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Abstract We introduce the notion of effective Axiom A and use it to show
that some popular tree forcings are Suslin®™. We introduce transitive nep and
present a simplified version of Shelah’s “preserving a little implies preserving
much”: If / is a Suslin ccc ideal (e.g. Lebesgue-null or meager) and P is a tran-
sitive nep forcing (e.g. P is Suslin*) and P does not make any /-positive Borel
set small, then P does not make any I-positive set small.
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1 Introduction

Properness is a central notion for countable support iterations: If a forcing P is
proper then it is “well behaved” in certain respects (most notably P does not
collapse wy); and properness is preserved under countable support iterations.
Properness can be defined by the requirement that the generic filter (over V)
is generic for a countable elementary submodel N as well (see 2.1).

It turns out that it can be useful to require genericity for non-elementary
models M as well.! The first notion of this kind was Suslin proper [6], with the
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IFor this to make sense the forcing notion P has to be definable; otherwise we do not know how to
find P in M, and therefore cannot formulate that G is P-generic over M.
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650 J. Kellner

important special case Suslin ccc. This notion was generalized to Suslin™ [4].
In this paper we recall these definitions, and introduce an effective version of
Axiom A as a tool to show that all the usual Axiom A forcings are in fact
Suslin™.

In [13] Shelah introduced a further generalization: non-elementary proper
(nep) forcing. Here, he applies the properness condition to certain models that
are neither elementary nor transitive. This allows one to deal with long forcing-
iterations (which can never be elements of a transitive countable model), but
this also brings some unpleasant technical difficulties. To avoid some of these
difficulties, [13] uses a set theory with ordinals as urelements.

In this paper we define a special case, the “transitive version”, of nep. In this
version we consider transitive candidates only, which makes the whole setting
much easier.

As an example of how to apply non-elementary properness we give a simpli-
fied proof of Shelah’s “preserving a little implies preserving much” [13, sec. 7]:
If a forcing P is provably nep and provably does not make the set of all old reals
Lebesgue null, then P does not make any positive set null. The proof uses the
fact that we can find generic conditions for models of the form N[G], where N is
(a transitive collapse of) an elementary submodel and G an internal N-generic
filter (i.e., G € V).

The proof works in fact not only for the ideal of Lebesgue null sets, but also
for all Suslin ccc ideals (e.g. the meager ideal). A couple of theorems of this
kind lead up to the general case in [13]: for the meager case the result is due to
Goldstern and Shelah [12, Lemma XVIII1.3.11, p.920]; the Lebesgue null case
in the special case of P = Laver was done by Pawlikowski [10] (building on [7]).
The definition and basic properties of Suslin ccc ideals have been used for a
long time, for example in works of Judah, Bartoszyriski and Rostanowski, cited
in [2]; also related is [14, Sect. 31].

The proof of preserving a little implies preserving much actually shows that
generics are preserved (see Definition 4.2). This is useful for positivity preserva-
tion in limit-steps of proper countable support iterations (Py )y <s: While it is not
clear how one could argue directly that P; still is positivity preserving, preserva-
tion of generics has a better chance of being iterable. In [12, Section XVII1.3.10]
this iterability is claimed for /7 = meager. For I = Lebesgue null the result will
appear in [9].

2 Suslin™ and transitive nep forcing

2.1 A note on normal ZFC*

Let us recall the definition of properness:

Definition 2.1 P is proper if for some sufficiently large regular cardinal x, for
all p € P and all countable elementary submodels N < H(x) containing p and P

there is a q < p which is N-generic.
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Preserving non-null with Suslin™ forcings 651

Intuitively, one would like to use elementary submodels of the universe
instead of H (), but for obvious reasons this is not possible. So one has to show
that the properness notion does not depend on the particular y used in the
definition, and that essential forcing constructions are absolute between V' and
H(x) (and V[G] and H"I®](x)). So while the choice of x is not important, it is
not a good idea to fix a specific x (say, 3}), since we might for example want to
apply the properness notion to forcings larger than this specific .

In Suslin forcing, instead of countable elementary submodels arbitrary count-
able transitive models of some theory ZFC*, so-called candidates, are used.
Intuitively one would like to use ZFC, but this cannot be done for similar
reasons. (For example, ZFC does not prove the existence of a ZFC-model.)

Again, it turns out that the choice of ZFC”* is of no real importance (provided
it is somewhat reasonable), but we should not fix a specific ZFC* 2

Definition 2.2

e ZFC~ denotes ZFC minus the powerset axiom plus “3,, exists”.
e An e-theory ZFC* is called normal if H(x) E ZFC* for large regular .
o A recursive theory ZFC* is strongly normal if ZFC proves

(3x0) (Vx > xo regular) H(x) F ZFC*.

We will be interested in strongly normal theories only. Clearly, ZFC™ is strongly
normal. Also, if T is strongly normal, then the theory T plus “there is a
T-candidate” is strongly normal, and a finite union of strongly normal theo-
ries is strongly normal.?

The importance of normality is the following: If ZFC* is normal, then forc-
ings that are non-elementary proper with respect to ZFC* are proper (see Facts
2.4). However, normal does not necessarily mean “reasonable”. For example,
if in V there is no inaccessible, then ZFC™ plus the negation of the powerset
axiom is normal.

