product

∏

α∈I Q∗
∞(Kα ,Σα).

For every α ∈ I , P adds a generic real
˜
çα , defined as the union of the trunks of p

atα forp in the generic filter. It is easy to see that
˜
çα is forced to be different from

˜
çâ

for α 6= â . Once again, the sequence (
˜
çα)α∈I does not determine the generic filter,

at least not in the usual way.
Conditions with disjoint domains are compatible:

Lemma 5.4. (CH) P is ℵ2-cc.

Proof. Assume towards a contradiction thatA is an antichain of sizeℵ2. Without
loss of generality, (dom(a))a∈A forms a ∆-system with root u. There are at most
2ℵ0 many possibilities for a ↾ u, so without loss of generality, p ↾ u = q ↾ u for

88 JAKOB KELLNER AND SAHARON SHELAH

ùù ù

II I

ù

I
p q rs

supp

trunk

= p

trunk trunk

supp

supp
nor>Mnor>M

h
=

=

nor>M

= q

= q

h

| supp |/h < 1/(M + 1)

Figure 3. q ≤ p, s ≤M p, r ≤newM p.

all p, q ∈ A. Then p and q are compatible: The function x(n) = | supp(p, n) ∪
supp(q, n)|/n converges to 0. So there is an h such that x(m) < 1 for all m ≥ h.
Construct r from p ∪ q by enlarging the (finitely many) trunks at supp(q, h) ∪
supp(p, h) to height h. Then r ∈ P and r ≤ p, q. ⊣

Lemma 5.5. If J ⊆ I , then PJ = {p ∈ P : dom(p) ⊆ J} is a complete subforcing
of P.

Proof. If p ∈ P, then p ↾ J ∈ PJ , and q ≤P p implies q ↾ J ≤PJ p ↾ J . So if
p ⊥PJ q, then p ⊥P q. Also, p ↾ J is a reduction of p: If q ≤PJ p ↾ J , then we can
again enlarge finitely many stems of q ∪ p ↾ (I \ J) to get a condition r ∈ P which
is stronger than both p and q. ⊣

Definition 5.6. • valΠ(p,<n) :=
∏

α∈dom(p)

∏

m<n val(p(α,m)). The size

of this set is at most ϕ(<n). valΠ(p,≤n) := valΠ(p,< (n + 1)).
• If w ⊆ dom(p) and t ∈

∏

α∈w

∏

0≤m<Fα(n)
Hα(m), then p ∧ t is defined by

(p ∧ t)(α,m) =

{

tα ↾ [Fα(m),Fα(m + 1)− 1] if m < n and α ∈ w,

p(α,m) otherwise.

So p ∧ t ∈ P, and if t ∈ valΠ(p,<n), then p ∧ t ≤ p.
• If

˜
ô is a name of an ordinal, then p <n-decides

˜
ô, if p ∧ t decides

˜
ô for all

t ∈ valΠ(p,<n). p essentially decides
˜
ô, if p <n-decides

˜
ô for some n.

As in the one-dimensional case we get:

Facts 5.7. (1) {p ∧ t : t ∈ valΠ(p,<n)} is predense under p (for p ∈ P and
n ∈ ù).

(2) p ∧ t ϕ iff p [(∀α ∈ dom(t)) t(α) <
˜
çα → ϕ].

(3) Assume that q′ is the result of replacing finitely many creatures c of q by
creatures d with val(d) ⊆ val(c). Then q′ ≤∗ q.11

(4) If q ≤ p and t ∈ valΠ(q,<n), then t restricted to the domain of p is in
valΠ(p,<n).12

11In other words: Assume that q, q′ ∈ P, h ∈ ù, dom(q′) = dom(q), q(α,m) = q′(α,m) for all
m ≥ h and α ∈ dom(q), and val(q′α(m)) ⊆ val(qα(m)) for all m < h and α ∈ dom(q). Then q′ ≤∗ q.
12The same holds for q ≤∗ p, apart from the fact that dom(p) might not be a subset of dom(q).

(Outside of dom(q), p could consists of “maximal creatures with no information”.)

DECISIVE CREATURES AND LARGE CONTINUUM 89

(5) If q ≤ p, t ∈ valΠ(q,<n), and s is the corresponding element in valΠ(p,<n),
then q ∧ t ≤ s ∧ p.

(6) If q′ ≤ q and q essentially decides
˜
ô, then q′ essentially decides

˜
ô.

(7) If q ∧ t essentially decides
˜
ô for each t ∈ valΠ(q,<n), then q essentially

decides
˜
ô.

Recall that ϕ(<n) is an upper bound for the number of possible sequences of
trunks of height n (cf. 5.1).

Theorem 5.8. If Kα(n) is (n, r(n))-decisive and r(n)-halving for r(n) =
1/(n2ϕ(<n)) and every α ∈ I , n ∈ ù, then P is proper and ùù-bounding. As-
sume |I | ≥ 2 and set ë = |I |ℵ0 . Then P forces |I | ≤ 2ℵ0 ≤ ë.

Proof. The proof closely follows the one-dimensional case. We again prove pure
decision and fusion, and the rest follows as in the proof of Theorem 3.2. (Note that
|P| = |I |ℵ0 , and that

˜
çα and

˜
çâ are forced to be different for α 6= â .)

So we have to define ≤M : First we set r ≤newM p, if r ≤ p, and

• if n ∈ ù and α ∈ supp(r, n) \ dom(p), then n > M , | supp(r, n)|/n ≤
1/(M + 1), and nor(r(α, n)) > M .

Assume that M ∈ ù and q ≤ p. By extending finitely many trunks in q at
positions α /∈ dom(p), we get an r ≤ q such that

r ≤newM p and r(α, n) = q(α, n) for α ∈ dom(p) (5.1)

(cf. Figure 3).
s ≤oldM p, if s ≤ p and there is an h ≥M such that for all α ∈ dom(p),

• trnklh(s, α) = trnklh(p, α),
• if n < h, then s(α, n) = p(α, n),
• if α ∈ supp(p, n) and n ≥ h, then nor(s(α, n)) ≥M .

r ≤M p, if r ≤newM p and r ≤oldM p.
By (5.1) we get:

If q ≤oldM p, then there is an r ≤ q such that r ≤M p. (5.2)

≤n satisfies fusion:
Assume that (pm)m∈ù satisfies pm+1 ≤m+1 pm. Define q by dom(q) =
⋃

n∈ù dom(p
n) and qα(n) = p

M
α (n), where M ≥ n is minimal (or: arbitrary)

such that α ∈ dom(pM). Then q ∈ P: Fix some k. Since pk ∈ P, there is an l
such that

nor(pk(α, n)) > k and | supp(pk , n)|/n < 1/(k + 1)

for all n > l and α ∈ supp(pk , n). (5.3)

Since pk+1 ≤k+1 p
k , (5.3) holds for pk+1 as well, and for all pm with m > k, and

therefore for q.
So we just have to show pure decision: Fix

˜
ô, a name of an ordinal.

The basic construction S(p,M):
Let n be theminimal trunk-length ofp, i.e., n = min({trnklh(p, α) : α ∈ dom(p)}).
We will now define S(p,M) ≤ p forM ∈ ù.

