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Abstract

Craig’s interpolation theorem is a long known basic result of mathematical
logic. Interpolants lay bare certain logical relations between formulas or sets of
formulas in a concise way and can often be calculated efficiently from proofs of
these relations. Leveraging the tremendous progress of automatic deduction
systems in the last decades, obtaining the required proofs is feasible. This
enables real world applications for instance in the area of software verification.

For practical applicability, interpolation is often studied in relatively weak
formalisms such as propositional logic. This thesis however aims at giving a
comprehensive account of existing techniques and results with respect to unre-
stricted classical first-order logic with equality. It is structured into three parts:

First, we present Craig’s initial proof of the interpolation theorem by
reduction to first-order logic without equality and function symbols. Due to
the inherent overhead, this approach only gives rise to an impractical algorithm
for interpolant extraction.

Second, a constructive proof by Huang is introduced in slightly improved
form. It employs direct interpolant extraction from resolution proofs in two
phases and thereby shows that even in full first-order logic with equality,
interpolants can efficiently be calculated. Moreover, we present an analysis
of the number of quantifier alternations of the interpolants produced by this
algorithm. We additionally propose a novel approach which combines the
two phases of Huang’s algorithm and thereby allows for creating non-prenex
interpolants.

Third, we give a semantic perspective on interpolation in the form of a
model-theoretic proof based on Robinson’s joint consistency theorem. This
illustrates the similarities and differences between the proof-theoretic and the
model-theoretic view on interpolation.





Kurzfassung

Der Interpolationssatz von Craig stellt ein grundlegendes Ergebnis der mathema-
tischen Logik dar. Interpolanten fassen gewisse logische Beziehungen zwischen
Formeln präzise zusammen und können oftmals effizient aus Beweisen dieser Be-
ziehungen extrahiert werden. Der immense Fortschritt von Inferenzsystemen der
letzten Jahrzehnte ermöglicht die Berechnung der erforderlichen Beweise, was
den Grundstein für Anwendungen etwa im Bereich der Softwareverifikation legt.

Aufgrund der besseren praktischen Anwendbarkeit wird Interpolation häufig
in relativ schwachen logischen Formalismen wie etwa der Aussagenlogik unter-
sucht. Diese Arbeit setzt sich hingegen zum Ziel, einen umfassenden Überblick
über bestehende Techniken und Resultate im Bereich der uneingeschränkten
Prädikatenlogik mit Gleichheit zu geben. Dies geschieht in drei Abschnitten:

Zuerst gehen wir auf den ursprünglichen Beweis des Interpolationssatzes von
Craig ein, welcher eine Reduktion auf Prädikatenlogik ohne Gleichheit und Funk-
tionssymbole durchführt. Aufgrund des dadurch entstehenden Mehraufwandes
ergibt sich daraus nur ein ineffizienter Algorithmus zur Interpolantenextraktion.

Danach stellen wir einen konstruktiven Beweis von Huang in einer etwas
verbesserten Form vor. Hier werden Interpolanten direkt aus Resolutionsbewei-
sen in zwei Phasen extrahiert, was somit zeigt, dass auch in uneingeschränkter
Prädikatenlogik mit Gleichheit eine effiziente Interpolantenberechnung möglich
ist. Desweiteren analysieren wir die Anzahl der Quantorenalternationen in den
daraus resultierenden Interpolanten und stellen einen neuen Ansatz vor, welcher
beide Phasen von Huangs Algorithmus kombiniert und dadurch nicht prenexe
Interpolanten liefert.

Im letzten Abschnitt beschäftigen wir uns mit einer semantischen Sichtweise
auf Interpolation in Form eines modelltheoretischen Beweises basierend auf
dem Joint Consistency Satz von Robinson, was sowohl Ähnlichkeiten als auch
Unterschiede zur beweistheoretischen Betrachtungsweise illustriert.
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Chapter 1
Introduction

The notion of interpolation has been introduced by Craig in [Cra57a]. Loosely
speaking, given two formulas A and B such that A implies B, an interpolant
I is a formula which is implied by A and which itself implies B, as visualized
in Figure 1. Hence it in some sense captures the logical content of A which
necessarily makes B true and therefore acts as a link between these formulas.

A B

I

Figure 1.1: Given two formulas A and B such that A implies B, an inter-
polant is a formula I which is implied by A and which implies B.

Moreover, interpolants are not arbitrary formulas, but their language is
restricted to those symbols, which are common to both original formulas. Thus
they represent the logical connection solely by statements on notions, which
are of significance to both A and B. This criterion establishes that the actually
represented content meets some level of relevance and avoids unnecessary
information, thereby ensuring that interpolants enjoy the favorable property of
conciseness.

As Craig has shown that interpolants always exist in classical first-order
logic, they can be regarded as a justification for material implication in this
logic: If an implication in classical logic holds under any circumstance, then
there is a formula which contains the logical content explaining this implication.
Or conversely, if such a summary of a potential implication does not exist, then
the implication itself does not and in fact can not hold in general. Furthermore,
if formulas are concerned with different matters (such that their language is
disjoint), there certainly can not be a logical relation between them, as for such
formulas, only trivial interpolants can be found.
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Craig interpolation has been and is still studied with respect to a wide
variety of logics. Most notably, it holds for propositional and classical first-
order logic. These facts can be proven by different means: Interpolants can
be directly extracted from proofs of logical relations of formulas, thus showing
their existence in a constructive manner. Alternatively, also semantic proofs
for the existence of interpolants can be given: Assuming the non-existence of
interpolants, one can build a model contradicting an assumed logical relation
of the original formulas.

The applications of Craig interpolation are manifold: As a theoretic tool,
it can for instance be employed to prove Beth’s definability theorem or to
show lower bounds on the length of proofs of propositional proof systems
([Kra97, Pud97]). In recent years, it has been discovered that interpolants serve
well in the area of model checking as a means to find formulas overapproximating
the set of reachable states of a program ([McM03]), which is now an active area
of research. Furthermore, in the field of program analysis, there are approaches
making use of interpolation to extract information about the changes of program
state inflicted by loop iterations in order to detect loop invariants ([Wei10]).
This list is however merely a non-exhaustive selection of relevant use cases of
interpolation.

In this thesis, we consider classical first-order logic with equality. We present
different proofs of the interpolation theorem with a focus on constructive
proofs which give rise to concrete algorithms for finding interpolants. The
central calculus employed in this thesis is the resolution calculus including
paramodulation.

In Chapter 2, among defining the notation and calculi, we present the inter-
polation theorem as such including several strengthenings and its application
in the proof of Beth’s definability theorem.

A first proof is given in Chapter 3, where the added complexity of equality
and function symbols is expressed in a logic without these concepts in order to
prove the interpolation theorem in the reduced logic.

Chapter 4 then presents a constructive proof of the interpolation theorem
by Huang in a somewhat modified form based on extracting interpolants from
resolution refutations in two phases.

In Chapter 5, we introduce an algorithm based on the one described in
the previous chapter which combines the two phases and thereby is capable of
producing different interpolants.

The proof-theoretic proofs of the previous chapters are then complemented
by a model-theoretic one in Chapter 6 based on Robinson’s joint consistency
theorem.

Finally, Appendix A presents the aforementioned proof by Huang in a
version closer to his publication.



Chapter 2
Interpolation and proof theory

In this chapter, we introduce basic technical notions (2.1) in order to then for-
mulate the interpolation theorem (2.2). We furthermore present strengthenings
of the theorem (2.3) as well as an application in the form of Beth’s definability
theorem (2.4). This result is used in discussing the failure of interpolation in
higher-order logic (2.5). We then continue to define the calculi, which will
be used throughout this thesis (2.6 and 2.7) including considerations on the
applicability of interpolation to them (2.6.3).

2.1 Preliminaries

Here, we give all required notations and basic concepts which will be used
throughout this thesis.

Formulas and language

We work in classical first-order logic with equality. Formulas are usually denoted
by A or B, constant symbols by a, b, c or d, function symbols by f , g or h and
variables by x, y, z, u, v or w.

The language of a first-order formula A is designated by LpAq and contains
all predicate, constant and function symbols that occur in A. For formulas
A1, . . . , An, LpA1, . . . , Anq “

⋃
1ĺiĺn LpAiq. These are also referred to as the

non-logical symbols of A. The logical symbols on the other hand include all
logical connectives, quantifiers, the equality symbol (“) as well as symbols
denoting truth (J) and falsity (K). Among the usual symbols for the logical
connectives ^ (conjunction), _ (disjunction), Ą (implication), we use AØB
as an abbreviation for pAĄBq ^ pBĄAq. Furthermore, ô indicates logical
equivalence and syntactic equality is denoted by ”. For a set of formulas Φ,
 Φ denotes { A | A P Φ}.
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With respect to a formula A, an occurrence of a subformula B of A is said
to occur positively if it occurs under an even number of negations and negatively
otherwise.

Substitutions

A substitution is a mapping of finitely many variables to terms. We define
named substitutions σ of a variable x by a term t in a set-style notation
σ “ {x ÞÑ t} such that ϕσ denotes a formula or term ϕ where each occurrence
of the variable x is replaced by the term t. This is done in a capture avoiding
manner, i.e. if a variable y occurs free in t and y is also bound in ϕ such that
a free occurrence of x is in the scope of this quantifier, the bound variable is
renamed by a fresh variable.

Unnamed substitution applications are written as ϕrx{ts. A substitution σ
is called trivial on x if xσ “ x. Otherwise it is called non-trivial on x.

In some situations, mappings of infinitely many variables to terms are
required. We denote such as infinite substitutions.

The domain of a substitution σ, designated by dompσq, is the set {x P
V | xσ ‰ x}, where V denotes the set of all variables. We refer to the set
{xσ | x P dompσq} as the range of sigma, denoted by ranpσq.

A term s is an instance of a term t if there exists a substitution σ such
that tσ “ s. If s is an instance of t, then t is an abstraction of s. Note that
the abstraction- and instance-relation are reflexive.

Formulas and terms

The length of a term or formula ϕ is the number of logical and non-logical
symbols in ϕ.

For formulas or terms ϕ, ϕrssp denotes ϕ with an occurrence of s at position
p. ϕrss denotes ϕ where the term s occurs on some set of positions Φ. ϕrts
denotes ϕrss where on each position in Φ, s has been replaced by t. Due to its
vagueness, this notation is mostly used in order to emphasize that the term s
does occur in ϕ in some way.

The function FVp¨q returns the set of free variables for terms and formulas.
Moreover, FSp¨q returns the set of function symbols for terms, formulas and
languages and PSp¨q the set of predicate symbols for formulas and languages.

Models

A model M for a first-order language L is a pair pDM , IM q, where DM is the
domain and IM the interpretation, which assigns a domain element to every
constant symbol, a function f : Dn

M ÞÑ DM to every function symbol of arity n
and an n-ary relation of domain elements to every predicate symbol of arity n
in the language L.
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For formulas or sets of formulas ϕ, we write M � ϕ to denote that ϕ holds
in M . For an additional formula or sets of formulas ψ, ϕ � ψ holds if for every
model M of ϕ, it holds that M � ψ. ϕ is said to be satisfiable if there is a
model M such that M � ϕ.

For formulas A with FVpAq “ {x1, . . . , xn} and a modelM ,M � A denotes
M � @x1 . . .@xnA. In instances where an explicit assignment α to the free
variables is desired, we write Mα � A to signify that M entails the formula A
where the free variable assignment concurs with α and the free variables not
assigned by α are universally quantified.

2.2 Craig Interpolation

We now present a formal definition of the notion of interpolation:

Definition 2.1. Let Γ and ∆ be sets of first-order formulas. An interpolant
of Γ and ∆ is a first-order formula I such that

1. Γ � I

2. I � ∆

3. LpIq Ď LpΓq X Lp∆q.

A reverse interpolant of Γ and ∆ is a first-order formula I such that I
meets conditions 1 and 3 of an interpolant as well as:

2’. ∆ �  I 4

Theorem 2.2 (Interpolation). Let Γ and ∆ be sets of first-order formulas such
that Γ � ∆. Then there exists an interpolant for Γ and ∆.

Theorem 2.3 (Reverse Interpolation). Let Γ and ∆ be sets of first-order
formulas such that ΓY∆ is unsatisfiable. Then there exists a reverse interpolant
for Γ and ∆.

Proposition 2.4. Theorem 2.2 and 2.3 are equivalent.

Proof. Let Γ and ∆ be sets of first-order formulas such that Γ � ∆. Then
ΓY ∆ is unsatisfiable. By Theorem 2.3, there exists a reverse interpolant I
for Γ and  ∆. As  ∆ �  I, we get by contraposition that I � ∆, hence I is
an interpolant for Γ and ∆.

For the other direction, let Γ and ∆ be sets of first-order formulas such
that ΓY∆ is unsatisfiable. Then Γ �  ∆, hence by Theorem 2.2, there exists
an interpolant I of Γ and  ∆. But as thus I �  ∆, we get by contraposition
that ∆ �  I, so I is a reverse interpolant for Γ and ∆.
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As the notions of interpolation and reverse interpolation in this sense
coincide, we will in the following only speak of interpolation where it will be
clear from the context which definition applies.

Lemma 2.5. Let Γ,Γ1,∆,∆1 be sets of first-order formulas such that ΓôΓ1

and ∆ô∆1 and LpΓq X Lp∆q “ LpΓ1q X Lp∆1q. Then I is an interpolant for Γ
and ∆ if and only if I is an interpolant for Γ1 and ∆1.

Proof. Clearly Γ � I holds if and only if Γ1 � I and similarly ∆ �  I holds if
and only if ∆1 �  I. As the intersections of the respective languages coincide,
the language condition on I is satisfied in both directions.

Remark. In Lemma 2.5, it is not sufficient to require that ΓôΓ1 and ∆ô∆1.
Consider the example where Γ “ {@xpx “ cq} and ∆ “  Γ as well as Γ1 “
{@xpx “ dq} and ∆1 “  Γ1. Then even though Γ and Γ1 as well as ∆ and
∆1 have the same models, LpΓq X Lp∆q “ {c} whereas LpΓ1q X Lp∆1q “ {d}.
Therefore @xpx “ cq is an interpolant for Γ and ∆ but not for Γ1 and ∆1. 4

In the context of interpolation, every non-logical symbol is assigned a color
which indicates its origin(s).

Definition 2.6 (Coloring). A non-logical symbol is said to be Γ (∆)-colored
if it only occurs in Γ (∆) and gray in case it occurs in both Γ and ∆. A symbol
is colored if it is Γ- or ∆-colored. A literal is Φ-colored for Φ P {Γ,∆} if its
predicate symbol is Φ-colored. A term is Φ-colored if its outermost symbol is
Φ-colored. We also refer to Φ-colored literals or terms simply as Φ-literals or
Φ-terms.

An occurrence of a Φ-term is called maximal if it does not occur as subterm
of another Φ-term. An occurrence of a colored term t is maximal colored if it
does not occur as subterm of another colored term. 4

We sometimes use Φ and Ψ as colors to emphasize that the reasoning at
hand is valid irrespective of the actual color assignment and solely assuming
that Φ ‰ Ψ.

Example 2.7. Let Γ “ {P pfpaqqĄQphpxqq, Rphpaq, bq} and ∆ “ {Rphpbq, xq}.
Then the predicate symbols P and Q are Γ-colored and R is gray. The function
symbol f is Γ-colored whereas h is gray. Among the constant symbols, a is
Γ-colored and b is gray.

Note that in Γ, a occurs twice: In Rphpaq, bq, it occurs as a maximal colored
term since it does not occur as subterm of a larger colored term. It is also a
maximal Γ-term as it is not contained in a Γ-term. In P pfpaqq on the other
hand, it does occur in a Γ-term and hence is neither a maximal colored nor a
maximal Γ-colored occurrence.

Now consider the term gpaq. Here, a occurs as subterm of a colored term
and therefore it is not a maximal colored occurrence. It is however a maximal
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Γ-colored occurrence, as it is not contained in a Γ-term. By the definition of
the coloring, terms containing symbols of different colors are not contained in
Γ or ∆. 4

2.2.1 Degenerate cases

In this thesis, the equality symbol as well as the symbols for truth and falsity are
regarded as a logical symbol. This is justified by the following examples, which
are referred to in [BBJ07, Example 20.2 and 20.4] as “failure of interpolation”
and “degenerate cases” respectively:

Example 2.8. Let Γ “ {a “ b} and ∆ “ {P paq, P pbq}. Note that here, the
intersection of LpΓq and Lp∆q does not contain a predicate symbol. By regard-
ing “ as logical symbol and therefore permitting it to occur in an interpolant
despite the fact that it does not occur in ∆ allows for the interpolant a “ b. If
we would not permit “ in the interpolant, there would be no interpolant for Γ
and ∆, even though ΓY∆ clearly is unsatisfiable.

Similarly, for the pair Γ1 “ {P paq^ P pbq} and ∆1 “ {a ‰ b}, the equality
symbol must occur in the interpolant. In this instance, the occurrence must
be negative. 4

Example 2.9. Let Γ “ {P paq ^  P paq} and ∆ “ H. As clearly the inter-
section of LpΓq and Lp∆q is empty, we may form an interpolant only of logical
symbols. In this instance, the interpolant must be either K or a formula logi-
cally equivalent to K. By merely swapping Γ and ∆, we arrive at a situation
where the interpolant must be equivalent to J.

Note that as we can express formulas, which are logically equivalent to K
and J respectively by employing the equality symbol1, the symbols for truth
and falsity are not strictly required to be regarded as logical symbols for the
interpolation theorem to hold. 4

2.3 Strengthenings of the interpolation theorem

After Craig’s initial result, several stronger versions of the theorem have been
published. [Cra57b] can already be counted among those, as it defines in-
terpolants equivalently to our Definition 2.1, whereas the first publication in
[Cra57a] restricts interpolants only with regard to their predicate symbols, but
allows non-common function and constant symbols to occur in it.

Arguably one of the most important strengthenings is due Lyndon. In
[Lyn59], he shows the following:

Theorem 2.10 (Lyndon). Let Γ and ∆ be sets of first-order formulas such
that Γ � ∆. Then there is a first-order formula I such that the conditions 1
and 2 of Definition 2.1 hold for I as well as the following:

1
@xx ‰ x and @xx “ x are suitable examples for K and J respectively.
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3’. Each predicate symbol occurring positively (negatively) in I occurs posi-
tively (negatively) in both Γ and ∆.

We do not give a proof here but only proof ideas. In [Lyn59] and [Sla70],
proofs based on Herbrand’s theorem are given: Starting from two unsatisfiable
sets of formulas Γ and ∆, unsatisfiable finite subsets are extracted by means of
the compactness theorem and a set of unsatisfiable instances of these formulas
are produced by Herbrand’s theorem. From these, atoms with predicate symbols
which are not contained in LpΓq X Lp∆q are dropped to obtain the desired
interpolant.

Theorem 2.10 can however also be proven by model-theoretic means similar
to the proof of the interpolation theorem given in 6.1 and is worked out in full
detail in [Hen63] and [CK90, Theorem 2.2.24].

The restriction of the admissible function and constant symbols to the ones
in the common language of Γ and ∆ is absent in the original formulation of
in Theorem 2.10, but can easily be added2. Therefore it is justified to refer to
Lyndon interpolation as a strengthening of Craig interpolation.

It is however not possible to give an restriction on the polarity of the
occurrence of constants or function symbol in the interpolant analogous to
Theorem 2.10, as the following example shows:

Example 2.11 (Cf. [CK90, p. 92]). Let Γ “ {Dxpx “ c ^  P pxqq} and
∆ “ { P pcq}. Here, the constant c occurs only positively in Γ and only
negatively in ∆, but must occur in any interpolant. 4

Since we regard the equality symbol as a logical symbol, condition 3’ of
Theorem 2.10 does not apply to it. Nonetheless Oberschelp proves in [Obe68]
that a slightly modified restriction on the polarity of the occurrences of the
equality symbol in interpolants is feasible:

Theorem 2.12 (Oberschelp). Let Γ and ∆ be sets of first-order formulas such
that Γ � ∆. Then there is a first-order formula I such that the conditions 1
and 2 of Definition 2.1 and condition 3’ of Theorem 2.10 hold for I as well as
the following:

4. The equality symbol occurs positively in I only if it occurs positively in Γ.

5. The equality symbol occurs negatively in I only if it occurs negatively
in ∆.

The proof can again be given by model-theoretic means in the style of the
aforementioned ones. Example 2.8 illustrates these two cases and shows that
given these occurrences of the equality symbol, there are sets of formulas which
necessitate the equality symbol in their interpolant. Similar as for Theorem 2.10,

2Cf. [Mot84]
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a restriction on the function and constant symbols is not given in the original
formulation, but can be added as shown in [Fuj78].

Note that Theorem 2.12 implies the following corollary on equality-free
interpolation:

Corollary 2.13. Let Γ and ∆ be sets of first-order formulas such that Γ � ∆
and the equality symbol only occurs negatively in Γ and only positively in ∆.
Then there exists an interpolant I which does not contain the equality symbol.

2.4 Beth’s definability theorem

In this section, we illustrate the interpolation theorem by presenting Beth’s
definability theorem, which admits a straightforward proof by means of the
interpolation theorem. The definability theorem deals with definitions of
predicates by means of formulas and bridges the gap between implicit definitions,
where predicates are defined by its use, and explicit definitions, which define
a predicate by means of another formula, by even showing their equivalence.
This is given significance by the circumstance that implicit definitions occur
in mathematics, but by this theorem do not have less expressive power than
explicit definitions.

Its original publication in [Bet53] precedes Craig’s papers on interpolation
([Cra57a, Cra57b]) by four years and relies on a direct proof.

Definition 2.14 (Implicit and explicit definition). Let L be a first-order lan-
guage and P and P 1 be two fresh predicate symbols of arity n. Let ΓP be
a set of first-order sentences in the language LY{P} and ΓP 1 the same set
of formulas with every occurrence of P in ΓP replaced by P 1, such that the
language of ΓP 1 is LY{P 1}.

ΓP defines P implicitly iff

ΓP Y ΓP 1 � @x1 . . .@xn
(
P px1, . . . , xnqØP 1px1, . . . , xnq

)
.

On the other hand ΓP defined P explicitly iff there is formula ϕ in L with
FVpϕq “ {x1, . . . , xn} such that

ΓP � @x1 . . .@xn (P px1, . . . , xnqØϕ) . 4

Note that the definition of implicit definitions is essentially second-order
and can be expressed by the second-order sentence

@P @P 1
(
(Γ˚P ^ Γ˚P 1)ĄP “ P 1

)
,

where Γ˚P and Γ˚P 1 are conjunctions of the formulas of respective reductions of
ΓP and ΓP 1 to finite sets, which exist by the compactness theorem.

Theorem 2.15 (Beth’s definability theorem). ΓP defines P explicitly if and
only if ΓP defines P implicitly.
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Proof. Suppose that ΓP defines P explicitly. Then there exists some formula ϕ
such that ΓP � @x1 . . .@xnpP px1, . . . , xnqØϕq. But then it clearly also holds
that ΓP 1 � @x1 . . .@xnpP

1px1, . . . , xnqØϕq, hence

ΓP Y ΓP 1 � @x1 . . .@xnpP px1, . . . , xnqØP 1px1, . . . , xnqq.

