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1 Prerequisites

We will consider propositional logic consisting of atoms, constants 1 and 0 rep-
resenting true and false respectively and the unary logical connective negation
¬ and the binary connectives disjunction ∨ and conjunction ∧. Formulas are
defined in the usual inductive manner: atoms and constants are formulas and
for a and b formulas also ¬a, a ∨ b, a ∧ b are formulas.

A Frege proof system F refers to a finite set of Frege rules that is sound
and complete. Since we will use a different proof system which is equivalent to
Frege systems but more elegant to reason with, we will refer to [Kraj́ıček, 2019,
Chapter 2] for details.

Definition 1.1. Given a language L and a formula a in the language L the
logical depth ldp is defined inductively:

• ldp(b) = 0 if b is an atom or a constant,

• ldp(◦(b1, . . . , bk)) = 1 +maxi ldp(bi) for a k-ary connective ◦ in L.

TC0 defines the languages computed on {0, 1}n by boolean circuits Cn with
conjunctions and disjunctions of unbounded arity, logical depth bounded by
a constant d, a size bound |Cn| ≤ nc and using unbounded arity connectives
THn,k. The connectives THn,k are defined for 0 ≤ k ≤ n:

THn,k(a1, . . . , an) = 1 if and only if
∑
i

ai ≥ k

Definition 1.2. The depth dp(A) of a propositional formula A is defined in-
ductively:

• dp(B) = 0 for B being an atom or a constant,

• if B starts with ¬ then dp(¬B) = dp(B) otherwise dp(¬B) = dp(B) + 1,
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• if A can be written as B(C1, . . . , Ct) where B(q1, . . . , qt) is built from
atoms and disjunctions only and neither of the formulas C1, . . . , Ct do
have a disjunction as their top connective then dp(A) = maxi dp(Ci) + 1,

• Analogously for conjunctions.

The depth is a notion of the length of the longest chain of subformulas for
which the top connective changes its type.

The depth of a Frege proof is the maximum depth of the formulas that
occur in the proof. By TC0-Frege systems we denote the bounded depth Frege
subsystem operating on TC0 formulas.

LBA will denote the language of bounded arithmetic as defined in [Kraj́ıček,
2019, Chapter 9.1]. It can be considered an extension of the language of peano
with its symbols 0, 1,+, ·,≤ by adding function symbols for bit-length and bit-
operations. We will only consider theories in LBA which contain the BASIC
axioms, described in the same chapter, and axioms that give the added functions
their intended meaning.

By LBA(R) we denote the extension of LBA by a relation symbol R, and we
possibly added some axioms about said symbol to the theory we consider. With
Σ1,b

0 we denote the class of LBA(R) formulas with only bounded quantifiers. The

Theory IΣ1,b
0 is axiomatized by adding the IND scheme for all Σ1,b

0 formulas A:

¬A(0) ∨ (∃y ≤ x, y < x ∧A(y) ∧ ¬A(y + 1)) ∨A(x),

which is obtained by taking the usual induction axiom, replacing quantifiers
with their bounded versions and translating inferences into disjunctions and
negations.

2 Sequent Calculus

Because of its simple inference rules we introduce the Sequent Calculus LKB,
which we will later use to reason about proofs. We assume familiarity with LK
but refer to [Kraj́ıček, 2019, Chapter 3.1] for a detailed explanation. We now
introduce a version of the Sequent Calculus LK for bounded arithmetic. We
extend LK by inference rules for bounded quantifiers:

a ≤ t,Γ −→ ∆, A(a)

Γ −→ ∆,∀x ≤ tA(x)

a ≤ t, A(a),Γ −→ ∆

∃x ≤ tA(x),Γ −→ ∆

A(s),Γ −→ ∆

s ≤ t,∀x ≤ tA(x),Γ −→ ∆

Γ −→ ∆, A(s)

s ≤ t,Γ −→ ∆,∃x ≤ tA(x)

for which s and t are terms and a is a free variable not appearing in the lower
sequent. We also add the induction inference rule
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A(y),Γ −→ ∆, A(y + 1)

A(0),Γ −→ ∆, A(x)

for A ∈ Σ1,b
0 . We will refer to this version of Sequent Calculus as LKB.