As usual, we will (without further mentioning) assume that certain (finitely
many) strongly normal sentences are in ZFC*. For example, we will state that
Borel-relations are absolute between candidates and V, which of course as-
sumes that ZFC* contains enough of ZFC™ to guarantee this absoluteness.

2.2 Candidates, Suslin and Suslin™ forcing

The following basic setting will apply to all versions of Suslin forcings used in
this paper (Suslin proper, Suslin ccc, Suslin™) as well as transitive nep:

We assume that the forcing Q is defined by formulas ¢cp(x) and ¢<(x,y),
using a real parameter rp. Fix a normal ZFC*. M is called a “candidate” if it is

2We will sometimes require that every ZFC*-candidate M thinks that there is a ZFC**-candidate
M’ (and this fails for ZFC** = ZFC™*), or that any forcing extension M[G] of a ZFC*-candidate M
satisfies ZFC**.

3This is not true for countable unions, of course: by reflection, for every finite 7 C ZFC, Con(T) is
strongly normal, but ZFC cannot prove H(x) F Con(ZFC).
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652 J. Kellner

a countable transitive ZFC* model and ro € M. We denote the evaluation of
¢co and ¢< in a candidate M by OM and <M.

We further assume that in every candidate Q™ is a set and <™ a partial order
on this set; and that ¢ and ¢< are upwards absolute between candidates and
VA

A q € Q is called M-generic (or: Q-generic over M), if q forces

“Go N oM is QM-generic over M”.

Usually (but not necessarily) it will be the case that p L ¢ is absolute between
M and V. In this case g is M-generic iff g IF D N Gg # @ for all D € M such
that M E “D < Qdense”. If p L g is not absolute, then this is not enough,
since it does not guarantee that Gp N OM is a filter on QM i.e., that it does
not contain elements p, g such that M F “p L g”. In this case, “q is M-generic”
is equivalent to: g IF |JANGg| = 1forall A € M such that M F “A C Qisa
maximal antichain”.

We will only be interested in the case Q € H(RX1). Assume y is regular and
sufficiently large, and N < H()) is countable. Let i : N — M be the transitive
collapse of N. Then i [ Q is the identity, and M is a candidate. If Q is proper,
then for every p € QM there is an M-generic g < p.

As already mentioned, sometimes it is useful to have generic conditions for
other candidates (that are not transitive collapses of elementary submodels).
The first notion of this kind was Suslin proper:

Definition 2.3 A (definition of a) forcing Q is Suslin (or: strongly Suslin) in the
parameter rg € R, if:

1. rg codes three ZJ% relations, Rz, Ré and Rb.

2. Ré is a partial order on Q = {x € v* : REQ(x)} andp 1o q iffRé(p,q). Qis
Suslin proper with respect to some normal ZFC*, if in addition:

3. for every candidate M and every p € QM there is an M-generic q < p.

A forcing Q (as a partial order) is called Suslin (proper), if there is a definition
of Q which is Suslin (proper).

Facts 2.4

e “rp codes a Suslin forcing” is a l:[% property. So if Q is Suslin in V, then Q is
Suslin in all candidates and all forcing extensions of V' as well. In particular,
in every candidate M, <M is a partial order on the set QM and p L q is
equivalent to Ré(p, q).

However, the formula “(€p, <g,rg, ZFC") codes a Suslin proper forcing” is
a I1} statement and in general not absolute.
o If O is Suslin, then L is a Borel relation, and therefore the statement
{gi : i € w}is predense below p
(ie.pl- GN{gi: i€ w}#0)is I} (ie., relatively I} in the =] set Q@ D).

4This means that if M1 and M; are candidates such that M| € M>, and if ¢ <Mz p, then g <M P
and q <V p-
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Preserving non-null with Suslin™ forcings 653

e If Q is Suslin proper with respect to ZFC*, and ZFC** is stronger than ZFC*,
then Q is Suslin proper with respect to ZFEC*™ as well.

e If Q is Suslin proper, then Q is proper.
(As mentioned already, the transitive collapse M of a countable N < H(x)
is a candidate, Q is not changed by the collapse, and g < p is M-generic iff
q < pis N-generic.)

Remark The definition of Suslin proper forcing could be applied to non-normal
{€} theories ZFC* as well. This could be useful in other contexts, but not for
this paper. Obviously such a forcing O need not be proper any more. As an
extreme example, ZFC* could contain “0 = 1”. Then (3) is immaterial, since
there are no candidates, and every forcing definition Q satisfying (1) and (2) is
Suslin proper.

In [6] it is proven that if a forcing Q is Suslin and ccc (in short: Suslin ccc),
then Q is Suslin proper in a very absolute way:

Lemma 2.5 “Q is Suslin ccc” is a l:[% statement. So in particular, if Q is Suslin
ccc, then

1. Q is Suslin ccc in every candidate M and in every forcing extension of V.
2. Qs Suslin proper: even 1 is generic for every candidate.

