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Derndinger [2] and Krupa [5] defined the F-product of a (strongly continuous one-parameter) semigroup (of
linear operators) and presented some applications (e. g. to spectral theory of positive operators, cf. [3]). Wolff
(in [7] and [8]) investigated some kind of nonstandard analogon and applied it to spectral theory of group
representations. The question arises in which way these constructions are related. In this paper we show that
the classical and the nonstandard F-product are isomorphic (Theorem 2.6). We also prove a little “classical”
corollary (2.7.).
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1 Basic notation

1.1 Semigroups

Let E be a (real or complex) Banach space. We denote the norm of an element f of E by |f |. L(E) is the
set of bounded linear functions from E to E. The elements of L(E) are called bounded linear operators, and
the norm of an operator A is is denoted by ‖A‖. A one-parameter semigroup of bounded linear operators (or
semigroup, for short) is a function T : R+

0 −→ L(E) such that T (0) = IdE and T (t1 + t2) = T (t1) ◦ T (t2). A
semigroup T is called strongly continuous (or continuous, for short), if for all f ∈ E, limt→0 |T (t)f − f | = 0
(i. e. limt→0 T (t) = IdE in the strong topology). T is called uniformly continuous, if limt→0 ‖T (t) − IdE‖ = 0
(i. e. limt→0 T (t) = IdE in the topology induced by the operator-norm).

For a continuous semigroup T and f ∈ E we define A(f) := limh→0(1/h)(T (h)f − f), if this limit exists
(in E). D(A) is the set of f ∈ E such that A(f) exists. A is called the generator of T .

More about the (classical) theory of continuous semigroups can be found in the textbook [3]. We will only
need the following results:

Lemma 1.1

1. For every continuous semigroup T there exist constants M ≥ 1 and ω ∈ R such that for all t ∈ R+
0 ,

‖T (t)‖ ≤ Meωt.

2. D(A) is a dense linear subspace of E, and A is a closed linear operator (i. e. the graph of A is a closed
subset of E × E ).

3. D(A) = E if and only if T (t) is uniformly continuous.

4. If f ∈ D(A) and h > 0, then |T (h)f − f | ≤ h · |A(f)| · sups≤h ‖T (s)‖.

5. If f ∈ D(A) and h > 0, then |(1/h)(T (h)f − f) − A(f)| ≤ sups≤h(|T (s)A(f) − A(f)|).
6. For any f̄ and h > 0 there is f ∈ D(A) such that

A(f) =
T (h)f̄ − f̄

h
and |f̄ − f | ≤ sups≤h(|T (s)f̄ − f̄ |).

∗ Corresponding author: e-mail: kellner@logic.univie.ac.at
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Remark The last three items of the lemma follow from the following two facts:
If f ∈ D(A) and t > 0, then T (t)f − f =

∫ t

0
T (s)Af ds.

For all f ∈ E and t > 0,
∫ t

0
T (s)f ds is in D(A), and A(

∫ t

0
T (s)f ds) = T (t)f − f .

(The integral is defined as the limit of the Riemann-sums.)

Using | ∫ f(s) ds| ≤ ∫ |f(s)| ds, the items 4 and 5 follow directly from T (t)f − f =
∫ t

0 T (s)Af ds. We get

item 6 by defining f := (1/h)
∫ h

0
T (s)f̄ ds.

The famous theorem of Hille-Yosida states that uniformly continuous semigroups are exactly the semigroups
of the form T (t) = etA, where A is in L(E). If T (t) = etA, then A is the generator of T , and D(A) = E. In this
case, the constructions in this paper do not result in anything new. So we will mainly be interested in semigroups
that are not uniformly continuous.

Our basic example for such a semigroup is the following:

Example 1.2 Cb is the (real) Banach space of uniformly continuous, bounded functions from R to R (with
the sup-norm, denoted by ‖ · ‖∞). T is the translation semigroup, defined by T (t)f(x) := f(x + t). Then T
is continuous (since each f ∈ Cb is uniformly continuous), but T is not uniformly continuous: for example, let
fk(x) = sin(kx). Then fk ∈ Cb and |fk| = 1. For all t > 0 there exists a k such that |T (t)fk − fk| > 1, i. e.
‖T (t) − IdE‖ > 1. f is in D(A) if and only if f ′ exists and belongs to E. In this case, A(f) = f ′.

1.2 Robinsonian (nonstandard) analysis

We present the concept of nonstandard extensions following [1].

Let X be a set. Then P (X) denotes the set of all subsets of X and

V0(X) = X, Vn+1(X) = Vn(X) ∪ P (Vn(X)), V (X) =
⋃

n∈ω Vn(X).

We assume that (a suitable copy of) N exists in X , and that all vector spaces we are interested in are subsets of X .
So all sets of numbers, subspaces of E etc. are in V (X). For technical reasons, we want to treat the elements of
X as urelements, i. e. we want to avoid that for some y ∈ V (X) and x ∈ X , y ∈ x. We can do that by assuming
(without loss of generality) that X is a base-set, i. e. X does not contain the empty set and x ∩ V (X) is empty
for all x ∈ X .