Therefore ΓP is an implicit definition of P .
For the other direction, suppose that ΓP defines P implicitly. Then ΓP Y

ΓP 1 � @x1 . . .@xnpP px1, . . . , xnqØP 1px1, . . . , xnqq. It follows from the com-
pactness theorem that we can find a conjunction Γ˚P 1 of formulas of a finite sub-
set of ΓP 1 such that ΓP Y{Γ˚P 1} � @x1 . . .@xnpP px1, . . . , xnqØP 1px1, . . . , xnqq.
Let y1, . . . , yn be fresh variables. Then we obtain by the deduction theorem
that ΓP Y {P py1, . . . , ynq} � Γ˚P 1 ĄP

1py1, . . . , ynq.
Note that P only occurs in the antecedent and P 1 only occurs in the con-

sequent. Hence we can apply the Interpolation Theorem 2.2 in order to obtain
a formula χ such that ΓP Y {P py1, . . . , ynq} � χ and χ � Γ˚P 1 ĄP

1py1, . . . , ynq,
while additionally Lpχq “ LpΓP qXLpΓP 1q. This implies that neither P nor P 1

occur in χ. By interpreting the free variables as constants for the purposes of
the application of the interpolation theorem, we can also ensure that the only
free variables in χ are y1, . . . , yn.

Now we apply the deduction theorem another time and get that p˝q ΓP �
P py1, . . . , ynqĄχ and Γ˚P 1 � χĄP 1py1, . . . , ynq. As ΓP 1 implies Γ˚P 1 , we also
have that ΓP 1 � χĄP 1py1, . . . , ynq. Since P does not occur in this entailment,
it remains valid if we replace every occurrence of the symbol P 1 by P and
obtain that p˚q ΓP � χĄP py1, . . . , ynq.

But then p˝q and p˚q imply that ΓP � χØP py1, . . . , ynq, which is equiv-
alent to ΓP � @y1 . . .@yn (χØP py1, . . . , ynq). So clearly ΓP defines P explic-
itly.

2.5 Interpolation in higher-order logic

In this thesis, we restrict our attention to first-order logic. This is not only
a matter of reasonable scope, but justified by the fact that the interpolation
theorem does not hold even in second-order logic as discovered by Craig in
[Cra65]. There, a second-order formula is presented and shown to be implicitly,
but not explicitly definable. This failure of Beth definability directly leads to a
failure of interpolation in this logic, which can easily be seen by the proof of
Theorem 2.15.

2.6 Resolution

Resolution calculus, in the formulation as given here, is a sound and complete
calculus for first-order logic with equality. Due to the simplicity of its rules, it
is widely used in the area of automated deduction.
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2.6.1 Unification

We first specify the unification algorithm which is vital for the resolution
calculus.

Let id denote the identity function and fail be returned by mgu in case the
arguments are not unifiable to signify that the mgu of the given arguments is
not defined. We treat constants as 0-ary functions. Let s and t denote terms
and x a variable.

Definition 2.16 (Most general unifier). The most general unifier mgu of two
literalsAps1, . . . , snq andApt1, . . . , tnq is defined as mgup{ps1, t1q, . . . , psn, tnq}q.

The mgu for a set of pairs of terms T is defined as follows:

mgupHq
def
“ id

mgup{t}Y T q def
“



fail if t “ px, sq or t “ ps, xq and x
occurs in s but x ‰ s

mgupT rx{ssqrx{ss Y {x ÞÑ s} if t “ px, sq or t “ ps, xq and x
does not occur in s or x “ x

fail if t “ pfps1, . . . , snq, gps1, . . . , snqq
with f ‰ g

mgupT Y {ps1, t1q, . . . , ptn, snq}q if t “ pfps1, . . . , snq, fpt1, . . . , tnqq

mgupT q if t “ ps, sq

For a most general unifier σ, we denote by σi for 1 ĺ i ĺ |dompσq| the
ith substitution which is added to σ by the unification algorithm. We define
σ0

def
“ id. Moreover, we denote the composition σi . . . σj by σpi, jq. Hence σ “

σp1, |dompσq|q “ σp0, |dompσq|q. 4

Note that despite the nondeterminism inherent in this definition, it is unique
up to renaming of variables. See [BS01] for a detailed discussion of unification.

2.6.2 Definition of the calculus

Definition 2.17. A clause is a finite set of literals. The empty clause will
be denoted by �. A resolution refutation of a set of clauses Γ is a derivation
of � consisting of applications of resolution rules (inferences) (cf. Figure 2.1)
starting from clauses in Γ. All clauses used in inferences are assumed to be
pairwise variable-disjoint. The unification employed in an inference ι is denoted
by mgupιq.

A clause C 1 is a successor of a clause C if C occurs in the derivation of
C 1. A literal l1 is a successor of a literal l if l1 occurs in a successor C 1 of C
and l1 is derived from l. For a term t at position p in a literal l in a clause
we say that t1 is a successor of the term t if t1 occurs at position p in a literal
l1 which succeeds l. For clauses, literals and terms, the predecessor relation is
the inverse of the successor relation. 4
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Clauses will usually be denoted by C, D or E, literals by l, l1 or λ and
positions by p. Optional labels for clauses precede the clause and are separated
by a colon.

C _ l D _ l1Resolution: res σ “ mgupl, l1q
pC _Dqσ

C _ l _ l1Factorization: fac σ “ mgupl, l1q
pC _ lqσ

D _ s “ t Errsp
Paramodulation: par σ “ mgups, rq

pD _ Ertspqσ

Figure 2.1: The rules of resolution calculus

Theorem 2.18. A clause set Γ is unsatisfiable if and only if there is resolution
refutation of Γ.

Proof. See [Rob65].

Definition 2.19 (Tree refutations). A resolution refutation is a tree refutation
if every clause is used at most once. 4

The following lemma shows that the restriction to tree refutations does not
restrict the calculus given that we allow multiple occurrences of the clauses of
the initial clause sets.

Lemma 2.20. Every resolution refutation can be transformed into a tree
refutation.

Proof. Let π be a resolution refutation of a set of clauses Φ. We show that
π can be transformed into a tree refutation by induction on the number of
clauses that are used multiple times.

Suppose that no clause is used more than once in π. Then π is a tree
refutation.

Otherwise let Ψ be the set of clauses which is used multiple times. Let
C P Ψ be such that no clause D P Ψ is used in the derivation leading to C.
Let χ be the derivation leading to C.

Suppose C is used m times. We create another resolution refutation π1

from π which contains m copies of χ and replaces the ith use of the clause C
by the final clause of the ith copy of χ, 1 ĺ i ĺ m. In order to ensure that the
sets of variables of the input clauses are disjoint, we rename the variables in
each copy of χ and adapt π1 accordingly. Hence π1 is a resolution refutation
of Φ where m´ 1 clauses are used more than once.
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2.6.3 Resolution and Interpolation

In order to apply resolution to arbitrary first-order formulas, they have to be
converted to clauses first. This usually makes use of intermediate normal forms
which are defined as follows:

Definition 2.21. A formula is in Negation Normal Form (NNF) if negations
only occur directly before atoms and the only other connectives occurring in
the formula are conjunction and disjunction. A formula is in Conjunctive
Normal Form (CNF) if it is a conjunction of disjunctions of literals. 4

In this context, the conjuncts of a CNF-formula are interpreted as clauses.
A well-established procedure for the translation to CNF is comprised of the
following steps:

1. NNF-Transformation

2. Skolemization

3. CNF-Transformation

Step 1 can be achieved by solely pushing the negation inwards. As this
transformation yields logically equivalent formulas without affecting the lan-
guage, by Lemma 2.5, the set of interpolants remains unchanged. Step 2 and
3 on the other hand do not produce logically equivalent formulas since they
introduce new symbols. In this section, we will show that they nonetheless do
preserve the set of interpolants. This fact is vital for the use of resolution-based
methods for the computation of interpolants of arbitrary formulas.

2.6.3.1 Interpolation and Skolemization

Skolemization is a procedure for replacing existential quantifiers by Skolem
terms:

Definition 2.22. Let VDx be the set of universally bound variables whose scope
includes the occurrence of Dx in a formula. The Skolemization of a formula
A in NNF, denoted by skpAq, is the result of replacing every occurrence of an
existential quantifier Dx in A by a term fpy1, . . . , ynq where f is a new Skolem
function symbol and VDx “ {y1, . . . , yn}. In case VDx is empty, the occurrence
of Dx is replaced by a new Skolem constant symbol c.

For a set of formulas Φ, the Skolemization skpΦq is defined to be {skpAq |
A P Φ}. 4

Note that Skolemization has the property that Φ and skpΦq are equisatisfi-
able for any set of formulas Φ, but due to the introduction of Skolem symbols,
it is in general not the case that Φô skpΦq. In the context of interpolation, we
can show the following:
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Proposition 2.23. Let ΓY∆ be unsatisfiable. Then I is an interpolant for
ΓY∆ if and only if it is an interpolant for skpΓq Y skp∆q.

Proof. Since skp¨q adds fresh symbols to both Γ and ∆ individually, none of
them are contained in LpskpΓqq X Lpskp∆qq. Therefore the language condition
on the interpolant is satisfied in both directions.

We conclude the proof by showing that Φ � A iff skpΦq � A for Φ P {Γ,∆}
and A P {I, I}.

LetM be a model such thatM � skpΦq and suppose that Φ � A. Note that
the interpretation of the Skolem symbols of skpΦq in M presents witnesses for
the corresponding existential quantifiers in Φ. Hence M � Φ and consequently
M � A.

On the other hand, suppose that M � Φ and skpΦq � A. We assume
that skpΦq only uses Skolem terms which are fresh with respect to M . Then
we can extend M to a model M 1 of skpΦq by encoding the witness terms for
the existential quantifiers in Φ in the Skolem terms of skpΦq in M 1. Then
M 1 � skpΦq and thus M 1 � A. But as LpAq Ď LpMq Ď LpM 1q, M and M 1

agree on the interpretation of A, hence M � A.

2.6.3.2 Interpolation and structure-preserving Normal Form
Transformation

In the following, we describe a common method for transforming a formula A
without existential quantifiers into CNF while preserving its structure. Note
that the restriction to formulas without existential quantifiers can easily be
established for arbitrary formulas by means of Skolemization and therefore
does not limit the applicability of this procedure.

In the following, we use the notational convention that {ȳ} Y {z̄} “ {x̄}
expressing the intuition that the free variables x̄ of a formula B are comprised
of the not necessarily disjoint free variables ȳ and z̄ of B’s direct subformulas.

Definition 2.24. For every occurrence of a subformula B of a formula A
without existential quantifiers, introduce a new atom LBpx̄q, where x̄ are the
free variables occurring in B. This atom acts as a label for the subformula.
For each of them, create a defining clause DB:

If B is atomic:

DB ” @x̄
(
 B _ LBpx̄q

)
^ @x̄

(
B _ LBpx̄q

)
If B is of the form  G:

DB ” @x̄
(
LBpx̄q _ LGpx̄q

)
^ @x̄

(
 LBpx̄q _  LGpx̄q

)
If B is of the form G^H:

DB ” @x̄
(
 LBpx̄q _ LGpȳq

)
^ @x̄

(
 LBpx̄q _ LHpz̄q

)
^ @x̄

(
LBpx̄q _

 LGpȳq _  LHpz̄q
)
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If B is of the form G_H:

DB ” @x̄
(
LBpx̄q _  LGpȳq

)
^ @x̄

(
LBpx̄q _  LHpz̄q

)
^ @x̄

(
 LBpx̄q _

LGpȳq _ LHpz̄q
)

If B is of the form GĄH:

DB ” @x̄
(
LBpx̄q _ LGpȳq

)
^ @x̄

(
LBpx̄q _  LHpz̄q

)
^ @x̄

(
 LBpx̄q _

 LGpȳq _ LHpz̄q
)

If B is of the form @xG:

DB ” @x̄@x
(
 LBpx̄q _ LGpx̄, xq

)
^ @x̄@x

(
LBpx̄q _  LGpx̄, xq

)
Let DΣpAq be defined as

∧
BPΣpAqDB and δpAq as DΣpAq^@x̄LApx̄q, where

ΣpAq denotes the set of occurrences of subformulas of A. For a set of formulas
without existential quantifiers Φ, let δpΦq “ {δpBq | B P Φ}. 4

Note that each of the DB is in CNF, hence also δpAq for any formula A
without existential quantifiers. We continue by working out the logical relations
of formulas and their image under A:

Lemma 2.25. Let M be a model of δpAq for a formula A without existential
quantifiers. Then M � A.

Proof. We show that M � BØLBpx̄q for B P ΣpAq. As M � δpAq directly
implies that M � LA, this proves the lemma. Note that also M � DΣpAq.

The proof is by induction on the structure of B. For the base case, let B
be an atom. Then DB ” @x̄

(
 B _ LBpx̄q

)
^ @x̄

(
B _ LBpx̄q

)
, which due to

M � DB immediately yields M � BØLBpx̄q.
For the induction step, we illustrate a few cases as the remaining ones are

similar.

• Suppose B is of the form  G. Then:

DB ” @x̄
(
LBpx̄q _ LGpx̄q

)
^ @x̄

(
 LBpx̄q _  LGpx̄q

)
By the induction hypothesis, M � GØLGpx̄q. As M � DB, it follows
that M �  LGpx̄qØLBpx̄q, so M �  GØLBpx̄q and M � BØLBpx̄q.

• Suppose B is of the form G_H. Then:

DB ” @x̄
(
LBpx̄q_ LGpȳq

)
^@x̄

(
LBpx̄q_ LHpz̄q

)
^@x̄

(
 LBpx̄q_LGpȳq_LHpz̄q

)
We can assume by the induction hypothesis that M � GØLGpx̄q as
well as M � HØLHpx̄q. As M � DB, we get that M � LGpȳqĄLBpx̄q,
M � LHpz̄qĄLBpx̄q and M � LBpx̄qĄpLGpȳq _ LHpz̄qq. Therefore
M � LBpx̄qØpG_Hq and consequently M � LBpx̄qØB.
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• Suppose B is of the form @xG. Then:

DB ” @x̄@x
(
 LBpx̄q _ LGpx̄, xq

)
^ @x̄@x

(
LBpx̄q _  LGpx̄, xq

)
By the induction hypothesis, M � GØLGpx̄, xq. Since M � DB and
as x does not occur in LBpx̄q, M � LBpx̄qØ@xG, which is nothing else
than M � LBpx̄qØB.

Lemma 2.26. Let A be a formula without existential quantifiers and MA

a model in the language LpAq. Extend MA to a model M 1
A in the language

LpδpAqq such that for B P ΣpAq, MA � LBpx̄q if and only if MA � B. Then
M 1
A � DΣpAq.

Proof. We proceed by induction on the structure of A. For the base case,
suppose that A is an atom. Then DΣpAq “ DA “ @x̄

(
 A_ LApx̄q

)
^ @x̄

(
A_

 LApx̄q
)
. Consider the case that M 1

A � A. Then by construction of M 1
A,

M 1
A � LApx̄q, hence DA holds. In the case where M 1

A 2 A, we know that
M 1
A 2 LA, so DA holds as well.
For the induction step, consider the following cases. The remaining cases

can be argued analogously.

• A is of the form GĄH. Then DΣpAq “ DΣpGq ^ DΣpHq ^ DA. By the
induction hypothesis, we get that M 1

A � DΣpGq as well as M 1
A � DΣpHq.

It remains to show that M 1
A � DA, i.e. M 1

A � @x̄
(
LApx̄q _ LGpȳq

)
^

@x̄
(
LApx̄q _  LHpz̄q

)
^ @x̄

(
 LApx̄q _  LGpȳq _ LHpz̄q

)
.

Suppose that M 1
A � A. Then M 1

A 2 G or M 1
A � H. By construction of

M 1
A, we furthermore have thatM 1

A � LBpx̄q andM 1
A �  LGpȳq_LHpz̄q.

Otherwise we have that M 1
A 2 A, so M 1

A � G and M 1
A 2 H. Hence

M 1
A �  LApx̄q, M 1

A � LGpȳq and M 1
A 2 LHpz̄q.

• A is of the form @xB. Then DΣpAq “ DΣpBq ^ DA. By the in-
duction hypothesis, M 1

A � DΣpBq, and we conclude by showing that
M 1
A � @x̄@x

(
 LApx̄q _ LBpx̄, xq

)
^ @x̄@x

(
LApx̄q _  LBpx̄, xq

)
:

Suppose M 1
A � A. Then consequently, M 1

A � @xB, so M 1
A � LApx̄q

and M 1
A � LBpx̄, xq. Otherwise M 1

A 2 A. In this case M 1
A 2 @xB, so

M 1
A 2 LApx̄q and M 1

A 2 LBpx̄, xq.

Lemma 2.27. Let A be a formula and Φ a set of formulas without existential
quantifiers such that LpAq Ď LpΦq. Then Φ � A if and only if δpΦq � A.

Proof. If Φ � A, then ΦY { A} is unsatisfiable and thus by the compactness
theorem, there exists a finite Φ1 Ď Φ such that Φ1 Y { A} is unsatisfiable, or
in other words Φ1 � A. Extend Φ1 such that LpAq Ď LpΦ1q. Let B “

∧
CPΦ1 C.

We show that B � A if and only if δpBq � A by induction on the structure
of B.
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For the if-direction, assume that δpBq � A and letM be a model such that
the LpBq-reduct of M , M |LpBq, is a model of B. Let M 1 extend M |LpBq as in
Lemma 2.26 and hence by that lemma, M 1 � DΣpBq. By the construction of
M 1,M 1 � LBpx̄q, thereforeM 1 � δpBq, so by the induction hypothesisM 1 � A.
As LpAq Ď LpBq and M 1|LpBq “M |LpBq, M � A.

For the only if-direction, assume that B � A and let M be a model such
that M � δpBq. By Lemma 2.25, M � B and hence M � A.

Proposition 2.28. Let Γ Y ∆ be unsatisfiable and contain no existential
quantifiers. Then I is an interpolant for ΓY∆ if and only if I is an interpolant
for δpΓq Y δp∆q.

Proof. As δ introduces fresh symbols for each Γ and ∆, they do not occur in
any interpolant for Γ and ∆. This establishes the language condition in both
directions.

Furthermore, Lemma 2.27 is applicable to interpolants I for ΓY∆ due to
the language condition and demonstrates that Γ � I if and only if δpΓq � I as
well as ∆ �  I if and only if δpΓq �  I, which gives the result.

At this point, we can summarize the results which enable the use of resolution
based methods for calculating interpolants:

Theorem 2.29. Let ΓY∆ be unsatisfiable. Then I is an interpolant for ΓY∆
if and only if I is an interpolant for δpskpΓqq Y δpskp∆qq.

Proof. Immediate by Proposition 2.28 and Proposition 2.23.

2.7 Sequent Calculus

The famous sequent calculus was introduced in [Gen35]. Its use of sequents
in lieu of plain formulas allows for a natural mapping of the logical relations
expressed by the connectives to the structure of proofs.

Definition 2.30. For multisets of first-order formulas Γ and ∆, Γ $ ∆ is
called a sequent. In this context Γ forms the antecedent, whereas ∆ is referred
to as succedent.

A sequent calculus proof of a sequent Γ $ ∆ is a tree such that the root is
the sequent Γ $ ∆, the leaves are axioms and each edge is labeled by a rule of
sequent calculus as given in Figure 2.2, such that the nodes connected by the
edge match the given form.

A sequent Γ $ ∆ is called provable if there exists a sequent calculus proof
of Γ $ ∆. 4

The rules of sequent calculus are as follows:
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Axioms

A $ A $ t “ t

Cut

Γ $ ∆, A A,Σ $ Π

Γ,Σ $ ∆,Π

Structural rules

• Contraction
Γ, A,A $ ∆

c : l
Γ, A $ ∆

Γ $ ∆, A,A
c : r

Γ $ ∆, A

• Weakening
Γ $ ∆

w : l
Γ, A $ ∆

Γ $ ∆ w : r
Γ $ ∆, A

Propositional rules

• Negation
Γ $ ∆, A

 : l
 A,Γ $ ∆

A,Γ $ ∆
 : r

Γ $ ∆, A

• Conjunction
Γ, A,B $ ∆

^ : l
Γ, A^B $ ∆

Γ $ ∆, A Σ $ Π, B
^ : r

Γ,Σ $ ∆,Π, A^B

• Disjunction
Γ, A $ ∆ Σ, B $ Π

_ : l
Γ,Σ, A_B $ ∆,Π

Γ $ ∆, A,B
_ : r

Γ $ ∆, A_B

• Implication
Γ $ A,∆ Σ, B $ Π

Ą : l
Γ,Σ, AĄB $ ∆,Π

Γ, A $ ∆, B
Ą : r

Γ $ ∆, AĄB

Quantifier rules

• Universal
Γ, Arx{ts $ ∆

@ : l
Γ,@xA $ ∆

Γ $ ∆, Arx{ys
@ : r

Γ $ ∆,@xA

• Existential
Γ, Arx{ys $ ∆

D : l
Γ, DxA $ ∆

Γ $ ∆, Arx{ts
D : r

Γ $ ∆, DxA
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(provided no free variable of t becomes bound in Arx{ts and y does not
occur free in Γ, ∆ or A)

Equality rules

• Left rules
Γ, Artsp $ ∆ Σ $ Π, s “ t

“ : l1
Γ,Σ, Arssp $ ∆,Π

Γ, Arssp $ ∆ Σ $ Π, s “ t
“ : l2

Γ,Σ, Artsp $ ∆,Π

• Right rules

Γ $ ∆, Artsp Σ $ Π, s “ t
“ : r1

Γ,Σ $ ∆,Π, Arssp

Γ $ ∆, Arssp Σ $ Π, s “ t
“ : r2

Γ,Σ $ ∆,Π, Artsp

(provided no free variable of s or t becomes bound in Artsp or Arssp)

Figure 2.2: The rules of sequent calculus

For the purposes of this thesis, we usually consider the cut-free fragment of
sequent calculus.

Theorem 2.31. Cut-free sequent calculus is sound and complete.

Proof. See [Tak87].





Chapter 3
Reduction to First-Order Logic

without Equality

A common theme of proofs is to avoid the tedious effort of proving the result
from first principles by reducing the problem to one that is easier to solve.
In this instance, we are able to give a reduction for finding interpolants in
first-order logic with equality to first-order logic without equality, where it
is simpler to give an appropriate algorithm. This method is due to Craig
([Cra57a, Cra57b]).

In order to simplify notation, we shall consider constant symbols to be
function symbols of arity 0 in this section. The general layout of this approach is
the following: From two sets Γ and ∆, where ΓY∆ is unsatisfiable, we compute
two sets Γ1 and ∆1 which do not make use of equality but simulate the effects
of equality in Γ and ∆ via axioms. In the process of this transformation, also
function symbols are replaced by predicate symbols with appropriate axioms
to make sure that the behavior of these function-representing predicates is
compatible to the one of actual functions. Now an interpolant for Γ1 and ∆1

can be derived using an algorithm that is only capable of handling predicate
symbols as all other non-logical symbols have been removed. Since the additional
axioms ensure that the newly added predicate symbols mimic equality and
functions respectively, we will see that the occurrences of these predicates in
the interpolant can be translated back to occurrences of equality and function
symbols in first-order logic with equality in the language of Γ and ∆, thereby
yielding the originally desired interpolant.

3.1 Translation of formulas

As we shall see in this section, first-order formulas with equality can be trans-
formed into first-order formulas without equality in a way that is satisfiability-
preserving, which is sufficient for our purposes.
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First, we define axioms in a language with fresh symbols which allows for
simulation of equality and functions in first-order logic without equality and
function symbols:

Definition 3.1 (Translation of languages). For a first-order language L and
fresh predicate symbols E and Ff for f P FSpLq, TpLq denotes pLY{E}Y{Ff |
f P FSpLq}qzp{“}Y FSpLqq. 4

Definition 3.2 (Equality and function axioms). For a first-order language L
we define the following axioms in TpLq:

FAxpLq
def
“
⋃

fPFSpLq

@x̄DypFf px̄, yq ^ p@zpFf px̄, zqĄEpy, zqqqq

ReflpP q
def
“ @xP px, xq

CongrpP q
def
“ @x1@y1 . . .@xarpP q@yarpP qppEpx1, y1q ^ . . .^ EpxarpP q, yarpP qqqĄ

pP px1, . . . , xarpP qqĄP py1, . . . , yarpP qqqq

EAxpLq
def
“ ReflpEq Y

⋃
PPPSpLqY{E}Y
{Ff |fPFSpLq}

CongrpP q 4

ReflpP q will be referred to as reflexivity axiom of P , CongrpP q as congruence
axiom of P . As any model of EAxpLq requires ReflpEq and CongrpEq, E is also
symmetric and transitive in the model:

Proposition 3.3. In every model of ReflpEq and CongrpEq, E is an equiva-
lence relation.

