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Abstract Using GCH, we force the following: There are continuum many simple
cardinal characteristics with pairwise different values.
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1 Introduction

The union of countably many Lebesgue nullsets is again a nullset. On the other hand,
there are 2ℵ0 many nullsets with non-null union. If we assume ¬CH, i.e. 2ℵ0 > ℵ1,
then it is interesting to ask about the minimal size of a family of nullsets with non-
null union. This is a cardinal number between (including) ℵ1 and 2ℵ0 . Such cardinal
numbers (or their definitions) are called cardinal characteristics.

There are numerous examples of such characteristics using notions from measure
theory, topology or combinatorics. If a and b are such characteristics, on can learn
something about the underlying notions by either proving dependencies (e.g. a ≤ b)
in ZFC, or by showing that a and b are independent (usually by finding forcing notions
P and Q such that P forces a < b and Q forces b < a, or by using MA).
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504 J. Kellner

Blass [1] introduced a classification of cardinal characteristics, and in particular
defined �0

1 characteristics. Goldstern and Shelah [2] showed that there are many �0
1

characteristics. In particular:

Assume CH. Assume that κ
ℵ0
ε = κε for all ε ∈ ω1 and that the functions

fε, gε : ω → ω (ε ∈ ω1) are sufficiently different. Then there is a partial order
P which preserves cardinals and forces that c∀( fε, gε) = κε for all ε ∈ ω1.

(The �0
1 cardinal characteristics c∀( f, g) are defined in 2.1.)

If theκε are pairwise different, then in the forcing extension the size of the continuum
is at least ℵω1 . So ℵ1, the number of different characteristics in the forcing extension,
is smaller than the continuum.

In this paper, we assume GCH in the ground model and modify the construction to
get a universe satisfying:

There are continuum many pairwise different cardinal characteristics of the form
c∀( fε, gε).

We give a relatively simple proof for this result. A slightly stronger result was
promised in [2] to appear in a paper called 448a, which never materialized: a “perfect
set” of pairwise different characteristics. Shelah and the author are working on new
creature forcing iteration techniques. One of the applications will hopefully be a proof
of the perfect set result, as well as similar results for the dual notions c∃ (which require
lim-inf constructions, cf. [3]). All these constructions are considerably more difficult
than the ones in this paper.

2 The theorem and the forcing

Definition 2.1 Let f, g : ω → ω\1 be such that f (n) > g(n) for all n.

• B : ω → P(ω) is an ( f, g)-slalom if B(n) ⊆ f (n) and |B(n)| < g(n) for all
n ∈ ω.

• A family B of ( f, g)-slaloms ∀-covers, if for all ν ∈ ∏
n∈ω f (n) there is a B ∈ B

such that ν(n) ∈ B(n) for all n ∈ ω.
• c∀( f, g) is the minimal size of a ∀-covering family of ( f, g)-slaloms.

See [2] for more about c∀( f, g). We are going to prove the following:

Theorem 2.2 Assume that CH holds, that µ = µℵ0 , and for ε ∈ µ, κε < µ is
a cardinal such that κ

ℵ0
ε = κε . Then there is a forcing notion P and there are

P-names fε, gε such that P preserves cardinals and forces the following: 2ℵ0 = µ,
and c∀( fε, gε) = κε for all ε ∈ µ.

If we assume GCH, we can find suchµ andκε such that theκε are pairwise different,1

i.e., we get continuum many pairwise different invariants in the extension.
For the rest of the paper we assume that the conditions of the theorem are satisfied

(in the ground model).

1 Let µ = ℵµ be the ω1-th iterate of the function α 	→ ℵα (taking the union at limits), and pick cardinals
κε < µ with uncountable cofinality.
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Even more simple cardinal invariants 505

We will use ε, ε′, ε1, . . . for elements of µ.

Assumption 2.3 (gn,l)n∈ω,0≤l<2n and ( fn,l)n∈ω,−1≤l<2n are sufficiently fast growing
sequences of natural numbers, such that 0 = f0,−1, fn+1,−1 = fn,2n−1 and fn,l−1 �
gn,l � fn,l . We set fmax(m) = fm,2m−1 and gmin(m) = gm,0.

Sufficiently fast growing means the following:2 gn,l > 2 · f n· fmax(n−1)n

n,l−1 , and

fn,l > gn+1
n,l . ( fmax(n − 1)n denotes the n-th power of fmax(n − 1).)

We identify [0, 2n − 1] with the set of binary sequences of length n, ordered lexi-
cographically. So for s ∈ 2n , we can define fs = fn,s and gs = gn,s . If η ∈ 2ω, then
we can define f : ω → ω by f (n) = fη�n , and g analogously.

