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Abstract. Cichoń’s diagram lists twelve cardinal characteristics (and the provable inequalities
between them) associated with the ideals of null sets, meager sets, countable sets, and � -compact
subsets of the irrationals.

It is consistent that all entries of Cichoń’s diagram are pairwise different (apart from add.M/

and cof.M/, which are provably equal to other entries). However, the consistency proofs so far
required large cardinal assumptions.

In this work, we show the consistency without such assumptions.
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Introduction

How many Lebesgue null sets do we need to cover the real line? Countably many are not
enough, as the countable union of null sets is null; and continuum many are enough, asS
r2R¹rº D R.

The answer to this question (and similar ones) is called a cardinal characteristic
(sometimes also called cardinal invariant); in our case the characteristic is denoted by
cov.N /.

As we have argued, @0 < cov.N /� 2@0 . So if the Continuum Hypothesis (CH) holds,
then cov.N / D 2@0 . It has been shown by Gödel [14] and Cohen [10] that CH is inde-
pendent of ZFC, i.e., one can prove: If ZFC is consistent, then so is ZFCCCH as well as
ZFCC:CH.
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cov.N / // non.M/ // cof.M/ // cof.N /

OO

b //

OO
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cov.M/ //
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non.N /
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@1
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cov.N / // non.M/ // // cof.N /
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b //

OO

d

OO

add.N / //

OO

//

OO

cov.M/ //

OO

non.N /

OO

@1

OO

Fig. 1. Cichoń’s diagram (left). In the version on the right, the two “dependent” values are removed;
the “independent” ones remain (nine entries excluding @1, or ten including it). It is consistent that
these ten entries are pairwise different.

Under :CH, cov.N / could be some cardinal less than 2@0 , and one can indeed show
that @1 D cov.N /D 2@0 , @1 < cov.N /D 2@0 and @1 D cov.N / < 2@0 are all consistent.

Some more characteristics associated with the � -ideal N of null sets are defined:

� add.N / is the smallest number of null sets whose union is not null.

� non.N / is the smallest cardinality of a non-null set.

� cof.N / is the smallest size of a cofinal family of null sets, i.e., a family that contains
for each null set N a superset of N .

Replacing N with another � -ideal I gives us the analogously defined characteristics for I .
In particular, for the meager ideal M we get add.M/, non.M/, cov.M/, cof.M/.

For the � -ideal ctbl of countable sets, it is easy to see that add.ctbl/ D non.ctbl/
D @1 and cov.ctbl/ D cof.ctbl/ D 2@0 , which is also denoted c (for “continuum”).

For K , the � -ideal generated by the compact subsets of the irrationals, it turns out
that add.K/ D non.K/. This characteristic is more commonly denoted b. We also have
cov.K/ D cof.K/, denoted d.

These characteristics are customarily displayed in Cichoń’s diagram; see Figure 1.
An arrow from x to y indicates that ZFC proves x � y. Moreover, one can show that
max ¹d; non.M/º D cof.M/ and min ¹b; cov.M/º D add.M/. A series of results [1, 3, 9,
20, 21, 28, 29, 31, 32], summarized in [2, Ch. 7], proves these (in)equalities in ZFC and
shows that they are the only ones provable. More precisely, all assignments of the values
@1 and @2 to the nine “independent” characteristics in Cichoń’s diagram (excluding @1
and including c) are consistent with ZFC, provided they honor the inequalities given by
the arrows.

This leaves the question on how to separate more than two entries simultaneously.
There was a lot of progress in recent years, giving four and up to seven values [11,12,19,
25, 27]. Finally, it was shown [15] that the following statement, which we call “Cichoń’s
maximum”, is consistent:

The maximal possible number of entries of Cichoń’s diagram, i.e., all ten “inde-
pendent” entries .including @1 and c/, are pairwise different.



Cichoń’s maximum without large cardinals 3

However, the proof required four Boolean ultrapower embeddings, constructed from four
strongly compact cardinals.1 A strongly compact cardinal is an example of a so-called
“large cardinal” (LC). Such cardinals turned out to be an important scale for measuring
consistency strengths of mathematical (and in particular set-theoretic) statements: There
are many examples of statements ' where one cannot prove

The consistency of ZFC implies the consistency of .ZFC plus '/,

but only

The consistency of .ZFC plus LC/ implies the consistency of .ZFC plus '/

for some specific large cardinal axiom LC. In many cases, one can even show that '
is equiconsistent with LC (i.e., one can also prove that the consistency of (ZFC plus ')
implies the consistency of (ZFC plus LC)). For example, “there is an extension of Lebesgue
measure to a � -complete measure which measures all sets of reals” is equiconsistent
with a so-called measurable cardinal (a notion much weaker than a strongly compact).

