
S E M I N A R A R B E I T

Complexity Bounds for Cut Elimination

ausgeführt am

Institut für

Diskrete Mathematik und Geometrie

TU Wien

unter der Anleitung von

Associate Prof. Dipl.-Ing. Dr.techn. Stefan Hetzl

durch

Johannes Weiser, BSc BSc

Matrikelnummer: 11906087

Danhausergasse 7/10

1040 Wien

Wien, am 11. März 2024

Contents

1 Introduction 1

2 Preliminaries 2

3 Eliminating Quantifier-Free Cuts 8
3.1 Expansion Trees . 8
3.2 Eliminating Cuts . 20

4 Eliminating general cuts 24
4.1 Transforming proofs to PNF . 24
4.2 Reducing the Quantifier Depth of Cuts . 27

5 Lower Bounds 36

Bibliography 45

i

1 Introduction

Since Gentzen showed that cuts can be eliminated in proofs in the sequent calculus, it has
been of interest, how the size of these new proofs can be bound. Various authors published
papers regarding this topic and gave different algorithms to eliminate cuts more efficiently.
In particular, in [2] Buss gave an efficient algorithm to reduce the alternating quantifier
depth of the cut formulas of a given proof π. In [8] Weller focused on eliminating cuts
with quantifier-free cut-formulas. In Chapter 3, we will take Weller’s approach and adapt
it to the proof system used by Buss. In Chapter 4, we will combine the results to obtain
a new upper bound for the size of cut-free proofs and the size of expansion-tree-proofs (cf.
Chapter 3).
(Non-trivial) lower bounds are in general more difficult to handle than upper bounds

since we have to exclude the possibility of certain better algorithms. However, there is
an important example first found by Statman in [7] and Orekov in [5], which was later
presented in more detail by Pudlák in [6] and by Gerhardy in [3]. In Chapter 5, we will
analyse the proof as presented in [3] and see that we can use this example to derive lower
bounds for the cut elimination. However, they do not quite match our upper bounds and
present a task that can be tackled in the future.

1

2 Preliminaries

The aim of this chapter is to establish the necessary definitions and a few first results that
will later be important for the rest of this work.
One definition, we will need for our complexity estimates is the so-called tetration:

Definition 2.1. Let a, n, d be in N with a > 0. We define:

adn =

{
d : n = 0

aa
d
n−1 : n ≥ 1

We write 2m for 20m.

In this whole paper, we will only consider formulas in negation normal form:

Definition 2.2. A formula ϕ is in negation normal form if the negation (¬) is only ap-
plied to atomic formulas and the only other connectives used are the conjunction (∧), the
disjunction (∨) and the quantifiers (∀, ∃).

In practice, we will not write ¬A, but A and mean the formula that we obtain by pushing
the negation to the atoms. Therefore, we only need the logical connectives ∧,∨,∃ and ∀:

Definition 2.3. For the rest of this paper, we consider an arbitrary but fixed language of
constants, function and predicate symbols. Atoms are defined as usual. The set of well-
formed formulas is denoted with F . It consists of all the literals (atoms or negated atoms)
and is closed under the lawful use of ∧,∨, ∃ and ∀. As a shorthand, we write A - this is not
a new formula, but rather points to the negation of A in NNF. Therefore, it is inductively
defined by the following set of rules:

• For atoms A: A = ¬A and ¬A = A.

• For propositional connectives: A ∨B = A ∧B and A ∧B = A ∨B

• For quantifiers: ∃xA = ∀xA and ∀xA = ∃xA.

We observe that every well formed formula according to our definition is in negation
normal form.
A convention that we adapt for this paper: a, b, c, . . . usually denote free variables,

x, y, . . . bound variables and s, t, . . . terms.
In general, we will not indicate the free variables in a formula, but work with substitution:

Definition 2.4. The substitution of a term t in a formula A is defined as usual and
denoted by A[x/t]. The substitution of several terms A[x1/t1, . . . , xn/tn] is defined as the
simultaneous substitution of the ti for the xi. That means that if xi appears in xj, then
these instances are not replaced by ti.

2

2 Preliminaries

Example 2.5. Let A = P (x, y). Then A[x/(x+ y), y/(x+ y)] = P (x+ y, x+ y), which is
not the same as P [x/(x+ y)][y/(x+ y)] = P (x+ (x+ y), x+ y).

Another normal form we need later is the following:

Definition 2.6. A formula φ is in prefix-normal-form (PNF) if there is a quantifier-free
formula ψ such that φ = Q1 . . . Qnψ and all the Qi are in {∀,∃}.

We will later need this fact:

Lemma 2.7. Let φ be an arbitrary formula in F . Then φ is equivalent to some formula
φ′ in F that is in PNF and uses the same number of quantifiers.

Proof. For atoms this is trivial. For compound formulas, it follows by induction: If φ = Qψ
with Q ∈ {∀, ∃}, then consider Qψ′ with ψ being the1 PNF of ψ. If φ = ψ1 ◦ ψ2 with
◦ ∈ {∨,∧}, then rename the bound variables of ψ1 and ψ2 such that they are disjoint and
consider Q1 . . . QnQ

′
1 . . . Q

′
m(ψ′

1 ◦ψ′
2), where Q1 . . . Qnψ

′
1 and Q′

1 . . . Q
′
mψ

′
2 are the PNFs of

ψ1 and ψ2 respectively. ■

In the whole paper, we will use some derivation systems. The most important one will
be this Tait-style variant of the sequent calculus, which we take from [2]:

Definition 2.8. A line in our proof system is called a cedent and consists of a set of
formulas; we interpret it as the disjunction of its members. For the sake of readability,
A,Γ and Γ1,Γ2 are written instead of {A} ∪ Γ and Γ1 ∪ Γ2. For every atomic formula A,
we have the axiom:

A,A

In the following, let A,B be formulas and Γ,Γ1,Γ2 sets of formulas. We have the following
inference rules:

A,Γ1 B,Γ2∧:
A ∧B,Γ1,Γ2

A,B,Γ∨:
A ∨B,Γ

A[x/s],Γ
∃: ∃x : A,Γ

A[x/b],Γ
∀: ∀x : A,Γ

ΓWeakening:
Γ,∆

A,Γ1 A,Γ2
Cut:

Γ1,Γ2

If we introduce a new formula with a rule, it is called the primary formula of that inference.
The formulas we eliminate are called the auxiliary formulas. The auxiliary formula of a cut
inference is called the cut-formula. The formulas of Γ,Γ1,Γ2 are called the side-formulas.
If an inference has two upper cedents as hypotheses, these are called the left and right upper
cedent accordingly. We require the usual eigenvariable-condition for the ∀-rule: The free
variable b must not appear in the lower cedent. Additionally, the outermost connective of
the cut formula in the left upper cedent must not be ∃ or ∧. This is without loss of generality
since we can set A to A, for which the connectives are switched. Moreover, we impose the

1Note that the PNF of a formula is not unique. However, we will often write the PNF of a formula and
mean some PNF with the minimum number of quantifiers

3

2 Preliminaries

restriction that there cannot be two consecutive weakening inferences. This is again without
loss of generality since we allow weakening with sets of formulas. We call this proof system
LK.

Later, it will be necessary to associate cedents with formulas. We take the definition
from [8] and adapt it to our proof systems:

Definition 2.9. Let Γ be a cedent. We associate it with the formula FΓ =
∨
γ∈Γ

γ, which is

the intended meaning of it as mentioned above.

Similar to normal trees and graphs, we define paths and branches:

Definition 2.10. Let π be a proof in LK. Then a path in π is a sequence of cedents of π
such that the (i+1)st cedent is a hypothesis of the ith one for all i. A branch is a path that
starts at the conclusion (root) of π and ends at an axiom.

We also have to define which measures of complexity we use. We do this similarly to [2]:

Definition 2.11. In general, | · | measures the logical complexity and ∥·∥ measures the
symbol complexity. Given a term t, we define ∥t∥ as the number of symbols in t. For a
formula A, we define |A| as the number of logical symbols (i.e. ∧,∨, ∀, ∃) and atoms in
A and ∥A∥ as the number of all symbols in A (logical and non-logical). Given a cedent
Γ, we define |Γ| = |FΓ| and ∥Γ∥ = ∥FΓ∥. For a proof π in LK consisting of the cedents

C1, . . . , Cn, we define ∥π∥ =
n∑

i=1
∥Ci∥ and |π| as the number of axioms, ∧,∨, ∀, ∃ and cut

inferences in π2. The height of π, h(π), is defined as the maximum length of any of the
branches of π if is in tree form and as the length of the longest path if it is given as a DAG
(again, not counting weakening inferences).

In our definition, cedents are sets of formulas, which complicates things if we consider
cedents like A,Γ, where A is an element of Γ. Therefore, we define the following auxiliary
condition:

Definition 2.12. A proof π in LK fulfills the auxiliary condition if no auxiliary-formula
appears as a side-formula in the same inference. Specifically, this means with regard to
Definition 2.8 that for every inference I of π it holds that:

• If I is an ∨-inference, then neither A nor B occur in Γ.

• If I is an ∧-inference, than A nor B occur in Γ1 or Γ2.

• If I is an ∃-inference, then A[x/s] does not occur in Γ.

• If I is a cut-inference, then neither A nor A occur in Γ1 or Γ2

Since the eigenvariable-condition must be met for the ∀-rule, A[x/b] cannot occur in Γ
and is therefore no side-formula. By the following lemma, we can assume our proofs to
satisfy the auxiliary condition without loss of generality:

2Note that we do not count the weakening inferences

4

2 Preliminaries

Lemma 2.13. Let π be a proof of Γ in LK. Then there is a proof π′ of Γ in LK with the
following properties:

(i) π′ satisfies the auxiliary condition

(ii) |π′| ≤ |π| and h(π′) ≤ h(π)

Proof. Let π be a proof of Γ in LK. Assume, that I is an inference that violates the
auxiliary condition. Case distinction:

I. If I is an ∨-inference, then w.l.o.g., A occurs in Γ. We see that we can rewrite this
inference by defining Γ∗ = Γ \ {A}:

A,B,Γ∨ ⇝
A ∨B,Γ

A,B,Γ∗
∨

A ∨B,Γ∗
w

A ∨B,Γ
Since weakening does not count towards the size or the height of a proof, the trans-
formed proof has the same size and height.

II. If I is an ∧-, ∃- or cut-inference, the method from above yields the same result.

With induction, we get that we can transform π into a proof π′ of Γ, that satisfies the
auxiliary condition and has the same size and height, which proves the claim. ■

We can now find even more names for the structures inside of our proofs:

Definition 2.14. If the formula A occurs in two cedents C1 and C2, then define A1 and
A2 as the occurrences of A respectively.

(i) A1 is a direct ancestor of A2 if there is a path from C1 to C2 such that A occurs in
every cedent of that path.

(ii) A1 is a place where A2 is introduced if A1 is a principal formula (in its inference) or
an axiom.

(iii) A2 is the place where A1 is eliminated if A2 is an auxiliary formula (in its inference).

This concept of direct ancestors can be generalised for arbitrary formulas:

Definition 2.15. Let π be a proof of Γ in LK and I be an inference in π. If I is an
∨−,∧−,∃ or ∀−inference, then the principal formula is called the immediate descendant
of each of the auxiliary-formulas of I. The descendant-relation is now the relfexive and
transitive closure of the union of the immediate- and direct-descendant-relation. If A′ is a
descendant of A, then A is an ancestor of A′.

We can even define a relation on the subformulas:

Definition 2.16. Let π be a proof in LK. Consider the following cases:

• If A is a subformula of a side-formula of an upper cedent of an inference, then A
corresponds to the same subformula in the lower cedent.

5

2 Preliminaries

• The formula A[x/s] of an ∃-inference corresponds to the subformula A in the lower
cedent.

• The formula A[x/b] of an ∀-inference corresponds to the subformula A in the lower
cedent.

• In an ∨- or ∧-inference, the formulas A and B correspond to the subformulas A and
B in the lower cedent.

• If A corresponds to B, then the ith subformula of A corresponds to the ith subformula
of B3.

The corresponds-relation is now the reflexive and transitive closure of the relation indicated
above.

We now define the free variable normal form for proofs:

Definition 2.17. Let π be a proof in LK. Then π is in free variable normal form if the
following criteria are met:

• Each free variable b is used at most once as an eigenvariable.

• If b is used as an eigenvariable for an inference I, then b occurs only above I in π
(i.e. Every cedent, where b occurs in π can be reached from the upper cedent of I by
a path in π).

If a free variable c occurs in π, but is not used as an eigenvariable, it is called a parameter
variable.

Similarly to above, we can also assume without loss of generality that our proofs are in
free variable normal form:

Lemma 2.18. Let π be a proof of Γ in LK. Then there is a proof π′ of Γ with the following
properties:

(i) π′ satisfies the auxiliary condition and is in free variable normal form.

(ii) |π′| ≤ |π| and h(π′) ≤ h(π).

Proof. By Lemma 2.13, we get a proof π′′ of Γ that fulfills the auxiliary condition and has
the same length and height as π. by renaming the free variables, we get π′ in free variable
normal form. ■

Lastly, we will also need the classification of formulas regarding their quantifier-complexity:

Definition 2.19. We define Σn and Πn inductively:

(i) Σ0 = Π0 = {ψ | ψ ∈ F ∧ ψ is equivalent to a quantifer-free formula}

3This is well defined since the corresponding subformulas have the same number of subformulas by the
previous definitions

6

2 Preliminaries

(ii) ψ ∈ Σn+1 if ψ is equivalent to ∃x1 . . . ∃xnφ and φ ∈ Πn

(iii) ψ ∈ Πn+1 is ψ is equivalent to ∀x1 . . . ∀xnφ and φ ∈ Σn.

This leads to the following definition:

Definition 2.20. Let π be proof in LK and δ a cut inference in π:

A,Γ1 A,Γ2δ, cut:
Γ1,Γ2

We define the alternating quantifier depth of δ as

aqd(δ) = min{n ∈ N | A ∈ Πn}

and
aqd(π) = max{aqd(δ) | δ is a cut-inference in π}.

7

3 Eliminating Quantifier-Free Cuts

The goal of this chapter is to present an algorithm that eliminates quantifier-free cuts from
a proof and prove an upper bound for the length of the resulting transformed proof. We
will use central notions from [8], but we have to slightly adapt them to fit the proof-system
from [2]. Additionally, we sometimes replace or extend the definitions from [8] with the
definitions from [1], which better fit to our proof system and are easier to understand.
However, we need a few definitions first:

Definition 3.1. F⊥ denotes the set of Formulas obtained by the Definition 2.3 if we add
the condition that ⊥ is contained in the set as well. An Element of F⊥ is referred to as a
formula⊥.

Definition 3.2. Let F be a formula. Then the positive subformulas are defined inductively:

• If F = A is atomic, then F is the only positive subformula of itself.

• If F = ¬A is a negated atom, then F is the only positive subformula of itself.

• If F = G ∧H or F = G ∨H, then the positive subformulas of F are F itself and all
the positive subformulas of G and H.

Definition 3.3. Let F be a formula⊥ and G a formula. We write F ⊑ G if F is obtained
by replacing an arbitrary number of positive subformulas of G with ⊥.

