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New reals: Can live with them, can live without them
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We give a self-contained proof of the preservation theorem for proper countable support iterations known as
“tools-preservation”, “Case A” or “first preservation theorem” in the literature. We do not assume that the
forcings add reals.
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1 Introduction

In his book “Proper and Improper Forcing” [7, XVIII §3] Shelah gave several cases of general preservation the-
orems for countable support iterations of proper1) forcings (the proofs tend to be hard to digest, though). In this
paper we deal with “Case A”. A specific application is that proper countable support iterations of ωω-bounding
forcings (see Example 2.2 here) are ωω-bounding.

A simplified version of Case A appeared in Section 5 of the first author’s “Tools for your forcing construc-
tions” [2]. This version uses the additional requirement that every iterand adds a new real. Note that this require-
ment is met in most applications, but the case of forcings “not adding reals” has important applications as well
(and note that not adding reals is generally not preserved under proper countable support iterations).

A proof of the iteration theorem without this additional requirement appeared in [4] and was copied into “Set
Theory of the Reals” [1] (as “first preservation theorem” 6.1.B), but Schlindwein pointed out a problem in this
proof.2) In this paper, we generalize the proof of [2].

We thank Chaz Schlindwein for finding the problems in the existing proofs and bringing them to our attention.

2 The theorem

Fix a sequence of increasing arithmetical two-place relations (Rj)j∈ω on ωω. Let R be the union of the Rj .
Assume

1. C := {f ∈ ωω : fRη for some η ∈ ωω} is closed;

2. {f ∈ ωω : fRjη} is closed for all j ∈ ω, η ∈ ωω;

3. for every countable N there is η such that fRη for all f ∈ N ∩ C (in this case we say η covers N ).

∗ e-mail: Martin.Goldstern@tuwien.ac.at
∗∗ Corresponding author: e-mail: kellner@fsmat.at
1) P is proper if for all countable elementary submodels N ≺ H(χ) containing P (χ a big regular cardinal) and all p ∈ P ∩ N there

is q ≤ p which forces that GP is N -generic (i. e. GP ∩ D ∩ N �= ∅ for all dense subsets D ∈ N ). Such a q is called N -generic.
2) In [6], where Schlindwein gave a proof for the special case of ωω-bounding, following [7, VI]. However he later detected another

problem in his own proof (C. Schlindwein, personal communication, April 2005), and he is preparing a new version [5].
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Definition 2.1 Let P be a forcing notion, p ∈ P .

1. f̄∗ := (f∗
1 , . . . , f∗

k ) is a P -interpretation of ¯
˜
f := (

˜
f1, . . . ,

˜
fk) under p if f∗

i ∈ ωω,
˜
fi is a P -name for

an element of C, and there is a decreasing chain p ≥ p0 ≥ p1 ≥ · · · of conditions in P such that pi for-
ces

˜
f1�i = f∗

1 �i & · · · &
˜
fk�i = f∗

k �i.
2. A forcing notion P is weakly preserving if for all N ≺ H(χ) countable, η covering N , p ∈ N , there is

an N -generic q ≤ p which forces that η covers N [GP ].

3. A forcing notion P is preserving if for all N ≺ H(χ) countable, η covering N , p ∈ N , and f̄∗, ¯
˜
f ∈ N such

that f̄∗ is a P -interpretation of ¯
˜
f under p, there is an N -generic q ≤ p which forces that η covers N [GP ] and

moreover that f∗
i Rjη implies

˜
fiRjη for all i ≤ k, j ∈ ω.

4. A forcing notion P is densely preserving if there is a dense subforcing Q ⊆ P which is preserving.

Note that if f̄∗ is an interpretation, then f∗
l ∈ C (since C is closed).

The simplest example is that of ωω-bounding:

Example 2.2 Set fRnη if f(m) < η(m) for all m > n. So we have C = ωω, and fRη if there is n such
that f(m) < η(m) for all m > n. To cover a family of functions means to dominate it. P is weakly preserving
iff P is proper and ωω-bounding3).

This example is typical in the sense that often R describes a covering property of the pair (V, V [G]).
The property “weakly preserving” is invariant under equivalent forcings. I. e. if P forces that there is a Q-ge-

neric filter over V and Q forces the same for P , then Q is weakly preserving iff P is weakly preserving.4) The
notion “preserving” however does not seem to be invariant.5) It even seems that “densely preserving” does not
imply “preserving”. (Although we do not have an example. It is not important after all.) One direction however
is clear:

Fact 2.3 If P is preserving and Q ⊆ P is dense, then Q is preserving.

We could define f̄∗ to be a “weak interpretation” of
˜
f̄ under p by requiring that the truth value of

˜
f�m = f∗�m

is positive (under p) for all n. This would lead to a notion “strongly preserving”. This notion is invariant under
dense subforcings, and it is easy to see that Q is strongly preserving iff ro(Q) is preserving (which implies
that Q is preserving by Fact 2.3).

For some instances of R, weakly preserving is equivalent to preserving (and therefore to strongly preserving
as well). Most notably this is the case for ωω-bounding (see [2, 6.5]).

For other instances of R (e. g. Lebesgue positivity, cf. [3]) “P is preserving” is equivalent to some other
property invariant under equivalent forcings (and therefore again equivalent to “P is strongly preserving”).

