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Abstract

Craig’s interpolation theorem is a long known basic result of mathematical
logic. Interpolants lay bare certain logical relations between formulas or sets of
formulas in a concise way and can often be calculated efficiently from proofs of
these relations. Leveraging the tremendous progress of automatic deduction
systems in the last decades, obtaining the required proofs is feasible. This
enables real world applications for instance in the area of software verification.

For practical applicability, interpolation is often studied in relatively weak
formalisms such as propositional logic. This thesis however aims at giving a
comprehensive account of existing techniques and results with respect to unre-
stricted classical first-order logic with equality. It is structured into three parts:

First, we present Craig’s initial proof of the interpolation theorem by
reduction to first-order logic without equality and function symbols. Due to
the inherent overhead, this approach only gives rise to an impractical algorithm
for interpolant extraction.

Second, a constructive proof by Huang is introduced in slightly improved
form. It employs direct interpolant extraction from resolution proofs in two
phases and thereby shows that even in full first-order logic with equality,
interpolants can efficiently be calculated. Moreover, we present an analysis
of the number of quantifier alternations of the interpolants produced by this
algorithm. We additionally propose a novel approach which combines the
two phases of Huang’s algorithm and thereby allows for creating non-prenex
interpolants.

Third, we give a semantic perspective on interpolation in the form of a
model-theoretic proof based on Robinson’s joint consistency theorem. This
illustrates the similarities and differences between the proof-theoretic and the
model-theoretic view on interpolation.






Kurzfassung

Der Interpolationssatz von Craig stellt ein grundlegendes Ergebnis der mathema-
tischen Logik dar. Interpolanten fassen gewisse logische Beziehungen zwischen
Formeln prézise zusammen und kénnen oftmals effizient aus Beweisen dieser Be-
zichungen extrahiert werden. Der immense Fortschritt von Inferenzsystemen der
letzten Jahrzehnte ermoglicht die Berechnung der erforderlichen Beweise, was
den Grundstein fiir Anwendungen etwa im Bereich der Softwareverifikation legt.

Aufgrund der besseren praktischen Anwendbarkeit wird Interpolation haufig
in relativ schwachen logischen Formalismen wie etwa der Aussagenlogik unter-
sucht. Diese Arbeit setzt sich hingegen zum Ziel, einen umfassenden Uberblick
iiber bestehende Techniken und Resultate im Bereich der uneingeschrankten
Pradikatenlogik mit Gleichheit zu geben. Dies geschieht in drei Abschnitten:

Zuerst gehen wir auf den urspriinglichen Beweis des Interpolationssatzes von
Craig ein, welcher eine Reduktion auf Prédikatenlogik ohne Gleichheit und Funk-
tionssymbole durchfiihrt. Aufgrund des dadurch entstehenden Mehraufwandes
ergibt sich daraus nur ein ineffizienter Algorithmus zur Interpolantenextraktion.

Danach stellen wir einen konstruktiven Beweis von Huang in einer etwas
verbesserten Form vor. Hier werden Interpolanten direkt aus Resolutionsbewei-
sen in zwei Phasen extrahiert, was somit zeigt, dass auch in uneingeschrankter
Préadikatenlogik mit Gleichheit eine effiziente Interpolantenberechnung méglich
ist. Desweiteren analysieren wir die Anzahl der Quantorenalternationen in den
daraus resultierenden Interpolanten und stellen einen neuen Ansatz vor, welcher
beide Phasen von Huangs Algorithmus kombiniert und dadurch nicht prenexe
Interpolanten liefert.

Im letzten Abschnitt beschéftigen wir uns mit einer semantischen Sichtweise
auf Interpolation in Form eines modelltheoretischen Beweises basierend auf
dem Joint Consistency Satz von Robinson, was sowohl Ahnlichkeiten als auch
Unterschiede zur beweistheoretischen Betrachtungsweise illustriert.
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CHAPTER 1

Introduction

The notion of interpolation has been introduced by Craig in [Crab7a]. Loosely
speaking, given two formulas A and B such that A implies B, an interpolant
I is a formula which is implied by A and which itself implies B, as visualized
in Figure [l Hence it in some sense captures the logical content of A which
necessarily makes B true and therefore acts as a link between these formulas.

A B

~N S

I

Figure 1.1: Given two formulas A and B such that A implies B, an inter-
polant is a formula I which is implied by A and which implies B.

Moreover, interpolants are not arbitrary formulas, but their language is
restricted to those symbols, which are common to both original formulas. Thus
they represent the logical connection solely by statements on notions, which
are of significance to both A and B. This criterion establishes that the actually
represented content meets some level of relevance and avoids unnecessary
information, thereby ensuring that interpolants enjoy the favorable property of
conciseness.

As Craig has shown that interpolants always exist in classical first-order
logic, they can be regarded as a justification for material implication in this
logic: If an implication in classical logic holds under any circumstance, then
there is a formula which contains the logical content explaining this implication.
Or conversely, if such a summary of a potential implication does not exist, then
the implication itself does not and in fact can not hold in general. Furthermore,
if formulas are concerned with different matters (such that their language is
disjoint), there certainly can not be a logical relation between them, as for such
formulas, only trivial interpolants can be found.
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Craig interpolation has been and is still studied with respect to a wide
variety of logics. Most notably, it holds for propositional and classical first-
order logic. These facts can be proven by different means: Interpolants can
be directly extracted from proofs of logical relations of formulas, thus showing
their existence in a constructive manner. Alternatively, also semantic proofs
for the existence of interpolants can be given: Assuming the non-existence of
interpolants, one can build a model contradicting an assumed logical relation
of the original formulas.

The applications of Craig interpolation are manifold: As a theoretic tool,
it can for instance be employed to prove Beth’s definability theorem or to
show lower bounds on the length of proofs of propositional proof systems
([Kra97, [Pud97]). In recent years, it has been discovered that interpolants serve
well in the area of model checking as a means to find formulas overapproximating
the set of reachable states of a program (|[McMO03]), which is now an active area
of research. Furthermore, in the field of program analysis, there are approaches
making use of interpolation to extract information about the changes of program
state inflicted by loop iterations in order to detect loop invariants ([Weil0]).
This list is however merely a non-exhaustive selection of relevant use cases of
interpolation.

In this thesis, we consider classical first-order logic with equality. We present
different proofs of the interpolation theorem with a focus on constructive
proofs which give rise to concrete algorithms for finding interpolants. The
central calculus employed in this thesis is the resolution calculus including
paramodulation.

In Chapter [2] among defining the notation and calculi, we present the inter-
polation theorem as such including several strengthenings and its application
in the proof of Beth’s definability theorem.

A first proof is given in Chapter |3, where the added complexity of equality
and function symbols is expressed in a logic without these concepts in order to
prove the interpolation theorem in the reduced logic.

Chapter [ then presents a constructive proof of the interpolation theorem
by Huang in a somewhat modified form based on extracting interpolants from
resolution refutations in two phases.

In Chapter |5 we introduce an algorithm based on the one described in
the previous chapter which combines the two phases and thereby is capable of
producing different interpolants.

The proof-theoretic proofs of the previous chapters are then complemented
by a model-theoretic one in Chapter [6] based on Robinson’s joint consistency
theorem.

Finally, Appendix [A] presents the aforementioned proof by Huang in a
version closer to his publication.



CHAPTER 2

Interpolation and proof theory

In this chapter, we introduce basic technical notions in order to then for-
mulate the interpolation theorem (2.2)). We furthermore present strengthenings
of the theorem as well as an application in the form of Beth’s definability
theorem (2.4)). This result is used in discussing the failure of interpolation in
higher-order logic . We then continue to define the calculi, which will
be used throughout this thesis (2.6| and including considerations on the
applicability of interpolation to them .

2.1 Preliminaries

Here, we give all required notations and basic concepts which will be used
throughout this thesis.

Formulas and language

We work in classical first-order logic with equality. Formulas are usually denoted
by A or B, constant symbols by a, b, ¢ or d, function symbols by f, g or h and
variables by z, y, z, u, v or w.

The language of a first-order formula A is designated by L(A) and contains
all predicate, constant and function symbols that occur in A. For formulas
Ar, .o Ay, L(Ay, - An) = Uj<icp L(As). These are also referred to as the
non-logical symbols of A. The logical symbols on the other hand include all
logical connectives, quantifiers, the equality symbol (=) as well as symbols
denoting truth (T) and falsity (L). Among the usual symbols for the logical
connectives A (conjunction), v (disjunction), > (implication), we use A<~ B
as an abbreviation for (A> B) A (B> A). Furthermore, < indicates logical
equivalence and syntactic equality is denoted by =. For a set of formulas @,

—® denotes {—A | Ae O}.
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With respect to a formula A, an occurrence of a subformula B of A is said
to occur positively if it occurs under an even number of negations and negatively
otherwise.

Substitutions

A substitution is a mapping of finitely many variables to terms. We define
named substitutions ¢ of a variable z by a term t in a set-style notation
o = {x — t} such that po denotes a formula or term ¢ where each occurrence
of the variable z is replaced by the term t. This is done in a capture avoiding
manner, i.e. if a variable y occurs free in ¢ and y is also bound in ¢ such that
a free occurrence of x is in the scope of this quantifier, the bound variable is
renamed by a fresh variable.

Unnamed substitution applications are written as ¢[x/t]. A substitution o
is called trivial on x if xo = x. Otherwise it is called non-trivial on z.

In some situations, mappings of infinitely many variables to terms are
required. We denote such as infinite substitutions.

The domain of a substitution o, designated by dom(o), is the set {z €
V | zo # x}, where V denotes the set of all variables. We refer to the set
{zo | z € dom(o)} as the range of sigma, denoted by ran(o).

A term s is an instance of a term t if there exists a substitution ¢ such
that to = s. If s is an instance of ¢, then ¢ is an abstraction of s. Note that
the abstraction- and instance-relation are reflexive.

Formulas and terms

The length of a term or formula ¢ is the number of logical and non-logical
symbols in .

For formulas or terms ¢, ¢[s], denotes ¢ with an occurrence of s at position
p. ¢[s] denotes ¢ where the term s occurs on some set of positions ®. ¢[t]
denotes ¢[s] where on each position in ®, s has been replaced by t. Due to its
vagueness, this notation is mostly used in order to emphasize that the term s
does occur in ¢ in some way.

The function FV(-) returns the set of free variables for terms and formulas.
Moreover, FS(-) returns the set of function symbols for terms, formulas and
languages and PS(+) the set of predicate symbols for formulas and languages.

Models

A model M for a first-order language L is a pair (Dys,Zyr), where Dy is the
domain and Z,; the interpretation, which assigns a domain element to every
constant symbol, a function f : D}, — D to every function symbol of arity n
and an n-ary relation of domain elements to every predicate symbol of arity n
in the language L.
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For formulas or sets of formulas ¢, we write M F ¢ to denote that ¢ holds
in M. For an additional formula or sets of formulas ¥, ¢ E % holds if for every
model M of ¢, it holds that M F . ¢ is said to be satisfiable if there is a
model M such that M F ¢.

For formulas A with FV(A) = {z1,...,z,} and a model M, M E A denotes
M E Vzp...Vx,A. In instances where an explicit assignment a to the free
variables is desired, we write M, E A to signify that M entails the formula A
where the free variable assignment concurs with « and the free variables not
assigned by « are universally quantified.

2.2 Craig Interpolation
We now present a formal definition of the notion of interpolation:

Definition 2.1. Let I and A be sets of first-order formulas. An interpolant
of I' and A is a first-order formula I such that

1. T'ET
2. TEA
3. L(I) < L(T') n L(A).

A reverse interpolant of I' and A is a first-order formula I such that I
meets conditions [1| and [3| of an interpolant as well as:

2. AEFE—I A

Theorem 2.2 (Interpolation). Let T' and A be sets of first-order formulas such
that ' E A. Then there exists an interpolant for I' and A.

Theorem 2.3 (Reverse Interpolation). Let I' and A be sets of first-order
formulas such that I'U A is unsatisfiable. Then there exists a reverse interpolant
forT" and A.

Proposition 2.4. Theorem and[2-3 are equivalent.

Proof. Let I" and A be sets of first-order formulas such that I' E A. Then
I' U —A is unsatisfiable. By Theorem [2.3] there exists a reverse interpolant [
for I' and —A. As =A E —1I, we get by contraposition that I £ A, hence [ is
an interpolant for I and A.

For the other direction, let I' and A be sets of first-order formulas such
that I' U A is unsatisfiable. Then I' E —A, hence by Theorem there exists
an interpolant I of I' and —A. But as thus I F —A, we get by contraposition
that A E —1, so I is a reverse interpolant for I' and A. O
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As the notions of interpolation and reverse interpolation in this sense
coincide, we will in the following only speak of interpolation where it will be
clear from the context which definition applies.

Lemma 2.5. Let I',TV, A, A’ be sets of first-order formulas such that T' < TI"
and A< A’ and L(T') n L(A) = L(I") n L(A"). Then I is an interpolant for T
and A if and only if I is an interpolant for T and A'.

Proof. Clearly T" E I holds if and only if IV F I and similarly A F —TI holds if
and only if A’ E —I. As the intersections of the respective languages coincide,
the language condition on [ is satisfied in both directions. O

Remark. In Lemma it is not sufficient to require that I' T and A < A/,
Consider the example where I' = {Vz(z = ¢)} and A = —I" as well as IV =
{Va(z = d)} and A" = =I". Then even though I" and I as well as A and
A’ have the same models, L(I") n L(A) = {¢} whereas L(I'") n L(A’) = {d}.
Therefore Vx(x = ¢) is an interpolant for I' and A but not for IV and A’. A

In the context of interpolation, every non-logical symbol is assigned a color
which indicates its origin(s).

Definition 2.6 (Coloring). A non-logical symbol is said to be T' (A )-colored
if it only occurs in I" (A) and gray in case it occurs in both I and A. A symbol
is colored if it is T'- or A-colored. A literal is ®-colored for ® € {I", A} if its
predicate symbol is ®-colored. A term is ®-colored if its outermost symbol is
®-colored. We also refer to ®-colored literals or terms simply as ®-literals or
d-terms.

An occurrence of a ®-term is called mazimal if it does not occur as subterm
of another ®-term. An occurrence of a colored term t is mazimal colored if it
does not occur as subterm of another colored term. JAN

We sometimes use ® and ¥ as colors to emphasize that the reasoning at
hand is valid irrespective of the actual color assignment and solely assuming
that ® # W.

Example 2.7. Let I' = {P(f(a)) 2Q(h(x)), R(h(a),b)} and A = {R(h(b),x)}.
Then the predicate symbols P and @) are I'-colored and R is gray. The function
symbol f is I'-colored whereas h is gray. Among the constant symbols, a is
I’-colored and b is gray.

Note that in I', @ occurs twice: In R(h(a),b), it occurs as a maximal colored
term since it does not occur as subterm of a larger colored term. It is also a
maximal I'-term as it is not contained in a I’-term. In P(f(a)) on the other
hand, it does occur in a I'-term and hence is neither a maximal colored nor a
maximal I'-colored occurrence.

Now consider the term g(a). Here, a occurs as subterm of a colored term
and therefore it is not a maximal colored occurrence. It is however a maximal



2.3. Strengthenings of the interpolation theorem 7

I'-colored occurrence, as it is not contained in a I'-term. By the definition of

the coloring, terms containing symbols of different colors are not contained in
I or A. AN

2.2.1 Degenerate cases

In this thesis, the equality symbol as well as the symbols for truth and falsity are
regarded as a logical symbol. This is justified by the following examples, which
are referred to in [BBJ07, Example 20.2 and 20.4] as “failure of interpolation’
and “degenerate cases” respectively:

Y

Example 2.8. Let I' = {a = b} and A = {P(a), ~P(b)}. Note that here, the
intersection of L(T") and L(A) does not contain a predicate symbol. By regard-
ing = as logical symbol and therefore permitting it to occur in an interpolant
despite the fact that it does not occur in A allows for the interpolant a = b. If
we would not permit = in the interpolant, there would be no interpolant for I'
and A, even though I' U A clearly is unsatisfiable.

Similarly, for the pair IV = {P(a) A =P(b)} and A’ = {a # b}, the equality
symbol must occur in the interpolant. In this instance, the occurrence must
be negative. A

Example 2.9. Let I' = {P(a) A =P(a)} and A = J. As clearly the inter-
section of L(T") and L(A) is empty, we may form an interpolant only of logical
symbols. In this instance, the interpolant must be either | or a formula logi-
cally equivalent to 1. By merely swapping I' and A, we arrive at a situation
where the interpolant must be equivalent to T.

Note that as we can express formulas, which are logically equivalent to L
and T respectively by employing the equality symbo]EL the symbols for truth
and falsity are not strictly required to be regarded as logical symbols for the
interpolation theorem to hold. A

2.3 Strengthenings of the interpolation theorem

After Craig’s initial result, several stronger versions of the theorem have been
published. [Cra57b| can already be counted among those, as it defines in-
terpolants equivalently to our Definition whereas the first publication in
[Cra57al restricts interpolants only with regard to their predicate symbols, but
allows non-common function and constant symbols to occur in it.

Arguably one of the most important strengthenings is due Lyndon. In
[Lyn59|, he shows the following:

Theorem 2.10 (Lyndon). Let I' and A be sets of first-order formulas such
that I' E A. Then there is a first-order formula I such that the conditions
and[3 of Definition [2.1) hold for I as well as the following:

'Yz x # x and Vo x = z are suitable examples for 1 and T respectively.
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3. Each predicate symbol occurring positively (negatively) in I occurs posi-
tively (negatively) in both T' and A.

We do not give a proof here but only proof ideas. In [Lyn59] and [Sla70],
proofs based on Herbrand’s theorem are given: Starting from two unsatisfiable
sets of formulas I' and A, unsatisfiable finite subsets are extracted by means of
the compactness theorem and a set of unsatisfiable instances of these formulas
are produced by Herbrand’s theorem. From these, atoms with predicate symbols
which are not contained in L(I') n L(A) are dropped to obtain the desired
interpolant.

Theorem [2.10] can however also be proven by model-theoretic means similar
to the proof of the interpolation theorem given in and is worked out in full
detail in [Hen63] and [CK90, Theorem 2.2.24].

The restriction of the admissible function and constant symbols to the ones
in the common language of I' and A is absent in the original formulation of
in Theorem but can easily be addedﬂ Therefore it is justified to refer to
Lyndon interpolation as a strengthening of Craig interpolation.

It is however not possible to give an restriction on the polarity of the
occurrence of constants or function symbol in the interpolant analogous to
Theorem [2.10] as the following example shows:

Example 2.11 (Cf. [CK90, p. 92|). Let I' = {3z(x = ¢ A =P(z))} and
A = {—=P(c)}. Here, the constant ¢ occurs only positively in I' and only
negatively in A, but must occur in any interpolant. A

Since we regard the equality symbol as a logical symbol, condition |3’ of
Theorem does not apply to it. Nonetheless Oberschelp proves in [Obe68|
that a slightly modified restriction on the polarity of the occurrences of the
equality symbol in interpolants is feasible:

Theorem 2.12 (Oberschelp). Let I' and A be sets of first-order formulas such
that I' E A. Then there is a first-order formula I such that the conditions
and[3 of Definition [2.1] and condition [3] of Theorem hold for I as well as
the following:

4. The equality symbol occurs positively in I only if it occurs positively in T'.

5. The equality symbol occurs negatively in I only if it occurs negatively
mn A.

The proof can again be given by model-theoretic means in the style of the
aforementioned ones. Example illustrates these two cases and shows that
given these occurrences of the equality symbol, there are sets of formulas which
necessitate the equality symbol in their interpolant. Similar as for Theorem [2.10

2Cf. [Mot&4]



2.4. Beth’s definability theorem 9

a restriction on the function and constant symbols is not given in the original
formulation, but can be added as shown in [Fuj78].

Note that Theorem implies the following corollary on equality-free
interpolation:

Corollary 2.13. Let I' and A be sets of first-order formulas such that I' E A
and the equality symbol only occurs negatively in I' and only positively in A.
Then there exists an interpolant I which does not contain the equality symbol.

2.4 Beth’s definability theorem

In this section, we illustrate the interpolation theorem by presenting Beth’s
definability theorem, which admits a straightforward proof by means of the
interpolation theorem. The definability theorem deals with definitions of
predicates by means of formulas and bridges the gap between implicit definitions,
where predicates are defined by its use, and explicit definitions, which define
a predicate by means of another formula, by even showing their equivalence.
This is given significance by the circumstance that implicit definitions occur
in mathematics, but by this theorem do not have less expressive power than
explicit definitions.

Its original publication in [Bet53] precedes Craig’s papers on interpolation
([Cra57al [Cra57h]) by four years and relies on a direct proof.

Definition 2.14 (Implicit and explicit definition). Let £ be a first-order lan-
guage and P and P’ be two fresh predicate symbols of arity n. Let I'p be
a set of first-order sentences in the language £ U{P} and I'ps the same set
of formulas with every occurrence of P in I'p replaced by P’, such that the
language of I'pr is L U{P'}.

I'p defines P implicitly iff

Fqup/ thl...Vxn (P(:Cl,...,xn)HPI(.’L'l,...,:Cn)).

On the other hand I'p defined P explicitly iff there is formula ¢ in £ with
FV(p) = {z1,...,2,} such that

TpEVYzy.. Vo, (P(z1,...,2,) © @) . A

Note that the definition of implicit definitions is essentially second-order
and can be expressed by the second-order sentence

VPYP' (% ATh)D P = P'),

where I'}, and I'};, are conjunctions of the formulas of respective reductions of
I'p and I'pr to finite sets, which exist by the compactness theorem.