3.1 Expansion Trees

First we need to introduce the data structure of expansion trees:

Definition 3.4. Let E denote the set of expansion trees. Additionally to E, we also define
two functions Sh and Dp from E to F⊥, the size functions | · | and ∥·∥ and the selected
variables and expansion terms of a expansion tree.

(i) ⊥ ∈ E, Sh(⊥) = Dp(⊥) = ⊥ and |⊥| = ∥⊥∥ = 1

(ii) Assume A is a literal (i.e. an atom or a negated atom). Then A ∈ E, Sh(A) =
Dp(A) = A, |A| and ∥A∥ are defined as above for regular formulas.

(iii) Assume that E1 and E2 do not share any selected variables. If E2, E2 are in E, then
E1 ∨ E2 and E1 ∧ E2 are in E. In any way,

Sh(E1 ∨ E2) = Sh(E1) ∨ Sh(E2), Dp(E1 ∨ E2) = Dp(E1) ∨Dp(E2)

|E1 ∨ E2| = |E1|+ |E2|+ 1, ∥E1 ∨ E2∥ = ∥E1∥+ ∥E2∥+ 1

Sh(E1 ∧ E2) = Sh(E1) ∧ Sh(E2), Dp(E1 ∧ E2) = Dp(E1) ∧Dp(E2)

|E1 ∧ E2| = |E1|+ |E2|+ 1, ∥E1 ∧ E2∥ = ∥E1∥+ ∥E2∥+ 1

8

3 Eliminating Quantifier-Free Cuts

(iv) Assume E′ ∈ E, F ∈ F and there is a variable α not selected in E′ such that Sh(E′) ⊑
F [x/α]. Then E = ∀xF +α E′ is in E, α is a selected variable of E and

Sh(E) = ∀xF, Dp(E) = Dp(E′)

|E| = |E′|+ 1, ∥E∥ =
∥∥E′∥∥+ 1

(v) Let E1, . . . En be in E, t1, . . . , tn be terms and F a formula such that no Ei and
Ej share a selected variable if i ̸= j and Sh(Ei) ⊑ F [x/ti] for all i. Then E =
∃xF +t1 E1 · · ·+tn En is in E and

Sh(E) = ∃xF, Dp(E) =

n∨
i=1

Dp(Ei)

|E| =
n∑

i=1

(|Ei|+ 1), ∥E∥ =

n∑
i=1

(∥Ei∥+ 1)

We can identify an expansion tree intuitively with an actual tree.

Definition 3.5. Let E be an expansion tree. We define the associated tree tr(E) induc-
tively:

• If E = ⊥ or E = A with A being a literal, tr(E) has exactly one node which is labeled
with ⊥ or A respectively.

• If E = E1 ◦ E2 with ◦ ∈ {∧,∨}, we take the trees tr(E1) and tr(E2) and add a root
node v, which is labeled with ◦ and has the roots of E1 and E2 as children.

• If E = ∀xF +α E′, then we take tr(E′) and add a root node v, which is labeled ∀xF
and has the root of tr(E′) as its only child. This edge is then labeled with α

• If E = ∃xF +t1 E1 · · ·+tn En, we take all the tr(Ei) and add the root node v, which
is labeled with ∃xF and has all the root nodes of the Ei as children. These edges are
labeled with the ti respectively.

An expansion tree defines a relation on its nodes:

Definition 3.6. We now define the expansions exp(E∗) of an expansion tree E∗ induc-
tively:

• If E∗ is constructed with propositional connectives only, then exp(E∗) = ∅.

• If E∗ = ∃xF +t1 E1 +t2 · · · +tn En, then exp(E∗) = {t1, . . . , tn} ∪
⋃n

i=1 exp(Ei).
Moreover, for each i we say that ti dominates all the expansions of Ei.

• If E∗ = ∀xF +α E, then exp(E∗) = {α} ∪ exp(E). Again, we say that α dominates
all the expansions of E.

We could also say an element t1 of exp(E∗) dominates another element t2 of exp(E∗) if
there is path in tr(E∗), in which an edge labelled with t1 occurs prior to t2. We now define
a relation <0

E on the expansions of E∗ with t1 <
0
E t2 if one of the following holds:

9

3 Eliminating Quantifier-Free Cuts

(i) t1 dominates t2

(ii) t1 = α is the expansion of a ∀-expansion while t2 is the term of an ∃-expansion and
contains α.

Now, define <E as the transitive closure of <0
E.

Having defined expansion trees, we can now define expansion tree proofs:

Definition 3.7. Let E be an expansion tree. We say E is tautologous if Dp(E) ∈ F⊥ is a
tautology. E is an expansion tree for a formula F if the following holds:

(i) Sh(E) ⊑ F

(ii) The free variables of F are not selected in E

(iii) <E is acyclic.

We then write E ≻ F . If E is tautologous and E ≻ F , then E is an expansion tree proof
of F and we write ⊢E F.

<E being acyclic will in some way be the eigenvariable condition in expansion trees.

Example 3.8. Consider the expansion tree

E = ∃x∀y(P (x) ∨ P (y)) +t1 [∀y(P (t1) ∨ P (y)) +α (P (t1) ∨ P (α)))]

with α not occurring in t1. We have that Sh(E) = ∃x∀y(P (x) ∨ P (y)) and Dp(E) =
P (t1) ∨ P (α). For tr(E) we can draw the following graph:

P (t1)

∨

∀y(P (t1) ∨ P (y))

∃x∀y(P (x) ∨ P (y)

P (α)

α

t1

We see that <E is acyclic, that Sh(E) contains no free variables (therefore none of them
are selected in E) and Sh(E) ⊑ Sh(E). Therefore, E ≻ Sh(E) = ∀y∃x(P (x)∨P (y)). Note
that Dp(E) = P (t1) ∨ P (α) is not tautologous since α may not occur in t1 by Definition
3.4 and therefore E is not an expansion tree proof of Sh(E).

Now we can define the first lemma regarding expansion trees:

Lemma 3.9. Let E,EA, EB, E1, . . . , En ∈ E and A,B, F ∈ F . Then:

(i) If EA ≻ A and EB ≻ B, then EA∨B = EA ∨ EB ≻ A ∨B

10

3 Eliminating Quantifier-Free Cuts

(ii) If EA ≻ A and EB ≻ B, then EA∧B = EA ∧ EB ≻ A ∧B

(iii) If E ≻ F [x/α], then E′ = ∀xF +α E ≻ ∀xF

(iv) If for all i, Ei ≻ F [x/ti], then E
′′ = ∃xF +t1 E1 · · ·+tn En ≻ ∃xF

Proof. For all these cases, we simply have to prove the three conditions:

(i) Clearly, <EA∨B
is acyclic if EA and EB are. Moreover, Sh(EA∨B) = Sh(EA) ∨

Sh(EB) ⊑ A ∨ B. By renaming the variables in A, B, EA and EB, we also have
that the free variables of A ∨B are not selected in EA∨B.

(ii) The case of EA∧B is identical to the one of EA∨B

(iii) By assumption we have that Sh(E) ⊑ F [x/α]. Also, note that selected variables do
not occur in shallow formulas. Therefore, we can assume that α is not selected in E by
renaming. Thus, E′ is a well formed expansion tree. Moreover, Sh(E′) = ∀xF ⊑ ∀xF .
Since E ≻ F [x/α], no free variable of F [x/α] is selected in E. The free variables of
∀xF are a subset and therefore, no free variable of ∀xF is selected in E′, in which all
the selected variables of E and α are selected. Again, since the expansion terms do
not occur in shallow formulas, we get by renaming that α is not dominated by any
term in E. Thus, the relation <E′ is acyclic. In summary, this means that E′ ≻ ∀xF .

(iv) By renaming the variables, we can assume that the selected variables in all the Ei are
disjoint. By assumption Sh(Ei) ⊑ F [x/ti]. Therefore, E

′′ is a well formed expansion
tree and clearly Sh(E′′) = ∃xF ⊑ ∃xF . Since the selected variables of E′′ are the
selected variables of all the Ei, no free variable of F [x/ti] is selected in Ei and x is
not free in ∃xF , we have that no free variable of ∃xF is selected in E′′. Moreover, we
obtain that <E′′ is acyclic by renaming the selected variables such that no selected
α occurs in any ti and that a cycle in E′′ would imply a cycle in some Ei. Therefore,
<E′′ is acyclic and E′′ ≻ ∃xF .

■

For the next theorem, we need to be able to merge expansion trees in some way:

Lemma 3.10. Let E1, E2 be in E with Ei ≻ F . Then, there exists E3 in E such that
E3 ≻ F , |E3| ≤ |E1| + |E2|, ∥E3∥ ≤ ∥E1∥ + ∥E2∥. Also Dp(E1) ∨ Dp(E2) → Dp(E3) is a
tautology.

Proof. We prove this via induction and case distinction. For the base cases:

(i) E1 = ⊥, then set E3 = E2 (analogously for E2 = ⊥). All the desired restrictions
hold.

(ii) E1 = A with A being an atom. Then F = Sh(E1) = A and therefore E2 = A. Again,
take E3 = Ei and again, E3 has the properties, we want.

Now, we can consider the induction step:

11

3 Eliminating Quantifier-Free Cuts

(iii) Let ◦ ∈ {∧,∨}. If E1 = E′
1 ◦ E′′

1 , then Sh(E′
1) ◦ Sh(E′′

1) ⊑ F = F ′ ◦ F ′′ ⊑ Sh(E2).
Thus, E2 = E′

2 ◦ E′′
2 and also Sh(E′

1) ⊑ Sh(E′
2) and Sh(E′′

1) ⊑ Sh(E′′
2). Therefore,

E′
1, E

′
2 ≻ F ′ and E′′

1 , E
′′
2 ≻ F ′′. By the induction hypothesis, we get E3 ≻ F ′ and

E′′
3 ≻ F ′′ with the desired properties. By Lemma 3.9, we have that E3 = E′

3◦E′′
3 ≻ F .

Furthermore, by the induction hypothesis, we have that

Dp(E1) ∨Dp(E2) = (Dp(E′
1) ◦Dp(E′′

1)) ∨ (Dp(E′
2) ◦Dp(E′′

2))

= ((Dp(E′
1) ◦Dp(E′′

1)) ∨Dp(E′
2)) ◦ ((Dp(E′

1) ◦Dp(E′′
1)) ∨Dp(E′′

2))

= ((Dp(E′
1) ∨Dp(E′

2)) ◦ . . .) ◦ (· · · ◦ (Dp(E′′
1) ∨Dp(E′′

2)))

→ Dp(E′
3) ◦Dp(E′′

3)

= Dp(E3)

is a tautology. Moreover, |E3| = |E′
3|+ |E′′

3 | ≤ |E′
1|+ |E′

2|+ |E′′
1 |+ |E′′

2 | = |E1|+ |E2|.
The same holds for ∥·∥.

(iv) If E1 = ∀xG+αE, then Sh(E1) = ∀xG. Therefore, E2 has to be of the form ∀xG+βE′.
Now, Sh(E) ⊑ G[x/α] and Sh(E′) ⊑ G[x/β]. Since the other requirements are
inherited from E1 and E2, we have that E,E′ ≻ G. By the induction hypothesis, we
get E′

3 ≻ G with the desired properties. Now E3 = ∀xG+αE′
3 ≻ ∀xG ⊑ F by Lemma

3.9. Furthermore, |E3| = 1+ |E′
3| ≤ 1 + |E|+ |E′| ≤ 1 + 1 + |E|+ |E′| = |E1|+ |E2|.

Similarly for ∥·∥. Lastly, since Dp(E) ∨ Dp(E′) → Dp(E′
3) is a tautology, so is

Dp(E1) ∨Dp(E2) → Dp(E3).

(v) If E1 = ∃xG+t1E′
1 · · ·+tnE′

n, then Sh(E1) = ∃xG ⊑ F . Therefore, E2 must have the
form ∃xG+s1 E′′

1 · · ·+sm E′′
m. By renaming the variables, we can assume that E1 and

E2 share no selected variables. Define E3 = ∃xG+t1 E′
1 · · ·+tn E′

n+
s1 E′′

1 · · ·+sm E′′
m.

Again, since<E1 and<E2 are acyclic, so is<E3 . Clearly, the free variables of F are not
selected in E3 and Sh(E3) ⊑ F . Thus E3 ≻ F . Also, the size estimation of E3 follows
directly. Lastly, by the definition of Dp it also holds that Dp(E1)∨Dp(E2) → Dp(E3).

■

Now, we can formulate the first connection between our proof system LK and the ex-
pansion trees:

Theorem 3.11. Let π be a proof of S in LK with only quantifier-free cuts. Then there
exists an expansion tree E such that ⊢E S, |E| ≤ 5

2 |π| and ∥E∥ ≤ 5
2 ∥π∥.

Proof. Let ρ be an inference in π with conclusion ∆s,∆c, where ∆s are the ancestors of
the endcedent S and ∆c are the ancestors of a cut. Let h(ρ) be the maximal number
of inferences between ρ and an axiom of π and πρ the proof that ends with ρ as its last
inference. We perform induction on h(ρ) and construct an expansion tree E that such
that Dp(E) ∨∆c is tautologous, E ≻ ∆s, |E| ≤ c|πρ| and ∥E∥ ≤ d ∥πρ∥ for some c, d ∈ N.
Furthermore, no free variable of ∆s,∆c is selected in E. Then, by setting ρ to the last
inference, we obtain the desired result.
For the base case, there is only one option:

12

3 Eliminating Quantifier-Free Cuts

(i) ρ is an axiom A,A. We have three options:

(a) If both A and A are cut ancestors, then set E = ⊥. Obviously, E ∨ (A ∨ A) is
tautologous, E ≻ ⊥ = ∆s and the size- and free-variables-constraints hold.

(b) If both A and A are ancestors of the endcedent, then set E = A∨A. Again, all
the constraints hold.

(c) If w.l.o.g. A is an ancestor of the endcedent and A is an ancestor of a cut, then
set E = A. Thus, E ∨ A is tautologous and E ≻ A. Also, the other constraints
hold.

From the cases above, we see that c, d ≥ 2.