We will show that densely preserving is preserved under proper countable support iterations. This is our ver-
sion of the theorem known as “tools preservation” [2, Section 5], “Case A” [7, XVIII §3] or the “first preservation
theorem” [1, 6.1.B]:

Theorem 2.4 Assume (P 0
i ,

˜
Q0

i )i<ε is a countable support iteration of proper, densely preserving forcings.
Then P 0

ε is densely preserving.

3) P is ωω-bounding if for all P -names
˜
f ∈ ωω and p ∈ P there is q ≤ p and g ∈ ωω such that q �

˜
f(m) < g(m) for all m. So if P

is ωω-bounding, η covers N ,
˜
f ∈ N and G is N -generic, then

˜
f [G] is dominated by some g ∈ N and therefore by η. If on the other hand P

is weakly preserving,
˜
f a P -name and p ∈ P , then there is N ≺ H(χ) containing p and

˜
f . Pick an η ∈ V covering N . So if q ≤ p is as in

the definition of weakly preserving, then q forces that η dominates
˜
f .

4) This uses the following fact: P is weakly preserving (i. e. weakly preserving with respect to all N ≺ H(χ)) iff P is weakly preserving
with respect to all N ≺ H(χ) containing some fixed x ∈ H(χ).

5) The reason is that the notion of interpretation is not invariant. Given a forcing P and an interpretation f∗ of a function
˜
f /∈ V , we can

find a dense subforcing P ′ ⊂ P such that for every condition p′ of P ′ there is n(p′) such that p′ forces that f∗(n(p′)) �=
˜
f(n(p′)) (here

we identify the P -name
˜
f with the equivalent P ′-name). So f∗ cannot be a P ′-interpretation of

˜
f .
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3 An outline of the proof

In this section, we describe the ideas used in the proof, without being too rigorous.

3.1 Use names

How can we show that the countable support limit of proper forcings is proper?
We have a countable support iteration (Pα,

˜
Qα)α<ε of proper forcings (ε limit), N ≺ H(χ) countable,

and p ∈ P ∩ N . We want to find a qω ∈ Pε which forces that G is N -generic, i. e. that G ∩ D ∩ N �= ∅ for all
dense subsets D ∈ N of P .

So we fix an ω-sequence 0 = α0 < α1 < · · · cofinal in ε ∩ N , and enumerate all dense open sets of P that
are in N as (Dn)n∈ω.

One unsuccessful attempt to construct qω could be the one illustrated in Figure 1: Set p−1 := p and q−1 := ∅.
Given pn−1 ∈ N and qn−1, choose (in N ) a pn ≤ pn−1 in Dn ∩ N and (in V ) a qn ≤ pn�αn+1 which ex-
tends qn−1. Set qω :=

⋃
qn. Then qω is N -generic, since qω ≤ pn ∈ Dn∩N . Of course this does not work, since

we generally cannot find a pn ≤ pn−1 in Dn such that qn−1 ≤ pn�αn.

α1 α3α2

q0

q1

q2

p0 ∈ D0

p1 ∈ D1

p2 ∈ D2

α1 α2 α3

q0

q1

q2

˜
p2 ∈ D2

˜
p1 ∈ D1

˜
p0 ∈ D0

Fig. 1 Fig. 2

What we actually do instead is the following (see Figure 2): The pn will be Pαn -names, and the qn are
Pαn+1 -generic over N . So instead of choosing pn ∈ Pε, we choose (in N ) a Pαn -name

˜
pn for an element of Pε

such that the following is forced by Pαn :
1.

˜
pn ∈ Dn;

2.
˜
pn�αn ∈ Gαn ;

3. if
˜
pn−1�αn ∈ Gαn , then

˜
pn ≤

˜
pn−1.

It is clear that we can find such a name. So we first construct all the
˜
pn (each

˜
pn is in N , but the sequence is not).

Then we construct qn ∈ Pαn+1 satisfying the following:
1. qn extends qn−1.

2. qn is Pαn+1-generic over N .

3. qn is stronger than
˜
pn on the interval [αn, αn+1).6)

So (by induction) qn forces that
˜
pn�αn+1 ∈ Gαn+1 and that therefore

˜
pn+1 ≤

˜
pn. So qω =

⋃
qn forces

that
˜
pn�αn ∈ Gα (by definition of

˜
pn), that

˜
pn�αn+1 ≥

˜
pn+1�αn+1 ∈ Gαn+1 and generally that

˜
pn�αm ∈ Gαm

for all m > n. Therefore qω forces that
˜
pn ∈ Gε. Also, qn−1 is Pαn -generic over N , and the Pαn -name

˜
pn is

in N , so qω forces that
˜
pn ∈ N ∩ Pε and therefore in N ∩ Dn ∩ Gε, i. e. that Gε is N -generic.

3.2 Interpolate approximations

First note that for every Pε-name
˜
f ∈ C and for every p ∈ Pε we can find an approximation f∗ of

˜
f under p. If

additionally 0 < α < ε and Pα adds a new real
˜
r, then we can choose the witnesses of the approximation such

that {pm�α : m ∈ ω} ⊆ Pα is inconsistent7) (just let pm�α decide
˜
r(m)).