A nonstandard universe is a triple 〈V (X), V (Y ), ∗ : V (X) −→ V (Y )〉 such that:

· X and Y are infinite base-sets, X ⊂ Y , ∗X = Y , for all x ∈ X , ∗x = x,

· (non-triviality) for every infinite subset A of X : A � ∗A,

· (transfer principle) if ϕ(x1, . . . , xn) is a Σ0-formula and a1, . . . , an ∈ V (X), then V (X) � ϕ(a1, . . . , an)
iff V (Y ) � ϕ( ∗a1, . . . , ∗an).
Σ0-formulas are first order formulas ϕ (in the Language {∈}) such that only quantifiers of the form ∀x ∈ y and
∃x ∈ y occur in ϕ.

Note that the transfer principle is similar to the well-known Łoś’ theorem for ultraproduct-constructions.
However, V (Y ) cannot be an ultrapower of V (X), since otherwise Łoś’ theorem would apply to all first order
formulas, including the formula “for all natural numbers n, there is a decreasing ∈-chain of length n”. This
sentence cannot be true in (V (Y ),∈), since ∈ is well-founded and V (Y ) has nonstandard natural numbers.
However, Y can be an ultrapower of X , and this specific kind of nonstandard extension is the most important one
in our context:

Let U be a countably incomplete ultrafilter over a set I (i. e. there is a countable family An of elements of U
such that

⋂
An /∈ U). Let Y be the ultrapower of X with respect to U . (Without loss of generality we can assume

that X and Y are base-sets). Then V (Y ) can be made a nonstandard extension of V (X) in a way that the map
∗ restricted to X is the usual ultrapower injection, i. e. ∗x is the equivalence class of the constant function cx.
Non-triviality follows from the fact that U is countably incomplete, and the transfer principle is proved similar to
Łoś’ theorem.

Nonstandard extension obtained in this way are called bounded ultrapowers.
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In any nonstandard extension there are infinite numbers: The sets ∗N � N and ∗R � R are called the
nonstandard natural numbers and the nonstandard real numbers. Sometimes we will call N and R the standard
natural numbers and the standard real numbers, respectively, to emphasis the difference.

A nonstandard number r is called finite if there is a standard natural number n such that |r| < n (in V ( ∗X)).
So a natural number is finite iff it is standard. A nonstandard number that is not finite is called infinite. A
nonstandard real number r is called infinitesimal if r = 0 or r �= 0 and 1/r is infinite.

Let r, s ∈ ∗R, then r ≈ s stands for “r − s is infinitesimal”. For each finite r ∈ ∗R there is a unique real
number r′ such that r′ ≈ r. This r′ is denoted by std(r)

Similar notation will be introduced for elements of nonstandard normed vector spaces.
The following notions are central in nonstandard analysis:

y ∈ V (Y ) is called standard if there is a x ∈ V (X) such that y = ∗x.

y ∈ V (Y ) is called internal if there is a x ∈ V (X) such that y ∈ ∗x.

y ∈ V (Y ) is called external if y is not internal.

Note that for y ∈ Y , y is standard iff y ∈ X , so the notation is compatible with our use of standard natural or
standard real numbers.

An example of an internal set that is not standard is the set of all nonstandard natural numbers less than
some m, where m is infinite.

If A, B are internal (or standard), then so are A ∪ B, A \ B, etc.
The set of all infinite natural numbers in not internal. This is a special case of the so-called spillover principle:

Theorem 1.3 (Spillover Principle) Let A be internal.

1. A contains arbitrary large finite (i. e. standard) natural numbers iff A contains arbitrary small infinite
natural numbers.

2. A contains arbitrary small positive standard reals iff A contains arbitrary large positive infinitesimals.

It is important to note that A just has to be internal, it is not necessary that A is internal.

If A is a set in V (X), then P fin(A), the set of all finite subsets of A, is in V (X) as well, and is mapped to
∗P fin(A) ∈ V (Y ). If A was infinite, this set will contain more elements than just the sets ∗B, where B ⊂ A is
finite. These new elements are called hyperfinite (note that they do not have to be finite). So a set B in V (Y ) is
called hyperfinite, if there is some A ∈ V (X) such that B ∈ ∗P fin(A).

The example above, {n ∈ ∗N : n < m}, is an example of an infinite, hyperfinite, internal set. It is easy to
see that all hyperfinite sets are internal.

For the examples 2.9 and 3.3, we use a nonstandard extension such that the standard reals are a subset of a
hyperfinite set.

More general, we call a nonstandard extension V (Y ) an enlargement if for every A ∈ V (X) \ X there is a
hyperfinite B ∈ V (Y ) such that { ∗a : a ∈ A} ⊂ B.

It is provable (using the Axiom of Choice, of course) that for any base-set X there is a index set I and
an ultrafilter U over I such that the bounded ultrapower with respect to U is an enlargement (for details, see
e. g. [1]). The outline of the proof is as follows:

1. For every κ, there are κ-good filters.

2. κ-good filters result in κ-saturated extensions.