Now, for the induction step, we refine the length condition and require that the expansion
tree E from the induction hypothesis fulfills that |E| ≤ ch(ρ)|πρ| and ∥E∥ ≤ ch(ρ) ∥πρ∥ with
c1 = 2 from the base case:

(ii) ρ is a ∀-inference.
A[x/b],∆s,∆c∀: ∀x : A,∆s,∆c

Since all our cuts are quantifier-free, A[x/b] and ∀x : A are ancestors of the endcedent.
By the induction hypothesis, we have an expansion tree E such that E ≻ ∆s∨A[x/b],
Dp(E) ∨∆c is tautologous and |E| ≤ ch(ρ)−1(|(πρ| − 1) and ∥E∥ ≤ dh(ρ)(∥πρ∥ − 1).
Therefore, E = E′∨E′′ with Sh(E′′) ⊑ A[x/b]. If b is selected in E, then b is not free in
A[x/b] by induction hypothesis. Therefore, Sh(E′′) ⊑ A[x/b] = A[x/c] for any c which
is not selected in E and not free in ∀x : A,∆s,∆c. Thus, we can set E∗ = ∀xA+cE′′. If
on the other hand, b is not selected in E, we can set E∗ = ∀xA+bE′′. Either way, if we
define E+ = E′∨E∗, we have that Sh(E+) = Sh(E′)∨∀xA ⊑ ∆s,∀xA and Dp(E+) =
Dp(E′) ∨ Dp(E′′), which means that Dp(E+) ∨ ∆c is tautologous. Moreover, the
free-variable-condition holds and we have |E+| = |E| + 1 ≤ ch(ρ)−1(|πρ| − 1) + 1 =

ch(ρ)−1|πρ| − ch(ρ)−1 + 1 = (ch(ρ)−1 −
ch(ρ)−1−1

|πρ|)|πρ| and ∥E+∥ = ∥E∥+ 1 ≤ (ch(ρ)−1 −
ch(ρ)−1−1

∥πρ∥) ∥πρ∥.

(iii) ρ is an ∃-inference
A[x/s],∆s,∆c∃: ∃x : A,∆s,∆c

Since all our cuts are quantifier-free, we have that A[x/s] and ∃xA have to be ancestors
of the endcedent. By the induction hypothesis, there is an expansion tree E such
that E ≻ A[x/s] ∨ ∆s, E ∨ ∆c is tautologous and |E| ≤ chρ)|λ| and ∥E∥ ≤ 2 ∥λ∥.
Since Sh(E) ⊑ ∆s ∨ A[x/s], it holds that E = E′ ∨ E′′ with Sh(E′′) ⊑ A[x/s].
Now, set E∗ = ∃xA +s E′′. By Lemma 3.9, we have that E∗ ≻ ∃xA and thus
E+ = E′ ∨E∗ ≻ ∃xA,∆s. Also, Dp(E+) = Dp(E′)∨Dp(E′′) and therefore, E+ ∨∆c

is tautologous. Furthermore, the free-variable-condition still holds and we have that

|E+| = |E|+1 ≤ ch(ρ)−1(|πρ|−1)+1 = (ch(ρ)−1−
ch(ρ)−1−1

|πρ|)|πρ| and ∥E+∥ = ∥E∥+1 ≤

(ch(ρ)−1 −
ch(ρ)−1−1

∥πρ∥) ∥πρ∥.

13

3 Eliminating Quantifier-Free Cuts

(iv) ρ is a cut inference

(λ1)

A,∆s,∆c

(λ2)

A,∆′
s,∆

′
c

Cut:
∆s,∆

′
s,∆c,∆

′
c

By the induction hypothesis, we have two expansion trees E1 and E2 such that
E1 ≻ ∆s, E2 ≻ ∆′

s, E1 ∨ A ∨∆c and E2 ∨ A ∨∆′
c are both tautologous and all the

other conditions hold. Since the the selected variables of E1 and E2 do not occur in
∆s,∆

′
s,∆c,∆

′
c, we can rename them so they are disjoint and construct E = E1 ∨E2.

By Lemma 3.9, we have that E ≻ ∆s∨∆′
s. Also, Dp(E∨∆c∨∆′

c) = Dp(E1)∨Dp(∆c)∨
Dp(E2)∨Dp(∆′

c), which is a tautology by the induction hypothesis. The free-variable-
condition holds by construction and we have that |E| = |E1|+ |E2|+1 ≤ ch(ρ)−1|λ1|+
ch(ρ)−1|λ2|+1 = ch(ρ)−1(|λ1|+|λ2|)+1 = ch(ρ)−1(|πρ|−1)+1 = (ch(ρ)−1−

ch(ρ)−1−1

|πρ|)|πρ|
and analogously for ∥·∥.

(v) ρ is an ∧-inference
(λ1)

A,∆s,∆c

(λ2)

B,∆′
s,∆

′
c∧:

A ∧B,∆s,∆
′
s,∆c,∆

′
c

By the induction hypothesis, we have two expansion trees E1 and E2. We distinguish
two cases:

(a) A ∧ B is a cut ancestor. Then A and B are cut ancestors and we have that
E1 ≻ ∆s, E2 ≻ ∆′

s and E1 ∨∆c, A and E2 ∨∆′
c, B are both tautologous. Thus,

E = E1 ∨ E2 ≻ ∆s ∨ ∆′
s by Lemma 3.9. Also Dp(E ∨ (A ∧ B) ∨ ∆c ∨ ∆′

c) =
Dp(E1) ∨ Dp(E2) ∨ (A ∧ B) ∨ ∆c ∨ ∆′

c is tautologous. Again, for the size we
have |E| = |E1| + |E2| ≤ ch(ρ)−1(|λ1| + |λ2|) + 1 = ch(ρ)−1(|πρ| − 1) + 1 =

(ch(ρ)−1 −
ch(ρ)−1−1

|πρ|)|πρ| and similarly for ∥·∥.

(b) A ∧ B is an ancestor of the endcedent. Then, we have that E1 = EA ∨ E′
1

and E2 = EB ∨ E′
2 with EA ≻ A,EB ≻ B,E′

1 ≻ ∆s, E
′
2 ≻ ∆′

s. We can now
define E3 = (EA ∧ EB) ∨ E′

1 ∨ E′
2. Now by iterating Lemma 3.9, we have that

E3 ≻ A∧B∨∆s∨∆′
s. Also E3∨∆c∨∆′

c is tautologous by construction. Again,

|E3| = |E1|+ |E2|+ 1 ≤ (ch(ρ)−1 −
ch(ρ)−1−1

|πρ|)|πρ|.

(vi) ρ is an ∨-inference
(λ1)

A,B,∆s,∆c∨:
A ∨B,∆s,∆c

Let E be the extension tree from the induction hypothesis. Since the cedents A,B and
A∨B are associated with the same formula, E is the expansion tree with the desired

properties. Also, we have that |E| ≤ 2|λ| = ch(ρ)−1(|πρ|−1) ≤ (ch(ρ)−1−
ch(ρ)−1−1

|πρ|)|πρ|

(vii) ρ is a weakening-inference

14

3 Eliminating Quantifier-Free Cuts

(λ)

∆
δ:

∆s,∆cw, ρ:
∆s,∆c,Γs,Γc

We separated the new formulas of Γ in two subsets Γs and Γc with the endcedents
ancestors and cut ancestors respectively. By the definition of our proof system, the
inference δ cannot be a weakening inference. Let E be the expansion tree from the
induction hypothesis. We have to distinguish two cases:

(a) If Γs is empty, we set E∗ = E. All the conditions hold.

(b) If Γs is not empty, we set E∗ = E ∨ ⊥. We observe that E∗ ∨ ∆c ∨ Γc is still
tautologous and that the free variable condition still holds. Moreover, Sh(E∗) =
Sh(E) ∨ ⊥ ⊑ ∆s ∨ Γs also holds since we obtain Sh(E∗) be replacing

∨
γ∈Γ γ

with ⊥ and the whatever we need to replace in ∆s.

Now, since δ is not a weakening inference, we can use, that in all the cases before we
obtained the bound |E| ≤ ch(ρ)−1|πδ|−1. Therefore, |E∗| ≤ |E|+2 ≤ ch(ρ)−1|πδ|+1 =

ch(ρ)−1|πρ|+ 1 = (ch(ρ)−1 +
1

|πρ|)|πρ|

Since only every second inference can be a weakening inference and h(ρ) ≤ |πρ| ≤ ∥πρ∥, we
see that ch(ρ) is dominated by xn for n = h(ρ) with

xn =

2 : n = 1

xn−1 − xn−1−1
n : n > 1 ∧ n ≡ 1 (2)

xn−1 +
1
n : n > 1 ∧ n ≡ 0 (2)

Now, we see that x1 = 2, x2 =
5
2 . Our induction hypothesis is now that for odd n, we have

that xn = 2. It follows that

xn+2 = xn+1 −
xn+1 − 1

n+ 2

= xn +
1

n+ 1
−
xn + 1

n+1 − 1

n+ 2

= 2 +
n+ 2− (n+ 1)2− 1 + n+ 1

n+ 2

= 2 +
2(n+ 1)− 2(n+ 1)

n+ 2

= 2

It therefore follows that xn = 2 + 1
n if n is even and thus that c = d = max

n∈N
xn = 5

2 . ■

Note that these constants are optimal. For this consider the proof π

A,A

A,A,B

15

3 Eliminating Quantifier-Free Cuts

Since, we count axioms towards the proof-length, it follows that |π| = 2. Moreover, for any
expansion tree E with a tautologous deep formula and Sh(E) ⊑ FC = A ∨ A ∨ B it holds
that E ≥ 5 = 5

2 |π|.
We can now define a sequent calculus for sets of expansion trees:

Definition 3.12. We now consider sets of expansion trees. For every atom A, we have
the axiom

A,A

Then, we have the rules ∨,∧ and weakening from LK. Additionally, we have

Γ, E
∀:

Γ,∀xF +α E

∆, E1∃′:
∆,∃xF +t1 E1

∆, ∃xF +t1 E1 · · ·+ti−1 Ei−1 +
ti+1 Ei+1 · · ·+tn En, Ei∃:

∆,∃xF +t1 E1 · · ·+tn En

For the ∃ and ∃′ rule, the terms t1 or ti respectively have to be admissible. A term t is
admissible in an expansion tree E if no free variable of t is selected in E. We call the
derivation system obtained by this LKE.

Since we use a one-sided sequent calculus, this is a bit different from [8]. We still associate
formulas with cedents:

Definition 3.13. Let Γ be a cedent of expansion trees. We associate Γ with the expansion
tree EΓ =

∨
γ∈Γ γ. Now, define, Sh(Γ) = Sh(EΓ) and Dp(Γ) = Dp(EΓ). We say C is

tautologous if Dp(C) is a tautology.

Definition 3.14. Let C be a cedent of expansion trees and π an LKE-proof. We define
|C| = |ΓC |, ∥C∥ = |ΓC |, ∥π∥ =

∑
S∈π ∥S∥ and |π| as the number of inferences except for

weakening.

Definition 3.15. Let C = E1, . . . , En be a cedent of expansion trees. We define <C=<ΓC
.

Lemma 3.16. Let E = Ed
1 , . . . E

d
n be a cedent of expansion trees such that <E is acyclic and

all the Ei are existential expansion trees. Then there exists an Ei such that an expansion
term t of Ei is admissible.

Proof. Since all of the Ei are existential, they have the form Ei = ∃xFi+
t
i,1Ei,1 · · ·+ti,niEi,ni .

Now assume that none of the expansion terms of Ei are admissible. Then for some ti,j
there is a variable α free in ti,j with α being selected in E and therefore in some Ek =
∃xFk+

tk,1Ek,1 · · ·+tk,nkEk,nk
. Thus, there is a tk,l <E ti,j . Since this holds for all expansion

terms by assumption and E is finite, we have that <E is cyclic. ■

Lemma 3.17. Let C be derived from C ′ by a rule of LKE except for weakening. Then if
C is tautologous so is C ′ and if <C is acyclic, then so is <C′. Moreover, if C is derived
with the (arbitrary) inference ρ, then C is tautologous if all the upper cedents of ρ are.

16

3 Eliminating Quantifier-Free Cuts

Proof. For this proof, let us call the inference in question ρ. We now have to distinguish
the different cases:

(i) Let ρ be an ∨-inference
C ′ : Γ, A,B∨:
C : Γ, A ∨B

Clearly, the associated formulas FC and FC′ are logically equivalent. By definition of
<C′ and <C , they are the same.

(ii) Let ρ be an ∧-inference
C1 : Γ1, A C2 : Γ2, B∧:

C : Γ1,Γ2, A ∧B
Then both C1 and C2 are tautologous by definition of the associated formula. More-
over, since <C1⊆<C and <C2⊆<C , they are both acyclic. On the other hand, if both
upper cedents are tautologous, so is C by constructing Dp(C).

(iii) Let ρ be a weakening-inference:

Γw:
Γ,∆

Clearly, if the upper cedent is tautologous, so is the lower one.

(iv) Let ρ be an ∃-inference:
C ′ : ∆,∃xF +t1 E1 · · ·+ti−1 Ei−1 +

ti+1 Ei+1 · · ·+tn En, Ei∃:
C : ∆,∃xF +t1 E1 · · ·+tn En

We have that <C′⊆<C and therefore, <C′ is acyclic. Also, the associated deep
formulas are logically equivalent.

(v) Let ρ be a ∀- or an ∃′-inference:
C ′ : Γ, E

∀:
C : ∀xF +α E

C ′ : ∆, E1∃′:
C : ∆,∃xF +t1 E1

Then again, the associated deep formulas are logically equivalent. Again, <C′⊆<C

and therefore, the acyclicity is preserved.

■

Lemma 3.18. Let E = E1, . . . , En be a tautologous expansion cedent such that <E is
acyclic. Then there is a a proof π of E in LKE such that |π| ≤ 2|E| and ∥π∥ ≤ 24∥E∥.

Proof. Let E = E1, . . . , En. Let m(E) =
∑n

i=1 lc(Ei) with lc being the number of logical
connectives in Ei (without the atoms). We proceed via induction on m(E) and construct
π such that ∥π∥ ≤ |E| · ∥E∥ · 22m(E) and h(π) ≤ |E| − (n − 1). The desired result then
follows since m(E) ≤ |E| ≤ ∥E∥ and thus |π| ≤ 2h(π) ≤ 2|E| and ∥π∥ ≤ |E| ∥E∥ 22∥E∥ ≤
22 log(∥E∥)+2∥E∥ ≤ 24∥E∥. Ifm(E) = 0, then all of the Ei are literals. Since, E is tautologous,
there are i, j such that Ei = A and Ej = A. Therefore, we can derive E in LKE with
weakening only and receive a proof π with h(π) = 1 ≤ |E| − (n − 1) and ∥π∥ ≤ |E| ∥E∥.
Now let m(E) > 0. We can now distinguish two cases:

17

3 Eliminating Quantifier-Free Cuts

(i) Let E = E1, . . . En be such that all of the Ei are existential expansion trees. By
Lemma 3.16 there is an admissible expansion term tj of some Ei = ∃xF +t1E′

1 · · ·+tm

E′
m. Now define Γ = E1 . . . Ei−1, Ei+1, . . . En and

E′ = ∃xF +t1 E′
1 · · ·+tj−1 E′

j−1 +
tj+1 E′

j+1 · · ·+tm E′
m, E

′
j ,Γ.

We now have that |E′| = |E|, ∥E′∥ = ∥E∥ and m(E′) = m(E)−1 since the associated
formulas are the same, but we reducem(E) by eliminating the +tj . Moreover, it holds
that

E′
∃:

E

By the induction hypothesis, we now have a proof π′ of E′ such that ∥π′∥ ≤ |E′| ∥E′∥ 22m(E′)

and h(π′) ≤ |E′|. This now gives us a proof π of E with

∥π∥ =
∥∥π′∥∥+ ∥E∥

≤ |E′|
∥∥E′∥∥ 22m(E′) + ∥E∥

= |E| ∥E∥ 22m(E)−2 + ∥E∥

= |E| ∥E∥ 22m(E)(
1

4
+

1

|E|22m(E)
)

≤ |E| ∥E∥ 22m(E)

since m(E), E ≥ 1. Moreover, h(π) = h(π′) + 1 ≤ |E′| − (n− 1) + 1 = |E| − (n− 2).

