
S E M I N A R A R B E I T

Star height of rational languages

ausgeführt am

Institut für

Diskrete Mathematik und Geometrie

TU Wien

unter der Anleitung von

Associate Prof. Dipl.-Ing. Dr.techn. Stefan Hetzl

durch

Johannes Weiser BSc

Matrikelnummer: 11906087

Danhausergasse 7/10

1040 Wien

Wien, am 21. März 2023

Contents

1 Introduction 1

2 Rational expressions and NFAs 2

3 Complexity of rational languages 5
3.1 Star height . 5
3.2 Loop complexity . 6
3.3 Eggan’s theorem . 7

4 The star height hierarchy 11

5 Generalised star height 15
5.1 The syntanctic monoid and the theorem of Schützenberger 16

Bibliography 18

i

1 Introduction

The aim of this work is to give an introduction to the star height of rational languages. In
the first chapter, I present some results and definitions regarding rational languages and
finite automata that are needed later on. After that I will introduce the star height itself
as a measure of structural complexity of rational languages and show how the star height
of a language L is linked to the complexity of automata that recognise L. In the fourth
chapter we will answer the question whether there is an upper bound for the star height
of languages of a fixed alphabet. Lastly, I will introduce the generalised star height as
an alternative to the regular star height and present an important theorem regarding the
existence and identification of languages with generalised star height strictly greater than
0.

1

2 Rational expressions and NFAs

The goal of this chapter is to define, what rational expressions are and to cite two theorems
from [2], which together give us the result that exactly the same languages can be obtained
using rational expressions and nondeterministic finite automata as defined in [2, pp. 51–53].
This allows us to later speak only about rational languages and look at them from different
points of view. Furthermore, we will cite the pumping lemma for rational languages and
define some special kinds of automata, which we will need later on.
First we define rational expressions:

Definition 2.1 (Rational expressions). Let Σ be an alphabet and (0, 1,+, ·, ∗) functions of
the respective arities (0, 0, 2, 2, 1). Then

(i) 0,1 and a are rational expressions for any a ∈ Σ.

(ii) If E and F are rational expressions over Σ, then E+F, E · F and E∗ are rational
expressions over Σ as well.

RatE(Σ∗) denotes the set of all rational expressions over Σ.

In order to avoid excessive use of parentheses, we agree on an operator precedence con-
vention: ∗ has higher precedence than ·, which takes precedence over +.

Having defined rational expressions, we can now define the languages, which they induce:

Definition 2.2. Let E ∈ RatE(Σ∗) be a rational expression. We assign one language L[E]
to it using the following rules:

(i) For atomic expressions:

L[0] = ∅, L[1] = ε and L[a] = a for any a ∈ Σ

(ii) For two rational expressions E,F ∈ RatE(Σ∗):

a) L[E + F] = {L[E]} ∪ {L[F]}
b) L[E · F] = {L[E]}{L[F]}
c) L[E∗] = {L[E]}∗

Here ε denotes the empty word 1. Although it is often mixed, we distinguish between
rational expressions and the languages we obtain by using them. For example, in (ii)c there
are two ∗ with different meanings: The first one is simply a unary operation on a rational
expression, the second one is the well-known Kleene star applied to a language.
To show the important fact that the languages accepted by NFAs and the languages

created by rational expressions are the same, we need one more definition.

1sometimes the empty word is referred to as 1A∗

2

2 Rational expressions and NFAs

Definition 2.3.

(i) Let F be a family of languages over Σ∗. It is rationally closed if it is closed under
∪, ∗ and concatenation. That is,

∀X,Y ∈ F : X ∪ Y ∈ F, XY ∈ F, X∗ ∈ F

(ii) Let F be a family of languages over Σ∗. We define the rational closure Rat(F) as the
smallest family of languages that is rationally closed and contains F .

(iii) Rat(Σ∗) denotes the rational languages over Σ∗ and is defined as the rational closure
of the set of finite subsets of Σ∗.

Having defined rational languages, we can use them to establish an important connection
between NFAs and rational languages.

Theorem 2.4 (Kleene). Let Σ be a finite alphabet. A language X over Σ∗ is rational iff
there is an NFA that recognizes it.

Proof. Since this work focuses on other aspects of rational languages and this result is most
likely already known by the reader, I will simply cite the proof from [2, pp. 87–89]. ■

Now we can make make an equally important, albeit a more obvious observation:

Theorem 2.5. Let Σ be a finite alphabet. A language X over Σ∗ is rational iff it can be
produced by rational expression over Σ.

Proof. Again we refer to [2, p. 126] for the proof. ■

With these two theorems, there is an obvious corollary.