The proof proceeds as follows: assume Q is Suslin. Using the completeness
theorem ¢XeSIer for the logic L, (Q) (see [8]) it can be shown [6, 3.14] that
“Q is ccc” is a Borel statement. (This requires that ¢Xeler e ZFC*, which
we can assume since @KeSIeT js strongly normal.) So if M is a candidate and
M E “A C (Qis amaximal antichain”, then M E “A is countable”. And we
have already seen that for Q Suslin and A countable, the statement “A is pre-
dense” is l:[% (and therefore absolute). So A is predense in V, and 1¢ forces that
G meets A.

Remark (1) and (2) of the lemma are trivially true for a Q that is definable
without parameters (e.g. Cohen, random, amoeba, Hechler), assuming that
ZFCF Qs ccc and ZFC* - Q is ccc.

For further reference, we repeat a specific instance of the last lemma here:

Lemma 2.6 If Q is Suslin ccc, M1 € M» are candidates, and G is Q-generic over
Mj or over V, then G is Q-generic over M.

Cohen, random, Hechler and amoeba forcing are Suslin ccc and Mathias
forcing is Suslin proper. Miller and Sacks forcing, however, are not, since incom-
patibility is not Borel.

This motivated a generalization of Suslin proper, Suslin™ [4, p. 357]: here, we
do not require L to be T!, so “{g; : i € w} is predense below p” will generally
not be 1:[% any more, just 1:[%. However, we require that there is a Z]% relation
epd (“effectively predense”) that holds for “enough” predense sequences:
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Definition 2.7 A (definition of a) forcing Q is Suslin™ in the parameter rg with
respect to ZFC*, if:

1. rg codes two ;} relations, RS, and Ré, and an (v + 1)-place ;% relation epd.

2. In 'V and every candidate M, < is a partial order on Q, and epd(q;, p) implies
“{qi : i € w} is predense below p”.

3. For every candidate M and every p € Q™ there is a q < p such that every
dense subset D € M of QM has an enumeration {d; : i € w} such that epd(d;, q)
holds.

Again, a partial order Q is called Suslin™ if it has a suitable definition.

Clearly, every Suslin proper forcing is Suslin™: epd can just be defined by
“{q;i : i € w}is predense below p”, which is even a conjunction of 1:[% and ;11,
and then the condition 2.7(3) is just a reformulation of 2.3(3).

2.3 Effective Axiom A

The usual tree-like forcings are Suslin®. Here, we consider the following forc-
ings consisting of trees on = ordered by C. (Usually, Sacks is defined on 2<%,
but this is equivalent by a simple density argument.) For s, € 0= we write
s < tfor “sis an initial segment of ”; foratree T € w<? s <7 t means s < t and
s,t € T;and s™n is the immediate successor of s with last element 7.

e Sacks, perfect trees: (Vs € T) (3t >7 5) Fn)yrnel.

e Miller, superperfect trees: every node has either exactly one or infinitely
many immediate successors, and (Vs € T) (3t >75) A®n)t"n e T.

e Rostanowski: every node has either exactly one or all possible successors,
and (Vs e T) 3t >7s) Vnew)t " nel.

e Laver: let s be the stem of 7. Then (Vt >7s) 3®n)t"ne T.

In the following, we call Sacks, Miller and Rostanowski “Miller-like”. Clearly,
“p € Q” and “q < p” are Borel (but p L g is not).

For Sacks, there is a proof of the Suslin™ property in [4] and [5] using games.
However, in the same way as the “canonical” proof of properness of these forc-
ings uses Axiom A, the most transparent way to prove Suslin™ uses an effective
version of Axiom A:

Baumgartner’s Axiom A [3] for a forcing (Q, <) can be formulated as follows:
There are relations <,, such that

. <ppn€<nC=.

2. Fusion: if (a,)ne 18 a sequence of elements of Q such that a,11 <, a, then
there is an a,, such that a,, < a, for all n.

3. If pe O,n € wand D C Q is dense then there is a ¢ <,, p and a countable
subset B of D which is predense under q.

5Alternatively, O could of course be defined as the set of trees just containing a corresponding set,

thenx € Q' is ;}, and for the Miller-like forcings two compatible elements p, g have a canonical
lower bound, p N g.
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Preserving non-null with Suslin™ forcings 655

Remarks

e Actually, this is a weak version of Axiom A, usually something like a,, <, a,
will hold in (2).

e Itis easy to see that in (3), instead of “and D € Q is dense” we can equiva-
lently use “and D € Q is open dense” (or maximal antichain).

Now for effective Axiom A it is required that the B C D in (3) is effectively
predense below g, not just predense. Then Suslin™ follows. To be more exact:

Definition 2.8 Q satisfies effective Axiom A (in the parameter rg with respect to
ZFC¥), if
1. ro codes ZJ} relations, REQ, Ré, and Z% relations S'é (n € w) and an (o + 1)-
place Z% relation epd.
2. In'V and every candidate M, < is a partial order on Q and epd(q;,p) implies
that {q; : i € w} is predense below p.
. Fusion: for all (an)new such that a,1 <, a, thereis an a,, such that a,, < ay,.

4. In all candidates, if p € Q, n € w and D C Q is dense then thereisa q <, p
and a sequence (b;)icy, of elements of D such that epd(b;, q) holds.