3. Given X , let κX be the cardinality of V (X). Then κX -saturated extensions are enlargements.

The only consequence of the concept of enlargement that we are going to use is the following

Lemma 1.4 Let V ( ∗X) be a nonstandard enlargement of the universe. Then there is a (infinite) nonstandard
natural number k such that sin(kt) is infinitesimal for all standard reals t.

P r o o f. The set R of standard reals is a subset of some hyperfinite set A of nonstandard reals. It is a well–
known (classical) fact that for every finite set of reals A, and every positive ε there is a natural number k such
that for all t ∈ A, sin(kt) < ε. So by transfer of the classical fact, setting ε infinitesimal, we get a k ∈ ∗N such
that for all t ∈ R, sin(kt) is infinitesimal.
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When we compare nonstandard constructions with classical constructions, we will assume that our nonstan-
dard extension is a bounded ultrapower (generated by the same ultrafilter) – otherwise it isn’t clear what the
classical analogon should be. It should be noted that there are nonstandard universes which are not bounded
ultrapowers: An ultrapower is always ℵ1-saturated (since all filters are ℵ1-good), but the union of a countable el-
ementary chain of ultrapowers is not ℵ1-saturated (see [1, p. 290, 4.4.29]). However, every extension can be seen
as limit of ultrapowers (see [1]), and in practice, authors often restrict their attention to the case of ultrapowers
(see e. g. [4, p. 88]).

2 Ultrapowers and nonstandard-hulls

2.1 Constructions without semigroups

Let E be a normed vector space, I an arbitrary set. We define l∞(E) to be the space of all bounded E-valued
I-sequences with the sup-norm (denoted by ‖ · ‖∞). Then l∞(E) is a normed vector space. Note that I does not
have to be countable, it can be of any cardinality.

Assume U is a filter over I (not necessarily an ultrafilter). As in [2], we define cU to be the set of sequences
〈fi〉 such that for all ε there is a set J ⊆ I such that J ∈ U and |fi| < ε for all i ∈ J .

Lemma 2.1 |y + cU | := inf{|x| : x ∈ y + cU} is a norm on l∞(E)/cU , and E is a Banach space if and only
if l∞(E) is a Banach space. If E is a Banach space, then l∞(E)/cU is a Banach space as well.

P r o o f. If E is a Banach space, then so is l∞(E) (since Cauchy-sequences converge pointwise). Clearly,
cU is a closed subspace of l∞(E). And any normed (and complete) vector space can be factored by a closed
subspace, resulting in a normed (and complete, respectively) vector space. If l∞(E) is complete, then clearly so
is E (otherwise take any non-converging Cauchy-sequence fi in E, and map it to the sequence gi = (fi, 0, 0, . . . )
in l∞(E)).

Note that l∞(E)/cU can be a Banach space although E (and therefore l∞(E)) is not, see the remark after
Theorem 2.3.

The corresponding nonstandard construction is the following: Let V ( ∗X) be a nonstandard universe, and
E ⊂ X a normed vector space. Then ∗E is a nonstandard normed vector space, and a standard vector space
(without canonical norm).

We define the finite part of ∗E, denoted by fin∗E, to consist of all elements f of ∗E such that |f | is finite. Then
f ≈ g means that |f − g| is infinitesimal. The infinitesimal part of ∗E, denoted by E0, consists of all f such that
|f | is infinitesimal, i. e. f ≈ 0. Clearly, E0 is a (standard) vector subspace of fin∗E. By Ê we denote the quotient
of fin∗E and E0, and the canonical quotient map fin∗E −→ Ê is denoted by ·̂ , i. e. f̂ is the quotient-class of f ,
and f is called a representant of f̂ .

Ê is a normed vector space with the norm |f̂ | := std(|f |), where f is any representant of f̂ and std(r) is the

standard part of a finite nonstandard real r. Of course, the vector space operations are defined by f̂ + ĝ := f̂ + g

and αf̂ := α̂f .

Lemma 2.2 If V ( ∗X) is a bounded ultrapower, then Ê is a Banach space.

A proof can be found e. g. in [6, p. 59], noting that a bounded ultrapower is ℵ1-good and therefore the
extension will be ℵ1-saturated.

A straightforward calculation proves that for an ultrafilter U , the F-product and the nonstandard hull are the
same:

Theorem 2.3 Let U be an ultrafilter and V ( ∗X) the corresponding bounded ultrapower. Then
ι : l∞(E)/cU −→ Ê defined by ι(f + cU) = f̂ is an isomorphism.

So if U is a countably incomplete ultrafilter, then l∞(E)/cU is a Banach space (according to Lemma 1.1),
regardless of whether E was a Banach space or not.
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2.2 Classical constructions for semigroups

2.2.1 The maximal continuous subspace

Assume, T (t) is a semigroup on E (not necessarily continuous), and assume M and ω are such that
‖T (t)‖ ≤ Meωt (for continuous semigroups, such M and ω always exist, according to Lemma 1.1).

Define (E)T - max := {f ∈ E : limt→0 |T (t)f − f | = 0}. A subspace F of E is called T -invariant, if
T (t)(f) ∈ F for all f ∈ F and t ∈ R+.