6) More formally (since
˜
pn is a name): For all αn ≤ β < αn+1, qn�β �β pn�β ∈ Gβ & qn(β) ≤

˜
pn(β).

7) We call a set A ⊆ P inconsistent if P forces that not every condition of A is in G.
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Now assume that f∗ is a Pε-approximation of
˜
f witnessed by (pm

0 )m∈ω and that {pm
0 �α : m ∈ ω} ⊆ Pα

is inconsistent. Then we can define Pα-names (
˜
pm

α )m∈ω and
˜
f∗∗ such that the following is forced by Pα (see

Figure 3):
1. pm

0 �α ∈ Gα implies
˜
p0

α ≤ pm
0 (i. e.

˜
p0

α is stronger than the strongest pm
0 whose restriction is in Gα).

2.
˜
pm

α �α ∈ Gα, hence
˜
pm

α ∈ Pε/Gα.

3.
˜
f∗∗ is an approximation of

˜
f witnessed by (

˜
pm

α )m∈ω.
Then (pm

0 �α)m∈ω witnesses that f∗ approximates
˜
f∗∗: pm

0 �α forces that
1.

˜
pm

α forces that
˜
f∗∗�m =

˜
f�m and

2.
˜
pm

α ≤ pm
0 and therefore that

3.
˜
pm

α also forces (in Pε/Gα) that f∗�m =
˜
f�m.

So pm
0 �α ∧

˜
pm

α forces
˜
f∗∗�m =

˜
f�m = f∗�m, and since

˜
f∗∗�m, f∗�m already live in V [Gα],

˜
f∗∗�m = f∗�m

is already forced by pm
0 �α.

So we can interpolate (or “factor”) the interpretation (f∗,
˜
f) by the “composition” of the interpreta-

tions (f∗,
˜
f∗∗) and (

˜
f∗∗,

˜
f).

p2
0

p1
0

p0
0

˜
f ∗∗

˜
ff ∗

˜
p0
α

˜
p1
α

α

˜
f�1 = f ∗�1 =

˜
f ∗∗�1

p1
0 ∧

˜
p1
α �

p2
0 � α � Gα

f ∗00
˜
f ∗10 ,

˜
f ∗11

˜
f0,

˜
f1,

˜
f2, . . .

˜
f ∗20 ,

˜
f ∗21 ,

˜
f ∗22

α0 α2α1

˜
p0

1

˜
p1

1
˜
p0

2

˜
p1

2

p2
0

q0

q1

. . .

p0
0

p1
0

Fig. 3 Fig. 4

Moreover, if
˜
g is another Pε-name for an element of C, we may choose the names

˜
pm

α such that Pα forces
that (pm

α )m∈ω is a witness not only for f∗∗ approximating
˜
f , but also for some g∗ approximating

˜
g.

3.3 Approximate more and more functions better and better

In addition to all the dense sets Dn of N – as in Subsection 3.1 – we also list all the Pε-names
˜
fn in N for

elements of C. We have to make sure that qω forces that
˜
fRη. We assume that every element of Dn decides

˜
fm�n

for m ≤ n.
We start with an approximation f∗0

0 for
˜
f0 witnessed by (pm

0 )m∈ω. We assume that {pm
0 �α1 : m ∈ ω} is in-

consistent. We can find (in N ) Pα1 names (
˜
pm
1 )m∈ω and

˜
f∗1
0 ,

˜
f∗1
1 (see Figure 4) such that the following is forced:

1. pm
1 �α1 ∈ Gα1 , hence pm

1 ∈ Pε/Gα1 .

2.
˜
f∗1
0 ,

˜
f∗1
1 are interpretations of

˜
f0,

˜
f1 witnessed by (

˜
pm
1 )m∈ω.

3. pm
0 �α1 ∈ Gα1 implies

˜
p0
1 ≤ pm

0 (i. e.
˜
f∗1
0 interpolates (f∗0

0 ,
˜
f0) as in Subsection 3.2).

4.
˜
p0
1 ∈ D1 (in particular,

˜
p0
1 decides

˜
f0�1,

˜
f1�1).

5. We again assume that {
˜
pm
1 �α2 : m ∈ ω} is inconsistent.

Because of the last assumption, we can iterate this construction.
Now we choose (in V ) a q0 ∈ Pα1 such that q0 ≤ p0

0�α1 and q0 is Pα1 -generic over N and forces that η
covers N [Gα1 ] and that f∗0

0 Rjη implies
˜
f∗1Rjη for all m. Inductively, we get a sequence (qn)n∈ω such

that qn ∈ Pαn+1 extends qn−1 and forces
1. Gαn+1 is N -generic and η covers N [Gαn+1 ];
2.

˜
f∗n

m Rjη implies
˜
f∗n+1

m Rjη for m ≤ n and all j.
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Let qω be the union of all qn. Then qω forces the following: For m ≥ n,
˜
fn�m =

˜
f∗m

n �m (since
˜
p0

m ∈ Dm

decides
˜
fn�m). Also,

˜
f∗n

n Rjη for some j ∈ ω (since
˜
f∗n

n ∈ N [Gαn ] and η covers N [Gαn ]).
˜
fn is the limit of

functions
˜
f∗m

n which all satisfy
˜
f∗m

n Rjη. Since {f ∈ ωω : fRjη} is closed,
˜
fnRjη. Also, qω is N -generic just

as in Subsection 3.1.