Corollary 2.6. Let Σ be a finite alphabet. The class of languages recognized by NFAs is
identical to the class of languages obtained using rational expressions.

Before we carry on with NFAs, there is one lemma, we will need later in Chapter 4.

Lemma 2.7 (Pumping Lemma). Let L be a rational language over Σ∗. Then there existes
an integer N ∈ N such that for every word f ∈ L and every factorisation f = uv1v2 · · · vNw,
where all the vi are not empty, there are indices j and k such that the following holds:

uv1 · · · vj(vj+1 · · · vk)∗vk+1 · · · vNw ∈ L

Proof. For the proof we refer to [2, pp. 71–72]. ■

We now make some necessary definitions regarding automata that we will need later on.

Definition 2.8. Let A = (Q,Σ, E, I, T) be an NFA. We call A normal if the following
criteria are met:

(i) There is exactly one initial state i, which is not the destination of any transition of
A.

3

2 Rational expressions and NFAs

(ii) There is exactly one final state t, which is not the source of any transition of A.

(iii) i ̸= t

Now we can define trim automata:

Definition 2.9. Let A = (Q,Σ, E, I, T) be an NFA. A state q ∈ Q is called accessible if
there is a path from an initial state i that leads to q. A state q ∈ Q is called co-accessible
if there is a path from q to a final state t. If all the states of A are accessible, we call A
accessible. If all the states of A are co-accessible, we call A co-accessible. If A is accessible
and co-accessible, we call A trim.

It is easy to understand that:

Lemma 2.10. Every NFA A is equivalent to a trim automaton Am, which is also finite.

For later purposes we now need to make another definition and have a look at how we
can determine the language that an automaton recognizes.

Definition 2.11. A = (Q,Σ, E, I, T) is called a generalised automaton if its transitions do
not have to be labelled by letters from Σ but can also be labelled by any subsets of Σ∗.

The first thing we observe is the following: If there are two edges going from a to b with
a, b ∈ Q with the labels E1 and E2 respectively, we can simply combine those edges into
one edge going from a to b with the label E1 ∪ E2. Therefore we can assume that for any
pair (a, b) ∈ Q2 there exists not more than one edge going from a to b.

Next we want to determine the language that is recognized by an NFA using generalised
automata. Let A = (Q,Σ, E, I, T) be an NFA. We add the states i, t to Q and the triples
(i, ε, qi) and (qt, ε, t) to E for all qi ∈ I and qt ∈ T . We now have the normal NFA
A′ = (Q′,Σ, E′, {i}, {t}). Now we pick one arbitrary state p in Q. Let a1, . . . , an be all
the states different from p such that (ai, ei, p) ∈ E, b1, . . . , bm all the states different from
p such that (p, li, bi) ∈ E and L the expression such that (p, L, p) ∈ E if there is such an
L, otherwise L = ∅. Now we eliminate p from Q′ and all the transitions that contain p
from E′. In return we add the transitions (ai, eiL

∗lk, bk) for all i, k to E′. At last we can
build the union over the labels of the edges if there now are several edges between two
states. We are left with a general automaton that is obviously equivalent to A and A′, but
has not as many states. By repeating the elimination of steps we receive an automaton
that only has two states i and t and only one transition (i, Lf , t). Lf is the language this
automaton recognizes. This procedure is known as the state elimination algorithm or the
BMC algorithm [2, pp. 97–99].
The language we receive from the algorithm in the paragraph above is obtained using

only a finite number of unions, stars and concatenation. It is therefore rational. Thus the
algorithm above constitutes a proof of one inclusion of Corollary 2.6 (i.e. recognizable is
rational).
It is important to state that although the automaton recognizes exactly one language,

this language can be described using several rational expressions. If we eliminate the states
in a different order, we might get different expressions with the algorithm above. We will
come back to that later in Section 3.3.

4

3 Complexity of rational languages

Having established the basic connection between NFAs and rational expressions, we can
now consider rational languages from multiple perspectives. The goal of this chapter is
to introduce two different measures of structural complexity of rational languages and
show how they are connected. The main result is Eggan’s theorem 3.12 stating that the
complexity of rational expressions is in some sense transferred to the NFAs that recognize
the same language.

3.1 Star height

In this section we introduce the star height for rational expressions and subsequently for
rational languages as a measure of structural complexity.

Definition 3.1. Let E ∈ RatE(Σ∗) be an rational expression over Σ. Then the star height
h[E] is defined by induction:

(i) If E = 0, E = 1 or E = a for any a ∈ Σ, then h[E]=0.

(ii) If E = A+B or E = A ·B for A,B ∈ RatE(Σ∗), then h[E] = max{h[A], h[B]}.