Lemma 2.4 (E)T - max is a closed T -invariant subspace of E, and it is maximal in the family of subspaces
F of E such that T (t) restricted to F is continuous.

P r o o f.

(a) (E)T - max is closed. Assume fi, f ∈ E such that fn → f , and choose an ε > 0. Let n be such that
|fn − f | < min(ε/6M, ε/3). Then

|T (t)f − f | ≤ |T (t)f − T (t)fn| + |T (t)fn − fn| + |fn − f |.

If t < δ (for a suitable δ), then ‖T (t)‖ < 2M and |T (t)fn − fn| < ε/3 (since fn ∈ (E)T - max), so

|T (t)f − f | ≤ 2M
ε

6M
+

ε

3
+

ε

3
≤ ε.

(b) (E)T - max is invariant. Assume f ∈ (E)T - max and s ∈ R+
0 . Then

|T (t)(T (s)(f)) − T (s)(f)| = |T (s)(T (t)(f) − f)| ≤ ‖T (s)‖ |T (t)f − f |.

(c) (E)T - max is maximal. If T is continuous on F and f ∈ F , then by definition f is an element of (E)T - max.

Remark This definition and lemma just isolate a part of the proof that is given e. g. in [2] for Corollary 2.5.
This way we don’t have to repeat the same argument again (e. g. for Lemma 2.8).

2.2.2 mT

Let T (t) be continuous, ‖T (t)‖ ≤ Meωt, and let 〈fi〉 be an element of l∞(E). Define T̃ (t)(〈fi〉) := 〈T (t)fi〉.
Since T (t) is bounded, T̃ (t)(〈fi〉) ∈ l∞(E) for all 〈fi〉 ∈ l∞(E) and t ≥ 0. It is clear that T̃ defines a semigroup
on l∞(E). Also, ‖T̃ (t)‖ ≤ Meωt. But in general T̃ will not be continuous on l∞(E): Let T be the translation
semigroup on Cb as in Example 1.2, I = ω, U a free ultrafilter over ω, and fk(x) = sin(kx) ∈ Cb. Then
f = 〈fk〉 ∈ l∞(E), but T̃ (t)f − f does not converge.

One can show rather easily that T̃ is continuous on l∞(E) if and only if T is uniformly continuous on E
(assuming of course that the index set I is infinite).

We define mT to be the maximal continuous subspace of l∞(E) with respect to T .

Corollary 2.5 mT is a closed, T̃ -invariant subspace of l∞(E).

2.2.3 The F-product of a semigroup

As we have seen, if T is a semigroup defined on E, under certain assumptions T can be extended to a (not
necessarily continuous) semigroup T̃ on l∞(E). Assume 〈fi〉 ∈ cU (i. e. for all ε ∈ R+, |fi| < ε holds on a
filter-set). T̃ (t)(〈fi〉) ∈ cU for all t ≥ 0, since T̃ (t) is a bounded operator. This means that cU is T̃ -invariant, and
that we can define T̃ on l∞(E)/cU . Of course, T̃ is a semigroup on l∞(E)/cU (and generally not continuous).

cU is not a subspace of mT . (For example, any 〈fi〉 such that fi = 0 on a filter-set is in cU , but not necessarily
in mT .) However, it is easy to see that cU ∩ mT is a closed subset of mT , and mT /(cU ∩ mT ) is a subspace of
l∞(E)/cU .
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To be more exact:

Lemma 2.6 φ : mT /(cU ∩ mT ) −→ l∞(E)/cU defined by φ(〈fi〉 + cU ∩ mT ) = 〈fi〉 + cU is a (well-
defined) injective isometry.

P r o o f. See [5, p. 163].

Lemma 2.7 mT /(cU ∩ mT ) is a closed, T̃ -invariant subspace of l∞(E)/cU , and the restriction of the semi-
grpoup T̃ to mT /(cU ∩ mT ) is continuous.

P r o o f. The quotient mT /(cU ∩ mT ) of the Banach space mT is a Banach space, and so is its isometric
image. The rest is clear.

In general, mT /(cU ∩ mT ) is not the maximal continuous subspace of l∞(E)/cU . This is shown in Exam-
ple 2.9 (using that mT /(cU ∩ mT ) corresponds to ÊT , see Lemma 2.11).

2.3 Nonstandard constructions for semigroups

Let V ( ∗X) be a nonstandard universe and E ⊂ X a Banach space.
Assume A : E −→ E is a continuous linear operator, and f an element of fin∗E and g is an element of E0

(the finite and infinitesimal parts of the nonstandard vector space ∗E, respectively). Then ∗Af (and ∗Ag) are
again finite (and infinitesimal, respectively). Therefore A defines a bounded linear operator Â : Ê −→ Ê by
Â(f̂ ) = Âf . (If A is not bounded, then generally Â cannot be defined in a canonical way.)

If T is a semigroup, then for all positive reals t, T (t) is continuous, and T̂ (t) := T̂ (t) is a semigroup on Ê.