We will define P so that P adds Sacks generics ηε (ε ∈ µ) and forces that
c∀( fε, gε) = κε for the ( fε, gε) defined by ηε .

Fix s ∈ 2n . If a is a subset of fs (i.e. of the interval [0, fs − 1]), we set
µs(a) = lngs (|a|). (Alternatively, We could use any other gs-big norm as well, i.e. a
norm satisfying the following:)

Lemma 2.4 µs : P( fs) → R satisfies: (a, b ⊆ fs )

• If b ⊆ a, then µs(a) ≥ µs(b).
• µs( fs) ≥ n.
• µs({t}) < 1 for all t ∈ fs .
• If F is a function from a to gs, then there is a b ⊆ a such that F � b is constant

and µs(b) ≥ µs(a) − 1.

Note that µs(b) ≥ 2 implies that |b| > gs .
Set ω≤n = ⋃

l≤n ωl . We will use trees T ⊆ ω<ω (or 2<ω or ω≤n). For a node
s ∈ T ∩ ωn , n is called the height of s. A branch b in T is a maximal chain
(i.e. a maximal set of pairwise comparable nodes). We can identify b with an ele-
ment of ωω (or ωn), and denote with b � h the element of b of height h (for all h < ω

or h < n, respectively). A front F in T is a set of pairwise incomparable nodes such
that every branch of T hits a node in F . When talking about nodes, we use the terms
“comparable” and “compatible” interchangeably. We use the symbol ⊥ for incompat-
ible (i.e. incomparable, when talking about nodes), and we use ‖ for compatible. A
splitting node s is a node with at least two immediate successors. The first splitting
node is called stem(T ).

A Sacks condition T is a perfect tree, i.e. T ⊆ 2<ω is such that for every s ∈ T there
is a splitting node s′ > s. Equivalently, along every branch of T there are infinitely
many splitting nodes. So the set of the n-th splitting nodes forms a front.

We will use Sacks conditions as well as other “lim-sup” finite splitting tree forcings.
Actually we will use finite approximations to such trees, but it might be useful to first
specify the objects we are approximating: For η ∈ 2ω, T is an η-tree, if T ⊆ ω<ω

is a tree without leaves (“dead ends”) such that s(n) < fη�n for all s ∈ T . For an
η-tree T and s ∈ T ∩ ωn , we set µT (s) = µs(A), where A is the set of immediate

2 The second inequality guarantees that there is a g-big norm (cf. 2.4), and the first one is extracted from
the proof of 4.3. Obviously one can try to find weaker conditions, but we do not try to find optimal bounds
in this paper.
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506 J. Kellner

T -successors of s. T is fat if lim supn→∞(µT (b � n)) = ∞ for every branch b of T .
Qη is the partial order of fat trees ordered by inclusion.3

It is easy to see (and analogous to Sacks forcing) that all forcing notions Qη are
proper and ωω-bounding.4 In [2], Goldstern and Shelah picked ω1 many different ηε ,
defined Pε to be the countable support product of κε many copies of Qηε , and defined
P to be the countable support product of the Pε . Then P forces c∀( fε, gε) = κε .

We need µ > 2ℵ0 many different η, so ηε will be a name (for a Sacks real). Then we
again want to use κε many copies of Qηε . Instead of using a composition of forcings,
we more explicitly use finite approximations to fat trees:

Definition 2.5 Assume s ∈ 2n .

• T is an s-tree if T ⊆ ω≤n+1 is a tree, every branch has length n+1 and t (m) < fs�m

for each m ≤ n and t ∈ T ∩ ωm+1.
• For m ≤ n and t ∈ T ∩ ωm , t is an l-large splitting node, if µs�m(A) ≥ l for the

set A of immediate T -successors of t .
• T has l-large splitting if the set of l-large splitting nodes forms a front.

Definition 2.6 • For every ε in µ, pick some Iε of size κε such that µ and all the Iε
are pairwise disjoint. Set I = µ ∪ ⋃

ε∈µ Iε .
• We define ε : I → I : If α ∈ Iε , then ε(α) = ε. If ε ∈ µ, then ε(ε) = ε.

I will be the index set of the product forcing. We will use α, β, . . . for elements of I .