(iii) If E = A∗, then h[E] = 1 + h[A].

An informal characterisation would be to say that the star height of an expression is the
highest count of nested stars.
In order to motivate the next definition, we consider an example:

Example 3.2. Let E = {a, b}∗(b{a, b}∗)∗ ∈ RatE({a, b}∗). We see that h[E] = 2. Ob-
viously, the language L := L[E] contains all the words from {a, b}∗. That means, we can
write L as L[F] with F = {a, b}∗ and h[F] = 1. Moreover, it is evident that there is no
rational expression G with h[G] < 1 and L[G] = L since there are infinitely many words
in L and this requires at least one ∗ being used in any rational expression that induces the
same language. Therefore, 1 constitutes the minimum of all the star heights of rational
expressions that induce L, that is

1 = min{h[X] | X ∈ RatE({a, b}∗) ∧ L[X] = L}

Because of this ambiguity of the star heights of expressions that produce the same lan-
guage, we make the following definition:

Definition 3.3. Let L ∈ Rat(Σ∗) be a rational language over Σ∗. The star height of L,
written as h[L] is defined as the minimum of the star heights of the rational expressions
that induce L:

h[L] = min{h[X] | X ∈ RatE(Σ∗) ∧ L[X] = L}

5

3 Complexity of rational languages

We see that the language from our Example 3.2 has start height 1.
In Chapter 4 we will prove an important property of the star height. For now and in

preparation for Eggan’s theorem, the definition is enough.

3.2 Loop complexity

In this section we want to define the loop complexity of a given automaton. Before we do
that, we have to circle back and have a look at automata as graphs. We start with defining
the strongly connected components of a graph.

Lemma 3.4. Let G=(V,E) be a directed graph. ≈ is a relation1 on V and is defined by
x ≈ y if one of the following two conditions is met:

(i) x = y

(ii) ∃v1, . . . , vn, w1, . . . wm : (x, v1), (v1, v2), . . . , (vn, y), (y, w1), (w1, w2), . . . , (wm, x) ∈ E.

Then ≈ is an equivalence relation.

Proof. Obviously, ≈ is reflexive and symmetric. Furthermore, if there is a path a from x
to y, a path b from y to x, a path c from y to z and a path d from z to y, then ac is a path
from x to z and db is a path from z to x. This means, ≈ is also transitive and therefore an
equivalence relation. ■

This result leads to the following definition:

Definition 3.5. The equivalence classes induced by the relation from Lemma 3.4 are called
strongly connected components of the graph G.

More informally, one could say that the strongly connected components of a graph G are
the parts of it where every node can be reached from every other node of the same part.
Now we can define the balls of a graph G:

Definition 3.6. Let G = (V,E) be a directed graph and C ∈ G/≈ be a strongly connected
component of G. We call C a ball of G if it contains at least one edge. That is, C is a ball
if one the following two conditions is met:

(i) C contains two or more nodes.

(ii) C contains only one node v and (v, v) ∈ E.

Having defined the terms strongly connected component and ball, we can finally define
the loop complexity2 of a graph G.

Definition 3.7. Let G=(V,E) be a directed graph. For any s ∈ V we write G \ {s} for the
directed graph G′ = (V \ {s}, {(a, b) ∈ E | a ̸= s ∧ b ̸= s}. We define the loop complexity
lc(G) recursively:

1Informally spoken: x ≈ y if there is a cycle that contains both x and y
2sometimes the loop complexity is referred to as the cycle rank

6

3 Complexity of rational languages

Figure 3.1: A graph and its balls [2, p. 160]

(i) lc(G) = 0 if G contains no balls

(ii) lc(G) = max{lc(P) | P is a ball of G} if G is not strongly connected

(iii) lc(G) = 1 +min{lc(G \ {s}) | s ∈ V } if G is strongly connected

We have so far spoken mostly about graphs in this section. Since an automaton A is a
directed graph, we can define the strongly connected components, the balls and the loop
complexity accordingly.

3.3 Eggan’s theorem

The goal of this section is to finally formulate and prove Eggan’s theorem 3.12. This whole
section closely follows [2, pp. 162–166]. In order to develop Eggan’s theorem, we will need
some definitions and lemmas. First we define the index of a rational expression E:

Definition 3.8. The index i(E) of a rational expression E is given by i(E) = h[E]. If
e = (q1, E, q2) is a transition of an automaton we define the index of e as i(e) = i(E).

Having defined the index of an expression, we can carry on and define the index of an
automaton A relative to a total order ω on the states of A. We define the trace of omega
over any subset R of Q as ω|R×R. In the following, we write ω for the greatest element of Q
according to ω and ω for the trace of ω over R ⊆ Q (and also ω for the greatest element of
R). A transition e = (q1, E, q2) of an automaton is called adjacent to p if q1 = p or q2 = p.