In case of ' being Cichoń’s maximum, previously we could only prove an upper
bound for the consistency strength, but conjectured that Cichoń’s maximum is actually
equiconsistent with ZFC. This turns out to be correct.

In this work, we introduce a new method to control cardinal characteristics when
modifying a finite support ccc iteration (by taking intersections with � -closed elementary
submodels). This method can replace the Boolean ultrapower embeddings in previous
constructions, so in particular we can get Cichoń’s maximum without assuming large
cardinals. Furthermore, we can get arbitrary regular cardinals as the values of the entries
in Cichoń’s diagram. As the method is quite general, we expect that it can be applied to
control the values of other characteristics, in other constructions, as well.

This paper should be reasonably self-contained (modulo an understanding of forcing,
such as presented in [24]). However, in Section 2 we just quote the result (from [15] or
alternatively from [5]) that a suitable preparatory forcing P pre for the left hand side exists,
without proofs or much explanation.

Annotated contents:

§1 We define the properties LCU and COB for a forcing P , which give us the “strong wit-
nesses” that will guarantee the desired equalities (or rather: both sides of the required
inequalities) for the respective cardinal characteristics. We show how these properties
are preserved when intersecting P with a � -complete elementary submodel.

§2 We just quote (without proof) the result from [15] (or [5]) that a suitable forcing P pre

for the left hand side with suitable LCU and COB properties exists.

1A simpler example of this Boolean ultrapower construction, giving only eight different values
and using three compacts, can be found in [23]; and later a construction for Cichoń’s maximum
requiring only three compacts was given in [5]. In [13] it is noted that superstrongs are sufficient for
the constructions. However, until now all proofs showing the consistency of eight or more different
values needed some large cardinals assumptions.
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§3 We prove the main result: There is a complete subforcing P fin of P pre which forces
ten different values to Cichoń’s diagram (we can actually choose any desired regular
values).

§4 We remark that the same argument can be applied to alternative “initial forcings” for
the left hand side. In particular, using a construction of [22], we get another ordering
of the ten entries in Cichoń’s diagram.

§5 We list some open questions regarding alternative orders of Cichoń’s diagram with
ten values.

1. The LCU and COB properties and � -closed elementary submodels

Let R be a binary relation on some basic set Y . The cardinal bR, the bounding number
of R, is the minimal size of an unbounded family, i.e.,

bR WD min ¹jBj W B � Y; .8g 2 Y / .9f 2 B/ :.fRg/º:

Dually, dR, the dominating number of R, is the minimal size of a dominating family, i.e.,

dR WD min ¹jDj W D � Y; .8f 2 Y / .9g 2 D/ fRgº:

We will use these notions in two situations:
On the one hand, R may be a directed partial order (or a linear order) without largest

element, such as .ŒX�<� ;�/ or .�;2/. Then we will call bR the completeness of R and
denote it by comp.R/; and we call dR the cofinality of R and denote it by cof.R/. Note
that R is <�-directed iff � � comp.R/ (as we assume that R is directed). If in addition
R is linear without a maximal element, then cof.R/ D comp.R/ is an infinite regular
cardinal.

On the other hand, R may be a (possibly non-transitive) Borel relation on the reals
(more generally: a sufficiently absolute definition of a binary relation on the reals), and
we get the cardinal characteristics bR and dR. Note that .bR;dR/ D .dR? ;bR?/, where
we define the dual relation R? by xR?y iff :.yRx/. All entries of Cichoń’s diagram
are of this form, for quite natural relations R. (For more details, see the references after
Theorem 2.4.)

In the following we give definitions of LCU and COB which are notational variants2

of the definitions given in [15, Defs. 1.8 & 1.15].
We investigate relations on the reals, and fix !! as representation of the reals. (This

choice is irrelevant, and we could use any of the other usual representations as well. We
just pick one so that we can later refer to the reals as a well defined object, and so that we
can e.g. use .8x 2 !!/ in formulas.)

2There are other variants of these definitions that do not mention forcings [16, Def. 2.3] but are
applied to the extension V ŒG�. These variants are basically equivalent.
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Definition 1.1. Assume R is a binary relation on !! which is Borel, or just sufficiently
absolutely defined.3

� For a directed partial order .S;�S / without maximal elements, the “cone of bounds”
property COB.P; S/ says: There is a sequence4 .gs/s2S of P -names of reals such that
for any P -name f of a real there is an s 2 S such that

P  .8t �S s/ fRgt :

� For a linear order L without largest element, the “linear cofinal unbounded” property
LCUR.P;L/ is defined as follows:

There is a sequence .c˛/˛2L of P -names of reals such that for each P -name g of a
real there is an ˛0 2 L such that

P  .8˛ �L ˛0/ :.c˛Rg/:

(When writing P  fRg, we of course mean that we evaluate the definition of R in the
extension.)