3.4 Decide when we are σ-complete

The proof so far relies on the fact that we can always find approximations whose witnesses are inconsistent (see
item 4. in Subsection 3.3). We already know that this is the case if the iteration between αn and αn+1 adds a
new real. Actually we just need that the iterands are “nowhere σ-complete”, i. e. that below every p we can find
an inconsistent decreasing sequence.

If no reals are added, it might seem that we do not have anything to do (since Case A preservation is vacuous
without new reals). The problem is that the countable support iteration of proper forcings which do not add reals
can add a real in the limit. So it might be that we do not have new reals in the intermediate steps (we would like
to use such reals to get inconsistent witnesses for approximations), but we get new reals in the limit (which could
be a problem for preservation). On the other extreme, if all iterands are σ-complete, then the limit is σ-complete
as well, and therefore adds no reals, so there is nothing to do.

So what to do?
First note that we can split every forcing into a σ-complete and a nowhere σ-complete part. However, that

does not solve our problem, since we can not split the index set ε of the iteration into ε1, ε2 such that Pα forces
that

˜
Qα is σ-complete if α ∈ ε1 and nowhere σ-complete otherwise. For example, Q0 could add a Cohen real

˜
c,

and
˜
Qn could be defined to be σ-complete iff

˜
c(n) = 0.

So we will do the following: Given a condition p ∈ Pε, there is a maximal γ ≤ ε such that Pα forces that
˜
Qα

is σ-complete (below p(α)) for all α < γ. So if γ = ε, then the rest of the iteration is σ-complete. If γ < ε, then
we strengthen p such that Pγ forces that

˜
Qγ is nowhere σ-complete (below p(γ)).

We will only be interested in honest approximations, that is an approximation witnessed by (pm)m∈ω, where p0

(and therefore all pm) will know the index γ where
˜
Qγ stops to be σ-complete (in the way just described).

Since in Subsection 3.3 the conditions
˜
pm

n are Pαn -names, the corresponding γ will be a Pαn -name as well.
In the iteration at stage n, we will have to distinguish three cases:

1. {
˜
pm

n−1�αn : m ∈ ω} is inconsistent. Then continue as in Subsection 3.2.

2. The γ corresponding to
˜
p0

n−1 is bigger than αn but less than ε. Then just “do nothing”, i. e. wait in the
iteration until αm is above γ and therefore the witnesses are inconsistent.

3. Otherwise, we know that the rest of the iteration is σ-complete.

Again, we do not know from the beginning which case we will use at a given stage. In the example above, we
will do nothing at stage n iff

˜
c(n) = 0 (so it will never happen that the rest of the iteration is σ-complete).

Also, when we “do nothing”, we cannot increase the number of functions we approximate. In Subsection 3.3,
the number kn of functions which we approximate in step n was n + 1 (

˜
f∗n
0 , . . . , f∗n

n approximates
˜
f0, . . . , fn).

So in the proof this number
˜
kn will be a Pαn -name which is

˜
kn−1 in case “do nothing” and n + 1 otherwise.

4 The proof

Definition 4.1 Let Q be a forcing, q ∈ Q.

1. q is σ-complete in Q if Qq := {r ∈ Q : r ≤ q} is σ-complete. In this case we write q ∈ Qσ.

2. q is nowhere σ-complete in Q if there is no q′ ≤Q q such that q′ ∈ Qσ. In this case we write q ∈ Q¬σ.

3. Q is decisive if every q ∈ Q is either 1Q (the weakest element of Q) or σ-complete or nowhere σ-complete.8)

Fact 4.2 For every P the set of conditions that are either σ-complete or nowhere σ-complete is open dense.
I. e. for every P there is a dense subforcing Q ⊆ P which is decisive.

8) Of course it is possible to have 1Q ∈ Qσ or 1Q ∈ Q¬σ .
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Fact 4.3 If (Pα,
˜
Qα)α<ε is an iteration and Pα forces that

˜
Q′′

α ⊆
˜
Qα is dense (for every α ∈ ε), then there

are an iteration (P ′
α,

˜
Q′

α)α<ε and dense embeddings ϕα : P ′
α −→ Pα (α ≤ ε) such that for α ≤ β ≤ ε the

following hold:
1. If p ∈ P ′

β , then ϕα(p�α) = ϕβ(p)�α.

2. In particular ϕβ is an extension of ϕα.

3. P ′
α forces that

˜
Q′

α =
˜
Q′′

α[GPα ]9).

Because of Fact 2.3, Fact 4.2 and Fact 4.3 we can modify the original iteration (P 0
α,

˜
Q0

α)α<ε of Theorem 2.4
to get an iteration (Pα,

˜
Qα)α<ε satisfying “Pε is a dense subforcing of P 0

ε ” and:

Assumption 4.4 Pα forces that
˜
Qα is proper, decisive and preserving.

We will show that in this case Pε is densely preserving,10) so P 0
ε is densely preserving as well, proving

Theorem 2.4.
From now on we fix the iteration (Pα,

˜
Qα)α<ε satisfying Assumption 4.4. We also fix a regular χ � 2|Pε|, a

countable N ≺ H(χ) containing (Pα,
˜
Qα)α<ε, and an η covering N .