Proof. Let M be a model of ReflpEq and CongrpEq. Then M clearly is reflex-
ive. Due toM � CongrpEq,M � @x@ypEpx, yq^Epx, xqqĄpEpx, xqĄEpy, xqq.
As we know that E is reflexive, this simplifies toM � @x@ypEpx, yqĄEpy, xqq,
i.e. E is symmetric in M . We show the transitivity of E by another in-
stance of CongrpEq: M � @x@y@zppEpy, xq ^ Epy, zqqĄpEpy, yqĄEpx, zqqq,
As E is reflexive and symmetric, we get that M � @x@y@zppEpx, yq ^
Epy, zqqĄEpx, zqq.

We continue by defining the translation procedure for formulas:

Definition 3.4 (Translation and inverse translation of formulas). Let A be a
first-order formula and E and Ff for f P FSpAq be fresh predicate symbols.
Then TpAq is the result of applying the following algorithm to A:

1. Replace every occurrence of s “ t in A by Eps, tq
2. As long as there is an occurrence of a function symbol f in A:

Let B be the atom in which f occurs as outermost symbol of a term.
Then B is of the form P ps1, . . . , sj´1, fpt̄q, sj`1, . . . smq. Replace B in A
by DypFf pt̄, yq ^ P ps1, . . . , sj´1, y, sj`1, . . . smqq for a fresh variable y.
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Moreover, let the inverse operation T-1pBq for formulas B in the language
TpLpAqq be defined as the result of applying the following algorithm to B:

1. Replace every occurrence of Eps, tq in B by s “ t.
2. For every f P FSpAq, replace every occurrence of DypFf pt̄, yq^P ps1, . . . ,
sj´1, y, sj`1, . . . smqq in B by P ps1, . . . , sj´1, fpt̄q, sj`1, . . . smq.

3. For every f P FSpAq, replace every occurrence of Ff pt̄, sq by fpt̄q “ s.
For sets of first-order formulas Φ, we define TpΦq

def
“
⋃
APΦ TpAq and

T-1pΦq
def
“
⋃
APΦ T-1pAq. 4

Remark. Let L be a language. Step 2 and 3 of T-1 are both concerned with
replacing occurrences of Ff by occurrences of f for f P FSpLq, but are relevant
in different contexts.

Step 2 of T-1 is the precise inverse of step 2 of T in the sense that for any
formula A, T-1pTpAqq “ A as we will show in Lemma 3.5. In this context, step
3 has no effect, as all occurrences of Ff have been introduced by Tp¨q and are
consequently of exactly the form that is handled by step 2. So the algorithm
is in this regard complete even without step 3.

On the other hand, if arbitrary formulas in the language TpLq are given,
they in general do not match that pattern and are only translated to L in step
3. Note that T-1 without step 2 yields a complete algorithm, as any formula
that is handled there can also be processed in step 3. In such a procedure,
T-1pTpAqq and A are in general not syntactically equal for formulas A but only
logically equivalent. 4

Lemma 3.5. Let A be a first-order formula and Φ be a set of first-order
formulas. Then T-1pTpAqq “ A and T-1pTpΦqq “ Φ .

Proof. Step 1 and 2 in the algorithms T and T-1 are each concerned with a
different set of symbols and therefore do not interfere with each other. More-
over, the respective steps in both algorithms are the inverse of each other.
For step 1, this is immediate and for step 2, consider that all occurrences of
Ff for f P FSpAq in TpAq have been introduced by T and are consequently
of the form DypFf pt̄, yq ^ P ps1, . . . , sj´1, y, sj`1, . . . smqq, which is replaced by
P ps1, . . . , sj´1, fpt̄q, sj`1, . . . smq by T-1. As no occurrences of Ff remain, step
3 of T-1 leaves the formula unchanged.

Definition 3.6 (Translation of formulas including axioms). For first-order
formulas A, let TAxpAq

def
“

(∧
BPFAxpLpAqq

B
)
^

(∧
BPEAxpLpAqq

B
)
^ TpAq and

for sets of first-order formulas Φ, let TAxpΦq
def
“ FAxpLpΦqq Y EAxpLpΦqq Y

TpΦq. 4

Note that TAxpAq contains neither the equality predicate nor function
symbols but additional predicate symbols instead. More formally:
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Lemma 3.7.
1. Let Φ be a set of first-order formulas. Then TAxpΦq is in the lan-

guage TpLpΦqq.
2. If Ψ is in the language TpLq, then T-1pΨq is in the language L.

Proposition 3.8. Let Φ be a set of first-order formulas.
1. If Φ is satisfiable, then so is TAxpΦq.
2. Let L be a first-order language and Φ a set of first-order formulas in the

language TpLq. If FAxpLqYEAxpLqYΦ is satisfiable, then so is T-1pΦq.

Proof. Suppose Φ is satisfiable. LetM be a model of Φ. We show that TAxpΦq
is satisfiable by extending M to the language LpΦq Y {E}Y {Ff | f P FSpAq}
and proving that the extended model satisfies TAxpΦq.

First, let M � Eps, tq if and only if M � s “ t. By reflexivity of equality, it
follows that M � ReflpEq. As any predicate, in particular E and Ff for every
f P FSpΦq, satisfy the congruence axiom with respect to “, by the definition
of E in M , they satisfy the congruence axiom with respect to E. Therefore
M is a model of EAxpLpΦqq.

Second, let M � Ff px̄, yq if and only if M � fpx̄q “ y for all f P FSpΦq.
SinceM is a model of Φ, it maps every function symbol f to a function, which
by definition returns a unique result for every combination of parameters. This
however is precisely the logical requirement on Ff stated by FAxpLpΦqq, hence
M is a model of FAxpLpΦqq.

Lastly, we show thatM � TpAq for all A P Φ. By the above definition of E
inM , step 1 of the algorithm in Definition 3.4 yields a formula that is satisfied
byM as it satisfies every formula of Φ. For step 2, suppose P ps1, . . . , sj´1, fpt̄q,
sj`1, . . . smq does (not) hold under M . Let y be such that M � fpt̄q “ y.
By our definition of Ff under M , M � Ff pt̄, yq with this unique y. Hence
DypFf pt̄, yq ^ P ps1, . . . , sj´1, y, sj`1, . . . smqq does (not) hold under M .

For 2, suppose FAxpLq Y EAxpLq Y Φ is satisfiable and let M be a model
of it.

First, note that as M � EAxpLq, by Proposition 3.3, IM pEq is an equiva-
lence relation. LetD be the domain ofM . We build a modelM 1 whose domain
DM 1 is the congruence relation of DM modulo IM pEq. The interpretation IM 1

ofM 1 is obtained from IM by replacing every occurrence of a domain element d
by its respective congruence class with respect to IM pEq. AsM � EAxpLq, IM 1

satisfies the congruence axioms with respect to every function and predicate
symbol, and is therefore well-defined. Due to this construction, M 1 � s “ t if
and only if M � Eps, tq for all terms s and t.

Second, let M � fpt̄q “ s if and only if M � Ff pt̄, sq for all f P FSpLq.
As by assumption M is a model of FAxpAq, we know that for every t̄, some
s with M � F pt̄, sq exists and is uniquely defined. Hence f in M refers to a
well-defined function.

Lastly, to show that M � T-1pΦq, consider that the interpretations of the
predicates E and “ coincide in M . Furthermore, let B be an occurrence of
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DypFf pt̄, yq ^ P ps1, . . . , sj´1, y, sj`1, . . . smqq for some f P FSpLq in Φ. Then
by the above definition of f in M , we have that B is in M equivalent to
Dyfpt̄q “ yq^P ps1, . . . , sj´1, y, sj`1, . . . smqq, which due to f being a function
is equivalent to M � P ps1, . . . , sj´1, fpt̄q, sj`1, . . . smqq.

Similarly, let B be an occurrence of Ff pt̄, sq in Φ. Then by our above
definition of f in M , we have that M � fpt̄q “ s iff M � B.

Corollary 3.9. Let Φ be a set of first-order formulas. Then Φ is satisfiable if
and only if TAxpΦq is satisfiable.

Proof. The left-to-right direction is directly given in Proposition 3.8. For
the other direction, consider that by Proposition 3.8, T-1pTpΦqq is satisfiable,
which by Lemma 3.5 is nothing else than Φ.

3.2 Computation of interpolants

For the proof of the interpolation theorem by reduction we require an algorithm
that operates in first-order logic without equality and function symbols, which
we describe in this section.

Remark. As the idea of this reduction is to simplify the problem by amongst
others not considering function symbols, resolution-based methods can not
be employed in a direct manner. This is because function symbols appear
naturally in them as they usually handle existential quantification by means
of Skolemization, i.e. a new function symbol is introduced for every occurrence
of an existential quantifier in the scope of a universal quantifier. Translating
the skolemized formulas to a language without function symbols as described
in Definition 3.4 is of no avail since this translation introduces new existential
quantifiers for every function symbol it encounters, necessitating Skolemization
yet again. 4

Lemma 3.10. Let Γ and ∆ be sets of first-order formulas such that the equality
symbol does not occur in them and Γ $ ∆ is provable in sequent calculus. Then
there exists a proof of Γ $ ∆ that does not contain the equality symbol.

Proof. By the soundness of sequent calculus, we obtain that Γ � A for some
A P ∆. But as sequent calculus without equality rules is complete for first-
order logic without equality, there is a proof π of Γ $ A in this calculus. We
extend π by a series of weakenings to a proof π1 of Γ $ ∆. However π1 is
obviously also a proof in sequent calculus with equality rules.

We now show that interpolants can be computed by means of a sequent
calculus based procedure by Maehara as described in [Tak87, Lemma 6.5]. It
is slightly stronger than the required statement as it allows for interpolants of
partitions of sequents:
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Definition 3.11 (Partition of sequents). A partition of a sequent Γ $ ∆ is
denoted by 〈pΓ1; ∆1q, pΓ2; ∆2q〉, where Γ1 Z Γ2 “ Γ and ∆1 Z∆2 “ ∆. 4

Lemma 3.12 (Maehara). Let Γ and ∆ be sets of first-order formulas without
equality and function symbols such that Γ $ ∆ is provable in cut-free sequent
calculus. Then for any partition 〈pΓ1; ∆1q, pΓ2; ∆2q〉 there is an interpolant I
such that

1. Γ1 $ ∆1, I is provable
2. Γ2, I $ ∆2 is provable
3. LpIq Ď LpΓ1,∆1q X LpΓ2,∆2q

Proof. We prove this lemma by induction on the number of inferences in a
cut-free proof of Γ $ ∆. By Lemma 3.10, we can assume that no equality
symbol occurs in the proof, so equality rules need not be considered.

Base case. Suppose no rules were applied. Then C $ D is of one of the form
A $ A. We give interpolants for any of the four possible partitions:

1. 〈pA;Aq, p; q〉: I “ K
2. 〈p; q, pA;Aq〉: I “ J
3. 〈p;Aq, pA; q〉: I “  A
4. 〈pA; q, p;Aq〉: I “ A

Structural rules. Suppose the property holds for n rule applications and the
pn` 1qth rule application is a structural one.

• The last rule application is an instance of c : l. Then it is of the
form:

Γ, A,A $ ∆
c : l

Γ, A $ ∆

There are two possible partition schemes: of Γ, A $ ∆:

1. χ “ 〈pΓ1, A; ∆1q, pΓ2; ∆2q〉. By the induction hypothesis, we
know that there is an interpolant I for the partition 〈pΓ1, A,A; ∆1q,
pΓ2; ∆2q〉 of the upper sequent. I serves as interpolant for χ as
well.

2. χ “ 〈pΓ1; ∆1q, pΓ2, A; ∆2q〉. By a similar argument, we get that
there is an interpolant I for 〈pΓ1; ∆1q, pΓ2, A,A; ∆2q〉, which
again is also an interpolant for χ.

The case of c : r is analogous.

• The last rule application is an instance of w : r. Then it is of the
form:

Γ $ ∆ w : r
Γ $ ∆, A
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By the induction hypothesis, there exists an interpolant I for any
partition 〈pΓ1; ∆1q, pΓ2; ∆2q〉 of Γ $ ∆. Clearly I remains an inter-
polant when adding A to either ∆1 or ∆2.
The case of w : l is analogous.

Propositional rules. Suppose the property holds for n rule applications and
the pn` 1qth rule application is a propositional one.

• The last rule application is an instance of  : l. Then it is of the
form:

Γ $ ∆, A
 : l

 A,Γ $ ∆

There are two possible partition schemes of Γ, A $ ∆:

1. χ “ 〈pΓ1, A; ∆1q, pΓ2; ∆2q〉. By the induction hypothesis,
there exists an interpolant I for the partition 〈pΓ1; ∆1, Aq,
pΓ2; ∆2q〉 of the upper sequent. Clearly I is an interpolant
for χ as well.

2. χ “ 〈pΓ1; ∆1q, pΓ2, A; ∆2q〉. A similar argument goes through.

The case of  : r is analogous.

• The last rule application is an instance of Ą : l. Then it is of the
form:

Γ $ ∆, A Σ, B $ Π
Ą : l

Γ,Σ, AĄB $ ∆,Π

There are two possible partition schemes of Γ, AĄB $ ∆:

1. χ “ 〈pΓ1,Σ1, AĄB; ∆1,Π1q, pΓ2,Σ2; ∆2,Π2q〉. By the induc-
tion hypothesis, there is an interpolant I1 for the partition
〈pΓ1; ∆1, Aq, pΓ2; ∆2q〉 of the left upper sequent. Hence for I1,
we have that Γ1 $ ∆1, A, I1 and I1,Γ2 $ ∆2 are provable.
Moreover, we also get by the induction hypothesis that there is
an interpolant I2 for the partition 〈pΣ1, B; Π1q, pΣ2; Π2q〉 of the
right upper sequent. Therefore Σ1, B $ Π1, I2 and I2,Σ2 $ Π2

are provable.
Using these prerequisites, we first establish that I1 _ I2 fulfills
conditions 1 and 2 of an interpolant for χ:

Γ1 $ ∆1, A, I1 Σ1, B $ Π1, I2
Ą : l

Γ1,Σ1, AĄB $ ∆1,Π1, I1, I2
_ : r

Γ1,Σ1, AĄB $ ∆1,Π1, I1 _ I2

I1,Γ2 $ ∆2 I2,Σ2 $ Π2
_ : l

I1 _ I2,Γ2,Σ2 $ ∆2,Π2
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To show that also condition 3 is satisfied, consider that by the
induction hypothesis, it holds that:

LpI1q Ď LpΓ1,∆1, Aq X LpΓ2,∆2q

LpI2q Ď LpΣ1, B,Π1q X LpΣ2,Π2q

Therefore:

LpI1q Y LpI2q Ď pLpΓ1,∆1, Aq X LpΓ2,∆2qq Y pLpΣ1, B,Π1q X LpΣ2,Π2qq

⇓
LpI1q Y LpI2q Ď pLpΓ1,∆1, Aq Y LpΣ1, B,Π1qq X pLpΓ2,∆2q Y LpΣ2,Π2qq

m
LpI1 _ I2q Ď LpΓ1,Σ1, AĄB,∆1,Π1q X LpΓ2,Σ2,∆2,Π2q

2. χ “ 〈pΓ1,Σ1; ∆1,Π1q, pΓ2,Σ2, AĄB; ∆2,Π2q〉. The argument
for this case is similar using I1 ^ I2 as interpolant.

For the other binary connectives ^ : l, ^ : r, _ : l, _ : r and Ą : r,
similar arguments go through, where the interpolant is always either
the conjunction or the disjunction of the interpolants of partitions
of the preceding sequents.

Quantifier rules. Suppose the property holds for n rule applications and the
pn` 1qth rule application is a quantifier rule.

• The last rule application is an instance of @ : l. Then it is of the
form:

Γ, Arx{ys $ ∆
@ : l

Γ,@xA $ ∆

Note that since we have excluded function symbols from occurring
in the final sequent (and constant symbols are treated as function
symbols of arity 0) and by completeness there is a proof of the
sequent in the language of the sequent, we can assume that no
function or constant symbols occur in this proof. Hence quantifiers
are only instantiated by variables.
There are two possible partition schemes of Γ,@xA $ ∆:

1. 〈pΓ1,@xA; ∆1q, pΓ2; ∆2q〉. By the induction hypothesis, there
is an interpolant I of the partition 〈pΓ1, Arx{ys; ∆1q, pΓ2; ∆2q〉.
Hence for I, Γ1, Arx{ys $ ∆1, I and I,Γ2 $ ∆2 are provable.
By an application of @ : l to the first sequent we get Γ1,@xA $
∆1, I, so I satisfies conditions 1 and 2 of being an interpolant
for χ.
In order to show that also LpIq Ď LpΓ1,@xA,∆1q X LpΓ2,∆2q,
consider that by the induction hypothesis, it holds that LpIq Ď
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LpΓ1, Arx{ys,∆1q X LpΓ2,∆2q. As free variables are not con-
sidered to be part of the language, Lp@xAq “ LpArx{ysq.

2. 〈pΓ1; ∆1q, pΓ2,@xA; ∆2q〉. This case can be argued analogously.
In the case of D : r, a similar argument goes through.
• The last rule application is an instance of @ : r. Then it is of the

form:
Γ $ ∆, Arx{ys

@ : r
Γ $ ∆,@xA

where y does not appear in Γ, ∆ or A.
There are two possible partition schemes of Γ $ ∆,@xA:
1. χ “ 〈pΓ1; ∆1,@xAq, pΓ2; ∆2q〉. By the induction hypothesis,

there exists an interpolant I of the partition 〈pΓ1; ∆1, Arx{ysq,
pΓ2; ∆2q〉 of the upper sequent. Hence for I, Γ1 $ ∆1, Arx{ys, I
and I,Γ2 $ ∆2 are provable.
As y does not occur in Γ or ∆ and consequently by condition 3
does not occur in I, we may apply the @ : r rule to the former
sequent to obtain Γ1 $ ∆1,@xA, I. Hence I is an interpolant
for χ as well.

2. 〈pΓ1; ∆1q, pΓ2; ∆2,@xAq〉. This case can be argued analogously.
In the case of D : l, a similar argument goes through.

This allows us to state the central theorem of this section:

Theorem 3.13. Let Γ and ∆ be sets of closed first-order formulas without
equality and function symbols such that ΓY∆ is unsatisfiable. Then there is
an interpolant for Γ and ∆.

Proof. As Γ Y∆ are unsatisfiable, by the compactness theorem, there exists
a finite conjunction Γ˚ of formulas of Γ as well as a finite conjunction ∆˚ of
formulas of ∆ such that Γ˚ ^∆˚ are unsatisfiable. We may also write this as
Γ˚ �  ∆˚.

By the completeness of cut-free sequent calculus, there is a cut-free proof
of Γ˚ $  ∆˚. So by Lemma 3.12, there is an interpolant I for the partition
〈pΓ˚; q, p; ∆˚q〉 such that Γ˚ $ I, I $  ∆˚ and LpIq Ď LpΓ˚q X Lp∆˚q.
Clearly then also ∆˚ $  I holds.

As Γ˚ and ∆˚ are merely conjunctions of formulas of Γ and ∆ respec-
tively, we get that Γ � I, ∆ �  I as well as LpIq Ď LpΓq X Lp∆q, which by
Proposition 2.4 gives the result.

3.3 Proof by reduction

Using the results of the previous sections, we can now give a proof of the
interpolation theorem:
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Theorem 2.3 (Reverse Interpolation). Let Γ and ∆ be sets of first-order
formulas such that ΓY∆ is unsatisfiable. Then there exists a reverse interpolant
for Γ and ∆.

Proof. Since ΓY∆ is unsatisfiable, by Proposition 3.8, TAxpΓY∆q is unsat-
isfiable.

TAxpΓY∆q ô {FAxpLpΓY∆qq,EAxpLpΓY∆qq}Y TpΓY∆q

ô {FAxpLpΓq Y Lp∆qq,EAxpLpΓq Y Lp∆qq}Y TpΓq Y Tp∆q

ô {FAxpLpΓqq ^ FAxpLp∆qq,EAxpLpΓqq ^ EAxpLp∆qq}Y TpΓq Y Tp∆q

ô {FAxpLpΓqq,EAxpLpΓqq}Y TpΓq Y {FAxpLp∆qq,EAxpLp∆qq}Y Tp∆q

ô TAxpΓq Y TAxp∆q

Hence TAxpΓq YTAxp∆q is unsatisfiable as well. By Lemma 3.7.1 TAxpΓq and
TAxp∆q contain neither function symbols nor the equality symbol. Hence by
Theorem 3.13, there is an interpolant I such that

1. TAxpΓq � I

2. TAxp∆q �  I

3. LpIq Ď LpTAxpΓqq X LpTAxp∆qq

We now show that T-1pIq is an interpolant for Γ and ∆.
TAxpΓq � I is equivalent to TAxpΓq Y { I} being unsatisfiable. Through

the unfolding of TAxpΓq, we get that {FAxpLpΓqq,EAxpLpΓqq}YTpΓqY{ I} is
unsatisfiable. This set of formulas can now be translated back to the original
language with the equality symbol and function symbols. More formally, since
Lp Iq Ď LpTAxpΓqq, we can apply Proposition 3.8.2 by considering TpΓq Y
{ I} as Φ to conclude that T-1pTpΓq Y { I}q is unsatisfiable. By pulling
T-1 inward and an application of Lemma 3.5, we get that Γ Y {T-1p Iq} “
ΓY { T-1pIq} is unsatisfiable. Therefore Γ � T´1pIq.

For ∆, an analogous argument goes through and so from TAxpΓq �  I we
can deduce that ∆ �  T´1pIq.

By item 3, I is in the language LpTAxpΓqq X LpTAxp∆qq, which by Lemma
3.7.1 is TpLpΓqq X TpLp∆qq.

TpLpΓqq X TpLp∆qq “(
LpΓq Y {E} Y {Ff | f P FSpΓq}

)
z

(
{“} Y FSpΓq

)
X(

Lp∆q Y {E} Y {Ff | f P FSp∆q}
)
z

(
{“} Y FSp∆q

)
“

(
pLpΓq X Lp∆qq Y {E} Y {Ff | f P FSpΓq X FSp∆q}

)
z

(
{“} Y FSpΓq Y FSp∆q

)
“

(
pLpΓq X Lp∆qq Y {E} Y {Ff | f P FSpLpΓq X Lp∆qq}

)
z

(
{“} Y FSpLpΓq X Lp∆qq

)
“ TpLpΓq X Lp∆qq
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As I is in the language TpLpΓq X Lp∆qq, by Lemma 3.7.2, T-1pIq is in the
language LpΓq X Lp∆q.





Chapter 4
Interpolant extraction from

resolution proofs in two phases

In [Hua95], Huang proposes an algorithm for computing interpolants of two
disjoint sets of first-order formulas Γ and ∆, where ΓY∆ is unsatisfiable, by
traversing a resolution refutation of ΓY∆. We present his proof in a modified
form in this section and in a form closer to [Hua95] in Appendix A. The central
difference between these versions lies in the treatment of the interplay of substi-
tutions and liftings in the proof of correctness. While in [Hua95], propositional
deductions are employed, in which all substitutions are trivial, we provide a
method which allows for commuting substitutions and liftings under certain
conditions. The underlying algorithms of these two proofs however coincide.