98]

Again, a partial order Q satisfies effective Axiom A if it has a suitable definition.
Lemma 2.9 [f the partial order Q satisfies effective Axiom A, then Q is Suslin™.

Proof First we define epd’(p}, ¢) by
(3q = ") G{pi} S (i) epd(pi, ).

Clearly, thisis a ZJ% relation coded by rg satisfying 2.7(2). Let M be a candidate,
and let {D; : i € w} list the dense sets of QM that are in M. Pick an arbitrary
ap = p € OM. We have to find a ¢ < p satisfying 2.7(3) with respect to epd’.
Assume we have already constructed a,,. In M, according to (4) using D,, as D,
we find an a,+1 <, a, and {b} : i € w} € D, such that epd(b}, a,+1) holds (in
M and therefore by absoluteness in V). In V pick ¢ = a,, according to (3). O

The usual proofs that the forcings defined above satisfy Axiom A also show
that they satisfy the effective version. To be more explicit: let Q be one of the
forcings. We define (for p, g € O, n € w):

o split(p) ={sep: (3Z%ncw) s n e p).

e split(p,n) = {s € split(p) : (3"t < s)t € split(p)}.
(So s € split(p,n) means that s is the n-th splitting node along the branch
{t < s}. In particular, split(p, 0) is the singleton containing the stem of p.)

e g <, p,if g < p and split(q,n) = split(p, n).
(So g <o pif g < p and g has the same stem as p.)

e Forsep,p¥l={tep:t<svs<t.

e [ C pisafront (or: Fisafrontin p), ifitis an antichain meeting every branch
of p.
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e epd(g;,p) is defined by: there is a front F' C p such that (V¢ € T) (i € w) q; =
[7]
p'th.
e For Miller-like forcings, effectively predense could also be defined as
epd’(gi,p) <> InVs e split(p,n) i : q; = pl.

Clearly, split(p), split(p,n), p'*! and epd’ are Borel, “F is a front” is I,
therefore epd is E% The following facts are easy to check (p,q € Q):

If s € p, then pi¥ € Q.

If F C pis a front and ¢q|p, then g|p"*! for some s € F.

split(p, n) is a front in p.

For (gn)new such that g,+1 <, gqu, there is a canonical limit g, € O and

do =n qn-

e Assume that Q is Miller-like, p € Q, F C p a front, and for all s € F pick
some ps € Q such that ps € pl*l. Then U,y ps € O, and U,pps < p.

e Let Qbe Laver,p € O, F C p afront. Pick for alls € F a p; € Q with stem s.

Then UserS € Q’ and UserS cp.

Lemma 2.10 The tree forcings defined above satisfy the effective Axiom A.

Proof We show that <, and epd defined above satisfy 2.8.

(1)—(3) are clear.

For Miller-like forcings, (4) is proven as follows: Assume D C Q is dense
and p € Q. For all s € split(p,n + 1), pi¥! € Q, so there is a ¢* < p¥! such that
q° € D.Nowsetq :=J,crq° € Q. Theng <, p,and theset {¢g°: s € F} C D is
effectively predense below ¢ according to the definition of epd” (or epd).

To show (4) for Laver, we have to define a rank of nodes: Assume D is dense,
and pg a condition with stem sg9, s > sg, and s € pg. We define rkp(po,s) as
follows:

e If thereis a g C pg such that g € D and ¢ has stem s, then rkp (pg,s) = 0.
e Otherwise rkp (po, s) is the minimal « such that for infinitely many immediate
successors ¢ of s the following holds: ¢ € pg and rkp (po, ) < «.

rkp is well-defined for all nodes > s in pg:
Assume towards a contradiction that rkp (pg, s) is undefined. Then

g:=1{s e pgs] : s’ <sor tkp(po,s’) undefined}

is a Laver condition stronger than pg. Pick a ¢’ < g such that ¢’ € D. Let s’ be
the stem of ¢’. Then rkp(p,s’) = 0,5’ > s and s’ € g, a contradiction.

Now define ¢’ < po inductively. First add all s < s¢ to ¢’. Assume s € ¢’ and
s > sp. Then we add infinitely many immediate successors ¢ € pg of s to ¢’. If
rkp(p,s) # 0, we additionally require that rkp (p, f) < rkp(p, s) for each of these
t (this is possible by the definition of rkp (p, §)). So the ¢’ constructed this way is
a Laver condition with the same stem s¢ as pg. Also, along every branch of ¢/,
tkp(p,s) is strictly decreasing (until it gets 0); therefore, there is a front Fy in ¢’
such that for all s € Fy, tkp(p,s) = 0. That means that for all s € Fj there is a
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Preserving non-null with Suslin™ forcings 657

q* < po such that ¢° € D and ¢° has stem s. Define qo to be (J;cf, ¢°. Clearly
qo < po, qo has the same stem sq as pg, Fp is a front in gg and for every s € Fy,
q([)s] eD.

Given a Laver condition p and n € w, define for every pg € split(p,n) a qo as
above, and let g be the union of these g, and F the union of the corresponding
Fy. Then g <, p, and for every s in the front F C g, ¢/*! € D. This finishes the
proof of effective Axiom A for Laver. O

Remark 1t is clear that the same proof of effective Axiom A works for other
tree forcings as well, for example for all finite-splitting lim-sup tree forcings. (In
[11, 1.3.5] such forcings are called Qff*°.)