Definition 2.7 p ∈ P consists of the following objects, satisfying the following prop-
erties:

1. dom(p) ⊆ I is countable and closed under ε.
2. If ε ∈ dom(p) ∩ µ, then p(ε) is a Sacks condition.
3. If ε1 �= ε2 ∈ dom(p) ∩ µ, then stem(p(ε1)) and stem(p(ε2)) are incompatible.
4. If α ∈ dom(p) ∩ Iε , then p(α) is a function from p(ε) to the power set of ω<ω

satisfying the following:
(a) If s ∈ p(ε) ∩ 2n , then p(α, s) ⊆ ω≤n+1 is an s-tree.
(b) If s < t are in p(ε) and s ∈ 2n , then p(α, s) = p(α, t) ∩ ω≤n+1.
(c) For l ∈ ω and s ∈ p(ε) there is an s′ > s in p(ε) such that p(α, s′) has

l-large splitting.

Note that item 3 is a real restriction in the sense that P is not dense in the product
defined as above but without item 3.

Item 4c implies also the following seemingly stronger variant (in 3.5 we will use yet
another one): If p ∈ P , α ∈ Iε ∩ dom(p), l ∈ ω and s ∈ p(ε), then there is an s′ > s
in p(ε) such that every branch in p(α, s′) has l many l-large splitting nodes. (Any

3 Qη is a special case of a lim-sup finite splitting tree forcing Q, informally defined as follows: Q is
defined by a finite splitting tree T0 and a norm on the successor sets. T ⊆ T0 is a condition of Q if for all
branches b of T , the T -norm of b � n gets arbitrarily large.
Sacks forcing is a simple example of such a forcing: T0 is 2<ω . Pick s ∈ 2<ω and set A = {s
0, s
1}.
Then we set µ(A) = 1 and µ(B) = 1 for all proper subsets B of A.
4 This holds of course for all lim-sup finite splitting tree forcings.
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Even more simple cardinal invariants 507

finite s-tree can be l-large for finitely many l only, so we can first extend s to some s′
0

witnessing l-largeness, then to some s′
1 witnessing l1-largeness for some sufficiently

large l1 etc.)
The order on P is the natural one:

Definition 2.8 For p, q ∈ P , we define q ≤ p by:

• dom(q) ⊇ dom(p).
• If α ∈ dom(p) ∩ µ, then q(α) ⊆ p(α).
• If α ∈ dom(p) ∩ Iε and s ∈ q(α) ∩ ωn , then q(α, s) ⊆ p(α, s).

Definition 2.9 • For α ∈ I , ηα is the P-name of the generic at α.5

• fε : ω → ω is the P-name for the function defined by fε(n) = fηε�n , and
analogously for gε .

It is straightforward to check6 that ≤ is transitive and that ηα is indeed the name of
an element of ωω. If α ∈ µ, then ηα ∈ 2ω, otherwise ηα(n) < fε(α)(n) for all n ∈ ω.

3 Preservation of cardinals, κε ≤ c∀( fε, gε)

Lemma 3.1 P is ℵ2-cc.

Proof Assume towards a contradiction that A is an antichain of size ℵ2. Without
loss of generality {dom(p) : p ∈ A} forms a �-system with root u ⊆ I . We fix
enumerations {α p

0 , α
p
1 , . . . } of dom(p) for all p ∈ A. We can assume that the following

are independent of p ∈ A (for i, j ∈ ω and β ∈ u): p � u; the statements “α p
i = β”,

“α p
i ∈ µ”, “α p

i = ε(α
p
j )”; and the sequence of Sacks conditions (p(α

p
i ) : α

p
i ∈ µ).

Pick elements p, q of A. We will show p ‖ q. Take p∪q and modify it the following
way: If i ∈ ω is such that α

p
i ∈ µ and α

p
i �= α

q
i , then we extend the stems of (the

identical Sacks conditions) p(α
p
i ) and q(α

q
i ) in an incompatible way (e.g. at the first

split, we choose the left node for p and the right one for q). We call the result of this r .
Then r ∈ P and r ≤ p, q: Assume that α

p
i �= α

q
j are in dom(r) ∩ µ. If i �= j , then

q(α
q
j ) = p(α

p
j ) has an incompatible stem with p(α

p
i ), so the (possibly longer) stems

in r are still incompatible. If i = j , we made the stems in r incompatible. ��
Lemma 3.2 P has fusion and pure decision. In particular P has continuous reading
of names, and P is is proper and ωω-bounding. Therefore P preserves all cardinals
and forces 2ℵ0 = µ.

The proof is straightforward, but the notation a bit cumbersome:

Definition 3.3 • pos(p,≤n) is the set of sequences a = (a(α))α∈dom(p) such that
a(α) ∈ ωn+1, a(α) ∈ p(α) for α ∈ µ, and a(α) ∈ p(α, a(ε(α))) otherwise.

