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PRESERVING PRESERVATION

JAKOB KELLNER AND SAHARON SHELAH

Abstract. We prove that the property “P doesn’t make the old reals Lebesgue null” is preserved under

countable support iterations of proper forcings, under the additional assumption that the forcings are nep

(a generalization of Suslin proper) in an absolute way. We also give some results for general Suslin ccc

ideals.

§1. Introduction. Let us consider the following

Hypothesis 1. Let (Pâ ,
˜
Qâ)â<å be a countable support iteration of proper forcings

(å a limit) such that each Pâ (â < å) forces that the set of old reals X := V ∩ 2
ù

remains Lebesgue positive. Then På forces this as well.

The main result of this paper (9.4) is that Hypothesis 1 is true under some
additional (relativelymild) requirements on thePâ . It seems that such requirements
are needed (this is argued in section 4).
Preservation theorems of this kind have proven to be extremely useful in inde-
pendence proofs. Hypothesis 1 specifically is used in the proof of the following two
theorems of [9]:

It cannot be decided in ZFC whether every superposition-measurable func-
tion is measurable. (A function f : R2 → R is superposition-measurable,
if for every measurable g : R → R the superposition function fg : R → R,
x 7→ f(x, g(x)) is measurable.)

and (von Weizsäcker’s problem):

It cannot be decided in ZFC whether for every f : R → R there is a
continuous function g : R → R such that {x ∈ R : f(x) = g(x) } is of
positive outer measure.

Forcing is a very general method for proving independence results, i.e., results
of the form “formula ϕ is neither provable nor refutable in ZFC”. Forcing gives a
method for modifying a given set-theoretical universe V to a new universe V ′ in
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which some formula ø is guaranteed to hold. In a forcing argument (for example,
to violate CH) one typically has to

• change the universe (by adding generic objects, in the ¬CH example ℵ2 many
reals), and

• preserve certain properties of the universe (e.g., we have to guarantee that ù1
and ù2 remain cardinals).

In the ¬CH example, preservation can be guaranteed by the countable chain con-
dition (ccc). If a forcing P is ccc, then it is very “well behaved” in the sense
that it preserves many properties of the universe. In particular all cardinalities are
preserved.
In a (transfinite) forcing iteration (e.g., to create a world without Suslin trees)
one typically has to

• change the universe in successor stages (pick a tree and kill it),
• preserve properties of the universe in successor stages (use a ccc forcing),
• make sure that preservation still works in limit stages, and
• use some bookkeeping (make sure that in stage ù2 all trees are dead).

In the Suslin tree example, preservation at limits is guaranteed by the following
iteration (or: preservation) theorem:

The finite support iteration of ccc forcings is ccc.

Historically [14] this was the first theorem of its kind, and it still is of central
importance in forcing applications.
However, in many cases finite support iterations are not the right tool. For
example, they always add Cohen reals at steps of countable cofinality. While Cohen
reals are “harmless” in some respects (Cohen forcing is ccc, and in this sense well
behaved), they do change the universe dramatically in some other respects. For
example, a Cohen real makes the set of old reals (i.e., 2ù ∩ V ) Lebesgue null. So if
wewant to preserve positivity of the old reals we cannot use finite support iterations.
The most popular alternative to finite support iterations of ccc forcings are count-
able support iterations of proper forcings. A forcing P is proper if (for some large
regular ÷) for all countable elementary submodels N of H (÷) and all p ∈ P ∩ N
there is a condition q ≤ p forcing that GP is N -generic.
(GP is N -generic if for all dense P-subsets D ∈ N , GP ∩D ∩N is nonempty.)
Again, properness implies that P is well behaved in some respects (in particular,
ù1 is not collapsed). Also, we have the following central preservation theorem:

Properness is preserved under countable support iterations.

In addition to this basic theorem, there are numerous additional properties that are
preserved in limit steps as well. For example, countable support iterations of proper
forcings that are ùù-bounding (or that satisfy the Laver or Sacks property) are ùù-
bounding again (or satisfy theLaver or Sacks property, respectively). Actually, these
three properties are instances of a class which we call tools-preserving (see 7.1). All
these properties are preserved under countable support iterations of proper forcings
(see section 7 for details).
In this paper, we ask: Is the property

Forcing with P leaves the set of old reals Lebesgue positive(P1)
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preserved under countable support iterations of proper forcings? (I.e., is Hypothesis
1 true)? It seems that the answer is (consistently) no, but a full counterexample
is difficult. Instead we give in section 4 a counterexample to the following more
general (i.e., stronger) iteration theorem:

Hypothesis 2. Assume X has positive outer measure. Then the following property
is preserved by countable support iterations of proper forcings:

Forcing with P leaves the set X positive.

So P1 does not seem to be iterable. The Lebesgue version of tools-preserving
(9.2) is an iterable property that implies P1. In this paper we show (in sections 6
and 9) that the following property P2 implies Lebesgue-tools-preservation:

ZFC proves that P is nep and satisfies P1.(P2)

So the iteration of forcings satisfying P2 satisfies Lebesgue-tools-preservation and
therefore P1.
Non-elementary proper forcing (nep) has been introduced in [13]. It is a gener-
alization of Suslin+ (introduced in [2]), which in turn is a generalization of Suslin
proper. For example, Cohen, random, amoeba and Hechler forcing are Suslin ccc,
Mathias forcing is Suslin proper, Laver, Miller and Sacks forcing are Suslin+. An
introduction to transitive nep forcing and Suslin ccc ideals can be found in [7].
We will investigate not only the Lebesgue ideal, but general Suslin ccc ideals (such
as the meager ideal) as well. The case of the meager ideal has already been solved
by Goldstern and Shelah in [12, Lemma XVIII.3.11, p. 920].

Annotated contents.

Section 2, p. 917: We recall the definition and basic properties of Suslin ccc ideals,
the corresponding notions of positivity and outer measure, and the Cohen
and random algebras on 2κ.

Section 3, p. 921: We define preservation of positivity and of outer measure, and
list some basic properties.

Section 4, p. 924: We give a “partial counterexample” to Hypothesis 1. To be
more exact: We show that Hypothesis 2 is consistently false.

Section 5, p. 926: We introduce true preservation (of positivity and of outer mea-
sure), a notion using the stationary ideal on [κ]ℵ0 . We show that these
notions are related to (strong) preservation of generics. Apart from defini-
tion 5.9, this section is not required for the main result 9.4.

Section 6, p. 932: We prove that under certain assumptions, preservation of pos-
itivity implies strong preservation.

Section 7, p. 938: We recall the “Case A” or “tools” preservation theorem for
countable support iterations of proper forcings.

Section 8, p. 939: We review the case of the meager ideal.
Section 9, p. 941: We deal with the case of the Lebesgue ideal and show that

strong preservation is equivalent to Lebesgue-tools-preservation, and that
therefore strong preservation is preserved in countable support iterations.

Diagrams of implications (for the general case, as well as for meager and Lebesgue
null) can be found on page 944.
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§2. Notation and basic results. In this paper, the notionN ≺ H (÷) alwaysmeans
thatN is a countable elementary submodel.
Forcings are written downwards, i.e., q < p means q is a stronger condition than
p. Usually, the symbols for stronger conditions will be chosen lexicographically
bigger than those for weaker conditions.
Names for objects in the forcing extension are usually written with a tilde below,
such as

˜
ô. The standard name for an object x ∈ V is denoted by x̌. The name of

the generic filter however (as well as a generic filter itself) will usually be called G
(or, e.g., GP if we want to stress the forcing P).
ro(Q) denotes the complete Boolean algebra of regular open sets of Q.
We will fix a Suslin ccc ideal I (Suslin ccc ideals are defined in 2.2). We will use
the phrases “null”, “measure 1” or “outer measure 1” for every such I , even if I
is not related to a measure. This seems more intuitive than terminology such as
“having outer Borel approximation 2ù”. Note that our notation does not mention
the ideal I as parameter: we will say “null” instead of e.g., “I -null” (although the
notion does of course depend on the ideal I used).
We will mainly be interested in the case that I is the set of Lebesgue null sets.
C denotes the Cohen algebra and B the random algebra.

Suslin ccc ideals. We assume thatQI is a Suslin ccc forcing:

Definition 2.1. A (definition for a) forcing Q is Suslin ccc, if Q ⊆ 2ù, “x ∈ Q”
and “x ≤Q y” are

˜
Σ11 statements, “x and y are compatible” is Borel, and Q is ccc.

So QI is defined using a real parameter rQ . A candidate is a countable transitive
model of some ZFC∗ ⊆ ZFC containing rQ (see definition 6.3 for more details on
ZFC∗).
In addition, we assume that

˜
çI is a hereditarily countable name for a new real (i.e.,

QI
˜
çI ∈ ùù \ V ) such that in all candidates {[[

˜
çI (n) = m]], n,m ∈ ù} generates

ro(QI ). (Such a real is sometimes called “generic real”.) Note that, e.g., for Cohen
forcing the canonical name for the Cohen real has this property; analogously for
random forcing.
A Suslin ccc ideal I is an ideal defined from a pair (QI ,

˜
çI ) as above in the

following way:

Definition 2.2.

• A ∈ BC means A is a Borel code.
• For A ∈ BC, AV denotes the evaluation of A in V
(i.e., AV is the Borel set corresponding to the code A).

• A Borel code A is null, or: A ∈ IBC, if QI
˜
çI /∈ AV [GQI ].

A is positive, or: A ∈ I +BC, if A is not null.
A has measure 1 if the code for 2ù \A is null.

• A subset X of 2ù is null, or: X ∈ I , if for some A ∈ IBC, X ⊆ AV .
X ⊆ 2ù is positive, or: X ∈ I +, if it is not null.
X is of measure 1 if 2ù \X is null.

• For an arbitrary set N and a real r ∈ 2ù , r is called I -generic over N ,
or: r ∈ Gen(N ), if r /∈ AV for all A ∈ IBC ∩N .
So Gen(N ) = 2ù \

⋃
{AV : A ∈ IBC ∩N}.
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For example, if QI is the random algebra B, then I is the ideal of Lebesgue null
sets, and if QI is Cohen forcing C, then I is the ideal of meager sets.
Note that the notation we use assumes that the ideal I is understood, e.g., we say
“positive” instead of “positive with respect to I ”.
The following can be found, e.g., in [7]:

Lemma 2.3.

• I is a ó-complete ccc ideal containing all singletons, and ro(Q I ) ∼= Borel/I (as
a complete Boolean algebra).

• For a Borel code A, the sentences “q QI
˜
çI ∈ AV [GQI ]” and “A ∈ IBC” are

˜
∆12.

(So in particular they are absolute.)
• If N is countable, thenGen(N ) is a Borel set of measure 1.
• If N is a countable elementary submodel ofH (÷) andM the transitive collapse
of N , then r is I -generic over N if and only if r is I -generic overM .

• Let M be a candidate. r is I -generic over M if and only if there is (in V ) a
QI -generic filter G overM such that

˜
çI [G ] = r.

• IfM is a candidate and q ∈ QI ∩M , then there is a positive Borel code Bq ∈M

such thatM � “[[
˜
çI ∈ BM [G]q ]]ro(QI ) = q”. Such a Bq satisfies

{
˜
çI [G ] : G ∈ V is Q-generic overM and contains q }

= ùù \
⋃

{AV : A ∈M,q 
˜
çI /∈ A }

= Gen(M ) ∩ BVq .

For example, if we we choseQI to be Cohen forcing, thenwe get the followingwell
known facts: The meager ideal is a ó-complete ccc ideal, ro(QI ) is Borel modulo
meager, for a Borel code A the statement “A is meager” is absolute, a real c is
QI -generic over a modelM if and only if it is I -generic (i.e., if it avoids all meager
Borel sets ofM ), etc.
For any Suslin ccc ideal I there is a notion analogous to the Lebesgue outer
measure. Note however that this generalized outer measure will be a Borel set, not
a real number:

Definition 2.4. Let X be a subset of 2ù .

• A Borel set B is (a representant of) the outer measure of X if B is (modulo
I ) the smallest Borel superset of X . I.e., B ⊃ X , and for every other Borel set
B ′ ⊃ X , B \ B ′ is null.

• X has outer measure 1, if 2ù is outer measure of X .