4.1 Layout of the proof

The underlying algorithm produces in a first phase propositional interpolants
inductively for every clause which occurs in the resolution refutation. These
interpolants are propositional in the sense that they only obey the language
restriction on predicates and may contain colored terms. The propositional
interpolant assigned to the last clause, the empty clause, is a propositional
interpolant for the initial clause sets.

The second phase of the algorithm addresses the colored terms still contained
in the propositional interpolant. These are eliminated (lifted) by replacing
them with bound variables whose quantifiers are subject to a certain ordering.

4.2 Extraction of propositional interpolants

We define a procedure PI, which produces propositional interpolants from
resolution refutations and is based on the “Interpolation algorithm” in [Hua95].
It is structured in the two subprocedures PIinit and PIstep:
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Definition 4.1 (PIinit). For clauses C P ΓY∆, we define PIinitpCq as follows:

PIinitpCq
def
“

{
K if C P Γ

J if C P ∆
4

Definition 4.2 (PIstep). Let ι be an inference of a resolution refutation of
Γ Y ∆ which derives C from the clauses C1, . . . , Cn where n “ 1 if ι is a
factorization inference and n “ 2 in case of a resolution or paramodulation
inference. Let Ī “ I1, . . . , In be formulas.

Then PIsteppι, Īq is defined according to the following cases:

Resolution. If ι is a resolution inference of C1 : D _ l and C2 : E _  l1 with
σ “ mgupιq, then PIsteppι, I1, I2q is defined as follows:

1. If l is Γ-colored: PIsteppι, I1, I2q
def
“ rI1 _ I2sσ

2. If l is ∆-colored: PIsteppι, I1, I2q
def
“ rI1 ^ I2sσ

3. If l is gray: PIsteppι, I1, I2q
def
“ rpl ^ I2q _ p l

1 ^ I1qsσ

Factorization. If ι is a factorization inference of C1 : l_l1_D with σ “ mgupιq,
then PIsteppι, I1q

def
“ I1σ.

Paramodulation. Suppose that ι is a paramodulation inference of C1 : s “
t_D and C2 : Errsp with σ “ mgupιq such that sσ “ rσ. Let hrrs be the
maximal colored term1 in which r occurs in Errsp. Then PIsteppι, I1, I2q

is defined according to the following case distinction:

1. If hrrs is ∆-colored and hrrs occurs more than once in pI2_Errspqσ:
PIsteppι, I1, I2q

def
“ rps “ t^I2q_ps ‰ t^I1qsσ_ps “ t^hrss ‰ hrtsqσ

2. If hrrs is Γ-colored and hrrs occurs more than once in pI2_Errspqσ:
PIsteppι, I1, I2q

def
“ rps “ t^I2q_ps ‰ t^I1qsσ^ps ‰ t_hrss “ hrtsqσ

3. If r does not occur in a colored term in Errsp which occurs more
than once in pI2 _ Errspqσ:
PIsteppι, I1, I2q

def
“ rps “ t^ I2q _ ps ‰ t^ I1qsσ 4

Definition 4.3 (Propositional interpolant extraction PI). Let π be a resolu-
tion refutation of ΓY∆. PIpπq is defined to be PIp�q, where � is the empty
clause derived in π. For a clause C in π, PIpCq is defined as follows:

Base case. If C P ΓY∆, then PIpCq
def
“ PIinitpCq.

Induction step. If C is the result of an inference ι using the clauses C1, . . . , Cn,
then PIpCq

def
“ PIsteppι,PIpC1q, . . . ,PIpCnqq. 4

1Cf. Definition 2.6 for a definition of the notion of maximal colored terms.
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For an illustration of the application of PI to a resolution refutation, see
Example 4.27
Remark. The control flow of the procedure PI is predominantly determined by
the coloring of literals. In this context, two distinct but similar interpretations
of the notion of color are viable: On the one hand, one can employ the usual,
symbol-based interpretation as given in Definition 2.6, where a (predicate)
symbol is considered gray if there is at least one formula in Γ as well as at
least one formula in ∆ which contain the symbol, and otherwise the symbol
is considered to be colored in the respective color. Note that this does not
necessarily capture the logical meaning of the symbol, as the symbol then
is allowed to occur in the interpolant even if among the clauses used in the
resolution refutation, only for instance clauses from Γ contain the symbol. It
is obvious that one can then also find an interpolant which does not contain
the symbol by computing an interpolant for Γ1 and ∆, where Γ1 is derived from
Γ by omitting any formula containing that symbol. Clearly the refutation of
ΓY∆ is also a refutation of Γ1 Y∆ and an appropriate interpolant can hence
easily be computed.

However in [Hua95], a stricter notion of coloring is employed. There, a
predicate symbol is colored based on its occurrence: All occurrences of pred-
icate symbols in formulas in Γ (∆) are considered to be Γ-(∆-)colored. A
predicate symbol occurring in a clause in the resolution derivation is Φ-colored
if its predecessor in the preceding clause is. Factorization inferences create
gray literals in case the factorized literals are respectively Γ- and ∆-colored.

The definition above can be understood in this sense by only considering a
minor adaption: Resolved or factorized literals l are to be read as Γ-(∆-)colored
only if both resolved or factorized literals l and l1 in fact are Γ-(∆-)colored
and otherwise to be treated as gray. This is necessitated by the fact that in
our definition, we may conclude from the circumstance that two resolved or
factorized literals have the same predicate symbol that they also do possess
the same coloring. In the definition due to [Hua95], this is in general not the
case. 4

4.3 Lifting of colored symbols

As PI only fixes the propositional structure of the interpolant but still contains
colored symbols, we define a procedure which replaces colored terms by vari-
ables, which eventually will become bound by appropriate quantifiers. This
replacement is referred to as lifting:

Definition 4.4 (Lifting). Let ϕ a formula or a term and s1, . . . , sn the Φ-terms
which have a maximal Φ-colored occurrence in ϕ.

Let furthermore zunfold-liftps1q, . . . , zunfold-liftpsnq be fresh variables, referred
to as Φ-lifting variables or lifting variables if the coloring is clear from the
context.
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We first define the function unfold-lift, which replaces lifting variables oc-
curring in colored terms by the term they lift in order to avoid lifting variables
in the index of other lifting variables and is defined as follows for terms t:

unfold-liftptq
def
“


t if t is a constant c
t if t is a non-lifting variable x
fpunfold-liftpt1q, . . . ,unfold-liftptmqq if t “ fpt1, . . . , tmq

unfold-liftpsq if t is a lifting variable zs

The lifting of the formula or term ϕ, denoted by `zΦrϕs, is an abbreviation
for `zΦrϕ,Zs where Z “ {s1, . . . , sn}. `zΦrϕ,Zs is defined as follows:

`zΦrϕ,Zs
def
“


ϕ if Z “ H
`zΦrψ,Zz{si}s if si P Z such that si is not subterm of another

term in Z and ψ is created from ϕ by replacing
every occurrence of si by zunfold-liftpsiq

To simplify the syntax, we sometimes write `Φrϕs or `rϕs if the lifting variables
or the lifting variables and the color of the terms to lift are clear from the
context or not of essence. 4

We usually lift ∆-terms by variables with the letter x and Γ-terms with
the letter y. If the lifting is not specific to a color, we use variables with the
letter z. In order to illustrate this definition, we present a examples:

Example 4.5. Let f and a be Γ-colored, g and b be ∆-colored and h be gray.

1. Consider the lifting of the Γ-terms of the formula P pa, hpgpaqq, fpb, uqq:

`yΓrP pa, hpgpaqq, fpb, uqqs “

`yΓrP pa, hpgpaqq, fpb, uqq, {a, fpb, uq}s “
`yΓrP pyunfold-liftpaq, hpgpyunfold-liftpaqqq, fpb, uqq, {fpb, uq}s “
`yΓrP pya, hpgpyaqq, fpb, uqq, {fpb, uq}s “
`yΓrP pya, hpgpyaqq, yunfold-liftpfpb, uqqq,Hs “

`yΓrP pya, hpgpyaqq, yfpb, uqq,Hs “

P pya, hpgpyaqq, yfpb, uqq

2. By lifting the ∆-terms of P pya, hpgpyaqq, yfpb, uqq, we witness the appli-
cation of the function unfold-lift:

`x∆rP pya, hpgpyaqq, yfpb, uqqs “

`x∆rP pya, hpgpyaqq, yfpb, uqq, {gpyaq}s “
`x∆rP pya, hpxunfold-liftpgpyaqqq, yfpb, uqq,Hs “

`x∆rP pya, hpxgpaqq, yfpb, uqq,Hs “

P pya, hpxgpaqq, yfpb, uqq 4
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Some elementary properties of liftings are described by the following lemmas:

Lemma 4.6 (Commutativity of lifting and logical operators). Let A and B
be first-order formulas and s and t be terms. Then it holds that:

1. `zΦr As ô  `zΦrAs

2. `zΦrA ˝Bs ô p`zΦrAs ˝ `
z
ΦrBsq for ˝ P {^,_}

3. `zΦrs “ ts ô p`zΦrss “ `zΦrtsq �

We furthermore require a means for commuting substitutions and liftings.
This however can not be achieved in a direct manner. The following examples
illustrate that in general for a term t, it is not the case that `zΦrtσs “ `zΦrtsσ.

Below, we assume that substitutions unless explicitly defined otherwise do
not affect lifting variables. This is justified as all substitutions which occur in
resolution refutations have this property.

Example 4.7.

1. Let t “ fpuq be a Γ-term and σ “ {u ÞÑ a}. Then `yΓrtσs “ `yΓrfpuqσs “
`yΓrfpaqs “ yfpaq. However `

y
Γrtsσ “ `yΓrfpuqsσ “ yfpuqσ “ yfpuq.

This suggests that substitutions also have to be applied to lifted terms.

2. Let s “ u be a variable and σ “ {u ÞÑ c}, where c is a Γ-term. Then
`yΓrsσs “ `yΓruσs “ `yΓrcs “ yc. But `

y
Γrssσ “ `yΓrusσ “ uσ “ c.

In this case, we see that terms in ranpσq have to be lifted when the
substitution is pulled out of the lifting.

3. Let r “ `yΓrfpuqs “ yfpuq and σ “ {u ÞÑ a}. Then `yΓrrσs “ `yΓryfpuqσs “
`yΓryfpuqs “ yfpuq. Here however, `yΓrrsσ “ `yΓryfpuqsσ “ yfpuqσ “ yfpuq.

This shows that obviously, as lifting variables are affected neither by
substitutions nor liftings, they can simply be interchanged. Note however
that in case 1, lifting variables have to be modified. 4

As a first step towards a solution, we define a substitution which acts as a
tool to ensure that modifications to terms are also applied to lifting variables.
This is vital for Item 1 of Example 4.7.

Definition 4.8 (τ). For a substitution σ we define the infinite substitution
τpσq with dompτpσqq “ dompσq Y {zs | sσ ‰ s} as follows for a variable x:

xτpσq “

{
xσ x is a non-lifting variable
ztσ x is a lifting variable zt

If the substitution σ is clear from the context, we abbreviate τpσq by τ .
For inferences ι, we define τpιq to be τpmgupιqq. 4



38 Chapter 4 — Interpolant extraction from resolution proofs in two phases

Example 4.7 (continued). Using τpσq, we can solve the first example as
`zΦrtτpσqs “ `zΦrfpxqτpσqs “ `zΦrfpaqs “ zfpaq “ zfpxqσ “ zfpxqτpσq “
`zΦrfpxqsτpσq “ `zΦrtsτpσq. However the second example can not be dealt
with analogously. 4

Now we implement the idea motivated by Item 2 of Example 4.7 by lifting
also the terms introduced by τ . It turns out that in this formulation, the
following property holds for any formula or term:

Lemma 4.9. For a formula or term ϕ and a substitution σ such that τ “ τpσq,
`r`rϕsτ s “ `rϕτ s.

Proof. Note that as liftings and substitutions only apply to terms, it suffices
to show this property on terms. We proceed by induction on the structure of
a term ϕ.

• Suppose that t is a gray constant or function symbol of the form
fpt1, . . . , tnq. Then we can derive the following, where (IH) signifies
a deduction by virtue of the induction hypothesis.

`r`rtsτ s “ `r`rfpt1, . . . , tnqsτ s

“ `rfp`rt1sτ, . . . , `rtnsτqs

“ fp`r`rt1sτ s, . . . , `r`rtnsτ sq

(IH)
“ fp`rt1τ s, . . . , `rtnτ sq

“ `rfpt1, . . . , tnqτ s

“ `rtτ s

• Suppose that t is a colored constant or function symbol. Then:

`r`rtsτ s “ `rztτ s “ `rztσs “ ztσ “ ztτ “ `rtτ s

• Suppose that t is a variable x. Then:

`r`rtsτ s “ `r`rxsτ s “ `rxτ s “ `rtτ s

• Suppose that t is a lifting variable zt. Then:

`r`rztsτ s “ `rztτ s

The formulation of this Lemma can however be improved. First, note that
the outer lifting of the expression `r`rϕsτ s is only applied to terms introduced
by τ , which motivates the following definition:
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Definition 4.10 (τ `Φ). For a substitution σ, we define the infinite substitution
τ `Φpσq on variables x as follows: xτ `Φpσq def

“ `Φrxτpσqs.
If σ is clear from the context, we just write τ `Φ and as usual, we may also

omit Φ. 4

Lemma 4.11. For a formula or term ϕ, `rϕsτ ` “ `rϕτ s.

Proof. Immediate by Lemma 4.9 and the definition of τ `.

Second, if we can exclude the case of lifting variables, we can apply σ as
desired:

Lemma 4.12. For a formula or term ψ and a substitution σ, such that no
lifting variable occurs in ψ or ranpσq, `rψsτ ` “ `rψσs.

Proof. Immediate by 4.11 and the definition of τ .

Note that if the formula or term contains lifting variables, it is not possible
to perform the commutation with σ as in Lemma 4.12. As illustrated in Item 3
of Example 4.7, we here have that `zΦrztσs “ `zΦrzts “ zt, but `zΦrztτ

`s “

`zΦrztσs “ ztσ Hence in these cases, τ ` would have to leave lifting variables
unchanged, which contradicts other use cases such as Item 1 of Example 4.7.

However in the context of interpolant extraction, one can deal with inter-
polants containing free occurrences of lifting variables by just employing τ in
their construction instead of σ.

4.4 Main lemma

By lifting symbols of one color of the propositional interpolant, we are able to
already obtain a formula partially fulfilling the requirements for interpolants.
The proof is separated into parts dealing with PIinit and PIstep respectively to
be later combined to a result for PI.

We employ the following additional notation: For a clause C, CΦ denotes
the clause created from C by removing all literals which are not Φ-colored.

Lemma 4.13. Let C be an clause in ΓY∆ Then Γ � `x∆rPIinitpCq _ CΓs.

Proof. If C P Γ, then Γ � `x∆rCΓs as CΓ “ C and `x∆rCs “ C. Otherwise
C R Γ, but then PIinitpCq “ J.

Lemma 4.14. Let ι be an inference in a resolution refutation of Γ Y ∆
using the clauses C1, . . . , Cn and let Ī “ I1, . . . , In be formulas such that
Γ � `x∆rIi _ pCiqΓs for 1 ĺ i ĺ n. Then Γ � `x∆rPIsteppι, Īq _ CΓs.

Proof. We distinguish based on the type of ι.
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Resolution. Suppose that ι is a resolution inference of the clauses C1 : D _ l
and C2 : E _ l1 with σ “ mgupιq.

By Lemma 4.6 we obtain from the assumption that Γ � `x∆rI1s_`
x
∆rDΓs_

`x∆rlΓs as well as Γ � `x∆rI2s _ `
x
∆rEΓs _ `

x
∆rl

1
Γs. Now we apply τ `∆ and

by Lemma 4.12 get that:

Γ
p˝q

� `x∆rI1σs _ `
x
∆rDΓσs _ `

x
∆rlΓσs

Γ
p˚q

� `x∆rI2σs _ `
x
∆rEΓσs _  `

x
∆rl

1
Γσs

As lΓσ ” l1Γσ, we also have that `x∆rlΓσs “ `x∆rl
1
Γσs. We proceed by a

case distinction on the color of the resolved literal to show that in each
case, we have that Γ � `x∆rPIsteppι, Īqs _ `x∆rCΓs, which by Lemma 4.6
suffices for the result.

1. Suppose that l is Γ-colored. Then lΓ “ l and l1Γ “ l1, and we
can perform a resolution step on p˝q and p˚q to obtain that Γ �
`x∆rI1σs _ `x∆rI2σs _ `x∆rDΓσs _ `x∆rEΓσs. This however is nothing
else than Γ � `x∆rPIsteppι, Īqs _ `

x
∆rCΓs.

2. Suppose that l is ∆-colored. Then p˝q and p˚q reduce to Γ �
`x∆rI1σs _ `

x
∆rDΓσs and Γ � `x∆rI2σs _ `

x
∆rEΓσs respectively, which

clearly implies that Γ � (`x∆rI1σs ^ `
x
∆rI2σs)_ `

x
∆rDΓσs _ `

x
∆rEΓσs.

This is turn is however just the unfolding of the definition of
Γ � `x∆rPIsteppι, Īqs _ `

x
∆rCΓs.

3. Suppose that l is gray. Then lΓ “ l and l1Γ “ l1. Suppose that for
a model M of Γ that M 2 `x∆rEΓσs and M 2 `x∆rDΓσs. Then as
`x∆rlΓσs “ `x∆rl

1
Γσs, by p˝q and p˚q, depending on the truth value

of `x∆rlΓσs in M , we have that either M � `x∆rlΓσs ^ `x∆rI2σs or
M �  `x∆rl

1
Γσs ^ `x∆rI1σs holds. Hence altogether we obtain that

Γ � `x∆rDΓσs _ `x∆rEΓσs _ p`x∆rlΓσs ^ `x∆rI2σsq _ p `x∆rl
1
Γσs ^

`x∆rI1σsq. But this is equivalent to Γ � `x∆rPIsteppι, Īqs _ `
x
∆rCΓs.

Factorization. Suppose the clause C is the result of a factorization inference ι
of C1 : l _ l1 _D with σ “ mgupιq.

By Lemma 4.6, the induction hypothesis gives Γ � `x∆rI1s _ `x∆rlΓs _
`x∆rl

1
Γs _ `x∆rDΓs. Now we apply τ `∆ and by Lemma 4.12, obtain that

Γ � `x∆rI1σs _ `x∆rlΓσs _ `x∆rl
1
Γσs _ `x∆rDΓσs. As however lσ ” l1σ, also

`rlσs “ `rl1σs, so we can apply a factorization step and obtain that
Γ � `x∆rI1σs _ `x∆rlΓσs _ `x∆rDΓσs, which by Lemma 4.6 is nothing else
than Γ � PIsteppι, Īq _ `

x
∆rCΓs.

Paramodulation. Suppose the clause C is the result of a paramodulation in-
ference ι of C1 : s “ t_D and C2 : Errsp with σ “ mgupιq.

By the induction hypothesis and Lemma 4.6, we obtain the following:
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Γ
p˝q

� `x∆rI1s _ `
x
∆rDΓs _ `

x
∆rss “ `x∆rts

Γ
p˚q

� `x∆rI2s _ `
x
∆rpErrspqΓs

Suppose now that for a model M of Γ and an assignment α of the free
variables of `x∆rss and `

x
∆rts thatMα � `x∆rss ‰ `x∆rts. Then we get by p˝q

thatMα � `x∆rI1s_`
x
∆rDΓs, which by applying τ `∆ and Lemma 4.12 gives

Mα � `x∆rI1σs _ `x∆rDΓσs. Note that Mα � `x∆rsσs ‰ `x∆rtσs ^ `x∆rI1σs
suffices for Mα � `x∆rPIsteppι, Īqs and Mα � `x∆rDΓσs implies that Mα �
`x∆rCΓs. Therefore we obtain that Mα � `x∆rPIsteppι, Īqs _ `

x
∆rCΓs.

Now suppose to the contrary that for a model M of Γ that for any
assignment of free variables M � `x∆rss “ `x∆rts.

By applying τ `∆ and Lemma 4.12 we obtain from p˚q that Γ � `x∆rI2σs_
`x∆rpErrspqΓσs. As however rσ ” sσ, `x∆rrσs ” `x∆rsσs. Therefore we
also have that Γ � `x∆rI2σs _ `

x
∆rpErsspqΓσs.

We proceed by a case distinction:

– Suppose that the position p in Erssp is not contained in a ∆-
term. Then `x∆rpErsspqΓσs and `x∆rpErtspqΓσs only differ at po-
sition p. As M � `x∆rss “ `x∆rts, we can apply τ `∆ and by
Lemma 4.12 obtain that M � `x∆rsσs “ `x∆rtσs. Thus M �
`x∆rpErsspqΓσsô `x∆rpErtspqΓσs and consequently M � `x∆rI2σs _
`x∆rpErtspqΓσs. As furthermore `x∆rsσs “ `x∆rtσs ^ `x∆rI2σs entails
`x∆rPIsteppι, Īqs and `x∆rpErtspqΓσs is sufficient for `x∆rCΓs, we have
that M � `x∆rPIsteppι, Īqs _ `

x
∆rCΓs.

– Suppose that the position p in Erssp is contained in a maximal
∆-term hrss. We distinguish further:

∗ Suppose hrss occurs more than once in I2σ _ Ersspσ and let
α be an arbitrary assignment to the variables `x∆rhrsss “ xhrss
and `x∆rhrtss “ xhrts.
If Mα � `x∆rhrsss ‰ `x∆rhrtss, then we have that Mα �
`x∆rss “ `x∆rts ^ `x∆rhrsss ‰ `x∆rhrtss, which implies that Mα �
`x∆rPIsteppι, Īqs.
Otherwise it holds that Mα � `x∆rhrsss “ `x∆rhrtss. But then
`x∆rpErsspqΓσs and `

x
∆rpErtspqΓσs differ in subterms which are

equal inMα, so by a similar line of argument as in the preceding
case, we can deduce that M � `x∆rPIsteppι, Īqs _ `

x
∆rCs.

∗ Suppose hrss occurs exactly once in I2σ_Ersspσ. Then the lift-
ing variable xhrss occurs exactly once in `x∆rI2σs _ `

x
∆rErsspσs.

Note that from p˚q by applying τ `∆ and Lemma 4.12, we obtain
that M � `x∆rI2σs _ `x∆rpErsspqΓσs. As xhrss occurs only once
and free in this formula, it is implicitly universally quantified
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and we can instantiate it arbitrarily, in particular by xhrts. But
thereby we get thatM � `x∆rI2σs_`

x
∆rpErtspqΓσs, which implies

that Γ � `x∆rPIsteppι, Īqs _ `
x
∆rCΓs.

Lemma 4.15. Let π be a resolution refutation of Γ Y∆ and C be a clause
occurring in π. Then Γ � `x∆rPIpCq _ Cs.

Proof. We proceed by induction on the strengthening Γ � `x∆rPIpCq _ CΓs.
If C P ΓY∆, then Lemma 4.13 gives the result.
For the induction step, suppose the clause C is the result of an inference ι

using the clauses C1, . . . , Cn. By induction hypothesis, Γ � `x∆rPIpCiq_pCiqΓs
for 1 ĺ i ĺ n, hence by Lemma 4.14, we obtain that Γ � `x∆rPIsteppι, Īq _CΓs.
This however is nothing else than Γ � `x∆rPIpCq _ CΓs.

4.5 Symmetry of the extracted interpolants

The interpolant extraction procedure PI exhibits a convenient property which
is termed symmetry in [DKPW10, Definition 3] and will be used to show that
results concerning Γ can easily be generalized to results for ∆. We develop it
starting from PIinit and PIstep in order to then state it for PI.