90 JAKOB KELLNER AND SAHARON SHELAH

Enumerate valΠ(p,≤n) as s0, . . . , s l−1. So l ≤ ϕ(=n). Set p−1 := p. Given
pk−1, define pk ≤ pk−1 ∧ sk and hk such that for all α ∈ dom(p)13

• trnklh(pk , α) = trnklh(pk−1 ∧ sk , α) = max(n + 1, trnklh(p, α)),
• if n < m < hk , then nor(pk(α,m)) ≥ nor(pk−1(α,m)) − r(m),
• if m ≥ hk , then nor(pk(α,m)) ≥M ,

and such that additionally one of the following two cases holds:

dec: pk essentially decides
˜
ô, or

half : it is not possible to satisfy “dec” (for any choice of hk), and dom(pk) =
dom(pk−1) and pk(α,m) = half(pk−1(α,m)) for all m > n and α ∈
supp(pk−1, m).

So we first try to find a pk satisfying “dec” (possibly with larger domain); if we fail
we just halve each pk−1(α,m).
We construct pk for each 0 ≤ k < l . This gives a function

F :
∏

α∈supp(p,n)

val(p(α, n))→ {dec,half}.

Each Kα(n) is (n, r(n))-decisive, and | supp(p, n)| < n. So according to Corol-
lary 4.5 (for k = n − 1) there are dα ∈ Σ(p(α, n)) (for α ∈ supp(p, n)) such that
F ↾

∏

α∈supp(p,n) val(dα) is constant and nor(dα) ≥ nor(p(α, n)) − n · r(n).
For this construction towork,wehave to assume that the normsof all the creatures
involved are big enough (so that we can apply bigness and halving). If this is not
the case, S(p,M) is undefined. Otherwise, we set dom(S(p,M)) = dom(pl−1) and
for α ∈ dom(S(p,M))

S(p,M)(α,m) =

p(α,m) if m < n and α ∈ dom(p),

dα if m = n and α ∈ dom(p),

pl−1(α,m) otherwise.

We call q = S(p,M) halving, if the constant value of F is “half”.
If q is not halving, then q essentially decides

˜
ô: If t ∈ valΠ(q,≤n), then t restricted

to dom(p) is in valΠ(p,≤n), i.e., it is some sk . Then q ∧ t ≤ q ∧ sk , and q ∧ sk is
stronger than pk , which essentially decides

˜
ô. Now use Facts 5.7(6,7).

Some properties of S(p,M):
If q = S(p,M) is defined and n the minimal trunk-length of p, then:

nor(q(α, n)) ≥ nor(p(α, n)) − n · r(n) for α ∈ supp(p, n). (5.4)

nor(q(α,m)) ≥ min(M,nor(p(α,m))) − ϕ(=n) · r(m) for all
m > n and α ∈ supp(p,m).

(5.5)

If q is halving, then there is no q′ ≤ q essentially deciding
˜
ô such

that trnklh(q′, α) = max(n + 1, trnklh(p, α)) for all α ∈ dom(p).
(5.6)

To see (5.6), assume that q′ is a counterexample and that h is such that
nor(q′(α,m)) > M for all m > h and α ∈ supp(q′, m). Let t be in valΠ(q′,≤n).
t restricted to dom(p) is sk for some k < l . We know that pk was constructed
by halving each creature of pk−1 ∧ sk and that q′ ≤ pk . We now define r: Set
dom(r) = dom(q′). If m ≤ h and α ∈ supp(p,m), we un-halve q′(α,m) to some

13we do not require anything for α ∈ dom(pk) \ dom(p).

DECISIVE CREATURES AND LARGE CONTINUUM 91

ä(α,m) and set r(α,m) = ä(α,m). Otherwise we set r(α,m) = q′(α,m). Accord-
ing to 5.7(3,6) r essentially decides

˜
ô. So we should have chosen r instead of pk ,

a contradiction.
S(p,M) essentially decides:
Assume thatM > 3, and that nor(p(α,m)) > 3 for allm ∈ ù and α ∈ supp(p,m).
We now show that S(p,M) exists and is not halving.
Assume towards a contradiction that S(p,M) is halving. Let n be again the
minimal trunk-length of p. We set qn−1 = p. Assume that for k ≥ n − 1, qk

is already defined. We set Mk = M + k + 1 − n. (So Mn−1 = M .) We define
qk+1 the following way: List valΠ(qk ,≤k) as s0, . . . , s l−1. So l ≤ ϕ(≤ k). Set
r−1 := qk . Given ri−1, set ri = S(ri−1 ∧ s i ,Mk) (if defined). Define q

k+1 to be qk

up to k and rl−1 otherwise, and additionally increase the stems outside dom(qk)
to satisfy qk+1 ≤newMk q

k. More formally: We pick some h > Mk , h > k such that

that nor(rl−1(α,m)) > Mk and | supp(rl−1, m)|/m < 1/Mk for all m > h and
α ∈ supp(rl−1, m). For α ∈ dom(rl−1) \ dom(qk) and m ≤ h, we pick some
t(α,m) ∈ val(rl−1(α,m)). The we define qk+1 by supp(qk+1) = supp(rl−1) and

qk+1(α,m) =

qk(α,m) if m ≤ k and α ∈ dom(qk),

rl−1(α,m) if m > h or if m > k and α ∈ dom(qk),

t(α,m) if m ≤ h and α /∈ dom(qk).

Note that qn is just S(p,M) with some increased trunks outside of dom(p).
qk+1 satisfies for α ∈ dom(qk), â ∈ dom(qk+1):

• qk+1(α,m) = qk(α,m) for m ≤ k.
• nor(qk+1(α, k + 1)) ≥ nor(qk(α, k + 1))− ϕ(≤k) · (k + 1) · r(k + 1).
• nor(qk+1(α,m)) ≥ min(M k ,nor(qk(α,m)))−ϕ(≤k+1)·r(m) form > k+1.
• nor(qk+1(â,m)) ≥M k if â ∈ supp(qk+1, m) \ dom(qk).

Iterating this l many times, we get:

nor(qk+l (α,m)) ≥ min(M k ,nor(qk(α,m))) (5.7)

−min(l, m − k) · ϕ(<m) ·m · r(m),

so according to the definition of r(m) we get

nor(qk+l (α,m)) ≥ min(M k ,nor(qk(α,m))) − 1. (5.8)

This shows, as in the one-dimensional case, that each qm is defined, and that qù

is a condition in P, where we define qù by dom(qù) =
⋃

k∈ù q
k , and qù(α,m) =

qk(α,m), where k is the minimal (or: some) k ≥ m such that α ∈ dom(qk). Just
as for (3.18), we can generalize (5.6) by induction and get:

There is no q′ ≤ qk essentially deciding
˜
ô such that

trnklh(q′, α) = max(k + 1, trnklh(qk , α)) for all α ∈ dom(qk).
(5.9)

But there is a q′ ≤ qù deciding
˜
ô. This implies that the trunk-lengths of q′ and of qù

are the same on almost all elements of the domain of qù. So by increasing finitely
many trunks of q′, we can assume that trnklh(q′, α) = max(k + 1, trnklh(qù , α))
for some k. So q′ ≤ qk decides

˜
ô, a contradiction to (5.9).14

14So this step in the proof is the reason that we had to redefine≤.