Instead of “B ⊃ X”we could use “X \B ∈ I ” in the definition of outermeasure.1

Clearly, every X has an outer measure (unique modulo I ); the outer measure of
a Borel set A is A itself; the outer measure of a countable union is the union of the
outer measures; etc.
If I is the Lebesgue ideal, then the outer measure of X (according to our
definition) is a Borel set B containing X such that Leb(B) = Leb∗(X ), where
Leb∗(X ) ∈ R is the outer measure according to the usual definition.
If I is the ideal of meager sets, then the outer measure of a set X is 2ù minus the
union of all clopen sets C such that C ∩ X is meager. (This follows from the fact

1That makes no difference modulo I , since every null set is contained in a Borel null set.
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that every positive Borel set contains (modulo I ) a clopen set and that there are
only countable many clopen sets).

The random and Cohen algebras on 2κ. We can add κ many Cohen (or random)
reals “simultaneously” using the Cohen algebra Cκ (or random algebra Bκ) on 2κ.
We will need these forcings only for the counterexamples 3.3 and 4.1. We briefly
recall some well known facts.
Let J be any set. For i ∈ J and a ∈ {0, 1} define [i 7→ a] :={x ∈ 2J : x(i) = a }.
A basic clopen set is a finite intersection of such sets [i 7→ a]. These sets form a
basis of the topology, and the clopen subsets of 2J are exactly the finite unions of
basic clopen sets.

Lemma 2.5. LetBJ be the ó-algebra on 2J generated by the (basic) clopen sets.

• Every A ∈ BJ depends only on a countable J
′ ⊆ J (i.e., if x, y ∈ 2J is such that

x(i) = y(i) for all i ∈ J ′, then x is in A if and only if y is in A).
• (2J ,BJ ,Leb

J ) is a measure space, where LebJ is the product measure.
• For A ∈ BJ and å > 0 there is a B ⊇ A such that Leb

J (B) ≤ LebJ (A) + å and
B is a countable disjoint union of (basic) clopen sets.

Let BJ (the random algebra on 2J ) be BJ factorized by the Leb
J -null sets. The

generic filter G on BJ is determined by the random sequence
˜
r ∈ 2J defined by

˜
r(i) = 0 if and only if [i 7→ 0] ∈ G .

Lemma 2.6.

• BJ is a complete ccc Boolean algebra.
• If J andK are disjoint, then BJ∪K is equivalent to BJ ∗ BK .
• If J is infinite, then

˜
r codes a sequence of |J | many random reals.

• If J is uncountable, then BJ forces that the set
˜
X of these random reals is a

nowhere Lebesgue-null Sierpinski set.2

• If X is not Lebesgue null then BJ forces that X̌ remains positive, and if J is
infinite then BJ forces that V ∩ 2ù is meager.

Note that Bκ is not equivalent to either the
product—countable support iteration—finite support iteration

of κ many random forcings, since Bκ does not
add an unbounded real—make the continuum small—add a Cohen real.

A set X in a topological space is called nowhere dense if X̄
◦
= ∅, and meager if

it is the countable union of nowhere dense sets. CJ (the Cohen algebra on 2J ) is
defined as the Borel algebra on 2J factorized by the ideal of meager sets. Again,
the generic filter G on CJ is determined by the Cohen sequence

˜
c ∈ 2J , defined by

˜
c(i) = 0 if and only if [i 7→ 0] ∈ G .

Lemma 2.7.

• Every Borel set B is equivalent (modulo meager) to an open set (i.e., there is an
open set O such that B∆O is meager).

• CJ is a complete ccc Boolean algebra.
• If J andK are disjoint, then CJ∪K is equivalent to CJ ∗ CK and CJ × CK .
• If J is infinite, then

˜
c codes a sequence of |J | many Cohen reals.

2A set of reals is nowhere Lebesgue-null if it has nonempty intersection with every Lebesgue-positive
Borel set, and it is a Sierpinski set if it is uncountable and has a countable intersection with any Borel
Lebesgue-null set (such a set cannot be measurable).



920 JAKOB KELLNER AND SAHARON SHELAH

• If J is uncountable, then the CJ forces that the set
˜
X of these Cohen reals is a

nowhere meager Luzin set.3

• IfX is non-meager, thenCJ forces that X̌ remains non-meager, and if J is infinite
then CJ makes V ∩ 2ù Lebesgue null.

We can represent BJ as well as CJ in a very absolute way. To be able to refer to
this property in section 4, we introduce the following definition:

Definition 2.8. (The definition of) a forcingQ is strongly absolute, if the follow-
ing formulas are upwards absolute between V and every forcing extension of V :

“p ∈ Q”, “q ≤ p” and “A is a maximal antichain”.

The requirement that “A is a maximal antichain” is upwards absolute is very
strong and will usually only be satisfied by ccc forcings. For example every Suslin
ccc forcing is strongly absolute, but Mathias forcing is not (although it is nicely
definable and in particular Suslin proper). Note that for strongly absolute forcings
“p and q are compatible” is absolute.

Lemma 2.9. For any J (suitable definitions of forcings equivalent to) BJ andCJ are
strongly absolute.

Quotient forcings. The following is a basic fact of forcing theory: If f : P → Q
is a complete embedding, then

• Q is equivalent to P ∗
˜
R, where

˜
R contains all q ∈ Q that are compatible with

f(p) for all p ∈ GP . So in particular
• for every Q-generic filter GQ over V there is a P-generic filter GP over V and
an
˜
R[GP]-generic filter GR over V [GP] such that V [GQ] = V [GP][GR], and

• for every P-generic filter GP over V and every
˜
R[GP ]-generic filter GR over

V [GP] there is a Q-generic filter GQ over V such that V [GQ] = V [GP][GR].

Sometimes it is more convenient to use the following analogon that doesn’t men-
tion complete embeddings (which is folklore, but we do not have a reference):

Lemma 2.10. Let P and Q be arbitrary partial orders.

(1) IfGQ isQ-generic over V , and if in V [GQ] there is a P-generic filterGP over V ,
then there is a forcing R ∈ V [GP] and an R-generic filter GR over V [GP] such
that V [GQ] = V [GP][GR]. R can be chosen to be a subset of ro(Q)V (and GR
is essentially the same as GQ).

(2) Assume that Q forces that for all p ∈ P there is a P-generic filter over V
containing p. Then there is a P-name

˜
R for a subset of ro(Q)V such that the

following holds: IfGP is P-generic overV andGR is
˜
R[GP]-generic overV [GP],

then GR is ro(Q)-generic over V and V [GP][GR]
˜
R[GP ] = V [GR]ro(Q).

(3) Q forces: If (2P)V is countable, then for all p ∈ P there is a P-generic filter GP
over V containing p.

Proof. (1) Assume towards a contradiction that q ∈ ro(Q) forces that
˜
G is P-

generic but there is no such R in V [
˜
G ]P . There is a p0 ∈ P such that q 6 (p /∈

˜
G)

for all p ≤ p0. (Otherwise the setD := {p ∈ P : q  (p /∈
˜
G) } is dense, so q forces

that there is ap ∈
˜
G∩D.) In particular the truth value q0 :=[[p0 ∈

˜
G ]]∧q is positive.

There is a complete embeddingf fromP≤p0 to ro(Q)≤q0 (just setf(p):=[[p ∈
˜
G ]]).

3A set of reals is nowhere meager if it has nonempty intersection with every non-meager Borel set,
and it is Luzin if it is uncountable and has countable intersection with every meager Borel set.
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So ro(Q)≤q0 can be factorized as P≤p0 ∗
˜
R, where

˜
R is the P-name for the set of

all q ∈ ro(Q)≤q0 such that [[p ∈
˜
G ]] ∧ q 6= 0 for all p ∈ GP . If GP is P≤p0 -generic

over V and GR is
˜
R[GP]-generic over V [GP], then GR is ro(Q)≤q0-generic over V ,

and therefore V [GR]Q is a Q-generic extension by a filter containing q.
In V [GR],

˜
G [GR] = GP :

GR ⊆
˜
R[GP], so [[p ∈

˜
G ]] ∧ q 6= 0 for every q ∈ GR.

If p /∈
˜
G [GR] then [[p ∈

˜
G ]] ∧ q = 0 for some q ∈ GR, so p /∈ GP .

If p ∈
˜
G [GR] then p′ /∈

˜
G [GR] for all p′ ⊥ p, so p′ /∈ GP for all p′ ⊥ p,

and p ∈ GP .

So in V [
˜
G ] there is an R as required after all and we get a contradiction.

(2) For p ∈ P pick a ro(Q)-name
˜
G for a P-generic filter containing p. Then

there is a p′ ≤ p such that 6 (p′′ /∈
˜
G) for all p′′ ≤ p′ (as in the proof of (1)).

Choose a maximal antichain A ⊆ P of such p′ and call the associated names for
filters

˜
Gp

′

. For a ∈ A set qa := [[a ∈
˜
Ga ]]. So qa 6 (p′′ /∈

˜
Ga) for all p′′ ≤ a.

Let
˜
R be the following P-name: If GP ∩ A = {a} then let

˜
R consist of those

q ∈ ro(Q)≤qa such that [[p ∈
˜
Ga ]] ∧ q 6= 0 for all p ∈ GP .

Assume thatGP is P-generic and thatGP∩A = {a}. ThenV [GP] is an extension
byP≤a , and

˜
R[GP ] is the quotient of the complete embeddingf : P≤a → ro(Q)≤qa .

So every
˜
R[GP ]-generic GR over V [GP] is ro(Q)≤qa -generic (and therefore Q-

generic) over V .
(3) If only countablymany subsets ofP are inV , thenwe can start with anyp and
can construct a decreasing sequence of length ù meeting all these dense sets. a

§3. Preservation. Recall that we have fixed a Suslin ccc ideal I and the corre-
sponding notions of positivity.

Definition 3.1. Let X ⊆ 2ù be positive with outer measure B , and P a forcing.

• P preserves positivity of X if P X̌ ∈ I+.
• P preserves Borel positivity if P preserves the positivity of AV for all positive
Borel codes A (i.e., P AV ∈ I+).

• P preserves positivity if P preserves the positivity of X for all positive X .
• P preserves outer measure of X if P (BV [G] is outer measure of X ).
• P preserves Borel outer measure if P preserves the outer measure of AV for
all Borel codes A (i.e., P AV [G] is outer measure of AV ).

• P preserves outer measure if P preserves the outer measure of X for all X .

Of special interest is preservation of positivity (or outer measure) of 2ù (we will
also say: “of V ”), i.e., of the set of all old reals.
We have already mentioned the following: If I is the ideal of Lebesgue null sets,
then the random algebra B preserves positivity, and the Cohen algebra C does not
preserve positivity. Dually, if I is the ideal of meager sets, then the Cohen algebra
C preserves positivity, and the random algebra B does not preserve positivity.
It is clear that preserving outer measure of X implies preserving positivity of X
(since being null is absolute for Borel codes, and the outer measure of X is a null
set if and only if X is null).
Preserving the outermeasure ofV is equivalent to preservingBorel outermeasure:
Let A be a Borel set in V . Then in V [G ], the outer measure of X := 2ù ∩ V is
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the disjoint union of the outer measure of X ∩ AV [G] = AV and the outer measure

of X \ AV [G] = (2ù \A)
V
. So if the outer measure of A decreases, then the outer

measure of V decreases.
So another way to characterize Borel outer measure preserving is:

“No positive Borel set disjoint to V is added”.

If in every forcing extension of V the set of old reals 2ù ∩ V has either outer
measure 0 or 1 then clearly preservation of positivity of V implies preservation of
Borel outer measure. Note that this is the case (for anyP) if I is either the Lebesgue
null or the meager ideal.
Other than for outer measure, positivity preservation of V and of all Borel sets
is not equivalent. A trivial counterexample is the following:
Set B0 := {x ∈ 2

ù : x(0) = 0 }, B1 := 2
ù \ B0. Let Q

I add a
˜
çI ∈ 2ù such that

either
˜
çI ∈ B0 and

˜
çI is random or

˜
çI ∈ B1 and

˜
çI is Cohen. QI

˜
çI /∈ B if and

only if QI
˜
çI /∈ B ∩B0 and QI

˜
çI /∈ B ∩B1, i.e., if and only if B ∩B0 is Lebesgue

null and B ∩ B1 is meager. In particular, B0 and B1 are positive Borel sets. So C

forces thatBV0 is null and thatB
V
1 remains positive. ThereforeC preserves positivity

of V , but not of Borel sets.
However, preservation of positivity ofV does imply Borel positivity preservation
if additional requirements are satisfied, for example once again if we know that
the outer measure of V in V [GP] is either 0 or 1. Another sufficient condition is
the following (which also is satisfied in case that I is Lebesgue null or meager, for
any P):

Lemma 3.2. Assume thatP preserves positivity ofV , and that for everyA, B ∈ I +BC
there is an A′ ∈ I+BC and a Borel (definition of a) function f : A

′ → B such that
A′ ⊆ A and P forces that for all null sets X ⊂ B , f−1(X ) is null. Then P preserves
positivity of Borel sets.