In the following, additionally to Γ and ∆, we consider the sets Γ̂ and ∆̂
such that Γ̂ comprises the clauses of ∆ and Γ̂ comprises the clauses of ∆. Then
for a clause C in Γ or ∆, we denote by Ĉ the corresponding clause in ∆̂ or Γ̂
respectively. For refutations π of ΓY∆, we then also consider refutations π̂ of
Γ̂Y∆̂ where every clause C in π has a corresponding clause Ĉ in π̂. The clauses
C and Ĉ coincide except for the coloring, i.e. if a symbol in C is Φ-colored,
then the symbol in Ĉ is Φ̂-colored.

In the context of Γ̂ and ∆̂, the procedures PI, PIinit and PIstep are to be
read as being defined with respect to Γ̂ and ∆̂ instead of Γ and ∆.

Lemma 4.16. Let C be a clause in ΓY∆. Then PIinitpCqô PIinitpĈq.

Proof.

PIinitpCq “

{
J if C P ∆

K if C P Γ
“

{
J if Ĉ P Γ̂

K if Ĉ P ∆̂
“

{
 K if Ĉ P Γ̂

 J if Ĉ P ∆̂
“  PIinitpĈq

In the following, we also apply this notation to proofs, inferences, literals
and terms.

Lemma 4.17. Let π be a resolution refutation of ΓY∆. If ι is an inference of
π using the clauses C1, . . . , Cn, and I1, . . . , In and Î1, . . . , În are formulas such
that Iiô Îi for 1 ĺ i ĺ n, then PIsteppι, I1, . . . , Inq ô PIsteppι̂, Î1, . . . , Înq.

Proof. We distinguish cases based on the type of the inference ι:
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Resolution. Suppose that ι is a resolution inference of C1 : D _ l and C2 :
E _ l1 with σ “ mgupιq.

We distinguish the following cases:

1. l is Γ-colored. Then l̂ is ∆-colored.

PIsteppι, I1, . . . , Inq “ I1σ _ I2σ

ô p I1σ ^ I2σq

ô pÎ1σ ^ Î2σq

“  PIsteppι̂, Î1, Î2q

2. l is ∆-colored. This case can be argued analogously.

3. l is gray. Then l̂ is gray. Note that lσ ” l1σ p˚q.

PIsteppι, I1, . . . , Inq “ rpl ^ I2q _ p l
1 ^ I1qsσ

p˚q
ô rp l _ I2q ^ pl

1 _ I1qsσ

ô rpl ^ I2q _ p l
1 ^ I1qsσ

“  rpl̂ ^ I2q _ p l̂1 ^ I1qsσ

ô rpl̂ ^ Î2q _ p l̂1 ^ Î1qsσ

“  PIsteppι̂, Î1, . . . , Înq

Factorization. Suppose that ι is a factorization inference of C1 : l_ l1_D with
σ “ mgupιq. Then PIsteppι, I1q “ I1σ ô  Î1σ “  PIsteppι̂, Î1q.

Paramodulation. Suppose that ι is a paramodulation inference of C1 : s “
t_D and C2 : Errs with σ “ mgupιq.

We proceed by a case distinction:

1. r occurs in a maximal ∆-term hrrs in Errs and hrrs occurs more
than once in I2_Errs. Then r̂ occurs in a maximal Γ-term ĥrrs in
Êrrs and ĥrrs occurs more than once in Êrrs _ PIpÊrrsq.

PIsteppι, I1, I2q “ rps “ t^ I2q _ ps ‰ t^ I1qsσ _ ps “ t^ hrss ‰ hrtsqσ

ôrps “ t^ Î2q _ ps ‰ t^ Î1qsσ _ ps “ t^ hrss ‰ hrtsqσ

ô rps ‰ t_ Î2q ^ ps “ t_ Î1qsσ ^ ps ‰ t_ hrss “ hrtsqσ

ô rps “ t^ Î2q _ ps ‰ t^ Î1qsσ ^ ps ‰ t_ hrss “ hrtsqσ

“  PIsteppι̂, Î1, Î2q

2. r occurs in a maximal Γ-term hrrs in Errs and hrrs occurs more
than once in I2 _ Errs. This case can be argued analogously.
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3. Otherwise:

PIsteppι, I1, I2q “ rps “ t^ I2q _ ps ‰ t^ I1qsσ

ôrps “ t^ Î2q _ ps ‰ t^ Î1qsσ

ô rps ‰ t_ Î2q ^ ps “ t_ Î1qsσ

ô rps “ t^ Î2q _ ps ‰ t^ Î1qsσ

“  PIsteppι̂, Î1, Î2q

Lemma 4.18. Let C be a clause in a resolution refutation of Γ Y∆. Then
PIpCqô PIpĈq.

Proof. We prove this lemma by induction.
For C P ΓY∆, we obtain the result by Lemma 4.16.
For the induction step, suppose that the clause C is the result of an infer-

ence ι of the clauses C1, . . . , Cn. Then by the induction hypothesis, we obtain
that PIpCiqô PIpĈiq for 1 ĺ i ĺ n. Hence we can apply Lemma 4.17 and
get that PIsteppι,PIpC1q, . . . ,PIpCnqqô PIsteppι̂,PIpĈ1q, . . . ,PIpĈnqq. But
this is nothing else than PIpCq ô  PIpĈq.

Corollary 4.19. Let C be a clause in a resolution refutation of ΓY∆. Then
∆ � `xΓr PIpCq _ Cs.

Proof. By Lemma 4.15, it holds that Γ̂ � `x
∆̂
rPIpĈq _ Ĉs and by Lemma 4.18,

we then obtain that Γ̂ � `x
∆̂
r PIpCq _ Ĉs. This however is nothing else than

∆ � `xΓr PIpCq _ Cs.

4.6 Propositional and one-sided interpolants

We now show that the results presented in section 4.4 and 4.5 already give
propositional interpolants in the sense that besides possibly containing colored
terms, they are proper interpolants. Note that this coincides with the notion
of “relational interpolant” as given in [Hua95] and is defined formally in our
notation in A.1.

Corollary 4.20. Let π be a resolution refutation of ΓY∆. Then PIpπq is a
propositional interpolant, i.e. it holds that:

1. Γ � PIpπq

2. ∆ �  PIpπq

3. PSpPIpπqq Ď PSpΓq X PSp∆q.
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Proof. By the definition of PI, PIpπq denotes PIp�q, where � is the empty
clause derived in PI. By Lemma 4.15, we get that Γ � `x∆rPIpπqs. As the lifting
replaces terms by variables which are then implicitly universally quantified,
PIpπq is an instance of `x∆rPIpπqs. Therefore Γ � PIpπq.

By Corollary 4.19, ∆ �  `yΓrPIpπqs, thus by a similar argument as above,
∆ �  PIpπq.

Finally, by the construction of PI, PIpπq is solely comprised of gray predi-
cate symbols.

From Lemma 4.15, we can also easily derive a result on a restricted notion
of interpolation which we refer to as one-sided interpolants.

Definition 4.21. Let Γ and ∆ be sets of first-order formulas. A one-sided
interpolant of Γ and ∆ is a first-order formula I such that

1. Γ � I

2. ∆ �  I

3. LpIq Ď LpΓq 4

Note that if I is a one-sided interpolant for Γ and ∆ and additionally
LpIq Ď Lp∆q holds, then I is an interpolant for Γ and ∆.

Proposition 4.22. Let Γ and ∆ be sets of first-order formulas such that ΓY∆
is unsatisfiable. Then there is a one-sided interpolant of Γ and ∆ which is a
Π1-formula.

Proof. Let π be a resolution refutation of Γ Y ∆. By Lemma 4.15, we have
that Γ � `x∆rPIpπqs, or equivalently Γ � @xt1 . . .@xtn PIpπq, where xt1 , . . . , xtn
are the ∆-lifting variables occurring in PIpπq.

By Corollary 4.20, we get that ∆ �  PIpπq. This however provides witness
terms for the formula Dxt1 . . . Dxtn `x∆rPIpπqs, therefore it holds that ∆ �
Dxt1 . . . Dxtn `

x
∆rPIpπqs. Now we pull the quantifiers inwards to obtain that

∆ �  @xt1 . . .@xtn`
x
∆rPIpπqs.

Clearly @xt1 . . .@xtn`x∆rPIpπqs is devoid of ∆-terms and hence a one-sided
interpolant, which is a Π1-formula.

4.7 Quantifying over lifting variables

As we have already seen in Corollary 4.20 that PIpπq forms a propositional
interpolant, we now move on to the second phase of the algorithm. The
propositional structure is considered to be fixed at this point and it remains to
lift all colored terms and quantify over the resulting lifting variables in a viable
order.
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Lemma 4.23. For a formula or term ϕ, `yΓr`
x
∆rϕss “ `x∆r`

y
Γrϕss.

Proof. Let ϕ be a term which contains a colored term which in turn contains
a term of different color. Suppose without loss of generality that it is a Γ-term
which contains a maximal ∆-term t at position p. Then `x∆r`

y
Γrϕss “ `x∆ryϕs “

yϕ.
On the other hand `yΓr`

x
∆rϕss “ `yΓrψs such that ψ is equal to ϕ besides

having xt at position p. But `
y
Γrψs “ yunfold-liftpψq “ yϕ.

In order to quantify terms in the propositional interpolant appropriately,
we need to sort them according to a particular order:

Definition 4.24 (Subterm order). A list of terms s1, . . . , sn is in ascending
subterm order if for any i and j such that 1 ĺ i, j ĺ n it holds that if si is a
subterm of sj , then i ă j. A list of terms s1, . . . , sn is in descending subterm
order if the list sn, . . . , s1 is in ascending subterm order. 4

Lemma 4.25. Let π be a resolution refutation of ΓY∆, s1, . . . , sm the maximal
colored ∆-terms in PIpπq and r1, . . . , rk the maximal colored Γ-terms in PIpπq,
both in descending subterm order. Moreover, let t1, . . . , tn be an arrangement of
{s1, . . . , sm, r1, . . . rk} in ascending subterm order and let Qizti for 1 ĺ i ĺ n
denote @xti or Dyti depending on the color of ti. Then

• Γ � @xs1 . . .@xsm`
x
∆rPIpπqs implies Γ � Q1zt1 . . . Qnztn `

y
Γr`

x
∆rPIpπqss and

• ∆ � @xr1 . . .@xrk `
y
ΓrPIpπqs implies ∆ �  Q1zt1 . . . Qnztn `

y
Γr`

x
∆rPIpπqss.

Proof. For 0 ĺ i ĺ k, let Zi “ {`x∆rr1s, . . . , `
x
∆rris}, and ti1, . . . , t

i
m`i be an

arrangement of {s1, . . . , sm, r1, . . . , ri, } in ascending subterm order. We use
Qijztij

for 1 ĺ j ĺ m` i to denote @xtij or Dytij depending on the color of tij .
Now, we show by induction that by iteratively lifting and appropriately

quantifying the maximal Γ-terms in `x∆rPIpπqs, we obtain a formula which is
entailed by Γ. Formally, the induction operates over

Γ � Qi1zti1 . . . Q
i
m`iztim`i

`yΓr`
x
∆rPIpπqs, Zis

for 0 ĺ i ĺ k.
For i “ 0, Zi “ H, so Γ � Qi1zti1 . . . Q

i
m`iztim`i

`yΓr`
x
∆rPIpπqs, Zis is nothing

else than Γ � @xs1 . . .@xsm `
x
∆rPIpπqs, which holds by assumption.

Now suppose that Γ � Qi1zti1 . . . Q
i
m`iztim`i

`yΓr`
x
∆rPIpπqs, Zis holds for i with

i ă k. We show that then, Γ � Qi`1
1 zti`1

1
. . . Qi`1

m`i`1zti`1
m`i`1

`yΓr`
x
∆rPIpπqs, Zi`1s

holds as well.
Note that Zi`1 “ Zi Y {`x∆rri`1s}. Hence `yΓr`x∆rPIpπqs, Zi`1s differs from

`yΓr`
x
∆rPIpπqs, Zis insofar as every occurrence of `x∆rri`1s is replaced by the

lifting variable yunfold-liftp`x∆rri`1sq
“ yri`1 . Every occurrence of yri`1 however is
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bound as in the quantifier prefix Qi`1
1 zti`1

1
. . . Qi`1

m`i`1zti`1
m`i`1

, there is some j

such that Qi`1
j zti`1

j
is Dyri`1 .

In order to show the desired entailment, we argue that `x∆rri`1s is a witness
term for Dyri`1 . Note that none of the Γ-terms in `x∆rri`1s are lifted as due to
the ordering by descending subterm order of the terms r1, . . . , rk, Zi does not
contain a subterm of ri`1. However `x∆rri`1s in general does contain ∆-lifting
variables. Let xs be a ∆-lifting variable in `x∆rri`1s. As s is a subterm of ri`1,
@xs precedes Dyri`1 in the quantifier prefix Qi`1

1 zti`1
1

. . . Qi`1
m`i`1zti`1

m`i`1
. Hence

yri`1 is quantified in the scope of the quantification of xs for every ∆-lifting
variable xs in `x∆rri`1s. Therefore `x∆rri`1s is a viable witness term.

This induction shows that Γ � Qk1ztk1 . . . Q
k
m`kztkm`k

`yΓr`
x
∆rPIpπqs, Zks holds.

But as Zk includes all maximal colored Γ-terms of `x∆rPIpπqs, this is nothing
else than Γ � Q1zt1 . . . Qnztn`

y
Γr`

x
∆rPIpπqss.

By a similar induction argument as above, we can conclude from ∆ �
@yr1 . . .@yrk  `

y
ΓrPIpπqs that ∆ � Q1zt1 . . . Qnztn  `

x
∆r`

y
ΓrPIpπqss holds, where

Qi “ D (@) if Qi “ @ (D). Therefore also ∆ �  Q1zt1 . . . Qnztn `
x
∆r`

y
ΓrPIpπqss

and finally by Lemma 4.23, we obtain that ∆ �  Q1zt1 . . . Qnztn `
y
Γr`

x
∆rPIpπqss.

Theorem 4.26. Let π be a resolution refutation of ΓY∆ and t1, . . . , tn be an
arrangement of the maximal colored terms in PIpπq in ascending subterm order.
Then Q1zt1 . . . Qnztn `

y
Γr`

x
∆rPIpπqss, where Qi is @ pDq if ti is a ∆ pΓq-term, is

an interpolant for Γ and ∆.

Proof. Let s1, . . . , sm be the maximal colored ∆-terms in PIpπq and r1, . . . , rk
the maximal colored Γ-terms in PIpπq. Then by Lemma 4.15, it holds
that Γ � @xs1 . . .@xsm `

x
∆rPIpπqs and by Corollary 4.19, we get that ∆ �

@yr1 . . .@yrk  `
y
ΓrPIpπqs. Therefore we can apply Lemma 4.25 to obtain

Γ � Q1zt1 . . . Qnztn `
y
Γr`

x
∆rPIpπqss

as well as
∆ �  Q1zt1 . . . Qnztn `

y
Γr`

x
∆rPIpπqss.

As clearly Q1zt1 . . . Qnztn `
y
Γr`

x
∆rPIpπqss does not contain colored symbols,

this formula is an interpolant.

Remark. In this proof, we order the lifting variables in the interpolant according
to the subterm relation of the terms they represent. This differs from the
proof in [Hua95], where the ordering is based on the length of these terms.
The proof of the theorem above however shows that both of these approaches
are equally valid, but clearly the subterm-based ordering in general allows for
more permutations than the length-based ordering. 4

We conclude by presenting the execution of the algorithm on an example:
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Example 4.27. In order to facilitate the reading of the formulas in this ex-
ample, we borrow notions from the natural numbers. In the following, the
intended interpretation for the predicate G is the ą-relation, for L the ă-
relation and for Z the predicate indicating whether the argument is zero.
Hence for instance the clause Gpx, yq _ Lpx, yq _ x “ y expresses that for
any two numbers x and y, either x ą y, x ă y or x “ t is the case. In order to
produce a contradiction, it is necessary to also include a clause which expresses
a false statement under this interpretation, which here is  Zpzq _  Lpz, uq.
This clause can be read as follows: If z is zero, then z is not less than any
number u.

The complete initial clause sets for this example are defined as follows:
Γ “ {Gpx, yq _ Lpx, yq _ x “ y, Gpv, fpvqq, Zpwq _  Zpfpwqq} and ∆ “

{Zpdq, Zpzq_ Lpz, uq}. Hence LpΓqXLp∆q “ {Z,L}, LpΓqzLp∆q “ {G, f}
and Lp∆qzLpΓq “ {d}.

We use the following resolution refutation π for the extraction of the in-
terpolant:

Zpdq

Gpx, yq _ Lpx, yq _ x “ y  Zpzq _  Lpz, uq res
z ÞÑxGpx, yq _ x “ y _ Zpxq

 Zpwq _  Zpfpwqq Zpdq res
w ÞÑd

 Zpfpdqq par
y ÞÑfpdqGpx, fpdqq _  Zpxq _  Zpxq fac

idGpx, fpdqq _  Zpxq  Gpv, fpvqq res
v ÞÑd, x ÞÑd

 Zpdq res
id�

In the following tree, we show the propositional interpolant PIpCq for the
corresponding clauses C (in simplified form):

J

K J

Lpx, yq
K J

 Zpdq

px “ fpdq ^  Zpfpdqqq _ px ‰ fpdq ^ Lpx, fpdqqq

px “ fpdq ^  Zpfpdqqq _ px ‰ fpdq ^ Lpx, fpdqqq K

pd “ fpdq ^  Zpfpdqqq _ pd ‰ fpdq ^ Lpd, fpdqqq

 Zpdq _
(
pd “ fpdq ^  Zpfpdqqq _ pd ‰ fpdq ^ Lpd, fpdqqq

)
Hence

PIpπq “  Zpdq _ pd “ fpdq ^  Zpfpdqqq _ pd ‰ fpdq ^ Lpd, fpdqqq

and lifting and quantification gives the final interpolant

@xdDyfpdq
(
 Zpxdq _ pxd “ yfpdq ^ Zpyfpdqqq _ pxd ‰ yfpdq ^Lpxd, yfpdqqq

)
.
4
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4.8 Number of quantifier alternations in the
extracted interpolant

In this section, we examine interpolants produced in Theorem 4.26 with respect
to the number of quantifier alternations. We arrive at the conclusion that there
is a tight connection between the number of color alternations in the terms
produced by the substitutions of the resolution refutation and the number of
quantifier alternations in the resulting interpolant.

We first formally define these notions:

4.8.1 Color and quantifier alternations

In the following, we assume that the maximum max of an empty sequence
is defined to be 0 and constants are treated as function symbols of arity 0.
Furthermore K is used to denote a color which is not possessed by any symbol.

Definition 4.28 (Color alternation col-alt). Let Γ and ∆ be sets of formulas
and t be a term.

col-altptq
def
“ col-altKptq

col-altΦptq
def
“



0 if t is a variable
maxpcol-altΦpt1q, . . . , col-altΦptnqq if t “ fpt1, . . . , tnq is gray
maxpcol-altΦpt1q, . . . , col-altΦptnqq if t “ fpt1, . . . , tnq is of color Φ

1`maxpcol-altΨpt1q, . . . , col-altΨptnqq if t “ fpt1, . . . , tnq is of color
Ψ, Φ ‰ Ψ

4

Definition 4.29 (Quantifier alternation quant-alt). Let A be a formula.

quant-altpAq
def
“ quant-altKpAq

quant-altQpAq
def
“



0 if A is an atom
quant-altQpBq if A ”  B
maxpquant-altQpBq,

quant-altQpCqq
if A ” B ˝ C, ˝ P {^,_,Ą}

quant-altQpBq if A ” QxB

1` quant-altQ1pBq if A ” Q1xB, Q ‰ Q1

4

4.8.2 Preliminary considerations

First, we define the auxiliary procedure PI˚:
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Definition 4.30 (PI˚). PI˚ is defined as PI with the difference that in PI˚, all
literals are considered to be gray. PI˚init and PI˚step are defined analogously. 4

Hence PI˚init coincides with PIinit. PI˚step coincides with PIstep in case of
factorization and paramodulation inferences. For resolution inferences, the first
two cases in the definition of PIstep do not occur for PI˚step.

PI˚ enjoys the convenient property that it absorbs every literal which occurs
in some clause:

Proposition 4.31. For every literal which occurs in a clause of a resolution
refutation π, a respective successor occurs in PI˚pπq.

Proof. By structural induction.

Note that in PI˚, we can conveniently reason about the occurrence of terms
as no terms are lost throughout the extraction. However Lemma 4.32 allows us
to transfer results about gray literals to PI:

Lemma 4.32. For every clause C of a resolution refutation, the literals and
equalities of PIpCq are exactly the gray literals and equalities of PI˚pCq.

Proof. Note that PIinit and PI˚init coincide and PIstep and PI˚step only differ for
resolution inferences. More specifically, they only differ on resolution infer-
ences, where the resolved literal is colored. Hence PIpCq and PI˚pCq contain
the same gray literals and equalities. The colored resolved literals however are
not added to PIpCq as desired.

Lemma 4.33. Let ι be an inference of a resolution refutation using the clauses
C1, . . . , Cn which creates the clause C. If there is a literal λ or an equality s “ t
in PIpCiq or a gray literal λ or an equality s “ t in Ci for 1 ĺ i ĺ n, then a
successor of λ or s “ t respectively occurs in PIsteppι,PIpC1q, . . . ,PIpCnqq _C.

Proof. Immediate by the definition of PI.

Corollary 4.34. If there is a literal λ or an equality s “ t in PIpCq or a gray
literal λ or an equality s “ t in C for a clause C of a resolution refutation π,
then a successor of λ or s “ t respectively occurs in PIpπq.

Proof. This is a direct consequence of Lemma 4.33.

4.8.3 Analysis of the occurrences of crucial terms in PI

We now make some considerations about the construction of certain terms
in the context of interpolant extraction. Thereby we employ the following
definition:
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Definition 4.35. In a literal or term ϕ containing a subterm t, t is said
to occur below a Φ-symbol s if in the syntax tree representation of ϕ, there
is a node labeled s on the path from the root to t. Note that the colored
symbol may also be the predicate symbol. Moreover, t is said to occur directly
below the Φ-symbol s if it occurs below the Φ-symbol s and in the syntax tree
representation of ϕ on the path from s to t, no nodes with labels with colored
symbol occur. 4

Moreover, we frequently reason over the stepwise application of the respec-
tive unifiers, for which we make use of the following definition:

Definition 4.36. We define P̃I
˚

step to coincide with PI˚step but without applying
the substitution σ in each of the cases. Furthermore, P̃I

˚
pCq is an abbreviation

of P̃I
˚

steppι,PI˚pC1q, . . . ,PI˚pCmqq if C is created by an inference ι from the
clauses C1, . . . , Cn, and P̃I

˚
pCq coincides with PI˚pCq if C P ΓY∆.

Analogously, if C ” Dσ, we use C̃ to denote D. 4

In the context of an inference ι using the clauses C1, . . . , Cm to infer C, it
holds that:

PI˚pCq _ C “ PI˚steppι,PI˚pC1q, . . . ,PI˚pCmqq _ C

“

(
P̃I
˚

steppι,PI˚pC1q, . . . ,PI˚pCmqq _ C̃
)
σ

“

(
P̃I
˚
pCq _ C̃

)
σ

“

(
P̃I
˚
pCq _ C̃

)
σp0, |dompσq|q

Note that if we are able to show that the application of a substitution
σi to pP̃I

˚
pCq _ C̃qσp0, i´1q maintains an invariant and the invariant holds for

P̃I
˚
pCq _ C̃, then it immediately follows that it holds for PI˚pCq _ C.

Lemma 4.37. Let ι be an inference in a refutation of Γ Y∆. Suppose that
a variable u occurs directly below a Φ-symbol in pP̃I

˚
pCq _ C̃qσp0, iq for i ľ 1.