5 More formally: If ε ∈ µ, then ηε = ⋃
p∈G stem(p(ε)).

If α /∈ µ, then ηα = ⋃{stem(p(α, s)) : p ∈ G, s ∈ stem(p(ε(α)))}.
6 This uses e.g. the fact that for every p ∈ P , α ∈ I and h ∈ ω there is a q ≤ p such that α ∈ dom(q) and
all stems in q have height at least h. To see that 2.7.3 does not prevent us to increase the domain, use the
argument in the proof of 4.2.
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508 J. Kellner

• For a ∈ pos(p,≤n), p ∧ a is the result of extending the stems in p to a.7

• Let τ be a P-name. τ is (≤n)-decided by p, if for all a ∈ pos(p,≤n), p ∧ a
decides τ (i.e. there is some x ∈ V such that p ∧ a forces τ = x̌).

• Assume q ≤ p. pos(p,≤n) ≡ pos(q,≤n) means that for all a ∈ pos(p,≤n)

there is exactly one b ∈ pos(q,≤n) such that a is b restricted to dom(p). In
other words: On dom(p), p and q are identical up to height n + 1, and the stems
of q outside of dom(p) have height at least n + 1. If dom(q) = dom(p), then
pos(p,≤n) ≡ pos(q,≤n) is equivalent to pos(p,≤n) = pos(q,≤n).

• p ∈ P is finitary if pos(p,≤n) is finite for all n ∈ ω.

Lemma 3.4 The set of finitary conditions is dense in P.

(Enumerate dom(p) as (αi )i∈ω, and extend all stems at αi to height at least i .)
The set of finitary conditions is not open, but we get the following: If p ∈ P is

finitary and q ≤ p is such that dom(q) = dom(p), then q is finitary.
We now consider a strengthening of the property 2.7.4c of conditions in P:

Definition 3.5 p is uniform, if for all α ∈ Iε and l ∈ ω there is a h ∈ ω such that
p(α, s) is l-large for all s ∈ p(ε) ∩ ωh .

First, we briefly comment on the connection between fronts and maximal antichains
in Sacks conditions:8 Let T be a perfect tree. “A is a front” is stronger than “A is
a maximal antichain”. In particular, it is possible that p ∈ P is not uniform, e.g.
that for α ∈ Iε the set of nodes s ∈ p(ε) such that p(α, s) has 1-large splitting
contains a maximal antichain, but not a front. (For example, we can assume that
p(ε)= 2<ω, p(α, 0n)has a trunk of length at least n+1, but that p(α, 0n
1)has 1-large
splitting. So the nodes that guarantee 1-large splitting contain the maximal antichain
{1, 01, 001, . . . }, but no front.) However, if A1, A2, . . . are maximal antichains in T ,
we can find a perfect tree T ′ ⊆ T such that Ai ∩ T ′ is a front in T ′. (Construct finite
approximations Ti to T ′: For every leaf s ∈ Ti−1, extend s to some s′ above some
element of Ai and further to some splitting node s′′. Let Ti contain the successors of
all these splitting nodes.)

This implies that the uniform conditions are dense:

Lemma 3.6 Assume p ∈ P. Then there is a uniform q ≤ p such that dom(q) =
dom(p).

Proof Fix ε ∈ µ. Enumerate dom(p) ∩ Iε as α0, α1, . . . . For i, l ∈ ω and s ∈ p(ε)

and there is an s′ > s such that p(αi , s′) has l-large splitting. This gives (open) dense
sets Di,l ⊆ p(ε). Choose maximal antichains Ai,l ⊆ Di,l . Then there is a perfect tree
q(ε) ⊆ p(ε) such that Ai,l ∩ q is a front in q for all i, l ∈ ω. ��

We can also fix p up to some height h and do the construction starting with h. Then
we get:

7 More formally: [p ∧ a](ε) is {s ∈ p(ε) : s ‖ a(ε)} for ε ∈ µ, and
[p ∧ a](α, s) is {t ∈ p(α, s) : t ‖ a(α)} for α ∈ Iε . p ∧ a is again a condition in P .
8 Of course, the same applies to all lim-sup finite splitting tree forcings.
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Even more simple cardinal invariants 509

Lemma 3.7 Assume that p ∈ P, h ∈ ω and that pos(p,≤h) is finite. Then there is a
finitary, uniform q ≤ p such that dom(p) = dom(q) and pos(p,≤h) = pos(q,≤h).

Using this notation, we can finally prove continuous reading of names:

Proof of Lemma 3.2. Pure decision: Fix p ∈ P finitary, h ∈ ω and a P-name τ for
an ordinal. We can find a finitary, uniform q ≤ p which (≤h)-decides τ , such that
pos(p,≤h) ≡ pos(q,≤h).