Proof (from [13]). Assume that GP is P-generic over V and that in V [GP],
BV is null. In V , let X be a maximal family of positive Borel sets such that for
every A′ ∈ X there is a fA′ : A′ → B as in the assumption and such that for
A′ 6= A′′ ∈ X , A′ ∩ A′′ ∈ I . X is countable and its union is 2ù (modulo I ). In
V [GP], A′ ∩V ⊆ f−1A′ (B ∩V ) is null for eachA′ ∈ X . So 2ù ∩V =

⋃

A′∈X (A
′∩V )

is null. a

Borel positivity (or outer measure) preserving generally (consistently) does not
imply positivity preserving, not even for Cohen or random.
The standard counterexample is the following:

Example 3.3. Assume I is the Lebesgue null ideal and R is Bù1 . (Or I is the
meager ideal andR isCù1 .) LetGR beR-generic overV . Then inV [GR],X :=V∩2

ù

is positive and there is a ccc forcingP that preservesBorel outermeasure but destroys
the positivity of X .

Proof. We assume that I is meager (the Lebesgue case is analog). Note that in

both cases, it is enough to show thatP preserves positivity of (2ù)
V [GR] (this implies

preservation of Borel outer measure).

Assume r is B-generic over V , and (ci )i∈ù1 is C
V [r]
ù1 -generic over V [r]. Then

(ci )i∈ù1 is CVù1-generic over V as well. So B ∗ Cù1 can be factored as Cù1 ∗
˜
P,
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where P is a Cù1-name for a ccc forcing. Set V
′ := V [(ci )i∈ù1 ], and let GP be the

corresponding P-generic filter over V ′.
In V ′, X = V ∩ 2ù is not meager, but in V ′[GP] = V [r][(ci )i∈ù1 ] it clearly is
(cf. 2.6 and 2.7). So in V ′, P does not preserve positivity.
On the other hand, in V ′[GP ] = V [r][(ci )i∈ù1 ] the set Y := { ci : i ∈ ù1 } ⊆ V

′

is a Luzin set, in particular non-meager (cf. 2.7). So in V ′, P preserves positivity of

(2ù)
V ′

. a

However, if P is (absolutely) Borel positivity preserving and nep (for example
Suslin proper), then positivity preserving does follow, see Theorem 6.1.
Note that in any case, preservation of positivity (or outermeasure) is trivially pre-
served by composition of forcings (or equivalently: in successor steps of iterations).
In this paper we investigate what happens at limit stages.
We will restrict ourselves to countable support iterations. Note that for example
for finite support iterations, in all limit steps of countable cofinalities Cohen reals
are added, so preservation of Lebesgue positivity is never preserved in finite support
iterations.
Preservation of positivity is connected to preservation of generics (e.g., random
reals) over models:

Lemma 3.4. If P is proper and X is positive, then the following are equivalent:

(1) P preserves the positivity of X .
(2) for all N ≺ H (÷) and p ∈ P ∩ N there is an ç ∈ X and an N -generic q ≤ p
forcing that ç is I -generic over N [G ].

(3) for all p ∈ P there are unbounded (in 2ù) many N ≺ H (÷) containing p such
that there is an ç ∈ X and an N -generic q ≤ p forcing that ç is I -generic over
N [G ].

Here, A ⊆ {N ≺ H (÷)} is called unbounded in 2ù , if for every x ∈ 2ù there is
a N ∈ A such that x ∈ N (or equivalently, if for all y ⊆ 2ù countable there is an
N ∈ A such that y ⊆ N ).

Proof. (1)→ (2): Assume thatN ≺ H (÷), that q0 ≤ p isN -generic, and thatGP
is P-generic overV and contains q0. In V [GP], Gen(N [GP ]) is a measure 1 set, and
X is positive, so Gen(N [GP ])∩X is nonempty. This is forced by some q ≤ q0 inGP .
(2)→ (3) is clear.
(3) → (1): Assume p forces that X is null, i.e., that X ⊆

˜
AV [GP] for some Borel

null code
˜
A. According to (3), there is anN ≺ H (÷) containing p and

˜
A, and there

are ç ∈ X and an N -generic q ≤ p forcing that ç is I -generic over N [G ].
If GP is P-generic over V and contains q, then GP is P-generic over N as well,
and

˜
A[GP ] is a Borel null code in N [GP ]. In V [GP], ç is I -generic over N [GP ], so

ç /∈
˜

A[GP ]V [GP] ⊇ X , a contradiction. a

Lemma 3.5. If P is proper, then the following are equivalent:

(1) P preserves positivity.
(2) For all N ≺ H (÷), there is a set A of measure 1 such that for all p ∈ N and
ç ∈ A there is an N -generic q ≤ p forcing that ç is I -generic over N [G ].

(3) For all p there are unbounded (in 2ù) many N ≺ H (÷) containing p such that
for some measure 1 set A and for all ç ∈ A there is an N -generic q ≤ p forcing
that ç is I -generic over N [G ].
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Proof. (1) → (2): Since there are only countable many p’s in N , it is enough
to show that for all N ≺ H (÷) and all p ∈ P ∩ N there is a set A as in (2). Let
X be the set of exceptions, i.e., ç ∈ X if and only if every N -generic q ≤ p forces
that ç is not I -generic over N [G ]. We have to show that X is a null set. Otherwise
(according to Lemma 3.4) there is an ç ∈ X and an N -generic q ≤ p forcing that
ç ∈ Gen(N [G ]), a contradiction.
(2)→ (3) is clear, and (3)→ (1) follows from Lemma 3.4. a

Why are we interested in preservation of I -generics over models instead of preser-
vation of positivity? It is not clear how the iterability of preservation of positivity
can be shown directly. On the other hand, in some important cases it turns out
that preservation of generics is iterable (e.g., if I is meager, see section 8, or if I is
Lebesgue null under additional assumptions, see section 9). However, to be able
to apply the according iteration theorems, we will generally need that all I -generics
are preserved, not just a measure 1 set of them (as in Lemma 3.5).
It seems that preservation of all I -generics really is necessary, more specifically
that the statement

“preservation of Lebesgue positivity is preserved in proper countable
support iterations”

(and the analog statement for meager) is (consistently) false. A counterexample
seems to be difficult, but we can give a counterexample to the following (stronger)
statement: Let X be a positive set. Then

“preservation of positivity of X is preserved under proper countable
support iterations”.

§4. A counterexample.

Example 4.1. Assume that I is the Lebesgue null ideal and that R is Bù1 . (Or I
is the meager ideal and R is Cù1 .) Then R forces the following: There is a positive
set X and a forcing iteration (Pn ,

˜
Qn)n<ù of ccc forcings such that Pn forces that X

remains positive for each n ∈ ù, but Pù makes X null (regardless of the kind of
limit we use for Pù).4

So if I is the Lebesgue ideal, and we let (Pn ,
˜
Qn)n<ù be a countable support

iteration (i.e., Pù is the full or inverse limit), then we get the counterexample to

“preservation of positivity of X is preserved under proper countable
support iterations”.

If we take the direct limit (i.e., if we interpret (Pn ,
˜
Qn)n<ù as finite support iteration),

then we get nothing new, since we already know that Pù adds a Cohen real and
therefore destroys Lebesgue positivity.
If I is the meager ideal, then the counterexample is interesting for both finite and
countable support iteration.
The simplest idea for a counterexample of this kind is the following: Let P be the
countable support iteration Bù1 ∗ C ∗ Bù1 ∗ C ∗ · · · .

4This means that X will be null in any forcing extension V ′ of V [GR] that contains Pn -generic filters
Gn (over V [GR]) for all n.
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So the set X of the ù × ù1 many random reals added by P is null (since the first
n × ù1 many are made null by the nth Cohen).
Now factorP the followingway: First add all the randoms, then the first (former)
Cohen, the second, the third, etc. (these reals are not Cohen anymore, of course).
One would expect that the first former Cohen will make only the first ù1 many
randoms null, the second only the next ù1 many, etc. So the set of all randoms will
become null only in the limit.
However, it is not clear how to show that this idea actually works, and we will
use a slightly different construction:

Proof of 4.1. Let I be the ideal of Lebesgue null sets, let J be a set of size ℵ1,
and let R = P0 be BJ , the random algebra on 2J . (Again, the proof for the meager
case is analog.)
So we have to construct a directed system (Pn)n<ù with commuting complete
embeddings fn,m : Pn → Pm satisfying the following:

• P0 := BJ adds a set X of ℵ1 many random reals.
• Pn is ccc and forces that X is Lebesgue positive (for any n).
• Any limit Pù makes X null.

Write J as the disjoint countable union of sets Jn of size ℵ1, i.e., J =
⋃

n∈ù Jn,

|Jn| = ù1. Set J≥n :=
⋃

m≥n Jm , and let ˜
r0 ∈ 2

J be the random sequence added
by P0.
P1 is the forcing that adds a Cohen real between the first ù1 random reals and
the rest, i.e.,

P1 := BJ0 ∗ C ∗ BJ≥1 .

Generally, we define

Pn := BJ0 ∗ C ∗ · · · ∗ BJn−1 ∗ C ∗ BJ≥n .

We define the Pn-name
˜
rn ∈ 2

J to be the concatenation of the random sequences
for all the random algebras used in Pn.

Lemma 4.2. There is a complete embedding fn,n+1 from Pn to Pn+1 which leaves
the random sequence invariant.5

Assuming this lemma, the rest of the proof is straightforward:
As usual, we interpret

˜
r � Jn as a sequence of (ℵ1 many) random reals. Let

˜
Xn

be the set of these reals. Set
˜
X :=

⋃

n∈ù ˜
Xn;

˜
X<n :=

˜
X1 ∪

˜
X2 ∪ · · · ∪

˜
Xn−1; and

˜
X≥n :=

˜
X \
˜
X<n. Pn forces that

˜
X≥n is a Sierpinski set (in particular positive), and

that
˜
X<n is null, and we are done. a

For the proof of Lemma 4.2, we will need the following fact:

Lemma 4.3. Assume that f0 : P → Q is a complete embedding and that P forces

˜
S to be strongly absolute. Then f0 can be extended to a complete embedding
f1 : P ∗

˜
SV [GP ] → Q ∗

˜
SV [GQ ] defined by f1((p,

˜
ô)) = (f0(p), f∗0

˜
ô).6

5This means the following: Let Gn+1 be Pn+1-generic over V , and set Gn := f
−1
n,n+1(Gn+1) (which is

Pn -generic over V , since fn,n+1 is complete). Then
˜
rn [Gn ]Pn =

˜
rn+1[Gn+1]Pn+1 .

6f∗0 is the following mapping from P-names onto Q-names: f0 : P → Q is complete. So if GQ is

Q-generic over V , then GP := f
−1
0 [GQ ] is P-generic over V . So for every P-name ˜

ô there is a Q-name

f∗0 ˜
ô such that f∗0 ˜

ô[GQ ]Q =
˜
ô[GP ]P . (f

∗
0 can also be defined recursively over the rank of the names.)
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For the definition of strongly absolute, see 2.8. In particular
˜
S is a forcing

definition using arbitrary P-names as parameters, and
˜
SV is its “evaluation” in the

universe V . Note that BJ and CJ are strongly absolute (see 2.9).7

Proof of Lemma 4.3. Assume (p′,
˜
ô′) ≤ (p,

˜
ô). Then f0(p′) ≤ f0(p), and

f0(p′) forces that p′ ∈ GP (by definition of GP). So if GQ is Q-generic over V
and contains f0(p′), then in V [GP] we have

˜
ô′[GP] ≤

˜
ô[GP ] (since this is forced by

p′). Since “q ∈
˜
S” and “q′ ≤ q” are upwards absolute between V [GP] and V [GQ],

in V [GQ]

f∗0
˜
ô′[GQ] =

˜
ô′[GP ] ≤

˜
ô[GP ] = f

∗
0
˜
ô[GQ].

This is forced by f0(p
′), so (f0(p

′), f∗0
˜
ô′) ≤ (f0(p), f

∗
0
˜
ô).