Actually, LCU is a special case of COB:

LCUR.P; �/ is equivalent to COBR?.P; �/ (1.2)

(again,R? denotes the dual ofR). However, LCU and COB will play different roles in our
arguments, so we prefer to have different notations for these two concepts.

The following is basically the same as [15, Lem. 1.9 & 1.16] (also [16, Fact 2.4]):

Lemma 1.3. (1) Let S be a <�-directed partial order without a largest element, and let
A � S be cofinal. Then COBR.P; S/ and COBR.P;A/ are equivalent, and each one
implies

P  .bR � � & dR � jAj /:

(2) Let L be linear without a largest element and set � WD cof.L/. .So � is an infinite
regular cardinal./ Then LCUR.P;L/ is equivalent to LCUR.P; �/, and implies5

P  .bR � j�j & dR � � /:

Proof. Regarding the equivalence: Let .gs/s2S witness COBR.P; S/. Then .gs/s2A wit-
nesses COBR.P;A/. On the other hand, if .g0s/s2A witnesses COBR.P;A/, then we assign
to every s 2 S some a.s/ 2 A above s, and set g00s WD g0

a.s/
. Then .g00s /s2S witnesses

COBR.P; S/.

3The discussion after (1.4) shows which amount of absoluteness is sufficient for us. We will
need non-Borel relations only in Subsection 4.1.

4If S is a (partially) ordered set, we sometimes use “a sequence indexed by S” as synonym for
“a function with domain S”.

5We actually do mean dR � � and not just dR � j�j, i.e., if � is not a cardinal in the extension
anymore, then we have dR � j�j

C. But this is irrelevant in our application, as P will preserve �.
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From now on assume that .gs/s2A witnesses COBR.P; A/. Regarding dR, note that
¹gs W s 2 Aº is forced to be dominating.

Regarding bR, assume that p0 forces that X � !! is of size less than (the ordinal) �.
Fix p1 � p0, � < � and P -names .f˛/˛2� of reals such that p1  X D ¹f˛ W ˛ 2 �º.
For each ˛ let s˛ be an element of S satisfying the COB requirement for f˛ . As S is
<�-directed, there is some t 2 S above all s˛ , i.e., P  f˛Rgt for all ˛ 2 �. Accordingly,
p0 cannot force X to be unbounded.

The claims on LCU follow from the ones on COB by (1.2) (together with the fact that
for linear orders L, comp.L/ D cof.L/ and that .bR;dR/ D .dR? ;bR?/).

In the following results we show that when we restrict a poset P to a � -closed ele-
mentary submodel N of some H.�/, then the LCU and COB properties still hold (when
we intersect the parameter with N as well). These are simple technical tools we will use
to prove the main results.

Assume that � is regular, P �-cc, N 4 H.�/ is <�-closed and P 2 N . Then P \N
is again �-cc and thus a complete subforcing of P . So given a P \N -generic G over V ,
there is a P -generic GC over V extending G. Note that GC is P -generic over N as well,
and that NŒGC� 4 HV ŒGC�.�/.

There is a correspondence between P \N -names � for reals and P -names � 2 N for
reals, such that �ŒG� D �ŒGC� and for all p 2 P \N and sufficiently absolute ',

p P '.�/ iff p P\N '.�/: (1.4)

In a bit more detail: A “niceQ-name for a �-subset” (for an ordinal �) is a sequence Nh WD
..hn;An//n<� such thatAn is a maximal antichain inQ and hn WAn! 2 (evaluated in the
generic extension as ¹n 2 � W .9a 2 GQ \ An/ hn.a/ D 1º). As P \N É P , every nice
P \ N -name Nh for a �-subset is also a nice P -name, and furthermore Nh 2 N whenever
� < � (as N is <�-closed). On the other hand, if � < � then every nice P -name Nh for a
�-subset which is inN is actually a nice P \N -name. Note that if ' is Borel, then we are
done with showing (1.4). For a more general formula ', note that we have just shown that
NŒGC� \ 2<� D V ŒG� \ 2<� , and using an absolute bijection between 2<� and H.�/,
we get NŒGC� \H.�/ D V ŒG� \H.�/. So (1.4) holds whenever ' is, e.g., (provably)
absolute between the universe and H.�/ (for � D � as well as for � sufficiently large),
where ' may use elements of H.�/ (or names for such elements) as parameters.

Lemma 1.5. Assume P is �-cc for some uncountable regular � and N 4 H.�/ is
<�-closed. Then P \ N is a �-cc complete subforcing of P . Assume in the following
that P , S , L, �, R are in N .

(1) COBR.P; S/ implies COBR.P \N;S \N/.
So if we set �1 WD comp.S \N/ and �2 WD cof.S \N/, then
COBR.P; S/ implies P \N  bR � �1 & dR � j�2j.