Proof: Enumerate pos(p,≤h) as a0, . . . , al−1. We just strengthen each p ∧ ai to
decide τ and glue back together the resulting conditions. More formally: Set p0 = p.
Let 0 ≤ i < l. We assume that we have constructed pi ≤ p such that pos(pi ,≤h) ≡
pos(p,≤h). Let b ∈ pos(pi ,≤h) correspond to ai ∈ pos(p,≤h), and find a finitary
p′ ≤ pi ∧ b deciding τ , so that the length of all stems are at least h + 1. Define pi+1
the following way: dom(pi+1) = dom(p′).

• If α ∈ dom(p′)\ dom(pi ), then pi+1(α) = p′(α).
• If ε ∈ dom(pi ) ∩ µ, then pi+1(ε) = p′(ε) ∪ {s ∈ pi : s ⊥ b(ε)}.
• Assume that α ∈ dom(pi )∩ Iε . If s ∈ pi (ε)\p′(ε), or if s ∈ p′(ε) is incompatible

with b(ε), then pi+1(α, s) = pi (α, s). Otherwise, pi+1(α, s) = p′(α, s) ∪ {t ∈
pi (α, s) : t ⊥ b(α)}.

Note that pi+1 ≤ pi , pos(pi+1,≤h) ≡ pos(pi ,≤h) and pi+1 ∧b = p′. Let q ≤ pl be
finitary and uniform such that pos(q,≤h) ≡ pos(pl ,≤h). Then q ≤ p, pos(q,≤h) ≡
pos(p,≤h) and q ∧ b decides τ for each b ∈ pos(q,≤h).

Fusion: Assume the following:

• p0 ≥ p1 ≥ . . . is a sequence of finitary, uniform conditions in P .
• h0, h1, . . . is an increasing sequence of natural numbers.
• pos(pn+1,≤hn) ≡ pos(pn,≤hn).
• un ⊆ dom(pn) is finite and ε-closed for n ∈ ω. Every α ∈ ⋃

n∈ω dom(pn) is
contained in infinitely many ui .

• If ε ∈ un ∩µ, then the height of the front of n-th splitting nodes in pn(α) is below
hn (i.e. the front is a subset of 2≤hn ).
If α ∈ un ∩ Iε and s ∈ pn(ε) ∩ ωhn , then pn(ε, s) has n-large splitting.

Then there is a canonical limit q ≤ pi in P .
Proof: q(ε) is defined by dom(q) = ⋃

n∈ω dom(pn), q(ε) ∩ 2hi +1 = pi (ε), and
analogously for q(α, s). Pick α ∈ Pε , s ∈ q(ε) and l ∈ ω. Pick n > l such that α ∈ un .
Then pn(α, s′) has l-large splitting for some s′ ‖ s in pn(ε).

Continuous reading of names, ωω-bounding: Let ν be the name of a function
from ω to ω and p ∈ P . Then there is an increasing sequence (hi )i∈ω and a finitary
q ≤ p which (≤hi )-decides ν � hi for all i ∈ ω.9

Proof: Pick p0 ≤ p finitary and uniform. Construct a sequence p0 ≥ p1 ≥ . . .

suitable for fusion the following way: Given pi , find (by some bookkeeping) ui ⊆
dom(pi ), pick hi large enough to witness largeness of pi ui , and then (using pure
decision) find pi+1 which (≤hi )-decides ν � hi .

9 Or ν � 2 · hi or just ν(i) etc., that does not make any difference at that stage.
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Properness: Let χ be a sufficiently large regular cardinal, and let N ≺ H(χ) be a
countable elementary submodel, p ∈ P ∩ N . We have to show that there is a q ≤ p
forcing τ ∈ Ň for every P-name τ ∈ N for an ordinal. We can enumerate (in V ) all
the names τi of ordinals in N . As above, we pick an sequence p ≥ p0 ≥ p1 ≥ . . .

suitable for fusion such that pi ∈ N is (≤hi )-deciding τi (for the hi used for fusion).
In V , we fuse the sequence to some q ≤ p. Then q is N -generic.

Preservation of cardinals follows from ℵ2-cc and properness.
Continuum is forced to be µ: Let τ be the name of a real, and p ∈ P . There is

a q ≤ p continuously reading τ . I.e. τ can be read off q ∈ P in a recursive manner
(using a real parameter in the ground model). The size of P is µℵ0 = µ, so there are
only µ many reals that can be read continuously from some q. On the other hand, the
ηε are forced to be pairwise different. ��
Lemma 3.8 P forces that κε ≤ c∀( fε, gε).