(ii) Let E = E1, . . . , En such that one of the Ei is not an existential expansion tree.
Without loss of generality all the Ei are critical for E being tautologous and also
without loss of generality none of the Ei are ⊥, otherwise we could just consider
E′ = E \ Ei and get E by weakening from E′. Therefore, there is an Ei that has a
root (outermost connective) different from ⊥. We fix this Ei and consider different
cases:

(a) If Ei = A is atomic. We group all the atomic Ej and consider E′ = E \
{Ej | Ej is atomic}. Now, if all the El in E

′ are existential, there has to be an
admissible term t in some El. This term is still admissible in E since no variables
are selected in the atomic expansion trees. We can now use the strategy from
above. If there is an El which is not existential, then we can just consider this
El, which is not atomic and use one of the strategies below.

(b) If Ei = A ∨ B and E = Γ, A ∨ B. Then, we define E′ = A,B,Γ and see that
m(E′) = m(E)− 1, |E′| = |E|, ∥E′∥ = ∥E∥ and

A,B,Γ∨:
A ∨B,Γ

By the induction hypothesis, we get a proof of E′ and all the size-estimations
hold for the same reasons as above.

(c) Let Ei = A ∧B and E = A ∧B,Γ. Then, define E1 = A,Γ and E2 = B,Γ. We
see that m(E2),m(E1) ≤ m(E) − 1. By the induction hypothesis, we have two

18

3 Eliminating Quantifier-Free Cuts

proofs π1, π2 such that1:

(π1)

A,Γ

(π2)

B,Γ∧:
A ∧B,Γ

This constitutes our proof π with h(π) = max{h(π1), h(π2)}+1 ≤ max{|A,Γ|−
(n−1), |B,Γ|− (n−1)}+1 = max{|A,Γ|, |B,Γ|}− (n−2) ≤ |A∧B,Γ|− (n−2)
and

∥π∥ = ∥π1∥+ ∥π2∥+ ∥E∥
≤ |E1| ∥E1∥ 22m(E1) + |E2| ∥E2∥ 22m(E2) + ∥E2∥
≤ 2(|E| − 1)(∥E∥ − 1)2m(E)−4 + ∥E∥
≤ |E| ∥E∥ 2m(E)−2 + ∥E∥
≤ |E| ∥E∥ 22m(E)

(d) Let Ei = ∀xF +α E∗. Now, define E′ = Γ, E∗. We observe that m(E′) =
m(E) − 1, |E′| < |E| and ∥E′∥ < ∥E∥. By the induction hypothesis, we have a
proof π′ of E′ and we obtain π by

(π′)

Γ, E∗
∀:

Γ,∀x+α E∗

Note that we do not impose any restrictions on α other than not being selected
in E∗. Again, we have that h(π) = h(π′) + 1 ≤ |Γ, E∗| − (n− 1) + 1 ≤ |Γ, ∀+α

E∗|− (n− 2) and ∥π∥ = ∥π′∥+ ∥E∥ = |E′| ∥E′∥ 22m(E′)+ ∥E∥ ≤ |E| ∥E∥ 22m(E).

■

Lemma 3.19. Let π be an LKE-proof of SE such that SE ≻ F and let S be an expansion
cedent occurring in π. Then FV (Sh(S)) ∩ SV (S) = ∅ with FV (G) being the free variables
of a formula G and SV (S) the selected variables in an expansion cedent.

Proof. We proceed via induction on the number of inferences between S and SE . For the
base case consider S = SE . We have that ⊢S F and therefore Sh(S) ⊑ F and FV (F) ∩
SV (S) = ∅. Since FV (Sh(S)) ⊆ FV (F), we have FV (Sh(S)) ∩ SV (S) = ∅. For the
induction step, we distinguish the next inference applied to S to obtain the next cedent S′.

(i) If S is subject to an ∨−,∧− or weakening-inference, we have that FV (Sh(S)) ⊆
FV (Sh(S′)) and SV (S) ⊆ SV (S′). By the induction hypothesis, we have that
FV (Sh(S)) ∩ SV (S) = ∅.

(ii) If S′ is derived from S by an ∀-inference

,
S : Γ, E

∀:
S′ : Γ,∀xG+α E

1Note that we do not need a contraction since we deal with sets

19

3 Eliminating Quantifier-Free Cuts

we have that FV (Sh(S)) ⊆ FV (Sh(S′)) ∪ {α} and SV (S) = SV (S′) \ {α} since α
cannot be selected in S′ twice. Therefore, by the induction hypothesis, we have that
FV (Sh(S)) ∩ SV (S) = ∅.

(iii) Let S′ be obtained by an ∃-inference
S : Γ, ∃xG+t1 E1 · · ·+ti−1 Ei−1 +

t+1 Ei+1 · · ·+tn En, Ei∃:
S′ : Γ,∀xG+t1 E1 · · ·+tn En

or an ∃′-inference
S : Γ, E

∃′:
S′ : Γ, ∀xG+ti E

then ti is admissible in S′. Therefore, FV (ti) ∩ SV (S′) = ∅. Also SV (S) = SV (S′)
and FV (Sh(S)) = FV (Sh(S′)) ∪ FV (ti). Thus and by the induction hypothesis, it
follows that FV (Sh(S)) ∩ SV (S) = ∅.

■

3.2 Eliminating Cuts

Definition 3.20. Let π a proof in any of our proof systems. We define C(π) to be the
number of cedents in π.

We can now return to the proofs in our original system and formulate a Lemma:

Lemma 3.21. Let π be a cut-free LK-proof of S and let b ∈ N such that for all ∃-inferences
in π

F [x/t],∆
∃: ∃xF,∆

in π it holds that ∥t∥ ≤ b. Then ∥π∥ ≤ C(π) ∥S∥ (∥S∥+ C(π))(b+ 1)(C(π) + 1).

Proof. Let ρ be an inference of π. We proceed with an induction on the number n of
inferences between ρ and S, the root of π. We show that for every formula F in the
conclusion of ρ it holds that ∥F∥ ≤ ∥S∥ (b + 1)(n + 1) and that the conclusion of ρ
contains at most ∥S∥ + n subformulas. We can then bound n by C(π) and get that
∥π∥ ≤ C(π) ∥S∥ (∥S∥ + C(π))(b + 1)(C(π) + 1). For the base case, consider that ρ is the
last inference. Then clearly for all formulas F of S, it holds that ∥F∥ is bounded by ∥S∥.
Also, there are at most ∥S∥ many formulas in S. Now for the induction step:

(i) If ρ is an axiom, then there are only two formulas in the conclusion of ρ, namely A
and A both of which have ∥F∥ = 1 ≤ ∥S∥. Moreover, S contains at least one formula
and n ≥ 1. Therefore, the number of formulas is bounded by ∥S∥+ n

(ii) Let δ be the next derivation after ρ and let it be of the kind ∨,∧, ∀ or weakening.
Then for all formulas F in the conclusion of ρ, there is a formula F ′ in the conclusion
of δ such that ∥F∥ ≤ ∥F ′∥ and by the induction hypothesis, ∥F∥ ≤ ∥F ′∥ ≤ ∥S∥ (b+
1)(n + 1) ≤ ∥S∥ (b + 1)(n + 2). Moreover, at most one formula is added (going
upwards). Therefore, the number of formulas is still bounded by ∥S∥+ n.

20

3 Eliminating Quantifier-Free Cuts

(iii) If the next inference δ is a ∃-inference
F [x/t],∆

∃: ∃xF,∆
Then by the induction hypothesis, we have that ∥∃xF∥ ≤ ∥S∥ (b+1)(n+1). Since our
cuts are quantifier-free, all occurrences of x in F have to be in S as well. Therefore,
∥F [x/t]∥ ≤ ∥F∥ + ∥S∥ b ≤ ∥S∥ (b + 1)(n + 1) + ∥S∥ b ≤ ∥S∥ (b + 1)(n + 2). By
the induction hypothesis, the inequality holds for all formulas in ∆ as well. Since no
formula is added (going upwards), the number of formulas is still bounded by ∥S∥+n.

■

Lemma 3.22. Let π be an LKE-proof of an expansion cedent SE such that SE ≻ S. Then
there exists a cut-free proof π′ in LK of S such that |π′| ≤ |π| and ∥π′∥ ≤ 32 ∥π∥4 ∥S∥2.

Proof. We proceed via induction and construct an LK-proof π′ of Sh(SE) such that every
axiom of π′ is also an axiom of π (modulo renaming of variables). Note that we can restrict
our focus to Sh(SE) since ⊥ is not in E and can therefore not occur in our axioms. We will
also have that C(π′) ≤ 2C(π) and |π′| ≤ |π|. For the base case, let π = A,A be an axiom.
Then, define π′ as π. Now, π′ proves A,A = Sh(π). Also, all the bounds hold. For the
induction step, consider these cases:

(i) If the last inference of π is an ∨-inference:
(π1)

A,B,Γ∨:
A ∨B,Γ

Then, by the induction hypothesis we have a proof π′1 of Sh(A), Sh(B),Sh(Γ) with
the desired bounds. We can construct π′ by adding an ∨-inference:

π′1
Sh(A), Sh(B),Sh(Γ)

∨:
Sh(A) ∨ Sh(B), Sh(Γ)

Moreover, |π′| = |π′1| + 1 ≤ |π1| + 1 = |π| and C(π′) = C(π′1) + 1 ≤ 2C(π1) + 1 =
2C(π)− 1

(ii) If the last inference of π is an ∧, we repeat the construction from the prior point, but
add an ∧-inference instead.

(iii) If the last inference of π is a weakening inference, we repeat the construction from
above one more time, but with a weakening inference. However, it is noteworthy that
the weakening neither counts towards |π| nor to |π′|. The bounds still hold.

(iv) If the last inference in π is a ∀-inference.
(π1)

Γ, E
∀:

Γ,∀xF +α E

21

3 Eliminating Quantifier-Free Cuts

By the induction hypothesis, we have a cut-free proof π′1 of Sh(Γ),Sh(E). We also now
have that Sh(E) ⊑ F [x/α] and that ⊥ does not occur in an axiom of π′1. Thus, we can
replace the necessary occurrences of ⊥ in our proof with subformulas of F [x/α] to get
a proof π∗ of Sh(Γ), F [x/α] (some of the eigenvariables of π′1 might need renaming).
Now, define π′ by

(π∗)

Sh(Γ), F [x/α]
∀:

Sh(Γ),∀xF
Lemma 3.19 ensures that the eigenvariable condition is met. The bounds are as
obvious as before.

(v) Let the last inference of π is an ∃-inference
(π1)

∆, ∃xF +t1 E1 · · ·+ti−1 Ei−1 +
ti+1 Ei+1 · · ·+tn En, Ei∃:

∆,∃xF +t1 E1 · · ·+tn En

Then, by the induction hypothesis, we have a proof π′1 of Sh(∆), ∃xF,Sh(Ei) with
Sh(Ei) ⊑ F [x/ti]. Since ⊥ does not occur in our axioms, we can replace some of the
occurrences, to obtain a proof π∗ of Sh(∆),∃xF, F [x/ti]. Since we deal with sets of
formulas, we can define π′ in one step by

(π∗)

∃xF, F [x/ti],Sh(∆)
∃: ∃xF,Sh(∆)

The bounds hold again.

(vi) If the last inference is an ∃′-inference:
∆, Ei∃′:

∆, ∃xF +t1 E1

We repeat the construction from the prior point.

Since ⊥ does not occur in our axioms and we have a proof of Sh(SE) ⊑ S, we can replace
some of the occurrences of ⊥ by subformulas of S and obtain a cut-free proof ψ′ of S.
It still holds that C(ψ) ≤ 2C(π) and |ψ| ≤ |π|. We can now obtain ψ′ by the following
construction: Consider every ∃-inference

(λ)

F [x/t]
∃ : ∃xF,∆

such that no occurrence of t introduced by the substitution of x by t has an ancestor in an
axiom. Now replace this inference with the following:

(λ′)

F [x/α]
∃ : ∃xF,∆

22

3 Eliminating Quantifier-Free Cuts

with α being a fresh variable and λ′ being obtained from λ by replacing all ancestors of
the occurrences of t by α. Since we do not alter the axioms, it still holds that every axiom
of ψ′ is an axiom of π. Also, it holds that for all t occurring in an ∃-inference, t = α or t
occurs in an axiom of π. Therefore, for such t, we have that ∥t∥ ≤ ∥π∥. By setting b = ∥π∥,
we can apply Lemma 3.21 and receive∥∥ψ′∥∥ ≤ C(ψ′) ∥S∥ (∥S∥+ C(ψ′))(∥π∥+ 1)(C(ψ′) + 1)

≤ 2C(π) ∥S∥ (∥S∥+ 2C(π))(∥π∥+ 1)(2C(π) + 1)

≤ 2 ∥π∥ ∥S∥ (∥S∥+ 2 ∥π∥)(∥π∥+ 1)(2 ∥π∥+ 1)

= 2 ∥π∥ ∥S∥ (∥π∥ ∥S∥+ 2 ∥π∥2 + ∥S∥+ 2 ∥π∥)(2 ∥π∥+ 1)

= 2 ∥π∥ ∥S∥ (2 ∥π∥2 ∥S∥+ 2 ∥π∥3 + 2 ∥π∥ ∥S∥+ 4 ∥π∥2 + ∥π∥ ∥S∥+ 2 ∥π∥2 + ∥S∥+ 2 ∥π∥)
≤ 2 ∥π∥ ∥S∥ 4 · 4 ∥π∥3 ∥S∥
= 32 ∥π∥4 ∥S∥2

■

Theorem 3.23. Let π be a LK-proof of C with only quantifier-free cuts. Then there exists
a cut-free proof π′ of C in LK such that |π′| ≤ 2

5
2
|π| and ∥π′∥ ≤ 245∥π∥.

Proof. By Theorem 3.11 we have an expansion tree E such that ⊢E C, |E| ≤ 5
2 |π| and

∥E∥ ≤ 5
2 ∥π∥. By Lemma 3.18, we have an expansion-tree proof ψ such that |ψ| ≤ 2|E| ≤

2
5
2
|π| and ∥ψ∥ ≤ 24∥E∥ ≤ 210∥π∥. By Lemma 3.22, we obtain a proof π′ such that |π′| ≤ |ψ| ≤

2
5
2
|π| and ∥π′∥ ≤ 32 ∥ψ∥4 ∥C∥2 ≤ 25240∥π∥ ∥C∥2 = 25+40∥π∥+2 log(∥C∥). Since x − 1 ≥ log(x)

for x ≥ 1 and ∥π∥ ≤ ∥C∥, we have that ∥π′∥ ≤ 25+40∥π∥+2(∥π∥−1) ≤ 245∥π∥. ■

23

4 Eliminating general cuts

4.1 Transforming proofs to PNF

We will later need to consider proofs that have the property that all their cut formulas are
in PNF. Since this is generally not the case, we first have to transform a given proof into
a proof of that kind.