(2) LCUR.P;L/ implies LCUR.P \N;L \N/.
So if we set � WD cof.L \N/, then
LCUR.P;L/ implies P \N  bR � j�j & dR � �.
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Proof. Let .fs/s2S witness COBR.P;S/ inN . Then .fs/s2S\N witnesses COBR.P \N;
S \ N/: Assume g 2 V is a P \ N -name for a real. As above we interpret it as a P -
name in N . So N thinks there is some s 2 S such that for all t �S s, P  gRft . So by
absoluteness (1.4), for every t �S s in N we get P \N  gRft .

Again, (2) is a special case of (1).

Lemma 1.6. Let � � � � � be cardinals with � and � uncountable regular, S a directed
set without maximal elements, � a regular cardinal, and let P be a �-cc poset. Assume
.Ni /i<� is an increasing sequence of <�-closed elementary submodels ofH.�/, where �
is a fixed, sufficiently large6 regular cardinal. Assume that for any i < �,

jNi j D �; � [ ¹�; P;R; S; �º � Ni ; and Ni 2 NiC1.

Set
N WD

[
i<�

Ni

.which is also a <�-closed elementary submodel/.

(1) cof.� \N/ D �0 WD

´
� if � � �;

� otherwise.
In particular, LCUR.P; �/ implies LCUR.P \N; �0/.

(2) comp.S \N/ � min ¹�; comp.S/º.

(3) If cof.S/ � � , then S \ N is cofinal in S , and in particular S \ N has the same
cofinality and completeness as S .

(4) If comp.S/ > � , then cof.S \N/ D �.
In particular, COBR.P; S/ implies COBR.P \N; �/.

Proof. For (2), the assumptions of Lemma 1.5 are sufficient: Assume thatA� S \N has
size less than min ¹�; comp.S/º. As N is <�-closed, A 2 N . By absoluteness, N knows
that the set A (which is smaller than comp.S/ after all) has an upper bound, so there is an
upper bound of A in S \N .

(3) only requires that � [ ¹�º � N and jN j D � : In N , let A � S be a cofinal subset
of size cof.S/. Since cof.S/ � � � N , we have A � N , so A � S \ N is cofinal in S .
And it is clear that any cofinal subset of a partial order has the same completeness and
cofinality as the order itself.

For (4), fix i < �. Since jNi j � � < comp.S/, there is some ˛i 2 S boundingNi \ S .
In fact, we can find such ˛i in S \NiC1 because Ni 2 NiC1. Hence, .˛i /i<� is a cofinal
increasing sequence of S \ N , so cof.S \ N/ D �. The claim on COB follows from
Lemmas 1.5 (1) and 1.3 (1).

For (1), if � > � then, by (4) applied to S D �, cof.� \N/ D �; if � � � then � \N
D �, so �0 D �. The claim on LCU follows from Lemmas 1.5 (2) and 1.3 (2).

6It is enough to assume � , �, S and 2P are in H.�/.
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2. The forcing for the left hand side

We set .bi ;di / to be the following pairs of dual characteristics in Cichoń’s diagram:

.bi ;di / D

8̂̂̂̂
<̂
ˆ̂̂:
.add.N /; cof.N // for i D 1;

.cov.N /; non.N // for i D 2;

.b;d/ for i D 3;

.non.M/; cov.M// for i D 4:

(2.1)

We will use for each i two Borel relations7 on !! , RLCU
i and RCOB

i , in such a way that
ZFC proves

bRCOB
i
� bi � bRLCU

i
and dRCOB

i
� di � dRLCU

i
: (2.2)

We write LCUi instead of LCURLCU
i

and COBi instead of COBRCOB
i

.
It is useful to have relations satisfying (2.2), because in this way we get:

Corollary 2.3. LCUi .P; �/ for � regular implies P  bi � j�j & di � �.
COBi .P; S/ for comp.S/ D �1 and cof.S/ D �2 implies P  bi � �1 & di � j�2j.

Theorem 2.4. Assume GCH and fix regular cardinals @1 < �1 < �2 < �3 < �4 < �1
such that each �n is the successor of a regular cardinal.

We can choose RLCU
i ; RCOB

i satisfying (2.2) and construct a ccc poset P such that the
following holds for i D 1; 2; 3; 4:

(a) If i < 4 then, for all regular � such that �i � � � �1, LCUi .P; �/ holds. In the case
i D 4, LCUi .P; �4/ and LCUi .P; �1/ hold.

(b) There is a directed order Si with comp.Si / D �i and cof.Si / D �1 such that
COBi .P; Si / holds.