A similar argument shows that f1 preserves incompatibility.
Finally assume towards a contradiction that Ã ⊆ P ∗

˜
SV [GP ] is predense, and that

there is a (q, ó) ∈ Q ∗
˜
SV [GQ ] incompatible to all f1((p,

˜
ô)) for (p,

˜
ô) ∈ Ã. Let GQ

be a Q-generic filter over V containing q. Since GP is P-generic, the set

A := {
˜
ô[GP ] : (p,

˜
ô) ∈ Ã, p ∈ GP }

is (in V [GP]) a predense subset of SV [GP ]. Since
˜
S is strongly absolute, A is (in

V [GQ]) a predense subset of SV [GQ]. So there is a (p,
˜
ô) ∈ Ã with p ∈ GP such that

˜
ó[GQ] is compatible with

˜
ô[GP ] = f∗0

˜
ô[GQ ]. Now pick a q′ ≤ q ∈ Q forcing that

˜
ó ′[GQ] ∈ SV [GQ] is awitness for this compatibility. Then (q ′,

˜
ó ′) ≤ f1((p,

˜
ô)), (q,

˜
ó),

and we get a contradiction. a

Proof of Lemma 4.2. First note that BJ≥n is equivalent to BJn ∗ BJ≥n+1 . So we
have to find a complete embedding from

Pn =

P
︷ ︸︸ ︷

BJ0 ∗ C ∗ · · · ∗ C ∗ BJn−1 ∗ C ∗ BJn ∗ BJ≥n+1

to

Pn+1 = BJ0 ∗ C ∗ · · · ∗ C ∗ BJn−1 ∗ C ∗ BJn ∗ C ∗
︸ ︷︷ ︸

Q

BJ≥n+1 .

It is clear that the identity (lets call it f0) is a complete embedding between P
and Q (the two blocks marked above). (Generally, for all R,

˜
S the identity is a

complete embedding from R into R ∗
˜
S.) Therefore we can apply Lemma 4.3 to

get a complete embedding f1 : Pn → Pn+1. It is clear that f1 leaves the random
J -sequence invariant. a

§5. True preservation. Preservation of all generics (not just a measure-1-set of
them) is closely related to preserving “true positivity”, a notion using the stationary
ideal on [κ]ℵ0 .

7You should not be confused by the following fact: Iff0 is a complete embedding ofP intoQ andGQ
is a Q-generic filter over V and GP the corresponding P-generic filter, then in V [GQ ] the partial order

SV [GP ] generally can not be completely embedded into SV [GQ ]. For example B × B adds an unbounded
real. So ifP is the trivial partial order andQ and

˜
S are bothB, then inV [GQ ] there cannot be a complete

embedding of
˜
SV [GP ] = BV into

˜
SV [GQ ] = B

V [GQ ]. However the f1 defined in the lemma clearly is a

complete embedding from P ∗
˜
SV [GP ] = BV into Q ∗ SV [GQ ] = B ∗ B

V [GQ ] (since a random real over
V [GQ ] is random over V as well).
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From this section only Definition 5.9 is needed for the proof of main result 9.4.8

Definition 5.1. LetI be arbitrary andC ⊆ [I ]ℵ0 a family of countable subsets
of I .

• C is called unbounded, if for all A ∈ [I ]ℵ0 there is a B ∈ C such thatB ⊇ A.
• C is a club set (or: club), if C is unbounded and closed under increasing
countable unions.

• The club filter is the family of subsets of [I ]ℵ0 containing a club set.
• A set S ⊆ [I ]ℵ0 is stationary if every club set C meets S, i.e., C ∩S 6= ∅. (Or
equivalently, if the complement of S, [I ]ℵ0 \ S, is not in the club filter.)

First we recall some basic facts:

Lemma 5.2. Let I andH1 ⊆ H2 be arbitrary.

(1) (Jech) The club filter on [I ]ℵ0 is closed under countable intersections.
(2) (Menas) C ⊆ [I ]ℵ0 contains a club if and only if there is an f : [I ]2 → [I ]ℵ0

such that C (f) ⊆ C , where

C (f) := {x ∈ [I ]ℵ0 : (∀i 6= j ∈ x) f({i, j}) ⊆ x }.

(3) If C ⊆ [H1]ℵ0 is club, then CH2 := {B ∈ [H2]ℵ0 : B ∩H1 ∈ C } is club.
(4) If C ⊆ [H2]ℵ0 is club, then CH1 := {B ∩H1 : B ∈ C } contains a club.
(5) If C0 ⊆ [I ]ℵ0 is club and P an arbitrary forcing, then there is a C1 ⊆ C0 club
and a name

˜
C ′ such thatP forces that

˜
C ′ ⊆ [I ]ℵ0 is club and that

˜
C ∩V = C1.

(6) (Shelah) A forcing P is proper if and only if for arbitrary I and S ⊆ [I ]ℵ0

stationary, P forces that S remains stationary.
(7) The set of countable elementary submodels ofH (÷) contains a club of [H (÷)]ℵ0 .
(8) Assume [I ]ℵ0 ∈ H (÷). Then the following are equivalent:

• C ⊆ [I ]ℵ0 contains a club.
• For all N ≺ H (÷) containingI and C , N ∩I ∈ C .
• For club manyN ≺ H (÷), N ∩I ∈ C .

(9) Assume [I ]ℵ0 ∈ H (÷). Then the following are equivalent:
• S ⊆ [I ]ℵ0 is stationary.
• There is an N ≺ H (÷) containingI and S such that N ∩I ∈ S.
• For stationary manyN ≺ H (÷), N ∩I ∈ S.

Note that ifC is club inV , then generallyC will not be club anymore in a forcing
extension V [GP], even if P is proper.

Proof. We refer to Kanamori’s Higher Infinite [6] or Jech’s Millennium Edition
[5]. The proof of (1) is straightforward (see 25.2 or 8.22). (2) is proven in [6, 25.3]
or [5, 8.26]. (3) is trivial. (4) and (5) follow from (2) (for the latter, setC1 :=C (f)V

and
˜
C := C (f)V [GP]).
For (6) see, e.g., Proper and improper forcing [12].
For (7), consider the family of countable subsets ofH (÷) closed under some fixed
Skolem function.

8This proof only needs implication (3) → (1) of Lemma 9.3, i.e., the fact that a strongly preserving
forcing is tools-preserving. However we do use the notion of true preservation to show implication
(3) → (1) of 5.11, which in turn is used in the proof that Lebesgue-tools-preservation is equivalent to
strong preservation.



928 JAKOB KELLNER AND SAHARON SHELAH

(8): If C ∈ N is club, then clearlyI ∩N ∈ C . If C̃ ⊆ {N ≺ H (÷)} ⊂ [H (÷)]ℵ0

is club, then C̃I = {N ∩I : N ∈ C̃ } ⊆ [I ]ℵ0 contains a club according to (4).
(9) follows directly from (8), since S is stationary if and only if [I ]ℵ0 \ S does
not contain a club. a

AssumeI is an arbitrary index-set,S ⊆ [I ]ℵ0 is stationaryand ç̄ = ( çs : s ∈ S )
is a sequence of reals. Pick any H ⊃ I ∪ 2ù (think of H to be a H (÷)). For
C ⊆ [H ]ℵ0 , we define9

S(C ) := { s ∈ S : ∃N ∈ C : N ∩I = s & çs ∈ Gen(N ) }, and

ç̄(C ) := { çs : s ∈ S(C ) }.

So we get S(C ) the following way: Take an N ∈ C (which will be a countable
elementary submodel ofH (÷)), and let s be the intersection ofN withI (so s is a
countable subset of I ). If s is an element of S, and if çs is I -generic over N , then
put s into S(C ).

Definition 5.3. AssumeH ⊃ I ∪ 2ù.

• ç̄ is truly positive, if ç̄(C ) is positive for every club set C ⊆ [H ]ℵ0 .
• B is the true outer measure of ç̄, if it is the smallest Borel set containing any
of the ç̄(C ), i.e., if the following holds: B is Borel, there is a C ⊆ [H ]ℵ0 club
such that ç̄(C ) ⊆ B , and for no club C ′ ⊆ [H ]ℵ0 there is a Borel B ′ such that
ç̄(C ′) ⊆ B ′ and B \ B ′ /∈ I .

Lemma 5.4.

(1) The above notions do not depend onH (provided thatH ⊃ I ∪ 2ù).
(2) The true outer measure always exists.
(3) The following are equivalent:

• ç̄ is truly positive.
• ç̄(C ) 6= ∅ for every club set C ⊆ [H ]ℵ0 .
• for all x ∈ H (÷) there is anN ≺ H (÷) containing x,I , S and ç̄ such that
N ∩I = s ∈ S and çs ∈ Gen(N ).

Proof. (1) Assume thatI ∪ 2ù ⊆ H1 ⊆ H2 and that C ⊆ [H1]
ℵ0 is club.

By definition s ∈ S(C ) if and only if for some N ∈ C , s = N ∩ I ∈ S and
çs ∈ Gen(N ).
In particular s ∈ S(CH2) if and only if for some N ′ ∈ [H2]ℵ0 , N :=N ′ ∩H1 is in
C , s = N ′ ∩I is in S and çs ∈ Gen(N ′).
So since N and N ′ contain the same elements ofI and 2ù, S(C ) = S(CH2).
The same argument works with C ⊆ [H2]ℵ0 and CH1 .
For generalH1,H2, apply the argument to the pairsH1,H1∪H2 andH2,H1∪H2.
(2) The family { ç̄(C ) : C club } is semi-closed under countable intersections:
If (Ci)i∈ù is a countable sequence of club sets, and C ′ :=

⋂
Ci its intersection,

then C ′ is club, and ç̄(C ′) ⊆
⋂
ç̄(Ci ).

Let X be the family of Borel sets B such that for some club set C , B ⊃ ç̄(C ). So
X is closed under countable intersections. Therefore X contains a minimal element
(modulo I ), since I is a ccc-ideal.

9Gen(N ) was defined in 2.2.
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(3) Without loss of generality H = H (÷). Assume ç̄ is not truly positive. Then
for some club set C and Borel null set B , ç̄(C ) ⊆ B . Set

C ′ := {N ≺ H (÷) : N ∈ C,B ∈ N }.

C ′ is club. For any N ∈ C ′ and any I -generic ç over N , ç is not in B . So
ç̄(C ′) ⊆ 2ù \ B . But ç̄(C ′) ⊆ ç̄(C ) ⊆ B , so ç̄(C ′) = ∅. The rest is similar. a

Definition 5.5. Let P be a forcing.

• P preserves true positivity if for all ç̄ truly positive, P forces that ç̄ remains
truly positive.

• P preserves true outer measure, if for any ç̄ with true outer measure AV , P
forces that AV [GP ] remains the true outer measure of ç̄.

Lemma 5.6.

(1) If P is true outer measure preserving, then it is true positivity preserving.
(2) If P is true positivity preserving, then it is proper and positivity preserving.
(3) If P is true outer measure preserving, then it is outer measure preserving.

It seems that true positivity preserving generally does not imply true outer mea-
sure preserving. (But the equivalence holds if I is the ideal of meager sets, see
Lemma 8.1; or if I is the ideal of Lebesgue null sets and P is weakly homogeneous,
see Lemma 9.1).

Proof. (1) is clear since a sequence ç̄ is truly positive if and only if its true outer
measure is not 0.
True positivity preservation implies properness because of 5.2 (6).
So for (2) and (3) it is enough to show the following: IfX is positive (or: has true
outer measure B) then there is a truly positive ç̄ (or: an ç̄ with true outer measure
B) such that {çs : s ∈ S} ⊆ X . Let I be 2ù .
For (2), pick for each N ≺ H (÷) an ç ∈ X ∩Gen(N ). (Recall that Gen(N ) is a
measure 1 set.) Then ç̄ is truly nonempty (cf. 5.4 (3)).
For (3), set â :=2ℵ0 . As cited inKanamori [6, 25.6 (a)] or Jech [5, 38.10 (i)], [I ]ℵ0

can be partitioned into 2ℵ0 many stationary sets, i.e., [I ]ℵ0 =
⋃

α∈â Sα . Enumerate

all positive Borel subsets of B as (Bα : α ∈ â ). For each N ≺ H (÷) let α be
such thatN ∈ Sα and pick an ç ∈ Bα ∩Gen(N ). Assume towards a contradiction
that the true outer measure of ç̄ is B ′ ⊂ B and that Bα = B \ B ′ is positive. Since
C is club and Sα stationary, there is an N ∈ C ∩ Sα . So çN ∈ Bα ∩ ç̄(C ), a
contradiction. a

As announced, the “true” notions are closely related to preservation of generics:

Definition 5.7. P preserves generics, if for all N ≺ H (÷), p ∈ N and ç ∈
Gen(N ) there is a q ≤ p N -generic forcing that ç ∈ Gen(N [GP ]).

Notes.

• Instead of “for all N”, we can equivalently say “for club many N”. (This
follows from the proof of Lemma 5.8.)