92 JAKOB KELLNER AND SAHARON SHELAH

Pure decision:
Given p and M , we find an h > M + 6 such that nor(p(α,m)) > M + 6 for all
m ≥ h and α ∈ supp(p,m). Enumerate valΠ(p,≤h − 1) as {s1, . . . , s l}. As above,
set p0 = p, pk+1 = S(pk ∧ sk ,M + 6), and define q by q(α,m) = p(α,m) for
m < h and α ∈ dom(p), and by q(α,m) = pl−1(α,m) otherwise. Then q ≤oldM p
essentially decides

˜
ô, and according to (5.2) we find a q′ ≤ q such that q ≤M p. ⊣

As already mentioned, only the growth rate of r(n) is relevant. Since we are
dealing with decisive creatures, we can increase bigness even exponentially (in n)
while decreasing the norms by a constant factor (cf. Corollary 4.5). We use this
for the following version of rapid reading. Again, we set EXP(B, n, 0) = B and
EXP(B, n, k + 1) = 2EXP(B,n,k)

n

; and we define r, ϕ as in the previous theorem.

Theorem 5.9. Assume that

• ä ∈ ù,
• g : ù → ù is monotonously increasing,
• Kα(n) is (g(n), r(n))-big, (n, r(n))-decisive and r(n)-halving for all α ∈ I ,
n ∈ ù,

•
˜
í(n) is a P-name and p ∈ P forces that

˜
í(n) < EXP(g(n), n, n · ä) for all n.

Then there is a q ≤ p which <n-decides
˜
í(n) for all n .

Proof. We make the same modification to the previous proof as in the one-
dimensional case:
The basic constructionS(p, l,M): We again assume that n is theminimal length of
the trunks inp, anduse the notationS(p, l,M) (for l ≤ n) for the same construction
as S(p,M), where we set

˜
ô =
˜
í(l), and instead of trying to essentially decide

˜
ô, we

try to decide it.
So instead of the two cases “dec” and “half”, we get EXP(g(n), n, n · ä) + 1
many cases: one for each potential value of

˜
í(n), and (if none of these cases can be

satisfied) “half”. So the number of possible cases is less thanEXP(g(n), n, n·(ä+1)).
We use Corollary 4.4 to find successors q(α,m) of p(α,m) with F -homogeneous
product. This decreases the normby atmost r(n)·(n(ä+1)+n), i.e., by n·(ä+2)·r(n).
Some properties of S(p, l,M): So instead of (5.4) we get

nor(q(α, n)) ≥ nor(p(α, n))− n(ä + 2) · r(n) for α ∈ supp(p, n).

There is no change to (5.5), and in (5.6) we replace “essentially deciding
˜
ô” with

“deciding
˜
í(l)”.

S(p, l,M) decides: We again construct qk, each time trying to decide
˜
ô = g(l)

(independently of k). Instead of (5.7), we now get:

nor(qk+l(α,m)) ≥ min(M k ,nor(qk(α,m)))

−min(l, m − k) · ϕ(<m) ·m(ä + 2) · r(m),

and r(m) = 1/(m2ϕ(<m)). So

min(l, m − k) · ϕ(<m) ·m · (ä + 2) · r(m) ≤ m2 · ϕ(<m) · r(m) · (ä + 2)

≤ ä + 2.

So if we assume that

nor(p(α,m)) > ä + 2 for all m ∈ ù and α ∈ supp(p,m), (5.10)

DECISIVE CREATURES AND LARGE CONTINUUM 93

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

ù

n

IS(p,M) q′ ≤ qù

ù

(a) (b) (c)

ù

I
dom(p)

n

q1

q1

q2

q2

q3

q3q′ qù

trunk

big

supp(p,n) supp(p,n)

Figure 4. (a) A condition p in P: dom(p) ⊆ I is countable, at
height n there are less than nmany creatures. (b) The construction
analog to S(p,M). (c) We have to redefine ≤.

then again each qk (and qù) is defined, and we get (5.9) for “deciding
˜
í(l)” instead

of “essentially deciding
˜
ô”. But there is some q′ ≤ qù deciding

˜
í(l), a contradiction.

So far we know the following:

If n is minimal trunk-length of p, if p satisfies (5.10), and if

M > 2(ä + 2), then S(p, n,M) exists and decides í(n).
(5.11)

Rapid reading: Instead of the part on pure decision, we again proceed as follows:
Fix p ∈ P andM > ä + 2. We can assume that p satisfies (5.10), even for 2(ä + 2)
instead of ä + 2 (just increase finitely many of the trunks). We set k0 to be the
minimal trunk-length of p, and qk0 = p. We now construct qk+1 and qù just as
above, but this time using

ri = S(ri−1 ∧ s i , k + 1,Mk).

I.e., we try to decide
˜
í(k + 1). Each ri(α, n) has sufficient norm, and so according

to (5.11) ri (which has trunk-length k+1) decides
˜
í(k +1). This implies that qk+1

(and therefore qù as well) ≤k-decides
˜
í(k + 1). ⊣

The rest of this section can safely be ignored: We describe how we end up with
our particular definition of the product. We want to find a construction, similar to
the countable support product, so that we can generalize the pure decision proof
of Section 3:

• To get ℵ2-cc, the support of the product can be atmost countable. For fusion,
we have to allow at least countable support.

• A condition p is a sequence (p(α, n))n∈ù,α∈dom(p). At each index α, p has a
trunk, and above that p(α, n) is a creature in Kα(n).

• To construct S(p,M), we will set n to be the minimal height of any stem
of p. For each combination for values at height n we get “dec” or “half”. We
want to use decisiveness to get homogeneous successors. For this we need
that at height n, there are e.g., less than n many creatures, and that K(n) is
sufficiently decisive and big with respect to n. So we will generally assume
that at each height h, there are less than h many creatures, the rest is trunks,
cf. Figure 4(a).

94 JAKOB KELLNER AND SAHARON SHELAH

• In the same construction stepwealso have to assume that each of the creatures
at height n has sufficient norm. So we will not just require that for each α ∈ I
the norms of p(α, h) go to infinity, but that the minimum of all the norms at
height h go to infinity.

• When we set q = S(p,M) and are in the case “half”, instead of (3.12): “no
q′ ≤ q with trunk-length n + 1 essentially decides

˜
ô”, we naturally get “no

q′ ≤ q essentially decides
˜
ô, if the trunk-length at α is the maximum of n+1

and the trunk-length of p at α.”
• We now assume towards a contradiction that q = S(p,M) is halving. We
iterate the construction for all heights, get qù, and find some q′ ≤ qù essen-
tially deciding

˜
ô. However, this is not a contradiction: q′ could just have a

longer trunk at each α, cf. Figure 4(c).
• To fix this problem we redefine q ≤ p: We require that the trunk-lengths of q
are (on the common domain) almost always equal to those of p, cf. Figure 3.

• Once we redefine q ≤ p this way, and additionally require that at level h
there are less than h many creatures, we could end up with a condition whose
domain cannot be enlarged any more (since there already are maximally,
i.e., h − 1, many creatures at each level h). We fix this by adding e.g., the
requirement that the number of creatures at level h divided by h converges
to 0.

§6. A decisive creature with bigness and halving. In this section, we construct
decisive creatures with halving.
We use F(n) := n for all n, i.e., the n-creatures live on the singleton {n}.

Lemma 6.1. Assume that n and B are natural numbers, and that 0 < r < 1. Then
there is a natural number Ψ(n,B, r) so that we can set H(n) = Ψ(n,B, r) and find
r-halving, (B, r)-big and (n, r)-decisive n-creatures (K(n),Σ) such that nor(c) > n
for some c ∈ K(n).

Remarks. • Without the last requirement the lemma is trivial, just assume
that nor(c) < 1 for all c ∈ K(n), and read the definitions of halving, big and
decisive.