Accordingly, P forces

add.N / D �1 < cov.N / D �2 < b D �3 < non.M/ D �4 < cov.M/ D �1 D c:

This theorem is proved in [15]; we will not repeat the proof here but instead point
out where to find the definitions and proofs in the cited papers (the italic labels in the
following paragraph refer to the cited paper):

Def. 1.2 defines relations called Ri for i D 1; : : : ; 4. These Ri are, apart from i D 2,
the “canonical” relations for bi ;di . They play the role ofRLCU

i and, apart from i D 2, also
of RCOB

i . RCOB
2 is implicitly defined in Def. 1.17 as the canonical relation: xRCOB

2 y iff y
is not in the Borel null set coded by x. Lem. 1.3 corresponds to (2.2) in this work, and
Thm. 1.35 is our Theorem 2.4.

7Actually, in most cases we will use the same RLCU
i and RCOB

i , which is moreover the “canon-
ical” choice for .bi ;di /. See the explanation that follows Theorem 2.4.
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Remark 2.5. In [5, Thm. 5.3] a different construction is presented, which gives a stronger
conclusion and requires the weaker assumption that @1 � �1 < �2 < �3 < �4 < �1 D
�
<�3
1 are just regular cardinals. If we use that paper, then RCOB

i D RLCU
i D Ri for all i ,

see [5, Ex. 2.17] (where Ri corresponds to item .5 � i/).

3. Cichoń’s maximum without large cardinals

Theorem 3.1. Assume GCH and .�n/1�n�9 is a weakly increasing sequence of cardinals
with �n regular for n � 8 and �@0

9 D �9. Then there is a ccc poset P fin forcing that

@1 � add.N / D �1 � cov.N / D �2 � b D �3 � non.M/ D �4

� cov.M/ D �5 � d D �6 � non.N / D �7 � cof.N / D �8 � c D �9:

Full GCH is not actually required: see Remark 3.5.
Note that the �n are required to be only weakly increasing, i.e., we can replace each�

in the inequality of characteristics by either < or D at will. So we get the consistency
of 29 many different “sub-constellations” in Cichoń’s diagram. Of course several of these
have been known to be consistent before (even without large cardinals). E.g., the sub-
constellation where we always choose “D” is just CH.

Proof of Theorem 3.1. We fix an increasing sequence of cardinals (see Figure 2)

@1 � �7 � �5 � �3 � �1 � �0 � �2 � �4 � �6 � �1

< �7 < �6 < �5 < �4 < �3 < �2 < �1 < �0 < �1; (3.2)

such that the following holds:

(1) All cardinals are regular, with the possible exception of �1.

(2) �1 D �
@0
1 .

(3) GCH, plus �n is the successor of a regular cardinal for n D 6; 4; 2; 0;1.
That is, the assumptions for Theorem 2.4 are satisfied if we set

�i WD �8�2i for i D 1; 2; 3; 4, and �1 WD �1: (3.3)

So we can apply Theorem 2.4, resulting in the forcing P pre. (Thus P pre forces the
situation shown in the upper Cichoń diagram of Figure 2.)

We will now construct a forcing P fin D P pre \ N � (a complete subforcing of P pre)
which forces .bi ; di / D .�8�2iC1; �8�2i / for all i D 1; : : : ; 4, and c D �1 (i.e., the
situation shown in the lower Cichoń diagram of Figure 2).

We fix Nn;˛ for 0 � n � 7; ˛ 2 �n, as well as N8, satisfying the following for any
n � 7:

� EachNn;˛ as well asN8 is an elementary submodel ofH.�/ and contains (as elements)
the sequences of � ’s and �’s, as well as P pre and Si (the directed orders provided by
Theorem 2.4) for i D 1; 2; 3; 4.
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cpreD�1

cov.N /pre
D�4

�3 ((

non.M/pre
D�0

22

bpreD�2

�1

OO

add.N /pre
D�6

�5

OO

cfinD�1

�7

mm

cov.N /fin
D�5

((

non.M/fin
D�1

!!

cof.N /fin
D�6

OO

bfinD�3

OO

dfinD�2

((
add.N /fin

D�7

OO

cov.M/fin
D�0

OO

non.N /fin
D�4

OO

@1

OO

Fig. 2. Our setup. The cardinals �n and �n are increasing along the arrows (strictly increasing
above �1). The preparatory forcing P pre forces x D xpre for each left hand side characteristic x

(and forces the whole right side to be �1); while the final forcing P fin forces x D xfin for every
characteristic x (on either side). That is, the upper Cichoń’s diagram shows the situation forced
by P pre, and the lower diagram shows the one forced by P fin.

� Nn;˛ contains .Nm;ˇ /m<n;ˇ2�m
as well as .Nn;ˇ /ˇ<˛ .

N8 contains .Nm;ˇ /m�7; ˇ2�m
.

� jNn;˛j D �n, and Nn;˛ is <�n-closed (thus �n � Nn;˛).8

� We set Nn WD
S
˛2�n

Nn;˛ . Note that Nn is <�n-closed and has size �n.