2.4 Transitive nep

So we have seen that Suslin ccc implies Suslin proper, which implies Suslin*.
For the proof of the main theorem 4.4, even less than Suslin? is required:® A
forcing definition Q (using the parameter ro) is transitive nep (non-elementary
proper), if

e “p e Q" and “qg < p” are upwards absolute between candidates and V.

e In V and all candidates, Q € H(X1) and “p € Q” and “q < p” are absolute
between the universe and H(yx) (for large regular x).

e For all candidates M and p € QM there is a ¢ < p forcing that Go N oM is
OM _generic over M.

Recall our initial consideration: In proper forcing, we get the properness
condition for (collapses of) elementary submodels only, but we would like to
have it for non-elementary models as well. (This is the reason for the name
“non-elementary proper”.) So transitive nep captures this consideration with
only few additional assumptions.

There is also a (technically more complicated) version of nep for
non-elementary and non-transitive candidates, defined in [13], which makes
it possible for long iterations to be nep (transitive nep requires Q C H(Xy)).
The main theorem 4.4 of this paper holds for this general notion of nep as well
(with nearly the same proof).

For every countable transitive model, M F “p I ¢(t)” iff for all M-generic
G containing p, M[G] F “p(z[G])”. If Q is nep and M a candidate, then M F
“p IF ¢(r)” iff for all M- and V-generic G containing p, M[G] F “p(z[G])”:
One direction is clear. For the other, assume M E “p’ < p, p’ IF —¢(7)”. Let
q < p’ be M generic. Then for any V-generic G containing ¢, G is M-generic as
well and M[G] E “=¢(t[G])”.

We will use the following

6Actually, for the main theorem even less than nep would be sufficient: we need generic conditions
only for candidates M that are internal set forcing extensions of transitive collapses of elementary
submodels only. However, this restriction does not seem to lead to a natural nep notion.
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Fact 2.11 Let x € H(®y). Then “there is a candidate M containing x such that
M E ¢(x)”is ZJ% (and therefore absolute between universes with the same wy ).

All in all we get the following implications:

Suslin ccc —— Suslin proper

! l

effective Axiom A —— Suslin™ —— transitive nep ——— proper

3 Suslin ccc ideals

The set of Borel codes (or Borel definitions) will be denoted by “BC”. So BC
is a set of reals. For A € BC we denote the set of reals that satisfy the definition
A (in the universe V) with AV

If O € H(Ry) is ccc, then a name 7 for an element of w® can be transformed
into an equivalent hereditarily countable name #5: for every n, pick a maximal
antichain A, deciding t(n), then n:={(p,(n,m)) : p € Ap,p - T(n) = m}is
equivalent to 7. B

If Q is a partial order, then we denote the complete Boolean algebra of
regular open sets by ro(Q).

If B is a Boolean algebra, then we sometimes write B when we mean B \ {0}
(i.e., when we use B as forcing).

From now on, we will assume the following:

Assumption 3.1 Q is a Suslin ccc forcing, n is a hereditarily countable name
coded by rg, IFo new’\V, and in all candidates: {[[g(n) =m]: n,m € w}
generates ro(Q).

“X generates ro(Q)” means that there is no proper sub-Boolean-algebra
B 2 X of ro(Q) such that sup,,)(Y) € BforallY C B.

Lemma 3.2 This assumption is a l:[% statement.

Proof “Q is Suslin ccc” is l:[% according to 2.5. For x € H(X1), a statement of

the form “every candidate thinks ¢(x)” is l:[% (cf. 2.11). kg (me€w”\V) holds
in V iff it holds in every candidate: If M & p I+ n = r, then this holds in V as
well: For Suslin ccc forcings, every V-generic filter is M-generic, and n = r is
absolute. The other direction follows from normality. ) O

Lemma 3.3 For A € BC, “q - n e AVl91” is A].

Remark [1,2.7] gives a general result for ! formulas.

Proof For any candidate M containing ¢ and A, “q I+ n € A” is absolute
between V and M: If G is V-generic, then G is M-generic as well (since Q is
Suslin cec), and ﬂ[G] € A is absolute between M[G] and V[G].

So g |- n € Aiff for all candidates M, M F g |- n € A (a 11} statement) iff
for some candidate M\: M F gk ne A(a »1 statement). O
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Preserving non-null with Suslin™ forcings 659

Lemma 3.4 The statement
{In(n) = m] : n,m € w} generates ro(Q)
holds in M iff the following holds (in V):
if G1,Go € V are Q-generic over M and G1 N M # Gy N M, then n[G1] # n[G2].

Proof 1f {[n(n) = m] : n,m € w) generates ro(Q), then G N QM can be cal-
culated (in M[G]) from n[G]. On the other hand, let (in M) B = ro(Q), C the
proper complete sub-algebra generated by [5(n) = m]). Take by € B such that
no b’ < by is in C, and set i

c=inf{c e C: ¢ > by}, by =c\ by.