If ‖T (t)‖ < Meωt (this is always the case if T is continuous), then an alternative way to define T̂
is the following: Let ∗T be a nonstandard semigroup on ∗E. If t is a positive, finite nonstandard real, then
‖∗T (t)‖ < Meωt, and so we get: If f ∈ ∗E is finite (or infinitesimal), then so is ∗T (t)f . Thus T̂ (t) : Ê −→ Ê

is well-defined by T̂ (t)(f̂ ) = ̂∗T (t)(f), even for finite nonstandard t. If t is standard, then the two definitions
are equivalent.

Assume T is continuous, i. e. for all f in E and all ε > 0 there is a δ > 0 such that |T (t)f − f | < ε for
all t < δ. We apply the transfer principle to this sentence, and get: For all f ∈ ∗E and all ε ∈ ∗R+, there is
δ ∈ ∗R+ such that |∗T (t)f − f | < ε for all positive reals t < δ. However, if ε > 0 is a standard real, then
it is not guaranteed that δ > 0 can be chosen to be standard as well (δ could be infinitesimal). We define two
subspaces of fin∗E (the finite part of ∗E): ET consists of all the vectors f with the following property: If ε > 0
is standard, then there is a standard δ > 0 such that |∗T (t)f − f | < ε for all nonstandard t < δ. Emax consists
of all f satisfying the same condition for standard t < δ only. I. e. a finite f ∈ ∗E is in Emax iff for all ε ∈ R+

there is δ ∈ R+ such that |∗T (t)f − f | < ε for all positive standard reals t < δ.
It is easy to see that a finite f ∈ ∗E is in ET iff for all positive infinitesimal t, |∗T (t)f − f | is infinitesimal.
Clearly, E0 is a subspace of ET , which is in turn a subspace of Emax. So, if f ∈ ET (or Emax) and f ≈ g, then

g ∈ ET (or Emax, respectively), and we can define the quotient spaces ÊT = ET /E0 and Êmax = Emax/E0.
Remember that (other than fin∗E), ET is a (canonically) normed vector space.

Lemma 2.8

1. Êmax is the maximal continuous subspace of Ê with respect to T̂ .

2. Êmax is a closed, T̂ -invariant subspace of Ê.

3. ÊT is a closed, T̂ -invariant subspace of Êmax.

P r o o f.

1. Assume, limt→0 |T̂ (t)f̂ − f̂ | = 0, and fix ε ∈ R+. Then there exists δ ∈ R+ such that for all positive
reals t < δ, |T̂ (t)f̂ − f̂ | < ε/2. Assume that f is a representant of the quotient f̂ , and that t < δ. Then
std(|∗T (t)f − f |) < ε/2, and therefore |∗T (t)f − f | < ε in ∗R, so f ∈ Emax and f̂ ∈ Êmax.

2. follows from 1. and Lemma 2.4.
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3. Assume that f̂n ∈ ÊT and f̂n → f̂ in ET . Let fn and f be representants of f̂n and f̂ , respectively. Assume
h is a positive infinitesimal. Then |T (h)f − f | ≤ |T (h)f − T (h)fn| + |T (h)fn − fn| + |fn − f |, which is
smaller than every positive standard ε, as |f − fn| gets arbitrary small, |T (h)f − f | ≤ ‖T (h)‖ |f − fn|, and
|T (h)fn − fn| is infinitesimal. To show the invariance, assume that f̂ ∈ ÊT , and let f ∈ ET be a representant.
Let t ∈ bRp and let h be a positive infinitesimal. Then |T (h)T (t)f − T (t)f | ≤ ‖T (t)‖ |T (h)f − f |, which is
infinitesimal. So T (t)f ∈ ET , and therefore T̂ (t)f̂ ∈ ÊT .

Remark In [8], an alternative way to construct ET is presented. Theorem 4.6.1 there corresponds to our
Theorem 3.4.

In general, ÊT is a proper subset of Êmax (or equivalently: ET is a proper subset of Emax). To see this, we
bring an example similar to [5, p. 165] or [7, p. 209]:

Example 2.9 Let T be the translation semigroup on Cb (as in Example 1.2), V ( ∗X) an enlargement, k such
that sin(kt) is infinitesimal for all t ∈ R (see Lemma 1.4). Define the element f of ∗Cb by f(x) = sin(kx).
Then |f | = 1, and f is an element of Emax, but not of ET .

P r o o f. To see that f ∈ Emax, it is enough to show that for all positive (standard) reals t, |T (t)f − f | is
infinitesimal. For any standard reals t, sin(k(x + t)) − sin(kx) = sin(kx)(cos(kt) − 1) + sin(kt) cos(kx).

sin(kx) and cos(kx) are finite, and sin(kt) and (cos(kt)− 1) =
√

1 − sin2(kt)− 1 are infinitesimal. Therefore

|T (t)f−f | = ‖ sin(k(x+t))−sin(kx)‖∞ is infinitesimal. To see that f /∈ ET , it is enough to note that h := 1/k
is infinitesimal, but |T (h)f − f | = ‖ sin(k(x + h)) − sin(kx)‖∞ = ‖ sin(x + 1) − sin(x)‖∞ is not.