Definition 4.5 We will use the following notation (α ≤ β):
1. For p ∈ Pα, p �α ϕ means p �Pα ϕ.

2. If p ∈ Pβ , r ∈ Pα and r ≤ p�α, then we can define r ∧ p ∈ Pβ , the weakest condition stronger than r and p.

3. Gα is the Pα-generic filter over V (or its canonical name). So �β Gα = Gβ ∩ Pα. We set Vα := V [Gα].
4. Pβ/Gα is the Pα-name for the forcing consisting of those Pβ-conditions p such that p�α ∈ Gα (with the

same order as Pβ).

5. In Vα: If p ∈ Pβ/Gα, then p �(α,β) ϕ means p �Pβ/Gα
ϕ. We also say p (α, β)-forces ϕ.

Fact 4.6 Let 0 ≤ α ≤ β ≤ ε.
1. The function Pβ −→ Pα ∗ Pβ/Gα defined by p 
−→ (p�α, p) is a dense embedding.

2. If p1 ∈ Pα and
˜
p2 is a Pα-name for an element of Pβ/Gα, then p1 �α

˜
p2 �(α,β) ϕ is equivalent to

�β (p1 ∈ Gβ &
˜
p2 ∈ Gβ) → ϕ.

3. If D is an (open) dense subset of Pβ , then D∩Pβ/Gα is a Pα-name for an (open) dense subset of Pβ/Gα.

Note: If
˜
p is a Pα-name for an element of Pβ/Gα, then �α

˜
p �(α,β) ϕ does not imply that

˜
p[Gα] (which

is an element of Pβ and therefore of V ) forces ϕ in V (as element of Pα). I. e. V � (�α
˜
p �(α,β) ϕ) does not

imply �α (V �
˜
p �β ϕ).

We will use the following straightforward technical facts:

Lemma 4.7 Let 0 ≤ α ≤ γ ≤ β ≤ ε. Pα forces:
1. If p ∈ Pβ/Gα, q ∈ Pγ/Gα, and q �(α,γ) p�γ ∈ Gγ , then we can define q ∧ (p�β \ γ) to be a condi-

tion p′ ∈ Pβ/Gα such that p′�γ = q and

p′�ξ �(α,ξ) p′(ξ) = p(ξ)

for γ ≤ ξ < β. If q ≤ p�γ, then q ∧ (p�β \ γ) ≤ p, and if p2 ≤ p1, then q ∧ (p2�β \ γ) ≤ q ∧ (p1�β \ γ).
2. If p0 ≥ p1 ≥ · · · is a decreasing sequence in Pγ/Gα, and for every α ≤ ζ < γ,p0�ζ �(α,ζ) p0(ζ) ∈

˜
Qσ

ζ ,
then there is pω ≤ p0 ∈ Pγ/Gα such that pω �(α,γ) pm ∈ Gγ for all m ∈ ω. (Here we actually use that Pα is
proper.)

P r o o f. To show 1., set A := dom(q) ∪ (dom(p) \ α). Note that A ∈ V . Fix a Pα-name for p. Define
for ξ ∈ A (in V ) p′(ξ) = q(ξ) if ξ < γ, and for ξ ≥ γ let p′(ξ) be p(ξ) provided that p�ξ ∈ Gξ (1

˜
Qξ

otherwise).
2. is similar: There is A ∈ V countable in V such that A ⊇ ⋃

m∈ω dom(pm) (since Pα is proper). Fix
a Pα-name (in V ) for the sequence (pm)m∈ω.

Now define pω in V : Set pω�α := p0�α. For α ≤ ζ < γ, ζ ∈ A define pω(ζ) ∈
˙
Qζ to be a lower bound

of {pm(ζ) : m ∈ ω} if such a lower bound exists, and p0(ζ) otherwise.

9) Where GPα := {p ∈ Pα : (∃p′ ∈ GP ′
α
) (ϕα(p′) ≤ p)} is the canonical Pα-generic filter over V .

10) Note that we do not claim that Pε is preserving.
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From now on, to distinguish between Pβ-names and Pα-names for some α < β, we denote Pβ-names (in V as
well as Pα-names for such names) with a tilde under the symbol (e. g.

˜
τ ) and we denote Pα-names for Vα objects

that are not Pβ-names (but could be Pβ conditions) with a dot under the symbol (e. g.
˙
τ ). In particular we

write (Pα,
˙
Qα)α<ε.

Definition 4.8 Let α ≤ β ≤ ε. Work in Vα.

1. (pm)m∈ω is an honest (α, γ, β)-sequence if

(a) pm ∈ Pβ/Gα;

(b) pm+1 ≤ pm;

(c) α ≤ γ ≤ β;

(d) for all α ≤ ζ < γ, p0�ζ �(α,ζ) p0(ζ) ∈
˙
Qσ

ζ ;11)

(e) pm�γ = p0�γ for all m;

(f) if γ < β, then p0�γ (α, γ)-forces that p0(γ) ∈
˙
Q¬σ

γ , and that {pm(γ) : m ∈ ω} ⊆
˙
Qγ is inconsistent.