Definition 4.1. Let π be a proof in LK. We say, π is in PNF if all its cut formulas are
in PNF. The set containing all the LK-proofs in PNF is denoted by LKPNF .

Lemma 4.2. Let B be a formula and B′ be its prenex normal form. Then B ∈ Σn iff
B′ ∈ Σn for all n ∈ N. The same holds for Πn

Proof. We have defined the membership of Σn and Πn by equivalence to PNF formulas.
Since the equivalence relation is transitive, the claim follows. ■

Lemma 4.3. Let B be a propositional formula. Then there is proof π of B,B in LK (and
in LKPNF) with |π| ≤ |B,B| = |B ∨B|.

Proof. For atoms, the case is clear, since we can derive A,A with one inference for atoms
A. For the induction step, consider two cases:

• If B = B1 ∧B2, we can construct the following proof:

(λ0)

B0, B0

(λ1)

B1, B1

B0, B1, B0 ∧B1

B0 ∨B1, B0 ∧B1

with B0 ∨ B1, B0 ∧ B1 = B,B. If we define λ as the whole proof, we have that
|λ| = |λ0|+ |λ1|+ 2 ≤ |B0 ∨B0|+ |B1 ∨B1|+ 2 = |B ∨B|.

• If B = B0 ∨ B1, we can construct the proof of B,B with the means above for
B = B0 ∧B1. This is then clearly also a proof of B,B.

■

Lemma 4.4. Let π be a proof of Γ in LK. Then there is a proof π′ of Γ such that |π′| = |π|
and for every formula F in π′, it holds that |F | ≤ |π|+ |Γ|. If F is a cut formula, it even
holds that |F | ≤ |π|.

24

4 Eliminating general cuts

Proof. We start with a case distinction: If F corresponds to a subformula in the endcedent,
then clearly, the size of F is bounded by the size of the formulas in the endcedent. If F
does not correspond to a subformula in the endcedent, then it has a cut-formula as a
descendant. The other simple case: If F has no ancestors that are the primary formula
of a weakening inference, then the size of F is clearly bound by the number of inferences.
The only problem we can have is if F is derived by weakening. Since F has a cut formula
F ′ as a descendant, we can look at this cut formula directly since |F | ≤ |F ′|. Consider all
the subformulas of F ′ that stem from weakening on both sides of the cut (the other ones
are trivially bounded). We can now replace the corresponding formulas in the weakening
with an atom P (c) (c being a constant) and adapt the inferences below accordingly. This
leads to a new cut formula F ′′, which is bounded by the size of ∨,∧, ∃ and ∀ inferences.
Note that we have to adapt the other cut-formula of the same cut accordingly, but the size
bound holds for the same reason. ■

Lemma 4.5. Let B and C be two formulas and for any formula F let F ′ be the corre-
sponding formula in PNF. Then there are proofs π of B′, C ′, (B ∧ C)′, π′ of B′, (B ∨ C)′
and π′′ of C ′, (B ∨ C)′ such that |π|, |π′|, |π′′| ≤ |S| with S being the respective endcedent.

Proof. For the rest of the proof let B′ = Q1B0 and C ′ = Q2C0 with Qi being blocks of
quantifiers and B0 and C0 being quantifier-free. Similarly (B ∧ C)′ = Q(B0 ∧ C0) and
(B∨C)′ = Q(B0∨C0) with Q being the result of arbitrarily interleaving Q1 and Q2 (while
preserving their initial ordering). We now proceed via induction and claim that there is a
tree-like proof of the cedents C,B, (B ∧ C)′, B, (B ∨ C)′ and C, (B ∨ C)′ such that their
length is at most the number of the logical connectives in the respective cedent. For the
base case, we consider Q = ∅ and B,C being propositional formulas. In this case, we have
that (B ∨ C)′ = B′ ∨ C ′ = B ∨ C and (B ∧ C)′ = B′ ∧ C ′ = B ∧ C. It follows that we can
derive the cedents in the following way:

(λ0)

B,B

(λ1)

C,C
δ1,∧:

B,C,B ∧ C

(λ0)

B,B
w:

B,B,C
δ2,∨:

B,B ∨ C

(λ1)

C,C
w:

C,C,B
δ3,∨:

C,B ∨ C

In Lemma 4.3, we have seen that we can prove B,B and C,C with λ0 and λ2 of size at
most |B ∨ B| and |C ∨ C| respectively. Therefore, the proof of B,C,B ∧ C has length
|λ0|+ |λ1|+ 1 ≤ |B ∨ B|+ |C ∨ C|+ 1 = |B ∨ C ∨ (B ∧ C)| = |B,C,B ∧ C|. The bounds
for the proofs of |B,B ∨ C| hold for similar reasons if we remember that we do not count
weakening inferences.
For the induction step, assume that Q contains at least one quantifier. We need a case

distinction:

• Let the outermost quantifier of Q be ∃x. Since this quantifier has to be the outermost
quantifier of either Q1 or Q2, we can assume without loss of generality that it is the
outermost quantifier of Q1. Now consider Q′ and Q′

1 defined as Q and Q1 respectively
but without the outermost quantifier. Now, by the induction hypothesis, we can write
the following derivations:

25

4 Eliminating general cuts

(λ)

Q′
1B0[x/b], Q2B1, Q

′(B0[x/b] ∧B1)
∃:

Q′
1B0[x/b], Q2B1, ∃xQ′(B0 ∧B1)

∀:
∀xQ′

1B0, Q2B1, Q(B0 ∧B1)

(λ′)

Q′
1B0[x/b], Q

′(B0[x/b] ∨B1)
∃:

Q′
1B0[x/b],∃xQ′(B0 ∨B1)

∀:
∀xQ′

1B0, Q(B0 ∨B1)

(λ′′)

Q2B1, Q
′(B0[x/b] ∨B1)∃:

Q2B1,∃xQ′(B0 ∨B1)

Note that all the ∀ inferences are legal (eigenvariable-condition) since we can assume
without loss of generality that the variables of B0 and B1 are disjoint by renaming
them. Moreover, all of our inferences add one connective to the endcedent. Thus, the
size restrictions are met.

• Now assume that outermost quantifier of Q is a ∀. The same construction from above
holds if we switch the quantifier. However, we still need to introduce the ∃-quantifier
first to fulfill the eigenvariable condition in the second step.

■

Lemma 4.6. Let π be a proof of S in LK. Then there is a proof π′ of S in LKPNF with
|π′| ≤ 5|π|2.

Proof. For every cedent ∆ in π, we define the cedent ∆′ in the following way:

• If B is a formula of ∆ and B has no cut formula as a descendant, add B to ∆′

• If B is a formula of ∆ and has a cut-formula as a descendant, then add B′, the PNF of
B, to ∆. Without loss of generality choose B such that it has the minimum number
of blocks of alternating quantifiers.

Now, we construct the (invalid) proof π′′ by replacing every cedent ∆ with ∆′ and using the
same inferences. This proof is not correct since there are illegal inferences: If the formula
A ∧ B is the primary formula of an ∧−inference and has a cut formula as a descendant,
then the new inference is not valid anymore. Similarly, if the formula A∨B is the primary
formula of an ∨−inference and has a cut formula as descendant, then the new inference is
not valid either. We now deal with these two cases:

• Consider the inference
(λ0)

A′,Γ1

(λ1)

B′,Γ2

(A ∧B)′,Γ1,Γ2

By Lemma 4.5 we obtain a proof λ2 of A′, B′, (A ∧B)′. We can now adapt π′′:

(λ2)

A′, B′, (A ∧B)′
(λ0)

A′,Γ1
cut:

B′, (A ∧B)′,Γ1

(λ1)

B′,Γ2
cut:

(A ∧B)′,Γ1,Γ2

26

4 Eliminating general cuts

By Lemma 4.5, we have that |λ2| ≤ |A ∨ B ∨ (A ∧ B)′| = 2|A ∧ B| + 1 ≤ 3|A ∧ B|.
Since A ∧B has a cut-formula as a descendant, we can bound this by 3|π|.

• Consider the inference

(λ0)

A′, B′,Γ

(A ∨B)′,Γ

Again, by Lemma 4.5, we have two proofs λ1 and λ2 of A′, (A∨B)′ and B′, (A∨B)′

respectively. We can adapt π′′ again:

(λ1)

A′, (A ∨B)′
(λ0)

A′, B′,Γ
cut:

B′, (A ∨B)′,Γ

(λ2)

B′, (A ∨B)′
cut:

(A ∨B)′,Γ

By Lemma 4.5, we have that |λ1|+ |λ2| ≤ |A′ ∨ (A∨B)′|+ |B′ ∨ (A∨B)′| ≤ 3|π|+1
since (A ∨ B)′ has a cut formula as a descendant and can therefore be bounded by
|π|.

If we replace all these inferences by the ones constructed above, we obtain a valid proof.
Furthermore, by the size bounds from above, we see that each of these inferences have size
at most 5|π| (we replace one inference with two cut inferences and branches of cumulated
size at most 4|π|). Therefore, the new proof π′ has size at most 4|π|2. ■

4.2 Reducing the Quantifier Depth of Cuts

This section aims to give an algorithm, on how to eliminate the outermost quantifiers from
cut formulas of a given proof and prove an upper bound of the logical complexity of the
resulting proof. The main result will be Corollary 4.23. Applying this algorithm repeatedly
yields a proof, of which all the cuts are quantifier-free and therefore permits us to apply
Theorem 3.23. For this section, we will assume all the formulas in our proofs are in PNF
and thus in LKPNF . Moreover, we will assume that the proofs are in variable normal form
and fulfill the auxiliary condition.
First, we need a few definitions:

Definition 4.7. Let A be a formula. An ∃-subformula of A is a subformula that is occurring
only in the scope of ∃-quantifiers. An ∃-component is a minimal ∃-subformula. The ∀-
subformulas and ∀-components are defined accordingly. Let π be a proof in LK. A ∀/∃-
component of a cut-formula in π is a ∀-component of the left cut-formula or an ∃-component
of the right cut-formula.

Example 4.8. Consider the Formula φ = ∀x∀y∃z(A∧∃wB) with A and B being quantifier-
free and x, y, z not occurring in B. Then the ∀-subformulas of φ are ∀y∃z(A ∧ ∃wB) and
∃z(A∧∃wB) and there is no ∃-subformula. The only ∀-component is ∃zA and again, there
is no ∃-component.

27

4 Eliminating general cuts

Definition 4.9. Let B be a formula occurring in π. Then B is of one of the following
kinds:

α) B has a left cut formula A as a descendant and corresponds to a ∀-subformula of A.

β) B has a right cut formula A as a descendant and corresponds to an ∃-subformula of
A.

γ) Neither α) nor β) hold.

Definition 4.10. Let D be an ∃-inference and A[x/s] the auxiliary formula. We say:

(i) D is critical if the outermost connective of A[x/s] is not an ∃. In this case A[x/s] is
called ∃-critical.

(ii) If (i) holds and A[x/s] is of category β) from Definition 4.9, then the ∃-jump-target
of A[x/s] is defined as the cut inference which has a descendant of A[x/s] as a right
cut formula. The ∃-jump-target-cedent of A[x/s] is defined as the upper left cedent of
the jump-target of A[x/s]. This cedent is also referred to as the jump-target-cedent of
the cedent containing A[x/s].

Lemma 4.11. The ∃-jump-target is well-defined.

Proof. Since cut-formulas are eliminated in their respective cut, one formula can have at
most one cut-formula as a descendant. By definition, every formula of type β) has at least
one cut-formula as a descendant and thus exactly one, which proves the claim. ■

The next definition is probably the most crucial one to eliminate like quantifiers from
cut inferences:

Definition 4.12. Let D a cut inference in π. D is called to-be-eliminated if the outermost
connective of its cut formula is a quantifier. A sequence of cedents of π (∆1, . . . ,∆m) is
called an ∃-path if ∆1 is the endcedent of π and for each i < m one of the following holds:

• ∆i is the lower cedent of a to-be-eliminated cut inference and ∆i+1 is the right upper
cedent of the same inference.

• ∆i is the lower cedent of any inference but a to-be-eliminated cut inference and ∆i+1

is an upper cedent of the same inference.

• ∆i is the upper cedent of an ∃-critical inference of type β) and ∆i+1 is the jump-
target-cedent of ∆i.

This ∃-path is said to lead to ∆m.

The intuition behind an ∃-path is that starting from the endcedent, one goes upwards
through the proof, always choosing the right upper cedent at a to-be-eliminated cut infer-
ence and jumping back down to the ∃-jump-target in the next step.

Lemma 4.13. Let φ be an ∃-path in π and ∆i in φ. Then φ contains every cedent below
∆i.

28

4 Eliminating general cuts

Proof. We proceed via induction. Let φ be any ∃-path to ∆m. All the cedents below ∆1

are trivially contained in φ. Now, we note that every cedent has exactly one cedent directly
beneath it and consider two cases for the induction step:

• If ∆i is not the ∃-jump-target of another cedent in φ, then ∆i−1 is by definition of
the ∃-path the child cedent of ∆i. From the induction hypothesis, it follows that all
the cedents below ∆i are in φ.

• If ∆i is the jump-target of ∆i−1, which is the upper cedent of an ∃-critical inference,
we have that all the cedents below ∆i are also below ∆i−1 and therefore in φ by the
induction hypothesis.

■

Lemma 4.14. Let φ = (∆1, . . . ,∆m) be an ∃-path and φ′ = (∆i1 , . . . ,∆ik) the subsequence
consisting of the ∃-critical cedents of φ. Then the subsequence φ′ and knowledge of ∆m

allow to uniquely reconstruct φ.

Proof. We proceed via induction on the number of jump-targets. For the base case assume
that φ contains no jump target. Then φ only goes upwards in the graph and the uniqueness
follows since ∆m is given. For the induction step consider an ∃-path φ and the sequence of
jump-targets (∆i1 , . . . ,∆ik). By the induction hypothesis, we can now uniquely construct
the ∃-path φ′ containing the jump-targets (∆i1 , . . . ,∆ik−1

) and leading to the lower cedent
of the cut inference of ∆ik , which we call ∆′. There is only one option to extend φ′ to
∆ik−1 since this path contains no extra jump-targets. Note that φ′ is just a cut version
of φ. From ∆ik−1 there is again only one possibility to extend the path and that is ∆ik .
Again, since there are no more jump targets, there is only one possibility to extend this
path to ∆m, which is the original path φ. ■

We can also associate a substitution σφ with an ∃-path φ. This substitution will be
defined on all free variables occurring in or below ∆m and all the outermost universally
quantified variables occurring in type α) formulas in ∆m. For that, we need the following
observation: Let B = ∀xi . . . ∀xlA of type α) with l > i > 1 and A not having a ∀-quantifier
as the outermost connective. Then, B has a descendant cut-formula B′ = ∀x1 . . . ∀xlA in
the cedent ∆′. By Lemma 4.13 we have that ∆′ is also in φ and since it is the left cut
formula of a to-be-eliminated cut, φ also contains the cedent ∆′′, of which ∆′ is the jump-
target. By definition, ∆′′ contains the formula A[x1/s1, . . . , xl/sl] which is an ancestor of
the corresponding right cut-formula. This cedent (and thus the si) is unique because it has
to be the upper cedent of an ∃-critical inference.