Then at least one of the following statements holds:

1. The variable u occurs directly below a Φ-symbol in pP̃I
˚
pCq _ C̃qσp0, i´1q.

2. The variable u occurs at a gray position in a gray literal or at a gray
position in an equality in pP̃I

˚
pCq _ C̃qσp0, iq.

3. There is a variable v such that

– u occurs gray in vσi and

– v occurs in pP̃I
˚
pCq _ C̃qσp0, i´1q directly below a Φ-symbol as well

as directly below a Ψ-symbol
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Proof. We consider all different situations under which the situation in ques-
tion arises. Irrespective of the type of the inference ι, one of these cases can
apply:

• There is already a literal in pP̃I
˚
pCq_ C̃qσp0, i´1q where u occurs directly

below a Φ-symbol and σi does not change this. Then clearly 1 is the
case.

• There is a variable v in pP̃I
˚
pCq _ C̃qσp0, i´1q such that vσi contains u

directly below a Φ-symbol. As v is unified with the term vσi, vσi must
occur in pP̃I

˚
pCq _ C̃qσp0, i´1q, which implies that 1 is the case.

In the case that ι is a resolution or factorization inference, the following situ-
ations can apply:

• There is a variable v which occurs directly below a Φ-symbol such that
u occurs gray in vσi.

Hence in the resolved or factorized literals λ and λ1 in pP̃I
˚
pCq _

C̃qσp0, i´1q, there is a position p such that without loss of generality
λ|p “ v and u occurs gray in λ1|p. Note that due to the definition of the
unification algorithm, λ and λ1 must coincide on the path to p.

By Proposition 4.31, λ and λ1 occur in P̃I
˚
pCq _ C̃ irrespective of their

coloring.

We distinguish cases based on the position p:

– Suppose that p occurs directly below a Φ-symbol. Then as u oc-
curs gray in λ1|p, u occurs directly below a Φ-symbol in pP̃I

˚
pCq _

C̃qσp0, i´1q and 1 is the case.

– Suppose that p occurs directly below a Ψ-symbol. Then v occurs
directly below a Ψ-symbol in λ|p and 3 holds.

– Suppose that p does not occur directly below a colored symbol.
Then p does not occur below any colored symbol, hence u is con-
tained in a gray literal in a gray position in pP̃I

˚
pCq _ C̃qσp0, i´1q.

As σi is trivial on u, this occurrence of u also is present in
pP̃I

˚
pCq _ C̃qσp0, iq and hence 2 is the case.

Now we consider the case that ι is a paramodulation inference of the clauses
C1 : r1 “ r2 _ D and C2 : Errsp with σ “ mgupιq “ mgupr1, rq yielding
C : pD_Err2spqσ. We again consider the different situations under which the
situation in question arises:

• The variable u occurs gray in r2 and p in E is directly below a Φ-symbol.
But then u occurs gray in an equality in pP̃I

˚
pCq _ C̃qσp0, i´1q and as σi

is trivial on u also in pP̃I
˚
pCq _ C̃qσp0, iq, hence 2 holds.
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• Suppose that some variable v occurs directly below a Φ-symbol in
pP̃I

˚
pCq_ C̃qσp0, i´1q such that u occurs gray in vσi. Then by the defini-

tion of the unification algorithm, there exists a position q such that one
of r1|q and r|q is v and the other one contains a gray occurrence of u.

We distinguish cases based on the position q:

– Suppose that q occurs directly below a Φ-symbol. Then clearly 1 is
the case.

– Suppose that q occurs directly below a Ψ-symbol. Then as the
variable v also occurs directly below a Φ-symbol and u occurs gray
in vσi, 3 is the case.

– Suppose that q is a gray position. Then 2 is the case: Either u
occurs gray in r1 in pP̃I

˚
pCq_C̃qσp0, i´1q and then also in pP̃I

˚
pCq_

C̃qσp0, iq, or otherwise v occurs gray in r1 in pP̃I
˚
pCq _ C̃qσp0, i´1q,

but as vσi contains u gray, u occurs gray in of r1σi in pP̃I
˚
pCq _

C̃qσp0, iq.

Lemma 4.38. Let ι be an inference of a resolution refutation of ΓY∆. Suppose
that a variable u occurs directly below a Φ-symbol as well as directly below a
Ψ-symbol in pP̃I

˚
pCq _ C̃qσp0, iq. Then u occurs gray in a gray literal or gray

in an equality in pP̃I
˚
pCq _ C̃qσp0, iq.

Proof. We proceed by induction over the refutation. As the original clauses
each contain symbols of at most one color, the base case is trivially true.

For the induction step, suppose that an inference makes use of the clauses
C1, . . . , Cn and that the lemma holds for PI˚pCjq _ Cj for 1 ĺ j ĺ n.

Note that then, the lemma holds for P̃I
˚

steppι,PI˚pC1q, . . . ,PI˚pCnqq_ C̃ “

P̃I
˚
pCq _ C̃. This is because as all clauses are variable-disjoint, if a variable

occurs in P̃I
˚
pCq_ C̃ both directly below a Φ-symbol as well as directly below

a Ψ-symbol, then this must be the case also in PI˚pCjq _ Cj for some j, for
which the lemma by assumption holds. Furthermore, by the definition of PI˚,
every literal which occurs in PI˚pCjq _ Ci for some j occurs in P̃I

˚
pCq _ C̃.

Hence it remains to show that the lemma holds for pP̃I
˚
pCq _ C̃qσ “

pP̃I
˚
pCq_C̃qσ0 . . . σm, which we do by induction over i for 1 ĺ i ĺ m. Suppose

that the lemma holds for pP̃I
˚
pCq _ C̃qσp0, i´1q and in pP̃I

˚
pCq _ C̃qσp0, iq, the

variable u occurs directly below a Φ-symbol as well as directly below a Ψ-term.
Then by Lemma 4.37, we can deduce that one of the following statements

holds for Φ “ Γ as well as Φ “ ∆. We denote case j for Φ “ Γ by jΓ and for
Φ “ ∆ by j∆.

1. The variable u occurs directly below a Φ-symbol in pP̃I
˚
pCq_C̃qσp0, i´1q.
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2. The variable u occurs at a gray position in a gray literal or at a gray
position in an equality in pP̃I

˚
pCq _ C̃qσp0, iq.

3. There is a variable v such that

– u occurs gray in vσi and
– v occurs in pP̃I

˚
pCq _ C̃qσp0, i´1q directly below a Φ-symbol as well

as directly below a Ψ-symbol

If 2Γ or 2∆ is the case, we clearly are done. On the other hand if 3Γ or 3∆

is the case, then by the induction hypothesis, v occurs gray in a gray literal
or gray in an equality in pP̃I

˚
pCq _ C̃qσp0, i´1q. As u occurs gray in vσi, we

obtain that then, u occurs gray in a gray literal or gray in an equality in
pP̃I

˚
pCq _ C̃qσp0, iq.
Hence the only remaining possibility is that both 1Γ and 1∆ hold. But then

u occurs directly below a Φ-symbol as well as below a Ψ-symbol in pP̃I
˚
pCq _

C̃qσp0, i´1q and again by the induction hypothesis, we obtain that u occurs gray
in a gray literal or gray in an equality in pP̃I

˚
pCq _ C̃qσp0, i´1q, and as σi is

trivial on u, the same occurrence of u is present in pP̃I
˚
pCq _ C̃qσp0, iq.

Lemma 4.39. Let C be a clause in a resolution refutation of Γ Y ∆. If
PI˚pCq _ C contains a maximal colored occurrence of a Φ-term trss, which
contains a maximal Ψ-colored term s, then s occurs gray in PIpCq _ C.

Proof. Note that it suffices to show that the desired term occurs in a gray
literal or equality in PI˚pCq _ C since by Lemma 4.32, all gray literals and
equalities of PI˚pCq also occur in PIpCq. We do so by induction over the
resolution refutation.

As the original clauses each contain symbols of at most one color, the base
case is vacuously true.

The induction step is laid out similarly as in the proof of Lemma 4.38.
We suppose that an inference makes use of the clauses C1, . . . , Cn and that
the lemma holds for PI˚pCjq _ Cj for 1 ĺ j ĺ n. Then the lemma holds
for P̃I

˚
pCq _ C̃ “ P̃I

˚

steppι,PI˚pC1q, . . . ,PI˚pCnqq _ C̃q as no new terms are
introduced in P̃I

˚
pCq _ C̃ and all literals from PI˚pCjq _ Cjq for 1 ĺ j ĺ n

occur in P̃I
˚
pCq _ C̃.

It remains to show that the lemma holds for pP̃I
˚
pCq _ C̃qσ “ pP̃I

˚
pCq _

C̃qσ0 . . . σm, which we do by induction over i for 0 ĺ i ĺ m. We distinguish
based on the situation under which a unification leads to the term trss.

• Suppose for some variable u that uσi contains trss. Then u is unified
with a term which contains trss and which occurs in pP̃I

˚
pCq_C̃qσp0, i´1q.

Hence by the induction hypothesis, s occurs gray in a gray literal or gray
in an equality in pP̃I

˚
pCq _ C̃qσp0, i´1q and, as σi does not change this,

also in pP̃I
˚
pCq _ C̃qσp0, iq.
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• Otherwise there is a variable u which occurs directly below a Φ-symbol
and vσi contains a gray occurrence of s. We distinguish based on the
occurrences of u in pP̃I

˚
pCq _ C̃qσp0, i´1q:

– Suppose that u occurs somewhere in pP̃I
˚
pCq _ C̃qσp0, i´1q gray in

a gray literal or gray in an equality. Then clearly we are done.

– Suppose that u occurs somewhere in pP̃I
˚
pCq _ C̃qσp0, i´1q directly

below a Ψ-symbol. Then by Lemma 4.38, u occurs gray in a gray
literal or gray in an equality in pP̃I

˚
pCq_C̃qσp0, i´1q, whose successor

in pP̃I
˚
pCq _ C̃qσp0, iq is an occurrence of s of the same coloring.

Hence we are done a well.

– Suppose that u occurs in pP̃I
˚
pCq _ C̃qσp0, i´1q only directly below

a Φ-symbol. Here, we differentiate between the types of inference
of the current induction step:

∗ Suppose that the inference of the current induction step is a
resolution or a factorization inference. As u occurs gray in vσi,
there is a position p such that for the resolved or factorized
literals λ and λ1 it holds without loss of generality that λ|p “ u
and s occurs gray in λ1|p. Note that λ and λ1 agree on the path
to p, including the predicate symbol..
Now as by assumption u only occurs directly below a Φ-symbol,
so must s. But then s occurs directly below a Φ-symbol in
pP̃I

˚
pCq _ C̃qσp0, i´1q and we get the result by the induction

hypothesis.
∗ Suppose that the inference of the current induction step is a

paramodulation inference. Assume it uses the the clauses C1 :
r1 “ r2 _D and C2 : Errsp with σ “ mgupιq “ mgupr1, rq to
yield C : pD _ Err2spqσ.
As u is affected by σi, it must occur in r1 or r. Let û refer to
this occurrence.
· Suppose that û occurs directly below a Φ-colored function
symbol.
If û is contained in r1, then smust be contained in r directly
below a Φ-colored function symbol as r1 and r are unifiable.
We then get the result by the induction hypothesis.
If otherwise û is contained in r, then there are two possi-
bilities for the occurrence of s in r1:
Either û occurs in a Φ-colored function symbol in r. Then
s occurs in a Φ-colored function symbol in r1 and we get
the result by the induction hypothesis.
Otherwise û occurs gray in r, but r occurs directly below
a Φ-colored function symbol in E. Then however, as r and
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r1 are unifiable, s must occur gray in r1 and hence gray in
an equality.
· Suppose that û occurs directly below a Φ-colored predicate
symbol.
Then as the equality predicate is not considered to be col-
ored, u must occur gray in r. But then as r1 and r are
unifiable, s must occur gray in r1 and hence gray in an
equality.

4.8.4 Lower bound

The lemmas of the previous section are now employed to derive a lower bound
on the number of quantifier alternations in the interpolant:

Lemma 4.40. If a term with n color alternations occurs in PIpCq or in a
gray literal or equality in C for a clause C, then the interpolant I produced in
Theorem 4.26 contains at least n quantifier alternations.

Proof. We perform an induction on n and show the strengthening that the
quantification of the lifting variable which replaces a term with n color alter-
nations is required to be in the scope of the quantification of n´ 1 alternating
quantifiers.

Note that by Corollary 4.34, a successor of every literal and equality of
PIpCq and a successor every gray literal or equality of C occurs in PIpπq.

For n “ 0, no colored terms occur in I and hence also no quantifiers.
Moreover for n “ 1, there are terms of one color which evidently require at
least one quantifier.

Suppose that the statement holds for n´1 for n ą 1 and that a term t with
col-altptq “ n occurs in PIpCq _C. We assume without loss of generality that
t is a Φ-term. Then t contains some Ψ-colored term s with col-altpsq “ n´ 1
and by Lemma 4.39, s occurs gray in PIpCq_C. By Corollary 4.34, a successor
of s occurs in PIpπq. Note that as s occurs in a gray position, any successor
of s also occurs in a gray position.

By the induction hypothesis, the quantification of the lifting variable for s
requires n ´ 1 alternated quantifiers. As s is a subterm of t and t is lifted, t
must be quantified in the scope of the quantification of s, and as t and s are
of different color, their quantifier type is different. Hence the quantification of
the lifting variable for t requires n quantifier alternations.

We present an example which illustrates that terms in colored literals may
contain more color alternations than the term with the maximal number of
color alternations in gray literals or equalities. Still, the latter determines the
minimum number of quantifier alternations in the interpolant. Note that it is
a consequence of Lemma 4.39 that if for some clause C a term with n color
alternations occurs in a colored literal in PI˚pCq_C (which contains all literals,
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i.e. also the colored ones), then PIpCq _ C contains a term with at least n´ 1
color alternations.

Example 4.41. Let Γ “ { P paq} and ∆ “ {P pxq _ Qpfpxqq, Qpyq}. We
consider the following refutation of ΓY∆, which we annotate by the interpola-
tion extraction by appending PIpCq to each clause C, separated by “|”. For the
sake of brevity, we sometimes give simplified but logically equivalent versions
of PIpCq. This notational convention will be used throughout this thesis for
examples of a similar form.

 P paq | K P pxq _Qpfpxqq | J res
x ÞÑaQpfpaqq |  P paq  Qpyq | J res

y ÞÑfpaq� |  P paq

In this example, Theorem 4.26 yields the interpolant I ” Dya P pyaq with
quant-altpIq “ 1. The existence of the term a with col-altpaq “ 1 in a clause of
the refutation by Lemma 4.40 implies that quant-altpIq ľ 1. The occurrence
of the term fpaq with col-altpfpaqq “ 2 in the colored literal Qpfpaqq is not
relevant. 4

4.8.5 Upper bound and conclusion

We now also determine an upper bound for the number of quantifier alternations
in the interpolant.

Note that as the following example shows, an upper bound of n quantifier
alternations in the interpolant is not sufficient even if n is the maximal number
of color alternations for any term in PIpCq _ C for any clause C:

Example 4.42. Let Γ “ {P paq _Qpuq} and ∆ “ { P pvq, Qpbq}. Consider
the following refutation of ΓY∆:

P paq _Qpuq | K  P pvq | J res
v ÞÑaQpuq | P paq  Qpbq | J res

uÞÑb� | Qpbq _ P paq

Given this refutation, Theorem 4.26 produces either the interpolant I1 ”

Dya@xbpQpxbq_P pyaqq or I2 ” @xbDyapQpxbq_P pyaqq. Note that the maximal
number of color alternations of a term in PIpCq _C for any clause C is 1, but
the number of quantifier alternations is 2 for both I1 and I2. 4

However the following bound holds in general:

Lemma 4.43. Let t be a term with the maximal number of color alternations
in PIpCq or a gray literal or equality in C for any clause C. Then there is an
arrangement of the quantifier prefix in Theorem 4.26 which gives rise to an
interpolant with at most col-altptq ` 1 quantifier alternations.
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Proof. By Corollary 4.34, a successor of t occurs in PIpπq. Let TΦ
i be the set of

maximal Φ-colored terms in PIpπq with i color alternations for 1 ĺ i ĺ n, where
n “ col-altptq. Note that every maximal colored term of PIpπq is contained
in one of these sets. We use DTΓ

i p@T
∆
i q to denote Dyt1 . . . Dytm p@xt1 . . .@xtmq

where t1, . . . , tm is an arrangement of the elements of TΓ
i (T∆

i ) in ascending
subterm order.

Now we construct the interpolant

I ” @T∆
1 DT

Γ
1 DT

Γ
2 @T

∆
2 @T∆

3 DT
Γ
3 . . . Q

ΦTΦ
n Q

ΨTΨ
n `yΓr`

x
∆rPIpπqss,

where QΦTΦ
n Q

ΨTΨ
n is @T∆

n DT
Γ
n if n is odd and DTΓ

n @T
∆
n if n is even. Clearly,

I has at most n` 1 color alternations.
In order to show the result, it remains to show that I is a valid interpolant

with respect to Theorem 4.26. Note that the quantifier prefix binds all lifting
variables occurring in `yΓr`

x
∆rPIpπqss. We conclude by showing that the order

of the quantifiers is admissible.
Let t be a maximal colored term in `yΓr`

x
∆rPIpπqss. We prove that the

quantifier for the lifting variable of every subterm s of t precedes the quantifier
for the lifting variable for t in I. Suppose that col-altptq “ k. Then we can
deduce that col-altpsq ĺ k.

• If col-altpsq “ k, then t and s are of the same color and hence the
quantifiers for their respective lifting variables are contained in the same
block. However the quantifiers of each block are ordered as desired.

• Otherwise col-altpsq “ l for some l such that l ă k. Then the lifting
variable replacing s is quantified in DTΓ

l or @T∆
l . In any case, it precedes

the quantifier for the lifting variable replacing t which is contained in
DTΓ

k or @T∆
k .

The previous results can be summarized by the following theorem:

Theorem 4.44. Let n be the maximal number of color alternations of any term
in PIpCq or in a gray literal or equality in C for any clause C of a resolution
refutation of ΓY∆. Then by arranging the quantifiers in a quantifier alternation
minimizing fashion the interpolant of Theorem 4.26 has at least n and at most
n` 1 quantifier alternations.

Proof. Immediate by Lemma 4.40 and Lemma 4.43.



Chapter 5
Interpolant extraction from

resolution proofs in one phase

In contrast to the approach described in chapter 4, where propositional inter-
polants are extracted first and colored terms lifted just in a second, separate
phase, we now present a method which is based on the former but merges the
two phases.

The motivation for the separation in two phases lies in the fact that only
after the formation of the propositional interpolant, all terms and their logical
relation can be known. This however neglects the fact that proofs are frequently
structured in a way such that the occurrence of certain symbols and variables
are restricted to certain areas of the proof. By lifting these and prefixing the
entire interpolant with their respective quantifier, the resulting formula is not
optimal in the sense that the quantifier scope can be minimized.

Consider the following example:

Example 5.1. Let Γ “ {P pxq _ Qpyq} and ∆ “ { P paq, Qpaq}. Consider
the following refutation of ΓY∆:

P pxq _Qpyq | K  P paq | J

Qpyq | P paq  Qpaq | J

� | Qpaq _ P paq

Lifting and quantification of this propositional interpolant according to
Theorem 4.26 gives the interpolant @xapQpxaq _ P pxaqq. Note however that
the stronger formula p@xaQpxaqq_p@xaP pxaqq is an interpolant as well, but can
not be constructed by this method. Consider yet that ∆ entails the negated
interpolant, so by generalizing the interpolant, the formula entailed by ∆ be-
comes more specialized. 4
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5.1 Interpolant extraction with simultaneous lifting

We now define the incrementally lifted interpolant LI. Note that the structure of
the resulting formula coincides with the ones from PI as defined in Definition 4.3
except for quantifiers and, of course, the colored terms.

Definition 5.2 (Incrementally lifted interpolant LI). Let π be a resolution
refutation of ΓY∆. We define LIpπq to be LIp�q, where � is the empty clause
derived in π.

Let C be a clause in π. We define the intermediary formula LI‚pCq as
follows:

Base case. If C P ΓY∆, LI‚pCq
def
“ PIinitpCq.

Induction step. If C is the result of an inference ι using the clauses C̄, then
LI‚pCq

def
“ PIsteppι,LIpC1q, . . . ,LIpCnqq.

LIpCq is built from LI‚pCq according to the following lifting procedure:

1. Lift all maximal colored occurrences of a term t in LI‚pCq for which at
least one of the following conditions, referred to as lifting conditions,
applies:

• The term t contains some variable x such that x does not occur
in C.

• The term t is ground and C does not contain t.

Denote the resulting formula by `partpLI‚pCqq.

2. Let `˚partpLI‚pCqq be `partpLI‚pCqq where every lifting variable zt, which
occurs free, is substituted by a fresh lifting variable z1t.1

3. Let X (Y ) be the set of ∆-(Γ-)lifting variables which occur free in
`˚partpLI‚pCqq. Form an arrangement QpCq of the elements of {@xt | xt P
X}Y{Dyt | yt P Y } such that if s and r are terms such that s is a subterm
of r, then zs precedes zr. Finally, let LIpCq

def
“ QpCq`˚partpLI‚pCqq. 4

5.2 Main lemma

Note that the lifting conditions ensure that only terms are lifted, which do
not exhibit a direct logical relation with any term in the remaining clause.
More precisely, they do not influence the subsequent resolution derivation: If
a variable x occurs in LIpCq but not in C, then as all clauses in a resolution
refutation are pairwise variable-disjoint, the variable x does not occur in any

1See Example 5.6 for an illustration.
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other clause. For ground terms r however which occur in LIpCq but not in C, it
is possible for them to cooccur in a subsequent clause. Let p be the occurrence
of r in LIpCq and q the occurrence of r in a successor-clause of C. Then due
to the fact that p is not used in any unification, q must be created or originate
from other occurrences of the same function and/or constant symbols. Note
that the lifting conditions ensure that for these, the order of the quantifiers
of their respective lifting variables is established in a fashion appropriate for
ensuring the logical validity of the interpolant, but despite the syntactic equality
between p and q, there is no logical relation between them.

We now show more formally that the lifting conditions ensure that if a term
contains another term, the subterm is not lifted before the superterm:

Lemma 5.3. Let C be a clause in a resolution refutation of ΓY∆. Then if
a term t occurs in LI‚pCq or LIpCq, no subterm s of t is lifted in LI‚pCq or
LIpCq respectively.

Proof. We proceed by induction on the resolution refutation.
For the base case, consider that if C P ΓY∆, then LI‚pCq is either K or J

and consequently also LIpCq.
Now suppose that the lemma holds for the clauses C1, . . . , Cn which are

used in an inference ι to derive the clause C using the unifier σ “ mgupιq.
Then if t is a term in LI‚pCq, no subterm s of t is lifted since either t is present
in LIpCiq _ Ci for some i, 1 ĺ i ĺ n, where the induction hypothesis applies,
or otherwise t is introduced by means of σ. But as σ is calculated only from
the resolution inference, no lifting terms can occur in ranpσq.

Now let t be a term in LIpCq which is not lifted. Let s be a subterm of t and
for the sake of contradiction, suppose that s is lifted in LIpCq. We distinguish
cases based on which lifting conditions applies for s:

• Suppose that s is lifted due to containing a variable which does not occur
in C. Then as s is a subterm of t, t contains this variable as well and
therefore is lifted in LIpCq, contradicting the assumption.

• Suppose that s is lifted due to being a ground term which does not
occur in C. Then t does not occur in C either as any occurrence of t
would contains s and s does not occur in C. Hence t is lifted in LIpCq,
contradicting the assumption.

We now use this lemma in order to show that the lifting step in LI possesses
the desired logical properties. Recall that the notation DΦ for a clause D
denotes the clause created from D by removing all literals which are not
contained LpΦq.