Theorem 2.15 (Beth’s definability theorem). I'p defines P explicitly if and
only if I'p defines P implicitly.
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Proof. Suppose that ['p defines P explicitly. Then there exists some formula ¢
such that T'p E Vaq ...V, (P(x1,...,2,) <> ¢). But then it clearly also holds
that Tp E Vo ... Vo, (P'(21,...,2,) < ¢), hence

Fpulp EVay.. Vo (P(x1,...,2,) < Pl(xy, ... 20)).

Therefore I'p is an implicit definition of P.

For the other direction, suppose that I'p defines P implicitly. Then I'p U
Tpr E Vai... Voo (P(z1,...,2,) < P'(21,...,2y,)). It follows from the com-
pactness theorem that we can find a conjunction I'},, of formulas of a finite sub-
set of I'pr such that Tp U {5} E Vo ... Vo, (P(z1,...,2,) < P'(z1,...,2y)).
Let y1,...,y, be fresh variables. Then we obtain by the deduction theorem
that Tp U {P(y1,.--,yn)} F 5 D P (y1,. .., Yn)-

Note that P only occurs in the antecedent and P’ only occurs in the con-
sequent. Hence we can apply the Interpolation Theorem [2.2]in order to obtain
a formula y such that Tp U {P(y1,...,yn)} F x and x E % D P'(y1,...,yn),
while additionally L(x) = L(I'p) n L(T'pr). This implies that neither P nor P’
occur in x. By interpreting the free variables as constants for the purposes of
the application of the interpolation theorem, we can also ensure that the only
free variables in x are y1,...,Yn.

Now we apply the deduction theorem another time and get that (o) I'p F
P(yi,...,yn)2x and I'}, E x D P'(y1,...,yn). As I'pr implies I'},,, we also
have that T'ps E x D P'(y1,...,yn). Since P does not occur in this entailment,
it remains valid if we replace every occurrence of the symbol P’ by P and
obtain that (¥) Tp E x D P(y1,--.,Yn)-

But then (o) and (*) imply that I'p F x < P(y1,...,yn), which is equiv-
alent to I'p F Vy1 ... Yy, (x © P(y1,.-.,yn)). So clearly I'p defines P explic-
itly. O

2.5 Interpolation in higher-order logic

In this thesis, we restrict our attention to first-order logic. This is not only
a matter of reasonable scope, but justified by the fact that the interpolation
theorem does not hold even in second-order logic as discovered by Craig in
[Cra65]. There, a second-order formula is presented and shown to be implicitly,
but not explicitly definable. This failure of Beth definability directly leads to a
failure of interpolation in this logic, which can easily be seen by the proof of
Theorem 2,15

2.6 Resolution

Resolution calculus, in the formulation as given here, is a sound and complete
calculus for first-order logic with equality. Due to the simplicity of its rules, it
is widely used in the area of automated deduction.
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2.6.1 Unification

We first specify the unification algorithm which is vital for the resolution
calculus.

Let id denote the identity function and fail be returned by mgu in case the
arguments are not unifiable to signify that the mgu of the given arguments is
not defined. We treat constants as 0-ary functions. Let s and ¢ denote terms
and x a variable.

Definition 2.16 (Most general unifier). The most general unifier mgu of two
literals A(sq,...,s,) and A(ty,...,t,)is defined as mgu({(s1,t1), ..., (Sn,tn)}).
The mgu for a set of pairs of terms T is defined as follows:

mgu(g) = id
 fail if t = (x,8) or t = (s,z) and x
occurs in s but x # s
mgu(T[z/s])[z/s] U {x — s} if t = (z,8) or t = (s,z) and =
def does not occur in s or z = x
mgu({t} v T) = faj] i 6= (F(51,15n),9(51, 1 5n))
with f # ¢
mgu(T U {(s1,t1),..., (tn,sn)}) it = (f(s1,...,80), f(t1,...,tn))
| mgu(T) if t = (s,s)

For a most general unifier o, we denote by o; for 1 < i < |dom(o)| the
ith substitution which is added to ¢ by the unification algorithm. We define

o defiq. Moreover, we denote the composition o;...0; by o(; ;). Hence o =
O (1, |dom(0)]) = (0, | dom(e))- o

Note that despite the nondeterminism inherent in this definition, it is unique
up to renaming of variables. See [BS01] for a detailed discussion of unification.

2.6.2 Definition of the calculus

Definition 2.17. A clause is a finite set of literals. The empty clause will
be denoted by . A resolution refutation of a set of clauses I' is a derivation
of O consisting of applications of resolution rules (inferences) (cf. Figure
starting from clauses in I'. All clauses used in inferences are assumed to be
pairwise variable-disjoint. The unification employed in an inference ¢ is denoted
by mgu(¢).

A clause C’ is a successor of a clause C if C occurs in the derivation of
C’. A literal I is a successor of a literal 1 if I’ occurs in a successor C' of C
and [’ is derived from [. For a term ¢ at position p in a literal [ in a clause
we say that t’ is a successor of the term t if t occurs at position p in a literal
" which succeeds [. For clauses, literals and terms, the predecessor relation is
the inverse of the successor relation. A



12 Chapter 2 — Interpolation and proof theory

Clauses will usually be denoted by C, D or E, literals by [, I’ or A and
positions by p. Optional labels for clauses precede the clause and are separated
by a colon.

Cvli D v =l

Resolution: (C v Do res o =mgu(l,l')
L. Cvivl /
e ¢ = 1
Factorization: (C v o ac o =mgu(l,l")

7 dulati v [ ] = ( )
P t : T = 1m
aramoautation: (D V/ E[t] )7 pa 9 guls,r

Figure 2.1: The rules of resolution calculus

Theorem 2.18. A clause set I' is unsatisfiable if and only if there is resolution
refutation of I.

Proof. See [Rob65]. O

Definition 2.19 (Tree refutations). A resolution refutation is a tree refutation
if every clause is used at most once. A

The following lemma shows that the restriction to tree refutations does not
restrict the calculus given that we allow multiple occurrences of the clauses of
the initial clause sets.

Lemma 2.20. Every resolution refutation can be transformed into a tree
refutation.

Proof. Let m be a resolution refutation of a set of clauses ®. We show that
7w can be transformed into a tree refutation by induction on the number of
clauses that are used multiple times.

Suppose that no clause is used more than once in w. Then 7 is a tree
refutation.

Otherwise let W be the set of clauses which is used multiple times. Let
C € ¥ be such that no clause D € ¥ is used in the derivation leading to C.
Let x be the derivation leading to C.

Suppose C' is used m times. We create another resolution refutation 7’
from 7 which contains m copies of x and replaces the ith use of the clause C'
by the final clause of the ith copy of x, 1 < i < m. In order to ensure that the
sets of variables of the input clauses are disjoint, we rename the variables in
each copy of x and adapt 7’ accordingly. Hence 7’ is a resolution refutation
of ® where m — 1 clauses are used more than once. O
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2.6.3 Resolution and Interpolation

In order to apply resolution to arbitrary first-order formulas, they have to be
converted to clauses first. This usually makes use of intermediate normal forms
which are defined as follows:

Definition 2.21. A formula is in Negation Normal Form (NNF) if negations
only occur directly before atoms and the only other connectives occurring in
the formula are conjunction and disjunction. A formula is in Conjunctive
Normal Form (CNF) if it is a conjunction of disjunctions of literals. A

In this context, the conjuncts of a CNF-formula are interpreted as clauses.
A well-established procedure for the translation to CNF is comprised of the
following steps:

1. NNF-Transformation
2. Skolemization

3. CNF-Transformation

Step [I] can be achieved by solely pushing the negation inwards. As this
transformation yields logically equivalent formulas without affecting the lan-
guage, by Lemma [2.5] the set of interpolants remains unchanged. Step [2] and
on the other hand do not produce logically equivalent formulas since they
introduce new symbols. In this section, we will show that they nonetheless do
preserve the set of interpolants. This fact is vital for the use of resolution-based
methods for the computation of interpolants of arbitrary formulas.

2.6.3.1 Interpolation and Skolemization

Skolemization is a procedure for replacing existential quantifiers by Skolem
terms:

Definition 2.22. Let V3, be the set of universally bound variables whose scope
includes the occurrence of 3z in a formula. The Skolemization of a formula
A in NNF, denoted by sk(A), is the result of replacing every occurrence of an
existential quantifier 3z in A by a term f(yi,...,y,) where f is a new Skolem
function symbol and Vi, = {y1,...,yn}. In case V3, is empty, the occurrence
of dx is replaced by a new Skolem constant symbol c.

For a set of formulas @, the Skolemization sk(®) is defined to be {sk(A) |
A€ P} A

Note that Skolemization has the property that ® and sk(®) are equisatisfi-
able for any set of formulas ®, but due to the introduction of Skolem symbols,
it is in general not the case that ® < sk(®). In the context of interpolation, we
can show the following;:
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Proposition 2.23. Let I' U A be unsatisfiable. Then I is an interpolant for
' A if and only if it is an interpolant for sk(I') U sk(A).

Proof. Since sk(-) adds fresh symbols to both I' and A individually, none of
them are contained in L(sk(T")) n L(sk(A)). Therefore the language condition
on the interpolant is satisfied in both directions.

We conclude the proof by showing that ® F A iff sk(®) F A for & € {I', A}
and Ae {I,—I}.

Let M be a model such that M F sk(®) and suppose that ® = A. Note that
the interpretation of the Skolem symbols of sk(®) in M presents witnesses for
the corresponding existential quantifiers in ®. Hence M F ® and consequently
M E A.

On the other hand, suppose that M F ® and sk(®) F A. We assume
that sk(®) only uses Skolem terms which are fresh with respect to M. Then
we can extend M to a model M’ of sk(®) by encoding the witness terms for
the existential quantifiers in ® in the Skolem terms of sk(®) in M’. Then
M’ E sk(®) and thus M’ F A. But as L(A) € L(M) < L(M’), M and M’
agree on the interpretation of A, hence M F A. ]

2.6.3.2 Interpolation and structure-preserving Normal Form
Transformation

In the following, we describe a common method for transforming a formula A
without existential quantifiers into CNF while preserving its structure. Note
that the restriction to formulas without existential quantifiers can easily be
established for arbitrary formulas by means of Skolemization and therefore
does not limit the applicability of this procedure.

In the following, we use the notational convention that {g} v {z} = {z}
expressing the intuition that the free variables Z of a formula B are comprised
of the not necessarily disjoint free variables y and z of B’s direct subformulas.

Definition 2.24. For every occurrence of a subformula B of a formula A
without existential quantifiers, introduce a new atom Lp(Z), where Z are the
free variables occurring in B. This atom acts as a label for the subformula.
For each of them, create a defining clause Dp:

If B is atomic:
Dp =Vz(—-B v Lp(z)) AVZ(B v —Lp(z))
If B is of the form —G:
Dp =Vz(Lp(z) v La(Z)) A VZ(—Lp(Z) v —La(T))

If B is of the form G A H:
Dp = Vz(-Lp(z) v Lg(y)) A VZ(—Lp(Z) v Lu(z)) A VZ(Lp(T) v
—La(y) v —Lu(z))
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If B is of the form G v H:
Dp = Vz(Lp(z) v ~La(y)) A VZ(Lp(Z) v =Lu(z)) A VZ(—Lp(z) v
La(y) v Lu(2))

If B is of the form G o> H:

Dp = Vz(Lp(z) v La(y)) ~ VZ(Lp(Z) v —Lg(2)) A YZ(—Lp(Z) v
—La(y) v Lu(2))

If B is of the form VzG:
Dp =V&Vx(—Lp(z) v Lg(Z,x)) A VEVe(Lp(Z) v —La(Z, )

Let Ds(4) be defined as A gexy4) D and 6(A) as Dyya) A VZLA(Z), where
Y(A) denotes the set of occurrences of subformulas of A. For a set of formulas
without existential quantifiers @, let §(®) = {0(B) | B € ®}. A

Note that each of the Dp is in CNF, hence also §(A) for any formula A
without existential quantifiers. We continue by working out the logical relations
of formulas and their image under A:

Lemma 2.25. Let M be a model of §(A) for a formula A without existential
quantifiers. Then M E A.

Proof. We show that M F B« Lp(z) for B € ¥(A). As M E §(A) directly
implies that M F Ly, this proves the lemma. Note that also M F Dy 4.
The proof is by induction on the structure of B. For the base case, let B
be an atom. Then D =VZ(—B v Lp(z)) A VZ(B v —Lp(z)), which due to
M E Dp immediately yields M F B < Lp(Z).
For the induction step, we illustrate a few cases as the remaining ones are
similar.

e Suppose B is of the form —G. Then:
Dp =Vz(Lp(z) v La(Z)) A VZ(—Lp(Z) v —La(T))

By the induction hypothesis, M F G < Lg(z). As M F Dp, it follows
that M F —=Lg(Z) < Lp(z),so M E -G < Lp(z) and M £ B < Lg(Z).

e Suppose B is of the form G v H. Then:
Dp =Vz(Lp(z)v—La(y)) AVE(Lp(Z)v—Lu(z)) AVZ(—Lp(Z)vLc(y)vLiu(z))

We can assume by the induction hypothesis that M F G < Lg(Z) as
well as M F H - Ly(Z). As M E Dp, we get that M F Lg(y) o Lp(z),
M F Ly(z)oLp(z) and M E Lp(Z) >(Lg(y) v Lg(z)). Therefore
M E Lp(z) < (G v H) and consequently M F Lp(Z) < B.
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e Suppose B is of the form VxG. Then:
Dp =VaVx(—Lp(z) v La(z,x)) A VaVz(Lp(Z) v —La(Z,z))

By the induction hypothesis, M & G <> Lg(Z,x). Since M F Dp and
as z does not occur in Lg(Z), M F Lp(z) < VzG, which is nothing else
than M E Lp(z) < B. 0

Lemma 2.26. Let A be a formula without existential quantifiers and Ma
a model in the language L(A). Extend My to a model M’ in the language
L(0(A)) such that for B € X(A), Ma E Lp(z) if and only if My = B. Then
My F Dxyay.

Proof. We proceed by induction on the structure of A. For the base case,
suppose that A is an atom. Then Dy 4) = Dy = Vi(ﬁA v LA(i)) A Vi(A v
—L4(z)). Consider the case that M/, F A. Then by construction of M/,
My E L4(z), hence D4 holds. In the case where M/, ¥ A, we know that
M ¥ Ly, so Dy holds as well.

For the induction step, consider the following cases. The remaining cases
can be argued analogously.

e Ais of the form G> H. Then Dy, = Ds(g) A Dsry A Da. By the
induction hypothesis, we get that M/, F Dxq) as well as M) F Dy).
It remains to show that M)y E Dy, i.e. M) EVZ(La(Z) v La(y)) A
VZ(La(Z) v =Ly (2)) AVZ(=La(Z) v —~La(y) v Lu(2)).

Suppose that M’y E A. Then M/, ¥ G or M, E H. By construction of
M',, we furthermore have that M’; F Lg(z) and M/, E =L (y) v Lr(Z).

Otherwise we have that M/ ¥ A, so M, F G and M/, ¥ H. Hence
M, £ —L(z), M’y E Lg () and M, ¥ Ly (2).

e A is of the form VzB. Then Dyxs) = Dxp) A Da. By the in-
duction hypothesis, M/, F Dy, ), and we conclude by showing that
My ENYZVz(—La(Z) v Lp(Z,2)) AVZVz(La(Z) v —Lp(Z,z)):
Suppose M’y = A. Then consequently, M/, F VYaxB, so M/, E La(Z)
and My E Lp(Z,x). Otherwise M’y ¥ A. In this case M/, ¥ Yz B, so
M\ ¥ La(z) and My ¥ Lp(z,x). O

Lemma 2.27. Let A be a formula and ® a set of formulas without existential
quantifiers such that L(A) < L(®). Then ® = A if and only if 6(®) F A.

Proof. If ® E A, then ® U {—A} is unsatisfiable and thus by the compactness
theorem, there exists a finite ® < ® such that ® v {—A} is unsatisfiable, or
in other words ®' F A. Extend ® such that L(A) < L(®'). Let B = A g C-
We show that B F A if and only if 6(B) F A by induction on the structure
of B.
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For the if-direction, assume that 6(B) F A and let M be a model such that
the L(B)-reduct of M, M|y, gy, is a model of B. Let M’ extend M|y,g) as in
Lemma and hence by that lemma, M’ E Dy ). By the construction of
M’ M' E Lp(z), therefore M' E §(B), so by the induction hypothesis M’ E A.
As L(A) < L(B) and M,’L(B) = M|L(B)v M E A.

For the only if-direction, assume that B F A and let M be a model such
that M F §(B). By Lemma M E B and hence M F A. O

Proposition 2.28. Let I' U A be unsatisfiable and contain no existential
quantifiers. Then I is an interpolant for I' U A if and only if I is an interpolant

for 6(T") U §(A).

Proof. As ¢ introduces fresh symbols for each I" and A, they do not occur in
any interpolant for I' and A. This establishes the language condition in both
directions.

Furthermore, Lemma [2:27] is applicable to interpolants I for I' U A due to
the language condition and demonstrates that T' E I if and only if §(T") E I as
well as A F —T if and only if §(T") £ —1I, which gives the result. O]

At this point, we can summarize the results which enable the use of resolution
based methods for calculating interpolants:

Theorem 2.29. Let I' U A be unsatisfiable. Then I is an interpolant for ' U A
if and only if I is an interpolant for §(sk(I")) U d(sk(A)).

Proof. Immediate by Proposition [2.28 and Proposition [2.23] O

2.7 Sequent Calculus

The famous sequent calculus was introduced in [Gen35|. Its use of sequents
in lieu of plain formulas allows for a natural mapping of the logical relations
expressed by the connectives to the structure of proofs.

Definition 2.30. For multisets of first-order formulas I' and A, I' - A is
called a sequent. In this context I' forms the antecedent, whereas A is referred
to as succedent.

A sequent calculus proof of a sequent I' - A is a tree such that the root is
the sequent I' - A, the leaves are axioms and each edge is labeled by a rule of
sequent calculus as given in Figure 2.2 such that the nodes connected by the
edge match the given form.

A sequent I' - A is called provable if there exists a sequent calculus proof
of I' - A. A

The rules of sequent calculus are as follows:
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Axioms
A A Ht=t
Cut
'-AA AY -1
Y- A
Structural rules
e Contraction
IAJA- A . FI—A,A,AC.T
TLA-A ©° TFAA '
e Weakening
r-A '-A :
T A-A Vil A4 "’
Propositional rules
e Negation
'-AA l ATEA Ly
—AT-A F'-A—-A
e Conjunction
I'NA,BF A . '-AA Y+1,B
TLANBEA ™ LS AILAAB
e Disjunction
IAE A S,B+1I y I'-AAB Ur
IS, AvBFATI 7 I'-AAvB
e Implication
' AA Y, B1I . INNA+AB .
IS, A>BE AT TEAASB
Quantifier rules
e Universal
L Alz/t] = A l I'- A Alz/y]
F,VxAI—AV’ ' A VzA vir

e Existential

D Alz/yl A ' AAlz/t]
T,3zA A 0! I~ A, dzA T
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(provided no free variable of ¢ becomes bound in A[x/t] and y does not
occur free in I'; A or A)

Equality rules

o Left rules
LAt - A YHI,s=t

=:1

I,%, Als], - AT !

I Als], = A EI—H,Szt_.l

[,%, Alt], - A TI B

e Right rules

PEAAlL, SrMs—t

.5 - AL As], o

'~ A Als], YHI,s=t .

=1y

Fa )Y = Aa H7 A[t]P
(provided no free variable of s or ¢ becomes bound in A[t], or A[s],)

Figure 2.2: The rules of sequent calculus

For the purposes of this thesis, we usually consider the cut-free fragment of
sequent calculus.

Theorem 2.31. Cut-free sequent calculus is sound and complete.

Proof. See [Tak87]. O






CHAPTER 3

Reduction to First-Order Logic
without Equality

A common theme of proofs is to avoid the tedious effort of proving the result
from first principles by reducing the problem to one that is easier to solve.
In this instance, we are able to give a reduction for finding interpolants in
first-order logic with equality to first-order logic without equality, where it
is simpler to give an appropriate algorithm. This method is due to Craig
([Cra57al [Cra57h]).

In order to simplify notation, we shall consider constant symbols to be
function symbols of arity 0 in this section. The general layout of this approach is
the following: From two sets I' and A, where I' U A is unsatisfiable, we compute
two sets IV and A’ which do not make use of equality but simulate the effects
of equality in I' and A via axioms. In the process of this transformation, also
function symbols are replaced by predicate symbols with appropriate axioms
to make sure that the behavior of these function-representing predicates is
compatible to the one of actual functions. Now an interpolant for IV and A’
can be derived using an algorithm that is only capable of handling predicate
symbols as all other non-logical symbols have been removed. Since the additional
axioms ensure that the newly added predicate symbols mimic equality and
functions respectively, we will see that the occurrences of these predicates in
the interpolant can be translated back to occurrences of equality and function
symbols in first-order logic with equality in the language of I' and A, thereby
yielding the originally desired interpolant.