3 Correspondence

We say that a proof system P p-simulates a theory T if and only if there exists
a translation 〈·〉n such that the following conditions are satisfied:

1. The translation of ∆0 formulas A (in the language of T ) into sequences of
propositional formulas 〈A〉n, n ≥ 1, satisfies:

• there is a p-time algorithm that computes 〈A〉n,

• |〈A〉n| is polynomially bounded and dp(〈A〉n) is constant,

• ∀xA(x) is true for all interpretations of the added relation symbols
iff 〈A〉n are tautologies.

2. If T proves ∀xA(x) then there are P -proofs of 〈A〉n of polynomial size and
there is a p-time algorithm that constructs a P -proof of 〈A〉n from 1(n).

This implies that in order to establish a polynomial upper bound for P -
proofs of 〈A〉n for n ≥ 1 it suffices to prove ∀xA(x) in T . We will now introduce
a proof system P and a theory T and show that P p-simulates T .

4 TC0-Frege Systems

Consider an extension of a Frege system F by n-ary counting connectives Cn,k

which holds true if exactly k of its arguments are true and false otherwise. For
0 ≤ k ≤ n we define Cn,k by the axiom schemes

• C1,1(p) ≡ p,

• Cn,0(p1, . . . , pn) ≡ ∧i≤n¬pi,

• Cn+1,k+1(p̄, q) ≡ (Cn,k(p̄) ∧ q) ∨ (Cn,k+1(p̄) ∧ ¬q) for all k < n,

• Cn+1,n+1(p̄, q) ≡ Cn,n(p̄) ∧ q.

This extension will be denoted by FC which stands for Frege with counting.
FCd will denote the subsystem allowing in proofs only formulas of depth at
most d. Using a Cn,k connective increases the depth of a subformula by 1.

FCd systems serve as examples of TC0-Frege systems, since both counting
and threshold connectives can be expressed by the other:

Cn,k(p̄) ≡ THn,k(p̄) ∧ ¬THn,k+1(p̄) and THn,k(p̄) ≡
∨

k≤l≤n

Cn,l(p̄).
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To construct a theory that gets p-simulated by FCd systems we introduce a
bounded counting quantifier ∃= for which

∃=sy ≤ t A(y) holds if and only if |{b ≤ t|A(b)}| = s

where s and t are terms not involving y.
Analogously to the counting connectives Cn,k we define ∃= by the following

axiom schemes:

• ∀y ≤ t ¬A(y)→ ∃=0y ≤ tA(y),

• (A(t+ 1) ∧ ∃=sy ≤ t A(y))→ ∃=s+1y ≤ t+ 1 A(y),

• (¬A(t+ 1) ∧ ∃=sy ≤ t A(y))→ ∃=sy ≤ t+ 1 A(y).

The class of bounded LBA(R) formulas allowing the ∃= quantifier will be de-

noted by ∃=Σ1,b
0 . The theory I∃=Σ1,b

0 is defined as the theory IΣ1,b
0 but allows

the IND scheme ∃=Σ1,b
0 formulas.

5 The Paris-Wilkie Translation

Originally the Paris-Wilkie translation maps a ∆0(R) formula A(x1, . . . , xk)
and ni ≥ 0 for i ∈ {1, . . . , k} to a propositional formula 〈A(x̄)〉n1,...,nk

. We

will formulate an extension of the translation that operates on closed ∃=Σ1,b
0

formulas. It is defined inductively on the complexity of A:

• If B is an atomic formula B ≡ t(x̄) = s(x̄) or B ≡ t(x̄) ≤ s(x̄) for terms t
and s the translation is defined as

〈B〉n̄ :=

{
1 B(n̄) is true,

0 otherwise.

• For an atomic formula B ≡ R(t(x̄), s(x̄)) and the terms t(x̄) and s(x̄)
having values i and j for x̄ := n̄ then the translation is defined as a
propositional atom rij .