• If such (K(n),Σ) exists for some H(n), then it exists for every largerH(n) as
well.

The rest of this section consists of the proof of the lemma. This proof is not
needed in the rest of the paper.

We set rapidgrowth(m) = 22
m2

and a := 2
1
r . So loga(2) = r.

The pre-norms.

Lemma 6.2. There is a J ∈ ù and a function preprenor on the powerset of J such
that the following holds:

(1) preprenor ismonotonous, i.e., u1 ⊆ u2 impliespreprenor(u1) ≤ preprenor(u2).
(2) preprenor(∅) = 0, and preprenor(J) ≥ an+1.
(3) If preprenor(u) = k + 1 then there is an M ∈ ù and a sequence 0 =
j0 < j1 < · · · < jM such that M ≥ max(B, rapidgrowth(j1 + n)) and
preprenor(u ∩ [ji , ji+1 − 1]) ≥ k for all i ∈M .

DECISIVE CREATURES AND LARGE CONTINUUM 95

Proof. For finite subsets u of ù define preprenor(u) ≥ k by induction on k: For
all u set preprenor(u) ≥ 0, and preprenor(u) ≥ 1 iff u is nonempty. For k ≥ 1, we
set preprenor(u) ≥ k + 1 iff (3) as above holds. We show by induction on k that
for every a ∈ ù there is a b ∈ ù such that preprenor([a, b − 1]) = k: Assume this
is true for k. Given a = j0, let j1 be minimal such that preprenor([j0, j1 − 1]) =
k. For every i < max(B, rapidgrowth(j1 + n)), find the minimal ji+1 such that
preprenor([ji , ji+1 − 1]) = k. Then preprenor([j0, jM − 1]) = k + 1. So we can
pick J such that preprenor([0, J − 1]) = an+1. ⊣

We set Ψ(n,B, r) = H(n) = 2J . For a subset c ofH(n), we set

prenor(c) := max{preprenor(u) : u ⊆ J, c ↾ u = 2u},

where c ↾ u is {b ↾ u : b ∈ c}. So d ⊆ c implies prenor(d) ≤ prenor(c).

Lemma 6.3. Assume thatM ∈ ù, J a set, u ⊆ J , c ⊆ 2J , c ↾ u = 2u , c =
⋃

i∈M ci ,
and that ui (i ∈ M) are pairwise disjoint subsets of u. Then 2ui = ci ↾ ui for
some i ∈M .

Proof. Otherwise, for all i ∈M there is an ai ∈ 2ui \(ci ↾ ui). Let b ∈ 2u contain
the concatenation of these ai . Then b ∈ c ↾ u, so b ∈ ci ↾ u for some i ∈ M , and
ai ∈ ci ↾ ui , a contradiction. ⊣

The creatures. An n-creature c is a pair (c, k) such that c ⊆ H(n), k ∈ ù and
k ≤ prenor(c)− 1. nor(c) is determined from (c, k) by

nor(c, k) := loga(prenor(c)− k).

For n-creatures c ∼= (c, k) and d ∼= (d, k′) we define

(d, k′) ∈ Σ(c, k) if d ⊆ c and k′ ≥ k.

We now show that these creatures satisfy our requirements:

Proof of Lemma 6.1. It is clear that norms can be bigger than n:

nor(H(n), 0) = loga(prenor(H(n))) = loga(preprenor(J)) ≥ loga(a
n+1) = n + 1.

Halving. Assume nor(c) > 1, i.e., prenor(c)− k > a > 2. We define

half(c, k) := (c, k + ⌊(prenor(c)− k)/2⌋).

Note that loga(⌈(prenor(c)− k)/2⌉) ≥ nor(c, k)− loga(2) = nor(c, k)− r. So

nor(half(c, k)) = loga(prenor(c)− k − ⌊(prenor(c)− k)/2⌋) ≥ nor(c, k)− r.

If (d, k′) ∈ Σ(half(c, k)) and nor(d, k′) > 0, then

prenor(d) ≥ k′ + 1 ≥ k + ⌊(prenor(c)− k)/2⌋+ 1,

and we can un-halve (d, k′) to (d, k) ∈ Σ(c, k):

nor(d, k) = loga(prenor(d)− k) ≥ loga(⌊(prenor(c)− k)/2⌋+ 1)

≥ nor(c, k)− r,

and val(d, k) = val(d, k′) = d .

96 JAKOB KELLNER AND SAHARON SHELAH

Bigness. Let (c, l) be an n-creature and nor(c, l) = x+ r ≥ r. Let u ⊆ J witness
prenor(c) = ax+r + l = 2ax + l . So there is an increasing sequence (ji)i∈M+1 such
that c ↾ u = 2u and

M ≥ max(B, rapidgrowth(j1 + n)), and

preprenor(u ∩ [ji , ji+1 − 1]) ≥ 2a
x + l − 1 ≥ ax + l for all i ∈M.

(If x > 0, the last inequality is strict.)
Take any F : c → M . Then c =

⋃

i∈M F
−1{i}. We set ui := u ∩ [ji , ji+1 − 1]

for i ∈M . According to Lemma 6.3 there is an i ∈M such that F−1{i} ↾ ui = 2
ui .

We set d := F−1{i} ⊆ c. Since preprenor(ui) ≥ ax + l and d ↾ ui = 2ui ,
nor(d, l) ≥ loga(a

x) = x = nor(c, l) − r. This shows that (c, l) is (M, r)-big, and
in particular (B, r)-big.

Decisiveness. Pick (c, l) ∈ K(n) such that nor(c, l) = x + r ≥ r. As above there
is a witness u ⊆ J ,M and (ji)i∈M+1. Set u− := u∩ [j0, j1−1]. Let d− ⊆ c contain

for every a ∈ 2u
−

exactly one b ∈ c such that b ↾ u− = a. Then |d | ≤ 2j1 =: K and
(as above) nor(d−, l) ≥ nor(c, l)− r. So (d−, l) is a K-small successor of (c, l).
It remains to be shown that there is a K-big successor (d+, l).
Let F : c → 2j1 < M map b to b ↾ j1. So as above there is an i < M such that
F−1{i} ↾ ui = 2

ui for ui := u ∩ [ji , ji+1 − 1]. Obviously i 6= 0. Set d
+ := F−1{i}.

Pick any (d ′, l ′) ∈ Σ(d+, l) with norm bigger than 1. Let prenor(d ′) be witnessed
by u′,M ′, (j′i)i≤M ′ . Then u′ ∩ j1 = ∅ (since every b ∈ d ′ has the same b ↾ j1). So
j′1 > j1, and (by the same argument as above) (d

′, l ′) is (rapidgrowth(j1+n), r)-big.
This finishes the proof, since

rapidgrowth(j1 + n) = 2
2(j1+n)

2

≥ 22
j1·n

= 2(2
j1)
n

= 2K
n

. ⊣

§7. Countably many cardinal invariants. Recall that c∃f,g and c
∀
f,g were defined in

the introduction.
In the previous section, we defined Ψ(n,M, r) for r > 0 and n,M ∈ ù. We can
now specify the requirements we need for Theorem 1:

Assumption 7.1. (fǫ, gǫ)ǫ∈ù is a sequence of functions from ù to ù. fmax is
such that fǫ(m) ≤ fmax(m) for all ǫ ∈ ù. We set

ϕ(=m) := fmax(m)
m , ϕ(<n) :=

∏

m<n

ϕ(=m) r(n) :=
1

n2ϕ(<n)
,

and assume:

• If ǫ 6= ǫ
′, then there is an n such that fǫ(m) 6= fǫ

′(m) for all m > n.
• fǫ(m)≫ gǫ(m) for all ǫ, m; more precisely fǫ(m) ≥ Ψ(m, gǫ(m), r(m)).
• Iffǫ(m) > fǫ

′(m), then gǫ(m)≫ fǫ
′(m); more precisely ϕ(<m)fǫ

′(m)m <
gǫ(m).