∀xi . . . ∀xlA,Γ
. . .
... . .
.

∆′ : ∀x1 . . . ∀xlA,Γ1

∆′′ : A[x1/s1, . . . , xl/sl],Γ
′

∃xlA[x1/s1, . . . , xl−1/sl−1],Γ
′

. . .
... . .
.

∃x1 . . . ∃xlA,Γ2

Γ1,Γ2

This leads to the following definition:

29

4 Eliminating general cuts

Definition 4.15. Let φ = (∆1, . . . ,∆m) be an ∃-path and B a type α) formula of ∆m

of the form ∀xi∀xi+1 . . . ∀xlB′(b1, . . . , bi−1, xi, . . . , xl) with at least one outermost univer-
sally quantified variable. We construct the formula A[x1/s1, . . . xl/sl] as above and de-
fine σφ inductively by xkσφ = skσφ′ with i ≤ k ≤ l and φ′ being φ truncated to end at

A[x1/s1, . . . , xk/sk],Γ
′ (cf. graphic above). If b is a free variable occurring in ∆m or below,

we distinguish two cases:

• If there is a ∀-inference
A[x/b],Γ

∀ : ∀xA,Γ
below ∆m, which uses b as an eigenvariable and if ∀xA is a type α) formula, we define
bσφ = xσφ′ with φ′ being φ truncated to end at the lower cedent of the ∀-inference.

• If there is no such inference, we define bσφ = b

Definition 4.16. Let A be a formula occuring in a cedent ∆ of π and φ be an ∃-path
leading to ∆. We define ∗φ(A):

• If A is of kind α) and has the form ∀x1∀x2 . . . ∀xlB with l > 0 and B having a
different outermost connective than ∀, then we define ∗φ(A) = Bσφ.

• If A is of kind β) and has an ∃ as the outermost connective, then we define ∗φ(A) as
the empty cedent.

• Otherwise, we define ∗φ(A) as Aσφ.

If A appears below ∆, we define ∗φ(A) as ∗φ′(A) with φ′ being φ truncated to end at the
cedent ∆′ containing A. The ∗φ-translation of ∆, ∗φ(∆) is the cedent containing exactly
the formulas ∗φ(A) for A occurring in or below ∆ in π.

Example 4.17. Consider the following proof

(λ1)
δ6:

A[x/b, y/c],Γ1
δ5, ∀: ∀yA[x/b],Γ1
δ4,∀: ∀x∀yA,Γ1

(λ2)
δ3:

A[x/s1, y/s2],Γ2
δ2,∃:

∃yA[x/s1],Γ2
δ1,∃:

∃x∃yA,Γ2δ0, cut: Γ1,Γ2

with λ1, λ2 being valid proofs in LKPNF and the outermost connective of A not being an
∃-connective. All the inferences are labeled with δi. The corresponding lower cedent of
the inference δi is called ∆i. Then, we have the following structure: The inference δ0 is
to-be-eliminated, the inference δ2 is ∃-critical and ∆4 is the ∃-jump-target of δ2. Now, we
can construct seven ∃-paths from the graphic: φn = (∆0, · · · ,∆n) for 0 ≤ n ≤ 6 (note that
every φn leads to ∆n) and consider the induced substitutions σφn and the mapping ∗φn:

(i) For n = 0, we have σφ0 = id and ∗φ0(∆0) = ∆0.

30

4 Eliminating general cuts

(ii) For n = 1, we have that σφ1 is still the identity. Note that the descendant relation
is reflexive and therefore ∃x∃yA has a right cut formula as a descendant (itself).
Therefore, ∗φ1(∆1) = ∅,Γ2σφ1 ,Γ1σφ0 = Γ1,Γ2

(iii) For n = 2, we have the same result as for n = 1 and σφ2 = id and ∗φ2(∆2) = Γ1,Γ2.

(iv) For n = 3, it still holds that σφ3 = id. However, since the outermost connective

of A[x/s1, y/s2] is not an ∃-connective, we have that ∗φ3(∆3) = ∆3σφ3 ,Γ1σφ0 =

∆3,Γ1 = A[x/s1, y/s2],Γ1,Γ2.

(v) For n = 4, it follows that xσφ4 = s1σφ3 = s1 and yσφ4 = s2σφ3 = s2. Moreover, we
have that ∗φ4(∀x∀yA) = Aσφ4 = A[x/s1, y/s2]. Since, we imposed the eigenvariable
condition, it follows that x, y do not occur in Γ1 and thus ∗φ4(Γ1) = Γ1σφ4 = Γ1.
Therefore, ∗φ4(∆4) = A[x/s1, y/s2],Γ1, ∗φ0(Γ2) = A[x/s1, y/s2],Γ1,Γ2.

(vi) For n = 5, we have that yσφ5 = s2 and that bσ5 = xσφ4 = s1. And again, ∗φ5(∆5) =
A[x/s1, y/s2],Γ1,Γ2

(vii) Lastly, for n = 6, we obtain the same result for different reasons and have that
bσφ6 = s1, cσφ6 = s2 and ∗φ6(∆6) = A[x/s1, y/s2],Γ1,Γ2.

We consider the set

{∗φn(∆n) | 0 ≤ n ≤ 5} = {(Γ1,Γ2); (A[x/s1, y/s2],Γ1,Γ2); (A[x/s1, y/s2],Γ1,Γ2)}

and observe that, we could rewrite the proof from above in the following way

(λ′1)

A[x/s1, y/s2],Γ1,Γ2

(λ′2)

A[x/s1, y/s2],Γ1,Γ2
cut:

Γ1,Γ2

if we had the subproofs λ′1, λ
′
2. Note that the proof λ′2 can be constructed naturally from

λ2. Furthermore, A[x/s1, y/s2],Γ1,Γ2 is a valid formula since A[x/b, y/c],Γ1 is and there-
fore, there is a proof of A[x/s1, y/s2],Γ1,Γ2. Moreover, we observe that we eliminated the
outermost layer of like quantifiers in the cut formulas (if we only consider the cut depicted).

We will generalize the construction from the example above inductively, in order to
eliminate the outermost layer of like quantifiers in all the cut formulas at once. Moreover,
we observed that ∗φ0(∆0) = ∆0. This generalizes to every proof tree:

Lemma 4.18. For the endcedent ∆ of π it holds that ∗φ(∆) = ∆ for the (only) ∃-path φ
leading to ∆

Proof. Obviously, there is only one ∃-path φ = (∆) leading to ∆. All of the formulas of ∆
are of type γ). Therefore, σφ = id. Moreover, there are no formulas below ∆. Therefore,
∗φ(∆) = ∆σφ = ∆. ■

We can now formulate (and prove) the most important theorem of this section:

31

4 Eliminating general cuts

Theorem 4.19. Let π be a tree-like proof of Γ in LKPNF . Then there is a tree-like proof
π′ of Γ in LKPNF with the following properties:

(i) All cut-formulas of π′ are ∀/∃-components of cut-formulas in π.

(ii) |π′| ≤ 2|π| and h(π′) ≤ 2h(π
′)

Proof. For the proof, we will construct a new proof π′ with the ∗φ translations from Def-
inition 4.16 that has all the properties we wish for. First, consider the set of possible
cedents

S = {∗φ(∆) | ∆ is a cedent in π, φ is an ∃-path in π leading to ∆}.

Note that by Lemma 4.18, we have that Γ is in S. We now proceed via induction and show
that every sub-proof of π can be reconstructed in the sense that if π∗ is a subproof of π of Γ∗,
we can construct a proof of ∗φ(Γ∗) for any ∃-path φ in π. After showing that, it immediately
follows that we can construct such a proof for Γ = ∗φ(Γ). We now consider the cedent ∆
and construct a DAG-like proof, which we can later transform into a tree-like proof. For
the base case, assume that ∆ is an axiom. We have that ∆ has the form A,A with A being
atomic. From the definition of ∗φ it follows that ∗φ(∆) = Aσφ, Aσφ,Λ = AσφAσφ,Λ with
Λ being the images of the formulas occurring below ∆. We can therefore derive ∗φ(∆) in
the following way:

Aσφ, Aσφ
w:

Aσφ, Aσφ,Λ

with Aσφ, Aσφ still being an axiom since Aσφ is still atomic. The length of the proof
is the same because we do not count weakening. For the induction step, we need a case
distinction:

(i) Let ∆ be derived from ∆′ by an ∨-inference
(λ)

A,B,Γ′
∨:

A ∨B,Γ′

and assume that we already have a proof λ′′ of ∗φ(A,B,Γ′). By construction, we
have that

∗φ(∆′) = ∗φ(A), ∗φ(B), ∗φ(Γ′),Λ and ∗φ (∆) = ∗φ(A ∨B), ∗φ(Γ′),Λ for some Λ.

Since the outermost connective of A∨B is an ∨-connective, we have that ∗φ(A∨B) =
(A ∨ B)σφ = Aσφ ∨ Bσφ. Moreover, we have that A, B do not correspond to ∀−
or ∃-subformulas and therefore, they are of type γ), which means that ∗φ(A) = Aσφ
and ∗φ(B) = Bσφ. Thus, by the induction hypothesis, we have the following proof

(λ′)

Aσφ, Bσφ, ∗φ(Γ),Λ∨ :
Aσφ ∨Bσφ, ∗φ(Γ),Λ

32

4 Eliminating general cuts

(ii) If ∆ is derived from ∆′ with an ∧-inference, the same thought as in the case above
yields the desired result.

(iii) If ∆ is derived from ∆′ with weakening, the construction is self-evident.

(iv) Let ∆ be derived with a cut inference:

A,Γ1 A,Γ2δ, cut:
Γ1,Γ2

Now, we distinguish two cases:

• Let δ is not a to-be-eliminated cut and let φ1, φ2 be the two ∃-paths that extend
φ to the left and right upper cedent of the cut respectively (i.e. A,Γ1 and
A,Γ2). By definition of ∗φ1 and ∗φ2 , we have that ∗φ1(A) = Aσφ1 and ∗φ2(A) =
Aσφ2 = Aσφ2 . Also since A and A contain the same free variables and the
variables below are only one cut inference away, we have that Aσφ1 = Aσφ2 and
thus, Aσφ1 = Aσφ2 . Therefore, we can derive ∗φ(∆) with a cut inference as well:

∗φ1(A), ∗φ1(Γ1),Λ ∗φ1(A), ∗φ2(Γ2),Λ
cut: ∗φ(Γ1), ∗φ(Γ1),Λ

• Let δ be a to-be-eliminated cut and let φ2 be the ∃-path that extends φ to
the upper right cut formula. Then the outermost connective of A is an ∃-
quantifier and it is clearly of type β since it is its own descendant. Therefore,
by definition of ∗φ2 , we have that ∗φ2(A) is the empty cedent. Thus, we have
∗φ2(A,Γ2) = ∗φ(Γ1,Γ2) and we can omit the inference.

(v) Let ∆ be derived with a ∀-inference:
A[x/b],Γ

∀: ∀x : A,Γ

We define φ′ to be the ∃-path that extends φ by one step to the cedent A[x/b],Γ.
Now, we distinguish two cases:

• Let A[x/b] (and therefore ∀x : A) not be in category α). Then by definition
bσφ′ = b and ∗φ′(A[x/b]) = A[x/b]σφ′ = C[x/b]. Moreover, since ∀x : A is not
of type α), we have that x is not in the scope of σφ and therefore ∗φ(∀x : A) =
(∀x : A)σφ = (∀x : A)σφ′ = ∀x : C. Thus, we can derive ∗φ(∆) by a ∀-inference
(note that ∗φ(Γ) = ∗φ′(Γ):

C[x/b], ∗φ(Γ),Λ
∀: ∀x : C, ∗φ(Γ),Λ

• Let A[x/b] (and therefore ∀x : A) be in category α and let C be the ∀-component
of A. Then by definition of ∗φ it holds that ∗φ′(A[x/b]) = ∗φ(∀x : A) = Cσφ.
Therefore, we can omit this inference in the transformed proof.

(vi) For the last case, let ∆ be derived by an ∃-inference:
A[x/s],Γ

∃: ∃x : A,Γ

33

4 Eliminating general cuts

We define φ′ as in the previous case to be the ∃-path that extends φ to the cedent
A[x/s],Γ. Now, we again have to distinguish two cases:

• LetA[x/s] (and therefore ∃x : A) not be of kind β). Then have that ∗φ′(A[x/s]) =
A[x/s]σφ′ = C[x/t]. Moreover, it follows that ∗φ(∃x : A) = (∃x : A)σφ = ∃x : C.
Therefore, we can derive ∗φ(∆) with the following inference (note that ∗φ′(Γ) =
∗φ(Γ):

C[x/t], ∗φ(Γ)
∃: ∃x : C, ∗φ(Γ)

• Let A[x/s] (and therefore ∃x : A) be of type β). If the outermost connective of
A[x/s] is an ∃-quantifier, then ∗φ′(A[x/s]) = ∗φ(∃x : A) = ∅. The inference can
therefore be omitted since the the upper and lower cedent are identical. There-
fore, without loss of generality, we assume that the outermost connective of
A[x/s] is not an ∃-quantifier. Then, we have that ∗φ′(A[x/s],Γ) = A[x/s]σφ′ ,Λ
and ∗φ(∃x : A,Γ) = Λ. Now, consider the ∃-jump-target ∀x1 . . . ∀xn : A,Γ′ of
A[x/s] = A[x1/s1, . . . , xn/sn] and the ∃-path φ′′ that extends φ′ to this cedent.
By definition, it holds that ∗φ′′(∀x1 . . . ∀xn : A) = A[x1/s1, . . . , xn/sn]σφ′′ =
A[x1/s1, . . . , xn/sn]σφ′ = ∗φ′(A[x1/s1, . . . , xn/sn]). Therefore, we have that

∗φ′′(∀x1, . . . ,∀xn : A) = ∗φ′(A[x1/s1, . . . , xn/sn]). Moreover, since ∗φ(Γ) also
contains the ∗φ translations of all the formulas occurring below Γ and Γ′ ap-
pears in the lower cedent of the cut, which is also a lower cedent of Γ, we have
that Λ′ = ∗φ′(Γ′) ⊆ ∗φ(Γ) = Λ. Therefore, we can infer Λ = ∗φ(∆) with a cut:

∗φ′′(∀x1, . . . ,∀xn : A),Λ′ ∗φ′(A[x1/s1, . . . , xn/sn]),Λ
cut:

Λ′,Λ

with Λ′,Λ = Λ since Λ′ ⊆ Λ. The crucial detail here is that A[x1/s1, . . . , xn/sn]
is an ∃-component of ∃x1, . . . ,∃xn : A. Therefore, the cuts in the transformed
proof have lower complexity than the ones in our original proof.