So for all ¢ € C, | by iff ¢’|| by. Let G be B-generic over M such that by in
G. Then H = Gy N Cis C-generic. In M[H], by € B/H. So thereisa Gy D H
containing b1. O

Definition 3.5 The Suslin ccc ideal corresponding to (Q, n):

e Ipc=1A e BC:lFgn ¢ AVIGol L.

e [={XCow”:3Aclpc: AV D X}.
o X eI (or: X is positive) means X ¢ I, and X is of measure I means w®\X € I.
I} = BC\ Ipc.

Note that we use the phrases “of measure 17, “null” and “positive” for all
Suslin cccideals, not just for the Lebesgue null ideal. For example, if C is Cohen
forcing, then the null sets are the meager sets, and a set has “measure 1” if it is
co-meager.

Clearly A € Igciff AV e I.

An immediate consequence of Lemma 3.3 is

Corollary 3.6 For A € BC, “A € Ipc” is 4;.

So for Borel sets, being null is absolute.

Lemma 3.7 [ is a o-complete ccc ideal containing all singletons, and there is a
surjective o -Boolean-algebra homomorphism ¢ : Borel — ro(Q) with kernel I,
i.e., 1o(Q) is isomorphic to Borel/l as a complete Boolean algebra.

ccc means: there is no uncountable family {A4;} such that A; € It and A;NA j €
I for i # j (or equivalently: A; N A; = #).

Proof o-complete is clear: If X; € A; € [, and I n ¢ A, for all i € w, then
H—ggéUA,‘QUXi. B

For A € BC, define ¢(A) = [n € AV ). Then ¢(a®\ A) = —¢(A),
¢ (I Ai) = sup{¢(Ap}, and if A C B, then ¢(A) < ¢(B). If $(A) < ¢(B),
then I+ n ¢ (A\B), so A\B € I. Since n generates ro(Q) (in all candidates,
and therefore in V as well by normality) and since Q is ccc, ro(Q) = ¢”Borel.
So ¢ : Borel — ro(Q) is a surjective o-Boolean-algebra homomorphism. The
kernel is the o-closed ideal I, so Borel/! is isomorphic to ro(Q) as a o-Boolean-
algebra, and (since ro(Q) is ccc), even as complete Boolean algebra. O
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Definition 3.8 n* is called generic over M (n* € Gen(M)), if there is an M-generic
G € V such thatl][G] =n*

According to 3.4, this G is unique (on Q N M). For example, if Q is random,
then Gen(M) is the set of random reals over M.

[n € B] = q is equivalent to

qlFneB and if p Ll gthenpl-n¢ B,

which is I:I% (because of Lemma 3.3 and the fact that p L g is Borel). For g € Q
we denote a B such that [y € B]] = g by By. Of course By is not unique, just
unique modulo I. g IF n € AiffI- (n € B; — neA)),ie, 1ff|F n ¢ By \ A. So
we get g IF 7 ¢A1ffAﬂBq el, andqll—n EAlfqu\A eI

If M is a candidate and g € M, then because of Lemma 3.2 the Assumption
3.1 holds in M, so M knows about the isomorphism ro(Q) — Borel/I and in M
there is a BS” as above.

Lemma 3.9 Let M be a candidate and g € Q N M. Then

1. Gen(M) = w® \ J{AY : A € Igc N M).
2. {g[G] : G € Vis M-generic and q € G} =

=0\ HAV :AeBCNM,qln¢ AV[GQ]] = Gen(M) N BY..
3. Gen(M) is a Borel set of measure 1.

For example, if Q is random forcing, this just says that n* is generic (i.e.,
random) over M iff for all Borel codes A € M of null sets, n* ¢ AV

Proof (1) is just a special case of (2).
(2) Set

X:=o"\|J {AV: AeBCNM,q -y ¢AV[GQ1}, and
= {nlG]: G € Vis M-generic and g € G}.

Assume n* € Y. Let G be M-generic such that ¢ € G and n[G] = n*. If
ME glFn ¢ AVIGQl then M[G] E n* ¢ AMIG je, n* ¢ AV.Son* € X.

If n* € X, use (in M) the mapping ¢ : Borel — ro(Q) (A — [[n € A]).
If (A) < ¢(B), then IF ¢ (A \ B), so by our assumption, n* ¢ (A \ B).
Given n*, define G by ¢(A) € G iff n* € A. G is well defined: If n* € A \ B,
then ¢(A) # ¢(B). We have to show that G is a generic filter over M: If
(A1), ¢(A2) € G, then n* € A1 N A2,50 ¢(A1) A Pp(A2) € G IE $(A) < ¢(B),
then n* ¢ (A\ B),s0o ¢(A) € G — ¢(B) € G. Since ¢(@¥) = 0, and n* ¢ @,
0¢ G.If sup(¢(A))) € G, (A;) € M, then n* € | J A;, i.e., for some i, p(A;) € G.
Since g IF n ¢ ©w® \ B{I"I, n* ¢ w®\ BM ie., n* € BM, and since ¢>(B24) =gq,
q € G,s0n* € Y.So we have seen that Y = X € Gen(M) N B/

If n* € Gen(M) N BM, witnessed by G, then 5[G] € BM 5o q € G (since
q=1[neB).ie,n*eY.