2.4 Relation of classical and nonstandard constructions

Assume V ( ∗X) is the bounded ultrapower of an ultrafilter U over I . Then the isomorphism ι of Theorem 2.3
allows us to identify l∞(E)/cU and Ê. We can also consider mT /(cU ∩mT ) to be a subspace of l∞(E)/cU (via
the injective isometry φ of Lemma 2.6).

Lemma 2.10 Êmax is the maximal continuous subspace of l∞(E)/cU with respect to T̃

(More formally, one would have to write Êmax = ι((l∞(E)/cU )T̃ - max).)

P r o o f. This follows from Lemma 2.8 and the fact that ι(T̃ (t)f) = T̂ (t)(ι(f)) for all f ∈ l∞(E)/cU .

Lemma 2.11 mT /(cU ∩ mT ) ⊂ ÊT .

(Again, more formally this should be written as ι(φ(mT /(cU ∩ mT ))) ⊂ ÊT .)

P r o o f. By definition, 〈fi〉 ∈ mT iff for all reals ε > 0 there is a real δ > 0 such that ‖T (t)fi − fi‖∞ < ε

for all reals t < δ. Let f̂ ∈ Ê correspond to 〈fi〉. Assume that h is an infinitesimal nonstandard real. We want to
show that for an arbitrary fixed positive real ε, |∗T (h)f̂ − f̂ | < ε. Let δ be the real corresponding to ε as above.
h corresponds to a sequence of reals 〈hi〉 (i ∈ I) such that U = {i ∈ I : hi < δ} is in the ultrafilter. ∗T (h)f̂ − f̂
corresponds to the sequence T (hi)fi − fi. If i is in U , then |T (hi)fi − fi| < ε, and U is a filter-set, therefore
|∗T (h)f̂ − f̂ | < ε.

It is not immediately clear whether mT /(cU ∩ mT ) is always identical to ÊT .

One could construct a counterexample under the following assumption:

Assumption 2.12 Fix ω, M, η, ε1, ε2, . . . , δ1, δ2, . . . . Assume that for all n, m ∈ N+ there is a Banach
space En

m, a continuous semigroup T n
m with T n

m(t) < Meωt and an fn
m ∈ En

m such that

(a) |fn
m| = 1,

(b) |T n
m(t)fn

m − fn
m| < 1/n for all 1 ≤ i ≤ n and t < δi,

(c) for all f̄ ∈ En
m such that |f̄ − fn

m| < η there exists t < 1/m such that |T n
m(t)f̄ − f̄ | > εn.
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If this assumption holds, then let the index set I be N+ × N+, and define Ē = l∞(Ei
j) with the sup-norm

(i. e. 〈fi,j〉 ∈ Ē iff fi,j ∈ Ei
j and |fi,j | is bounded). T (t)〈gi,j〉 := 〈T i

j (t)gi,j〉 is a semigroup on Ē. Let E be the
maximal continuous subspace of Ē, and define hn

m = 〈hn
m(i, j)〉 ∈ E by

hn
m(i, j) =

{
fn

m if i = n and j = m,

0 otherwise.

1
n

εn

δn t

|T (t)h − h|

hn
2

hn
3

hn
1

h1
1

h1
2

h1
3

|T (t)h − h| for different h’s

Assume that U is an ultrafilter over I = N+ × N+, and that there is a partition {σi,j} (i, j ∈ N) of I such
that

⋃
i>n, j>f(i) σi,j ∈ U for all n ∈ N and all functions f : N −→ N, (it is easy to see that such a countably

incomplete filter exists, e. g. apply a suitable filter-basis to [6, Theorem A.4]). Then define k = 〈ki,j〉 ∈ Ē by
ki,j = hn

m, where n, m is the (unique) pair of natural numbers such that (i, j) is an element of σn,m. Now
consider the nonstandard extension defined by U , and interpret k as nonstandard element of ∗E. Clearly, |k| = 1,
since |ki,j | = 1 for all (i, j). For all natural numbers n, 0 < t < εn and (i, j) ∈ ⋃

r>n, s∈ω σr,s we have
|T (t)ki,j − ki,j | < 1/n. So, if 〈ri,j〉 is infinitesimal, then so is |∗T (r)k − k|, i. e. k ∈ ET . Assume that the
equivalence class of k is in mT /(cU∩mT ). Pick a representant 〈k̄i,j〉 ∈ mT , and U ∈ U such that |k̄i,j−ki,j | < η
for all (i, j) ∈ U . Since U ∈ U , there is n0 such that for all m there is m′ such that σn0,m′ ∩ U �= ∅. Since
〈k̄i〉 ∈ mT , there is m0 ∈ N such that |T (t)k̄i − k̄i| < δn0 for all (i, j) ∈ I and 0 < t < 1/m0. If m0

′ > m0

and (i0, j0) ∈ σn0,m0′ ∩ U , then there is t ∈ R+ such that t < 1/m0
′ < 1/m0 and |T (t)k̄i − k̄i| ≥ δn0 ,

a contradiction.