• Of course the notion does not depend on ÷, provided ÷ is regular and large
enough (in relation to |P|).

• It is clear that preservation of generics is preserved under composition and
implies properness.
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Lemma 5.8. P preserves generics if and only if P is true positivity preserving.

Proof. →: Assume otherwise, i.e., assume that ç̄ is truly positive, and p 

ç̄(
˜
C ) = ∅ for some name

˜
C of a club set in H (÷)V [G].

In V , the set

S∗ := {N ≺ H (÷) : N ∩I = s ∈ S, çs ∈ Gen(N ) }

is stationary. (Otherwise, the complement of S∗ would witness that ç̄ is truly
empty.) Pick some ÷′ � ÷. According to 5.2 (9), there is anN ′ ≺ H (÷′) containing
ç̄, S∗, ÷, p, P,

˜
C such thatN :=N ′ ∩H (÷) ∈ S∗ (and such thatP preserves generics

for N ′, if we assume preservation for club many N only). So N ′ ∩I = N ∩I =
s ∈ S, and there is an N ′-generic q ≤ p forcing that çs ∈ Gen(N

′[G ]) (since
N and N ′ contain the same subsets of P). Let G be a P-generic filter over V
containing q. In V [G ], N ′[G ] ∩I = N ′[G ] ∩I = s (since G is N ′[G ]-generic),
and N ′ ∩

˜
H [G ] ∈

˜
C [G ] (since

˜
C ∈ N ′[G ] is club). So çs ∈ ç̄(

˜
C ), a contradiction.

←: Assume towards a contradiction thatN ′ ≺ H (÷′), p, ç is a counterexample.
Without loss of generality there is a ÷ ∈ N ′ such that |P| � ÷ � ÷′. Set

S := {N ≺ H (÷) : N is counterexample for p and some ç }.

This set is stationary, since S ∈ N ′ and N ′ ∩H (÷) ∈ S.
For each N ∈ S, pick an çN witnessing the counterexample. Then ç̄ is truly
positive: If N ∈ C ∩ S, then çN ∈ ç̄(C ).
Let G be a P-generic filter over V containing p. In V [G ], set

Cgen := {N ≺ H
V (÷) : G is N -generic }.

(Note that the elements of Cgen are generally not in V , only subsets of V .)
Cgen contains a club:
N ≺ HV (÷) is guaranteed if N is closed under a Skolem functions ofH V (÷).
G is N -generic means that for every dense subset D ⊆ P in N , G ∩ N ∩ D is
nonempty.
So Cgen contains the set of N closed under countably many operations.
Therefore (still in V [G ])

C1 := C
HV [GP ](÷)
gen = { Ñ ⊆ HV [GP ](÷) countable : Ñ ∩ V ∈ Cgen }

contains a club as well, as does the set

C := { Ñ ≺ HV [GP ](÷) : G ∈ Ñ and Ñ ∈ C1 }.

By the assumption ç̄(C ) 6= ∅, i.e., for some Ñ ≺ H (÷), we get: N := Ñ ∩ V ∈ S
(note that S ⊂ V ), and çN ∈ Gen(Ñ ), and G is N -generic and element of Ñ .
Therefore N [G ] ⊆ Ñ , and çN ∈ Gen(N [G ]). G contains some q ≤ p forcing this
all. But we assumed that çN is a counterexample, therefore noN -generic q ≤ p can
force that çN ∈ Gen(N ). a

For the analog equivalence to true outer measure preservation we need the notion
of interpretation:

Definition 5.9. Let p be a condition in P.

• T is an interpretation of
˜
T ′ with respect to p, if:

– T is a positive Borel set,
–
˜
T ′ a P-name for a positive Borel set, and
– for all positive Borel setsAV ⊂ T , p does not force thatAV [G]∩

˜
T ′ is null.
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• P strongly preserves generics if the following holds:
For allN ≺ H (÷), p, T,

˜
T ′ ∈ N and ç ∈ 2ù such thatT is an interpretation

of
˜
T ′ with respect to p and ç ∈ T ∩ Gen(N ) there is an N -generic q ≤ p

forcing that ç ∈
˜
T ′ ∩Gen(N [GP ]).

Notes.

• If T is an interpretation of
˜
T ′ with respect to p, p 

˜
T ′′ ⊃

˜
T ′, and T ∗ ⊆ T

is positive, then then T ∗ is an interpretation of
˜
T ′′.

• Again, instead of “for allN”, we can equivalently say “for club manyN”, and
the notion does not depend on ÷.

Lemma 5.10. For every p ∈ P and every name
˜
T ′ for a positive Borel set there is

an interpretation T of
˜
T ′ with respect to p.

Proof. Set

X := {B ∈ I+BC : p  BV [G] ∩
˜
T ′ ∈ I }.

Let Y be a maximal family of pairwise disjoint members ofX . Then Y is countable
(since I is a ccc ideal) and

⋃
Y is not of measure 1 (since p forces that

˜
T ′ is positive

and that
⋃
YV [G] ∩

˜
T ′ ∈ I ). Set T :=ùù \

⋃
Y . Then T is an interpretation of

˜
T ′

with respect to p. a

Lemma 5.11. The following are equivalent:

(1) P preserves true outer measure.
(2) P strongly preserves generics.
(3) If p 

˜
T ′ ∈ I+BC, then there is a T ∈ I

+
BC and a p

′ ≤ p such that:
T is an interpretation of

˜
T ′ with respect to p′, and if N ≺ H (÷), p′, T,

˜
T ′ ∈

N , and ç ∈ T ∩ Gen(N ), then there is an N -generic q ≤ p′ forcing that
ç ∈
˜
T ′ ∩Gen(N [G ]).

Proof. This is similar to the proof of 5.8.
(1) → (2) Assume that N ′ ≺ H (÷′), p, T ,

˜
T ′, ç is a counterexample. Without

loss of generality there is a ÷ ∈ N ′ such that |P| � ÷ � ÷′. Set

S := {N ≺ H (÷) : N is counterexample for p, T ,
˜
T ′ and some ç }.

This set is stationary, since S ∈ N ′ and N ′ ∩H (÷) ∈ S.
For each N ∈ S, pick an çN witnessing the counterexample. So in particular

çN ∈ T ∩Gen(N ).

Let B ⊆ T be a true outer measure of ç̄. B is positive (which just means that ç̄ is
truly positive). So there is a p′ ≤ p forcing that B ∩

˜
T ′ is positive (since T is an

interpretation of
˜
T ′ with respect to p).

Let G be a P-generic filter over V containing p′. In V [G ], set

C := { Ñ ≺ HV [GP](÷) : G , p, T ,
˜
T ′ ∈ Ñ and G is Ñ ∩ V -generic }.

C contains a club (as in the proof of 5.8). Assume çN ∈ ç̄(C ). Then for some
Ñ ∈ C

N := Ñ ∩HV (÷) ∈ S, G is N -generic, and çN is I -generic over Ñ .
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B

˜
B ′

˜
T ′

T

ç̄(
˜
C ′)

ç̄(C )

Figure 1. T is an interpretation of
˜
T ′ with respect to p′.

Note that N [G ] ⊆ Ñ (since G ∈ Ñ ). So çN is I -generic over N [G ] as well. Since
N ∈ S and N , p, T , T ′, çN is a counterexample, we know that çN cannot be in

˜
T ′[G ]. Therefore ç̄(C ) ⊆ B \

˜
T ′[G ], i.e., the true outer measure of ç̄ decreases (p′

forces that B ∩
˜
T ′ is positive).

(2) → (3) This follows from fact 5.10 (for every p,
˜
T ′ there is an interpretation

T of
˜
T ′ with respect to p).

(3) → (1) Assume that B ⊃ ç̄(C ) is an outer measure of ç̄, and p ∈ P forces
that there is a Borel code

˜
B ′ and a club set

˜
C ′ ofH (÷)V [G] such that ç̄(

˜
C ′) ⊂ ç̄(

˜
C ),

˜
B ′ ⊂

˜
B ,
˜
T ′ := B \

˜
B ′ ∈ I+ and

˜
B ′ ⊃ ç̄(

˜
C ′).

Without loss of generality, çs ∈ B for every s ∈ S. Now choose a p′ ≤ p and an
interpretationT of

˜
T ′ with respect top′ according to (3). Without loss of generality

T ⊆ B (cf. Figure 1). In V , the set

S∗ := {N ≺ H (÷) : p′, P, T,
˜
T ′ ∈ N,N ∩I = s ∈ S, çs ∈ Gen(N ) ∩ T }

is stationary. (Otherwise, the complement of S∗ contains a club C ∗. If ç ∈ ç̄(C ∗),
then ç /∈ T . So ç̄(C ∗) ⊆ B \ T , and B cannot be true outer measure of ç̄.)
Pick some ÷′ � ÷. There is an N ′ ≺ H (÷′) containing ç̄, S∗, p′, T,

˜
T ′,
˜
C ′ etc

such that N :=N ′ ∩H (÷) ∈ S∗. So N ′ ∩I = s ∈ S, and there is an N ′-generic
q ≤ p′ forcing that çs ∈ Gen(N ′[G ]) ∩

˜
T ′. Let G be a P-generic filter over V

containing q. In V [G ], N ′[G ] ∩ I = N ′ ∩ I = s (since G is N ′-generic), and
N ′ ∩H (÷)V [G] ∈

˜
C ′[G ] (since

˜
C ′[G ] ∈ N ′[G ] is club). So çs ∈

˜
T ′[G ] ∩ ç̄(

˜
C [G ]),

a contradiction to ç̄(
˜
C [G ]) ⊆

˜
B[G ] and

˜
B[G ] ∩

˜
T ′[G ] = ∅. a

§6. Strong preservation of generics for nep forcings. We already know that preser-
vation of Borel outer measure generally does not imply preservation of positivity.
An example was presented in 3.3. Note that the P of this example is very “undefin-
able”. In this section we will show that under some additional assumptions on P,
we even get strong preservation:

Theorem 6.1. If in all forcing extensions of V , P is nep and Borel outer measure
preserving then P strongly preserves generics.

In particular this requirement will be satisfied if there is a proof in ZFC that (a
definition of the forcing)P is nep andBorel outermeasure preserving. We formulate
this as a corollary:
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Corollary 6.2. If P is provably nep and provably Borel outer measure preserving
then P strongly preserves generics.

The notion of nep forcing (a generalization of Suslin proper) was introduced
in [13]. The most important instances of nep forcings are

(1) nicely definable, proper (but not necessarily Suslin proper) forcings P that are
coded as set of reals. We will call such forcings “transitive nep”.

(2) nicely definable (long) iterations of forcings as in (1).

Examples for transitive nep forcings are Sacks and Laver. Such forcings typically
are Suslin+. In this paper, we will not define the general notion of nep—which
would allow us to deal with (2)—since the definition requires technicalities such
as non-transitive candidates.10 Instead, in the following section we will recall the
definition of transitive nep.11

About transitive nep forcing. In the definition of nep (or Suslin proper) we use
candidates, i.e., models of some fixed ∈-theory ZFC∗. Intuitively, we would like to
use ZFC (just as we would like to use N ≺ V in the definition of proper forcing),
but for obvious technical reasons this is not possible. So we will restrict ourselves
to a reasonable choice of ZFC∗:

Definition 6.3. A recursive theory ZFC∗ ⊆ ZFC is called strongly normal, if
the following is provable in ZFC:

H (÷) � ZFC∗ for all sufficiently large regular ÷.

You can think of ZFC∗ as ZFC minus the power set axiom plus something like
“iù exists”.12

We assume that the forcing P is defined by formulas ϕ∈(x) and ϕ≤(x, y), using
a real parameter rP . Fixing a strongly normal ZFC∗, we callM a candidate if it is
a countable transitive ZFC∗ model and rP ∈ M . So in any candidate (P

M ,≤M ) is
defined (but this forcing is generally not equal to P∩M , since the definitions do not
have to be absolute). It is important that the transitive collapse of an N ≺ H (÷)
(containing rP) is a candidate (for sufficiently large regular ÷).
IfM is a candidate, then G is P-generic overM if for all A ∈M such that

M �“A ⊆ P is a maximal antichain”,

|G ∩ A| = 1. (Note that in this case it is not enough that G meets all dense sets,
since incompatibility is generally not absolute).
q is calledM -generic is q forces that G is P-generic overM .