2. Let k be a natural number, f̄
∗ = (f∗

i )i<k a k-sequence of elements of ωω, and
˜
f̄ = (

˜
fi)i<k a k-sequence

of Pβ-names of elements of C. We say f̄
∗

is an honest (α, γ, β)-approximation of
˜
f̄ witnessed by (pm)m∈ω

if (pm)m∈ω is an honest (α, γ, β)-sequence and pm �(α,β)
˜
fi�m = f∗

i �m for all m ∈ ω and i < k.

3. f̄
∗

is an honest (α, β)-approximation of
˜
f̄ under p means that there are γ and (pm)m∈ω such that p0 ≤ p

and f̄
∗

is an honest (α, γ, β)-approximation of
˜
f̄ witnessed by (pm)m∈ω.

Lemma 4.9 Let α ≤ ζ ≤ β ≤ ε. Pα forces:

1. If (pm)m∈ω is an honest (α, γ, β)-sequence, then (pm�ζ)m∈ω is an honest (α, min(ζ, γ), ζ)-sequence.

2. Assume that p is an element of Pβ/Gα, k a natural number, (
˜
fi)i<k a k-sequence of Pβ-names for ele-

ments of C, and D a dense subset of Pβ/Gα. Then there are p′ ≤ p in D and (f∗
i )i<k such that (f∗

i )i<k is an
honest (α, β)-approximation of (

˜
fi)i<k under p′.

P r o o f. We just show 2. Work in Vα.
Let α ≤ γ < β be minimal such that p�γ ��(α,γ) p(γ) ∈

˙
Qσ

γ . If there is no such γ, set γ = β and p2 = p.
Otherwise pick an r ≤ p�γ in Pγ/Gα such that r �(α,γ) p(γ) ∈

˙
Q¬σ

γ , and set p2 = p ∧ r.
Pick p′ ≤ p2 in D.
Let f̄∗ approximate

˜
f̄ witnessed by p′ = q0 ≥ q1 ≥ · · · (in Pβ/Gα). According to Lemma 4.7, 2., there

is qω ∈ Pγ/Gα such that qω ≤ p′�γ and qω �(α,γ) qm�γ ∈ Gγ for all m. If γ < β, we can assume that qω

decides whether {qm(γ) : m ∈ ω} is consistent. Set rm = qω ∧ (qm�β \ γ), cf. Lemma 4.7, 1. Assume γ < β
and qω forces consistency, i. e. qω �(α,γ) s ≤ rm(γ) for all m. Then qω forces that there is an inconsistent
sequence s = s0 ≥ s1 ≥ · · · (since s ∈ Q¬σ

γ ). Modify rm such that rm�γ = qω � rm(γ) = sm.

Induction Lemma 4.10 Assume that q ∈ Pα and that the following are in N : α ≤ β ≤ ε, the Pα-names
˙
p,

˙
k,

˙
f̄∗ = (

˙
f∗

i )i∈
˙
k and the Pβ-name

˜
f̄ = (

˜
fi)i∈

˙
k for elements of C. Assume that q forces

1.
˙
f̄∗ is an honest (α, β)-approximation of

˜
f̄ under

˙
p (in particular

˙
p ∈ Pβ/Gα);

2. Gα is N -generic and η covers N [Gα].
Then there is q+ ∈ Pβ such that q+�α = q and q+ forces

1.
˙
p ∈ Gβ;

2. Gβ is N -generic and η covers N [Gβ ];

3.
˙
f∗

i Rjη implies
˜
fiRjη for all i ∈ k, j ∈ ω.

11) If ζ /∈ dom(p), then p(ζ) is defined to be 1Qζ
. In this case p(ζ) ∈ Qσ

ζ means that Qζ is σ-complete. Therefore it is possible

that γ ≥ α + ω1, this is no contradiction to countable support.
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P r o o f. We prove the lemma by induction on β. For α = β there is nothing to do. We split the proof into two
cases: β successor and β limit.

Suppose that β = ζ + 1 is a successor. Let
˙
pm be Pα-names for witnesses of the approximation.

First assume that q ∈ Gζ (i. e. q ∈ Gζ ∩ Pα = Gα) and work in Vζ . Set p−1 = 1Pβ
. Let −1 ≤ m∗ ≤ ω be

the supremum of {m :
˙
pm�ζ ∈ Gζ}.

C a s e 1: m∗ = ω. In this case set f̄
∗∗ :=

˙
f̄∗ and r := p0(ζ) ∈

˙
Qζ . Note that

˙
pm(ζ) �

˙
Qζ

˜
fi�m = f∗∗

i �m,

i. e. f̄
∗∗

is an interpretation of ¯
˜
f (with respect to

˙
Qζ) under r =

˙
p0(ζ).

C a s e 2: m∗ < ω. Find a
˙
Qζ-interpretation f̄

∗∗
of

˜
f̄ under r =

˙
pm∗

(ζ) ∈
˙
Qζ (use the fact that

˙
Qζ is pre-

serving). Note that f∗∗
i �m∗ = f∗

i �m∗.
Now fix (in V ) Pζ-names

˙
f̄∗∗ and

˙
r for this f̄

∗∗
and r (we do not care how these names behave if q /∈ Gα).