3) follows from (1), since [/ is o-complete. O
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Remark 1If Q is not ccc, then our definition of  does not lead to anything useful.
For example, if Q is Sacks forcing, then Ig is the ideal of countable sets, and
clearly Lemma 3.9 does not hold any more. There are a few possible definitions
for ideals generated by non-ccc forcings, see for example [2]. For tree-forcings
0, a popular ideal is the following: A set of reals X is in I, if for every T € Q
there is a § <p T such that lim(S) N X = ¢. In the case of Sacks forcing this
ideal is called the Marczewski ideal, it is not ccc, and a Borel set A is in 7 iff A
is countable.

4 Preservation

Note: A slightly stonger form of the result of this section (with a similar proof)
is presented in [9].

Definition 4.1
e Pis Borel I*-preserving, if for all A € I}, IFp AV € I'T.
o PisIt-preserving if forall X € I'*, IFp X € I't.

For example, if Q = random, then random forcing is I *-preserving, and Co-
hen forcing is not Borel I*-preserving. If Q = Cohen, then Cohen forcing is
[ -preserving, and random forcing is not Borel I -preserving.

Note that being Borel I*-preserving is stronger than just “lFp VN w® ¢ I7.
For example, set X := {x € »® : x(0) = 0}and Y := w®\ X. Let Q be the forcing
that adds a real n such that 5 is random if » € X and 75 is Cohen otherwise.
Clearly, Q is Suslin ccc. A €1 iff (A N X is null and A'N Y is meager). So if
P is random forcing, then IFp (w®V ¢ 1 & YV e I). Note that in this case a
Q-generic real n* over M will still be generic after forcing with P if n* € X, but
notif n* e Y.

However, if P is homogeneous in a certain way with respect to Q, then Borel
I't-preserving and “IFp V Nw® ¢ I” are equivalent (see [13] or [9, 3.2] for more
details).

Also, Borel IT-preserving and I -preserving are generally not equivalent,
not even if P is ccc. The standard example is the following: let Q be C (i.e.,
Cohen forcing, so / is the ideal of meager sets). We will construct a forcing
extension V' of V and a ccc forcing P € V' such that P is Borel /" -preserving
but not /*-preserving (in V’):

Let C,, be the forcing adding 8; many Cohen reals (¢;)iew,, i.€., Cy, is the
set of all finite partial functions from w x w; to 2. Then in any C,, -extension
V[(¢i)icw, ] the Cohenreals {c; : i € w} are a Luzin set’ and for all non-meager
Borel sets A, AN{c; : i € w1} is uncountable. If r is random over V, and (¢;) e,
is C,,-generic over V[r], then (¢))icw, is C,,-generic over V as well. So the
ccc forcing B * C,,, can be factored as C,, * P, where P is (a name for a) ccc
forcing. Set V' := V[(¢))iew,] and V" = V'[Gp] = VIrl[(ci)icw,]- Then in V7,
P = P[(¢{)iew, | is ccc and Borel I -preserving, o NV ¢ I,but PI- w® NV € I.

7C is a Luzin set if C is uncountable and the intersection of C with any meager set is countable.
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Definition 4.2

e For p € PM, y* is called absolutely (Q, n)-generic with respect to p, or: n* €
Gen®™ (M, p), if there is an M-generic p' < p forcing that n* € Gen(M[G])).

e P preserves generics for M if for all p € PM Gen(M) = Gen®™(M,p). (Le.
every M-generic real could still be M[G]-generic for some V- and M-generic
G.)

Note that Gen??* (M, p) € Gen(M) by 2.6 (or 3.9).

Lemma 4.3 If P preserves generics for (the transitive collapse of) unboundedly
many countable N < H(y), then P is IT-preserving.

Here, unboundedly many means that for all countable X C w® there is an
N < H(x) countable containing X and P with the required property.

Remark The lemma still holds if Q is any ccc forcing, i.e., not Suslin ccc. (Then
N is not collapsed but used directly as in usual proper forcing theory).

Proof Assume p I-p X € A[Gp] € I, ie., p IFplg n ¢ A[Gp]VIOPIIGO] Let
N < H(yx) contain P, X, A, Q,p. Let M be the collapse of N and n* € Gen(M),
p’' < p M-generic such that p’ I n* € Gen(M[Gp)). Let G be V-generic, p’ € G.

Then V[G] F M[Gpl[Gpl F n* ¢ A 2 X,so V F n* ¢ X. Therefore
Gen(M) N X = . Gen(M) is of measure 1, therefore VE X € I. O

Theorem 4.4 Assume that P is transitive nep (with respect to a strongly normal
ZFC*) and Borel I -preserving in V and every forcing extension of V. Then P
preserves generics (for unboundedly many candidates) and therefore P is [T -pre-
serving.

We will start with showing that for all candidates M and p € PM, Gen* (M, p)
is nonempty:

Lemma 4.5 If P is Borel I'*-preserving, A € IEC, M a candidate and p € PM,
then Gen®(M,p) N AY # @

Proof Let G be P-generic over M and V and contain p. In V[G], Gen(M[G]) is
of measure 1, and A" is positive (since P is Borel I'*-preserving). So there is an
n* € Gen(M[G]) N AY. Let p’ < p force all this (in particular “G is P-generic
over M”, so p’ is M-generic). Then p’ witnesses that n* € Gen?® (M, p). ]

Before we proceed, we take a look once more at strongly normal theories,
to make sure that the models we will be using in the proof really are ZFC*-
candidates. Intuitively, the reader can think of ZFC models instead of ZFC*
(formally that would require a few inaccessibles) and elementary submodels
of the universe instead of H(x) (that would be more complicated to justify
formally).