• gǫ(m) > ϕ(<m).
• gǫ(m + 1) ≥ fmax(m) for all ǫ, m ∈ ù.

The assumption states more or less that the fǫ, gǫ have sufficiently different
growth rates, and that each level is much bigger than the previous levels. If is clear
that we can construct such sequences (by induction).

DECISIVE CREATURES AND LARGE CONTINUUM 97

Theorem 7.2. Assume CH. Choose for all ǫ ∈ ù a cardinal κǫ such that κǫ = κ
ℵ0
ǫ .

Let (fǫ, gǫ)ǫ∈ù be as above. Then there is a proper,ℵ2-cc,ùù-boundingpartial orderP
which preserves cardinals and forces that c∃fǫ,gǫ = c

∀
fǫ,gǫ

= κǫ for all ǫ ∈ ù.

Let I be the disjoint union of Iǫ (ǫ ∈ ù) such that each Iǫ has size κǫ and is
disjoint to ù.
We will use ǫ, ǫ′, ǫ1, . . . for the cardinal invariants (i.e., for elements of ù), and
α, â, . . . for elements of I . I will be the index set of the product.
So according to the definition of Ψ, we can choose for each ǫ, n ∈ ù a creating
pair (Kǫ(n),Σǫ) satisfying the following:

• Fǫ(n) = n,
• Hǫ(n) = fǫ(n),
• Kǫ(n) is (gǫ(n), r(n))-big, r(n)-halving and (n, r(n))-decisive.

For every α ∈ Iǫ and n ∈ ù, we set Kα(n) := Kǫ(n), fα := fǫ and gα := gǫ and
we set trnklhmin(α) to be the minimal n such that fǫ

′(m) 6= fǫ(m) for all ǫ′ < ǫ.
P is the forcing notion defined in Section 5, where we additionally require

• trnklh(p, α) ≥ trnklhmin(α) for all conditions p and α ∈ dom(p).

As already noted, this does not change any of the results of Section 5.
Note that ϕ(<n) and r(n) are as in Theorem 5.8, and that we assume CH. So we
get:

Corollary 7.3. (1) P is proper and ℵ2-cc, P has continuous reading of names,
and preserves all cardinals.

(2) (Separated support.) If p ∈ P, α, â ∈ supp(p, n), α ∈ Iǫ, â ∈ Iǫ′ , and ǫ 6= ǫ
′,

then fǫ(n) 6= fǫ
′(n).

(3) (Rapid reading.) If p ∈ P forces that
˜
ç is an (fǫ, gǫ)-slalom, or that

˜
ç(n) <

fǫ(n) for all n, then there is a q ≤ p which ≤n-decides
˜
ç(n) for all n ∈ ù.

It also follows that Pǫ := PIǫ is a complete subforcing of P and forces that the
size of the continuum is κǫ.

Proof. (1) Theorem 5.8 and Lemma 5.4. (2) Assume that ǫ<ǫ
′. trnklh(p, â)>

trnklhmin(â), i.e.,fǫ(n) 6= fǫ
′(n). (3) follows from5.9: Set ä = 3, g(n) = fmax(n−

1) and
˜
í(n) =

˜
ç(n−1) for all n. Each Kǫ(n) is (gǫ(n), r(n))-big for some ǫ, gǫ(n) ≥

fmax(n − 1) = g(n), and p forces that there are at most fmax(n − 1)
fmax(n−1) <

EXP(g(n), n, 3) many possible values for
˜
í(n). So there is a q ≤ p which <n-

decides
˜
í(n) =

˜
ç(n − 1) for all n. ⊣

In the following two sections, we will show that P forces κǫ ≤ c∃fǫ,gǫ and

c∀fǫ,gǫ ≤ κǫ. This proves Theorem 1, since c∃f,g ≤ c
∀
f,g for all (f, g).

§8. Pǫ adds a ∀-cover.

Lemma 8.1. P forces c∀fǫ,gǫ ≤ κǫ.

One nice way to formulate the proof is the following: Pǫ is a complete subforcing
and forces 2ℵ0 = κǫ. And in the P-extension V [G], the set of slaloms that are in
the Pǫ-extension V [G ∩ Pǫ] form a (∀, fǫ, gǫ)-cover.
However, to be able to generalize the proof to the uncountable case of Section 10,
we will not use the complete subforcing. Instead we will use pure decision more
explicitly.

98 JAKOB KELLNER AND SAHARON SHELAH

Proof. Let p0 ∈ P and
˜
r be a P-name for a real such that

˜
r(n) < fǫ(n) for all n.

We will show that

There is a q ≤ p0 and a way to determine an (fǫ, gǫ)-slalom
˜
S(n)

from valΠ(q,≤n) restricted to Iǫ, such that q forces
˜
r(n) ∈

˜
S(n)

for all n.

(8.1)

More explicitly, we find a q and a function eval which assigns to each t ↾ Iǫ for
t ∈ valΠ(q,≤n) a set St(n) such that St(n) ⊆ fǫ(n), |St(n)| ≤ gǫ(n) and such that
q forces the following: If t is compatible with the generic filter, then

˜
r(n) ∈ St(n).

Assume that we can do this for all names
˜
r. Note that there are only κǫ many

possible assignments as above: There are only κℵ0ǫ = κǫ many possible sequences
q ↾ Iǫ, and 2ℵ0 many ways to continuously read a real from q ↾ Iǫ. Each assignment,
together with the P-generic filter, determines a slalom

˜
S. Let X be the set of all

possible assignments. This corresponds to a P-name Y of a family (of size κǫ) of
(fǫ, gǫ)-slaloms, and according to (8.1), the following holds in theP-extension: For
every ç ∈

∏

n∈ù fǫ(n) there is a slalom
˜
S in Y covering ç. This implies c∀fǫ,gǫ ≤ κǫ.

So it remains to show (8.1). First pick a p ≤ p0 rapidly reading
˜
r as in 7.3(3),

i.e., p ≤n-decides
˜
r(n) for all n ∈ ù. We can assume that nor(pα(n)) > 3 for all

α ∈ supp(p, n). We set dom(q) = dom(p) and trnklh(q, α) = trnklh(p, α), and we
will define q(α,m) (for all α ∈ supp(p,m)) as well as

˜
S(m) by induction onm. We

will find q(α,m) ∈ Σ(p(α,m)) such that the norm decreases by at most 2. Then q
automatically is a valid condition in P and stronger than p.
Fix m ∈ ù. SetM := supp(p,m) ∩ Iǫ. (M stands for “medium”.) According to
“separated support” 7.3(2),

α ∈ supp(p,m) \ Iǫ implies fα(m) 6= fǫ(m). (8.2)

So either fα(m) < fǫ(m), in this case we set α ∈ S (for “small”); or fα(m) >
fǫ(m), then we set α ∈ L (for “large”). So supp(p,m) is partitioned into S, M
and L. We set q(α,m) = p(α,m) for α ∈ S ∪M .
p ≤m-decides

˜
r(m), i.e., there is a function F that calculates

˜
r(m) < fǫ(m):

F : valΠ(p,<m)×

(

∏

α∈S∪M∪L

val(pα(m))

)

→ fǫ(m).