Lemma 5.4. Let C be a clause in a resolution refutation of Γ Y ∆. Then
Γ � `∆rLI‚pCqs _ `∆rCΓs implies Γ � `∆rLIpCqs _ `∆rCΓs.
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Proof. Let t1, . . . , tn be the maximal colored terms in LI‚pCq for which some
lifting conditions applies in ascending subterm order. The set {tn´i`1, . . . , tn}
for 0 ĺ i ĺ n is designated by Ti. We denote by `˚partpLI‚pCq, Tiq the result of
lifting all terms of Ti and replacing the lifting variables by fresh ones analogous
to step 2 of the lifting procedure of LI. The fresh lifting variables are high-
lighted by a prime. We use Qiz1ti to denote either Dy1ti in case ti is Γ-colored
or @x1ti in case ti is ∆-colored.

We show the result by an induction over

Γ � `∆rQn´i`1z
1
tn´i`1

. . . Qnz
1
tn`

˚
partpLI‚pCq, Tiqs _ `∆rCΓs

for 0 ĺ i ĺ n.
Consider that for i “ 0, we obtain that Ti “ H and therefore Γ �

`∆rQn´i`1z
1
tn´i`1

. . . Qnz
1
tn`

˚
partpLI‚pCq, Tiqs _ `∆rCΓs is nothing else than Γ �

`∆rLI‚pCqs _ `∆rCΓs, which holds by assumption.
Now suppose that Γ � `∆rQn´i`1z

1
tn´i`1

. . . Qnz
1
tn`

˚
partpLI‚pCq, Tiqs_`∆rCΓs

holds for some i such that 0 ĺ i ă n. Then in `˚partpLI‚pCq, Ti`1q, the term
tn´i is lifted. We distinguish based on the color of tn´i:

• Suppose that tn´i is a ∆-term. Then the lifting variable x1tn´i
occurs free

in `∆rQn´i`1z
1
tn´i`1

. . . Qnz
1
tn`

˚
partpLI‚pCq, Tiqs. Note that it is possible

that an occurrence of the term tn´i is lifted and quantified in LIpC 1q for
some predecessor C 1 of C and the occurrence of tn´i in LI‚pCq may be
in the scope of that quantifier2. However as the lifting variable replacing
the occurrence of tn´i in LI‚pCq is renamed to the fresh variable z1tn´i

,
it is not bound by any quantifier present in LI‚pCq.

As some lifting condition holds for tn´i, C does not contain tn´i and
hence `∆rCΓs does not contain x1tn´i

. Therefore `∆rCΓs does not need to
be included in the scope of the quantification of x1tn´i

.

Note that we must ensure that we quantify x1tn´i
such that every existen-

tial quantifier, whose witness term contains x1tn´i
, is in the scope of the

quantification of x1tn´i
. The terms in question are the maximal colored

Γ-colored superterms of t.

By the contraposition of Lemma 5.3, we obtain that since tn´i is lifted,
every maximal colored superterm s of tn´i must be lifted and quan-
tified either in LI‚pCq or some lifting condition must apply for s in
LI‚pCq. In the latter case, s is contained in {tn´i`1, . . . , tn}. In any
case, the quantifier for the lifting variable replacing s is contained in
`∆rQn´i`1z

1
tn´i`1

. . . Qnz
1
tn`

˚
partpLI‚pCq, Tiqs.

Hence we may quantify x1tn´i
universally as follows:

Γ � `∆r@x
1
tn´i

Qn´i`1z
1
tn´i`1

. . . Qnx
1
tn`

˚
partpLI‚pCq, Ti`1qs _ `∆rCΓs.

2See Example 5.6 for an illustration.
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• Otherwise tn´i is a Γ-term. By Lemma 5.3, no subterm of tn´i is lifted
and quantified in LI‚pCq. Moreover, all subterms of tn´i which satisfy
some lifting condition are contained in {t1, . . . , tn´i´1} and hence not
lifted in `∆rQn´i`1z

1
tn´i`1

. . . Qnz
1
tn`

˚
partpLI‚pCq, Tiqs. Therefore `x∆rtn´is

is a valid witness term for the existential quantification of y1tn´i
in

Γ � `∆rDy
1
tn´i

Qn´i`1z
1
tn´i`1

. . . Qnz
1
tn`

˚
partpLI‚pCq, Ti`1qs _ `∆rCΓs.

By this induction, we obtain that Γ � `∆rQ1z
1
t1 . . . Qnz

1
tn`

˚
partpLI‚pCq, Tnqs_

`∆rCΓs, which is the same as Γ � `∆rLIpCqs _ `∆rCΓs.

Lemma 5.5. Let C be a clause in a resolution refutation of Γ Y ∆. Then
Γ � `∆rLIpCqs _ `∆rCs

Proof. We show the strengthening Γ � `∆rLIpCqs _ `∆rCΓs by induction on
the resolution refutation.

If C P Γ Y ∆, then Lemma 4.13 shows that Γ � `∆rPIinitpCqs _ `∆rCΓs,
which is the unfolded definition of `∆rLI‚pCqs _ `∆rCΓs. By Lemma 5.4, we
immediately get that `∆rLIpCqs _ `∆rCΓs.

For the induction step, suppose the clause C is the result of an inference
ι using the clauses C1, . . . , Cn. By the induction hypothesis, it holds that
Γ � `∆rLIpCiq _ pCiqΓs for 1 ĺ i ĺ n. Hence we can deduce by Lemma 4.14
that Γ � `∆rPIsteppι,LIpC1q, . . . ,LIpCnqq _ CΓs. This however is nothing else
than Γ � `∆rLI‚pCq _ CΓs. Lemma 5.4 gives the result.

We now present an example which demonstrates that LI does produce
formulas realizing the idea presented in Example 5.1.

Example 5.6. In this example, let Γ “ {P pu, vq _ Qpuq _ Rpvq} and
∆ “ { P pw, zq, Qpaq, Rpaq}. We consider a resolution refutation of ΓY∆
combined with the interpolant extraction. In order to emphasize the lifting
steps, we do not just write C | LIpCq in the derivation as usual for a clause
C but C | LI‚pCq above C | LIpCq without a separating line in case LI‚pCq
is different from LIpCq. The primed variables make the renaming of lifting
variables in step 2 of the lifting procedure explicit.

P pu, vq _Qpuq _Rpvq | K  P pw, zq | J res
w ÞÑu,v ÞÑz

Qpuq _Rpvq | P pu, vq  Qpaq | J res
uÞÑaRpvq | Qpaq _ P pa, vq

Rpvq | @xapQpxaq _ P pxa, vqq  Rpaq | J res
v ÞÑa� | Rpaq _ @xapQpxaq _ P pxa, aqq

� | @x1a
(
Rpx1aq _ @xapQpxaq _ P pxa, x

1
aqq
)
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Hence we obtain a non-prenex interpolant which reflects the logical ex-
pressiveness of Γ, in contrast to the interpolant which is produced by the two
phase approach described in chapter 4, which in fact is @xa

(
Rpxaq _Qpxaq _

P pxa, xaq
)
.

Note that without the renaming of the lifting variables, the result of the ex-
traction would be @xa

(
Rpxaq_@xapQpxaq_P pxa, xaqq

)
. In order to emphasize

the binding, we alpha-rename this formula to @x
(
Rpxq _ @ypQpyq _P py, yqq

)
.

This is not an interpolant, as this formula is not entailed by Γ:
Consider a model M of Γ with domain DM “ {0, 1} and an interpretation

IM such that IM pRq “ {0}, IM pQq “ H and IM pP q “ {p0, 1q, p1, 1q}. Then
clearly M � P pu, vq_Qpyq_Rpvq as depending on the value of v, either Rpvq
or P pu, vq holds. But at the same time M 2 @x

(
Rpxq _ @ypQpyq _ P py, yqq

)
since the instantiation of the bound variables x to 1 and y to 0 results in a
formula which does not hold in M .

4

5.3 Towards an interpolant

In a similar fashion as in Lemma 4.18 for PI, we can also show a symmetry-
property for LI. Note that the notation employed in this lemma is defined in
Section 4.5.

Lemma 5.7. Let C a clause in a refutation of ΓY∆. Then LIpCq ô  LIpĈq.

Proof. We proceed by induction to show that LI‚pCqô LI‚pĈq:
If C P ΓY∆, we obtain the result by Lemma 4.16.
For the induction step, suppose that the clause C is the result of an in-

ference ι of the clauses C̄ “ C1, . . . , Cn. Then by the induction hypothesis,
LIpCiqô LIpĈiq for 1 ĺ i ĺ n. Hence we can apply Lemma 4.17 to obtain
that PIsteppι,LIpC1q, . . . ,LIpCnqqô PIsteppι̂,LIpĈ1q, . . . ,LIpĈnqq. But this
is nothing else than LI‚pCq ô  LI‚pĈq.

We conclude by showing that LI‚pCqô LI‚pĈq implies LIpCqô LIpĈq:
Clearly the terms to be lifted in LI‚pCq and LI‚pĈq are the same and differ
only in their color. Even though this results in different lifting variables, that
is of no relevance as all lifted variables are bound, which makes the formulas
alpha-equivalent. Additionally, the quantifier type of any given lifting vari-
able in QpCq is dual to the respective one in QpĈq. Furthermore note that
the subterm-relation is not affected by the coloring, so the ordering of the
quantifiers in QpCq and QpĈq is identical. Hence LIpCqô LIpĈq.

Lemma 5.8. Let C be a clause in a resolution refutation of Γ Y ∆. Then
∆ �  `ΓrLIpCqs _ `ΓrCs.
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Proof. By Lemma 5.5, we obtain that Γ̂ � `∆̂rLIpĈqs _ `∆̂rĈs, which by
Lemma 5.7 is nothing else than Γ̂ � `∆̂r LIpCqs _ `∆̂rĈs. This however is
the same as ∆ �  `ΓrLIpCqs _ `ΓrCs.

Theorem 5.9. Let π be a resolution refutation of Γ Y∆. Then LIpπq is an
interpolant for Γ and ∆.

Proof. We obtain by Lemma 5.5 that Γ � `∆rLIpπqs and by Lemma 5.8 that
∆ �  `ΓrLIpπqs. As the empty clause derived in π trivially contains neither
variables nor ground terms and as any colored term either contains variables
or is ground, at least one lifting condition holds for any maximal colored term
in LI‚pπq. Hence all colored terms are lifted in LIpπq. Therefore `∆rLIpπqs “
LIpπq and `ΓrLIpπqs “ LIpπq.

We finish this chapter by demonstrating the application of the interpolant
extraction procedure LI on a larger example:

Example 5.10. Let Γ “ {Rpfpv1, v6qq, P pfpv2, gpv3, v4qqq_Qpgpv3, bqq, Spbq}
and ∆ “ {Spv8q _  P pv9q _  Rpv5q, Qpgpa, v7qq}. Hence LpΓq X Lp∆q “
{R,P,Q, S, g}, LpΓqzLp∆q “ {f, b} and Lp∆qzLpΓq “ {a}. We can produce
an interpolant for Γ and ∆ using the following refutation and extraction in
the same notation as Example 5.6. We emphasize liftings of terms justified by
being a ground term not occurring in the clause by p˝q, and those justified by
occurrences of variables which do not occur in the clause by p˚q.
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P pfpv2, gpv3, v4qqq _Qpgpv3, bqq | K  Qpgpa, v7qq | J res
v3 ÞÑa,v7 ÞÑbP pfpv2, gpa, v4qqq | Qpgpa, bqq

p˝q1
P pfpv2, gpa, v4qqq | DybQpgpa, ybqq

Spv8q _  P pv9q _  Rpv5q | J Rpfpv1, v6qq | K res
v5 ÞÑfpv1,v6qSpv8q _  P pv9q | Rpfpv1, v6qq

p˚q2
Spv8q _  P pv9q | Dyfpv1,v6qRpyfpv1,v6qq res

v9 ÞÑfpv2,gpa,v4qqSpv8q | P pfpv2, gpa, v4qqq ^ Dyfpv1,v6qRpyfpv1,v6qq _  P pfpv2, gpa, v4qqq ^ DybQpgpa, ybqq
p˝qp˚q3

Spv8q | @xaDyfpv2,gpa,v4qq

(
P pyfpv2,gpa,v4qqq ^ Dyfpv1,v6qRpyfpv1,v6qq _  P pyfpv2,gpa,v4qqq ^ DybQpgpxa, ybqq

)
 Spbq | J res

v8 ÞÑb� | Spbq ^ @xaDyfpv2,gpa,v4qq

(
P pyfpv2,gpa,v4qqq ^ Dyfpv1,v6qRpyfpv1,v6qq _  P pyfpv2,gpa,v4qqq ^ DybQpgpxa, ybqq

)
p˝q4

� | Dy1b
(
Spy1bq ^ @xaDyfpv2,gpa,v4qq

(
P pyfpv2,gpa,v4qqq ^ Dyfpv1,v6qRpyfpv1,v6qq _  P pyfpv2,gpa,v4qqq ^ DybQpgpxa, ybqq

))

p˝q1: The maximal colored term b is lifted as it does not occur
in the clause. On the other hand, the maximal colored term a is
not lifted since it does occur in the clause.
p˚q2: The maximal colored term fpv1, v6q contains the vari-

ables v1 and v6, which are not present in the clause. Due to the
variable-disjointness restriction on clauses, these variables do not
occur in any subsequent clause.

p˝qp˚q3: Clearly, the term a is a subterm of fpv2, gpa, v4qq,
hence we must quantify xa before yfpv2,gpa,v4qq.
p˝q4: We encounter another occurrence of the maximal col-

ored term b (cf. p˝q1). The lifting conditions however ensure that
different lifting variables (yb and y1b respectively) are justified. 4



Chapter 6
The semantic perspective on

interpolation

An interesting feature of the interpolation theorem is that it admits a proof,
which is distinct from the proof-theoretic ones discussed in the foregoing chap-
ters, as it is purely model-theoretic. It is based on the joint consistency theorem
by Robinson ([Rob56]), which we show to be equivalent to the interpolation the-
orem. The joint consistency theorem itself was originally presented in [Rob56]
as a proof of Beth’s definability theorem, which is discussed in Section 2.4.

6.1 Joint consistency

The joint consistency theorem is based two notions, which we define now:

Definition 6.1 (Consistency). A set of formulas Γ is consistent if it is not the
case that Γ $ K. 4

Note that in classical first-order logic, the notions of consistency and
satisfiability coincide.

Definition 6.2 (Separability). Let Γ and ∆ be sets of first-order formulas. A
formula A in the language LpΓq X Lp∆q is said to separate Γ and ∆ if Γ � A
and ∆ �  A. Γ and ∆ are separable if there exists a formula in the language
LpΓq X Lp∆q which separates Γ and ∆ and inseparable otherwise. 4

Note that for joint consistency, it is not necessary to require the original
sets to be consistent as this is implied by separability:

Lemma 6.3. Let Γ and ∆ be inseparable sets of first-order formulas. Then Γ
and ∆ are each consistent.

Proof. Suppose w.l.o.g. that Γ is inconsistent. Then Γ � K, and as ∆ � J, K
separates Γ and ∆.
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The joint consistency theorem shows that if there exists no formula in the
language LpΓq X Lp∆q which separates Γ and ∆, then there exists no formula
in any language which separate Γ and ∆ as then, ΓY∆ is consistent:

Theorem 6.4 (Robinson’s joint consistency theorem). Let Γ and ∆ be sets
of first-order formulas. Then ΓY∆ is consistent if and only if Γ and ∆ are
inseparable.

The following proof essentially follows [Hen63] and [CK90].

Proof. Suppose that Γ Y ∆ is consistent and let M be a model of it. Then
clearly for every formula A, if Γ � A, then M � A as M � Γ. But M � ∆,
hence it can not be the case that ∆ �  A.

For the other direction, suppose that Γ and ∆ are inseparable. We proceed
by iteratively constructing two maximal consistent sets of formulas T and T 1

such that Γ Ď T and ∆ Ă T 1 where T YT 1 is consistent in order to then derive
a model of this union, thus establishing the consistency of Γ and ∆.

Let C “ {c0, c
1
0, c1, c

1
1, . . . } be a countably infinite set of fresh constant

symbols. Let A0,A1, . . . be an enumeration of all sentences in the language
LpΓq Y C and B0,B1, . . . an enumeration of all sentences in the language
Lp∆q Y C.

Let T0 “ Γ and T 10 “ ∆. We construct Ti`1 from Ti by means of the
following formation rules:

(1) If Ti Y {Ai} and T 1i are separable, then Ti`1
def
“ Ti.

(2) Otherwise:

(2a) If Ai is of the form DxA, then Ti`1
def
“ Ti Y {Ai, Arx{cis}.

(2b) Otherwise Ti`1
def
“ Ti Y {Ai}.

T 1i`1 is formed in a similar fashion:

(11) If T 1i Y {Bi} and Ti`1 are separable, then T 1i`1
def
“ T 1i .

(21) Otherwise:

(21a) If Bi is of the form DxA, then T 1i`1
def
“ T 1i Y {Bi, Arx{c1is}.

(21b) Otherwise T 1i`1
def
“ T 1i Y {Bi}.

Now let T “
⋃
iľ0 Ti and T

1 “
⋃
iľ0 T

1
i . We prove properties on T and T 1

which will be vital for the construction of a model of T Y T 1:



6.1. Joint consistency 69

I. Ti and T 1i are inseparable.

Suppose to the contrary that Ti and T 1i are separable. As Γ and ∆ are
inseparable by assumption, there must be a j ă i such that Tj and T 1j are
not separable but Tj`1 and T 1j are, or Tj`1 and T 1j are not separable but
Tj`1 and T 1j`1 are. Since these two cases are analogous, we only consider
the first.

Note that by 1 of the construction procedure, if Tj Y {Aj} and T 1j are
separable, then Tj`1 “ Tj . But as we have just witnessed that Tj and
Tj`1 are different, Tj Y {Aj} and T 1j must be inseparable. This however
also implies that in the construction procedure, 2b can not be the case
as then, Tj`1 “ Tj Y {Aj} would hold, which contradicts the assumption
that Tj`1 and T 1j are separable.

Hence 2a must be the case. Therefore Aj is of the form DxA and Tj`1 “

Tj Y {Aj , Arx{cjs}. As Tj Y {Aj , Arx{cjs} and T 1j are separable, there
exists a formula B in the language LpTj Y {Aj , Arx{cjs}q X LpT 1jq such
that Tj Y {Aj , Arx{cjs} � B and T 1j �  B. Since cj is a fresh variable
and therefore is not contained in LpT 1jq, cj does not occur in B. Hence
B is in the language LpTj Y {Aj}q X LpT 1jq. We conclude by showing
that B separates TjY{Aj} and T 1j , which is a contradiction to a previous
assumption. In order to do so, it only remains to show that TjY{Aj} � B.

Let M be a model of Tj Y {Aj} in the language LpTj Y {Aj}q. Note
that cj is not included in this language as cj is a fresh variable. Since
M � DxA, let d be such that M � Arx{ds. Let M 1 be a model which
extends M by interpreting cj as d. Then M 1 � Tj Y {Aj , Arx{cjs}. But
then M 1 � B. However as M and M 1 coincide on the interpretation of
the symbols of LpTj Y {Aj}q and B is in this language, M � B.

II. Ti and T 1i are consistent.

Immediate by I and Lemma 6.3.

III. T and T 1 are each maximal consistent with respect to LpΓq Y C and
Lp∆q Y C respectively.

We show the result for T . By II, T is consistent. Suppose that for some i,
Ai R T and  Ai R T .

Then in the construction of T , case 1 must apply for Ai as the cases
2a and 2b each would add Ai to Ti`1 and therefore also to T . However
as 1 applies for Ai, Ti Y {Ai} and T 1i must be separable. As Ti Ď T ,
also T Y {Ai} and T 1 are separable, i.e. there exists a formula B1 in the
language LpTY{Ai}qXLpT 1q “ pLpΓqXLp∆qqYC such that TY{Ai} � B1

and T 1 �  B1. By the deduction theorem, we also have that p˝q T �
AiĄB1.
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As we also assume that  Ai R T , by a similar argument, there exists a
formula B2 in the language pLpΓqXLp∆qqYC such that p˚q T �  AiĄB2

and T 1 �  B2.

Then however p˝q and p˚q entail that in any model, depending on whether
Ai holds in the model, at least one of B1 and B2 holds, i.e. T � B1_B2.
But as neither B1 nor B2 hold in T 1, we obtain that T 1 �  pB1_B2q, in
effect establishing that B1_B2 separates T and T 1, a contradiction to I.

IV. T X T 1 is maximal consistent with respect to pLpΓq X Lp∆qq Y C.

By III, for every formula A in pLpΓqXLp∆qqYC it holds that either A P T
or  A P T as well as A P T 1 or  A P T 1. As T and T 1 are inseparable,
either A P T and A P T 1 or otherwise  A P T and  A P T 1.

As T is consistent, let M be a model of T . Due to III, for each term t in
LpΓq Y C, Dx pt “ xq P T and hence by 2a, there is some ci P C such that
t “ ci P T . Therefore we can find a submodel N of M which as M is in
the language LpΓq YC such that every domain element in N corresponds to a
constant symbol in C. ModelsM 1 of T 1 allow by a similar reasoning for finding
such submodels N 1 of M 1.

As by IV, T and T 1 agree on all formulas of pLpΓq X Lp∆qq Y C, we are
able to find an isomorphism between the reducts N and N 1 to their common
language. Hence we may build a common model K based on N and extending
it to Lp∆q by copying the respective interpretation of N 1 with regard to the
isomorphism. Thus as N � T and N 1 � T 1, K � T Y T 1, which implies that
ΓY∆ is consistent.

6.2 Joint consistency and interpolation

The proof given in the previous section is clearly distinct from the ones in
the previous chapters as due to its indirect nature, it does not give rise to a
practical algorithm, whereas the core idea in each of the other ones is defining
an interpolant extraction procedure.

Nevertheless, it is easy to see that all of these proofs express equivalent
notions. To that end, let us recall the Interpolation Theorem 2.3 in the reverse
formulation:

Theorem 2.3 (Reverse Interpolation). Let Γ and ∆ be sets of first-order
formulas such that ΓY∆ is unsatisfiable. Then there exists a reverse interpolant
for Γ and ∆.

Proposition 6.5. Theorem 6.4 and Theorem 2.3 are equivalent.

Proof. It is easy to see that the notion of reverse interpolant and separating
formulas coincide.
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Conclusion

This thesis gives a comprehensive account of results and techniques with respect
to interpolation in full first-order logic with equality. The notion of interpolation
enjoys applicability in many areas:

Among the most notable practical uses of interpolation we can certainly
count the application in model checking introduced in [McM03]. Here, inter-
polants represent concise formulas describing an overapproximation of the set
of reachable states of a program, which can then be used to prove the unreach-
ability of error states. Moreover, interpolants can be employed to construct
loop invariants ([Wei10]) which is a major challenge for program verification.
In the realm of theory, for instance Beth’s definability theorem can very easily
be proven using the interpolation theorem.

Even though the interpolation theorem holds in first-order logic with equality,
a multitude of applications in fact mostly deal only with weaker logics such as
propositional logic or equational logic with uninterpreted function symbols.

In order to facilitate future applications in full first-order logic with equality,
the focus of this work is geared towards constructive proofs which give rise to
concrete algorithms for calculating interpolants. We present the first such in
Chapter 3, which is also historically the first one: In [Cra57a, Cra57b], where
Craig introduces the notion of interpolation, he already gives a constructive
proof. By a reduction to first-order logic without equality and function symbols,
which allows for a simpler constructive proof, interpolants can effectively be
calculated, but only at the cost of the considerable reduction overhead.