However, our investigation of the nonstandard generator of a semigroup will show that mT /(cU ∩mT ) = ÊT .

3 The Generator

3.1 The generator in ∗E

If T is a continuous semigroup, then ∗T (t) maps the finite (or infinitesimal) elements of ∗E to finite (or infinitesi-
mal, respectively) elements for all finite t ≥ 0. That is not true for an (unbounded) linear map A, as the following
trivial example shows:

Example 3.1 Let T be the translation semigroup on Cb (as in Example 1.2), V ( ∗X) a nonstandard extension,
k an infinite natural number. Then there is an infinitesimal f1 ∈ ∗E such that f1 ∈ ∗D(A) and ∗A(f) is infinite.
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P r o o f . Define f1 by case distinction:

f1 =


0 if x < 0,

k3x2 if 0 ≤ x < 1/k2,

−k3x2 + 4kx − 2/k if 1/k2 ≤ x < 2/k2,

2/k if 2/k2 ≤ x.

Then

∗Af1 =


0 if x < 0,

2k3x if 0 ≤ x < 1/k2,

2k3x + 4k if 1/k2 ≤ x < 2/k2,

0 if 2/k2 ≤ x.

�

2k

2
k

1
k20 2

k2

Example 3.1. f1 and f ′
1 = ∗A(f1)

Let V ( ∗X) be a nonstandard universe. Then the subspace D(A) of E is mapped to a subspace ∗D(A) of ∗E.

Lemma 3.2 Assume f and g are elements of ∗D(A).
1. If f and ∗A(f) are both finite, then f ∈ ET .

2. If f is finite and ∗A(f) ∈ ET , then (1/h)(∗T (h)f − f) ≈ ∗A(f) for all positive infinitesimal reals h.

3. If k ∈ ∗E and (1/h)(∗T (h)f − f) ≈ k for all positive infinitesimal reals h, then k ≈ ∗A(f).
4. If f , g, ∗A(f) and ∗A(g) all are in ET , and f ≈ g, then ∗A(f) ≈ ∗A(g).

P r o o f.
1. By transfer of Lemma 1.1.4 we get:

|∗T (t)f − f | ≤ t · sups≤t ‖∗T (s)‖ · |∗A(f)| ≤ tM(eωt + 1) · |∗A(f)|,
which is infinitesimal for infinitesimal t.

2. For every standard ε > 0 and infinitesimal s, we have |∗T (s)∗A(f) − ∗A(f)| < ε. Therefore transfer
of Lemma 1.1.5 implies that |(1/h)(∗T (h)f − f) − ∗A(f)| ≤ ε for infinitesimal h. Since ε was arbitrary,
|(1/h)(∗T (h)f − f) − ∗A(f)| is infinitesimal.

3. By transfer of the definitions of A and D(A), we get the following: For all positive nonstandard reals ε
there is a positive nonstandard real δ such that |(1/h)(∗T (h)f − f) − ∗Af | < ε for all h ≤ δ. Let ε be a fixed
positive infinitesimal, and choose an infinitesimal h ≤ δ for the appropriate δ. Then (1/h)(∗T (h)f − f) ≈ ∗Af ,
and by assumption (1/h)(∗T (h)f − f) ≈ k, therefore k ≈ ∗A.

4. Since ∗Af ∈ ET , (1/h)(∗T (h)f − f) ≈ ∗Af for all infinitesimal h, and the same applies to g and ∗Ag.
So we have

|∗Af − ∗Ag| ≤ ∣∣∗Af −
∗T (t)f − f

t

∣∣ +
∣∣ ∗T (t)f − f

t
−

∗T (t)g − g

t

∣∣ +
∣∣ ∗T (t)g − g

t
− ∗Ag

∣∣ ≤ ε.
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So we just have to show that |(1/t)(∗T (t)f − f) − (1/t)(∗T (t)g − g)| = |(1/h)(∗T (t)(f − g) − (f − g))| is
infinitesimal for infinitesimal h. Transfer of Lemma 1.1.4 shows that∣∣ ∗T (t)(k) − (k)

h

∣∣ ≤ sups≤h‖∗T (s)‖ · |∗A(k)|

for all positive h and k ∈ ∗D(A). Now apply this to k = f − g.

As we have already seen in Example 3.1, f ≈ g does not imply ∗A(f) ≈ ∗A(g) (set f := f1, g := 0). Also,
it is not enough to assume that f , g, ∗A(f) and ∗A(g) are all in Emax ∩ ∗D(A) for the implication to hold:

Example 3.3 Assume T , k and f are as in Example 2.9. Define g(x) := cos(kx)/k. Then g ≈ 0. Clearly
g ∈ Emax (it is even in ET ), and ∗A(g) = f , i. e. ∗A(g) ∈ Emax, but ∗A(g) is not infinitesimal.

The same example shows that g ∈ ET does not imply ∗A(g) ∈ ET .

3.2 The generator in ÊT

As we have already seen in Lemma 2.8, T̂ is a continuous semigroup on ÊT (since ÊT is a subspace of Êmax).
The generator is called Â.