Then we get q �α
˙
pm�ζ �(α,ζ)

˙
f∗∗

i �m =
˙
f∗

i �m for all i <
˙
k. So by Lemma 4.9, 1., q forces that

˙
f̄∗ is an honest

(α, ζ)-approximation of
˙
f̄∗∗ under

˙
p�ζ.

By the induction hypothesis there is an N -generic q+ ∈ Pζ which forces that
˙
p0�ζ ∈ Gζ , η covers N [Gζ ] and

of course that
˙
Qζ is proper and preserving. Assume q+ ∈ Gζ and work in Vζ . Since

˙
Qζ is preserving and f̄

∗∗
is

an approximation of
˜
f̄ under r, there is an N [Gζ ]-generic q′ ≤ r which forces that η covers N [Gζ ][G(ζ)]. Let

(in V )
˙
q′ be a name for this

˙
q, and set q++ := q+ ∧

˙
q′. This q++ is as required. (To see that q++ �

˙
p ∈ Gβ , note

that q+ � (
˙
p�ζ ∈ Gζ &

˙
q′ ≤

˙
p(ζ)).)

Suppose now that β is limit. Choose a cofinal, increasing sequence (αn)n∈ω in β ∩ N such that α = α0.
Let (Dn)n∈ω enumerate a basis of the open dense subsets of Pβ that are in N , and (

˜
gn)n∈ω all Pβ-names

in N for elements of C. We may assume that D0 = Pβ , Dn+1 ⊆ Dn and that every p ∈ Dn+1 decides
˜
gm�n

for 0 ≤ m ≤ n as well as
˙
k and

˜
fi�n for 0 ≤ i ≤

˙
k.

Let
˙
γ0 and (

˙
pm
0 )m∈ω be Pα0 -names for witnesses of the approximation in the assumption. Set q−1 := q,

˙
k0 :=

˙
k, and

˙
f̄∗0 :=

˙
f̄∗. Given

˙
kn, we set

˜
f̄n = (

˜
fn

i )i<
˙
kn := (

˜
f0, . . . ,

˜
f

˙
k−1,

˜
g0, . . . ,

˜
g
˙
kn−

˙
k).

By induction on n ≥ 1 we can construct the following Pαn -names in N :

1. (
˙
pm

n )m∈ω, a sequence of conditions in Pβ/Gαn ,

2.
˙
γn, an ordinal,

3.
˙
kn, a natural number ≥

˙
kn−1,

4.
˙
f̄∗n = (

˙
f∗n

i )i<
˙
kn , a

˙
kn-sequence of functions from ω to ω,

such that (for n ≥ 1) Pαn forces that
˙
p0

n−1�αn ∈ Gαn implies:12)

1. ¯
˙
f∗n is an honest (αn,

˙
γn, β)-approximation of ¯

˜
fn witnessed by (

˙
pm

n )m∈ω.

2. One of the following cases holds:

˙
An:

˙
γn−1 < αn. Then there is a maximal m∗ ≥ 0 such that

˙
pm∗

n−1�αn is in Gαn . Then we set
˙
kn := n +

˙
k

and choose
˙
p0

n ≤
˙
pm∗

n−1 ≤
˙
p0

n−1,
˙
p0

n ∈ Dn.

˙
Bn:

˙
γn−1 = β. (In this case the rest of the iteration is σ-complete and all

˙
pm

n−1 are identical.) Set
˙
kn := n+

˙
k

and choose
˙
p0

n ≤
˙
p0

n−1 in Dn.

˙
Cn: αn ≤

˙
γn−1 < β. (Then all

˙
pm

n−1�αn are identical and therefore in Pαn/Gαn .) In this case we “do
nothing”, i. e. we set pm

n := pm
n−1,

˙
kn :=

˙
kn−1 and

˙
f̄∗n :=

˙
f̄∗n−1.

All we need for this construction is Lemma 4.9, 2. Note that in all three cases
˙
p0

n ≤
˙
p0

n−1; in case
˙
An or

˙
Bn,

˙
p0

n ∈ Dn and therefore
˙
p0

n �(αn,β)
˜
fn

i �n =
˙
f∗n�n for i < n. In case

˙
Bn,

˙
γn is again β, in case

˙
Cn,

˙
γn =

˙
γn−1.

In all three cases, f∗n is an honest (αn,
˙
γn, αn+1)-approximation witnessed by (

˙
pm

n �αn+1)m∈ω.
To see this, we just have to show that

˙
pm

n �αn+1 �(αn,αn+1)
˙
f∗n+1

i �m =
˙
f∗n

i �m. Assume Gαn+1 con-
tains

˙
pm

n �αn+1. Then in Vα+2, case
˙
An+1,

˙
Bn+1 or

˙
Cn+1 holds. In each case we can extend Gαn+1 to a Pβ-ge-

neric filter Gβ containing
˙
pm

n+1. Then (by case distinction) Gβ contains
˙
pm

n as well, i. e.

˙
f∗n

i �m =
˜
fi�m =

˙
f∗n+1

i �m.

12) Or: �αn−1 p0
n−1�αn �(αn−1,αn).
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Next we construct (by induction on n ≥ 0) qn ∈ Pαn+1 such that qn�αn = qn−1 and qn forces:
1. Gαn+1 is N -generic and η covers N [Gαn+1 ];
2.