• The translation commutes with negation, conjunction and disjunction:

– 〈A ∨B〉 := 〈A〉 ∨ 〈B〉,
– 〈¬A〉 := ¬〈A〉,
– 〈A ∧B〉 := 〈A〉 ∧ 〈B〉.

• For bounded quantifiers A(x̄) = ∃y ≤ t(x̄)B(x̄, y) we define

〈A〉n̄ :=
∨

m≤t(n̄)

〈B(x̄, y)〉n̄,m.
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• Analogously for A(x̄) = ∀y ≤ t(x̄)B(x̄, y)

〈A〉n̄ :=
∧

m≤t(n̄)

〈B(x̄, y)〉n̄,m.

• For the counting quantifier A(x̄) = ∃=sy ≤ tB(x̄, y) we define

〈A〉n̄ := Cm+1,k(〈B(x̄, y)〉n̄,0, . . . , 〈B(x̄, y)〉n̄,m)

for s and t terms and k = s(n̄), m = t(n̄).

This translation will be used to show that FCd p-simulates I∃=Σ1,b
0 .

Lemma 5.1. For a ∃=Σ1,b
0 -formula A there exist c, d ≥ 1 such that for all

n̄ = (n1, . . . , nk) it holds that

• |〈A〉n̄| ≤ (n1 + · · ·+ nk + 2)c,

• dp(〈A〉n̄) ≤ d.

and A(n̄) is true for all interpretations of R if and only if 〈A〉n̄ is a tautology.

Proof. By induction on the complexity of A: for atomic formulas the depth is
0 and the size is constant, therefore bounded by a polynomial. The proposi-
tional connectives might increase the depth by 1 and the size bound holds by
the induction hypothesis. For bounded quantifiers, since every term t(n) is a
polynomial, the size of the translation is bounded by the size of the subformulas,
which are bounded by the induction hypothesis, times the polynomial bounding
t(n). Analogously the depth may increase by 1, depending on the formulas B
and the quantifier at hand. The counting quantifier increases the depth by 1
and the size of the formula stays polynomially bounded.

The following statement was adapted from Kraj́ıček [2019] which proves the
statement in a model-theoretic way. We are going to provide a proof-theoretic
proof as can be found in [Cook and Nguyen, 2010, VII.2.3].

Theorem 5.2. For FCd, d ≥ 1, and A(x̄) being a ∃=Σ1,b
0 formula and assuming

I∃=Σ1,b
0 proves ∀x̄A(x̄) then there exist c, d ≥ 1 such that for every n̄ there is

an FCd-proof πn̄ of 〈A(x̄)〉n̄ such that

• dp(πn̄) ≤ d and

• |πn̄| ≤ (n1 + · · ·+ nk + 2)c.

Proof. The idea is to take a LKB proof consisting of bounded formulas only in
I∃=Σb

0 and translate each formula via the translation defined above. A proof
consisting of bounded formulas only exists due to cut-elimination. Details about
this result can be found in Cook and Nguyen [2010]. We will then find a set
of rules on how to translate each of the inference rules such that the result of
the translation is a proof of 〈A(x̄)〉n̄. Let π be a I∃=Σb

0 proof with bounded
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formulas only in LKB of A(x). We will construct a proof of 〈A〉n for n ≥ 0 with
polynomial size and constant depth. For all free variables a proof can be found.
We therefore in each step only consider sequents with values assigned to all the
free variables. We prove by induction on the number of lines above a sequent
in π:

If A is an axiom, we replace it with a short Frege proof of 〈A〉. For example
we prove the first axiom of the ∃= quantifier: ∀y ≤ t ¬A(y) → ∃=0y ≤ tA(y).
The translation works as follows:

〈∀y ≤ t ¬A(y)〉n −→ 〈∃=0y ≤ t A(y)〉n

is per definition

t(n)∧
i=0

〈¬A〉n,i −→ Ct(n)+1,0(〈A〉n,0, . . . , 〈A〉n,t(n))

which by the definition of Cn,k is

t(n)∧
i=0

〈¬A〉n,i −→
t(n)∧
i=0

¬〈A〉n,i.