Step 1: Assume L is nonempty (otherwise continue with Step 2).
∣

∣

∣

∣

∣

∏

α∈S∪M

val(pα(m))

∣

∣

∣

∣

∣

≤ Hǫ(m)
m−1 = fǫ(m)

m−1.

So we can rewrite F as

F ′ :
∏

α∈L

val(pα(m))→ fǫ(m)
ϕ(<m)fǫ(m)

m−1

< fǫ(m)
fǫ(m)

m

.

If we set B = min({gα(m) : m ∈ L}), then fǫ(m) < B, and BB
m

< EXP(B,m, 3).
According to Corollary 4.4, there are q(α,m) ∈ Σ(p(α,m) for α ∈ L such that
F ′ restricted to

∏

α∈L val(q(α,m)) is constant and nor(q(α,m)) > nor(p(α,m))−
r(m) · (m + 3). This defines q(α,m) for α ∈ L. So we now know q(α,m) for all m.

DECISIVE CREATURES AND LARGE CONTINUUM 99

Step 2: So (modulo q) we have eliminated the dependence of
˜
r(m) on L, and are

left with

F : valΠ(q,<m)×

(

∏

α∈S∪M

val(q(α,m))

)

→ fǫ(m).

We now define
˜
S(m), more exactly the evaluation that maps t ∈ valΠ(q,≤m) ↾ Iǫ

to St(m). So fix such a t ∈
∏

α∈M val(q(α,m)).
q∧t allows for atmostϕ(<m)·

∏

α∈S val(q(α,m)) many possible values for ˜
r(m).

If S is nonempty, let ǫ
′ be such that fǫ

′(m) = max{fα(m) : α ∈ S}. Then
∏

α∈S val(pα(m)) ≤ fǫ
′(m)m . So we get ϕ(<m) · fǫ

′(m)m < gǫ(m) many possible
values for

˜
r(m). (If S is empty, we just get ϕ(<m) many possibilities.) So we can

set St(m) to be this set of possible values. ⊣

§9. There is no small ∃-cover.

Lemma 9.1. (CH) P forces κǫ ≤ c∃fǫ,gǫ .

Proof. Assume towards a contradiction that p0 forces that
˜
S is an (∃, fǫ, gǫ)-

cover, ℵ1 ≤ ë < κǫ and
˜
S = {

˜
Si : i ∈ ë}.

For every i , the set of p′ ≤ p0 which rapidly15 reads
˜
Si is predense under p0.

Because of ℵ2-cc, we can find a set Di of such p′ which is predense under p0 and
has size ℵ1. So

J =
⋃

i∈ë,p′∈Di

dom(p′)

has size ë. Since |Iǫ| = κǫ > ë, there is a â ∈ Iǫ \ J . Fix this â .
Let p1 ≤ p0 decide the i such that

˜
çâ(n) ∈

˜
Si (n) for infinitely many n. We set

˜
S :=

˜
Si . We can assume â ∈ dom(p1), so we have

â ∈ dom(p1) ∩ Iǫ \ J. (9.1)

Let p ≤ p1 be stronger than some p′ ∈ Di , and let nor(p(α,m)) > 10 for all
α ∈ supp(p,m). So modulo p, we can determine the value of

˜
S(n) from t ↾ J for

t ∈ valΠ(p,≤n).16

Wewill show towards a contradiction thatwe can strengthenp to a q such that for
all n ≥ trnklh(p, â) the following holds: the generic

˜
çâ(n) (which is in val(q(â, n))

and less thanfǫ(n)) avoids every possible element of
˜
S(n), (which is determined by

q(α,m) form ≤ n and α 6= â). In other words, we can make
˜
çâ run away from

˜
S at

every height above the trunk. So q forces that
˜
çâ(n) /∈

˜
S(n) for all n ≥ trnklh(p, â),

a contradiction.
We set dom(q) = dom(p), trnklh(q, α) = trnklh(p, α), and define q(α,m) (for
all α ∈ supp(p,m)) by induction on m. We will find a q(α,m) ∈ Σ(p(α,m)) so
that the norm decreases by at most 2. This guarantees that q is a condition in P
and stronger than p.
Fix an n ≥ trnklh(p, â). Set A := supp(p, n). So â ∈ A, and without loss of
generality |A| ≥ 2. According to the definition of P, |A| < n.

15as in Corollary 7.3(3).
16More formally: Let X be the set {t ↾ J : t ∈ valΠ(p,≤n)}. For each x ∈ X there is an Sxn such

that p forces: (∀α ∈ J) x(α) <
˜
çα →

˜
S(n) = Sxn .

100 JAKOB KELLNER AND SAHARON SHELAH

c
0
α0

K0-small
��

c
0
α1

≥K0-big
��

. . . c
0
αm = c

0
â

≥K0-big
��

. . . c
0
α|A|−2

≥K0-big
��

c
0
α|A|−1

≥K0-big
��

dα0 c
1
α1

K1-small
��

. . . c
1
αm

≥K1-big
��

. . . c
1
α|A|−2

≥K1-big
��

c
1
α|A|−1

≥K1-big
��

dα1
...

≥Km−1-big
��

...
...

c
m
αm

Km=K-small
��

.
...

dαm = dâ
K|A|−2-small

��

...
≥K|A|−2-big

��

dα|A|−2 dα|A|−1

Figure 5.

Similarly to the previous section, we will partition A into the large indices L,
the small ones S and {â}. However, we cannot assume that A ∩ Iǫ = {â}, so the
partition will not only be based on membership in Iǫ′ , but has to be “finer”.

˜
S(n)

only depends on S ∪ L (and the very small set valΠ(p,<n)). Again, we first use
bigness to eliminate the dependence of

˜
S(n) on the large part. And the small part is

sufficiently small so that
˜
çâ(n) (i.e., q(n, â)) avoids all the possible elements of

˜
S(n).

Wenowdo this inmoredetail: Set c0α := p(α, n) forα ∈ A. Assume that for l ≥ 0we
already have a list (αk)k<l of elements ofA and creatures (c

l
α)α∈A\{α0,...,αl−1}. Each c

l
α

is (K lα , n, r(n))-decisive for someK
l
α . SetKl := min({K

l
α : α ∈ A\{α0, . . . , αl−1}}),

and choose αl such that K
l
αl
= Kl . Let dαl be a Kl -small successor of c

l
αl
. For

α ∈ A \ {α0, . . . , αl}, let c
l+1
α be a Kl -big successor of c

l
α . Cf. Figure 5. Iterate this

construction |A|−1 times. So there remains one α that has not been listed as an αl ,

set α|A|−1 = α and dα|A|−1 = c
|A|−1
α .

Let m be such that â = αm, and set

K := Km, S := {αl : l < m}, L := {αl : l > m}.

So A is partitioned into the three parts {â}, S and L. We get:

• dα ∈ Σ(p(α, n)), nor(dα) ≥ nor(p(α, n)) − (n − 1) · r(n).
•
∏

α∈S | val(dα)| ≤ K
n−2
m−1 < K .

• dâ is hereditarily Km−1-big
17 and | val(dâ)| ≤ K .