Definition 3.9. Let A = (Q,Σ, E, I, T) be a generalised automaton and ω a total order on
Q. We define the index i(A,ω) inductively:

(i) i(A,ω) = 0 if A is empty

(ii) i(A,ω) = 1 +max({i(e) | e is adjacent to ω} ∪ {i(A \ ω, ω)}) if A is a ball

(iii) i(A,ω) = max({i(e) | e does not belong to a ball in A} ∪ {i(P, ω) | P is a ball in A})
if A is not a ball

If we compare the definition of the loop complexity and the index of an automaton, we
see the following for ’normal’ (i.e. not generalised) automata:

Lemma 3.10. Let A be an NFA, then

lc(A) = min{i(A,ω) | ω is an order on Q}.

7

3 Complexity of rational languages

In the following we write EBMC(A,ω) for the rational expression we receive from the
state elimination algorithm applied to A in the order ω (from smallest state to greatest).
We can now formulate the most central lemma in this chapter:

Lemma 3.11. Let ω be a total order on the set of states Q of the automaton A. Then
i(A,ω) = h[EBMC(A,ω)].

Proof. We prove this lemma via induction on the number of states of Q. The first step of
the BMC algorithm is to transform A to an equivalent automaton B by adding two states
i and t. We extend ω by making i and t greater than the states in Q (t > i). Therefore
i(A,ω) = i(B,ω). We now take care of the base case where A has one state and B therefore
three. In any case B itself is not a ball and not empty. We distinguish two cases (see Figure
3.2):

Figure 3.2: The base case [2, p. 165]

(a) B contains no balls: i(B,ω) = max{h[E], h[F], h[H]} = h[E+F ·H] = h[EBMC(B,ω)]

(b) B contains a ball: i(B,ω) = max{h[E], h[F], h[H], 1 + h[G]} = h[E + F · G∗ ·H] =
h[EBMC(B,ω)]

In both cases we get the desired result. Now let B be a normalised automaton with n+2
states and q the smallest state according to ω. Let P be the smallest ball strictly containing
q and P = B if there is no such ball. We define B′ as the automaton we receive from the
state elimination algorithm after eliminating q and P ′ as the ’image’ of P in B′. We distinct
two cases:

(i) There is no edge (q,G, q) in E. First we have to realize that all the edges in P ′ are
either the same as in P (if they’re not adjacent to q) or they are a product F · H.
In this case, we know h[F · H] = max(h[F], h[H]). This is important because now
we can look at the definition of the index and switch P and P ′. It is crucial to state

8

3 Complexity of rational languages

that we only have to consider the case (iii) from Definition 3.9 because if P ′ is a ball,
then (ii) and (iii) coincide due to the monotony of the index:

i(P ′, ω) = max({i(e) | e does not belong to a ball in P ′} ∪ {i(Q,ω) | Q ball in P ′})
= max(max{i(e) | e does not belong to a ball in P ′},max{i(Q,ω) | Q ball in P ′}
= max(max{i(e) | e does not belong to a ball in P},max{i(Q,ω) | Q ball in P}
= i(P, ω)

(ii) There is an edge (q,G, q) in E. Similarly to the case above, the edges in P ′ are either
the same as in P or have the form F · G∗ · H. In this case, we have to remember
h[F · G∗ · H] = max(h[F], h[G∗], h[H]) and i({q}, ω) = 1 + h[G] = h[G∗]. We then
get:

i(P ′, ω) = max({i(e) | e does not belong to a ball in P ′} ∪ {i(Q,ω) | Q ball in P ′})
= max(max{i(e) | e does not belong to a ball in P ′},max{i(Q,ω) | Q ball in P ′}
= max(max{i(e) | e does not belong to a ball in P}, 1 + h[G],

max{i(Q,ω) | Q ball in P ′}
= max(max{i(e) | e does not belong to a ball in P}, i({q}, ω),

max{i(Q,ω) | Q ball in P and Q is different from {q}}
= i(P, ω)

We can now again distinguish between two cases:

(i) P = B. Then P ′ = B′ and since i(P, ω) = i(P ′, ω), i(B,ω) = i(B′, ω). This proves
the induction and the whole lemma.

(ii) P ̸= B. Having show the property i(P, ω) = i(P ′, ω), we can use it to show that it
holds for every ball containing q by induction. For the other balls it holds in any case
since they are not affected by the algorithm. Thus for all balls Q in B we get that
i(Q,ω) = i(Q′, ω) and therefore i(B,ω) = i(B′, ω).