The ZFC* is strongly normal, so for any forcing notion R, x’ regular and large,
1r IF H(x)VI6l £ ZFC*. For p € R € H(x), x' > x regular, T € H(x’), the
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following are equivalent: H(x") £ “p IFg ¢(r)” and p IFr (H(x)V1C! E ¢(1)).
So in H(y') the following holds: For all small forcings R, 1g IFg ZFC*.

“Pis Borel I'*-preserving” is absolute between V and H () for x > 2™ regu-
lar, since for every A € I C H(x),p Ikp AV € Iiff p Ikp H(x)VICP1 = AV € 1
iff H(x) E p IFp AV € I. Also, “P is transitive nep” is absolute: every count-
able transitive candidate M and every p € Pisin H(x),and p IFp (Gp N PM s
M-generic) is absolute by the same argument. In the same way we see the follow-
ing: IfR € H(x), x < x',then“lFg P is transitive nep and Borel I*-preserving”
is absolute between V and H(x'), and therefore true in H(x') according to our
assumption.

So every forcing extension M’ (by a small forcing) of H(x’) (or a transitive
collapse of an elementary submodel of H(x")) as well as H( M (for x large
with respect to the forcing) will satisfy ZFC* and think that P is transitive nep
and Borel I -preserving.

Now we can proceed with the proof of the theorem: Fix x; < x2 <« x3 regu-
lar such that H(x;) F ZFC*. Let N < H(x3) be countable and contain P, x1, x2.
Clearly there are unboundedly many such N. Let M be the transitive collapse
of N. We want to show that P preserves generics for M.

InM,let Hi:=H(x1) & ZFC*. Let R; (in M) be the collapse of H(y;) tow. (Le.
R; consists of finite functions from w to H(y;).) Let n* € Gen(M), po € PM_ We
have to show that n* € Gen®™S(M, pg). Let Gg € V be an M-generic filter such
that n[Gol = n*,andlet Gg € V be Ry-generic over M[Gol, M’ = M[Gl[GR].

Lemma 4.6 M’ E “H, is a ZFC*-candidate, n* € Gen®(Hy, po)”.

o/

If this is correct, then Theorem 4.4 follows: assume M’ = “p’ < po H;-generic,
p’ Ik n* € Gen(H1[Gp])”. M is a ZFC*-candidate, so we can find a p” < p’ that
is M’-generic. Then p” is H; generic and therefore M generic as well (since
BP)NM =PB(P)NHyp),and p” IF n* € Gen(M[Gp)).

Proof (of Lemma 4.6) It is clear that Hy is a ZFC*-candidate in M’. Assume
towards a contradiction, that M’ £ “n* ¢ Gen?"(H,po)”. Then this is forced
by some g € Gg and r € R, but since R; is homogeneous, without loss of
generality r = 1, i.e.,

ME “qlFolFr, n* ¢ Gen®™(Hy,po)”. ()

Now we are going to construct the models of Fig. 1: first, choose a Gg, €

V which is Rj-generic over M, and let M; = M[Gg,]. In My, pick n® €

Gen?™s (Hj, Po) HBS’I . (We can do that by Lemma 4.5, since we know that P is Bo-

rel [*-preserving in My). Since Gen®™ C Gen, M; F “3 G§) Q-generic over Hj

such that ¢ € G%, ﬂ[GS] = n®”. This GS clearly is M-generic as well (since

M NP(O) = H; NP(Q)), so we can factorize Ry as Ry = O x Ry/Q such that
Gr, = G+ Gi.

Now we look at the forcing Ry = Ré\’l in M[n®] = M[Gg]. R, forces that Ry

is countable and therefore equivalent to Cohen forcing. R;/Q is a subforcing of
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Ry

M M, e € Gen™ (H))
0 R/Q ®
Gl G"2
Ry b
Mn®] — My £ n® ¢ Gen™(H))
G1%Gy

Fig.1 The models used in the proof of Lemma 4.6

Ry. Also, R, adds a Cohen real. So R; can be factorized as Ry, = (R1/Q) * R/,
where R = (Ry/(Ry/ 0)). We already have Gy, an (Ry/Q)-generic filter over
M[GS]; now choose G, € V R'-generic over My, and let Gg, = G1 * G2 So

GR, € V is Ry-generic over M[Gg], M>: =M[n®][GRg,].

Let Hy be H(xo)M1. Hy £ ZFC*. Also, Hy E “p; < po is H;-generic, p; I-
n® € Gen(H[Gp])” (since this is absolute between the universe M and H, =
H(Xz)Ml). In M,, Hj is a ZFC*-candidate. In M>, let p» < p; be Hy-generic.
Then (in M>), p, witnesses that n* € Gen?®(H{, py), a contradiction to (x). 0O
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