� N8 is <@1-closed9 and has size �1.

� We set N � WD N0 \ � � � \N7 \N8.

� For 0 � m � 8, we set Pm WD P pre \N0 \ � � � \Nm and P fin WD P8 D P
pre \N �.

8For n � 6, <�CnC1-closed is enough; for n D 7, <�7-closed is sufficient.
9If �<�1 D �1 for some regular � � �7, then we can demand that N8, and therefore also N �,

is <�-closed.
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Note that N0 \ � � � \ Nm is again an elementary submodel of H.�/,10 and accordingly
each Pm is a complete subforcing of P pre.

Regarding LCU: We fix i 2 ¹1; 2; 3; 4º (the case i D 3, as an example, is described
more explicitly below). Let us call the set of regular cardinals � satisfying LCUi .P; �/ the
“LCUi -spectrum of P ”, and let Xpre

i be the LCUi -spectrum of P pre. So

¹�1; �0; : : : ; �8�2iº � X
pre
i :

� In the first step n D 0, let us consider the LCUi -spectrum X0i of P0: As �1 2 X
pre
i , we

get �0 2 X0i , and as �0; : : : ; �8�2i are in Xpre
i , they are in X0i as well (both according

to Lemma 1.6 (1), using � D �0).

� For the next step n D 1, we similarly find that the LCUi -spectrum X1i of P1 contains
�0; �1, and, if i ¤ 4, also �1; : : : ; �8�2i .

� In this way we get that the final LCUi -spectrum Xfin
i of P fin contains �0; : : : ; �8�2iC1.

� This implies (by Corollary 2.3) that P fin forces

bi � min.�0; : : : ; �8�2iC1/ D �8�2iC1 and di � max.�0; : : : ; �8�2iC1/ D �8�2i :

So we get half of the desired inequalities.

This may be more transparent if we consider an explicit example, say i D 3. In each line
of the following table, each cardinal in the right column is guaranteed to be an element of
the LCU3 spectrum of the forcing notion in the left column:

P pre �1; �0; �1; �2
P0 D P pre \N0 �0; �0; �1; �2
P1 D P pre \N0 \N1 �0; �1; �1; �2
P2 D P pre \N0 \N1 \N2 �0; �1; �2; �2
P3 D P pre \N0 \N1 \N2 �0; �1; �2; �3
:::

:::

P fin �0; �1; �2; �3

Since �3 is the smallest of these four cardinals, and �2 the largest, we conclude that P fin

forces bi � �3 and di � �2.

Regarding COB: Again we fix i 2 ¹1; 2; 3; 4º. Letm WD 8� 2i . In particular, 0�m� 6,
m is even, so according to (3.2) we have �mC1 � �m and

�m D max
0�n�m

�n D max
0�n�mC1

�n: (3.4)

Recall that COBi .P pre; Si / holds where comp.Si / D �m and cof.Si / D �1 (cf. The-
orem 2.4 and (3.3)).

10If M;N 4 H.�/ and M 2 N then M \N 4M and M \N 4 N .
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We claim that
T WD Si \N0 \ � � � \NmC1

satisfies

comp.T / � min
0�n�mC1

�n D �mC1 and cof.T / � max
0�n�mC1

�n D �m:

Completeness is clear by applying Lemma 1.6 (2) iteratively: comp.Si / > �0, so that
comp.Si \N0/ � �0. Then comp.Si \N0 \N1/ � min ¹�0; �1º, and so on.

Regarding the cofinality:
� Let ƒ be the product

Qm
nD0 �n. So jƒj D �m by (3.4). For � 2 ƒ, set N � WDTm

nD0 Nn;�.n/. Note that N0 \ � � � \ Nm D
S
�2ƒ N

� , and that ƒ is an element, and
thus a subset, of each elementary submodel.11

� For � 2 ƒ, set T� WD Si \ N � . Since N� is <�m-closed and comp.Si / � �m, we get
comp.T�/ � �m > �mC1. Hence, by Lemma 1.6 (4) applied to N D NmC1, S D T� ,
� D � D �mC1 and � D �mC1, we conclude cof.T� \NmC1/ D �mC1.

Choose C� � T� cofinal in T� \ NmC1 of size �mC1. Hence, C WD
S
�2ƒ C� is

cofinal in T because T D
S
�2ƒ T� \NmC1, so

cof.T / � jC j � jƒj � �mC1 D �m � �mC1 D �m

by (3.4).

Now we show, by induction on n �mC 1, that Si \N0 \ � � � \Nn has completeness
��mC1 and cofinality��m. The step nDmC 1was done above; for the steps n>mC 1,
by induction we know that S 0 WD Si \ N0 \ � � � \ Nn�1 has cofinality at most �m and
completeness at least �mC1. So by Lemma 1.6 (3), the same holds for S 0 \Nn.