3.1 Translation of formulas

As we shall see in this section, first-order formulas with equality can be trans-
formed into first-order formulas without equality in a way that is satisfiability-
preserving, which is sufficient for our purposes.
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First, we define axioms in a language with fresh symbols which allows for
simulation of equality and functions in first-order logic without equality and
function symbols:

Definition 3.1 (Translation of languages). For a first-order language £ and
fresh predicate symbols E and Fy for f € FS(L), T(L) denotes (L U{E} U{F} |

feFS(L)P\{=} v FS(L)). A

Definition 3.2 (Equality and function axioms). For a first-order language £
we define the following axioms in T(L):

Fax(£)© | JVady(Fy(z,y) A (V2(F(z,2) 2 E(y, 2))))
feFS(L)

Refl(P) af Ve P(x, )

Congr(P) def Vo1Vy1 - VZar(p) VWar(p) (B (21, 91) A -0 A E(Tar(p), Yar(p))) 2
(P(:El, IR Iar(P)) Dp(yla s 7yar(P))))

Eax(£) “ Refl(E) u | ] Congr(P) A
PePS(L)U{E}uU
{Fy|feFS(L))

Refl(P) will be referred to as reflexivity axiom of P, Congr(P) as congruence
axiom of P. As any model of Eax (L) requires Refl(F) and Congr(E), E is also
symmetric and transitive in the model:

Proposition 3.3. In every model of Refl(E) and Congr(E), E is an equiva-
lence relation.

Proof. Let M be a model of Refl(F) and Congr(E). Then M clearly is reflex-
ive. Dueto M E Congr(E), M E VaVy(E(z,y)AE(z,x)) D(E(x,z) > E(y, x)).
As we know that E is reflexive, this simplifies to M F VaVy(E(z,y) 2 E(y, x)),
ie. E is symmetric in M. We show the transitivity of £ by another in-
stance of Congr(E): M E VaVyVz((E(y,z) A E(y,2)) 2(E(y,y) 2 E(z, 2))),
As E is reflexive and symmetric, we get that M F VaVyVz((E(z,y) A
E(y,z)) 2 E(z,2)). O

We continue by defining the translation procedure for formulas:

Definition 3.4 (Translation and inverse translation of formulas). Let A be a
first-order formula and E and Fy for f € FS(A) be fresh predicate symbols.
Then T(A) is the result of applying the following algorithm to A:
1. Replace every occurrence of s =t in A by E(s,t)
2. As long as there is an occurrence of a function symbol f in A:
Let B be the atom in which f occurs as outermost symbol of a term.
Then B is of the form P(s1,...,5j—1, f(f),Sj+1,-..5m). Replace B in A
by Jy(F¢(t,y) A P(s1,...,5j—1,Y,Sj+1,---5m)) for a fresh variable y.
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Moreover, let the inverse operation T-!(B) for formulas B in the language
T(L(A)) be defined as the result of applying the following algorithm to B:
1. Replace every occurrence of E(s,t) in B by s = t.
2. For every f € FS(A), replace every occurrence of Jy(F¢(t,y) A P(s1,...,
Si—1,Y,854+1,--- Sm)) in B by P(Sl, sy S5—1, f(a, Sj+1y--- Sm).
3. For every f e FS(A), replace every occurrence of Fy(t,s) by f(t) = s.

For sets of first-order formulas ®, we define T(<I>)d§f Usee T(A) and
- def -
TH(®) = Useo T (A). A

Remark. Let £ be a language. Step [2| and [3| of T-! are both concerned with
replacing occurrences of Fy by occurrences of f for f € FS(L), but are relevant
in different contexts.

Step [2| of T-! is the precise inverse of step [2| of T in the sense that for any
formula A, T-1(T(A)) = A as we will show in Lemma In this context, step
has no effect, as all occurrences of F'y have been introduced by T(-) and are
consequently of exactly the form that is handled by step 2] So the algorithm
is in this regard complete even without step

On the other hand, if arbitrary formulas in the language T(L) are given,
they in general do not match that pattern and are only translated to £ in step
Note that T-! without step [2| yields a complete algorithm, as any formula
that is handled there can also be processed in step In such a procedure,
T1(T(A)) and A are in general not syntactically equal for formulas A but only
logically equivalent. A

Lemma 3.5. Let A be a first-order formula and ® be a set of first-order
formulas. Then TY(T(A)) = A and TH(T(®)) = & .

Proof. Step 1 and 2 in the algorithms T and T-! are each concerned with a
different set of symbols and therefore do not interfere with each other. More-
over, the respective steps in both algorithms are the inverse of each other.
For step 1, this is immediate and for step 2, consider that all occurrences of
Fy for f € FS(A) in T(A) have been introduced by T and are consequently
of the form Jy(F¢(t,y) A P(s1,...,5j—1,Y,Sj+1,---5m)), which is replaced by
P(s1,...,8j—1, f(£),8j+1,..-5m) by TL. As no occurrences of Fy remain, step
3 of T-! leaves the formula unchanged. O

Definition 3.6 (Translation of formulas including axioms). For first-order

def
formulas A, let Tax(A) = (/\BeFAX(L(A)) B) A </\BeEAX(L(A)) B) A T(A) and
def

for sets of first-order formulas ®, let Tax(P) = Fax(L(P)) U Eax(L(®)) U
T(®). A

Note that Tax(A) contains neither the equality predicate nor function
symbols but additional predicate symbols instead. More formally:
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Lemma 3.7.
1. Let ® be a set of first-order formulas. Then Tax(®) is in the lan-
guage T(L(®P)).
2. If ¥ is in the language T (L), then T-1(¥) is in the language L.

Proposition 3.8. Let ® be a set of first-order formulas.
1. If ® is satisfiable, then so is Tax(P).
2. Let L be a first-order language and ® a set of first-order formulas in the
language T(L). If Fax(L£) UEA«(L) U ® is satisfiable, then so is T-1(P).

Proof. Suppose @ is satisfiable. Let M be a model of ®. We show that Tz (®P)
is satisfiable by extending M to the language L(®) u {E} u {Fy | f € FS(A)}
and proving that the extended model satisfies Tax(®P).

First, let M F E(s,t) if and only if M F s = t. By reflexivity of equality, it
follows that M F Refl(E). As any predicate, in particular £ and F for every
f € FS(®), satisfy the congruence axiom with respect to =, by the definition
of £ in M, they satisfy the congruence axiom with respect to FE. Therefore
M is a model of Eax(L(®)).

Second, let M E Fy(z,y) if and only if M E f(z) = y for all f e FS(P).
Since M is a model of @, it maps every function symbol f to a function, which
by definition returns a unique result for every combination of parameters. This
however is precisely the logical requirement on Fy stated by Fay(L(®)), hence
M is a model of Fay(L(®)).

Lastly, we show that M E T(A) for all A€ ®. By the above definition of F
in M, step[l] of the algorithm in Definition yields a formula that is satisfied
by M as it satisfies every formula of ®. For step suppose P(s1,...,s;-1, f(t),
Sj+1,.--5m) does (not) hold under M. Let y be such that M E f(t) = y.
By our definition of Fy under M, M & Fy(t,y) with this unique y. Hence
y(Fr(t,y) A P(s1,...,5j—1,Y;Sj+1,- - - Sm)) does (not) hold under M.

For 2, suppose Fax(£) u Eax(£) u @ is satisfiable and let M be a model
of it.

First, note that as M F Eax(L), by Proposition Iy (F) is an equiva-
lence relation. Let D be the domain of M. We build a model M’ whose domain
D)y is the congruence relation of Djys modulo Zy;(E). The interpretation Zy
of M’ is obtained from Z,; by replacing every occurrence of a domain element d
by its respective congruence class with respect to Zys(F). As M E Eax(L), Zpp
satisfies the congruence axioms with respect to every function and predicate
symbol, and is therefore well-defined. Due to this construction, M’ E s = ¢ if
and only if M F E(s,t) for all terms s and t.

Second, let M E f(t) = s if and only if M E Fy(t,s) for all f € FS(L).
As by assumption M is a model of Fay(A), we know that for every ¢, some
s with M E F(t,s) exists and is uniquely defined. Hence f in M refers to a
well-defined function.

Lastly, to show that M E T-1(®), consider that the interpretations of the
predicates F and = coincide in M. Furthermore, let B be an occurrence of
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Jy(Fr(t,y) A P(s1,...,8j-1,Y,Sj+1,--.5m)) for some f € FS(L) in ®. Then
by the above definition of f in M, we have that B is in M equivalent to
Jyf(t) =y) A P(s1,..-,8j-1,Y,Sj+1,- - - Sm)), which due to f being a function
is equivalent to M F P(s1,...,sj-1, f(£),8j+1,---5m)).

Similarly, let B be an occurrence of Fy(t,s) in ®. Then by our above
definition of f in M, we have that M E f(t) = s iff M E B. O

Corollary 3.9. Let ® be a set of first-order formulas. Then ® is satisfiable if
and only if Tax(P) is satisfiable.

Proof. The left-to-right direction is directly given in Proposition 3.8 For
the other direction, consider that by Proposition T-Y(T(®)) is satisfiable,
which by Lemma [3.5] is nothing else than ®. O

3.2 Computation of interpolants

For the proof of the interpolation theorem by reduction we require an algorithm
that operates in first-order logic without equality and function symbols, which
we describe in this section.

Remark. As the idea of this reduction is to simplify the problem by amongst
others not considering function symbols, resolution-based methods can not
be employed in a direct manner. This is because function symbols appear
naturally in them as they usually handle existential quantification by means
of Skolemization, i.e. a new function symbol is introduced for every occurrence
of an existential quantifier in the scope of a universal quantifier. Translating
the skolemized formulas to a language without function symbols as described
in Definition [3.4]is of no avail since this translation introduces new existential
quantifiers for every function symbol it encounters, necessitating Skolemization
yet again. A

Lemma 3.10. Let I' and A be sets of first-order formulas such that the equality
symbol does not occur in them and I' = A is provable in sequent calculus. Then
there exists a proof of I' = A that does not contain the equality symbol.

Proof. By the soundness of sequent calculus, we obtain that I' F A for some
A € A. But as sequent calculus without equality rules is complete for first-
order logic without equality, there is a proof m of I' = A in this calculus. We
extend m by a series of weakenings to a proof 7’ of I' — A. However 7’ is
obviously also a proof in sequent calculus with equality rules. ]

We now show that interpolants can be computed by means of a sequent
calculus based procedure by Maehara as described in [Tak87, Lemma 6.5]. It
is slightly stronger than the required statement as it allows for interpolants of
partitions of sequents:
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Definition 3.11 (Partition of sequents). A partition of a sequent I' - A is
denoted by ((I'1; A1), (I'2; Ag)), where I't w 'y =T and A w Ay = A. JAN

Lemma 3.12 (Maehara). Let T’ and A be sets of first-order formulas without
equality and function symbols such that I' = A is provable in cut-free sequent
calculus. Then for any partition ((T'1; A1), (Ta; Ag)) there is an interpolant I
such that

1. T'1 + A4, 1 is provable

2. Iy, I + As is provable

3. L(I) - L(Fl,Al) N L(FQ,AQ)

Proof. We prove this lemma by induction on the number of inferences in a
cut-free proof of I' - A. By Lemma we can assume that no equality
symbol occurs in the proof, so equality rules need not be considered.

Base case. Suppose no rules were applied. Then C' +— D is of one of the form
A+ A. We give interpolants for any of the four possible partitions:

L (A5 4),(): =L
2 ((), (A A)): T =T
3. ((A), (4)): T = —A
1 {(A), A T = A

Structural rules. Suppose the property holds for n rule applications and the
(n + 1)th rule application is a structural one.

e The last rule application is an instance of ¢ : [. Then it is of the
form:
AAEFA
A A
There are two possible partition schemes: of T', A - A:
1. x = ((T'1,4;Aq), (T'9; Ag)). By the induction hypothesis, we
know that there is an interpolant I for the partition ((I'1, A, A; A1),
(T'2; Ag)) of the upper sequent. I serves as interpolant for x as
well.
2. x =((T'1; A1), (T2, A; Ag)). By a similar argument, we get that
there is an interpolant I for ((I'1;Ayp), ("2, A, A; Ag)), which
again is also an interpolant for .

c:l

The case of ¢ : r is analogous.

e The last rule application is an instance of w : . Then it is of the
form:
'-A .
r—a4 "
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By the induction hypothesis, there exists an interpolant I for any
partition ((I';; Ay), (I'2; Ag2)) of I' = A. Clearly I remains an inter-
polant when adding A to either Ay or As.

The case of w : [ is analogous.

Propositional rules. Suppose the property holds for n rule applications and
the (n + 1)th rule application is a propositional one.

e The last rule application is an instance of — : [. Then it is of the
form:
'-AA
AT KA

-

There are two possible partition schemes of I', = A — A:

1. x = ((I'1,—4;A1),(T2; Ag)). By the induction hypothesis,
there exists an interpolant I for the partition ((I'1;Aq,A),
(T'2; Ag)) of the upper sequent. Clearly I is an interpolant
for x as well.

2. x = ((T'1; A1), (T2, —A; Ag)). A similar argument goes through.
The case of — : r is analogous.

e The last rule application is an instance of > : [. Then it is of the
form:

T-AA S BrHT
.2, ASBE AT

ol

There are two possible partition schemes of 'y A B + A:

1. x = ((I'1, 21, A2 B; Ay, 11h), (T2, X9; Ao, II5)). By the induc-
tion hypothesis, there is an interpolant I; for the partition
((T'1; A1, A), (Tg; Ag)) of the left upper sequent. Hence for Iy,
we have that I'y - A1, A, I1 and I1,I's - Ag are provable.
Moreover, we also get by the induction hypothesis that there is
an interpolant Iy for the partition (X, B;I1;), (39;II2)) of the
right upper sequent. Therefore ¥1, B + I, I3 and I3, 39  Ilo
are provable.

Using these prerequisites, we first establish that I; v I fulfills
conditions [T and [2] of an interpolant for x:

Fl |_A17A7-[1 El,B|_Hla-[2

FhEl’ADB H A17H17117]2
I',%,AoB+ A1, v I

I, Ty = Ag 15,39 Iy
Iy v 13,19, %9 = A, Il

Vo
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To show that also condition [3]is satisfied, consider that by the
induction hypothesis, it holds that:

L(Il) - L(Fl,Al,A) N L(FQ,AQ)
L(I2) - L(El,B,Hl) N L(EQ,HQ)
Therefore:
L(Il) U L(IQ) e (L(Fl,Al,A) M L(FQ,AQ)) U (L(El,B,Hl) N L(ZQ,HQ))

4
L(Il) U L(IQ) c (L(Fl,Al,A) U L(El,B,Hl)) M (L(FQ, Ag) U L(EQ,HQ))

=

L(Il \Y IQ) < L(Fl, Zl,ADB,AhHl) N L(FQ,EQ,AQ,HQ)

2. x = ((T'1,31;A1,111), (T'2, 39, A D B; Ay, I15)). The argument
for this case is similar using I; A I as interpolant.

For the other binary connectives A : I, A:7, v :I, v :rand D:r,
similar arguments go through, where the interpolant is always either
the conjunction or the disjunction of the interpolants of partitions
of the preceding sequents.

Quantifier rules. Suppose the property holds for n rule applications and the

(n + 1)th rule application is a quantifier rule.

e The last rule application is an instance of V : [. Then it is of the
form:

I Alz/yl = A

[VzAEF A

Note that since we have excluded function symbols from occurring
in the final sequent (and constant symbols are treated as function
symbols of arity 0) and by completeness there is a proof of the
sequent in the language of the sequent, we can assume that no
function or constant symbols occur in this proof. Hence quantifiers
are only instantiated by variables.

Vil

There are two possible partition schemes of T, Vz A - A:

1. ((I',VxA; A1), (T'2; Ag)). By the induction hypothesis, there
is an interpolant I of the partition ((I'1, A[z/y]; A1), (T'2; A2)).
Hence for I, 'y, Alx/y] = Aq,I and I,Ty - Ay are provable.
By an application of V : [ to the first sequent we get I'y, Vo A
A1, 1, so I satisfies conditions [I] and [2] of being an interpolant
for x.

In order to show that also L(I) < L(I'1,Vz A, A1) n L(I'2, Ag),
consider that by the induction hypothesis, it holds that L(1) <



3.3. Proof by reduction 29

L(T'y, Alz/y], A1) n L(T'2, Ag). As free variables are not con-
sidered to be part of the language, L(VzA) = L(A[x/y]).

2. ((T'1;A1), (T2, VzA; Ag)). This case can be argued analogously.
In the case of 3 : r, a similar argument goes through.

e The last rule application is an instance of V : . Then it is of the
form:
' A, Alz/y]
' A VzA
where y does not appear in I', A or A.

There are two possible partition schemes of I' - A, Vz A:

1. x = ((T'1;A1,VzA), (T'2; Ag)). By the induction hypothesis,

there exists an interpolant I of the partition ((I'1; A1, A[z/y]),
(T'2; Ag)) of the upper sequent. Hence for I, 'y = Ay, Alz/y], I
and I,I's - Ay are provable.
As y does not occur in I" or A and consequently by condition
does not occur in I, we may apply the V : r rule to the former
sequent to obtain I'y — Aq,VxzA,I. Hence I is an interpolant
for x as well.

2. ((T'1;A1), (T'2; Ag, Y2 A)). This case can be argued analogously.

In the case of 3 : [, a similar argument goes through. O

This allows us to state the central theorem of this section:

Theorem 3.13. Let I' and A be sets of closed first-order formulas without
equality and function symbols such that T' U A is unsatisfiable. Then there is
an interpolant for I' and A.

Proof. As I' U A are unsatisfiable, by the compactness theorem, there exists
a finite conjunction I'* of formulas of T as well as a finite conjunction A* of
formulas of A such that I'* A A* are unsatisfiable. We may also write this as
' E—-A*

By the completeness of cut-free sequent calculus, there is a cut-free proof
of I'* - —A*. So by Lemma there is an interpolant I for the partition
((*;), (; —A*)) such that I - I, I - —A* and L(I) < L(I'*) n L(A*).
Clearly then also A* - —1I holds.

As T'* and A* are merely conjunctions of formulas of I' and A respec-
tively, we get that ' £ I, A F —TI as well as L(I) < L(T") n L(A), which by
Proposition [2.4] gives the result. O

3.3 Proof by reduction

Using the results of the previous sections, we can now give a proof of the
interpolation theorem:
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Theorem 2.3 (Reverse Interpolation). Let I' and A be sets of first-order
formulas such that I'u A is unsatisfiable. Then there exists a reverse interpolant
for T and A.

Proof. Since I' U A is unsatisfiable, by Proposition Tax(I' U A) is unsat-
isfiable.
Tax(TUA) & {Fax(LT U A)),Eax(LTUA)} T U A)
< {Fax(L(I') v L(A)), Eax(L(T) u L(A))} v T(I') u T(A)
< {Fax(L(I))
< {Fax(L(T))
< Tax(T) U Tax(A)

~—~

Hence Tax(T') U Tax(A) is unsatisfiable as well. By Lemma[3.7.1] Tax(T') and
Tax(A) contain neither function symbols nor the equality symbol. Hence by
Theorem [3.13] there is an interpolant I such that

1. Tax()ET
2. Tax(A)E —I
3. L(I) = L(TAX(F)) N L(TAX(A))

We now show that T-!(I) is an interpolant for I" and A.

Tax(T") E I is equivalent to Tax(I') u {—I} being unsatisfiable. Through
the unfolding of T ax(T"), we get that {Fax(L(T")), Eax(L(T)} uT(T)u{—1}1is
unsatisfiable. This set of formulas can now be translated back to the original
language with the equality symbol and function symbols. More formally, since
L(—I) € L(Tax(T')), we can apply Proposition by considering T(I") u
{=I} as @ to conclude that T-1(T(I') u {—I}) is unsatisfiable. By pulling
T inward and an application of Lemma we get that T u {T}(—=I)} =
I'u {=TY(I)} is unsatisfiable. Therefore T' = T1(I).

For A, an analogous argument goes through and so from Tax(T) E =1 we
can deduce that A E =T~ (I).

By item (3} I is in the language L(Tax(I")) n L(Tax(A)), which by Lemma
3.7.1]is T(L(T)) n T(L(A)).

T(L(T)) A T(L(A)) =

L
L

L) A L(A) v {E} v {Ff | feFS(L() nL(A))}

(
(

r) v {B} v {Fy | feFSM)\ ({=} v FS()) n
A) (B} v {Fy | feFS(A)})\ ({=} v FS(A)

(

< )

(L) A L) U (B} U {Fy | FeFSI) AFS(A)}) \ ({=} v FS(T) v FS(a))
( ) ( }uFS(()mL(A)))

T(L(T) n L(A))

A Pax(L(A)), Eax(L(D) A Eax(L(A))} U T(T) U T(A)
JEax(L)} U T(T) U {FAx(L(A)), Eax(L(A))} U T(A)
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As [ is in the language T(L(T") n L(A)), by Lemma T-1(I) is in the
language L(T") n L(A). O






CHAPTER 4

Interpolant extraction from
resolution proofs in two phases

In [Hua95|, Huang proposes an algorithm for computing interpolants of two
disjoint sets of first-order formulas I' and A, where I" U A is unsatisfiable, by
traversing a resolution refutation of I' U A. We present his proof in a modified
form in this section and in a form closer to [Hua95| in Appendix [Al The central
difference between these versions lies in the treatment of the interplay of substi-
tutions and liftings in the proof of correctness. While in [Hua95|, propositional
deductions are employed, in which all substitutions are trivial, we provide a
method which allows for commuting substitutions and liftings under certain
conditions. The underlying algorithms of these two proofs however coincide.

4.1 Layout of the proof

The underlying algorithm produces in a first phase propositional interpolants
inductively for every clause which occurs in the resolution refutation. These
interpolants are propositional in the sense that they only obey the language
restriction on predicates and may contain colored terms. The propositional
interpolant assigned to the last clause, the empty clause, is a propositional
interpolant for the initial clause sets.

The second phase of the algorithm addresses the colored terms still contained
in the propositional interpolant. These are eliminated (lifted) by replacing
them with bound variables whose quantifiers are subject to a certain ordering.