˙
p0

n�αn+1 ∈ Gαn+1 ;

3.
˙
f∗n

i Rjη implies
˙
f∗n+1

i Rjη for i ∈
˙
kn, j ∈ ω;

4. (
˙
f∗n+1

i )i<
˙
kn+1 approximates (

˙
f∗n+2

i )i<
˙
kn+1 witnessed by (

˙
pm

n+1�αn+2)m∈ω.
We can do this simply by applying the induction lemma iteratively: Given qn−1, we choose qn using the Induc-

tion Lemma 4.10, setting α := αn, β := αn+1, q := qn−1, q+ := qn,
˙
p :=

˙
p0

n,
˙
k :=

˙
kn,

˙
f̄∗ :=

˙
f̄∗n, ¯

˜
f :=

˙
f̄∗n+1.

Now qβ :=
⋃

qαn is as required: Assume Gβ is a Pβ-generic filter over V containing qβ . We write pm
n

for
˙
pm

n [Gβ ] =
˙
pm

n [Gαn ] etc. Then we have:

1. p0
n ∈ Gβ for all n: qm �

˙
p0

m−1�αm ∈ Gαm for all m. Therefore p0
m ≤ p0

m−1 for all m. So for m > n,
qm �

˙
p0

n�αm ∈ Gαm . Therefore p0
n�αm ∈ Gαm for all m, i. e. p0

n ∈ Gβ .

2. γn = γn−1 unless γn−1 < αn (i. e. case
˙
An holds).

3.
⋃

n∈ω kn = ω, and infinitely often case
˙
An or case

˙
Bn holds: If γm = β for some m, then case

˙
Bn holds

(and kn = n) for all n > m. Whenever αm+1 ≤ γm < β (i. e. case
˙
Cm+1 holds), then for some n > m (the

smallest n such that αn > γm) case
˙
An holds and therefore kn = n.

4. Gβ is N -generic: Let D ∈ N be dense. Then D ⊇ Dm ∈ N , and for some n ≥ m, case
˙
An or case

˙
Bn

holds. Therefore p0
n ∈ N ∩ Dn ∩ Gβ , and Dn ⊆ Dm.

5. We set f∞
i :=

˙
f l

i [Gβ ] for some l sufficiently large (i. e. l such that kl > i). So

(f∞
0 , f∞

1 , . . .) = (f0, . . . , fk−1, g0, g1, . . .).

6. If kn > i and l > n, then f∗n
i Rjη implies f∗l

i Rjη.

7. If kn > i, then f∗nRjη implies f∞
i Rjη: Recall that {f : fRjη} is closed. For every m there is l > m such

that case
˙
Al or

˙
Bl holds, i. e. f∗l

i �l = f∞
i �l, and by the last item f∗l

i Rjη.

8. η covers N [Gβ ]: Let g ∈ N [Gβ ] ∩ C. Then for some i, g = f∞
i . Pick an n such that kn > i. Since η

covers N [Gαn ] and
˙
f∗n

i ∈ N [Gαn ],
˙
f∗n

i Rjη for some j ∈ ω.
This ends the proof of the limit case.

Applying the induction lemma to α = k = 0, we get that the limit Pε is weakly preserving. However, the
lemma applied to k > 0 does not immediately give the preservation theorem (Theorem 2.4), since we only get
preservation for honest approximations. This turns out to be no problem, however: We can find a dense P ′ ⊆ Pε

consisting only of “honest” conditions. Then any P ′-approximation is an honest P -approximation, so we can
apply the induction lemma, which shows that P ′ is preserving, i.e. Pε (and therefore P 0

ε ) is densely preserving.
In more detail: Set

P ′ := {1Pε} ∪ {p ∈ Pε : (∃γ ≤ ε) (γ = ε ∨ p�γ �γ p(γ) ∈ Q¬σ)
& (∀α < γ) (p�α �α p(α) ∈ Qσ)}.

P ′ is a dense subforcing of Pε (and therefore a dense subforcing of the original P 0
ε of Theorem 2.4). We assign

to every p ∈ P ′ \ {1P ′} the (unique) corresponding γ(p). If q ≤ p, then γ(q) = γ(p).
We claim that P ′ is preserving (this finishes the proof of the iteration theorem). Assume that (in P ′) f̄

∗
inter-

prets
˜
f̄ witnessed by (pm)m∈ω. We have to show that there is an honest witness (pm

1 )m∈ω such that p0
1 ≤ p0.

(a) If all pm are 1P , then
˜
f̄ is the standard name for f̄

∗
and there is nothing to do. So let m∗ be the smallest m

such that pm∗ �= 1P . Set γ = γ(pm∗
).

(b) There exists pω in Pγ such that pω ≤ pm�γ for all m. Set pm
1 := pω ∧ pm. (So if γ = ε, then pm

1 = pω for
all m.)

(c) If γ < ε, we can assume that pω decides whether the set {
˙
pm(γ) : m ∈ ω} is consistent. If it decides

positively, then we redefine
˙
pm
1 (γ) to be any inconsistent sequence in

˙
Qγ stronger than all

˙
pm(γ).

(d) The resulting sequence (pm
1 )m∈ω witnesses that f̄∗ is an honest approximation of

˜
f̄ .
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