■

We can now formulate the central theorem of this section:

Theorem 3.12 (Eggan’s Theorem). Let L be a rational language over Σ.

(i) For every trim NFA A that recognizes the language L there is a rational expression
E such that L[E] = L and lc(A) = h[E].

(ii) For every rational expression E with L[E] = L there exists an NFA A such such that
A recognizes L and h[E] = lc(A).

Proof. We can prove (i) by referring to Lemma 3.10 and Lemma 3.11. In order to prove
(ii) we simply perform an induction over the depth of the expression E. The base case
is clear: The empty word and every letter of the alphabet Σ is recognized by an acyclic

9

3 Complexity of rational languages

automaton with loop complexity 0. If we consider the union of to expressions E and F and
of the respective automata AE and AF , we clearly get the new loop complexity lc(AE∪AF)
by taking the maximum of lc(AE) and lc(AF). The same happens if we concatenate two
expressions. The last case is the star operator. Let E be a rational expression and A
the corresponding automaton such that h[E] = lc(A). We now consider E∗ and take
two copies of A: A′ and A′′. We concatenate them in the following way: We insert a
state r that works as a bridge between the final states of A′ and the initial states of A′′.
Moreover, we insert a state u that works as a bridge between the final states of A′′ and
the initial states of A′. We call the new automaton B and take u as the initial state and
r and u as the final ones. Clearly B recognizes E∗. Obviously B is a ball. That means

Figure 3.3: A′, A′′ and B [2, p. 162]

lc(B) = 1 + min{lc(B \ s) | s ∈ B}. If we take s = r the balls of B \ s are the ones
of A′ and A′′ and therefore A. That means lc(B) ≤ 1 + lc(A). On the other hand, we
take any s in B, it still contains a copy of A and therefore lc(B) ≥ 1 + lc(A). Thus
lc(B) = 1 + lc(A) = 1 + h[E] = h[E∗], which concludes the induction. ■

We receive an obvious corollary:

Corollary 3.13. For any rational language L, it holds that

h[L] = min{lc(A) | A is an NFA ∧ L[A] = L}.

Proof. Per definition h[L] = min{h[E] | E ∈ RatE(Σ∗)∧L[E] = L}. Theorem 3.12 tells us
that {h[E] | E ∈ RatE(Σ∗) ∧ L[E] = L} = {lc(A) | A is an NFA ∧ L[A] = L}. ■

10

4 The star height hierarchy

In one of the previous sections we have seen a rational language with the star height 1.
Furthermore we can easily construct a language with the star height 0 if we consider the
rational expression a ∈ RatE({a, b}∗). The question that naturally follows is if there is an
upper bound for the star height of languages or if there are languages with an arbitrary star
height. In this chapter we will answer this question positively by constructing languages
that have star height q ∈ N. Similarly to the last section, this chapter closely follows [2,
pp. 167–169].
In the following we will only consider Σ = {a, b} and for the rest of the chapter q ∈ N is

fixed. We will now construct a language and show that it has star height q.

Definition 4.1. Let Wq be the language over {a, b} that only contains the words that fullfil

|u|a ≡ |u|b mod 2q,

where |y|x is the number of occurrences of x in the word y.

We can formulate the following lemma

Lemma 4.2.
h[Wq] ≤ q

Proof. We simply need to find an expression of star height q that produces Wq. To do
that we look at an NFA that recognizes Wq. Having in mind that |u|a ≡ |u|b mod 2q, we
can look at a ring automaton Aq with 2q states p1, . . . , p2q and the transitions (p1, b, p2q),
(p2k , a, p1), (pi, a, pk) and (pk, b, pi) for all i− k = 1 (see Figure 4.1 for the case q = 3). We
can now calculate the loop complexity of this automaton. Since Aq is strongly connected,
we have lc(Aq) = 1+min{lc(Aq \ {s}) | s ∈ Aq}. What ever s we take, we get one strongly
connected ’chain’ of length 2q − 1 as a result. Since Aq is symmetrical, we can take any s
and without loss of generality, we choose s to be our initial state. We call this chain A′.
Let’s now look at the ’chains’. Let C be any chain in the form described above, but of any
length n = 2p − 1. With induction, we want to show that lc(C) = p− 1. If the length is 1,
then C contains no balls and the loop complexity is zero. Let the length be 2p − 1. C is
strongly connected, therefore lc(C) = 1+min{lc(C \s) | s ∈ C}. Since the loop complexity
is obviously monotone in the sense that A ⊆ B ⇒ lc(A) ≤ lc(B), we see that we have to
eliminate the middle node and get the minimum by splitting the chain in half. By doing
that, we get two chains of the length 2p−1 − 1. Therefore, lc(C) = 1 + p − 2 = p − 1,
which concludes the induction. In our case we have a chain A′ of length 2q − 1. Thus
lc(Aq) = 1 + lc(A′) = 1 + q − 1 = q. Eggan’s theorem now tells us that there is a rational
expression E such that L[E] = Wq and h[E] = lc(Aq) = q. ■

11

4 The star height hierarchy

Figure 4.1: A ring automaton for q = 3 [2, p. 168]

We now still have to show that Wq has star height of at exactly q. To start, we define
certain words, we will look at more closely in the following proof.