10Note that including forcings of type (2) is not needed for the main result 9.4 of this paper: We will
show that forcings of type (1) satisfy a strong, iterable condition, therefore this condition is satisfied by
forcings of type (2) anyway.
11Usually transitive nep forcings are in fact Suslin+. Nevertheless we define transitive nep here instead

of Suslin+ since the definition is actually simpler and better isolates the property needed for the proof.
Also, there are examples of transitive nep forcings P that are not Suslin+, to be more exact: whose
natural definitions are not Suslin+, e.g., because “p ∈ P” is

˜
Π11 and not ˜

Σ11. (It is a different question
whether for these examples there are equivalent forcings P′ that do have (possibly less natural) Suslin+

definitions.)
12For the usual transitive nep forcings we could actually fix this ZFC∗. Generally however we

should—for technical reasons—not do that, just as we should not fix, e.g., H (÷) = H (i+ù) in the
definition of proper forcing.
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Definition 6.4. A (definition of a) forcing P is transitive nep (with respect to
ZFC∗), if

• “p ∈ P” and “q ≤ p” are upwards absolute between candidates and between
candidates and V as well.13

• P ⊆ H (ℵ1) (in V and all candidates), and “p ∈ P” and “q ≤ p” are absolute
between the universe andH (÷) (for large regular ÷).

• IfM is a candidate and p ∈ PM then there is anM -generic q ≤ p.

So transitive nep is a direct generalization of Suslin proper. Since (transitive
collapses of) elementary submodels (containing rP) are candidates, every transitive
nep forcing is proper. There are popular forcings that are transitive nep and not
Suslin proper, for example Laver, Miller or Sacks (all these forcings are Suslin+ and
even satisfy an effective version of Axiom A, see [7] for a proof).
If P is nep andM a candidate, thenM �“p  ϕ(

˜
ô)” iff M [G ] �“ϕ(

˜
ô[G ])” for

every filter G containing p which is P-generic overM and V .14

When we say “P is nep” we mean

(a suitable definition of) P is nep with respect to some strongly normal
ZFC∗.

In practice the choice of ZFC∗ is immaterial (similar to the choice of ÷ in the defi-
nition of proper forcing). If you believe this you can skip the following explanation,
continue at the proof of Theorem 6.1, let S(κ) be some regular κ′ � κ and ignore
the arguments why certain models are in fact candidates.
Why do we use strongly normal here, and not just normal, i.e.,

H (÷) � ZFC∗ for large regular ÷?

Normal would definitely be enough to imply proper. The point in using strongly
normal is that we can assume without loss of generality that not only the candidate
M satisfies ZFC∗, but also, e.g., all forcing extensionsM [G ] (for forcings that are
small inM ). (This is of course not possible with a ZFC∗ that is just normal. For
example if V = L then there is a normal ZFC∗ containing V = L, but ZFC∗ fails
to be normal in any nontrivial forcing extension.)15

Let’s explain that in more detail:
First note that we are dealing with two forcings, QI and P. QI is Suslin ccc.
This implies that Q is Suslin proper (and therefore transitive nep) with respect to
any ZFC∗ that contains a certain strongly normal sentence ϕ.16 Each two strongly
normal theories are compatible (i.e., the union is strongly normal as well), and a
forcing remains nep if we strengthen ZFC∗ (since then there are fewer candidates).

13I.e., ifM2,M1 are candidates,M2 �“M1 is a candidate”, andM1 � p ∈ P, thenM2 � p ∈ P and
V � p ∈ P, and the same for ≤.
14More formally this reads: p forces: If G isM -generic, thenM [G ] �“ϕ(

˜
ô[G ])”.

15We can still formulate the theorem for forcings that are nep with respect to not necessarily strongly
normal theories, but then we have to use two theories ZFC∗∗ and ZFC∗ and have to assume something
like the following:
A forcing extension of a ZFC∗∗-candidate is a ZFC∗-candidate; P is nep with respect to ZFC∗; ZFC∗∗

implies that every small forcing R forces that P is nep with respect to ZFC∗.
So the formulation of the theorem gets messy, while there is no gain in practice, where ZFC∗ is strongly
normal anyway.
16ϕ is the completeness theorem for Keisler logic. This follows from the proof that Suslin ccc implies

Suslin proper in [4], see [7] for a discussion.
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So we can assume without loss of generality that Q and P are nep with respect to
the same ZFC∗.
If 2R ∈ H (κ) then R H

V (κ)[G ] = HV [G](κ) and r  (HV [G](κ) � ϕ) if and
only if H (κ) � (r  ϕ).
So if P is nep (or Borel outer measure preserving) in V , then it is nep (or
preserving) in H (÷) (for sufficiently large regular ÷).
Let R be any forcing notion. We assumed that R forces that P is nep and
preserving. Also ZFC∗ is strongly normal, so R forces thatHV [GR](÷) satisfies

ZFC∗ plus P is nep and Borel outer measure preserving(×)

for every regular ÷ ≥
˜
÷R. Clearly we can find a ÷ ′R such thatR forces that

˜
÷R < ÷

′
R,

and we can do that for all R ⊆ H (κ). So for all κ there is a regular S(κ) � κ such
that

H (÷) thinks that R forces (×) for all regular ÷ ≥ S(κ) and R ⊂ H (κ).(×2)

Proof of Theorem 6.1. The proof is very similar to the proof of “preserving a
little implies preserving much” in [13] (or its version in [7]). The point of the proof
is that we mix “internal” forcing extensions (i.e., byM -generic filters in V ) for Q I

and R (a collapse) with external forcing extensions for P, and use absoluteness to
compare what P forces in the different internal models.
We will prove the theorem for the case that P is transitive nep. If you know the
general definition of nep, you will see that the same proof works for general nep as
well.17

Recall that the Suslin ccc ideal I was defined by a Suslin ccc forcing QI and a
generic real

˜
çI (see 2.2).

We have to show the following: if T is an interpretation of
˜
T ′′ with respect to

p, then for all (or just: cofinally many) N ≺ H (÷) containing p, T,
˜
T ′′ and for all

ç∗ ∈ Gen(N ) ∩ T the following holds:

there is an N -generic q ≤ p forcing that ç∗ ∈
˜
T ′′ ∩Gen(N [GP ]).(∗)

P is nep with respect to a strongly normal ZFC∗. Set ÷′0 := ù1, ÷
′
1 := S(÷

′
0),

÷′2 := S(÷
′
1), and ÷

′
3 := S(÷

′
2).

There are cofinally many suchN0 ≺ H (÷3) containingP, p, T,
˜
T ′′. We fix such an

N0. So it is enough to show (∗) for N0. Let i : N0 → M0 be the transitive collapse.
For i ∈ {1, 2}, set ÷i := i(÷

′
i ), and set

˜
T ′ := i(

˜
T ′′). Note that i doesn’t change p,

T or
˜
çI , since these objects are hereditarily countable (T is a Borel code, i.e., a real

number). Not surprisingly, (∗) for N0 is equivalent to the following:

there is anM0-generic q ≤ p forcing that ç
∗ ∈
˜
T ′ ∩Gen(M0[GP]).(∗2)

This is straightforward: A filterG isM0-generic if and only if it isN0-generic (since
i doesn’t change the elements of P). Also, the evaluation of a name

˜
s of a real

number is absolute: If G is M0-generic, then
˜
s[G ] = i(

˜
s)[G ]. To see this, pick in

N0 maximal antichainsAn deciding
˜
s(n). Fix n. IfG isN0-generic, thenG chooses

17You just have to use the ord-collapse instead of the transitive collapse, and keep in mind that the
evaluation of names

˜
ô[G ] has to be redefined for non-transitive candidates. And you have to formulate

awkward requirements on ZFC∗ if you allow ZFC∗ to be a (∈, κP)-theory.
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an element of p ∈ An ∩N0 forcing that
˜
s[G ](n) = m. M0 thinks that pn forces that

i(
˜
s)(n) = m, so i(

˜
s)[G ](n) = m.

So in particular
˜
T ′′[G ] =

˜
T ′[G ], and N0[G ] andM0[G ] see the same Borel null

sets, i.e., Gen(N0[G ]) = Gen(M0[G ]).

From now on for the rest of the proof we fix the aboveM0, p, T ,
˜
T ′.

We formulate (∗2) as a property of ç
∗:

Definition 6.5. LetM be a candidate containing p, T and
˜
T ′. ç∗ is absolutely

generic overM , or: ç∗ ∈ Genabs(M ), if ç∗ ∈ T and there is anM -generic q ≤P p
forcing that ç∗ ∈

˜
T ′ ∩Gen(M [GP ]).

(Note that the definition of absolutely generic does not only depend onM , but
on p, T and

˜
T ′ as well. However, these parameters are fixed.)

Using this notion, (∗2) reads as follows:

Gen(M0) ∩ T = Gen
abs(M0).

For any candidateM , Gen(M ) is a measure 1 set. So if Gen(M )∩T = Genabs(M )
then Genabs(M ) is a measure 1 set in T . As the first step in our proof we show that
Genabs(M ) is at least nonempty:

Lemma 6.6. Assume that P is Borel outer measure preserving, M is a candidate,
andM thinks that T is an interpretation of

˜
T ′ with respect to p, and A is a positive

Borel (code for a) subset of T . Then Genabs(M ) ∩ A ∈ I+.

Proof. In M , A is an interpretation of
˜
T ′ with respect to p, since A ⊆ T is

positive. So without loss of generality A = T , i.e., we just have to show that
Genabs(M ) is positive.
Pick (inM ) a p′ ≤ p forcing that T ∩

˜
T ′ is positive. Let q ≤ p′ beM -generic,

and G a P-generic filter over V containing q. So in M [G ] (and therefore by
absoluteness in V [G ]) T V [G] ∩

˜
T ′[G ] is positive. T V [G] is the outer measure of T V

(since P preserves outer measure). So T V ∩
˜
T ′[G ] is positive. Also, Gen(M [G ]) is

of measure 1. Therefore

X := Gen(M [G ]) ∩ TV ∩
˜
T ′[G ]

is positive in V [G ]. Clearly X ⊆ Genabs(M )V . So in V , Genabs(M ) has to be
positive. a

Let (in M0, for i ∈ {1, 2}) Ri be the collapse of HM0(÷i ) to ℵ0, i.e., the set of
finite partial functions from ù toHM0(÷i ). Fix an ç∗ ∈ Gen(M0) ∩ T . We have to
show that ç∗ ∈ Genabs(M0). ç∗ ∈ Gen(M0) means that there is (in V ) aQI -generic
filter GQ over M0 such that

˜
çI [GQ] = ç

∗. Pick (again in V ) an R2-generic filter

GR2 overM0[GQ]. SetM
′ :=M0[GQ][GR2 ]. So we get (in V ) the following forcing

extensions:

M0 →M0[GQ]→M
′ :=M0[GQ][GR2 ]

M ′ sees all relevant information aboutH1 :=H (÷1)M0 (in particularM ′ knows that
H1 is a candidate). So it is enough to show that M ′ thinks that ç∗ is absolutely
generic forH1:

Lemma 6.7. M ′ � ç∗ ∈ Genabs(H1).
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M0
R1 //

Q

G⊗
Q ��?

??
??

??
??

?
M1 � ç⊗ ∈ Genabs(H1) ∩ BM1q

R′

G̃2

��?
??

??
??

??
??

??

M0[ç⊗]

R1/Q

G̃1

??�����������

M2 � ç⊗ /∈ Genabs(H1)
R2

G̃1∗G̃2

//

Figure 2. The models used in the proof of Lemma 6.7.

If we assume this, Theorem 6.1 follows immediately: QI ∗R2 ⊆ HM0(÷2). M0 is
the transitive collapse of N0 ≺ H (S(÷′2)), so according to (×2) M

′ is a candidate
and P is transitive nep in M ′. Clearly M ′ knows that H1 is a candidate. So
according to the Lemma there is a p′ ∈M ′ such that

M ′ � “p′ ≤ p is H1-generic, and p
′ P ç

∗ ∈
˜
T ′ ∩Gen(H1[GP])”.

Let (in V ) q ≤P p′ beM ′-generic. We claim that q witnesses (∗2), i.e., that

q isM0-generic and forces that ç
∗ ∈ Gen(M0[GP]) ∩

˜
T ′.

So let GP be a P-generic filter over V containing q. Then GP isM
′-generic.

M ′[GP ] thinks that GP (i.e., GP ∩ PM
′

) is H1-generic, since this is forced by
p′ ∈ GP . Being H1-generic is absolute (it just says that |GP ∩ A| = 1 for all
maximal antichains inH1). SoGP really isH1-generic. Analogously ç∗ is I -generic
over H1[GP ].
Recall that H1 = H (÷1)M0 , the definition of P is absolute between the universe
andH (÷) and ÷1 is sufficiently large. ThereforePH1 = PM0 andH1 contains exactly
the same subsets of P as M0 does. So GP is M0-generic as well. Also, H1[GP]
contains exactly the same reals (in particular Borel codes) as M0[GP ]. (This can
again be seen by deciding

˜
r(n) by a maximal antichain.) Therefore ç∗ is I -generic

overM0[GP ]. This is all forced by some q ≤ p, so we are finished.