To summarize: For any i D 1; : : : ; 4, the cofinality of Si \ N � is at most �8�2i , and
the completeness at least �8�2iC1. By Lemmas 1.5 (1) and Corollary 2.3 we get

P fin  bi � �8�2iC1 & di � �8�2i :

So we get the remaining inequalities we need.

Regarding the continuum: There is a sequence .x�/�<�1 of (nice) P pre-names of reals
that are forced to be pairwise different due to absoluteness (1.4). Note that this sequence
belongs to N �, so .x�/�2�1\N� is a sequence of P fin-names of reals that are forced
(by P fin) to be pairwise different. Hence, P fin forces c � j�1 \ N

�j D �1.12 The con-
verse inequality also holds because jP finj D �1 D �

@0
1 .

11Element is clear, as all N ’s contain the sequence of �’s. Subset follows from the fact that each
N contains �1 and thus �m as a subset, and that jƒj D �m.

12This argument can be written in terms of the LCU property for the identity relation on !! : As
LCUId.P

pre; �/ holds for all regular � � �1 (even up to �1), we get LCUId.P
fin; �/ for all these

cardinals, which implies �1 � c.
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Remark 3.5. If we base the left hand forcing P pre on [5] (see Remark 2.5), then our
proof (when we change item (3) in the proof of Theorem 3.1 to the assumptions listed
in Remark 2.5) shows that GCH can be weakened to the following: There are at least
nine cardinals � > �9 satisfying �<� D � . Or, to be even be more pedantic: There are
regular cardinals �7 < � � � < �0 < �1 larger than �9 such that �<�1

7 D �7, �<�2
1 D �1

and ��iC1

i D �i for i ¤ 7;1.

4. Variants

4.1. Another order

The paper [22] constructs (assuming GCH) a ccc forcing notion P which forces another
ordering of the left hand side. More concretely,P is ccc and it has LCU and COB witnesses
for the following:13

add.N / < b < cov.N / < non.M/ < cov.M/ D c:

If we use this forcing P instead of P pre, then the same argument shows that we can
find a complete subforcing P fin that extends the order to the right hand side:

Theorem 4.1. Assume GCH and let .�n/1�n�9 be a weakly increasing sequence of car-
dinals with �n regular for n � 8 and �@0

9 D �9. Then there is a ccc poset P fin forcing
that

@1 � add.N / D �1 � b D �2 � cov.N / D �3 � non.M/ D �4

� cov.M/ D �5 � non.N / D �6 � d D �7 � cof.N / D �8 � c D �9:

Remark 4.2. As in Remark 3.5, full GCH is not needed, but it is enough that there are
nine regular cardinals larger than �9 satisfying some arithmetical properties. However, it
is not enough that �<� D � for those nine cardinals, but it is required in addition that one
of them is @1-inaccessible.14 For details, refer to [16, 26].

4.2. A weaker notion than COB sufficient for the proof

Several papers about constellations of Cichoń’s diagram preceding [5, 15], such as [4, 19,
25], have considered similar, but simpler, forcing constructions. While LCU witnesses are

13In (2.1), the order/numbering of .b;d/ and .cov.N /; non.N // is swapped; for this new order-
ing we again get Theorem 2.4. We use the same RLCU- and RCOB-relations as in [15], except for the
RLCU-relation for the pair .cov.N /; non.N //: Now we have to use a relation which is an !1-union
of Borel relations (which was originally defined in [30] and fit into a formal preservation frame-
work in [8]; see details in [22, Def. 2.3]). This is the only place in this paper where we have to use
a non-Borel relation R; but this is no problem as R is sufficiently absolute in the sense described
after (1.4).

14Recall that a cardinal � is �-inaccessible if �� < � for all � < � and all � < �.
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added in the same way, these do not provide for COB. Instead, a weaker property, which
we call DOM below, is implicit in these constructions. We now show that this notion is
sufficient to carry out the proof of the main result.

Definition 4.3. Let R be a relation on !! and let � be a cardinal.

(1) A set A � !! is �-R-dominating if, whenever F � !! has size <�, there is some
real a 2 A dominating over F , that is, .8x 2 F / xRa. Dually, we say that A is
�-R-unbounded if it is �-R?-dominating.

(2) Assume that R is sufficiently absolutely defined and let P be a forcing notion. We
define DOMR.P; �; S/ to mean the following: There is a sequence .f˛/˛2S of P -
names of reals such that, whenever  < � and .x�/�< is a sequence of P -names of
reals, there is some ˛ 2 S such that P  .8� < / x�Rf˛ .

(Note that DOMR.P; �; S/ is stronger than just saying that “P adds a �-R-dominating
family”.)

The following is straightforward and generalizes Lemma 1.3:

� COBR.P; S/ implies DOMR.P; comp.S/; cof.S//.