For the size bounds, we remark the following: In the construction of the proof π′ from π,
for every inference δ of π and every ∃-path to an axiom, we added at most one inference to
π′, with all inferences belonging to the same ∃-path being on the same branch. Therefore,
h(π′) ≤ |π|. We can now canonically transform π′ into a tree-like proof π′′. Since in proof-
trees (in our system) it holds that for every node v the degree d(v) is ≤ 2, we have that
|π′′| ≤ 2h(π

′) − 1 ≤ 2|π|. Moreover, we have that h(π′′) = h(π′) ≤ |π|. Again, since π is a
tree with degree ≤ 2, it follows that |π| ≤ 2h(π) − 1 and therefore h(π′′) ≤ 2h(π). ■

We can now apply this theorem iteratively the following corollary:

Corollary 4.20. Let π be a proof of the cedent Γ in LKPNF with aqd(π) > 0. Then there

is a proof π′ of Γ such that all the cut formulas of π′ are quantifier-free and |π′| ≤ 2
|π|
aqd(π)

and h(π′) ≤ 2
h(π)
aqd(π).

For the next few corollaries, we need a Lemma:

Lemma 4.21. Let n, k ∈ N with n, k ≥ 1. Then 5
2 · 2kn ≤ 23kn

34

4 Eliminating general cuts

Proof. By induction: For n = 1, we have that 5
2 · 2k = 2log(5/2)+k ≤ 23k since k ≥ 1 and

log(5) ≤ 2. For the induction step, we have that 5
2 · 2kn+1 = 2log(5/2)+2kn ≤ 22+2kn ≤ 22·2

k
n ≤

22
3k
n = 23kn+1. ■

We can now combine this corollary with Theorem 3.23:

Corollary 4.22. Let π be a proof of Γ in LKPNF . Then there is a cut-free proof π′ of Γ

with |π′| ≤ 2
3|π|
aqd(π)+1.

Proof. For aqd(π) = 0, the claim follows directly from Theorem 3.23. For aqd(π) > 0,
we can use Theorem 4.19 and transform π into a proof π′′ such that aqd(π′′) = 0 and

|π′′| ≤ 2
|π|
aqd(π). Now, by Theorem 3.23 we receive a proof π′ such that |π′| ≤ 2

5
2
|π′′|. By

Lemma 4.21 we have that 5
2 |π

′′| = 5
2 · 2|π|aqd(π) ≤ 2

3|π|
aqd(π) and therefore |π′| ≤ 2

3|π|
aqd(π)+1. ■

The main result takes into account that we can transform proofs from LK to proofs of
LKPNF :

Corollary 4.23. Let π by any proof of Γ in LK. Then there is a cut-free proof π′ of Γ in

LK with |π′| ≤ 2
15|π|2
aqd(π)+1

Proof. By Lemma 4.6, we obtain a proof π′′ of Γ in PNF with |π′′| ≤ 5|π|2 and by Corollary

4.22, we now get a proof π′ with |π′| ≤ 2
3|π′′|
aqd(π′)+1. In Lemma 4.2, we have established that

Σi membership is invariant under PNF transformation and therefore aqd(π′) = aqd(π).

Thus |π′| ≤ 2
15|π|2
aqd(π)+1. ■

We can also obtain an upper bound for the size of expansion trees:

Corollary 4.24. Let π be a proof in LK of Γ. Then there is an expansion tree E with

⊢E Γ and |E| ≤ 2
7|π|2
aqd(π).

Proof. By Lemma 4.6, we obtain a proof π′ of Γ in LKPNF with |π′| ≤ 5|π|2. By Corollary

4.20, we have a proof π′′ with only quantifier-free cuts and |π′′| ≤ 2
|π′|
aqd(π′) = 2

5|π|2
aqd(π). Lastly

by Theorem 3.11, we obtain an expansion tree proof E of Γ with |E| ≤ 5
2 |π

′′| = 5
22

5|π|2
aqd(π) ≤

2
5|π|2+2
aqd(π) ≤ 2

7|π|2
aqd(π). ■

35

5 Lower Bounds

Having established upper bounds for the complexity of cut elimination, the natural next
step is to inspect whether those upper bounds are tight or if there is space for improvement.
Usually lower bounds are more difficult to prove since we cannot consider a single algorithm,
but have to show that there is no better algorithm (at least for some instance). Therefore,
we will heavily rely on results that have already been proven in the past. The most
important sources for this are [6] and [3].
First we specifiy a language and an axiom-system

Definition 5.1. We define a language consisting of the function symbols +, 2(·), the con-
stants 0, 1 and the predicates I,=. For the axioms1, we start with the =, which is interpreted
as the regular equality:

∀x : x = x (5.1)

∀x∀y : x = y → y = x (5.2)

∀x∀y∀z : x = y ∧ y = z → x = z (5.3)

∀x∀y : x = y → 2x = 2y (5.4)

∀x∀y∀x′∀y′ : x = y ∧ x′ = y′ → x+ x′ = y + y′ (5.5)

∀x∀y : x = y → (I(x) → I(y)) (5.6)

For the function symbols we add the following axioms:

∀x :x+ 0 = x (5.7)

∀x∀y∀z :x+ (y + z) = (x+ y) + z (5.8)

∀x∀y :x+ y = y + x (5.9)

20 = 1 (5.10)

∀x :2x+1 = 2x + 2x (5.11)

Finally, for the predicate symbol I, we add the following axioms:

I(0) (5.12)

∀x :I(x) → I(x+ 1) (5.13)

A now describes the set of our axioms and A is the set {A | A ∈ A}.

We will write terms like 2i, but this is not a new function-symbol in our language, but will
only be a shorthand for the numeral 2i = 20i . Moreover, we will write sequents like Γ ⊢ ∆

1We use symbols like → for the sake of readability but have in mind that these are just shorthands and
have to be translated to our language.

36

5 Lower Bounds

as a better readable shorthand for cedents of the form {γ | γ ∈ Γ},∆. The inference-rules
are adapted naturally. Now, we define some formulas with the free variable x:

φ0(x) = I(x) (5.14)

φi+1(x) = ∀y(φi(y) → φi(2
x + y)) (5.15)

Note that φ0(m) is valid for any numeral m. Moreover, we define the following parameter-
ized sentence:

ξn =
∧
A∈A

A→ φ0(2n) (5.16)

We start with the first property of φ0 as in [6]:

Lemma 5.2. For any numeral m and any cut-free proof π of A ⊢ I(m), it holds that
|π| ≥ m.

Proof. Take any cut-free proof the sequent A ⊢ I(m). Since every formula is in PNF, there
is a midsequent S : Γ ⊢ ∆ such that all the formulas Γ and ∆ are quantifier-free and that
all the inferences in π underneath S are quantifier-introductions and the inferences above
S are propositional or weakening. Seeing that we only have I(m) on the right side of the
endsequent, it follows that ∆ = I(m). Moreover, Γ consists of instances of axioms of A.
Our claim now is that there are at least m instances of the axiom ∀x(I(x) → I(x+1)). To
prove this, assume there are fewer instances of this axiom. Since we associate each numeral
n with the number n, there has to be a numeral n such that n < m and I(n) → I(n+1) is
not in Γ. Then we construct the ModelM = (N,Φ) with the usual interpretation 0, 1,+, 2(·)

and we define IM = {0, . . . , n}. Now, in this model, all the axioms that do not contain I
(and therefore their instances) are true. Moreover, every instance of ∀x(I(x) → I(x + 1))
except for I(n) → I(n + 1) is true. Therefore, all formulas of Γ are true. However, I(m)
is false since m > n. Thus, the sequent Γ ⊢ ∆ is not valid, which is a contradiction to the
assumption that is appears in our (valid) proof. ■

Corollary 5.3. There is no n ∈ N and cut-free proof π of ξn with |π| < 2n.

Similarly to the Lemma above, we obtain the following result for expansion trees:

Lemma 5.4. Let E be an expansion tree such that ⊢E ξn. Then |E| ≥ 2n.

Proof. Let E be an expansion tree with ⊢E ξn and assume that |E| < 2n. By definition,
it holds that Dp(E) is tautologous and that E ≻ ξn and thus Sh(E) ⊑ ξn. In particular,
that means that of Sh(E) has the form

∨
A∈ABA ∨B with BA ⊑ A and B ⊑ I(2n). Since

Dp(E) =
∨

A∈ADp(BA) ∨Dp(B) is tautologous and negated instances of the axioms of A
alone are not tautologous, it follows that B = I(2n). By assumption, we have that |E| < 2n
and therefore, there cannot be 2n instances of the axiom ∀x(I(x) → I(x + 1)) and there
is some m < 2n such that I(m) → I(m + 1) does not appear in the respective Dp(BA).
Thus, we can construct the model M = (N,Φ) with the usual interpretation 0, 1,+, 2(·)

and we define IM = {0, . . . ,m}. Now, in this model, all the axioms that do not contain I
(and therefore their instances) are true. Moreover, every instance of ∀x(I(x) → I(x + 1))

37

5 Lower Bounds

except for I(m) → I(m + 1) is true. Therefore, all the formulas BA are true and BA are
false. Moreover, B = I(2n) is false in this model and thus, the whole formula Dp(E) is
false, which contradicts the assumption of it being tautologous. ■

The next goal is to give a short proof of ξn with cuts. For this, we need the following
Lemma:

Lemma 5.5. For every i ∈ N, it holds that φi(x) is in Πi

Proof. We proceed via induction. Since I(x) is atomic, it follows that φ0(x) is in Π0. For
the induction step, we observe that φi(a) ∨ φi(2

x + a) is in Πi+1 and thus φi+1(x) is in
Πi+1. ■

Lemma 5.6. For any i ∈ N and any term t it holds that |φi(t)| ≤ 2i+1.

Proof. For i = 0, we have that |φ0(t)| = |I(t)| = 1 = 20. For the induction step, we have
|φi+1(t) = |∀y(φi(y) → φi+1(2

t+y))| = 1+ |φi(y)|+1+ |φi(y+2t)| ≤ 2+2 ·2i = 2(2i+1) ≤
2i+2. ■

Lemma 5.7. For any formula ψ there is a cut-free proof of ψ,ψ with length O(|ψ|). If
ψ = χ1 ∨ χ2, then there is also a cut-free proof of ψ, χ1, χ2 with length O(|ψ|).

Proof. For literals L, we obtain trivial proofs with length 1 = 2|L|. For the induction step,
we need a case distinction. Consider the formula ψ with |ψ| = n+ 1:

i If ψ = ∀xχ, then we have a proof π of χ, χ with |π| ≤ 2 ·n. With two more inferences,
we obtain ∃xχ, ∀xχ, which is exactly the cedent ψ,ψ and therefore, we have a proof
of ψ,ψ with length in 2 · (n+ 1).

ii If the outermost connective is an ∃-quantifier, the case is identical to the ∀-quantifier.

iii If ψ = χ1 ∧ χ2, we have two proofs π1 and π2 of χ1, χ1 and χ2, χ2 with |πi| ≤ 2|χi|.
Now, we can write the following proof:

(π1)

χ1, χ1

(π2)

χ2, χ2∧:
χ1, χ2, χ1 ∧ χ2∨:
χ1 ∨ χ2, χ1 ∧ χ2

However, this is exactly the proof π of ψ,ψ with |π| ≤ 2|χ1| + 2|χ2| + 2 = 2(|χ1| +
|χ2|+ 1) = 2|ψ|.

iv The case that ψ = χ1 ∨ χ2 is analogous to the case of ∧.

Therefore, we have a proof of any ψ with length ≤ 2|ψ| = O(|ψ|). If ψ = χ1∨χ2, we obtain
the proof from the fourth induction step and omitting the last inference. ■

Corollary 5.8. For any i ∈ N and any term t there is a cut-free proof of φi(t), φi(t) with
length O(2i).

In our proof we will need the sequent A ⊢ φi(2
b+1 + a), φi(2b + 2b + a). This sequent is

not only provable in our theory, but we can also derive it with a relatively short proof:

38

5 Lower Bounds

Lemma 5.9. For any i ∈ N there is a proof πi of A ⊢ φi(2
b+20 + a), φi(2b + 2b + a) with

|πi| = O(2i). Furthermore, it holds that aqd(πi) = 0.

Proof. First, we fix some i ∈ N. Now we take any k ≤ i and define the terms tk and t′k
inductively:

t0 = 2b+20 + a (5.17)

t′0 = 2b + 2b + a (5.18)

tk+1 = 2tk + ak+1 (5.19)

t′k+1 = 2t
′
k + ak+1 (5.20)

Note that we can give proofs of A ⊢ tk = t′k with size linear in k. This is done with
induction. Since they are instances of axioms, we have proofs in constant size of the
following sequents:

A ⊢ 20 = 1 (5.21)

A ⊢ b = b (5.22)

A ⊢ 20 = 1 ∧ b = b, b+ 20 = b+ 1 (5.23)

A ⊢ b+ 20 = b+ 1, 2b+1 = 2b+20 (5.24)

A ⊢ 2b + 2b = 2b+1 (5.25)

A ⊢ 2b + 2b = 2b+1 ∧ 2b+1 = 2b+20 , 2b + 2b = 2b+20 (5.26)

A ⊢ a = a (5.27)

A ⊢ 2b+20 = 2b + 2b ∧ a = a, 2b+20 + a = 2b + 2b + a (5.28)

By some cuts and ∧-inferences, we obtain the proof of A ⊢ t0 = t′0. Now the induction
step: Since they are again instances of axioms, we have proofs of the sequents

A ⊢ tk = t′k, 2
tk = 2t

′
k (5.29)

A ⊢ ak+1 = ak+1 (5.30)

A ⊢ 2tk = 2t
′
k ∧ ak+1 = ak+1, 2

tk + at+1 = 2t
′
k + at+1 (5.31)

By the induction hypothesis, one ∧ inference and two cuts, we obtain the desired proofs.
Since we only add a constant number of inferences, the length of the proof is linear in k.
Moreover, since we can prove tk = t′k and we have a constant-size proof of the following
instance of an axiom

A ⊢ tk = t′k, I(t
′
k), I(tk), (5.32)

we can cut once again and obtain a proof of

A ⊢ I(t′k), I(tk) (5.33)

These proofs are still linear in k. Our induction hypothesis now is that we have a proof

39

5 Lower Bounds

πn,k of

A ⊢ φn(t′k), φn(tk) for some n < i and all k ≤ i− n (5.34)

with |πn,k| = O(2n+ k), which we have proven above for n = 0. For the induction step, we
consider the following proof for any k ≤ i− n− 1:

(λ)

A ⊢ φn(ak+1), φn(ak+1)

(πn,k+1)

A ⊢ φn(2
t′k + ak+1), φn(2

tk + ak+1)∧:
A ⊢ φn(ak+1) ∧ φn(2

t′k + ak+1), φn(ak+1), φn(2
tk + ak+1)∨:

A ⊢ φn(ak+1) ∧ φn(2
t′k + ak+1), φn(ak+1) ∨ φn(2

tk + ak+1)∃:
A ⊢ φn+1(t′k), φn(2tk) ∨ φn(2

tk + ak+1)
∀:

A ⊢ φn+1(t′k), φn+1(tk)

Note that λ is the proof from Corollary 5.8 with size O(2n). Since we add a constant
number of inferences underneath λ and πn,k, we have that |πn+1,k| = O(2n + 2n + k) =
O(2n + k) ≤ O(2i) since n, k ≤ i. If we set n = i and k = 0, we have provided a proof of

A ⊢ φi(2
b+20 + a), φi(2b + 2b + a).