Proof of Lemma 6.7. We already know that ç∗ is I -generic overM0. Using the
facts thatH1 andM0 see the same subsets of P and thatH1 is countable inM ′ we
getM ′ � ç∗ ∈ Gen(H1) ∩ T .
Assume towards a contradiction that M ′ � “ç∗ /∈ Genabs(H1)”. Since M ′ =
M0[GQ][GR] this is forced by some q ∈ GQ and r ∈ R2. However since R2
is homogeneous and the sentence ç∗ /∈ Genabs(H1) only contains parameters in
M0[GQ] we can assume that r = 1, i.e.,

M0 � “q Q (
˜
çI ∈ T, R2

˜
çI ∈ Gen(H1) \Gen

abs(H1))”.(�)

Fix a positive Borel code Bq ∈M0 such that

{
˜
çI [G ] : G ∈ V is anM0-generic filter containing q } = Gen(M0) ∩ B

V
q

(see 2.3). Without loss of generality Bq ⊆ T , since (inM0) q 
˜
çI ∈ T .

Choose inV anR1-generic filterGR1 overM0, and setM1 :=M0[GR1 ]. M1 knows
that H1 is a candidate, and that BM1q ⊆ T is positive. M1 knows that P preserves

Borel outer measure (because of (×2)), and H1 thinks that T is an interpretation
of
˜
T ′ with respect to p (since H1 is the collapse of HV (÷1)). So we can apply
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Lemma 6.6 inM1 (i.e., M1 is the universe V and H1 the candidateM ) and find a
ç⊗ ∈ Genabs(H1)∩BM1q . In particular ç

⊗ is I -generic overH1 and therefore overM0.

So inM1 there is aM0-generic filter G
⊗
Q such that ç

∗[G⊗
Q ] = ç

⊗ ∈ BVq . Therefore

q ∈ GQ , and we can factorize R1 asR1 = Q ∗R1/Q such thatGR1 = G
⊗
Q ∗ G̃1. (See

Figure 2 for a diagram of the forcing extensions we are going to construct).
InM0[G

⊗
Q ] =M0[ç

⊗] we look at the forcingR2 = R
M0
2 (the finite partial functions

fromù toHM0(÷1) = H1). ÷2 � ÷1 andR1/Q is a subforcing of ro(R1), whereR1 ⊂
H1. So according to 2.10 (2) and (3),R2 can be factorized asR2 = (R1/Q)∗R′. We
already have the (R1/Q)-generic filter G̃1 (overM0[G

⊗
Q ]), now choose (as always in

V ) a R′-generic filter G̃2 over M1. Set GR2 = G̃1 ∗ G̃2. So GR2 is R2-generic over
M0[G

⊗
Q ]. SetM2 :=M0[ç

⊗][GR2 ].

Now set H2 :=H (÷2)M1 . H2 thinks that P is nep and that ç⊗ ∈ Gen
abs(H1) (by

absoluteness inM1). Also, H2 is a candidate (by (×2), since H2 = HM0 [GR1 ]). So
for some p1 ∈ H2,

H2 � “p1 ≤ p is H1-generic, p1  ç⊗ ∈ Gen(H1[GP]) ∩
˜
T ′”.

InM2, there is an H2-generic p2 ≤ p1 (since M2 thinks that P is nep and that H2
is a candidate.) Let GP be a P-generic filter overM2 containing p2. From now on,
we work in M2[GP ]. GP is H2-generic and contains p1, so by absoluteness GP is
H1-generic as well and ç⊗ ∈ Gen(H1[GP ]) ∩

˜
T ′. On the other hand, according to

(�), ç⊗ /∈ Gen(H1[GP]) ∩
˜
T ′, a contradiction. a

Note that if we set T =
˜
T ′ = 2ù this proof gives us “preserving a little implies

preserving much” of [13]:

Theorem 6.8. If in all forcing extensions of V , P is nep and preserves Borel posi-
tivity, then P preserves generics.
In particular, if P is provably nep and provably preserves Borel positivity, then P
preserves generics.

§7. A general preservation theorem. For proving the main result 9.4 we will use
a general iteration theorem for countable support iterations of proper forcings. It
appeared as “Case A” in Proper and improper forcing [12, XVIII,§3]. The proof
there is not easily digestible, though. A simplified version appeared in Section 5
of Goldstern’s Tools [2]. This version uses the additional requirement that every
forcing of the iteration adds a new real. Note that this requirement is met in many
applications anyway (e.g., in the forcings of [9] cited in the introduction).
A proof of the iteration theorem without this additional requirement appeared
in [8] andwas copied into Set Theory of theReals [1] (as “first preservation theorem”
6.1.B), but Schlindwein pointed out a problem in this proof.18 Another proof
(building on the one in [2]) will appear in [3].
The general preservation theorem uses the following setting: Fix a sequence of
increasing arithmetical two-place relations Rn on ùù . Let R be the union of the

18See [10]. In this paper Schlindwein wrote a simple proof for the special case of ùù-bounding,
however he later found a problem in his own proof [C. Schlindwein, personal communication, April
2005]. He is preparing a new version [11].
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Rn . Assume

• C := {f ∈ ùù : fR ç for some ç ∈ ùù } is closed,
• {f ∈ ùù : f Rn ç } is closed for all n ∈ ù, ç ∈ ùù , and
• for every countable N there is an ç such that fR ç for all f ∈ N ∩ C (in this
case we say “ç covers N”).

Definition 7.1. Let P be a forcing notion, p ∈ P.

• f̄∗ :=f∗
1 . . . f

∗
k is a tools-interpretationof

¯

˜
f :=

˜
f1, . . . ,

˜
fk underp, if each

˜
fi is

aP-name for an elementofC , and there is andecreasing chainp=p0≥p1≥· · ·
of conditions in P such that pi  (

˜
f1 � i = f∗

1 � i& . . .&
˜
fk � i = f∗

k � i).

• A forcing notionP is tools-preserving, if for allN ≺ H (÷), ç coveringN , p, ni ,
f̄∗, ¯

˜
f ∈ N such that f̄∗ is a tools-interpretationof ¯

˜
funderp andf∗

i Rni ç there
is anN -generic q ≤ p, forcing that ç coversN [GP ], and

˜
fi Rni ç for all i ≤ k.

Note that if f̄ is a tools-interpretation, then f∗
l ∈ C .

Tools-interpretations differ from the interpretations of Definition 5.9. They
obviously deal with functions from ù to ù instead of Borel sets modulo I . But
there is another technical difference: For tools-interpretations, we require that there
is an decreasing sequence of conditions p ≥ p1 ≥ p2 ≥ · · · , not just that for all n,
the truth value of (∀m ≤ n)

˜
f(m) = f∗(m) is positive.19

Now we can formulate the “first preservation theorem” [1, 6.1.B] already men-
tioned:

Theorem 7.2. Assume (Pi ,
˜
Qi )i<α is a countable support iteration of proper, tools-

preserving forcings. Then Pα is tools-preserving.
20

§8. Preservation of non-meager. In this section I is the ideal of meager sets.
This is the easiest (and alreadywell known) case: strongpreservation is equivalent
to preservation of generics and is iterable.
We already know that preservation of Borel positivity is equivalent to preservation
of Borel outer measure. The same holds for the non-Borel notions as well:

Lemma 8.1. Preservation of positivity implies preservation of outer measure, and
the same holds for the true version.

Proof. Assume towards a contradiction that A is outer measure of X , and that
p forces that

˜
B is outer measure of X̌ and A \

˜
B is positive. Then A \

˜
B contains a

nonempty clopen set D ∈ V . So p forces that DV [GP] ∩ X̌ = DV ∩ X̌ is null. By
positivity preservation D ∩ X has to be null, a contradiction.
To show the lemma for the true notion, the same argument works: Assume
towards a contradiction thatA is true outermeasure of ç̄ and thatp forces ç̄(

˜
C ′)∩D

19Given a forcing P and a tools-interpretation f∗ of a function
˜
f /∈ V under p, we can find a

dense subforcing P′ ⊂ P such that for every condition p′ of P′ there is a n(p′) such that p′ forces
that f∗(n(p′)) 6=

˜
f(n(p′)). So with respect to P′, f∗ cannot be a tools-interpretation of

˜
f any more.

Definition 5.9 of interpretation on the other hand is invariant under equivalent forcings.
20Let us call P densely preserving if there is a dense subforcing Q of P that is tools-preserving.

Since tools-interpretations are not absolute, densely preserving does not seem to imply tools-preserving.
When iterating forcings that do not necessarily add reals, it actually seems that densely preserving is the
property that is preserved and not tools-preserving, see [3]. In practice this distinction is of course not
important.
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is null for some clopen D ⊆ A. Then define

S∗ := { s ∈ S : çs ∈ D }, and

ç̄∗ := ç̄ � S∗.

The usual argument shows that ç̄∗ is truly positive: Otherwise, let C be club such
that ç̄∗(C ) = ∅. Then C witnesses that A is not true outer measure of ç̄. On
the other hand, p forces that ç̄∗(

˜
C ′) is null, a contradiction to true positivity

preservation. a

It is well known that “preservation of Cohens” is iterable:

Theorem 8.2. If (Pi ,
˜
Qi )i<α is a countable support iteration of proper forcings such

that Pi (
˜
Qi preserves Cohens) for all i ∈ α, then Pα preserves Cohens.

Proof. This is proven as application 3 in [2] or as Theorem 6.3.20 of Set theory
of the reals [1]. It is an easy application of tools-preservation (7.2):
Let Ω be the set of clopen sets of 2ù . Set

C = {f ∈ ΩΩ : (∀U ∈ Ω) f(U ) ⊆ U }.

We define f Rn ç by

f ∈ C and ç ∈ 2ù and for some k ≤ n, ç ∈ f(Uk).

Then for any N ≺ H (÷), ç covers N if and only if ç is Cohen over N . Also
{f : f Rn ç } is clopen, so

˜
fi Rni ç can be forced by determining

˜
fi � m for some

m. Therefore P preserves Cohens if and only if P is tools-preserving. This finishes
the proof of 8.2.
Note that in this simple case tools-preservation isn’t really needed. It is enough
to trivially modify the proof that a countable support iteration of proper forcings is
proper (see, e.g., [1, 6.1.3]). In the following we point out the changes that have to
be made to this specific proof:
The Lemma now reads:
Suppose (Pα ,

˜
Qα)α<ä is a countable support iteration such that for all α < ä,

α “
˜
Qα is proper and preserves Cohens”. Suppose that N ≺ H (÷) contains

(Pα ,
˜
Qα). Then for all â ∈ N ∩ä, for all α ∈ N ∩â and for all p ∈ Pâ ∩N , whenever

q ≤α p � â is (N,Pα)-generic and forces that ç∗ ∈ Gen(N [Gα ]), there is an (N,Pα)-
generic condition r ≤α p � â such that r � α = q and r  ç∗ ∈ Gen(N [Gâ ]).
The successor step is trivial. In the limit step we enumerate (just like the the

˜
ôn)

a list
˜
Tn of the Pâ -names in N of nowhere dense trees. Then we add the following

requirement: pn+1 determines
˜
Tn up to a level m, and ç∗ /∈

˜
Tn � m.

Why can we do this? By induction we already know that there is a Pαn -generic
qn ≤ pn over N that forces ç∗ ∈ Gen(N [Gαn ]). Assume Gαn is Pαn -generic over V
and contains q. InN [Gαn ], construct T

∗
m and an decreasing sequence p

m
n < pn such

that pmn  T ∗
m =

˜
Tn � m and

⋃

m∈ù T
∗
m is a nowhere dense tree. So ç

∗ /∈ T ∗
m for

some m. T ∗
m lives in V (since it is finite). So there is an m, T

∗
m and a p

m
n ≤ pn ∈ N

such that ç∗ /∈ T ∗
m . Now choose pn+1 ≤ p

m
n .

So in this case the additional preservation property can be satisfied “locally” (we
can once and for all deal with

˜
Mn in step n). a

Applying Theorem 6.1 gives the following result due toGoldstern and Shelah [12,
Lemma XVIII.3.11]:
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Corollary 8.3. If (Pi ,
˜
Qi )i<α is a countable support iterationsuch that

˜
Qi is prov-

ably nep and provably doesn’tmakeV meager, thenPα doesn’tmake any old setmeager.