4.2 Extraction of propositional interpolants
We define a procedure PI, which produces propositional interpolants from

resolution refutations and is based on the “Interpolation algorithm” in [Hua95].
It is structured in the two subprocedures Plini; and Plggep:
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Definition 4.1 (PlL,i). For clauses C' € I'U A, we define Pl (C) as follows:

dcf{L ifCel A

Phael@) =9+ oen

Definition 4.2 (Plgp). Let ¢ be an inference of a resolution refutation of

I' U A which derives C from the clauses Cy,...,C,, where n = 1 if ¢ is a
factorization inference and n = 2 in case of a resolution or paramodulation
inference. Let I = I4,..., I, be formulas.

Then Plgtep (e, 1) is defined according to the following cases:

Resolution. If ¢ is a resolution inference of Cy : D vl and Cy : E v =’ with
o = mgu(¢), then Plgep (¢, I1, I2) is defined as follows:

1. If [ is I'-colored: Plgtep(t, Il,[2> [Il v I]o
2. If I is A-colored: Plgep(t, Il,Ig) [I1 A Iplo
3. If [ is gray: PIStep(L,Il,Ig) = [(l AIp) v (U A L))o

Factorization. If ¢ is a factorization inference of Cy : IvI'v D with ¢ = mgu(¢),
then Plgtep (¢, I1) def Io.

Paramodulation. Suppose that ¢ is a paramodulation inference of Cq : s =
tv D and Cy : E[r], with 0 = mgu(¢) such that so = ro. Let h[r] be the
maximal colored termﬂ in which 7 occurs in E[r],. Then Plgep (¢, I1, I2)
is defined according to the following case distinction:

Plaep(t, 1, 1) < [(s = tALy) v (s # tal))]ov (s = tah[s] # h[t])o

2. If h[r] is I'-colored and h[r] occurs more than once in (I3 v E[r],)o:
Plytep(t, 1, 1) < [(s = tALp) v (s # tAL)]o A(s # tvh[s] = h[t])o

3. If r does not occur in a colored term in E[r], which occurs more

than once in (Iy v E[r],)o:

Plaep(t, 11, 1) L [(s =t A L) v (s #t A I1)]o A

1. If h[r] is A-colored and h[r] occurs more than once in (Iy v E[r]p)o:
]

Definition 4.3 (Propositional interpolant extraction PI). Let 7 be a resolu-
tion refutation of ' U A. PI(r) is defined to be PI(OJ), where [J is the empty
clause derived in 7. For a clause C' in 7, PI(C) is defined as follows:

Base case. If C e ' U A, then PI(C) = def Pyt (C).
Induction step. If C' is the result of an inference ¢ using the clauses C', ..., Cy,
then PI(C) & Plyep (1, PI(CY), ..., PI(C,)). A

LCf. Definition for a definition of the notion of maximal colored terms.
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For an illustration of the application of PI to a resolution refutation, see
Example

Remark. The control flow of the procedure PI is predominantly determined by
the coloring of literals. In this context, two distinct but similar interpretations
of the notion of color are viable: On the one hand, one can employ the usual,
symbol-based interpretation as given in Definition [2.6), where a (predicate)
symbol is considered gray if there is at least one formula in I' as well as at
least one formula in A which contain the symbol, and otherwise the symbol
is considered to be colored in the respective color. Note that this does not
necessarily capture the logical meaning of the symbol, as the symbol then
is allowed to occur in the interpolant even if among the clauses used in the
resolution refutation, only for instance clauses from I' contain the symbol. It
is obvious that one can then also find an interpolant which does not contain
the symbol by computing an interpolant for IV and A, where I' is derived from
I'" by omitting any formula containing that symbol. Clearly the refutation of
I' U A is also a refutation of IV U A and an appropriate interpolant can hence
easily be computed.

However in [Hua93|, a stricter notion of coloring is employed. There, a
predicate symbol is colored based on its occurrence: All occurrences of pred-
icate symbols in formulas in I' (A) are considered to be I'-(A-)colored. A
predicate symbol occurring in a clause in the resolution derivation is ®-colored
if its predecessor in the preceding clause is. Factorization inferences create
gray literals in case the factorized literals are respectively I'- and A-colored.

The definition above can be understood in this sense by only considering a
minor adaption: Resolved or factorized literals [ are to be read as I'-(A-)colored
only if both resolved or factorized literals [ and !’ in fact are T'-(A-)colored
and otherwise to be treated as gray. This is necessitated by the fact that in
our definition, we may conclude from the circumstance that two resolved or
factorized literals have the same predicate symbol that they also do possess
the same coloring. In the definition due to [Hua95|, this is in general not the
case. A

4.3 Lifting of colored symbols

As PI only fixes the propositional structure of the interpolant but still contains
colored symbols, we define a procedure which replaces colored terms by vari-
ables, which eventually will become bound by appropriate quantifiers. This
replacement is referred to as lifting:

Definition 4.4 (Lifting). Let ¢ a formula or a term and s1, ..., s, the ®-terms
which have a maximal ®-colored occurrence in .

Let furthermore zynfold-ife(s;)s - - - » Zunfold-lift(s,,) P€ fresh variables, referred
to as ®-lifting variables or lifting variables if the coloring is clear from the
context.
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We first define the function unfold-lift, which replaces lifting variables oc-
curring in colored terms by the term they lift in order to avoid lifting variables
in the index of other lifting variables and is defined as follows for terms ¢:

t if ¢ is a constant ¢

if ¢ is a non-lifting variable x
f(unfold-lift(¢y), . .., unfold-lift(¢,,)) ift = f(t1,...,tm)
unfold-lift(s) if ¢t is a lifting variable z

unfold-Lift ()

The lifting of the formula or term ¢, denoted by ¢3[¢], is an abbreviation
for 03 [p, Z] where Z = {s1,...,s,}. £3[p, Z] is defined as follows:

© ifZ =y
Glo, Z ]def 03[, Z\{si}] if s; € Z such that s; is not subterm of another

term in Z and ¢ is created from ¢ by replacing
every occurrence of s; by Zunfold-life(s;)

To simplify the syntax, we sometimes write {3 [¢] or £[¢] if the lifting variables
or the lifting variables and the color of the terms to lift are clear from the
context or not of essence. A

We usually lift A-terms by variables with the letter x and I'-terms with
the letter y. If the lifting is not specific to a color, we use variables with the
letter z. In order to illustrate this definition, we present a examples:

Example 4.5. Let f and a be I'-colored, g and b be A-colored and h be gray.
1. Consider the lifting of the I'-terms of the formula P(a, h(g(a)), f(b,u)):

fy[ (a, h(g(a)), f(b,u))] =

(r[P(a, h(g(a)), f(b,u)), {a, f(b,u)}] =
gly“[P(yunfold lift(a)> h(9(Yunfola- lift(a ))af( u)), {f(b,u)}] =
(P[P (Ya, M(9(ya)), £ (b, w)), {f(b,u)}] =
CE[P (Yas (9(Ya))s Yuntold-tise(£ (b, u)))> D] =
CLP (Yar 1(9(Ya))s Yo, ) D] =
P(Wa h(9(Wa)) Y5 (b, u))

2. By lifting the A-terms of P(ya, h(9(Ya)), Y¢(s,u)), We witness the appli-
cation of the function unfold-lift:

Ex[ (Yar M(9(Wa)), Yr b, u))] =
CALP(Yas 1(9(Ya)), Y s, u))> {9(Wa) }] =
CA[P (ya,h( Tunfold-lift(g(ya)))s YF (b, u))s D] =
CALP( (Tg(a))s Y b)) D] =

yaahmg
P(Ya, (ng )yfbu) A
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Some elementary properties of liftings are described by the following lemmas:

Lemma 4.6 (Commutativity of lifting and logical operators). Let A and B
be first-order formulas and s and t be terms. Then it holds that:

1. U3[-A] & —l5[A]
2. l3[Ao Bl & ((3[A] o t5[B]) foroe {A, v}
5. G35 = 1] = (G151 = G3[1) =

We furthermore require a means for commuting substitutions and liftings.
This however can not be achieved in a direct manner. The following examples
illustrate that in general for a term ¢, it is not the case that (3 [to] = (3 [t]o.

Below, we assume that substitutions unless explicitly defined otherwise do
not affect lifting variables. This is justified as all substitutions which occur in
resolution refutations have this property.

Example 4.7.

1. Let t = f(u) be a I-term and ¢ = {u > a}. Then ([to] = L[ f(u)o] =
K?Ii[f(a)] = Yf(q)- However Elzi[t]a = E%[f(u)]a = Yrw)0 = Yf(u)-
This suggests that substitutions also have to be applied to lifted terms.

2. Let s = u be a variable and o = {u — ¢}, where ¢ is a I'-term. Then
Wlso] = tL[uoc) = E[c] = ye. But t4[s]o = tL[ulo = uo = c.

In this case, we see that terms in ran(o) have to be lifted when the
substitution is pulled out of the lifting.

3. Let r = (7[f(u)] = Y and 0 = {u — a}. Then ({[ro] = t{[yswo] =
G lyrw)] = Ypw)- Here however, £7[rlo = LL[ysw)lo = Yrw)o = Ys(u)-
This shows that obviously, as lifting variables are affected neither by

substitutions nor liftings, they can simply be interchanged. Note however
that in case[l] lifting variables have to be modified. A

As a first step towards a solution, we define a substitution which acts as a
tool to ensure that modifications to terms are also applied to lifting variables.
This is vital for Item [I] of Example [4.7]

Definition 4.8 (7). For a substitution o we define the infinite substitution
7(o) with dom(7(0)) = dom(o) U {z5 | so # s} as follows for a variable z:

(o) xo x is a non-lifting variable
x7(0) =
zto  x is a lifting variable z;

If the substitution o is clear from the context, we abbreviate 7(o) by 7.
For inferences ¢, we define 7(¢) to be 7(mgu(¢)). A
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Example 4.7 (continued). Using 7(c), we can solve the first example as
Ggltr(o)] = Glf(@)7(0)] = Glf(a)] = 2zpa) = 2f@o = 2fw7(0) =
Ca[f(x)]T(0) = (3[t]T(0). However the second example can not be dealt
with analogously. AN

Now we implement the idea motivated by Item [2] of Example [4.7] by lifting
also the terms introduced by 7. It turns out that in this formulation, the
following property holds for any formula or term:

Lemma 4.9. For a formula or term ¢ and a substitution o such that T = 7(0),
([ep]r] = tler].

Proof. Note that as liftings and substitutions only apply to terms, it suffices
to show this property on terms. We proceed by induction on the structure of
a term .

e Suppose that ¢t is a gray constant or function symbol of the form
f(t1,...,ty). Then we can derive the following, where (IH) signifies
a deduction by virtue of the induction hypothesis.

eft)T] = Ll f (t1, - - - s tn)]7]
=L f(l[t1]T, ... . C[tn]T)]
= PR, - O] )
Bruitrr],... ftar))
— ([f(t, . t)T]
= ([t7]

e Suppose that ¢ is a colored constant or function symbol. Then:

C[E)T] = ClziT] = Uzi0) = 210 = 27 = L[t7]

e Suppose that ¢ is a variable x. Then:

e Suppose that ¢ is a lifting variable z;. Then:

L[l z]T] = £ 7] O

The formulation of this Lemma can however be improved. First, note that
the outer lifting of the expression ¢[¢[¢]7] is only applied to terms introduced
by 7, which motivates the following definition:
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Definition 4.10 (7%¢). For a substitution o, we define the infinite substitution
7'® (o) on variables z as follows: 27 (o) ©f [z7(0)].

If ¢ is clear from the context, we just write 7¢® and as usual, we may also
omit &. A

Lemma 4.11. For a formula or term o, {[p]Tt = {[pT].
Proof. Immediate by Lemma and the definition of 7°. O

Second, if we can exclude the case of lifting variables, we can apply o as
desired:

Lemma 4.12. For a formula or term v and a substitution o, such that no
lifting variable occurs in 1 or ran(o), L[1]7¢ = L[Yo].

Proof. Immediate by and the definition of 7. O

Note that if the formula or term contains lifting variables, it is not possible
to perform the commutation with o as in Lemma [£.12] As illustrated in Item [3]
of Example , we here have that (3[z0] = (3[2] = 2, but €3[z7¢] =
03 [25] = 2z Hence in these cases, 7t would have to leave lifting variables
unchanged, which contradicts other use cases such as Item [I] of Example [4.7]

However in the context of interpolant extraction, one can deal with inter-
polants containing free occurrences of lifting variables by just employing 7 in
their construction instead of o.

4.4 Main lemma

By lifting symbols of one color of the propositional interpolant, we are able to
already obtain a formula partially fulfilling the requirements for interpolants.
The proof is separated into parts dealing with Plin;; and Plgep, respectively to
be later combined to a result for PI.

We employ the following additional notation: For a clause C'; Cy denotes
the clause created from C' by removing all literals which are not ®-colored.

Lemma 4.13. Let C be an clause in I' U A Then I' E £%[Plini (C) v Cr].

Proof. If C € T, then I" E ¢{[Cr]| as Cr = C and (}[C] = C. Otherwise
C ¢ T, but then Pl (C) =T. O

Lemma 4.14. Let ¢ be an inference in a resolution refutation of I' U A
using the clauses C1,...,Cy and let I = I1,...,1I, bg formulas such that
I'EWLL v (Cir] for 1 <i<n. Then T' E €} [Plstep(e, I) v Cr].

Proof. We distinguish based on the type of ¢.
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Resolution. Suppose that ¢ is a resolution inference of the clauses Cj : D v [
and Cy : E v =’ with o = mgu(¢).

By Lemma [4.6] we obtain from the assumption that I' & ¢4 [I1] v ¢4 [Dr] v
(% [Ir] as well as T F (% [Is] v €4 [Er] v —¢%[l;:]. Now we apply 74 and
by Lemma get that:

()
I' E (i [Lio] v ¢X[Dro] v £4[lro]

(%)
I' E (}[I20] v (X [Ero] v —~44[l}0]

As lro = o, we also have that (% [iro] = (X[lo]. We proceed by a
case distinction on the color of the r?solved literal to show that in each
case, we have that I' E €% [Plstep (e, 1)] v £4[Cr], which by Lemma
suffices for the result.

1. Suppose that [ is T-colored. Then I = [ and I}, = I, and we
can perform a resolution step on (o) and (x) to obtain that T' F
tAlIo] v Ex[I20] v ¢} [Dro] v €3 [Erc]. This however is nothing
else than I' E £} [Plgep (¢, I)] v £X[Cr].

2. Suppose that [ is A-colored. Then (o) and (*) reduce to I' F
(X [Io] v ¢X[Dro] and T' E ¢} [Io0] v £} [Ero] respectively, which
clearly implies that I' E (¢} [110] A € [120]) v X[ Dro] v X [Ero].
This is turn is however just the unfolding of the definition of
I' B R [Plstep(e, I)] v £X[Cr].

3. Suppose that [ is gray. Then Ip = [ and ;- = I’. Suppose that for
a model M of I' that M ¥ ¢} [Ero] and M ¥ ¢4 [Dro|. Then as
R [lro] = ¢X[ipo], by (o) and (x), depending on the truth value
of ¢X[lro] in M, we have that either M & ¢} [lro] A €4 [I20] or
M E =t [lo] A €X[11o] holds. Hence altogether we obtain that
I' E (R [Dro] v (i[Ero] v ((X[lro] A LR [I20]) v (=R [lpo] A
(% [I,o]). But this is equivalent to T' F €% [Plstep (s, 1)] v £X[Cr].

Factorization. Suppose the clause C' is the result of a factorization inference ¢
of Cy : 1 vl v D with 0 = mgu(¢).

By Lemma [4.6, the induction hypothesis gives I' £ (4 [I1] v ¢4[ir] v
& [15] v & [Dr]. Now we apply 7%4 and by Lemma obtain that
I' E (X [Lio] v ¢} [lro] v £R[lro] v €4 [Dro]. As however lo = l'o, also
llo] = L[l'c], so we can apply a factorization step and obtain that
I E X [1o] v €x[lro] v £3[Dro], which by Lemma is nothing else
than I' F Plgep (¢, I) v £R[Cr].

Paramodulation. Suppose the clause C' is the result of a paramodulation in-
ference ¢« of C1 : s =t v D and Cy : E[r], with o = mgu(¢).

By the induction hypothesis and Lemma [4.6] we obtain the following:
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(0)
I = AL v LA[Dr] v £3[s] = £4]1]

(*)

I' E (R[12] v LR [(E[r]p)r]

Suppose now that for a model M of I' and an assignment « of the free
variables of ¢4 [s] and ¢4 [t] that M, F ¢} [s] # ¢4 [t]. Then we get by (o)
that M, E (X [11] v X[ Dr], which by applying rta and Lemmagives
M, E (}[Lio] v i [Dro]. Note that M, E ¢} [so] # (X[to] A L4 [110]
suffices for My, F 0% [Plstep(t, I)] and M, F ¢%[Dro] implies that M, F
(% [Cr]. Therefore we obtain that My, F (% [Plstep(t, )] v ¢4 [Cr].

Now suppose to the contrary that for a model M of I' that for any
assignment of free variables M E (% [s] = ¢} [t].

By applying 74 and Lemma we obtain from (x) that I' F ¢} [I20] v
(X[(E[r]p)ro]. As however ro = so, {4 [ro] = ({[so]. Therefore we
also have that I' E (4 [Izo]| v ¢X[(E[s]p)ro].

We proceed by a case distinction:

— Suppose that the position p in E[s], is not contained in a A-
term. Then (% [(E[s]p)ro]| and ¢X[(E[t],)ro] only differ at po-
sition p. As M E (}[s] = ¢X[t], we can apply rta and by
Lemma obtain that M E ({[soc] = (X[toc]. Thus M F
R (Es]p ) ol <L [(E[t]p)ro]| and consequently M E (% [I20] v
(X[(E[t]p)ro]. As furthermore (4 [so] = €4 [to] A R [Iga] entails
0% [Plstep (¢, 1)] and (& [(E[t], )pa] is sufficient for ¢% [C’p] we have
that M E 0% [Plstep (e, I)] v LR [Cr].

— Suppose that the position p in E[s], is contained in a maximal
A-term h[s]. We distinguish further:

* Suppose h[s]| occurs more than once in Iro v E[s],o and let
« be an arbitrary assignment to the variables ¢} [h[s]] = zp[4
and (3 [h[t]] = 2.

If M, E (X[h[s]] # C¢L[h[t]], then we have that M, F
X [s] = CR[t] A €R[R[s]] # €X[h[t]], which implies that M, F
CA[Plstep (e, 1)].

Otherwise it holds that M, F ¢} [h[s]] = ¢X[h[t]]. But then
(X[(E[s]p)ro] and ¢ [(E[t]p)ro] differ in subterms which are
equal in M, so by a similar line of argument as in the preceding
case, we can deduce that M F (% [Plsep(t, I)] v (4[C].

% Suppose h[s] occurs exactly once in Iyo v E[s],0. Then the lift-
ing variable x4 occurs exactly once in ¢} [I20] v (X [E[s]po].
Note that from (*) by applying 74 and Lemma , we obtain
that M F (X [I20] v LR[(E[s]p)ro]. As xp[s occurs only once
and free in this formula, it is implicitly universally quantified
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and we can instantiate it arbitrarily, in particular by zj;). But
thereby we get that M = (X [Io0] v IR [(E[t]p)ro], which implies
that ' E (% [Plstep (¢, I)] v ¢R[Cr]. O

Lemma 4.15. Let w be a resolution refutation of I' U A and C be a clause
occurring in w. Then I' E 44 [PI(C) v C1.

Proof. We proceed by induction on the strengthening I' F ¢4 [PI(C) v Cr].

If CeT uA, then Lemma gives the result.

For the induction step, suppose the clause C' is the result of an inference ¢
using the clauses C, ..., Cy,. By induction hypothesis, I" & £X [PI1(C;) v (Ci)r]
for 1 < i < n, hence by Lemma we obtain that T' F % [Plstep(t, I) v Cr].
This however is nothing else than I' F ¢4 [PI(C) v Cr]. O

4.5 Symmetry of the extracted interpolants

The interpolant extraction procedure PI exhibits a convenient property which
is termed symmetry in [DKPW10, Definition 3] and will be used to show that
results concerning I' can easily be generalized to results for A. We develop it
starting from Plii¢ and Plgiep in order to then state it for PI.

In the following, additionally to I' and A, we consider the sets [ and A
such that T' comprises the clauses of A and I’ comprises the clauses of A. Then
for a clause C in I or A, we denote by C' the corresponding clause in A or T
respectlvely For refutations 7 of I' U A, we then also consider refutations 7 of
I'U A where every clause C in 7 has a corresponding clause C' in #. The clauses
C and C coincide except for the coloring, i.e. if a symbol in C' is ®-colored,
then the symbol in C is ®-colored.

In the context of I' and A, the procedures PI, Pliy;; and Plgep, are to be
read as being defined with respect to I" and A instead of T’ and A.

Lemma 4.16. Let C be a clause in T' U A. Then Pl (C) < — PIinit(C'),
Proof.
.f A . A
Pl (C) T ?C’e _ T ?C
L ifCel 1 i

In the following, we also apply this notation to proofs, inferences, literals
and terms.

Lemma 4.17. Let 7 be a resolution refutation of I' U A. IfL s an inference of
7 using the clauses Cy,...,Cpn, and I,...,I, and I1,... I, are formulas such

that I; & —1I; for 1 <i <mn, then Plyep(, I1, ..., I )@ PIbtepQ h,.... L).

Proof. We distinguish cases based on the type of the inference ¢
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Resolution. Suppose that ¢ is a resolution inference of C; : D v [ and Cs :
E v =l with ¢ = mgu(¢).