This sequent has a proof of size polynomial in n since t(n) is a polynomial
and we apply the inference rules for introducing conjunctions left and right for
t(n) times starting from initial sequents of the form B −→ B. Since 〈A〉n,i has
bounded depth, this proof has maxi〈A〉n,i + 1 as an upper bound on its depth.
The other axioms can be replaced by a short proof with said size and depth
requirement in a similar manner.

For the induction step we consider all the possibilities of how the proof is
structured:

1. The propositional inference rules of LK translate naturally, for example:

Γ, C −→ ∆

Γ −→ ∆,¬C

has the translation

〈Γ〉, 〈C〉 −→ 〈∆〉
〈Γ〉 −→ 〈∆〉, 〈¬C〉

which coincides with a propositional inference rule because 〈¬C〉 = ¬〈C〉.
Other inference rules like the introduction of conjunctions or disjunctions
also translate naturally.

2. When the cut rule
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Γ −→ ∆, A A,Π −→ Λ

Γ,Π −→ ∆,Λ

is applied with A being the cut formula, since 〈A〉 has bounded depth by
the induction hypothesis, this proof step translates naturally into a cut
with 〈A〉 being the cut formula.

3. For the bounded-quantifier inference rule ∀-right with a value assigned to
the free variable a

a ≤ t,Γ −→ ∆, A(a)

Γ −→ ∆,∀x ≤ tA(x)

translates to

〈Γ〉 −→ 〈∆〉, 〈A〉n,0 . . . 〈Γ〉 −→ 〈∆〉, 〈A〉n,t(n)

〈Γ〉 −→ 〈∆〉,
t(n)∧
i=0

〈A〉n,i

where the bottom line is the translation of

〈Γ〉 −→ 〈∆〉, 〈∀y ≤ t(x)A(x, y)〉n.

This is a proof by applying the ∧-right rule t(n) times. By the induction
hypothesis the formulas 〈A〉n,i have constant depth and therefore this
proof has a constant upper bound on its depth.

4. Consider the ∃-left rule

a ≤ t, A(a),Γ −→ ∆

∃x ≤ tA(x),Γ −→ ∆

which gets translated into

〈A〉n,0, 〈Γ〉 −→ 〈∆〉 . . . 〈A〉n,t(n), 〈Γ〉 −→ 〈∆〉
t(n)∨
i=0

〈A〉n,i, 〈Γ〉 −→ 〈∆〉

Where each of the t(n) sequents on top has a proof thats polynomially
bounded by the induction hypothesis. Therefore this proof consists of
polynomially many proofs with polynomial size together with polynomi-
ally many applications of the ∨-left rule. The depth bound holds for the
same reason as in the last case.
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5. The ∀-left rule

A(s),Γ −→ ∆

s ≤ t,∀x ≤ tA(x),Γ −→ ∆

translates in the case s ≤ t to

〈A〉n,s, 〈Γ〉 −→ 〈∆〉
t(n)∧
i=0

〈A〉n,i, 〈Γ〉 −→ 〈∆〉

by applying the ∧-left rule polynomially many times. For s > t the bottom
sequent can be simplified to 1. The bound on the depth might increase
by 1.

6. The ∃-right inference rule

Γ −→ ∆, A(s)

s ≤ t,Γ −→ ∆,∃x ≤ tA(x)

translates in the case s ≤ t to

〈Γ〉 −→ 〈∆〉, 〈A〉n,s

〈Γ〉 −→ 〈∆〉,
t(n)∨
i=0

〈A〉n,i

by applying the ∨-right inference rule polynomially many times. While
the case s > t can be simplified to 1 like we mentioned above.

7. The IND inference rule

A(y),Γ −→ ∆, A(y + 1)

A(0),Γ −→ ∆, A(x)

translates to

〈A(y)〉0, 〈Γ〉 → 〈∆〉, 〈A(y + 1)〉0 . . . 〈A(y)〉t−1, 〈Γ〉 → 〈∆〉, 〈A(y + 1)〉t−1

〈A(y)〉0, 〈Γ〉 → 〈∆〉, 〈A(y)〉t

by applying the Cut-Rule t(n) times. By the induction hypothesis each
of the sequents on top has a polynomial size proof therefore so does the
sequent on the bottom. The same argument holds for the depth.