Theorem 3.4 f̂ is element of D(Â) if and only if there is a representant f of f̂ such that f is in D∗A and
∗Af is in ET . In this case, Â(f̂ ) = ∗̂A(f).

P r o o f. Assume f̂ has a representant f as in the theorem. We must show that f̂ ∈ D(Â) and Â(f̂ ) = ∗̂A(f),

i. e. we fix a (standard) real ε > 0 and have to find δ > 0 such that |(1/h)(T̂ (h)f̂ − f̂ ) − ∗̂A(f) | < ε for
all h < δ. By Lemma 3.2.2, n(h) := |(1/h)(∗T (h)f − f)− ∗A(f)| is infinitesimal for infinitesimal h. Note that
n is an internal function, since it is element of ∗{h �−→ |(1/h)(T (h)f − f) − A(f)| : f ∈ D(A)}. Therefore
the set X = {h : n(h) ≥ ε} is internal as well, and we can apply the spillover principle 1.3: Assume toward a
contradiction that for all standard δ > 0 there was a standard h < δ such that n(h) ≥ ε, i. e. there are arbitrary
small standard reals in X . Then there is a infinitesimal real in X as well, a contradiction. Therefore f̂ ∈ D(Â).

Assume on the other hand that f̂ , ĝ are elements of ÊT such that Â(f̂ ) = ĝ. We want to show that f ∈ D∗A
and ∗Af ∈ ET for some representant f of f̂ . Let f̄ , ḡ be arbitrary representants of f and g, respectively
(according to Example 3.1, we cannot hope that f̄ already has the required properties). For all nonstandard
natural numbers m define cm to be the set of nonstandard natural numbers n > m such that

∣∣ ∗T (1/n)f ′ − f ′

1/n
− g′

∣∣ < 1/m.

For all standard natural numbers m, the set cm is not empty, since Â(f̂ ) = ĝ. The set X = {m : cm �= ∅}
is internal and contains all standard natural number, therefore it contains an infinite natural number as well
(according to the spillover principle). Let m be such an infinite number, and n an element of cm. Now we apply
the transfer of Lemma 1.1.6, setting h := 1/n. So we get f in D(∗A) such that

|f̄ − f | ≤ sups≤h(|∗T (s)f̄ − f̄ |),

which is infinitesimal, since f̄ ∈ ET and s is infinitesimal. Therefore f is a representant of f̂ as well. Also,
∗A(f) = (1/h)(∗T (h)f̄ − f̄), so |∗A(f) − ∗A(ḡ)| ≤ 1/m is infinitesimal, therefore ∗A(f) ∈ ET as well.

3.3 The equivalence of F-product and nonstandard hull

Let V ( ∗X) be a bounded ultrapower, T continuous with generator A.

Lemma 3.5 ÊT = mT /(cU ∩ mT ).
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P r o o f. Assume mT /(cU ∩mT ) � ÊT . Since mT /(cU ∩mT ) is a closed subspace of ÊT and D(Â) is dense
in ÊT , there must be an f̂ which is element of D(Â) but not of mT /(cU ∩ mT ). We chose a representant f of
f̂ such that f ∈ D(∗A) and ∗Af ∈ ET . Since f is an element of the ultraproduct, f is an equivalence class of a
sequence fi (i ∈ I) such that for all i, fi ∈ D(A) and 〈A(fi)〉 ∈ l∞(E). But then

|T̃ (h)f − f | = supi∈I(|T (h)fi − fi|) ≤ h · supi∈I(|A(fi)|) · sups≤h(‖T (s)‖)

(according to Lemma 1.1.4), so f ∈ mT , a contradiction.

Combining this with Lemmas 2.11 and 2.8, using the isometry ι of Lemma 2.3, we get:

Theorem 3.6 Ê is isomorphic to l∞(E)/cU , and ÊT is isomorphic to mT /(cU ∩ mT ).
So we get the following picture. Here p are the canonical projections from a space to its quotient, and ·̂ maps

a finite element f of ∗E to the equivalence class f̂ . The maps labeled with p and ·̂ are surjective, the ones labeled
with ∼= are isometries. > denotes the subspace relation, for >1 the isometry φ of Lemma 2.6 is used:

l∞(E) > mT

↓ p ↓ p

l∞(E)/cU > (l∞(E)/cU )T - max >1 mT /(cU ∩ mT )
∼=� ι ∼=� ι ∼=� ι

Ê > Êmax > ÊT

↑ ·̂ ↑ ·̂ ↑ ·̂
fin∗E > Emax > ET

Remark The entries of the first three rows are Banach spaces, the last row consists of vector spaces.

So we know that Assumption 2.12 cannot hold. This proves

Corollary 3.7 Assume that T n
m are contraction semigroups on E (i. e. for all t ∈ R+, ‖T (t)‖ ≤ 1 ), and

fn
m ∈ E are such that |fn

m| = 1 and |T n
m(t)fn

m − fn
m| < 1/n for all t < 1/n. Then there are f ′ ∈ E and n, m,

such that |f ′ − fn
m| < 1/2 and |T n

m(t)f ′ − f ′| < 1/n for all t < 1/m.
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