We distinguish the following cases:

1. 1 is T-colored. Then [ is A-colored.

PIstep(L,Ih NN ,In) = 110' \ 120'
<$—'(_'Ilo' N _'IQO')
@ﬂ(fla AN fg()’)

= PIstep(Ea f].a fZ)

2. lis A-colored. This case can be argued analogously.

3. lis gray. Then [ is gray. Note that lo = l'c ().

Plyep(t, 1, - Ip) = [(I A L) v (=1 A I)]o

Factorization. Suppose that ¢ is a factorization inference of Cy : [ v I’ v D with
o = mgu(¢). Then Plgep (e, [1) = o < —I10 = = Plgep(Z, 11).

Paramodulation. Suppose that ¢ is a paramodulation inference of C : s =
t v D and Cy : E[r] with 0 = mgu(s).

We proceed by a case distinction:

1. r occurs in a maximal A-term h[r] in E[r] and h[r] occurs more

than once in I v E[r]. Then # occurs in a maximal I'-term A[r] in

E[r] and h[r] occurs more than once in E[r] v PI(E[r]).

Plstep(t, L1, I2) = [(s =t A Lo) v (s #t A I1)]o v (s =t A hls] # h[t])o
ol(s=tr—I)v(s#tr—I)]ov(s=tnh[s]#h[t])o
sol(s#tvh)a(s=tvI)]on—(s#tvh[s] t))o
o—[(s=tAal)v(s#tal)]on—(s#tvh[s] t))o
= = Plyep (i, 11, o)

-
-

2. 7 occurs in a maximal I'-term h[r] in E[r] and h[r] occurs more
than once in I v E[r]. This case can be argued analogously.
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3. Otherwise:

Plgtep(t, L1, 2) = [(s =t A Lo) v (s #t A LT)]o
sl(s=tr—-D)v(s#tr—I)o
e-lsttvh)a(s=tv i)
e-[(s=tarl)v(s#tal)o
= = Plgtep(Z, 11, I2) O

Lemma 4.18. Let C be a clause in a resolution refutation of U v A. Then

PN

PI(C) < — PI(O).

Proof. We prove this lemma by induction.

For C e ' U A, we obtain the result by Lemma [£.16]

For the induction step, suppose that the clause C' is the result of an infer-
ence ¢ of the clauses C1,...,C,. Then by the induction hypothesis, we obtain
that PI(C;) < — PI(C;) for 1 < i < n. Hence we can apply Lemma and
get that Plgep(t, PI(CY), ..., PI(Cy)) & — Plyep (i, PI(Ch), ..., PI(Cy)). But
this is nothing else than PI(C) < —PI((). O

Corollary 4.19. Let C be a clause in a resolution refutation of ' U A. Then
A E(E[-PI(C) v C].

Proof. By Lemma it holds that I )i 5 [PI(C) v (] and by Lemma ,
we then obtain that I' B £% [~ PI(C) v C']. This however is nothing else than

A E [~ PI(C) v C]. O
4.6 Propositional and one-sided interpolants

We now show that the results presented in section [£.4] and already give
propositional interpolants in the sense that besides possibly containing colored
terms, they are proper interpolants. Note that this coincides with the notion
of “relational interpolant” as given in [Hua95| and is defined formally in our
notation in [AJ]

Corollary 4.20. Let w be a resolution refutation of ' U A. Then PI(w) is a
propositional interpolant, i.e. it holds that:

1. T E PI(r)
2. AF —PI(n)

3. PS(PI(r)) < PS(I') n PS(A).
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Proof. By the definition of PI, PI(7) denotes PI(OJ), where [0 is the empty
clause derived in PI. By Lemmal[4.15] we get that I' E ¢4 [PI(m)]. As the lifting
replaces terms by variables which are then implicitly universally quantified,
PI(7) is an instance of ¢} [PI(7)]. Therefore I' E PI(r).

By Corollary A E —(L[PI(7)], thus by a similar argument as above,
A E = PI(n).

Finally, by the construction of PI, PI(w) is solely comprised of gray predi-
cate symbols. 0

From Lemma |4.15 we can also easily derive a result on a restricted notion
of interpolation which we refer to as one-sided interpolants.

Definition 4.21. Let I' and A be sets of first-order formulas. A one-sided
interpolant of I' and A is a first-order formula I such that

1. TEI
2. AE—I
3. L(I) € L(T) A

Note that if I is a one-sided interpolant for I' and A and additionally
L(I) < L(A) holds, then I is an interpolant for I" and A.

Proposition 4.22. Let ' and A be sets of first-order formulas such that T'u A
is unsatisfiable. Then there is a one-sided interpolant of I' and A which is a
11y -formula.

Proof. Let 7 be a resolution refutation of I' U A. By Lemma we have
that I' & ¢X [PI()], or equivalently I' & Vay, ...V, PI(7), where zy, ..., 24
are the A-lifting variables occurring in PI(7).

By Corollary we get that A F —PI(w). This however provides witness
terms for the formula 3z, ...3zy, —¢X [PI(7)], therefore it holds that A E
dzy, ... 3z, ~0R[PI(7)]. Now we pull the quantifiers inwards to obtain that
AE —Vay, ... Vg, 65 [PI(n)].

Clearly Vay, ... Vay, 03 [PI()] is devoid of A-terms and hence a one-sided
interpolant, which is a II;-formula. O

n

4.7 Quantifying over lifting variables

As we have already seen in Corollary that PI(7) forms a propositional
interpolant, we now move on to the second phase of the algorithm. The
propositional structure is considered to be fixed at this point and it remains to
lift all colored terms and quantify over the resulting lifting variables in a viable
order.
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Lemma 4.23. For a formula or term ¢, (L[(R [¢]] = (&[]

Proof. Let ¢ be a term which contains a colored term which in turn contains
a term of different color. Suppose without loss of generality that it is a I'-term
which contains a maximal A-term ¢ at position p. Then ¢4 [¢}\[¢]] = (& [y,] =
Yp-

On the other hand (4[(% [¢]] = ¢%[4] such that ¢ is equal to ¢ besides
having x; at position p. But £{[1)] = Yunfola-tife(v) = Y- O

In order to quantify terms in the propositional interpolant appropriately,
we need to sort them according to a particular order:

Definition 4.24 (Subterm order). A list of terms si,..., sy is in ascending
subterm order if for any ¢ and j such that 1 < 4,j < n it holds that if s; is a
subterm of s;, then ¢ < j. A list of terms s1,...,s, is in descending subterm
order if the list s, ..., s1 is in ascending subterm order. A

Lemma 4.25. Let 7 be a resolution refutation of TUA, s1, ..., Sm the mazimal
colored A-terms in PI(m) and r1,...,ry the mazimal colored T'-terms in PI(r),
both in descending subterm order. Moreover, let t1,...,t, be an arrangement of
{81, Sm,T1,...Tk} in ascending subterm order and let Q;z;, for 1 <i<mn
denote Yz, or Jy;, depending on the color of t;. Then

o I'EVuy, ... Va, (R [PL(n)] impliesT E Qi ... Qnzr, (L [(A[PI()]] and
o AEVa, ... Vo, —lLPI(r)] implies A E —=Q121, ... Qnzt, CL[EA[PI(m)]].

Proof. For 0 < i < k, let Z' = {{%[r1],...,¢%[rs]}, and ti,... ¢! ; be an
arrangement of {si,...,Sm,r1,...,7, } in ascending subterm order. We use
Qé-zt;; for 1 < j < m + i to denote th; or Hyt; depending on the color of t;

Now, we show by induction that by iteratively lifting and appropriately
quantifying the maximal I'-terms in ¢} [PI(7)], we obtain a formula which is
entailed by I'. Formally, the induction operates over

TEQiz - Qmﬂzﬁ AP, 2]

for 0 <7 <k.

Fori=0,2"= J,s0oTF Qilztzi Qi - 22165 [P1()], Z'] is nothing
else than I' F Va,, ... Va,,, £A[PI(7)], which holds by assumption.

Now suppose that I' F Q’izti . m_,’_,Lth Ey Y[¢% [PI(m)], Z*] holds for i with
i < k. We show that then, I' F Q12 2yt - QmHJrl prL 6%[5‘2[131(@], Z
holds as well.

Note that Z*1 = Z" U {¢%[ri+1]}. Hence ¢4[¢%[P1(7)], Z"] differs from
G [PI(m)], Z¢] insofar as every occurrence of 0} [ri4+1] is replaced by the

lifting variable Yunfold-lift(¢% [

% [rip1]) = Yripa- Lvery occurrence of yr,,, however is
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bound as in the quantifier prefix Qiﬂztiﬂ "'Q;ﬁz‘ﬂzt;ﬁiﬂ’ there is some j
such that Q;+1Zt§+1 is Jyp,, .-

In order to show the desired entailment, we argue that ¢% [r;;1] is a witness
term for 3y,,,,. Note that none of the I'-terms in ¢} [r;j;1] are lifted as due to
the ordering by descending subterm order of the terms ry, ..., 75, Z; does not
contain a subterm of 7;,1. However ¢4 [r;11] in general does contain A-lifting
variables. Let 25 be a A-lifting variable in ¢4 [r;41]. As s is a subterm of 71,
Va s precedes 3y, , in the quantifier prefix Q'Ll“ztiﬂ . Q?{iiﬂzt;ﬁiﬂ' Hence
Yr;+1 1s quantified in the scope of the quantification of z; for every A-lifting
variable xs in ¢} [r;41]. Therefore €% [rj11] is a viable witness term.

This induction shows that I" F Q’fztzf . an%ztz:n%ﬁ% [¢% [P1(7)], Z*] holds.

But as Z* includes all maximal colored I'-terms of ¢4 [PI(7)], this is nothing
else than I' E Q124 - .. Qnz, LH[04 [PI(7)]].

By a similar induction argument as above, we can conclude from A E
Vyr, . Vyr, —CL[PI(7)] that A E Q2 ... Qnz1, —C4[C4[PL(7)]] holds, where
Q; =3 (V) if Q; =V (3). Therefore also A F =Q1z, ... Qnz, (& [CA[PI(7)]]
and finally by Lemma[d.23] we obtain that A F =Q12, . .. Qn2t, h[¢% [PI(m)]].

O

Theorem 4.26. Let 7 be a resolution refutation of T U A and tq,...,t, be an
arrangement of the mazimal colored terms in PI(m) in ascending subterm order.
Then Q12 - - - Qunzr, L[ [PI(r)]], where Q; is V¥ (3) if t; is a A (T')-term, is
an interpolant for I' and A.

Proof. Let s1,..., Sy be the maximal colored A-terms in PI(7) and 71, ...,7%
the maximal colored I'-terms in PI(w). Then by Lemma it holds
that I' F Va,, ...V, (A [PI(m)] and by Corollary 4.19, we get that A F

YYr, - .. Yyp, —LA[PI(m)]. Therefore we can apply Lemma to obtain

LE Qizt, - Quar, LLEA[PI(m)]]

as well as
AE =Qizt, - . Qnat, LL[CA[PI()]].

As clearly Q12 ... Qnzt, ([¢4[PI(7)]] does not contain colored symbols,
this formula is an interpolant. O

Remark. In this proof, we order the lifting variables in the interpolant according
to the subterm relation of the terms they represent. This differs from the
proof in [Hua95|, where the ordering is based on the length of these terms.
The proof of the theorem above however shows that both of these approaches
are equally valid, but clearly the subterm-based ordering in general allows for
more permutations than the length-based ordering. A

We conclude by presenting the execution of the algorithm on an example:
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Example 4.27. In order to facilitate the reading of the formulas in this ex-
ample, we borrow notions from the natural numbers. In the following, the
intended interpretation for the predicate G is the >-relation, for L the <-
relation and for Z the predicate indicating whether the argument is zero.
Hence for instance the clause G(x,y) v L(z,y) v * = y expresses that for
any two numbers z and y, either x > y, © < y or x = t is the case. In order to
produce a contradiction, it is necessary to also include a clause which expresses
a false statement under this interpretation, which here is =Z(z) v —L(z,u).
This clause can be read as follows: If z is zero, then z is not less than any
number u.

The complete initial clause sets for this example are defined as follows:
[ = {Gla,y) v Llz,y) v & = y,~G(v, f()), ~Z(w) v ~Z(f(w))} and A —
{Z(d),—=Z(z) v —=L(z,u)}. Hence L(I') nL(A) = {Z, L}, L(T)\L(A) = {G, f}
and L(A)\L(T) = {d}.

We use the following resolution refutation 7 for the extraction of the in-
terpolant:

G,y v Ly ve=y —Z(z)v-Lzu) og —Zw)v —Z(f(w) Z(d) res

Glr.y)va=yv—Z() o ~Z(f(d)) par 77
G(z, f(d)) v —Z(x > v —Z() o v=f(d)
Gz, fd) v —Z(z) —G(v, f(v))  res
Z(d) ﬁZ(d) res o rd
O id

In the following tree, we show the propositional interpolant PI(C) for the
corresponding clauses C' (in simplified form):

1 T 1 T
L(z,y) —Z(d)
(x = f(d) A =Z(f(d))) v (z # f(d) A L(z, f(d)))
(x = f(d) A =Z(f(d))) v (x # f(d) A L(z, f(d))) L

(d = f(d) A =Z(f(d)) v (d # f(d) » L(d, f(d)))
—Z(d) v ((d = f(d) A =Z(f(d))) v (d # f(d) n L(d, f(d))))

Pl(r) = =Z(d) v (d = f(d) A =Z(f(d))) v (d # f(d) A L(d, f(d)))

and lifting and quantification gives the final interpolant

Vaady sy (—Z(xq) v (24 =ypa) » —Z W) v (€a # Yga) » LTa, ypa))))-
AN
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4.8 Number of quantifier alternations in the
extracted interpolant

In this section, we examine interpolants produced in Theorem with respect
to the number of quantifier alternations. We arrive at the conclusion that there
is a tight connection between the number of color alternations in the terms
produced by the substitutions of the resolution refutation and the number of
quantifier alternations in the resulting interpolant.

We first formally define these notions:

4.8.1 Color and quantifier alternations

In the following, we assume that the maximum max of an empty sequence
is defined to be 0 and constants are treated as function symbols of arity 0.
Furthermore L is used to denote a color which is not possessed by any symbol.

Definition 4.28 (Color alternation col-alt). Let I" and A be sets of formulas
and t be a term.

col-alt(t) Af col-alt | (t)

0 if ¢ is a variable
ot max(col-alte(t1),. .., col-alte(t,)) ift = f(t1,...,ty) is gray
€
col-altg (t) = max(col-alte(t1),. .., col-alte(t,)) ift = f(t1,...,tn) is of color ®
1 + max(col-alty (t1),...,col-alty(t,)) if t = f(t1,...,t,) is of color
U, &+
A
Definition 4.29 (Quantifier alternation quant-alt). Let A be a formula.
quant-alt(A) & uant-alt 1(A)
0 if A is an atom
quant-altg (B) if A=—-B
quant-alto(A) def ) max(quant-altg(B), if A=Bo(C,oe{A,v,D}
quant-altg (C'))
quant-alte (B) if A=QxB
1 + quant-altg, (B) if A=Q'zB, Q # Q'
A

4.8.2 Preliminary considerations

First, we define the auxiliary procedure PI*:



50 Chapter 4 — Interpolant extraction from resolution proofs in two phases

Definition 4.30 (PI*). PI* is defined as PI with the difference that in PT*, all

literals are considered to be gray. PIi;; and PI%,, are defined analogously. A

Hence PI;; coincides with Plipi;. PI;‘tep coincides with Pl in case of
factorization and paramodulation inferences. For resolution inferences, the first
two cases in the definition of Plse, do not occur for PIg,,.

PI* enjoys the convenient property that it absorbs every literal which occurs

in some clause:

Proposition 4.31. For every literal which occurs in a clause of a resolution
refutation T, a respective successor occurs in PI*(r).

Proof. By structural induction. O

Note that in PI*, we can conveniently reason about the occurrence of terms
as no terms are lost throughout the extraction. However Lemma allows us
to transfer results about gray literals to PI:

Lemma 4.32. For every clause C' of a resolution refutation, the literals and
equalities of PI(C) are exactly the gray literals and equalities of PT*(C).

Proof. Note that Pliy;t and PI; coincide and Plgtep and PI5,, only differ for
resolution inferences. More specifically, they only differ on resolution infer-
ences, where the resolved literal is colored. Hence PI(C) and PI*(C) contain
the same gray literals and equalities. The colored resolved literals however are
not added to PI(C) as desired. O

Lemma 4.33. Let ¢ be an inference of a resolution refutation using the clauses
Ch,...,Cy which creates the clause C. If there is a literal X or an equality s =t
in PI(C;) or a gray literal A or an equality s =t in C; for 1 < i < n, then a
successor of X or s =t respectively occurs in Plgep (¢, PI(CY), ..., PI(Cy)) v C.

Proof. Immediate by the definition of PI. O

Corollary 4.34. If there is a literal X or an equality s =t in PI(C) or a gray
literal A or an equality s =t in C for a clause C' of a resolution refutation w,
then a successor of X or s =t respectively occurs in PI(m).

Proof. This is a direct consequence of Lemma [£.33] O

4.8.3 Analysis of the occurrences of crucial terms in PI

We now make some considerations about the construction of certain terms
in the context of interpolant extraction. Thereby we employ the following
definition:
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Definition 4.35. In a literal or term ¢ containing a subterm ¢, ¢ is said
to occur below a ®-symbol s if in the syntax tree representation of ¢, there
is a node labeled s on the path from the root to £. Note that the colored
symbol may also be the predicate symbol. Moreover, t is said to occur directly
below the ®-symbol s if it occurs below the ®-symbol s and in the syntax tree
representation of ¢ on the path from s to ¢, no nodes with labels with colored
symbol occur. A

Moreover, we frequently reason over the stepwise application of the respec-
tive unifiers, for which we make use of the following definition:

Definition 4.36. We define P1"

step t0 coincide with PI*

step
the substitution o in each of the cases. Furthermore, PI*(C) is an abbreviation

of ISI:tep(l,, PI*(Cy),...,PI*(Cy,)) if C is created by an inference ¢ from the

clauses C1,...,Cy, and PI" (C) coincides with PI*(C) if C e ' U A.
Analogously, if C = Do, we use C to denote D. A

but without applying

In the context of an inference ¢ using the clauses C, ..., Cy, to infer C, it
holds that:

PT*(C) v C = PI%, (1, PI*(C1), ..., PI*(Cy)) v C
_ (151:tep(L, PT*(CY), ..., PI*(Ch)) v é)a
= (I;I*(C) % é)a
= (}71*(0) v 6)0(0,\dom(0)|)

Note that if we are able to show that the application of a substitution
=k ~ L . . . .
o; to (PT (C) v €)oo, ;—1) maintains an invariant and the invariant holds for

PI"(C) v C, then it immediately follows that it holds for PI*(C) v C.

Lemma 4.37. Let ¢ be an inference in a refutation of T’ u"A. Suppose that
a variable u occurs directly below a ®-symbol in (PI*(C) v Qo fori=1.
Then at least one of the following statements holds:

1. The variable u occurs directly below a ®-symbol in (P;I*(C') v C)oo,i-1)-

2. The varitable u occurs at a gray position in a gray literal or at a gray
.- . . . Sk =
position in an equality in (P1 (C) v C)o(g 4.

8. There is a variable v such that

- w occurs gray in vo; and

— v occurs in (151*(0) v 6)0'(07i_1) directly below a ®-symbol as well
as directly below a W-symbol
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Proof. We consider all different situations under which the situation in ques-
tion arises. Irrespective of the type of the inference ¢, one of these cases can

apply:

e There is already a literal in (151*(0) % é)O'(Ovi_l) where u occurs directly
below a ®-symbol and o; does not change this. Then clearly [I] is the
case.

e There is a variable v in (PI (C) v 6)0(0,1'71) such that vo; contains u
directly below a ®-symbol. As v is unified with the term vo;, vo; must
occur in (PI'(C) v C)0o(0,i—1), which implies that (1| is the case.

In the case that ¢ is a resolution or factorization inference, the following situ-
ations can apply:

e There is a variable v which occurs directly below a ®-symbol such that
u occurs gray in vo;.

Hence in the resolved or factorized literals A and M\ in (151*(0) %
6’)0(07Z~,1), there is a position p such that without loss of generality
Alp = v and u occurs gray in X'|,. Note that due to the definition of the
unification algorithm, A and X must coincide on the path to p.

By Proposition A and A occur in ﬁI*(C) v C irrespective of their

coloring.

We distinguish cases based on the position p:

— Suppose that p occurs directly below a ®-symbol. Then as u oc-
curs gray in \'|,, u occurs directly below a ®-symbol in (PI'(C) v
C)o(o,i—1) and [1]is the case.

— Suppose that p occurs directly below a W-symbol. Then v occurs
directly below a W-symbol in A|, and |3 holds.

— Suppose that p does not occur directly below a colored symbol.
Then p does not occur below any colored symbol, hence u is con-
tained in a gray literal in a gray position in (ISI*(C) v é)U(O’i_l).
As o; is trivial on wu, this occurrence of u also is present in

(P~I*(C’) % 6’)0(072-) and hence [2|is the case.

Now we consider the case that ¢ is a paramodulation inference of the clauses
Ci:r =ryv D and Cy : E[r], with o = mgu(¢) = mgu(rq,r) yielding
C: (D v E[ra]p)o. We again consider the different situations under which the
situation in question arises:

e The variable u occurs gray in ro and p in F is directly below a ®-symbol.
ok ~
But then u occurs gray in an equality in (PI (C) v C)o(g ;1) and as o;
is trivial on u also in (PI"(C) v C~')0(07 #)» hence [2 holds.
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e Suppose that some variable v occurs directly below a ®-symbol in
(PI°(C) v 5’)0(07i_1) such that u occurs gray in vo;. Then by the defini-
tion of the unification algorithm, there exists a position ¢ such that one
of r1|y and r|, is v and the other one contains a gray occurrence of .