Therefore by Theorem 5.2 and Lemma 5.1 it holds that FCd p-simulates
IΣ1,b

0 .
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6 PHP in TC0-Frege

Let PHP (z,R) be the disjunction of the formulas

1. ∃x ≤ z + 1∀y ≤ z ¬R(x, y),

2. ∃w ≤ z + 1∃u 6= v ≤ z R(w, u) ∧R(w, v),

3. ∃u 6= v ≤ z + 1∃w ≤ z R(u,w) ∧R(v, w).

We will show ¬(1) ∧ ¬(2)→ (3) by proving in I∃=∆0(R) the formulas

∃=t+1y ≤ z∃x ≤ t R(x, y) and ∃=z+1u ≤ z u = u.

The former will be shown by induction on t. Because ¬(1)∧¬(2) means that R
is the Graph of a function with domain {0, . . . , z + 1} and image {0, . . . , z} we
can prove for t = 0 the base case ∃=1y ≤ zR(0, y). For the induction step since

|{y ≤ z : ∃x ≤ t R(x, y)}| = |{x ≤ t : ∃y ≤ z R(x, y)}|

holds, we show

∃=t+1x ≤ t∃y ≤ zR(x, y)→ ∃=t+2x ≤ t+ 1∃y ≤ zR(x, y).

Due to R defining the Graph of a function, ∃y ≤ zR(t + 1, y) has a proof for
appropriate t, which in combination with the second ∃= axiom yields a proof of
the induction step. The IND axiom for ∃=∆0 formulas then yields a proof of
the first formula.

The latter we show by induction on z. The base case ∃=1u ≤ 0 : u = u
follows from 0 being the smallest element in the linear order and using the first
two axioms of the ∃= quantifier. A proof for the induction step consists of a
proof of z + 1 = z + 1 and the second axiom of the ∃= quantifier. Since both
the initial formula and the induction step formula are ∃=∆0 by the IND axiom
we obtain a proof of ∃=z+1u ≤ z u = u.

The propositional translation PHPn of PHP (z − 1, R) is the formula

¬(
∧
i

∨
j

pij ∧
∧
i

∧
j 6=j′

(¬pij ∨ ¬pij′) ∧
∧
i6=i′

∧
j

(¬pij ∨ ¬pi′j))

for which by Theorem 5.2 we obtain:

Lemma 6.1. The PHPn formulas have polynomial-size TC0-Frege proofs.

7 Simulation of TC0-Frege by Frege

What’s left to be shown is that we can translate a FC proof to an F proof such
that the new proof is polynomial in size. This is done by defining counting func-
tions for Frege systems and showing that their main properties have polynomial
size proofs.
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The straightforward way of implementing addition and thus counting does
not lead to formulas with polynomial size. Therefore carry-save addition is
used, which is a technique for computing the sum of a vector of numbers with a
logarithmic depth circuit. It can be used to compute the sum of n n-bit numbers
by a propositional formula with polynomial size in n. This carry-save addition
will be used to define the counting connectives Cn,k(p1, . . . , pn).

We will present the high level idea and refer the reader to [Kraj́ıček, 2019,
Chapter 11.3] for more details or [Buss, 1987, Chapter 4] for an in-depth de-
scription. Interpreting p1, . . . , pn as n one-bit numbers and using the log n bits
r0, . . . , r|n|−1 of the output of the carry save addition formula to define

∑
i pi

we then get

Cn,k(p1, . . . , pn) ≡
∧

j∈K0

¬rj ∧
∧

j∈K1

rj

where K0 and K1 are the positions j where the bit of k is 0 or 1.
This polynomial simulation of TC0-Frege by Frege implies the polynomial

simulation of FCd by Frege.

Lemma 7.1. The size of formulas Cn,k is polynomial in n and the axioms of
FC have polynomial size Frege proofs.

Combining Theorem 6.1 and Lemma 7.1 yields:

Corollary 7.1.1. The PHPn-formulas have polynomial size Frege proofs.
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