• If α ∈ L, then dα is hereditarily K-big.18

J∩ supp(p, n)⊆S∪L, so
˜
S(n) is determined by valΠ(p,<n)×

∏

α∈S∪L val(p(α, n)).
We set q(α,m) = dα for all α ∈ S. We also set q(â,m) = dm for now. (But we may
further decrease q(â,m) in Step 2.) We are only interested in the elements of

˜
S(n)

that are possible values of
˜
çâ(n), in other words we are interested in

˜
S(n)∩ val(dâ).

17even 2K
n
m−1 -big. Provided of course that S is nonempty, otherwise there is no Km−1.

18even 2K
n
-big.

DECISIVE CREATURES AND LARGE CONTINUUM 101

This part has size at most K . So we get a function

F : valΠ(p,<n)×

(

∏

α∈S

val(dα)

)

×

(

∏

α∈L

val(dα)

)

→

(

K

gǫ(n)

)

.

Step 1: Assume L is non-empty (otherwise continue with Step 2). Note that
(

K
gǫ(n)

)

≤ Kgǫ(n) and ϕ(<n) < gǫ(n) < K . So we can rewrite F as

F ′ :
∏

α∈L

val(dα)→ (K
K)K×K = KK

3

.

Since dα is decisive and (hereditarily)K-big for α ∈ L and EXP(K, n, 3) > KK
3

, we
can find F ′-homogeneous q(α, n) ∈ Σ(dα) for α ∈ L such that the norm decreases
by at most (n + 1) · r(n), cf. Corollary 4.4.
Step 2: So modulo q we have eliminated L and can rewrite F as

F : valΠ(p,<n)×

(

∏

α∈S

val(dα)

)

→

(

K

gǫ(n)

)

.

Let X be the image of F (i.e., the set of possible values of
˜
S(n) ∩ val(dâ)). X has

size at most ϕ(<n) · Kn−2m−1 < EXP(Km−1, n, 2). So according to 4.2(5), we can

strengthen dâ to avoid X , decreasing the norm by at most 3 · r(n). ⊣

§10. Uncountably many invariants. We construct natural numbers

(fn,l)n∈ù,−1≤l≤n, and (gn,l)n∈ù,0≤l≤n

so that 0 = f0,−1 and (for n, l ∈ ù) fn+1,−1 = fn,n and fn,l−1 < gn,l < fn,l .
We set fmax(n) = fn,n, ϕ(=n) = fmax(n)

n , ϕ(<n) =
∏

m<m ϕ(=m) and r(n) =
1/(n2ϕ(<n)). So we get the following picture:

0
g0,0

f0,0 = fmax(0)
g1,0 f1,0 g1,1

f1,1 = fmax(1)
. . .

We require (for all n, l ∈ ù)

• fn,l ≥ Ψ(n, gn,l , r(n)) and
• gn,l ≥ ϕ(<n)f

n
n,l−1.

(Compare this with 7.1.) Again it is clear that we can construct such sequences by
induction.
Let CHARS be the set of í : ù → ù such that í(m) ≤ m for all m. For
í ∈ CHARS, we can define fí : ù → ù by fí(m) = fm,í(m), and the same for gí .

So we assign to each í ∈ CHARS cardinal characteristics c∀fí ,gí and c
∃
fí ,gí
.

Assume that X ⊂ CHARS is countable such that

for í 6= í′ in X there is an n(í, í′)

such that í(m) 6= í′(m) for all m > n(í, í′).
(10.1)

Then (fí , gí)í∈X is a suitable sequence as in Assumption 7.1.

Remark. We can of course find an uncountable setX satisfying (10.1) as well. We
could try to define a forcingPI just as in the countable case, to force an uncountable
version of Theorem 1. However, we need “separated support” 7.3(2) for (8.2).
So we have to add appropriate requirements for conditions in P, in the style of

102 JAKOB KELLNER AND SAHARON SHELAH

trnklhmin, this time depending on the pair í, í′, to guarantee that the maximum
of the trunk-lengths at α ∈ Ií and â ∈ Ií′ is bigger than the n(í, í′). However,
such requirements lead to the following problem: Assume that Y ⊆ CHARS is
countable and dense, and the domain of p contains elements of Ií for each í ∈ Y .
Then we cannot enlarge the domain of p to contain some í′ /∈ Y .19 So p forces
that the generic object does not contain anything in Ií′ . But then our proofs do
not work any more, cf. e.g., (9.1). To fix this problem, we will modify the forcing P
in the following way: As before, we choose for each ǫ ∈ ù1 a cardinal κǫ and the
index set Iǫ of size κǫ. However, we do not fix a í ∈ CHARS for ǫ. Instead, each
condition p chooses í(ǫ) for each ǫ in its domain. This makes Theorem 2 slightly
weaker than Theorem 1, since we do not know in the ground model which í will be
assigned to a κǫ.

We can now reformulate Theorem 2:

Theorem 10.1. Assume CH, assume that κǫ = κ
ℵ0
ǫ for ǫ ∈ ù1, and that

(fí , gí)í∈CHARS are as above. Then there is a proper, ℵ2-cc,ùù-bounding partial order
R which forces: For each ǫ ∈ ù1 there is a í ∈ CHARS such that c

∀
fí ,gí
= c∃fí ,gí = κǫ

for all ǫ ∈ ù1.

(Here CHARS denotes the set in V , not the evaluation of the definition of
CHARS in V [G].)
As in the proof of Section 7, we pick for each í ∈ CHARS and n ∈ ù a creating
pair (Kí(n),Σí(n)), with Hí = fí and Fí(n) = b, which is (gí(n), r(n))-big, r(n)-
halving and (n, r(n))-decisive.
We let I be the disjoint union of Iǫ (ǫ ∈ ù1), each Iǫ has size κǫ.
From here on, we assume CH. We now define the forcing notion R:

Definition 10.2. A condition p in R consists of a countable subset dom(p)
of I , of objects p(α, n) for α ∈ dom(p), n ∈ ù, and of functions trnklh(p) :
dom(p) → ù and char(p) : dom(p) → CHARS satisfying the following (α, â ∈
dom(p)):

• char(p, α) = char(p, â) iff α, â are in the same Iǫ.
• If n < trnklh(p, α), then p(α, n) ∈ Hchar(p,α)(n).
⋃

n<trnklh(p) p(α, n) is called trunk of p at α.

• If n ≥ trnklh(p, α), then p(α, n) ∈ Kchar(p,α)(n) and nor(p(α, n)) > 0.
• | supp(p, n)| < n for all n > 0.
• Moreover, limn→∞(| supp(p, n)|/n) = 0.
• limn→∞(min({nor(p(α, n)) : α ∈ supp(p, n)})) =∞.
• (Separated support.) If α, â ∈ supp(p, n), α ∈ Iǫ, â ∈ Iǫ′ , and ǫ 6= ǫ

′, then
char(p, α)(n) 6= char(p, â)(n).