We distinguish cases based on the position ¢:

— Suppose that g occurs directly below a ®-symbol. Then clearly [T]is
the case.

— Suppose that ¢ occurs directly below a W-symbol. Then as the
variable v also occurs directly below a ®-symbol and u occurs gray
in vo;, 3] is the case.

— Suppose that ¢ is a gray position. Then [2] is the case: Either u
occurs gray in rq in (P"'I*(C) v é)U(o,ifl) and then also in (P;I*(C) v
C’)a(o’ i), or otherwise v occurs gray in r1 in (ﬁl*(C) v é’)a(ovi,l),
but as vo; contains u gray, u occurs gray in of r10; in (P;I*(C’) v

0)0(07 z) O

Lemma 4.38. Let 1 be an inference of a resolution refutation of ' A. Suppose
that a variable u occurs directly below a ®-symbol as well as directly below a
U-symbol in (151*(0) v C~')U(07i). Then u occurs gray in a gray literal or gray
in an equality in (ﬁl*(C) v é’)a(oyi).

Proof. We proceed by induction over the refutation. As the original clauses
each contain symbols of at most one color, the base case is trivially true.

For the induction step, suppose that an inference makes use of the clauses
C1,...,Cy and that the lemma holds for PI*(C;) v C; for 1 < j < n.

Note that then, the lemma holds for PLy (¢, PI*(C1), ..., PI*(Cy)) v C =

P;I*(C) v C. This is because as all clauses are variable-disjoint, if a variable
occurs in P~I*(C’) v € both directly below a ®-symbol as well as directly below
a W-symbol, then this must be the case also in PI*(C}) v C; for some j, for
which the lemma by assumption holds. Furthermore, by the definition of PI*,
every literal which occurs in PI*(C}) v C; for some j occurs in 151*(0) vC.

Hence it remains to show that the lemma holds for (PI'(C) v C)o =
(PI"(C)v )0y . .. 0, which we do by induction over i for 1 < i < m. Suppose
that the lemma holds for (PI (C) v 6)0'(077;_1) and in (PI(C) v 5’)0(07 i), the
variable u occurs directly below a ®-symbol as well as directly below a U-term.

Then by Lemma[4.37] we can deduce that one of the following statements
holds for ® = I" as well as ® = A. We denote case j for ® = I' by 5 and for
® = A by j2.

1. The variable u occurs directly below a ®-symbol in (ﬁI* (C)v é)U(o,i—1)~
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2. The variable u occurs at a gray position in a gray literal or at a gray
o, . . . Sk =
position in an equality in (PT (C) v C)o(g ;).

3. There is a variable v such that

— u occurs gray in vo; and

— v occurs in (151*(0) Y% 6)0(071'—1) directly below a ®-symbol as well
as directly below a W-symbol

If|2] or [2 is the case, we clearly are done. On the other hand if |3} or
is the case, then by the induction hypothesis, v occurs gray in a gray literal
or gray in an equality in (P;I*(C) v é’)a(o,i,l). As u occurs gray in vo;, we
obtain that then, w occurs gray in a gray literal or gray in an equality in
(PT°(C) v C)a(.4-

Hence the only remaining possibility is that both (1] and|[1[* hold. But then
u occurs directly below a ®-symbol as well as below a ¥-symbol in (151*(0) %

C)U(O,ifl) and again by the induction hypothesis, we obtain that v occurs gray
. . : oL s ~ :
in a gray literal or gray in an equality in (PT (C) v C)o(g 1), and as o; is

trivial on u, the same occurrence of u is present in (P~I*(C’) % é’)o(oﬂ-). O

Lemma 4.39. Let C be a clause in a resolution refutation of I' v A. If
PI*(C) v C contains a mazimal colored occurrence of a ®-term t[s], which
contains a maximal V-colored term s, then s occurs gray in PI(C) v C.

Proof. Note that it suffices to show that the desired term occurs in a gray
literal or equality in PI*(C) v C since by Lemma all gray literals and
equalities of PI*(C) also occur in PI(C). We do so by induction over the
resolution refutation.

As the original clauses each contain symbols of at most one color, the base
case is vacuously true.

The induction step is laid out similarly as in the proof of Lemma [£:38
We suppose that an inference makes use of the clauses C1,...,C, and that
the lemma holds for PI*(C;) v C; for 1 < j < n. Then the lemma holds
for PI'(C) v C' = F;I:tep(l,, PI*(C)),...,PTI*(Cy)) v C) as no new terms are
introduced in PI"(C) v €' and all literals from PI*(Cj) v Cj) for 1 < j <n
oceur in PI'(C) v C.

It remains to show that the lemma holds for (I;I*(C) v o = (PI°(C) v
C’)ao ...0m, which we do by induction over i for 0 < i < m. We distinguish
based on the situation under which a unification leads to the term ¢[s].

e Suppose for some variable u that uo; contains t[s]. Then u is unified
with a term which contains ¢[s] and which occurs in (PI" (C) v 6)0(07 i—1)-
Hence by the induction hypothesis, s occurs gray in a gray literal or gray
in an equality in (151*(0) v 6)0'(077;_1) and, as o; does not change this,
also in (PI"(C) v 6’)0(07 i)-
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e Otherwise there is a variable u which occurs directly below a ®-symbol
and vo; contains a gray occurrence of s. We distinguish based on the
- =
occurrences of u in (PT (C) v C)og i—1:

— Suppose that u occurs somewhere in (ﬁI*(C) v C’)U(O,i—l) gray in
a gray literal or gray in an equality. Then clearly we are done.

— Suppose that u occurs somewhere in (ﬁI*(C) v 6)0(072-_1) directly
below a W-symbol. Then by Lemma [£:38 u occurs gray in a gray
literal or gray in an equality in (15'I>k (C) VC’)O’(Q i—1), whose successor
in (PI"(C) v 6’)0(07 ;) is an occurrence of s of the same coloring.
Hence we are done a well.

— Suppose that u occurs in (ISI*(C) v C’)O’(O’i_l) only directly below
a ®-symbol. Here, we differentiate between the types of inference
of the current induction step:

x Suppose that the inference of the current induction step is a

resolution or a factorization inference. As u occurs gray in voy,
there is a position p such that for the resolved or factorized
literals X and A’ it holds without loss of generality that |, =
and s occurs gray in A’|,. Note that X\ and X" agree on the path
to p, including the predicate symbol..
Now as by assumption u only occurs directly below a ®-symbol,
so must s. But then s occurs directly below a ®-symbol in
(P;I*(C) % é)U(O,ifl) and we get the result by the induction
hypothesis.

x Suppose that the inference of the current induction step is a
paramodulation inference. Assume it uses the the clauses C :
1 =re v D and Cy : E[r], with ¢ = mgu(:) = mgu(ry,r) to
yield C : (D v E[ra]p)o.

As u is affected by oy, it must occur in ry or r. Let @ refer to
this occurrence.

- Suppose that 4 occurs directly below a ®-colored function
symbol.
If @ is contained in r1, then s must be contained in r directly
below a ®-colored function symbol as r; and r are unifiable.
We then get the result by the induction hypothesis.
If otherwise 4 is contained in r, then there are two possi-
bilities for the occurrence of s in 7q:
Either 4 occurs in a ®-colored function symbol in r. Then
s occurs in a ®-colored function symbol in r; and we get
the result by the induction hypothesis.
Otherwise @ occurs gray in r, but r occurs directly below
a ®-colored function symbol in E. Then however, as r and
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r1 are unifiable, s must occur gray in r; and hence gray in
an equality.

- Suppose that @ occurs directly below a ®-colored predicate
symbol.
Then as the equality predicate is not considered to be col-
ored, u must occur gray in r. But then as r; and r are
unifiable, s must occur gray in r; and hence gray in an
equality. O

4.8.4 Lower bound

The lemmas of the previous section are now employed to derive a lower bound
on the number of quantifier alternations in the interpolant:

Lemma 4.40. If a term with n color alternations occurs in PI(C) or in a
gray literal or equality in C' for a clause C, then the interpolant I produced in
Theorem [4.26 contains at least n quantifier alternations.

Proof. We perform an induction on n and show the strengthening that the
quantification of the lifting variable which replaces a term with n color alter-
nations is required to be in the scope of the quantification of n — 1 alternating
quantifiers.

Note that by Corollary [£:34] a successor of every literal and equality of
PI(C) and a successor every gray literal or equality of C' occurs in PI(7).

For n = 0, no colored terms occur in I and hence also no quantifiers.
Moreover for n = 1, there are terms of one color which evidently require at
least one quantifier.

Suppose that the statement holds for n—1 for n > 1 and that a term ¢ with
col-alt(t) = n occurs in PI(C) v C. We assume without loss of generality that
t is a ®-term. Then ¢ contains some W-colored term s with col-alt(s) =n — 1
and by Lemma s occurs gray in PI(C') v C. By Corollary a successor
of s occurs in PI(7). Note that as s occurs in a gray position, any successor
of s also occurs in a gray position.

By the induction hypothesis, the quantification of the lifting variable for s
requires n — 1 alternated quantifiers. As s is a subterm of ¢ and ¢ is lifted, ¢
must be quantified in the scope of the quantification of s, and as t and s are
of different color, their quantifier type is different. Hence the quantification of
the lifting variable for ¢ requires n quantifier alternations. O

We present an example which illustrates that terms in colored literals may
contain more color alternations than the term with the maximal number of
color alternations in gray literals or equalities. Still, the latter determines the
minimum number of quantifier alternations in the interpolant. Note that it is
a consequence of Lemma that if for some clause C' a term with n color
alternations occurs in a colored literal in PI*(C) v C' (which contains all literals,
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i.e. also the colored ones), then PI(C) v C contains a term with at least n — 1
color alternations.

Example 4.41. Let I' = {—=P(a)} and A = {P(z) v Q(f(x)),—Q(y)}. We
consider the following refutation of I' U A, which we annotate by the interpola-
tion extraction by appending PI(C') to each clause C, separated by “|”. For the
sake of brevity, we sometimes give simplified but logically equivalent versions
of PI(C). This notational convention will be used throughout this thesis for
examples of a similar form.

—P(a) | L P() vQ(Uf(@) T res
Q(f(a)) | ~P(a) QW) T res
0| —P(a) y—f(a)

In this example, Theorem yields the interpolant I = Jy,—P(y,) with
quant-alt(/) = 1. The existence of the term a with col-alt(a) = 1 in a clause of
the refutation by Lemma implies that quant-alt(/) > 1. The occurrence
of the term f(a) with col-alt(f(a)) = 2 in the colored literal Q(f(a)) is not
relevant. AN

4.8.5 Upper bound and conclusion

We now also determine an upper bound for the number of quantifier alternations
in the interpolant.

Note that as the following example shows, an upper bound of n quantifier
alternations in the interpolant is not sufficient even if n is the maximal number
of color alternations for any term in PI(C) v C for any clause C:

Example 4.42. Let I' = {P(a) v Q(u)} and A = {=P(v), —Q(b)}. Consider
the following refutation of I U A:

Pl@)vQu) L —PE)|T

Q(u) | P(a) QM) | T pes
O/ Q(b) v P(a) v

Given this refutation, Theorem produces either the interpolant I, =
Fya Yy (Q(zp) v P(ya)) or Io = VapIy.(Q(xp) v P(y,)). Note that the maximal
number of color alternations of a term in PI(C') v C for any clause C'is 1, but
the number of quantifier alternations is 2 for both I; and Is. A

However the following bound holds in general:

Lemma 4.43. Let t be a term with the maximal number of color alternations
in PI(C) or a gray literal or equality in C' for any clause C. Then there is an
arrangement of the quantifier prefix in Theorem which gives rise to an
interpolant with at most col-alt(t) + 1 quantifier alternations.
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Proof. By Corollary a successor of ¢ occurs in PI(7). Let T/ be the set of
maximal ®-colored terms in PI(7) with ¢ color alternations for 1 < ¢ < n, where
n = col-alt(t). Note that every maximal colored term of PI(7) is contained
in one of these sets. We use 37} (VT) to denote Jy;, ...y, (Vg ... Vay,,)
where t1,...,ty, is an arrangement of the elements of TF (T) in ascending
subterm order.

Now we construct the interpolant

[ =VTPITY ITEIVTS VTLITY . QT2 QYTY ¢4 [PI(n)]],

where Q®T2QYTY is VT2ITY if n is odd and ITL VT2 if n is even. Clearly,
I has at most n + 1 color alternations.

In order to show the result, it remains to show that I is a valid interpolant
with respect to Theorem [£.26] Note that the quantifier prefix binds all lifting
variables occurring in ¢4[¢% [PI(m)]]. We conclude by showing that the order
of the quantifiers is admissible.

Let ¢ be a maximal colored term in ¢L[¢% [PI(m)]]. We prove that the
quantifier for the lifting variable of every subterm s of ¢ precedes the quantifier
for the lifting variable for ¢ in I. Suppose that col-alt(t) = k. Then we can
deduce that col-alt(s) < k.

e If col-alt(s) = k, then t and s are of the same color and hence the
quantifiers for their respective lifting variables are contained in the same
block. However the quantifiers of each block are ordered as desired.

e Otherwise col-alt(s) = [ for some [ such that { < k. Then the lifting
variable replacing s is quantified in EITlF or VTZA. In any case, it precedes

the quantifier for the lifting variable replacing ¢ which is contained in
ITY or VTP O

The previous results can be summarized by the following theorem:

Theorem 4.44. Letn be the mazimal number of color alternations of any term
in PI(C) or in a gray literal or equality in C' for any clause C of a resolution
refutation of 'UA. Then by arranging the quantifiers in a quantifier alternation
manimizing fashion the interpolant of Theorem [{.26 has at least n and at most
n + 1 quantifier alternations.

Proof. Immediate by Lemma [£.40| and Lemma [4.43] O



CHAPTER 5

Interpolant extraction from
resolution proofs in one phase

In contrast to the approach described in chapter [4 where propositional inter-
polants are extracted first and colored terms lifted just in a second, separate
phase, we now present a method which is based on the former but merges the
two phases.

The motivation for the separation in two phases lies in the fact that only
after the formation of the propositional interpolant, all terms and their logical
relation can be known. This however neglects the fact that proofs are frequently
structured in a way such that the occurrence of certain symbols and variables
are restricted to certain areas of the proof. By lifting these and prefixing the
entire interpolant with their respective quantifier, the resulting formula is not
optimal in the sense that the quantifier scope can be minimized.

Consider the following example:

Example 5.1. Let I' = {P(z) v Q(y)} and A = {—P(a),~Q(a)}. Consider
the following refutation of I' U A:

Pl)vQy L —P@)]T
Qy) | P(a) —Qa) | T
O] Q(a) v P(a)

Lifting and quantification of this propositional interpolant according to
Theorem gives the interpolant Vz,(Q(xq) v P(x,)). Note however that
the stronger formula (Va,Q(z,)) v (Ve P(x,)) is an interpolant as well, but can
not be constructed by this method. Consider yet that A entails the negated
interpolant, so by generalizing the interpolant, the formula entailed by A be-
comes more specialized. A
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5.1 Interpolant extraction with simultaneous lifting

We now define the incrementally lifted interpolant LI. Note that the structure of
the resulting formula coincides with the ones from PI as defined in Definition [4.3]
except for quantifiers and, of course, the colored terms.

Definition 5.2 (Incrementally lifted interpolant LI). Let m be a resolution
refutation of I' U A. We define LI(7) to be LI(OJ), where O is the empty clause
derived in 7.

Let C be a clause in m. We define the intermediary formula LI*(C) as
follows:

Base case. If Ce ' U A, LI*(C) e Plinit (C).

Induction step. If C' is the result of an inference ¢ using the clauses C, then

LI*(C) % Plyyep (2, LI(Cy), . . ., LI(C)).

LI(C) is built from LI*(C) according to the following lifting procedure:

1. Lift all maximal colored occurrences of a term ¢ in LI*(C) for which at
least one of the following conditions, referred to as lifting conditions,
applies:

e The term ¢ contains some variable x such that z does not occur

in C.

e The term ¢ is ground and C' does not contain t.
Denote the resulting formula by £ (LI°(C)).

2. Let £5,,4(LI*(C)) be Lyart(LI°(C)) where every lifting variable 2;, which

occurs free, is substituted by a fresh lifting variable Z;EI

3. Let X (Y) be the set of A-(I'-)lifting variables which occur free in
O art(LI°(C)). Form an arrangement Q(C) of the elements of {Va; | x; €

X}u{3y | y¢+ € Y} such that if s and r are terms such that s is a subterm
of r, then z5 precedes z,. Finally, let LI(C) difQ(C)f;art(LI'(C)). A

5.2 Main lemma

Note that the lifting conditions ensure that only terms are lifted, which do
not exhibit a direct logical relation with any term in the remaining clause.
More precisely, they do not influence the subsequent resolution derivation: If
a variable z occurs in LI(C) but not in C, then as all clauses in a resolution
refutation are pairwise variable-disjoint, the variable x does not occur in any

1See Example for an illustration.
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other clause. For ground terms r however which occur in LI(C') but not in C, it
is possible for them to cooccur in a subsequent clause. Let p be the occurrence
of r in LI(C) and ¢ the occurrence of r in a successor-clause of C. Then due
to the fact that p is not used in any unification, ¢ must be created or originate
from other occurrences of the same function and/or constant symbols. Note
that the lifting conditions ensure that for these, the order of the quantifiers
of their respective lifting variables is established in a fashion appropriate for
ensuring the logical validity of the interpolant, but despite the syntactic equality
between p and ¢, there is no logical relation between them.

We now show more formally that the lifting conditions ensure that if a term
contains another term, the subterm is not lifted before the superterm:

Lemma 5.3. Let C be a clause in a resolution refutation of ' U A. Then if
a term t occurs in LI*(C) or LI(C), no subterm s of t is lifted in LI*(C) or
LI(C) respectively.

Proof. We proceed by induction on the resolution refutation.

For the base case, consider that if C € I' U A, then LI*(C) is either L or T
and consequently also LI(C').

Now suppose that the lemma holds for the clauses C1,...,C, which are
used in an inference ¢ to derive the clause C' using the unifier 0 = mgu(c).
Then if ¢ is a term in LI*(C'), no subterm s of ¢ is lifted since either ¢ is present
in LI(C;) v C; for some i, 1 < i < n, where the induction hypothesis applies,
or otherwise t is introduced by means of ¢. But as ¢ is calculated only from
the resolution inference, no lifting terms can occur in ran(o).

Now let t be a term in LI(C') which is not lifted. Let s be a subterm of ¢ and
for the sake of contradiction, suppose that s is lifted in LI(C'). We distinguish
cases based on which lifting conditions applies for s:

e Suppose that s is lifted due to containing a variable which does not occur
in C. Then as s is a subterm of ¢, ¢ contains this variable as well and
therefore is lifted in LI(C'), contradicting the assumption.

e Suppose that s is lifted due to being a ground term which does not
occur in C. Then ¢ does not occur in C either as any occurrence of ¢
would contains s and s does not occur in C. Hence t is lifted in LI(C),
contradicting the assumption. O

We now use this lemma in order to show that the lifting step in LI possesses
the desired logical properties. Recall that the notation Dg for a clause D
denotes the clause created from D by removing all literals which are not
contained L(®).

Lemma 5.4. Let C be a clause in a resolution refutation of ' u A. Then
I'EA[LI*(C)] v La[Cr] implies T E LA[LI(C)] v €a[CT].
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Proof. Let ti,...,t, be the maximal colored terms in LI*(C') for which some
lifting conditions applies in ascending subterm order. The set {t,,—it1,...,tn}
for 0 <4 < n is designated by T;. We denote by £5,+(LI*(C),T;) the result of
lifting all terms of 7; and replacing the lifting variables by fresh ones analogous
to step [2] of the lifting procedure of LI. The fresh lifting variables are high-
lighted by a prime. We use Q;z;, to denote either Jy;. in case t; is I'-colored
or Y, in case t; is A-colored.

We show the result by an induction over

I'E/la [Qn_le;W_H . Qnzy, part (LI°(C), T7)] v £A[Cr]

for 0 <i <n.

Consider that for i = 0, we obtain that 7; = & and therefore I' F
CA[Qn—it121, , - Qnzp, Lpart (LI°(C), T3)] v £a[Cr] is nothing else than I' =
CA[LI*(C)] v €a[Cr], which holds by assumption.

Now suppose that I' F lA[Qn—iv121, ,,, -+ Qnzt, Lhart (LI°(C), T;) ] VLA [Cr]

holds for some 7 such that 0 <7 < n. Then in £, (LI*(C), T;11), the term

tn—; is lifted. We distinguish based on the color of t,_;:

e Suppose that t,_; is a A-term. Then the lifting variable mgn_i occurs free
in AA[Qn—iv121, ., - Qnzt, Lhart (LI°(C), T;)]. Note that it is possible
that an occurrence of the term ¢,_; is lifted and quantified in LI(C") for
some predecessor C’ of C' and the occurrence of t,—; in LI*(C') may be
in the scope of that quantiﬁelﬂ However as the lifting variable replacing
the occurrence of t,,_; in LI*(C') is renamed to the fresh variable z; _,

it is not bound by any quantifier present in LI*(C).

As some lifting condition holds for ¢,_;, C does not contain t,_; and
hence ¢A[Cr] does not contain z; .. Therefore /A[Cr] does not need to
be included in the scope of the quantification of x%nﬂ_.