§9. Preservation of Lebesgue-positive. In this section, I is the ideal of Lebesgue
null sets.
The outermeasure ofX as defined in this paper is equivalent to the outermeasure
in the usual sense, called Leb∗(X ). In particular, preservation of outer measure
is equivalent to the preservation of the value of Leb∗(X ), more formally: Assume
Leb∗(X ) = r. Then P preserves outer measure of X if and only if P forces that
Leb∗(X̌ ) = ř.
Also the true outer measure is fully described by the true outer measure as a real,
defined by T-Leb∗(ç̄) := min{Leb∗(ç̄(C )) : C club } (note that T-Leb∗ really is
a minimum). Then P is true outer measure preserving if and only if P preserves
T-Leb∗. (This follows from the proof of the next lemma).

Lemma 9.1. If P is weakly homogeneous21 and preserves (true) positivity then P
preserves (true) outer measure.

Proof. For the “untrue” version, this is [1, Lemma 6.3.10]. The same proof
works for true outer measure as well: Assume that B is a true outer measure of
ç̄, that Leb(B) = r1 and that p forces that

˜
B ′ ⊇ ç̄(

˜
C ′) and Leb(

˜
B ′) < r2 < r1,

r2 rational. We have to show that there is a truly positive ç̄∗ that fails to be truly
positive after forcing with P.
So p forces that there is a sequence

˜
In of clopen sets such that

⋃

˜
In ⊇ ç̄(

˜
C ′) and

ΣLeb(
˜
In) < r2. Let pn, h(n), I ∗n be such that for all m ≤ h(n),

pn  Leb
( ⋃

m>h(n)
˜
Im

)
<
1

n
& (∀k < m)

˜
Ik = I

∗
k .

So Leb(
⋃
I ∗m) ≤ r2, and B \

⋃
I ∗m is not null. Therefore

S∗ :=
{
s ∈ S : çs /∈

⋃

I ∗m
}

is is stationary (otherwise, the complement of S∗ would witness that B is not the
true outer measure or ç̄). Define ç̄∗ := ç̄ � S∗. So ç̄∗ is truly positive.

pn  Leb
(⋃

˜
Im \

⋃

I ∗m
)
<
1

n
, and

pn  ç̄∗(
˜
C ′) ⊆

⋃

˜
Im \

⋃

I ∗m , i.e.,

pn  Leb∗(ç̄∗(
˜
C ′)) <

1

n
. So

pn  T-Leb∗(ç̄∗) ≤
1

n
.

Since the last statement does not contain any names except standard-names, and
since P is weakly homogeneous, we get 1P  T-Leb∗(ç̄∗) ≤ 1/n for all n, i.e.,
 T-Leb∗(ç̄∗) = 0. So the truly positive ç̄∗ becomes null after forcing with P. a

Now we are going to show that strong preservation is equivalent to the Lebesgue
version of tools-preservation (see Definition 7.1).

21So if ϕ only contains standard-names, then (p P ϕ) implies (1P P ϕ).
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We list the clopen subsets of 2ù as (Ii )i∈ù , and interpret a function f ∈ ùù as a
sequence of clopen sets. We set

C := {f : ∀i Leb(If(i)) < 2
−i}, and

f Rn ç if and only if f ∈ C , ç ∈ 2ù, and for all l > n, ç /∈ If(l).

For f ∈ C , the set Nf :=
⋂

n∈ù

⋃

i>n If(i) is a null set. In fact, every null set is
contained in a Nf for some f ∈ C (see, e.g., [1, 2.3.10] or [2]). f R ç just means
ç /∈ Nf .
ç is random over a model N if and only if ç is not element of any null set coded
by a real in N . So ç is random over N if and only if ç covers N .
For reference we baptize this version of tools-preservation:

Definition 9.2. P is called Lebesgue-tools-preserving if it is tools-preserving for
the Rn defined as above.

It is clear that Lebesgue-tools-preserving implies preservation of generics and
therefore preservation of positivity. Lebesgue-tools-preservation is preservation
of generics plus “side functions”. It turns out that this is equivalent to strong
preservation:

Lemma 9.3. The following are equivalent:

(1) P is Lebesgue-tools-preserving.
(2) P is Lebesgue-tools-preserving for k = 1 and n1 = 0.
(3) P strongly preserves randoms.

Proof. (2) → (1): Assume N ≺ H (÷), p, ç, f∗
1 , . . . , f

∗
k ,
˜
f1, . . . ,

˜
fk and

n1, . . . , nk are as in the definition of Lebesgue-tools-preserving.
Set n∗ := max(k, n1, . . . , nk). pn∗ ≤ p forces that f

∗
i � n∗ =

˜
fi � n∗. Let g∗ ∈ ùù

be such that Ig∗(m) =
⋃

i=1...k If∗
i (n

∗+m), and
˜
g the name of a function in ùù such

that p forces that I
˜
g(m) =

⋃

i=1...k I
˜
fi (n∗+m). So for all m,

p  Leb(Ig∗(m)) < k2
−(n∗+m) < 2−m,

i.e., p 
˜
g ∈ C .

g∗ is a tools-interpretation of
˜
g under pn∗ (this is clear if we assume that the list

Im contains no repetitions; otherwise we just have to choose
˜
g(m) accordingly).

ç /∈ Ig∗(m) for all m; i.e., g
∗ R0 ç.

Since we assume (2) we can find an N -generic q ≤ pn∗ forcing that ç is random
over N [G ] and that

˜
g R0 ç.

This means that q forces that ç /∈ I
˜
fi (m) for all i ≤ k and m > n

∗. And for

ni ≤ m ≤ n∗, pn∗ forces that I
˜
fi (m) = If∗

i (m)
and therefore that ç /∈ I

˜
fi (m). So q

forces that
˜
fi Rni ç.

(2)→ (3): We show the equivalent property (3) of Lemma 5.11. So fix p and N
and assume p 

˜
T ′ ∈ I+BC. We want to show that there is a T and a p

′ ≤ p such
that T is an interpretation of

˜
T ′ with respect to p′, and for every ç∗ ∈ T ∩N there

is an N -generic q ≤ p forcing that ç∗ ∈ Gen(N [G ]) ∩
˜
T ′.

Since every positive set contains a positive closed set we can assume without loss
of generality that p forces that

˜
T ′ is closed and that the measure of

˜
T ′ is at least

some rational number r.
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Any measurable A ⊆ 2ù can be approximated from the outside by countable
unions of clopen sets. If A is closed (i.e., compact), then any open cover of A
has a finite sub-cover. So for any å > 0 there is a clopen set C ⊇ A such that
Leb(C \A) < å. In particular there is a sequence of clopen sets

2ù = A0 ⊇ A1 ⊇ · · · ⊇ A

such that Leb(An \ A) = Leb(An) − Leb(A) < 2−n and A =
⋂
An . Set Bn :=

An \An+1. Then the Bn are a disjoint sequence of clopen sets, A = 2ù \
⋃
Bn and

Leb(Bn) = Leb(An)− Leb(An+1) ≤ Leb(An)− Leb(A) < 2
−n.

So the sequence (Bn) is coded by an f ∈ C . Also ΣLeb(Bn) = 1− Leb(A).
Applying this to

˜
T ′ we get that p forces that there is the according

˜
f for

˜
T ′. Pick

an N ′ ≺ H (÷′) containing p and
˜
f, and let G ∈ V be an N ′-generic filter. Then

f∗ :=
˜
f[G ] is a tools-interpretation of

˜
f, witnessed by a decreasing sequence pn of

elements of G .
Let (B∗

n )n∈ù be the sequence of clopen sets corresponding to f
∗. B∗

n is disjoint
to B∗

m for m 6= n (since p forces this for
˜
B). Also p forces that ΣLeb(

˜
Bn) ≤

1 − Leb(
˜
T ′) < 1 − r, and therefore ΣLeb(B∗

n ) ≤ 1 − r. So T := 2
ù \

⋃
B∗
n is

positive. T is an interpretation of
˜
T ′ with respect to p: Assume A ⊆ T has

measure s > 2−n. Then pn ≤ p forces that Leb(
˜
T ′ \

⋃

m<n ˜
Bm) =< 2−n and that⋃

m<n ˜
Bm =

⋃

m<n B
∗
m . A is disjoint to

⋃

n<m B
∗
m , so A ∩

˜
T ′ has to be positive.

Assume N ≺ H (÷) contains p, P, T,
˜
T ′ and ç ∈ T ∩ Gen(N ). ç ∈ T means

ç /∈ B∗
n for all n, i.e., f

∗ R0 ç. So by (2) there is a q ≤ p N -generic forcing that
ç ∈ Gen(N [G ]) and that çR0

˜
f. That againmeans that ç ∈

˜
T ′, andwe are finished.

(3) → (2): Fix an N ≺ H (÷), a tools-approximation f∗ of
˜
f under p such that

˜
f, f∗, and p are in N , and an ç ∈ Gen(N ) such that f∗ R0 ç.

So the appropriate p2 ≤ p forces that f∗(0) =
˜
f(0) and f∗(1) =

˜
f(1).

Set T := 2ù \
⋃

m>1 If∗(m) and
˜
T ′ := 2ù \

⋃

m>1 I
˜
f(m).

Then T is an interpretation of
˜
T ′ with respect to p2:

AssumeA ⊆ T is a positive Borel set. PickN ∈ ù such that Σn≥N2−n < Leb(A).
pN ≤ p2 forces thatf∗(i) =

˜
f(i) for all i < N . So pN forces thatA∩

⋃

m<N I
˜
f(m) is

empty, and that Leb(
⋃

m≥N I
˜
f(m)) < Leb(A), and therefore that A ∩

˜
T ′ is positive.

So by (3) we know that there is an N -generic q ≤ p2 forcing that ç is random
over N [G ] and that ç ∈

˜
T ′. ç ∈

˜
T ′ means that for all m > 1, ç /∈ I

˜
f(m). Since

q ≤ p2, q forces that ç is not in I
˜
f(0) = If∗(0) or I

˜
f(1) = If∗(1) either. So q forces

that
˜
f R0 ç. a

Using this Lemma, Theorem 6.1 and the fact that strong preservation implies
preservation we get:22

Corollary 9.4. Assume that (Pi ,
˜
Qi )i<α is a countable support iteration such that

for all i ,
˜
Qi is provably nep and provably preserves Lebesgue positivity of V . Then Pα

preserves Lebesgue positivity (of all old positive sets).

22Compare that to Zapletal [15, Cor 5.4.10]: Assume that there is a proper class of measurable
Woodin cardinals. If P is a forcing adding a single real which has a definition satisfying a (very general)
syntax and preserves Lebesgue positivity of V (or in fact positivity with respect to similar ideals), then
the countable support iteration of P (or arbitrary length) preserves positivity as well.
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The diagram of implications. So in the cases of the Lebesgue null and the meager
ideal we have implications of preservation of the following notions:

I is the Lebesgue null ideal:

Lebesgue-tools
(iterable)

↔

true outer measure

��

//

P weakly
hom. (9.1)oo_ _ _

randoms
↔

true positivity

��

outer measure //

P weakly
hom. (9.1)oo_ _ _ _ _ positivity

positivity of V
↔

Borel outer measure

��
P nep: 6.1

G
E

YY

@
>

<
9

7
6

4

For the definition of Lebesgue-tools-preserving, see 9.2.
For nep see section 6.

I is the meager ideal:

Cohens
(iterable)

↔

true outer measure

��

outer measure
↔

positivity

��

positivity of V
↔

Borel outer measure

P nep: 6.1

:
5

AA

*

�
�
�
	

For general Suslin ccc ideals we get:

preserving true
outer measure

OO

5.11
��

// preserving true
positivity

OO

5.8
��

strongly
preserving generics

//

5.6

��

preserving
generics

��
preserving many
generics

OO

3.5
��

preserving
outer measure

��

// preserving
positivity

��

preserving Borel
outer measure

OO

��

//

P nep: 6.1

:
5

1
,

(
$
�
�
�

AA

�


	
�

preserving
Borel positivity

��

P is Borel
homogeneous: 3.2

OO�
�
�

P nep: 6.8

�
	


�
�
�

�

]]

(
,

1
5

:

preserving outer
measure of V

preserving
positivity of V

V has outer measure
0 or 1oo_ _ _ _ _ _ _ _ _ _
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Preservation of (Borel) positivity and outer measure is defined in 3.1, the true notions in 5.5,

and (strong) preservation of generics in 5.7 and 5.9. For “P nep” see section 6.
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