Proof Assume the following towards a contradiction: ℵ1 ≤ λ < κε , Bi (i ∈ λ) are
P-names, and p forces that {Bi : i ∈ λ} is a covering family of ( fε, gε)-slaloms.

For every Bi , find a maximal antichain Ai of conditions that read Bi continuously.
Because of ℵ2-cc, X = ⋃

i∈λ,a∈Ai
dom(a) has size λ < κε , so there is an α ∈ Iε\X .

Find a q ≤ p and an i ∈ λ such that q forces that ηα(n) ∈ Bi (n) for all n. Without
loss of generality, q is uniform and stronger than some a ∈ Ai , i.e. q � dom(q)\{α}
continuously reads Bi . (And q � {ε} continuously reads ηε � n and therefore gε(n).)

Pick some h big enough such that q(α, s) has 2-large splitting for all s ∈ q(ε)∩ωh .
Increase the stems of q(β) for β ∈ dom(q)\{α} to some height h′ > h to decide
gε � h + 1 as well as Bi � h + 1. So the resulting condition r decides for all m ≤ h
the values of Bi (m) and gε(m). B is the name of an ( fε, gε)-slalom, and therefore
|Bi (m)| < gε(m). Also, r(α, ηε � h) has a 2-large splitting node at some m ≤ h. But
that implies that there are more than gε(m) many possibilities for ηε(m). So we can
extend the stem or r at α and choose some ηα(m) /∈ Bi (m), a contradiction. ��

4 The complete subforcing Pε , κε ≥ c∀( fε, gε)

Definition 4.1 Pε ⊆ P consists of conditions with domain in {ε} ∪ Iε .

Lemma 4.2 Pε is a complete subforcing of P, and also has continuous reading of
names. In particular, Pε forces 2ℵ0 = κε .

Proof Continuous reading is analogous to the case of P . To see that Pε is a complete
subforcing, it is enough to show that for all p ∈ P there is a reduction p′ ∈ Pε

(i.e. for all q ≤ p′ in Pε , q and p are compatible in P). Set p′ = p � ({ε} ∪ Iε),
pick q ≤ p′ in Pε , and set r = q ∪ p � I\(Iε ∪ {ε}). If ε ∈ dom(p), then r is a
condition in P (and stronger than q, p). Otherwise, it could happen that stem(q, ε)

is compatible with stem(p, ε′) for some ε′ ∈ µ. We can assume without loss of
generality that stem(q, ε) ⊇ stem(p, ε′). Increase the stems of both q(ε) and p(ε′)
to be incompatible. Then for any ε′′, stem(q, ε) and stem(p, ε′′) are incompatible as
well. ��
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Even more simple cardinal invariants 511

To complete the proof of the main theorem, it remains to be shown:

Lemma 4.3 P forces that the ( fε, gε)-slaloms in V [G Pε ] form a cover, in particular
that c∀( fε, gε) ≤ κε .

For the proof, we need more notation:
Let q ∈ P .

• For ε ∈ µ, n is a splitting level of q(ε) if there is some splitting node s ∈ q(ε)∩ωn .
n is a unique splitting level if there is exactly one such s.

• Let α ∈ Iε . n is a splitting level of q(α) if there is some s ∈ q(ε) ∩ ωn such that
some t ∈ q(α, s) ∩ ωn is a splitting node. n is a unique splitting level of q(α) if
there is exactly one such s, and if moreover for this s there is exactly one t as well.

• q has unique splitting below h if for all n < h there is at most one α ∈ I such that
n is splitting level of q(α), and in this case n is a unique splitting level of q(α).
q has unique splitting if q has unique splitting below all h.

• If q has unique splitting below h, we enumerate (in increasing order) the splitting
levels below h (for any α) by (msplit

i )i∈l and the corresponding α by (α
split
i )i∈l . If

q has unique splitting, we get the corresponding infinite sequences.10

• q has unique, large splitting if it has unique splitting and if for α
split
i /∈ µ, the

splitting node t of height msplit
i is i-large.

• Let ν be a P-name for a sequence in
∏

n∈ω fmax(n). q rapidly reads ν below h if:
– q has unique, large splitting below h.
– If α ∈ Iε , then all splits at α are higher than some split at ε, i.e.: If α

split
i = α,

then α
split
j = ε for some j < i .

– ν � msplit
i is (≤msplit

i )-decided by q.

– If α
split
i /∈ µ, then ν � msplit

i is even (≤msplit
i −1)-decided.11

q rapidly reads ν if this is the case below all h.