Note that we must ensure that we quantify wgn_i such that every existen-
tial quantifier, whose witness term contains xgm, is in the scope of the
quantification of :L‘Qn_i. The terms in question are the maximal colored
I’-colored superterms of ¢.

By the contraposition of Lemma [5.3] we obtain that since ¢,,_; is lifted,
every maximal colored superterm s of t,_; must be lifted and quan-
tified either in LI*(C) or some lifting condition must apply for s in
LI*(C). In the latter case, s is contained in {t,_j+1,...,t,}. In any
case, the quantifier for the lifting variable replacing s is contained in

CA[Qn—iv12t, - Qnat, e (LI°(C), T5) .

Hence we may quantify x%n_i universally as follows:

I'E EA [vxénfiQn_iJrlz;n—i{»l N Qniﬂén ;art(LI.(C), Ti+1)] \ ﬁA [CF]

2See Example for an illustration.
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e Otherwise t,_; is a I'-term. By Lemma [5.3] no subterm of ¢,,_; is lifted
and quantified in LI*(C'). Moreover, all subterms of ¢,_; which satisfy

some lifting condition are contained in {¢i,...,%t,—;—1} and hence not
lifted in CA[@Qn—it121, ,,, - Qn2p, Lrare (LI°(C), Ti)]. Therefore ¢4 [t,—]

is a valid witness term for the existential quantification of y; . in
| SN [angQn_nganl . anénﬁzart(LP(C), Ti+1)] v €a[Cr].

By this induction, we obtain that I' F (a[Q12;, - . . Qnzy, Lpare (LI (C), Tin) | v

¢A[Cr], which is the same as I' F (A[LI(C)] v ¢a[CT]. O

Lemma 5.5. Let C be a clause in a resolution refutation of T'u A. Then
['EA[LI(C)] v LA[C]

Proof. We show the strengthening I' F ¢A[LI(C)] v £a[Cr] by induction on
the resolution refutation.

If C e uA, then Lemma shows that I' E A [PLinit(C)] v ¢A[Cr],
which is the unfolded definition of ¢A[LI*(C)] v £a[Cr]. By Lemma we
immediately get that {A[LI(C)] v ¢a[CT].

For the induction step, suppose the clause C' is the result of an inference
¢ using the clauses C1,...,C,. By the induction hypothesis, it holds that
I' E lA[LI(C;) v (Ci)r] for 1 < i < n. Hence we can deduce by Lemma
that I' E A [Plgtep(¢, LI(Ch), ..., LI(Cy)) v Cr]. This however is nothing else
than T' F (A[LI*(C) v Cr]. Lemma [5.4] gives the result. O

We now present an example which demonstrates that LI does produce
formulas realizing the idea presented in Example

Example 5.6. In this example, let I' = {P(u,v) v Q(u) v R(v)} and
A ={=P(w,z),—Q(a), ~R(a)}. We consider a resolution refutation of I' U A
combined with the interpolant extraction. In order to emphasize the lifting
steps, we do not just write C' | LI(C) in the derivation as usual for a clause
C but C | LI*(C) above C' | LI(C) without a separating line in case LI*(C)
is different from LI(C'). The primed variables make the renaming of lifting
variables in step [2] of the lifting procedure explicit.

P(u,v) v Q(u) v R(v) | L —P(w,z) | T res

Qu) v R(v) | P(u,v) T Q@) | T pes
R(v) | Q(a) v P(a,v) e
R(v) | V2,(Q(wa) v P(%a,v)) —R(a) | T
O] R(a) v Vza(Q(za) v P(z4,a))
O | Val, (R(z),) v V2o (Q(za) v P(z4,2))))

a a

res
v—a
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Hence we obtain a non-prenex interpolant which reflects the logical ex-
pressiveness of I', in contrast to the interpolant which is produced by the two
phase approach described in chapter [4] which in fact is Vz, (R(aca) v Q(z4) v
P(xg, :Ua))

Note that without the renaming of the lifting variables, the result of the ex-
traction would be Vo (R(%4) v V24 (Q(24) v P(%4,24))). In order to emphasize
the binding, we alpha-rename this formula to Yz (R(z) v Yy(Q(y) v P(y,y))).
This is not an interpolant, as this formula is not entailed by I':

Consider a model M of I with domain Djy; = {0,1} and an interpretation
Ty such that Zys(R) = {0}, Zy(Q) = & and Zps(P) = {(0,1),(1,1)}. Then
clearly M F P(u,v) v Q(y) v R(v) as depending on the value of v, either R(v)
or P(u,v) holds. But at the same time M ¥ Vz(R(z) v Vy(Q(y) v P(y,)))
since the instantiation of the bound variables z to 1 and y to O results in a
formula which does not hold in M.

A

5.3 Towards an interpolant

In a similar fashion as in Lemma for PI, we can also show a symmetry-
property for LI. Note that the notation employed in this lemma is defined in
Section [4.51

Lemma 5.7. Let C a clause in a refutation of T UA. Then LI(C) < —LI(C).

Proof. We proceed by induction to show that LI*(C) < — LI*(C):

If CeT U A, we obtain the result by Lemma [.16]

For the induction step, suppose that the clause C is the result of an in-
ference ¢ of the clauses C' = C4,...,C,. Then by the induction hypothesis,
LI(C;) < — LI(C;) for 1 < i < n. Hence we can apply Lemma to obtain
that Plsep(t, LI(CY), . .., LI(Cy)) © = Plgep (4, LI(CY), . .., LI(C,,)). But this
is nothing else than LI*(C) < — LI*(C).

We conclude by showing that LI*(C) < — LI*(C) implies LI(C) < — LI(():
Clearly the terms to be lifted in LI*(C) and LI*(C) are the same and differ
only in their color. Even though this results in different lifting variables, that
is of no relevance as all lifted variables are bound, which makes the formulas
alpha-equivalent. Additionally, the quantifier type of any given lifting vari-
able in Q(C) is dual to the respective one in Q(C). Furthermore note that
the subterm-relation is not affected by the coloring, so the ordering of the

quantifiers in Q(C) and Q(C) is identical. Hence LI(C) < — LI((). O

Lemma 5.8. Let C be a clause in a resolution refutation of I U A. Then
A E —(p[LI(C)] v £r[C].
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Proof. By Lemma E we obtain that I' EA[LI(C')] % KA[C'], which by
Lemma is nothing else than ' k (A[~LI(C)] v £4[C]. This however is
the same as A F —¢p[LI(C)] v ¢r[C]. O

Theorem 5.9. Let 7 be a resolution refutation of ' U A. Then LI(7) is an
interpolant for I' and A.

Proof. We obtain by Lemma that I' F {A[LI(7)] and by Lemma that
A E —(p[LI(7)]. As the empty clause derived in 7 trivially contains neither
variables nor ground terms and as any colored term either contains variables
or is ground, at least one lifting condition holds for any maximal colored term
in LI°(7). Hence all colored terms are lifted in LI(7). Therefore ¢a[LI(7)] =
LI(7) and ¢r[LI(7)] = LI(7). O

We finish this chapter by demonstrating the application of the interpolant
extraction procedure LI on a larger example:

Example 5.10. Let I' = {R(f(v1,v6)), P(f(v2, g(v3,v4)))vQ(g(vs,b)), ~S(b)}
and A = {S(vs) v =P(vg) v —=R(vs), —~Q(g(a,vr))}. Hence L(I') n L(A) =
{R,P,Q,S,g}, LM\L(A) = {f,b} and L(A)\L(I") = {a}. We can produce
an interpolant for I' and A using the following refutation and extraction in
the same notation as Example We emphasize liftings of terms justified by
being a ground term not occurring in the clause by (o), and those justified by
occurrences of variables which do not occur in the clause by (x).



P(f(v2,9(vs,v4))) v Qg(vs,0)) | L —=Q(g(a,v7)) [ T res S(vs) v =P(vg) v =R(vs) | T R(f(v1,v6)) | L res

(o)1

(0) ()3

P(f (02, g(a,00))) | Qg(ar ) T

S(vs) v ~P(vo) | R(f(v1,v6)) vy (v1.26)

P(f(v2,9(a,v4))) | IpQ(g(a,ys)) S(vs) v =P(v9) | 3¢ (w1 06) B(Yf(01,06)) res
S(vs) [ P(f(v2, 9(a,v0))) A 3y su1,00) RWg10e)) v —~P(f(v2,9(a,v1))) A IppQ(g(a, ) v flraten)
S(U8) | V$a3yf(v2,g(a,v4)) (P(yf(’l]27g(d,7)4))) A Elyf(vl,ve)R(yf(vl,vs)) Vv _'P(yf(vg,g(a,v4))) A Hbe(g(xavyb))) _'S(b) | T res

o4 U | S(b) A v‘raayf(vg,g(a,v4)) (P(yf(vz,g(a,m))) A Hyf(’vl,v()‘)R(yf(’Ul,’UG)) v _'P(yf(vg,g(a,m))) A Hbe(g(%,yb)))
U | Elyll)(S(y;;) A vxaayf(vg,g(a,v4)) (P(yf(vz,g(a,m))) A Elyf(’l)]_,vﬁ)R(yf(’Ul,’Uﬁ)) \4 _'P(yf(vg,g(a,w))) A Hbe(g(mmyb))))

(0)1: The maximal colored term b is lifted as it does not occur
in the clause. On the other hand, the maximal colored term a is
not lifted since it does occur in the clause.

(%)2: The maximal colored term f(vi,vs) contains the vari-
ables v1 and vg, which are not present in the clause. Due to the
variable-disjointness restriction on clauses, these variables do not
occur in any subsequent clause.

vg—b

(0)(%)3: Clearly, the term a is a subterm of f(v2,g(a,vs)),
hence we must quantify z, before yy(,, g(a,v4))-

(0)4: We encounter another occurrence of the maximal col-
ored term b (cf. (0)1). The lifting conditions however ensure that
different lifting variables (y, and y; respectively) are justified. A

99
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CHAPTER 6

The semantic perspective on
interpolation

An interesting feature of the interpolation theorem is that it admits a proof,
which is distinct from the proof-theoretic ones discussed in the foregoing chap-
ters, as it is purely model-theoretic. It is based on the joint consistency theorem
by Robinson (JRob56]), which we show to be equivalent to the interpolation the-
orem. The joint consistency theorem itself was originally presented in [Rob56]
as a proof of Beth'’s definability theorem, which is discussed in Section

6.1 Joint consistency

The joint consistency theorem is based two notions, which we define now:

Definition 6.1 (Consistency). A set of formulas I is consistent if it is not the
case that I' - L. A

Note that in classical first-order logic, the notions of consistency and
satisfiability coincide.

Definition 6.2 (Separability). Let I" and A be sets of first-order formulas. A
formula A in the language L(I") n L(A) is said to separate I' and A if I' E A
and A E —A. T" and A are separable if there exists a formula in the language
L(I") n L(A) which separates I and A and inseparable otherwise. A

Note that for joint consistency, it is not necessary to require the original
sets to be consistent as this is implied by separability:

Lemma 6.3. Let ' and A be inseparable sets of first-order formulas. Then I’
and A are each consistent.

Proof. Suppose w.l.o.g. that I' is inconsistent. Then I'F |, and as AE T, L
separates I' and A. ]
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The joint consistency theorem shows that if there exists no formula in the
language L(I") n L(A) which separates I' and A, then there exists no formula
in any language which separate I' and A as then, I' U A is consistent:

Theorem 6.4 (Robinson’s joint consistency theorem). Let I' and A be sets
of first-order formulas. Then I' U A is consistent if and only if I' and A are
inseparable.

The following proof essentially follows [Hen63| and [CK90].

Proof. Suppose that I' U A is consistent and let M be a model of it. Then
clearly for every formula A, if ' E A, then M F Aas M ET. But M E A,
hence it can not be the case that A F —A.

For the other direction, suppose that I" and A are inseparable. We proceed
by iteratively constructing two maximal consistent sets of formulas T and T’
such that I' € T and A < T” where T'U T" is consistent in order to then derive
a model of this union, thus establishing the consistency of I' and A.

Let C' = {co, ¢}, c1,¢),...} be a countably infinite set of fresh constant

symbols. Let Ag, A1, ... be an enumeration of all sentences in the language
L(T') u C and By, B1,... an enumeration of all sentences in the language
L(A)u C.

Let To = I' and Tj; = A. We construct T;41 from 7; by means of the
following formation rules:

(1) If T; U {A;} and T are separable, then T;; def T;.
(2) Otherwise:

(2a) If A; is of the form 3z A, then T;4q Y {A;, Alz/ci]}.

(2b) Otherwise T;1 ©ro {A;}.

Ti’ 118 formed in a similar fashion:

def

(1) If 7] v {B;} and T;;, are separable, then T , = T7.

7

(2") Otherwise:

(2'a) If B; is of the form 3z A, then T}, def T! v {B;, Alz/c]}.

(2'b) Otherwise T}, o T! u{B;}.

Now let T' = ;5o Ti and T" = | J,»1 T;. We prove properties on T" and 1"
which will be vital for the construction of a model of T' U T":
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L.

II.

I11.

T; and T} are inseparable.

Suppose to the contrary that T; and 7] are separable. As I' and A are
inseparable by assumption, there must be a j < i such that 7} and T]’ are
not separable but 7}; and TJ’ are, or 111 and T]’ are not separable but
Tjy1 and TJ' 41 are. Since these two cases are analogous, we only consider
the first.

Note that by [1| of the construction procedure, if T; U {A;} and TJ’ are
separable, then Tj,1 = T;. But as we have just witnessed that T} and
Tj11 are different, T; U {A;} and T} must be inseparable. This however
also implies that in the construction procedure, can not be the case
as then, T 11 = T; u {A;} would hold, which contradicts the assumption
that 7,1 and TJ’ are separable.

Hence [2a] must be the case. Therefore A; is of the form 3z A and T}, =
T; v {Aj, Alz/cjl}. As Tj u {A;, Alz/cj]} and T} are separable, there
exists a formula B in the language L(T; u {A;, A[z/c;]}) n L(T}) such
that T u {A;, A[z/c;]} F B and T] F —B. Since ¢; is a fresh variable
and therefore is not contained in L(TJ{), ¢;j does not occur in B. Hence
B is in the language L(T; u {A;}) n L(T}). We conclude by showing
that B separates T U {A;} and T]{, which is a contradiction to a previous
assumption. In order to do so, it only remains to show that T;U{A;} F B.

Let M be a model of Tj u {A;} in the language L(7; u {A;}). Note
that ¢; is not included in this language as c¢; is a fresh variable. Since
M E 3z A, let d be such that M F A[z/d]. Let M’ be a model which
extends M by interpreting ¢; as d. Then M' E T; u {A;, A[z/c;]}. But
then M’ = B. However as M and M’ coincide on the interpretation of
the symbols of L(7T; u {A;}) and B is in this language, M F B.

T; and T are consistent.

Immediate by [[] and Lemma [6.3]

T and 1" are each maximal consistent with respect to L(I') u C' and
L(A) u C respectively.

We show the result for T'. By [[I, 7" is consistent. Suppose that for some 4,
A;¢ T and —A; ¢ T.

Then in the construction of T, case [I] must apply for A; as the cases
and [2b] each would add A; to Tj,1 and therefore also to T'. However
as || applies for A;, T; U {A;} and T] must be separable. As T; < T,
also T'u {A;} and T" are separable, i.e. there exists a formula B in the
language L(T'U{A;})nL(T") = (L(TI')nL(A))uC such that Tu{A;} F B;
and 7" F —Bj. By the deduction theorem, we also have that (o) T F
-Ai o Bl.
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As we also assume that —A4; ¢ T, by a similar argument, there exists a
formula By in the language (L(I') nL(A))uC such that (%) T F —A; © B
and T" E —'BQ.

Then however (o) and () entail that in any model, depending on whether
A; holds in the model, at least one of By and Bs holds, i.e. T F By v Bs.
But as neither By nor Bs hold in 77, we obtain that 7" E —(By v Bs), in
effect establishing that By v Bs separates T' and T”, a contradiction to .

IV. T nT' is maximal consistent with respect to (L(I') n L(A)) u C.

By [[T] for every formula A in (L(I') n\L(A))uC it holds that either A € T
or mAeT aswellas Ae T or —Ae€T'. AsT and T’ are inseparable,
either A€ T and A € T’ or otherwise —A€ T and —A e T".

As T is consistent, let M be a model of T. Due to [[TI} for each term ¢ in
L(T) v C, 3z (t = =) € T and hence by there is some ¢; € C such that
t = ¢; € T. Therefore we can find a submodel N of M which as M is in
the language L(I") u C such that every domain element in N corresponds to a
constant symbol in C. Models M’ of T" allow by a similar reasoning for finding
such submodels N’ of M’.

As by T and T" agree on all formulas of (L(T") n L(A)) u C, we are
able to find an isomorphism between the reducts N and N’ to their common
language. Hence we may build a common model K based on N and extending
it to L(A) by copying the respective interpretation of N’ with regard to the
isomorphism. Thus as N ET and N' £ T’, K & T u T’, which implies that
I' U A is consistent. O

6.2 Joint consistency and interpolation

The proof given in the previous section is clearly distinct from the ones in
the previous chapters as due to its indirect nature, it does not give rise to a
practical algorithm, whereas the core idea in each of the other ones is defining
an interpolant extraction procedure.

Nevertheless, it is easy to see that all of these proofs express equivalent
notions. To that end, let us recall the Interpolation Theorem in the reverse
formulation:

Theorem 2.3 (Reverse Interpolation). Let T' and A be sets of first-order
formulas such that T'U A is unsatisfiable. Then there exists a reverse interpolant

forT' and A.
Proposition 6.5. Theorem[6.]] and Theorem [2.3 are equivalent.

Proof. 1t is easy to see that the notion of reverse interpolant and separating
formulas coincide. O
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Conclusion

This thesis gives a comprehensive account of results and techniques with respect
to interpolation in full first-order logic with equality. The notion of interpolation
enjoys applicability in many areas:

Among the most notable practical uses of interpolation we can certainly
count the application in model checking introduced in [McMO03|. Here, inter-
polants represent concise formulas describing an overapproximation of the set
of reachable states of a program, which can then be used to prove the unreach-
ability of error states. Moreover, interpolants can be employed to construct
loop invariants ([Weil0O]) which is a major challenge for program verification.
In the realm of theory, for instance Beth’s definability theorem can very easily
be proven using the interpolation theorem.

Even though the interpolation theorem holds in first-order logic with equality,
a multitude of applications in fact mostly deal only with weaker logics such as
propositional logic or equational logic with uninterpreted function symbols.

In order to facilitate future applications in full first-order logic with equality,
the focus of this work is geared towards constructive proofs which give rise to
concrete algorithms for calculating interpolants. We present the first such in
Chapter |3, which is also historically the first one: In [Cra57al, [Cra57b|, where
Craig introduces the notion of interpolation, he already gives a constructive
proof. By a reduction to first-order logic without equality and function symbols,
which allows for a simpler constructive proof, interpolants can effectively be
calculated, but only at the cost of the considerable reduction overhead.

Arguably the most significant subsequent contribution for interpolant con-
struction in the logic at hand is due to Huang. In [Hua95|, a two-phase
approach is introduced which is capable of efficiently extracting interpolants
from resolution refutations which include paramodulation inferences. Here, a
preliminary structure in the form of a propositional interpolant is extracted
directly from the refutation, where colored constant and function symbols are
then in the second stage replaced by appropriately quantified lifting variables.
This leads to interpolants in prenex form.
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We present this algorithm in detail in Chapter [4] in a slightly improved
form and in Appendix [A|in a version following [Hua95| more closely.

Our analysis of the number of quantifier alternations in interpolants pro-
duced by this procedure is based on an analysis of the lifting phase of Huang’s
proof. We show that the resolution refutation directly shapes the quantifiers
in the resulting interpolant in the sense that only inferences of the refutation
affecting both I'-and A-terms are capable of necessitating quantifier alterna-
tions in the interpolant. This leads us to the result that the number of color
alternations in the terms of the refutation essentially coincides with the number
of quantifier alternations in the interpolant created by this algorithm.

As a variation of Huang’s work, we propose an approach which combines
the two phases into one by lifting and quantifying colored terms during the
extraction phase. Consequently, the resulting interpolants are not in prenex
form but the scope of quantifiers is limited to the subformula where the lifted
term is of relevance. This algorithm is dealt with in Chapter

Complementary to these algorithms, we also present a non-constructive,
model-theoretic approach to interpolation. Assuming the non-existence of an
interpolant, a maximal consistent intersection of two theories is constructed,
where the theories are each based on the sets of formulas to interpolate. The
details of this proof are laid out in Chapter [6]

The proofs of the interpolation theorem by Craig and Huang are based on
an analysis of formal proofs and directly extract concrete interpolants. In our
presentation, they do so in different calculi but nonetheless share the idea of
recursively defining an interpolant based on a case distinction on the type of
the current inference.

These two approaches however differ in their practical applicability. Craig’s
proof gives rise to a procedure which in its run introduces in addition to basic
axioms for the equality predicate also congruence axioms for every predicate
symbol and functional axioms for every function symbol. Furthermore, the
complexity of nested terms in the initial formulas is translated into a formula
structure without nested terms. Once this translation is established, the actual
interpolant calculation in first-order logic without equality and function symbols
can be done in a straightforward manner by a direct extraction from a proof.

Hence the question of whether it is possible to perform interpolant extraction
from a proof of formulas in full first-order logic with equality arises naturally.
For sequent calculus, Baaz and Leitsch present a method for first-order logic
without equality in [BLI11], but to the best of our knowledge, there is no
comparable approach for sequent calculus which includes equality. As Huang
has shown in [Hua95|, a method for full first-order logic with equality exists
for the resolution calculus.