� If � is regular then LCUR.P; �/ implies DOMR?.P; �; �/.

� DOMR.P; �; S/ implies P  .� � bR & dR � jS j /.

For this weaker notion we have the following result similar to Lemma 1.6.

Lemma 4.4. With the same hypothesis as in Lemma 1.6, assuming also � 2 N :

(1) DOMR.P; �; S/ implies DOMR.P \N;min ¹�; �º; S \N/.

(2) If jS j � � then DOMR.P; �; S/ implies DOMR.P \N; �; S \N/.

(3) If � > � then DOMR.P; �;S/ implies COBR.P \N;�/. In particular, if S is directed
and comp.S/ > � then COBR.P; S/ implies COBR.P \N; �/.

Proof. In the following, assume that .f˛/˛2S witnesses DOMR.P; �; S/.
(1) If .x�/�< is a sequence of P -names of reals and  <min ¹�; �º then the sequence

is inN , so there is some ˛ 2 S \N such that P  x�Rf˛ for all � <  . By absoluteness,
P \N forces the same.

(2) is clear because S � N (as jS j � � and S 2 N ).
(3) Fix i < �. Since jNi j � � < �, there is some ˛i 2 S such that P  xRf˛i

for
all x 2 Ni that are P -names for reals. In fact, we can find such ˛i in S \ NiC1. Hence,
.f˛i

/i<� witnesses COBR.P \N; �/.

As in [26], a simpler version of P pre can be constructed in such a way that

(a) of Theorem 2.4 holds, and

(b0) for i D 1; 2; 3; 4 there is some set Si of size �1 such that DOMRCOB
i
.P;�i ; Si / holds.

Thanks to Lemma 4.4 (in particular item (3)), the same proof of Theorem 3.1 can be
carried out in this simpler context.
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5. Open questions

In [15, Sect. 3] the following questions are asked: Can one show the consistency of
Cichoń’s maximum

X(a) without using large cardinals?

X(b) for specific (regular) values, such as �i D @iC1?

Ï(c) for other orderings of the ten entries?

Ï(d) together with further distinct values of additional (“classical”) cardinal character-
istics?

This work, more concretely Theorem 3.1, solves questions (a) and (b).
Regarding (d),15 @1 <m< p< h< add.N / are added in [16] (based on the construc-

tion in this paper). The same characteristics can also be added, and also (b) solved, based
on the Boolean ultrapower construction, which is done in [17]. In [18], r and s are added.
Of course, it would be interesting to add more characteristics. For example, can we add
a, u, or i?

Question (c) remains largely open. There are four possible configurations where
non.M/ < cov.M/, and at the moment only two are known to be consistent (see The-
orems 3.1 and 4.1).

Question 1. Are the following two constellations consistent?

@1 < add.N / < cov.N / < b < non.M/ < cov.M/ < non.N / < d < cof.N / < c;

@1 < add.N / < b < cov.N / < non.M/ < cov.M/ < d < non.N / < cof.N / < c:

It is not clear whether our method in Section 3 can be applied to solve this question
(the same applies to Boolean ultrapowers), since we start with a poset forcing an order
of the left side of Cichoń’s diagram and our method only manages to dualize this order
to the right side (e.g., if on the left we force cov.N / < b, then on the right we can only
expect to force the dual inequality d < non.N /).

The case when cov.M/ < non.M/ seems to be more complex.16 We do not even
know how to force the consistency of @1 < cov.M/ < non.M/. J. Brendle however does,
with his method of “shattered iterations” [7] (see [6] for slides of a presentation). Brute
force counting shows that there are 57 configurations of ten different values in Cichoń’s
diagram (satisfying the obvious inequalities) where cov.M/ < non.M/, but none of them
have been proved to be consistent so far.

Question 2. Is any constellation of Cichoń’s maximum consistent where cov.M/ <

non.M/?

15This paragraph was updated after acceptance of the paper in the production phase.
16Recall that finite support iterations add Cohen reals at limit steps, so they force non.M/ �

cov.M/ (when the length has uncountable cofinality).
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math.tau.ac.il/~gitik/sstr.pdf (2019)

[14] Gödel, K.: The Consistency of the Continuum Hypothesis. Ann. of Math. Stud. 3, Princeton
Univ. Press, Princeton, NJ (1940) Zbl 0061.00902 MR 0002514

[15] Goldstern, M., Kellner, J., Shelah, S.: Cichoń’s maximum. Ann. of Math. (2) 190, 113–143
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[25] Mejía, D. A.: Matrix iterations and Cichoń’s diagram. Arch. Math. Logic 52, 261–278 (2013)
Zbl 1270.03087 MR 3047455

[26] Mejía, D. A.: A note on “Another ordering of the ten cardinal characteristics in Cichoń’s
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