If q has unique splitting, then q is finitary.

Lemma 4.4 Assume that p ∈ P and thatν is a P-name for a sequence in
∏

n∈ω fmax(n).
Then there is a q ≤ p rapidly reading ν.

Proof We use the following notion of unique extension: Fix p ∈ P finitary, m ∈ ω,
and a splitting node s (or (s, t)) in p of height h > m.12 Then we can extend p uniquely
above m up to s (or s, t), i.e. there is a r satisfying:

• r ≤ p, dom(r) = dom(p).
• pos(r,≤m) = pos(p,≤m).
• If m < n < h, then n is not a splitting level of r .

10 In this case, each each α ∈ dom(q) will appear infinitely often in the sequence (α
split
i )i∈ω , to allow for

sufficiently large splitting.
11 And therefore (≤ m

split
i−1 )-decided, since every η ∈ pos(q, ≤m

split
i−1 ) extend uniquely to an

η′ ∈ pos(q, ≤m
split
i − 1).

12 This means: Either ε ∈ µ and s ∈ p(ε) is a splitting node, or α ∈ Iε , s ∈ p(ε) and t ∈ p(α, s) is a
splitting node.
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• h is a unique splitting level of r .
• If a ∈ pos(p,≤h) extends s (or s, t), then a ∈ pos(r,≤h).

In other words, we eliminate all splits between m and h, and at h we leave only the
split s (or t) with all its successors.

We use this fact to define an increasing sequence (pi )i∈ω and show that the limit q
has the desired properties.

Set p−1 = p and msplit
−1 = −1. Assume we already have pi as well as msplit

j and

α
split
j for all j ≤ i , such that pi rapidly reads ν below msplit

i + 1. For the final limit,

we will keep all elements of pos(pi ,≤msplit
i + 1).

We use some bookkeeping to choose α ∈ dom(pi ) and s ∈ pi (ε(α)) ∩ ωmsplit
i +1.

If α ∈ µ, we pick some splitting node s′ > s in pi (α). Otherwise we again use the

bookkeeping to choose t ∈ pi (α, s) ∩ ωmsplit
i +1, and pick some s′ > s in pi (ε(α))

and an i + 2-big splitting node t ′ > t in pi (α, s′). Let h be the height of the splitting
node s′ (or t ′). We extend pi uniquely above msplit

i to s′ (or s′, t ′). Call the result r .

Set msplit
i+1 = h. Then, using pure decision, we can find some p′ ≤ r which is (≤h)-

deciding ν � h so that pos(p′,≤h) ≡ pos(r,≤h) and the stems of p′ outside of dom(r)

are higher than h.
If α ∈ µ, set pi+1 = p′. Otherwise, let A be the set of successors of t ′. There are

less than fmax(h −1)h many possibilities for ν � h, and at most h many splitting nodes
below h, each with at most fmax(h − 1) many successors. This gives a function

fmax(h − 1)h × A → fmax(h − 1)h

or

A → fmax(h − 1)h· fmax(h−1)h
< gmin(h).

So we can use bigness to thin out A to some homogeneous B that has norm at least
i + 1. Call the result pi+1. In this case. pi+1 already (≤h−1)-decides ν � h.

Let q be the limit of (pi )i∈ω. We have to show that q ∈ P . It is enough to require
from the bookkeeping that the following is satisfied:

• For all ε ∈ dom(q)∩µ, and s0 ∈ q(ε), there is an s > s0 such that the bookkeeping
chooses ε, s at some stage.

• For all α ∈ dom(q) ∩ Iε , for all s0 ∈ q(ε), and for all t0 ∈ q(α, s0), there are
s > s0 and t > t0 such that α, s, t are chosen at some stage.

• For all α ∈ dom(q) ∩ Iε , ε is chosen (for the first time) before α is chosen.

(It is easy to find a bookkeeping meeting these requirements.) Then q is indeed in P:
Assume that α ∈ dom(q) ∩ Iε , s0 ∈ q(ε), and l ∈ ω. We have to show that q(α, s) is
l-large for for some s > s0. First extend s to some s′ of height at least msplit

l (defined
from q). Enumerate the leaves in q(α, s′) as t0, t1, . . . , tk−1. Increase s′ to s′

0 such
that in q(α, s′

0) there is a splitting node above t0. Repeat that for the other t i and set
s = s′

k−1. If b is a branch through q(α, s), then there has to be some split in b above

msplit
l , but each splitting node in q of this height is l-large. ��
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So we get: If α
split
i+1 /∈ µ, then ν � msplit

i+1 , and in particular ν(msplit
i ), is (≤msplit

i )-

decided. Otherwise, it is (≤msplit
i )-decided only modulo the two possibilities left and

right for the successor at the split at height msplit
i+1 in the Sacks condition q(α

split
i+1 ). So

in both cases, and for all n, we can calculate ν(n) from 2 × pos(q,≤n). We can write
this as a function:

G : 2 × pos(q,≤n) → fmax(n).