19In more detail: Let f : Y → ù be such that for all í ∈ Y , there is an α ∈ dom(p) ∩ Ií such
that trnklh(p, α) + 1 < f(í). Enumerate Y as {í0, í1, . . . }. Then construct í

′ ∈ CHARS \ Y the
following way: Pick any í0 ∈ Y and pick a finite í′0 extending í0 ↾ f(í0), such that í′0(m) 6= í0(m)
for some m. Given í′l , pick any í l+1 ∈ Y extending í′l , and pick í′l+1 extending í l+1 ↾ f(í l+1) such
that í′l+1(m) 6= íl+1(m) for some m. Set í

′ =
S

l∈ù í
′l . Assume that there is a q ≤ p such that

â ∈ dom(q) ∩ Ií′ and trnklh(q, â) = m. Only finitely many trunk-lengths in dom(p) were increased,
so pick some l such that f(í l) > m and such that not trunk in Ií l was increased. By the definition

of f, α ∈ supp(q,m) for some α ∈ Ií l . í
′ extends í l ↾ f(í l), so í l (m) = í′(m) (and í l 6= í′), which

contradicts separated support.

DECISIVE CREATURES AND LARGE CONTINUUM 103

(supp(p, n) is again the set of α ∈ I such that trnklh(p, α) ≤ n .)
Another way to formulate the last point is: If α, â ∈ dom(p), α ∈ Iǫ, â ∈ Iǫ′ , and

ǫ 6= ǫ
′, then char(p, α) and char(p, â) differ above some n(char(p, α), char(p, â))

as in (10.1), and

max(trnklh(p, α), trnklh(p, â)) > n(char(p, α), char(p, â)).

The order on R is the natural modification of the one on P:

Definition 10.3. For p, q in R, q ≤ p if

• dom(q) ⊇ dom(p),
• char(q, α) = char(p, α) for all α ∈ dom(p),
• if α ∈ dom(p) and n ∈ ù, then q(α, n) ∈ Σchar(p,α)(p(α, n)),
• trnklh(q, α) = trnklh(p, α) for all but finitely many α ∈ dom(p).

Iǫ is not a complete subforcing any more (conditions with disjoint domains are
generally not compatible, since the union can violate separated support). But we
still get:

Lemma 10.4. R is ℵ2-cc.

Proof. Assume towards a contradiction that A is an antichain of size ℵ2. By
a ∆-system argument, we can assume that dom(p) ∩ dom(q) = u for all distinct
p, q in A. We fix an enumeration αp0 , α

p
1 , . . . of dom(p) for each p ∈ A. By a

pigeon hole argument, we can assume that the following objects and statements
are independent of p ∈ A (n, i ∈ ù, â ∈ u, ǫ ∈ ù1): “α

p
i = â”, “α

p
i ∈ Iǫ”,

trnklh(p, αpi), char(p, α
p
i), and p(α

p
i , n).

So given distinct elements p, q of A, we again increase finitely many of the
stems to guarantee that supp(p ∪ q, n) has size less than n for all n. Then the
resulting r is a condition in R: To see e.g., separated support, assume that α, â ∈
supp(r, n). We can assume that α = αpi and â = α

q
j and that char(p, α

p
i) 6=

char(q, αqj) = char(p, α
p
j). Since p satisfies separated support, char(p, α

p
i)(n) 6=

char(p, αpj)(n). ⊣

Lemma 10.5. R adds a generic real
˜
çα for all α ∈ I . In other words, the set of

conditions q with α ∈ dom(q) is dense.

Proof. Assume α ∈ Iǫ. Fix p ∈ R. We find a q ≤ p with dom(q) =
dom(p) ∪ {α}.
Case 1: Iǫ ∩ dom(p) 6= ∅. Then we pick â ∈ Iǫ ∩ dom(p) and choose
trnklh(q, α) > trnklh(p, â) big enough to guarantee | supp(q, n)| < n for all n.
Then we choose any q(α, n) with sufficient norm (e.g., n).
Case 2: Otherwise we again fix trnklh(q, α) big enough to guarantee

| supp(q, n)| < n for all n, and we have to find some char(q, α) satisfying sepa-
rated support (for this trnklh(q, α)). Since | supp(p, n)| < n for all n, we can find
a í′ ∈ CHARS such that í′(n) is not in {í(n) : í = char(p, â), â ∈ supp(p, n)}
for any n. Set char(q, α) = í′. Then we again choose any q(α, n) with sufficiently
increasing norms. q satisfies separated support: Assume â ∈ Iǫ′ ∩ supp(p, n). Then
char(p, â)(n) 6= í′(n) = char(q, α)(n). ⊣

It turns out that the proofs of Theorems 5.8 and 5.9 still workwithout any change:

104 JAKOB KELLNER AND SAHARON SHELAH

Lemma 10.6. R is proper and ùù-bounding. If ä ∈ ù,
˜
í(n) is a P-name and p ∈ P

forces that
˜
í(n) < EXP(fmax(n − 1), n, n · ä) for all n, then there is a q ≤ p which

<n-decides
˜
í(n) for all n .

Proof. We define ≤n just as in the proof of Theorem 5.8. Fusion still works: If
q is the limit of pn, and each pn satisfies separated support, then so does q. The
proof of pure decision does not require any changes.
For rapid reading, note that each Kí(n) is (fmax(n − 1), r(n))-big. Again, the
same proof still works without changes. ⊣

We can define the R-name char(ǫ) for ǫ ∈ ù1 to be char(p, α) for any p in the
generic filter and α ∈ dom(p) ∩ Iǫ. Then we define the R-name fǫ to be fchar(ǫ),
and the same for gǫ.
We again get all items of Corollary 7.3, and can show:

Lemma 10.7. R forces c∀fǫ,gǫ ≤ κǫ and κǫ ≤ c∃fǫ,gǫ .

Proof. The proofs of Lemmas 8.1 and 9.1 still work, if we assume that p0
determines char(ǫ). ⊣

REFERENCES

[1] James E. Baumgartner, Iterated forcing, Surveys in set theory, London Mathematical Society
Lecture Note Series, vol. 87, Cambridge University Press, Cambridge, 1983, pp. 1–59.
[2]MartinGoldstern,Tools for your forcing construction, Set theory of the reals (Ramat Gan, 1991),

Israel Mathematical Conference Proceedings, vol. 6, Bar-Ilan University, Ramat Gan, 1993, available at
http://info.tuwien.ac.at/goldstern/, pp. 305–360.
[3]Martin Goldstern and Saharon Shelah,Many simple cardinal invariants, Archive for Mathe-

matical Logic, vol. 32 (1993), no. 3, pp. 203–221.
[4] Jakob Kellner, Even more simple cardinal invariants, Archive for Mathematical Logic, vol. 47

(2008), no. 5, pp. 503–515.
[5] Andrzej Ros lanowski and Saharon Shelah, Norms on possibilities. I. Forcing with trees and

creatures,Memoirs of the American Mathematical Society, vol. 141 (1999), no. 671, pp. xii+167.
[6] Saharon Shelah, Proper and improper forcing, second ed., Perspectives in Mathematical Logic,

Springer-Verlag, Berlin, 1998.

KURT GÖDEL RESEARCH CENTER FORMATHEMATICAL LOGIC

UNIVERSITÄT WIEN

WÄHRINGER STRAßE 25

1090 WIEN, AUSTRIA

E-mail: kellner@fsmat.at
URL: http://www.logic.univie.ac.at/∼kellner

EINSTEIN INSTITUTE OFMATHEMATICS

EDMOND J. SAFRA CAMPUS, GIVAT RAM

THE HEBREWUNIVERSITY OF JERUSALEM

JERUSALEM, 91904, ISRAEL

and

DEPARTMENT OFMATHEMATICS

RUTGERS UNIVERSITY

NEW BRUNSWICK, NJ 08854, USA

E-mail: shelah@math.huji.ac.il
URL: http://shelah.logic.at/