Definition 4.3. Let wn,k be words over Σ defined inductively by

(i) w0,n = ab

(ii) wk,n = a2
k
(wk−1,n)

nb2
k
(wk−1,n)

n

These words have a special property that we will need later:

Lemma 4.4. Any left factor u and right factor v of the word (wk,n)
n satisfy the equations:

0 ≤ |u|a − |u|b ≤ 2k+1 − 1, 0 ≤ |v|b − |v|a ≤ 2k+1 − 1.

Proof. We prove this with induction on k. It is clear that the property holds for (w0,n)
n =

(ab)n. Now consider (wk,n)
n = (a2

k
(wk−1,n)

nb2
k
(wk−1,n)

n)n. First, we notice that every
wk,n contains an equal number of a′s and b′s. That means it is equivalent if the property
holds for (wk,n)

n or for wk,n. We can now distinguish a few cases:

(i) u is a left factor of a2
k
. Obviously 0 ≤ |u|a − |u|b ≤ 2k − 0 ≤ 2k+1 − 1.

(ii) u is a left factor of a2
k
(wk−1,n)

n and not of a2
k
. Then |u|a = 2k + l and 0 ≤

l − |u|b ≤ 2k − 1. Thus |u|b ≤ l and |u|b ≥ l − 2k + 1. Therefore 0 ≤ |u|a − |u|b and
|u|a − |u|b ≤ 2k + l − l + 2k − 1 = 2k+1 − 1

12

4 The star height hierarchy

(iii) u is a left factor of a2
k
(wk−1,n)

nb2
k
and not of a2

k
(wk−1,n)

n. Then |u|a = 2k + l and
|u|b = l +m with 0 < m ≤ 2k. We get that 0 ≤ |u|a − |ub| ≤ 2k+1 − 1.

(iv) u is a left factor of a2
k
(wk−1,n)

nb2
k
(wk−1,n)

n and not of a2
k
(wk−1,n)

nb2
k
. Then |u|a =

2k + l +m and |u|b = l + 2k + h with 0 ≤ m − h ≤ 2k − 1. Thus 0 ≤ |u|a − |u|b =
m− h ≤ 2k+1 − 1.

The proof for v is practically the same. Alternatively one could look at the words xk,n =

b2
k
(xk−1,n)

na2
k
(xk−1,n)

n with x0,n = ba and use the first case. ■

We now define a property for languages over {a, b}:

Definition 4.5. Let L be a language over {a, b}. We say L satisfies (Pk) if there is an
infinite number of values n such that (wk,n)

n is a factor of at least one word of L. We
define Xk as the set of languages L such that

(i) L ⊆ Wq

(ii) L satisfies (Pk)

(iii) L has minimum star height of all languages that satisfy (i) and (ii).

We see that any language in X0 has to be infinite and has therefore star height strictly
greater than 0. On the other hand (wk−1,n)

n is a factor of (wk,n). Therefore, any language
that satisfies Pk also satisfies Pl for l ≤ k. Moreover, (wq−1,i)

i ∈ Wq for all i ∈ N. Therefore,
Wq fulfils Pq−1. That’s why, we can write the following inequality:

0 < h0 ≤ h1 ≤ · · · ≤ hq−1 ≤ q, (4.1)

where hk is the common star height of the family Xk. We can now formulate the important
lemma for this chapter:

Lemma 4.6. Let hk be the common star height of the languages of Xk for any k. Then it
holds that hk−1 < hk

Proof. Let L be in Xk. Since L is rational it can be written as a finite union of languages
Fj of the form

Fj = f0H
∗
1f1 · · ·H∗

mfm. (4.2)

There is only a finite number of F ′
js, so there has to be at least one that satisfies (Pk),

therefore we can assume that L itself is of the form (4.2). L has star height hk, therefore
there has to be one of the Hi that has star height hk − 1 and none of them have a star
height higher than that. We see that f0f1 · · · fm has to be in Wq and therefore every Hi

must be a subset of Wq. Again, L is of minimal star height hk and therefore none of the Hi

can fulfil (Pk). We now have to show that one of them satisfies (Pk−1) to prove the lemma.
Since there are infinitely many n′s such that (wk,n)

n is a factor of at least one word in L,
these n′s get arbitrarily large. We can now apply the pumping lemma and conclude that
there are infinitely many n′s and for each of these n′s there are infinitely many l′s such
that (wk,n)

l is a factor of at least one word of L. Since m from (4.2) is finite, there has to