Proof (Proof of Lemma 4.3) Fix p ∈ P and a P-name ν for a function in
∏

n∈ω fε(n).
We have to find q ≤ p and a Pε-name B of an ( fε, gε)-slalom such that q forces
ν(n) ∈ B(n) for all n ∈ ω.

Let r ≤ p rapidly read ν. We can assume that ε ∈ dom(r). We can also assume
that the i-th splitting node is even (i + 1)-large and not just i-large.13 We will define,
by induction on n, B(n) as well as q ≤ r up to height ≤n.

q will be the result of thinning out some of the splitting nodes in r (in the non-Sacks
part), in a such way that the norm of the node will be decreased by at most 1. So q
will again have unique, large splitting, and q will be a condition in P .

If we already constructed q below n, and if there is no split at height n, we have no
choice for q at height n but just take the unique extension given by r . If there is a split,
we may thin out the successor set (reducing the norm by at most 1). Of course, this
way we will loose former splits at higher levels (which extended the successors we
just left out). So the splitting levels of q will be a proper subset of the splitting levels
of r . In the following, msplit

i and α
split
i denote the splits of q.

If ε′ �= ε, α ∈ dom(r) ∩ Iε′ , and h is a splitting level of r(α), then there is some
splitting level h′ < h of r(ε′). Also, trunk(r, ε) and trunk(r, ε′) are incompatible, i.e.
they differ below h. By the way we construct q, we get the same for q:

(∗) If α ∈ Iε′ , ε′ �= ε, and if h is a splitting level of q(α), then either all
s ∈ q(ε) ∩ 2h are lexicographically smaller than all t ∈ q(ε′) ∩ 2h , or the other
way round.

We now define q at height n and B(n): Assume that i is maximal such that m =
msplit

i ≤ n. Set α = α
split
i . By rapid reading there is a function G with domain

2 × pos(r,≤m) that calculates ν(n). Let A be the set of successors of the split of level
m. pos(r,≤m − 1) has size at most fmax(m − 1)m . So we can write G as

G : 2 × fmax(m − 1)m × A → fε(n).

Case A: n > m.
There are no splits on level n, so for q at level n we use the unique extensions given
by r .

13 It is clear we can get this looking at the proof of rapid reading, or we can get first a “standard” rapid
reading r and then just remove the very first split by enlarging the trunk.
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The size of A is at most fmax(m), so the domain of G has at most size

2 · fmax(m − 1)m · fmax(m) < gmin(n),

and therefore is smaller than gε(n). So we can put all possible values for ν(n) into
B(n).

Case B: n = m, α ∈ {ε} ∪ Iε .
q at level n contains all the successors of the split at level n.
In the Pε-extension, we know which successor we choose.14 Given this knowledge,
the domain of G is again smaller than gmin(m), just as in Case A.

Case C: n = m, α ∈ µ \ {ε}.
q at level n contains both successors of the split at level n.
|A| = 2, so there are again only

2 · fmax(n − 1)n · 2 < gmin(n)

many possible values for ν(n).

Case D: Otherwise n = m, α ∈ Iε′ , ε′ �= ε.
So for an s ∈ r(ε′)∩ωn there is a splitting node t ∈ r(α, s) of height n with successor
set A. As stated in (∗) above, s is (lexicographically) either smaller or larger than all
the nodes in r(ε) ∩ ωn .

Subcase D1: s is smaller.
We keep all the successors of the split at level n.
|A| ≤ fs , and gε(n) = gηε�n has to be some gn,k for k > s (in [0, 2n − 1]). So we get

2 · fmax(n − 1)n · fs < gε(n)

many possible values.

Subcase D2: s is larger.
Let k be s − 1 (in [0, 2n − 1]). So ν(n) is less than fn,k . We can transform G into a
function

F : A → f 2· fmax(n−1)n

n,k < gn,s .

So we can thin out A to get an F-homogeneous set B ⊆ A, decreasing the norm by at
most 1. q at height n contains only the successors in B. Modulo q, there remain only
2 · fmax(n − 1)n many possibilities for ν(m). ��

14 If any. Of course the filter could be incompatible with s (or s, t).
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