Moreover, all the cut formulas were quantifier-free and therefore, the aqd of the proof in
question is 0. This concludes the proof. ■

Similarly, we obtain the following result:

Lemma 5.10. For any i ∈ N and any term t there is a proof πi,t of the sequent

A ⊢ φi(t+ 0), φi(t)

with |πi,t| = O(2i) and aqd(πi,t) = 0.

Proof. We define the following sequence of terms tk for all k ≤ i:

t0 = t (5.35)

t′0 = t+ 0 (5.36)

tk+1 = 2tk + ak+1 (5.37)

t′k+1 = 2t
′
k + ak+1 (5.38)

Since they are instances of axioms, we obtain proofs of the following sequents:

A ⊢ t0 = t′0 (5.39)

A ⊢ ak = ak for any k (5.40)

A ⊢ tk = t′k ∧ ak = ak, 2
tk + ak = 2t

′
k + ak for any k (5.41)

By an ∧-inference and some cuts, we obtain a proof of A ⊢ tk = t′k for any k. Again, we

have the axiom-instance A ⊢ ti = t′i, I(t
′
i), I(ti) and by cutting, we obtain a proof of A ⊢

40

5 Lower Bounds

I(t′i), I(ti). The induction hypothesis now is that we have a proof of A ⊢ φk(t
′
i−k), φk(ti−k).

For the induction step, we consider the following:

(λ)

A ⊢ φk(ai−(k+1))φk(ai−(k+1))

(λ′)

A ⊢ φk(2
t′
i−(k+1) + ai−(k+1)), φk(2

ti−(k+1) + ai−(k+1))∧:
A ⊢ φk(ai−(k+1)) ∧ φk(2

t′
i−(k+1) + ai−(k+1)), φk(2

ti−(k+1) + ai−(k+1)), φk(ai−(k+1))
∃:

A ⊢ φk+1(t
′
i−(k+1)), φk(2

ti−(k+1) + ai−(k+1)), φk(ai−(k+1))
∨:

A ⊢ φk+1(t
′
i−(k+1)), φk(2

ti−(k+1) + ai−(k+1)) ∨ φk(ai−(k+1))
∀:

A ⊢ φk+1(t
′
i−(k+1)), φk+1(ti−(k+1))

For k = i this yields a proof of A ⊢ φi(t′0, φi(t0). The bounds of size of the proof follow
from the same reasons as in the Lemmata above. ■

Lemma 5.11. For any i ∈ N, there is proof πi of the sequent

A ⊢ φi(0)

with |πi| = O(2i) and aqd(πi) = 0.

Proof. First, note that φ0(0) = I(0) is an axiom. Moreover, we can construct a proof of
φ1(0) = ∀y(I(y) → I(20 + y). However, we have to do this in several steps. Since they are
only instances of axioms and as a consequence of Lemma 5.7, there are cut-free proofs of
the following sequents:

A ⊢ 20 = 1 (5.42)

A ⊢ b = b (5.43)

A ⊢ b = b ∧ 20 = 1, 20 + b = 1 + b (5.44)

A ⊢ 1 + b = 20 + b, b+ 1 = 20 + b (5.45)

A ⊢ b+ 1 = 20, I(b+ 1), I(20 + b) (5.46)

By using one ∧-inference and several atomic cuts, we obtain a proof λ ofA ⊢ I(b+ 1), I(20+
b). By Lemma 5.7 there is a proof λ′ of I(b) → I(b+ 1), I(b), I(b+ 1). This yields:

(λ′)

I(b) → I(b+ 1), I(b), I(b+ 1)
∃:

∃xI(x) → I(x+ 1), I(b), I(b+ 1)
w:

A ⊢ I(b), I(b+ 1)

(λ)

A ⊢ I(b+ 1), I(20 + b)
cut:

A ⊢ I(b), I(20 + b)
∨:

A ⊢ I(b) → I(20 + b)
∀:

A ⊢ ∀y(I(y) → I(20 + y))

41

5 Lower Bounds

Therefore, we have a proof of φ1(0) with atomic cuts only.
Now, assume that i ≥ 2. Then, by Lemma 5.7 and Lemma 5.9 we have the following

proofs with size O(2i−2) = O(2i) and aqd ≤ 0:

• λ0 of φi−2(2b + a), φi−2(2
b + a)

• λ1 of A ⊢ φi−2(2b+20 + a), φi−2(2
b+20 + a)

• λ2 of φi−2(a), φi−2(a)

We can now construct the following proof:

(λ2)

φi−2(a), φi−2(a)

(λ0)

φi−2(2
b + a), φi−2(2b + a)

∧:
φi−2(a) ∧ φi−1(2b + a), φi−2(a), φi−2(2

b + a)
∃:

φi−1(b), φi−2(a), φi−2(2
b + a)

(λ1)

A, φi−2(2
b+20 + a), φi−2(2b + 2b + a)

∧:
A, φi−1(b), φi−2(a), φi−2(2

b + a) ∧ φi−2(2b + 2b + a), φi−2(2
b+20 + a)

∃:
A, φi−1(b), φi−2(a), φi−2(2

b+20 + a)
∨:

A, φi−1(b), φi−2(a) ∨ φi−2(2
b+20 + a)

∀:
A, φi−1(b), φi−1(b+ 20)

∨ :
A, φi−1(b) ∨ φi−1(b+ 20)

∀:
A, φi(0)

Note that we only add a constant number of inferences underneath λ0, λ1, λ2 (independent
of i) and obtain therefore a proof with size O(2i + 2i + 2i) = O(2i). Since there is no cut
in the new inferences and the sub-proofs λi all are cut free or have aqd 0, the new proof
also has aqd 0. ■

Lemma 5.12. For every n ≥ 1 there is a proof π∗ of the sequent A ⊢ φn−1(0), φn−1(21)
with |π∗| = O(2n) and aqd(π∗) = n− 1.

Proof. For n = 1 we accept the fact that there is some proof by the completeness theorem.
Without loss of generality, we therefore assume that n ≥ 2 and recycle the strategy from
Lemma 5.11: By Lemma 5.7 and Lemma 5.9 we have the following proofs with size O(2i)
and aqd ≤ 0:

• λ0 of φn−2(2b + a), φn−2(2
b + a)

• λ1 of A ⊢ φn−2(2b+20 + a), φn−2(2
b+20 + a)

• λ2 of φn−2(a), φn−2(a)

This leads to the following proof:

42

5 Lower Bounds

(λ2)

φn−2(a), φn−2(a)

(λ0)

φn−2(2
b + a), φn−2(2b + a)

∧:
φn−2(a) ∧ φn−1(2b + a), φn−2(a), φn−2(2

b + a)
∃:

φn−1(b), φn−2(a), φn−2(2
b + a)

(λ1)

A, φn−2(2
b+20 + a), φn−2(2b + 2b + a)

∧:
A, φn−1(b), φn−2(a), φn−2(2

b + a) ∧ φn−2(2b + 2b + a), φn−2(2
b+20 + a)

∃:
A, φn−1(b), φn−2(a), φn−2(2

b+20 + a)
∨:

A, φn−1(b), φn−2(a) ∨ φn−2(2
b+20 + a)

∀:
A, φn−1(b), φn−1(b+ 20)

Note that by Definition 2.1 20 is exactly the term for 21. Moreover, this proof holds
even if we replace b with a specific value. If we set b to 0, we have a proof of A ⊢
φn−1(0), φn−1(0+21). By Lemma 5.10, we also have a proof of A ⊢ φn−1(0 + 20), φn−1(2

0).
Cutting yields the proof of A ⊢ φn−1(0), φn−1(21). ■

Lemma 5.13. For every i ∈ N and n ≥ i there is a proof π′i of the sequent

A ⊢ φi+1(2n−(i+1)), φi(0) ⊢ φi(2n−i)

with |π′i| = O(2i) and aqd(π′i) = 0.

Proof. By Corollary 5.8 and by Lemma 5.10 we have the following proofs with size O(2i)
with aqd ≤ 0:

• λ of φi(0), φi(0)

• λ′ of A ⊢ φi(22n−i+1 + 0), φi(2n−i)

We construct the following proof:

(λ)

φi(0), φi(0)

(λ′)

φi(22n−i+1 + 0), φi(2n−i)∧:
φi(0) ∧ φi(22n−i+1), φi(0), φi(2n−i)∃:
φi+1(2n−(i+1)), φi(0), φi(2n−i)

■

These lemmata together now lead to the following theorem:

Theorem 5.14. For every n ∈ N there is a proof π of φ0(2n) with |π| = O(22n) and
aqd(π) = n− 1.

Proof. We proceed via induction and let i run from n− 1 to 0. We will construct proofs of
φi(2n−i) with length O((n− i)2n). By setting i to 0, we then have a proof of φ0(2n) with
length O(n · 2n) ≤ O(2n · 2n) = O(22n). From the Lemmata 5.11,5.12 and 5.13 we obtain
the following proofs in length O(2i) and aqd ≤ 0:

• πi of A ⊢ φi(0)

43

5 Lower Bounds

• π′i of φi+1(2n−(i+1)), φi(0) ⊢ φi(2n−i)

• π∗ of A ⊢ φn−1(0), φn−1(21)

For the base case, we consider the following proof:

(πn−1)

A ⊢ φn−1(0)

(π∗)

A ⊢ φn−1(0), φn−1(21)
cut: A ⊢ φn−1(21)

The size restriction clearly holds. We call the proof from the induction hypothesis λ and
consider the following proof for the induction step:

(πi)

A ⊢ φi(0)

(λ)

A ⊢ φi+1(2n−(i+1))

(π′i)

φi+1(2n−(i+1)), φi(0) ⊢ φi(2n−i)
cut: A, φi(0) ⊢ φi(2n−i)

cut: A ⊢ φi(2n−i)

By the induction hypothesis, we have that |λ| = O((n− (i+ 1))2n) and therefore, the new
proof has size in O((n−(i+1))2n+2n+2n) = O((n− i)2n+2n) = O((n− i)2n). Moreover,
note that all the cut-inferences used some φi(m) with i ≤ n−1 as cut formulas. Therefore,
the aqd is n− 1. ■

If we compare this to Corollary 4.24, we see that our upper bound for the expansion-
proofs of ξn is 27·2

4n

n−1 ≤ 27nn . Summarising this chapter leads to the following result:

Corollary 5.15. For the sequence ξn the following holds:

• There are proofs πn of ξn with |πn| = O(22n) and aqd(πn) = n− 1

• There are expansion-trees En with ⊢En ξn and |En| = O(27nn)

• Any expansion-tree E′
n with ⊢E′

n
ξn has length at least 2n

Unfortunately, 2n = 20n = 21n−1 = 2n
0

n−1. That means that our number of exponents is
not yet optimal. Even worse, we have the following result:

Lemma 5.16. For any i ≤ n it holds that 2n = O(2nn−i).

Proof. We have that 2n = 20n = 22in−i. Note that i is fixed and independent of n. Therefore,
there is an N ∈ N such that for all n ≥ N it holds that n ≥ 2i. It follows that 2nn−i ≥
22in−i = 2n for all n ≥ N . ■

However, we have the following Theorem:

Theorem 5.17. Let F be any function that maps a proof to a cut-free proof of the same
end-sequent and define F ′ : N → N : n 7→ |F (ξn)|. Then the following holds: If any cut-free

proof of ξn has length at least 2nn, then F
′ = Ω(2nn) and F

′ > O(2n
k

n−1) for any k ∈ N.
Proof. If every proof of ξn has length at least 2nn, then F

′(n) ≥ 2nn and F ′ = Ω(2nn). For

the fact that F ′ > O(2n
k

n−1), we show that there is an N ∈ N such that for all n ≥ N it

holds that 2nn > 2n
k

n−1. We observe that 2nn = 22
n

n−1. Since there is an N ∈ N such that for

all n ≥ N it holds that 2n > nk and consequently 2nn = 22
n

n−1 > 2n
k

n−1. ■

44

Bibliography

[1] Federico Aschieri, Stefan Hetzl, and Daniel Weller.
”
Expansion trees with cut“. In:

Mathematical Structures in Computer Science 29.8 (2019), pp. 1009–1029. doi: 10.
1017/S0960129519000069.

[2] Samuel Buss.
”
Cut Elimination In Situ“. In: Reinhard Kahle and Michael Rathjen.

Gentzen’s Centenary: The Quest for Consistency. Mar. 2012, pp. 245–277. isbn: 978-
3-319-10102-6. doi: 10.1007/978-3-319-10103-3_10.

[3] Philipp Gerhardy.
”
Refined Complexity Analysis of Cut Elimination“. In: Proceedings

of the 17th International Workshop CSL 2003. Ed. by Matthias Baaz and Johann
Makovsky. Vol. 2803. LNCS. Springer-Verlag, Berlin, 2003, pp. 212–225.

[4] V. P. Orevkov.
”
Lower bounds for lengthening of proofs after cut-elimination“. In:

Zapiski Nauchnykh Seminarov LOMI 88 (1979), pp. 137–162.

[5] V. P. Orevkov.
”
Lower bounds for lengthening of proofs after cut-elimination“. In: J.

Soviet Mathematics 20 (1982). Originally published in [4], pp. 2337–2350.

[6] Pavel Pudlák.
”
Chapter VIII - The Lengths of Proofs“. In: Handbook of Proof Theory.

Ed. by Samuel R. Buss. Vol. 137. Studies in Logic and the Foundations of Math-
ematics. Elsevier, 1998, pp. 547–637. doi: https://doi.org/10.1016/S0049-
237X(98)80023-2. url: https://www.sciencedirect.com/science/article/pii/
S0049237X98800232.

[7] R. Statman.
”
Lower Bounds on Herbrand’s Theorem“. In: Proceedings of the American

Mathematical Society 75.1 (1979), pp. 104–107. issn: 00029939, 10886826. url: http:
//www.jstor.org/stable/2042682 (visited on 03/04/2024).

[8] Daniel Weller.
”
On the elimination of quantifier-free cuts“. In: Theoretical computer

science 412 (Nov. 2011), pp. 6843–6854. doi: 10.1016/j.tcs.2011.08.035.

45

https://doi.org/10.1017/S0960129519000069
https://doi.org/10.1017/S0960129519000069
https://doi.org/10.1007/978-3-319-10103-3_10
https://doi.org/https://doi.org/10.1016/S0049-237X(98)80023-2
https://doi.org/https://doi.org/10.1016/S0049-237X(98)80023-2
https://www.sciencedirect.com/science/article/pii/S0049237X98800232
https://www.sciencedirect.com/science/article/pii/S0049237X98800232
http://www.jstor.org/stable/2042682
http://www.jstor.org/stable/2042682
https://doi.org/10.1016/j.tcs.2011.08.035

	Introduction
	Preliminaries
	Eliminating Quantifier-Free Cuts
	Expansion Trees
	Eliminating Cuts

	Eliminating general cuts
	Transforming proofs to PNF
	Reducing the Quantifier Depth of Cuts

	Lower Bounds
	Bibliography