13

4 The star height hierarchy

be at least one H∗
i that satisfies (Pk). Therefore, there are infinitely many n′s such that

(wk,n)
n is a factor of a word rn ∈ H∗

i . Let us write rn as the product rn = g0g1 · · · gl with
gj ∈ Hi. We can now distinguish different cases:

(i) wk,n is a factor of one of the gj . Then Hi fulfils (Pk−1) because (wk−1,n)
n is a factor

of wk,n.

(ii) Otherwise: Let’s look at

(wk,n)
2 = a2

k
(wk−1,n)

nb2
k
(wk−1,n)

na2
k
(wk−1,n)

nb2
k
(wk−1,n)

n.

Again, we distinguish two cases:

a) b2
k
is a factor of a gj and therefore gj = vb2

k
u. Two cases:

i. Either v or u covers (wk−1,n)
n completely. Then (wk−1,n)

n is a factor of gj
and Hi fulfils (Pk−1).

ii. v is a right factor of (wk−1,n)
n and u is a left factor of (wk−1,n)

n. We set

x = |gj |b − |gj |a, y = |u|a − |u|b, z = |v|b − |v|a.

Then x = 2k − (y − z). By Lemma 4.4 we get that 0 ≤ x, y ≤ 2k − 1 and
therefore 1 − 2k ≤ x − y ≤ 2k − 1. Thus 0 < x < 2k+1 ≤ 2q. This means
that |gj |b − |gj |a ̸≡ 0 mod 2q. Therefore, gj cannot be in Wq and therefore
not in Hi, which is a contradiction.

b) A left factor of b2
k
is a right factor of a gj . That is gj = vbr, r > 0. Two cases:

(i) v covers (wk−1,n)
n completely. Then Hi fulfils (Pk−1).

(ii) v is a right factor of (wk−1,n)
n. Then we define similarly as above

x = |gj |b − |gj |a, z = |v|b − |v|a.

Then x = 2r+z with 0 ≤ z ≤ 2k−1. Since r ≤ k, we get 0 < x < 2k+1 ≤ 2q

and the same contradiction as above.

In any case, we obtain that Hi fulfils (Pk−1) and therefore hk−1 < hk. ■

This leads to the conclusion that (4.1) can actually be written as

0 < h0 < h1 < · · · < hq−1 ≤ q (4.3)

Since this is a strictly monotone sequence with q elements which are all strictly greater
than zero, we can conclude that hq−1 = q ≤ Wq. This leads to the following corollary:

Corollary 4.7. For any q ∈ N, there is a language L such that h[L] = q.

14

5 Generalised star height

Instead of defining rational expressions like we did in Chapter 2, one can also define gen-
eralised rational expressions by including the complement. That leads to the so-called
generalised star height. This chapter aims to elaborate on this alternative approach and
present the important Theorem 5.11 as well as an important question that hasn’t been
answered yet.

Let us start with the definition of generalised rational expressions:

Definition 5.1. Let Σ be an alphabet and (0, 1,+, ·, ∗, ·) functions of the respective arities
(0, 0, 2, 2, 1, 1). Then

(i) 0,1 and a are generalised rational expressions for any a ∈ Σ.

(ii) If E and F are generalised rational expressions over Σ, then E+F, E · F , E∗ and E
are generalised rational expressions over Σ as well.

GRatE(Σ∗) denotes the set of all generalised rational expressions.

The precedence of the operators stays the same with the addition that ∗ > · > ·. Similarly
to rational expressions, we can assign languages to generalized rational expressions:

Definition 5.2. Let E ∈ GRatE(Σ∗) be a generalised rational expression. We assign one
language L[E] to it using the following rules:

(i) For atomic expressions:

L[0] = ∅, L[1] = ε and L[a] = a for any a ∈ Σ

(ii) For two generalised rational expressions E,F ∈ GRatE(Σ∗):

a) L[E + F] = {L[E]} ∪ {L[F]}
b) L[E · F] = {L[E]}{L[F]}
c) L[E∗] = {L[E]}∗

d) L[E] = Σ∗ \ L[E]

The following states an important fact about rational languages, which is widely known
today:

Lemma 5.3. Rational languages are closed under complement.