The first phase of Huang’s approach is similar to other approaches for
propositional logic ([Kra97, [Pud97, McMO03]), but after fixing the propositional
structure, a lifting phase is introduced in order to handle colored function and
constant symbols. It is interesting to see that even though the additional rule of
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paramodulation is necessary in resolution calculus in order to handle equality,
the same strategy of inductive propositional interpolant extraction as for the
resolution and factorization rule can be applied. Hence the expressive power
gained by adding equality does not require a structurally different approach for
interpolant calculation.

The model theoretic proof based on Robinson’s joint consistency theorem
however fundamentally differs from the previous proofs in its approach. Instead
of an analysis of syntactic proofs, it is based on an indirect and semantic
argument. This is inherently non-constructive and hence does not allow for
extraction of an algorithm. Moreover, this approach also differs from the other
insofar as equality does not require explicit handling as naturally, equality is
defined in the constructed models.






APPENDIX A

Interpolant extraction from
resolution proofs due to Huang

This section essentially presents the original proof of [Hua95] in a modern
format. It forms the base for our work in chapter {4f and [5] and we refer to
these chapters for lemmas and definitions which also apply here. Section
features comments on the original publication.

A.1 Propositional interpolants

Let I' U A be unsatisfiable and 7 be a proof of the empty clause from I" U A.
Then PI is a function that returns a interpolant with respect to the current
clause.

Definition A.1 (Propositional interpolant). Let m be a resolution refutation
of ' U A. A formula A is a propositional interpolant if

1.TEA
2. AF—A
3. PS(A) < (PS(T) nPS(A)) U {T, L}.

For a clause C in 7, a formula A¢ is a propositional interpolant relative to
C if

1. TEA- Vv C
2. AE—-Ac v C
3. PS(A¢) < (PS(T') nPS(A)) u{T,L}.

The propositional interpolant for the empty clause derived in 7 is denoted

by PI(m). A
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The third condition of a propositional interpolant will sometimes be referred
to as language restriction. 1t is easy to see that the propositional interpolant
relative to the empty clause of a resolution refutation is a propositional inter-
polant.

We refer to Definition 3] for the definition of PI.

Proposition A.2. Let C be a clause of a resolution refutation of ' U A. Then
PI(C) is a propositional interpolant with respect to C.

Proof. Proof by induction on the number of rule applications including the
following strengthenings: I' = PI(C') v Cr and A E —PI(C) v Ca, where Dg
denotes the clause D with only the literals which are contained in L(®). They
clearly imply conditions [I] and [2] of definition [A 1]

Base case. Suppose no rules were applied. We distinguish two possible cases:
1. C €. Then PI(C) = L. Clearly I' F L v Cr as Cr = C €T,

AE —1 v Ca and | satisfies the restriction on the language.
2. CeA. Then PI(C) =T. Clearly ' E T v Cr, AF =T v Cha as

Ca = C € A and T satisfies the restriction on the language.

Suppose the property holds for n rule applications. We show that it
holds for n 4+ 1 applications by considering the last one:

Resolution. Suppose the last rule application is an instance of resolution. Then
it is of the form:

Ci:Dvl Cy: Ev =l
C:(Dv E)s

lo=1o

By the induction hypothesis, we can assume that:
F'EPI(CL) v (D v i)

AE—=PI(Cy) v (D vi)a

IF'EPI(Cy) v (E v =)

AE-PI(Cy) v (Ev —=l)a

We consider the respective cases from definition 4.2}

1. 1 is T-colored. Then PI(C) = [PI(Cy) v PI(Cy)]o.
As PS(I) e L(I"), I' E (PI(Cy) v Dr v l)o as well as I' F (PI(C2) v
Er v =l')o. By a resolution step, we get I' F (PI(C1) v PI(C3))o v
(D v E)o)r.
Furthermore, as PS(l) ¢ L(A), A E (=PI(C1) v Da)o as well
as A F (—=PI(Cy) v Ea)o. Hence it certainly holds that A F
(—PI(Cy) v = PI(Cy))o v (D v E)on.
The language restriction clearly remains satisfied as no non-logical
symbols are added.
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2. 1 is A-colored. Then PI(C) = [PI(C}) A PI(Cy)]o.

AsPS(l) ¢ L(I"), ' E (PI(Cy) v Dr)o as well as I' E (PI(C2) v Er)o.
Suppose that in a model M of I', M ¥ Dr and M ¥ Er. Then
M E PI(Cy) API(Cy). Hence T E (PI(C1) API(C2))ov ((Dv E)o)r.
Furthermore due to PS(l) € L(A), A E (=PI(C}) v Da v l)o as
well as A F (—=PI(C2) v Ea v —l')o. By a resolution step, we
get A F (=PI(Cy) v =PI(Cs))o v (DA v Ea)o and hence A E
—(PI(C1) A PI(C2))o v (Da v Ea)o.

The language restriction again remains intact.

3. lis gray. Then PI(C) = [(I A PI(Cy)) v (=" A PI(C1))]o
First, we have to show that I' E [(I A PI(C2)) v (I" A PI(Ch))]o v
((Dv E)o)r. Suppose that in a model M of ', M ¥ Dp and ' ¥ E.
Otherwise we are done. The induction assumption hence simplifies
to M E PI(C1) vl and M E PI(Cy) v =’ respectively. Aslo =10,
by a case distinction argument on the truth value of lo, we get that
either M E (I A PI(C2))o or M E (—I' A PI(Ch))o.
Second, we show that A E ((I v =PI(Cy)) A (=l v =PI(Cs)))o v
((Dv E)o)a. Suppose again that in a model M of A, M ¥ Da and
I' # EA. Then the required statement follows from the induction
hypothesis.
The language condition remains satisfied as only the common literal
[ is added to the interpolant.

Factorization. Suppose the last rule application is an instance of factorization.
Then it is of the form:

Ci:lvilvD
C:(lv D)o

o = mgu(l,l")

Then the propositional interpolant PI(C) is defined as PI(Cy). By the
induction hypothesis, we have:

F'EPICy) v (vl v D)y

AEPI(Cy) v (IvIvD)a

It is easy to see that then also:

I'E (PI(Cy) v (I v D)r)o

AFE (PI(C1)o v (I v D)a)o

The restriction on the language trivially remains intact.

Paramodulation. Suppose the last rule application is an instance of paramod-
ulation. Then it is of the form:
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Ci:Dvs=t Cy : Els],
C:Dv E[t],

o = mgu(s,r)

By the induction hypothesis, we have:
I'EPI(C)) v (Dvs=tr
AE-PICy) v (Dvs=t)a
I'EPI(Cq) v (E[r])r

AE =PI(Cy) v (E[r])a

First, we show that PI(C) as constructed in case |3| of the definition is a
propositional interpolant in any of these cases:

PI(C) = (s =t A PI(C2)) v (s # t A PI(C1))

Suppose that in a model M of I', M ¥ Do and M ¥ E[t],o. Otherwise we
are done. Furthermore, assume that M F (s = t)o. Then M ¥ E[r],o,
but then necessarily M F PI(Cs)o.

On the other hand, suppose M E (s # t)o. As also M ¥ Do, M F
PI(C1)o. Consequently, M E [(s =t A PI(C2)) v (s # t A PI(C}))]o v
(D v E)rlo

By an analogous argument, we get A F [(s =t A =PI(C2)) v (s #t A
—=PI(C1))]o v [(Dv E)alo, which implies A F [(s # t v —=PI(C2)) A (s =
tv —PI(C1))]o v (D v E)a)o

The language restriction again remains satisfied as the only predicate,
that is added to the interpolant, is =.

This concludes the argumentation for case [3]

The interpolant for case [I] differs only by an additional formula added
via a disjunction and hence condition [I| of definition holds by the
above reasoning. As the adjoined formula is a contradiction, its nega-
tion is valid which in combination with the above reasoning establishes
condition [2] Since no new predicated are added, the language condition
remains intact.

The situation in case [2]is somewhat symmetric: As a tautology is added
to the interpolant with respect to case (1}, condition [1} is satisfied by the
above reasoning. For condition |2, consider that the negated interpolant
for case [I] implies the negated interpolant for this case. The language
condition again remains intact. O

A.2 Propositional refutations

Before we are able to specify a procedure to transform the propositional
interpolant generated by PI into a proper interpolant without any colored
terms, we need to make some observations about tree refutations.
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In a tree refutation where the input clauses have a disjoint sets of variables,
every variable has a unique ancestor which traces back to an input clause
and hence appears only along a certain path. This insight allows us to push
substitutions of the variables upwards along this path and arrive at the following
definition and lemma:

Definition A.3. A resolution refutation is a propositional refutation if no
nontrivial substitutions are employed. A

Lemma A.4. Let ® be unsatisfiable. Then there is a propositional refutation
of ® which starts from instances of ®.

Proof. Let m be a resolution refutation of ®. By Lemma [2.20] we can assume
without loss of generality that 7 is a tree refutation where the sets of variables
of the input clauses are disjoint. Furthermore, we can assume that only most
general unifiers are employed in 7.

Then any unifier in 7 is either trivial on x or there is one unique unifier o
in m with zo = ¢t where x does not occur in . Hence along the path through
the deduction where x occurs, it remains unchanged. Therefore we can create
a new resolution refutation 7’ from 7 where x is replaced by ¢. Clearly 7’ is
rooted in instances of ®.

By application of this procedure to all variable occurring in 7, we obtain
a desired resolution refutation. O

Even though propositional refutations have nice properties for theoretical
analysis, their use in practice is not desired as its construction involves a
considerable blowup of the refutation. But its use is still justified in this
instance as we can show for arbitrary refutations 7 that the algorithm stated in
[4:3] gives closely related results for both 7 and its corresponding propositional
refutation.

Lemma A.5. Let m be a resolution refutation of ® and 7' a propositional
refutation corresponding to w. Then for every clause C' in w and its corre-
sponding clause C' in 7', PI(C)o = PI(C"), where o is the composition of the
unifications of m which are applied to the variables occurring in C .

Proof. For the construction of the propositional skeleton of PI(-) only the
coloring of the clauses is relevant and since this is the same in both 7 and 7/,
it coincides for PI(C') and PI(C”).

Hence PI(C) and PI(C") differ only in their term structure. To be more
specific, in PI(C"), the composition of substitutions that are applied in 7 have
already been applied to the initial clauses of 7’/. Note that substitution com-
mutes with the rules of resolution. Therefore the only difference between PI(C')
and PI(C") is that at certain term positions, there are variables in PI(C') where
in PI(C”) by some substitution a different term is located. But these substi-
tutions are certainly applied by o, hence PI(C)o = PI(C"). O
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A.3 Lifting of colored symbols

We rely on the same definition of lifting as given in [4.3] First, we consider the
lifting of the A-terms, which corresponds to Lemma .15, but differs in the
proof by relying on propositional refutations.

Lemma A.6. Let w be a resolution refutation of TUA. Then T E (X [PI(C) v C]
for C in .

Proof. We proof this result by induction on the number of rule applications in
the propositional refutation corresponding to m. Similar to the proof of [A22]
we show the strengthening: I' E ¢} [PI(C) v Cr] for C in 7.

Base case. If no rules have been applied, C is an instance of a clause of either
I' or A. In the former case, all A-terms of C' were added by unification,
hence by replacing them with variables, we obtain a clause C’ which still
is an instance of C' and consequently is implied by I'. In the latter case,
PI(C) =T.

Resolution. Suppose the last rule application is an instance of resolution. Then

it is of the form:

Ci:Dvl Cy: Ev —l
C:DvE

By the induction hypothesis,

I' E LR [PI(C1) v (D v I)r] and

I' E LR [PI(C2) v (E v =I)r]

which by Lemma is equivalent to

I' E (X [PI(C1)] v £ [Dr] v £X[ir] (o) and
I' E LR [PI(Ca)] v £ [Er] v —€X[lr] (*) .

1. Suppose [ is I'-colored. Then PI(C') = PI(C}) v PI(C3). By using
resolution of (x) and (o) on ¢} [Ir], we get that

['ELA[PI(C)] v EA[PI(C2)] v €A[Dr] v LA[Er].

Several applications of Lemma give I' E /4 [PI(C1) v PI(Cy) v
(D v E)r].

2. Suppose [ is A-colored. Then PI(C) = PI(C1) A PI(Cy).
As [ and —![ are not contained in L(T"), we get that
Tk 63 [PI(Cy)] v €% [Dr] and
I'E X [PI(C2)] v €X[ET].
So if in a model M of I we have that M ¥ ¢} [Dr]| and M ¥ ¢} [Er],
it follows that M E ¢X[PI(Cy1)] and M E ¢4 [PI(C3)]. Hence by
Lemma [£.6) M & (% [PI(C1) A PI(C)] v (4[(D v E)r].
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3. Suppose [ is gray. Then PI(C) = (I A PI(C3)) v (=1 A PI(CY)).
We show that I' E £3 [(I A PI(Cy)) v (=1 A PI(C})) v (D v E)r].
Suppose that for a model M of I' that M ¥ ¢X[Dr| and M ¥
(X [Er]. Then by (o) and (x), we get that
M E (4 [PI(Ch)] v €X[lr] as well as
M E (4 [PI(Cy)] v —L4[Ir].

So M E (}[ir] implies that M E (X[PI(C2)] and M E —¢4[lr]
implies that M F ¢4 [PI(C1)] and

Therefore M & ((R[1] A LX[PI(C2)]) v (—R[l] A £X[PI(C1)]) v
(¢X[Dr] v £4[Er]), and several applications of Lemma 4.6 give M &=
(X[(I A PI(C2)) v (=1 A PI(CY)) v (Dr v Er)].

Factorization. Suppose the last rule application is an instance of factorization.
Then it is of the form:

Ci:lvivD
C:lvD

The propositional interpolant directly carried over from C1, i.e. PI(C) =
PI(Cy).

By the induction hypothesis, we get that I E ¢} [PI(C1) v (I v Iv D)r].
By Lemma

I'E CR[PL(C)] v (£A[lr] v €x[Ir] v € [Dr]),

which clearly is equivalent to

I'ECR[PI(C)] v (£A[Ir] v EA[Dr]),

so by again applying Lemma [.06] we arrive at

I' E X [PI(C1) v (I v D)r].

Paramodulation. Suppose the last rule application is an instance of paramod-
ulation. Then it is of the form:

Ci:Dvs=t Cy : Els]p
C:Dv Elt],

By the induction hypothesis, we have that
I'E LR [PI(C1) v (D v s =t)r] and

I'E (R [PL(C2) v (E[s]p)r].

By Lemma we get that

I' E (X [PI(C1)] v ¢X[Dr] v £X[s] = ¢4[t] and
Ik & [PICo)] v & [(Blsly)rl.

We distinguish two cases:
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1. Suppose s does not occur in a maximal A-term h[s] in E[s], which
occurs more than once in PI(E(s)) v E[s]p.
We show that I' E ¢3[(s = t A PI(Cy)) v (s # t A PI(C1)) v (D v
Elt]p)r], which subsumes the cases [2| and [3| of Definition By
Lemma this is equivalent to
I'E (€R[s] = €A[t] A EATPL(Co)]) v (€Rls] # €X[¢] A CATPI(CL)]) v
(CA[Dr] v LA[(E[t]p)r])
Suppose that M is a model and « an assignment to the free variables
such that M, E T, M, ¥ ¢3[Dr| and M, # (X[(E[t],)r]. We show
that then, depending on whether ¢4 [s] = ¢4 [t] holds in M,, one of
the first two disjuncts holds in M,.
In case M, F {X[s] = ¢X[t] we also get M, ¥ (X[(E[s],)r] and
consequently by the induction hypothesis M, F ¢} [PI(Cs)].
However in case M, F ¢} [s] # ¢X[t] we get by the induction hy-
pothesis that M E ¢} [PI(C1)].

2. Otherwise s occurs in a maximal A-term h[s] in E[s], which occurs
more than once in PI(E(s))v E[s],. This reflects case[l]of Definition
Then models are possible in which s = ¢ holds, while at the same
time 0% [h[s]] # ¢ [h[t]] does not as h[s]| and h[t] are replaced by
distinct variables due to being different A-terms.

Therefore we amend the proof of case [I] as follows:

In case M, F €% [s] = ¢X[t] (otherwise proceed as in case|l)), one of
the following cases holds:

— M, E (X[h[s]] = €x[h[t]]. From this, it follows that as in
the proof of case |1 M ¥ ¢X[(E[s],)r] and consequently M
(% [PI(C2)] again by the induction hypothesis.

— M, E 04 [h]s]] # €4 [h[t]]. However as here PI(C') contains the
with respect to case [I] additional disjunct s = ¢ A h[s] # h[t],
M, E (X[PI(C)] due to M, E (X[s] = €x[t] A ¢X[h[s]] #
X [h[t]]- O

From this, we can directly proof the theorem by relying on the notion of
symmetry already shown in Section

Theorem A.7. Let 7 be a resolution refutation of ' U A and t1,...,t, be the
mazximal colored terms in PI(w) sorted in ascending order by their length. Then
Q12t, - - Quzt, (AR [PI(7)]], where Q; is ¥V (3) if t; is a A (T')-term, is an
interpolant.

Proof. Let s1,..., Sy, be the maximal colored A-terms in PI(7) and 71, ...,7%
the maximal colored I'-terms in PI(7). Then by Lemma we get that
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I' E Vag, ... Vas, (X[PI(r)] and by Corollary we obtain that A E
Yyr, ... Yy, —[PI(m)]. Note that as t1,...,t, are ordered by length, they
are also in subterm order as subterms are strictly smaller in length than their
respective superterms. Therefore we can apply Lemma[4.25|to obtain both I'
Q12t, - - - Quz, LA [PI(7)]] as well as A F =Q1z, - .. Qna, (1[04 [PI(m)]],
As clearly Q12 ... Qnzt, (4[¢4[PI(7)]] does not contain colored symbols,
this formula is an interpolant. ]

A.4 Comments on the original publication

In [Hua95, Definition 3|, a maximal occurrence of a I" (A)-term is defined to be
an occurrence of a I' (A)-term which is not a subterm of a larger I' (A)-term.

Furthermore, in the extension of the “Interpolation Algorithm” to include
paramodulation inferences in [Hua95| p. 183], this notion is used to distinguish
between the respective cases. Translated into our notation in the context of
our corresponding Definition [£:2] for the case of paramodulation inferences, the
conditions for the three cases can be stated as follows:

1. The term r occurs in E[r] as subterm of a maximal I'-term, which occurs
more than once in E[r]| v PI(E[r]).

2. The term r occurs in E[r| as subterm of a maximal A-term, which occurs
more than once in E[r]| v PI(E[r]).

3. Otherwise.

Note that if reading this definition in the strict sense, an ambiguity arises:
It is very well possible for a term to be a subterm of a maximal I'-term and a
maximal A-term at the same time. Suppose g is a ['-colored and h a A-colored
function symbol. Then the term h(g(c)) contains the maximal A-term h(g(c))
as well as the maximal I'-term g(c) since g(c) is not subterm of a larger I'-term
in h(g(c)).

We present the following example, which illustrates that the definition of
the conditions for the cases above is to be read as “maximal colored term,
which is ®-colored” (or more concisely: “maximal colored ®-term”) in place of
“maximal ®-term”.

Example A.8. In this example, let I' = {P(z) v =Q(x), = P(y) v Q(y),c = d,
—R(g(d)), ~S(g(c))} and A = {S(v) v =Q(h(v)), R(u) v Q(h(u)), T(c,d)}-
Hence h is a A-colored function symbol and g a I'-colored function symbol,
while the constant symbols ¢ and d are gray.

We present a resolution refutation of I' U A in combination with the in-
terpolant extraction such that each label is of the form C | PI(C), where C'is
the clause of the refutation and PI(C) is sometimes given in a simplified but
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logically equivalent form. The presentation of the refutation is split into parts
in order to improve readability.

Note that at the paramodulation inference (%), case |1| is erroneously se-
lected due to d occurring in the maximal I'-colored term g(d), even though d
is also contained in the maximal A-colored term h(g(d)).

“Rg@) L R vQMhw)|T res

Q(h(g9(d))) | ~R(g(d)) D Py v -Q@) | L res
P(h(g(d))) | ~R(g(d)) » ~Q(h(g(d))) A = d | L s
P(h(g(e) | (c = d n —=R(g(d)) » =Q(h(g(d)))) v (¢ # d A g(c) = g(d)) i

—Sg) [ L S v =QA®) | T  res
(¢
(

~QG)] ﬂS< ) T PW) VWL res
(h(9())) [ =S(9(e)) A Q(h(g(c))) vt
By combining these two derivation by means of a final resolution inference
on the last remaining literal employing a trivial substitution, we obtain the
empty clause and the corresponding interpolant PI(0J):

(¢ = dr=R(g(d)) n—=Q(h(g(d)))) v (¢ #drg(c) = g(d)) v —=5(g(c)) n Q(h(g(c)))

Lifting PI(0) and adding appropriate quantifiers gives the final result I of
the interpolant extraction:

Wo(e)IWa(a) Y Th(g(e)) VTh(g(a) <(C =d A —~R(Yg@) A ~Q@n@))) v
(C # d A Yg(c) = yg(d)) Vv _'S(yg(c)) A Q(ajh(g(c)))>

Now we show that I' ¥ I. Note that as I' F ¢ = d, no model of T
satisfies (¢ # d A Yge) = Yg(a))- The remaining two disjuncts imply that
V:L’h(g(c))vxh(g(d))(—'Q(ﬂfh(g(d))) \% Q(wh(g(c))))7 but we can easily find a model of
I" where at least one domain element satisfies the predicate ) and another do-
main element does not. Any such model is a countermodel to the proposition
el A
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