Proof. Let L be a rational language. Since the same languages can be obtained by using
DFAs and NFAs, there exists a DFA A = (Q,Σ, E, q0, F) that recognizes L. We now
consider the DFA B = (Q,Σ, E, q0, Q \ F). E ⊆ Q × Σ × Q is a function mapping values
from Q×Σ to Q. Therefore, all the words of Σ∗ can be ’processed’ by the automaton, but
only the words of L stop at a final state p ∈ Q \ F . ■

15

5 Generalised star height

This Lemma tells us why it is interesting to look at generalised rational expressions:

Corollary 5.4. The languages obtained by using generalised rational expressions are the
same as the ones we receive from rational expressions.

Now we can assign the generalised star height to generalised rational expressions and the
languages they induce.

Definition 5.5. Let E ∈ GRatE(Σ∗) be a generalised rational expression. The generalised
star height gsh[E] is defined by induction:

(i) If E = 0, E = 1 or E = a for any a ∈ Σ, then h[E]=0.

(ii) If E = A+B or E = A·B for A,B ∈ GRatE(Σ∗), then gsh[E] = max{gsh[A], gsh[B]}.

(iii) If E = A for A ∈ GRatE(Σ∗), then gsh[E] = gsh[A]

(iv) If E = A∗, then gsh[E] = 1 + gsh[A].

For a rational language L, the generalised star height gsh[L] is defined as

gsh[L] = min{gsh[E] | E ∈ GRatE(Σ∗) ∧ L[E] = L}

5.1 The syntanctic monoid and the theorem of Schützenberger

Every language induces a certain algebraic structure, the syntactic monoid. The goal of
this section is to define the syntactic monoid and present the theorem of Schützenberger,
which states that certain properties of the syntactic monoid relate to the generalised star
height of the language.

Definition 5.6. Let L be a rational language over Σ. We define the relation ≈L over Σ∗

by
x ≈L y :⇔ (∀u, v ∈ Σ∗uxv ∈ L ⇔ uyv ∈ L).

Lemma 5.7. ≈L is an equivalence relation. Furthermore, for M := Σ∗/≈L it holds that

(i) [x][y] := [xy] is a well defined binary operation on M

(ii) [ε][x] = [x][ε] = [x] for all [x] ∈ Σ∗.

Proof. The relation ≈L is obviously reflexive, symmetric and transitive. For the other
properties:

(i) Let [a] = [b] and [x] = [y]. Now let’s take u, v ∈ Σ∗ and assume uaxv ∈ L. Since
a ≈L b, this is equivalent to ubxv and because x ≈L y, this is also equivalent to
ubyv ∈ L. We get that [a][x] = [b][y].

(ii) Obviously uεxv ∈ L ⇔ uxεv ∈ L ⇔ uxv ∈ L.

■

16

5 Generalised star height

Corollary 5.8. (Σ∗/≈L , ·, [ε]) is a monoid.

Definition 5.9. We call the monoid from Corollary 5.8 the syntactic monoid from L.

Definition 5.10. A monoid (M, ·, 1) is called aperiodic if for all x ∈ M there exists an
n ∈ N such that xn = xn+1.

In chapter Chapter 4 we have seen that there are languages of an arbitrarily high star
height. This begs the question if there are such languages for the generalised star height.
To this day, this question could not be answered in full. However, Schützenberger proved
that there are languages that possess the generalised star height 1. More precisely, he
proved the next theorem. I will only cite this theorem and refer to [1, pp. 87–93] for the
proof since it would be out of scope for this work.

Theorem 5.11. A recognizable language L has generalised star height 0 if and only if its
syntactic monoid is aperiodic.

Example 5.12. Let us look at the rational language L = L[(a2)∗]. Obviously, gsh[L] ≤ 1. If
we consider M := a∗/≈L, we see that there are exactly two elements [a], [aa] (the equivalence
class of all the words with an even number of a′s and the one of those with an odd number).
We see that

[a][a] = [aa], [aa][aa] = [aa], [aa][a] = [a][aa] = [a].

Therefore, we conclude that (M, ·, [aa]) ∼= (Z/2Z,+, 0). This means that (M, ·, [aa]) is not
aperiodic (consider 1). Theorem 5.11 now tells us that gsh[L] > 0 and we see that gsh[L] =
1.

17

Bibliography

[1] J. E. Pin. Varieties of Formal Languages. London: North Oxford Academic Publishers,
1986.

[2] Jacques Sakarovitch. Elements of Automata Theory. Cambridge: Cambridge University
Press, 2009.

18

	Introduction
	Rational expressions and NFAs
	Complexity of rational languages
	Star height
	Loop complexity
	Eggan's theorem

	The star height hierarchy
	Generalised star height
	The syntanctic monoid and the theorem of Schützenberger

	Bibliography