Arguably the most significant subsequent contribution for interpolant con-
struction in the logic at hand is due to Huang. In [Hua95], a two-phase
approach is introduced which is capable of efficiently extracting interpolants
from resolution refutations which include paramodulation inferences. Here, a
preliminary structure in the form of a propositional interpolant is extracted
directly from the refutation, where colored constant and function symbols are
then in the second stage replaced by appropriately quantified lifting variables.
This leads to interpolants in prenex form.
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We present this algorithm in detail in Chapter 4 in a slightly improved
form and in Appendix A in a version following [Hua95] more closely.

Our analysis of the number of quantifier alternations in interpolants pro-
duced by this procedure is based on an analysis of the lifting phase of Huang’s
proof. We show that the resolution refutation directly shapes the quantifiers
in the resulting interpolant in the sense that only inferences of the refutation
affecting both Γ-and ∆-terms are capable of necessitating quantifier alterna-
tions in the interpolant. This leads us to the result that the number of color
alternations in the terms of the refutation essentially coincides with the number
of quantifier alternations in the interpolant created by this algorithm.

As a variation of Huang’s work, we propose an approach which combines
the two phases into one by lifting and quantifying colored terms during the
extraction phase. Consequently, the resulting interpolants are not in prenex
form but the scope of quantifiers is limited to the subformula where the lifted
term is of relevance. This algorithm is dealt with in Chapter 5.

Complementary to these algorithms, we also present a non-constructive,
model-theoretic approach to interpolation. Assuming the non-existence of an
interpolant, a maximal consistent intersection of two theories is constructed,
where the theories are each based on the sets of formulas to interpolate. The
details of this proof are laid out in Chapter 6.

The proofs of the interpolation theorem by Craig and Huang are based on
an analysis of formal proofs and directly extract concrete interpolants. In our
presentation, they do so in different calculi but nonetheless share the idea of
recursively defining an interpolant based on a case distinction on the type of
the current inference.

These two approaches however differ in their practical applicability. Craig’s
proof gives rise to a procedure which in its run introduces in addition to basic
axioms for the equality predicate also congruence axioms for every predicate
symbol and functional axioms for every function symbol. Furthermore, the
complexity of nested terms in the initial formulas is translated into a formula
structure without nested terms. Once this translation is established, the actual
interpolant calculation in first-order logic without equality and function symbols
can be done in a straightforward manner by a direct extraction from a proof.

Hence the question of whether it is possible to perform interpolant extraction
from a proof of formulas in full first-order logic with equality arises naturally.
For sequent calculus, Baaz and Leitsch present a method for first-order logic
without equality in [BL11], but to the best of our knowledge, there is no
comparable approach for sequent calculus which includes equality. As Huang
has shown in [Hua95], a method for full first-order logic with equality exists
for the resolution calculus.

The first phase of Huang’s approach is similar to other approaches for
propositional logic ([Kra97, Pud97, McM03]), but after fixing the propositional
structure, a lifting phase is introduced in order to handle colored function and
constant symbols. It is interesting to see that even though the additional rule of
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paramodulation is necessary in resolution calculus in order to handle equality,
the same strategy of inductive propositional interpolant extraction as for the
resolution and factorization rule can be applied. Hence the expressive power
gained by adding equality does not require a structurally different approach for
interpolant calculation.

The model theoretic proof based on Robinson’s joint consistency theorem
however fundamentally differs from the previous proofs in its approach. Instead
of an analysis of syntactic proofs, it is based on an indirect and semantic
argument. This is inherently non-constructive and hence does not allow for
extraction of an algorithm. Moreover, this approach also differs from the other
insofar as equality does not require explicit handling as naturally, equality is
defined in the constructed models.





Appendix A

Interpolant extraction from
resolution proofs due to Huang

This section essentially presents the original proof of [Hua95] in a modern
format. It forms the base for our work in chapter 4 and 5, and we refer to
these chapters for lemmas and definitions which also apply here. Section A.4
features comments on the original publication.

A.1 Propositional interpolants

Let ΓY∆ be unsatisfiable and π be a proof of the empty clause from ΓY∆.
Then PI is a function that returns a interpolant with respect to the current
clause.

Definition A.1 (Propositional interpolant). Let π be a resolution refutation
of ΓY∆. A formula A is a propositional interpolant if

1. Γ � A

2. ∆ �  A

3. PSpAq Ď pPSpΓq X PSp∆qq Y {J,K}.

For a clause C in π, a formula AC is a propositional interpolant relative to
C if

1. Γ � AC _ C

2. ∆ �  AC _ C

3. PSpACq Ď pPSpΓq X PSp∆qq Y {J,K}.

The propositional interpolant for the empty clause derived in π is denoted
by PIpπq. 4
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The third condition of a propositional interpolant will sometimes be referred
to as language restriction. It is easy to see that the propositional interpolant
relative to the empty clause of a resolution refutation is a propositional inter-
polant.

We refer to Definition 4.3 for the definition of PI.

Proposition A.2. Let C be a clause of a resolution refutation of ΓY∆. Then
PIpCq is a propositional interpolant with respect to C.

Proof. Proof by induction on the number of rule applications including the
following strengthenings: Γ � PIpCq _ CΓ and ∆ �  PIpCq _ C∆, where DΦ

denotes the clause D with only the literals which are contained in LpΦq. They
clearly imply conditions 1 and 2 of definition A.1.

Base case. Suppose no rules were applied. We distinguish two possible cases:

1. C P Γ. Then PIpCq “ K. Clearly Γ � K _ CΓ as CΓ “ C P Γ,
∆ �  K_ C∆ and K satisfies the restriction on the language.

2. C P ∆. Then PIpCq “ J. Clearly Γ � J _ CΓ, ∆ �  J _ C∆ as
C∆ “ C P ∆ and J satisfies the restriction on the language.

Suppose the property holds for n rule applications. We show that it
holds for n` 1 applications by considering the last one:

Resolution. Suppose the last rule application is an instance of resolution. Then
it is of the form:

C1 : D _ l C2 : E _ l1
lσ “ l1σ

C : pD _ Eqσ

By the induction hypothesis, we can assume that:

Γ � PIpC1q _ pD _ lqΓ

∆ �  PIpC1q _ pD _ lq∆

Γ � PIpC2q _ pE _ l
1qΓ

∆ �  PIpC2q _ pE _ l
1q∆

We consider the respective cases from definition 4.2:

1. l is Γ-colored. Then PIpCq “ rPIpC1q _ PIpC2qsσ.
As PSplq P LpΓq, Γ � pPIpC1q _DΓ _ lqσ as well as Γ � pPIpC2q _

EΓ_ l
1qσ. By a resolution step, we get Γ � pPIpC1q _PIpC2qqσ_

ppD _ EqσqΓ.
Furthermore, as PSplq R Lp∆q, ∆ � p PIpC1q _ D∆qσ as well
as ∆ � p PIpC2q _ E∆qσ. Hence it certainly holds that ∆ �
p PIpC1q _  PIpC2qqσ _ pD _ Eqσ∆.
The language restriction clearly remains satisfied as no non-logical
symbols are added.
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2. l is ∆-colored. Then PIpCq “ rPIpC1q ^ PIpC2qsσ.
As PSplq R LpΓq, Γ � pPIpC1q_DΓqσ as well as Γ � pPIpC2q_EΓqσ.
Suppose that in a model M of Γ, M 2 DΓ and M 2 EΓ. Then
M � PIpC1q^PIpC2q. Hence Γ � pPIpC1q^PIpC2qqσ_ppD_EqσqΓ.
Furthermore due to PSplq P Lp∆q, ∆ � p PIpC1q _ D∆ _ lqσ as
well as ∆ � p PIpC2q _ E∆ _  l

1qσ. By a resolution step, we
get ∆ � p PIpC1q _  PIpC2qqσ _ pD∆ _ E∆qσ and hence ∆ �
 pPIpC1q ^ PIpC2qqσ _ pD∆ _ E∆qσ.
The language restriction again remains intact.

3. l is gray. Then PIpCq “ rpl ^ PIpC2qq _ p l
1 ^ PIpC1qqsσ

First, we have to show that Γ � rpl ^ PIpC2qq _ pl
1 ^ PIpC1qqsσ _

ppD_EqσqΓ. Suppose that in a modelM of Γ, M 2 DΓ and Γ 2 E.
Otherwise we are done. The induction assumption hence simplifies
to M � PIpC1q _ l and M � PIpC2q _ l

1 respectively. As lσ “ l1σ,
by a case distinction argument on the truth value of lσ, we get that
either M � pl ^ PIpC2qqσ or M � p l1 ^ PIpC1qqσ.
Second, we show that ∆ � ppl _ PIpC1qq ^ p l

1 _ PIpC2qqqσ _
ppD_Eqσq∆. Suppose again that in a modelM of ∆, M 2 D∆ and
Γ 2 E∆. Then the required statement follows from the induction
hypothesis.
The language condition remains satisfied as only the common literal
l is added to the interpolant.

Factorization. Suppose the last rule application is an instance of factorization.
Then it is of the form:

C1 : l _ l1 _D
σ “ mgupl, l1q

C : pl _Dqσ

Then the propositional interpolant PIpCq is defined as PIpC1q. By the
induction hypothesis, we have:

Γ � PIpC1q _ pl _ l
1 _DqΓ

∆ � PIpC1q _ pl _ l
1 _Dq∆

It is easy to see that then also:

Γ � pPIpC1q _ pl _DqΓqσ

∆ � pPIpC1qσ _ pl _Dq∆qσ

The restriction on the language trivially remains intact.

Paramodulation. Suppose the last rule application is an instance of paramod-
ulation. Then it is of the form:
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C1 : D _ s “ t C2 : Erssp
σ “ mgups, rq

C : D _ Ertsp

By the induction hypothesis, we have:

Γ � PIpC1q _ pD _ s “ tqΓ

∆ �  PIpC1q _ pD _ s “ tq∆

Γ � PIpC2q _ pErrsqΓ

∆ �  PIpC2q _ pErrsq∆

First, we show that PIpCq as constructed in case 3 of the definition is a
propositional interpolant in any of these cases:

PIpCq “ ps “ t^ PIpC2qq _ ps ‰ t^ PIpC1qq

Suppose that in a modelM of Γ,M 2 Dσ andM 2 Ertspσ. Otherwise we
are done. Furthermore, assume that M � ps “ tqσ. Then M 2 Errspσ,
but then necessarily M � PIpC2qσ.
On the other hand, suppose M � ps ‰ tqσ. As also M 2 Dσ, M �
PIpC1qσ. Consequently, M � rps “ t ^ PIpC2qq _ ps ‰ t ^ PIpC1qqsσ _
rpD _ EqΓsσ

By an analogous argument, we get ∆ � rps “ t ^  PIpC2qq _ ps ‰ t ^
 PIpC1qqsσ_rpD_Eq∆sσ, which implies ∆ � rps ‰ t_ PIpC2qq^ps “
t_ PIpC1qqsσ _ ppD _ Eq∆qσ

The language restriction again remains satisfied as the only predicate,
that is added to the interpolant, is “.

This concludes the argumentation for case 3.

The interpolant for case 1 differs only by an additional formula added
via a disjunction and hence condition 1 of definition A.1 holds by the
above reasoning. As the adjoined formula is a contradiction, its nega-
tion is valid which in combination with the above reasoning establishes
condition 2. Since no new predicated are added, the language condition
remains intact.

The situation in case 2 is somewhat symmetric: As a tautology is added
to the interpolant with respect to case 1, condition 1 is satisfied by the
above reasoning. For condition 2, consider that the negated interpolant
for case 1 implies the negated interpolant for this case. The language
condition again remains intact.

A.2 Propositional refutations

Before we are able to specify a procedure to transform the propositional
interpolant generated by PI into a proper interpolant without any colored
terms, we need to make some observations about tree refutations.
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In a tree refutation where the input clauses have a disjoint sets of variables,
every variable has a unique ancestor which traces back to an input clause
and hence appears only along a certain path. This insight allows us to push
substitutions of the variables upwards along this path and arrive at the following
definition and lemma:

Definition A.3. A resolution refutation is a propositional refutation if no
nontrivial substitutions are employed. 4

Lemma A.4. Let Φ be unsatisfiable. Then there is a propositional refutation
of Φ which starts from instances of Φ.

Proof. Let π be a resolution refutation of Φ. By Lemma 2.20, we can assume
without loss of generality that π is a tree refutation where the sets of variables
of the input clauses are disjoint. Furthermore, we can assume that only most
general unifiers are employed in π.

Then any unifier in π is either trivial on x or there is one unique unifier σ
in π with xσ “ t where x does not occur in t. Hence along the path through
the deduction where x occurs, it remains unchanged. Therefore we can create
a new resolution refutation π1 from π where x is replaced by t. Clearly π1 is
rooted in instances of Φ.

By application of this procedure to all variable occurring in π, we obtain
a desired resolution refutation.

Even though propositional refutations have nice properties for theoretical
analysis, their use in practice is not desired as its construction involves a
considerable blowup of the refutation. But its use is still justified in this
instance as we can show for arbitrary refutations π that the algorithm stated in
4.3 gives closely related results for both π and its corresponding propositional
refutation.

Lemma A.5. Let π be a resolution refutation of Φ and π1 a propositional
refutation corresponding to π. Then for every clause C in π and its corre-
sponding clause C 1 in π1, PIpCqσ “ PIpC 1q, where σ is the composition of the
unifications of π which are applied to the variables occurring in C .

Proof. For the construction of the propositional skeleton of PIp¨q only the
coloring of the clauses is relevant and since this is the same in both π and π1,
it coincides for PIpCq and PIpC 1q.

Hence PIpCq and PIpC 1q differ only in their term structure. To be more
specific, in PIpC 1q, the composition of substitutions that are applied in π have
already been applied to the initial clauses of π1. Note that substitution com-
mutes with the rules of resolution. Therefore the only difference between PIpCq
and PIpC 1q is that at certain term positions, there are variables in PIpCq where
in PIpC 1q by some substitution a different term is located. But these substi-
tutions are certainly applied by σ, hence PIpCqσ “ PIpC 1q.
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A.3 Lifting of colored symbols

We rely on the same definition of lifting as given in 4.3. First, we consider the
lifting of the ∆-terms, which corresponds to Lemma 4.15, but differs in the
proof by relying on propositional refutations.

Lemma A.6. Let π be a resolution refutation of ΓY∆. Then Γ � `x∆rPIpCq_Cs
for C in π.

Proof. We proof this result by induction on the number of rule applications in
the propositional refutation corresponding to π. Similar to the proof of A.2,
we show the strengthening: Γ � `x∆rPIpCq _ CΓs for C in π.

Base case. If no rules have been applied, C is an instance of a clause of either
Γ or ∆. In the former case, all ∆-terms of C were added by unification,
hence by replacing them with variables, we obtain a clause C 1 which still
is an instance of C and consequently is implied by Γ. In the latter case,
PIpCq “ J.

Resolution. Suppose the last rule application is an instance of resolution. Then
it is of the form:

C1 : D _ l C2 : E _ l
C : D _ E

By the induction hypothesis,

Γ � `x∆rPIpC1q _ pD _ lqΓs and

Γ � `x∆rPIpC2q _ pE _ lqΓs

which by Lemma 4.6 is equivalent to

Γ � `x∆rPIpC1qs _ `
x
∆rDΓs _ `

x
∆rlΓs p˝q and

Γ � `x∆rPIpC2qs _ `
x
∆rEΓs _  `

x
∆rlΓs p˚q .

1. Suppose l is Γ-colored. Then PIpCq “ PIpC1q _ PIpC2q. By using
resolution of p˚q and p˝q on `x∆rlΓs, we get that

Γ � `x∆rPIpC1qs _ `
x
∆rPIpC2qs _ `

x
∆rDΓs _ `

x
∆rEΓs.

Several applications of Lemma 4.6 give Γ � `x∆rPIpC1q _ PIpC2q _

pD _ EqΓs.
2. Suppose l is ∆-colored. Then PIpCq “ PIpC1q ^ PIpC2q.

As l and  l are not contained in LpΓq, we get that
Γ � `x∆rPIpC1qs _ `

x
∆rDΓs and

Γ � `x∆rPIpC2qs _ `
x
∆rEΓs.

So if in a modelM of Γ we have thatM 2 `x∆rDΓs andM 2 `x∆rEΓs,
it follows that M � `x∆rPIpC1qs and M � `x∆rPIpC2qs. Hence by
Lemma 4.6 M � `x∆rPIpC1q ^ PIpC2qs _ `

x
∆rpD _ EqΓs.
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3. Suppose l is gray. Then PIpCq “ pl ^ PIpC2qq _ p l ^ PIpC1qq.
We show that Γ � `x∆rpl ^ PIpC2qq _ p l ^ PIpC1qq _ pD _ EqΓs.
Suppose that for a model M of Γ that M 2 `x∆rDΓs and M 2
`x∆rEΓs. Then by p˝q and p˚q, we get that
M � `x∆rPIpC1qs _ `

x
∆rlΓs as well as

M � `x∆rPIpC2qs _  `
x
∆rlΓs.

So M � `x∆rlΓs implies that M � `x∆rPIpC2qs and M �  `x∆rlΓs
implies that M � `x∆rPIpC1qs and
Therefore M � p`x∆rls ^ `x∆rPIpC2qsq _ p `

x
∆rls ^ `x∆rPIpC1qsq _

p`x∆rDΓs_`
x
∆rEΓsq, and several applications of Lemma 4.6 giveM �

`x∆rpl ^ PIpC2qq _ p l ^ PIpC1qq _ pDΓ _ EΓqs.

Factorization. Suppose the last rule application is an instance of factorization.
Then it is of the form:

C1 : l _ l _D
C : l _D

The propositional interpolant directly carried over from C1, i.e. PIpCq “
PIpC1q.

By the induction hypothesis, we get that Γ � `x∆rPIpC1q _ pl_ l_DqΓs.
By Lemma 4.6,

Γ � `x∆rPIpC1qs _ p`
x
∆rlΓs _ `

x
∆rlΓs _ `

x
∆rDΓsq,

which clearly is equivalent to

Γ � `x∆rPIpC1qs _ p`
x
∆rlΓs _ `

x
∆rDΓsq,

so by again applying Lemma 4.6, we arrive at

Γ � `x∆rPIpC1q _ pl _DqΓs.

Paramodulation. Suppose the last rule application is an instance of paramod-
ulation. Then it is of the form:

C1 : D _ s “ t C2 : Erssp

C : D _ Ertsp

By the induction hypothesis, we have that

Γ � `x∆rPIpC1q _ pD _ s “ tqΓs and

Γ � `x∆rPIpC2q _ pErsspqΓs.

By Lemma 4.6, we get that

Γ � `x∆rPIpC1qs _ `
x
∆rDΓs _ `

x
∆rss “ `x∆rts and

Γ � `x∆rPIpC2qs _ `
x
∆rpErsspqΓs.

We distinguish two cases:



82 Chapter A — Interpolant extraction from resolution proofs due to Huang

1. Suppose s does not occur in a maximal ∆-term hrss in Erssp which
occurs more than once in PIpEpsqq _ Erssp.
We show that Γ � `x∆rps “ t ^ PIpC2qq _ ps ‰ t ^ PIpC1qq _ pD _
ErtspqΓs, which subsumes the cases 2 and 3 of Definition 4.2. By
Lemma 4.6, this is equivalent to
Γ � p`x∆rss “ `x∆rts ^ `

x
∆rPIpC2qsq _ p`

x
∆rss ‰ `x∆rts ^ `

x
∆rPIpC1qsq _

p`x∆rDΓs _ `
x
∆rpErtspqΓsq

Suppose thatM is a model and α an assignment to the free variables
such that Mα � Γ, Mα 2 `x∆rDΓs and Mα 2 `x∆rpErtspqΓs. We show
that then, depending on whether `x∆rss “ `x∆rts holds in Mα, one of
the first two disjuncts holds in Mα.
In case Mα � `x∆rss “ `x∆rts we also get Mα 2 `x∆rpErsspqΓs and
consequently by the induction hypothesis Mα � `x∆rPIpC2qs.
However in case Mα � `x∆rss ‰ `x∆rts we get by the induction hy-
pothesis that M � `x∆rPIpC1qs.

2. Otherwise s occurs in a maximal ∆-term hrss in Erssp which occurs
more than once in PIpEpsqq_Erssp. This reflects case 1 of Definition
4.2.
Then models are possible in which s “ t holds, while at the same
time `x∆rhrsss ‰ `x∆rhrtss does not as hrss and hrts are replaced by
distinct variables due to being different ∆-terms.
Therefore we amend the proof of case 1 as follows:
In case Mα � `x∆rss “ `x∆rts (otherwise proceed as in case 1), one of
the following cases holds:

– Mα � `x∆rhrsss “ `x∆rhrtss. From this, it follows that as in
the proof of case 1, M 2 `x∆rpErsspqΓs and consequently M �
`x∆rPIpC2qs again by the induction hypothesis.

– Mα � `x∆rhrsss ‰ `x∆rhrtss. However as here PIpCq contains the
with respect to case 1 additional disjunct s “ t ^ hrss ‰ hrts,
Mα � `x∆rPIpCqs due to Mα � `x∆rss “ `x∆rts ^ `x∆rhrsss ‰
`x∆rhrtss.

From this, we can directly proof the theorem by relying on the notion of
symmetry already shown in Section 4.5.

Theorem A.7. Let π be a resolution refutation of ΓY∆ and t1, . . . , tn be the
maximal colored terms in PIpπq sorted in ascending order by their length. Then
Q1zt1 . . . Qnztn `

y
Γr`

x
∆rPIpπqss, where Qi is @ pDq if ti is a ∆ pΓq-term, is an

interpolant.

Proof. Let s1, . . . , sm be the maximal colored ∆-terms in PIpπq and r1, . . . , rk
the maximal colored Γ-terms in PIpπq. Then by Lemma A.6, we get that
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Γ � @xs1 . . .@xsm `
x
∆rPIpπqs and by Corollary 4.19, we obtain that ∆ �

@yr1 . . .@yrk  `
y
ΓrPIpπqs. Note that as t1, . . . , tn are ordered by length, they

are also in subterm order as subterms are strictly smaller in length than their
respective superterms. Therefore we can apply Lemma 4.25 to obtain both Γ �
Q1zt1 . . . Qnztn `

y
Γr`

x
∆rPIpπqss as well as ∆ �  Q1zt1 . . . Qnztn `

y
Γr`

x
∆rPIpπqss,

As clearly Q1zt1 . . . Qnztn `
y
Γr`

x
∆rPIpπqss does not contain colored symbols,

this formula is an interpolant.

A.4 Comments on the original publication

In [Hua95, Definition 3], a maximal occurrence of a Γ (∆)-term is defined to be
an occurrence of a Γ (∆)-term which is not a subterm of a larger Γ (∆)-term.

Furthermore, in the extension of the “Interpolation Algorithm” to include
paramodulation inferences in [Hua95, p. 183], this notion is used to distinguish
between the respective cases. Translated into our notation in the context of
our corresponding Definition 4.2 for the case of paramodulation inferences, the
conditions for the three cases can be stated as follows:

1. The term r occurs in Errs as subterm of a maximal Γ-term, which occurs
more than once in Errs _ PIpErrsq.

2. The term r occurs in Errs as subterm of a maximal ∆-term, which occurs
more than once in Errs _ PIpErrsq.

3. Otherwise.

Note that if reading this definition in the strict sense, an ambiguity arises:
It is very well possible for a term to be a subterm of a maximal Γ-term and a
maximal ∆-term at the same time. Suppose g is a Γ-colored and h a ∆-colored
function symbol. Then the term hpgpcqq contains the maximal ∆-term hpgpcqq
as well as the maximal Γ-term gpcq since gpcq is not subterm of a larger Γ-term
in hpgpcqq.

We present the following example, which illustrates that the definition of
the conditions for the cases above is to be read as “maximal colored term,
which is Φ-colored” (or more concisely: “maximal colored Φ-term”) in place of
“maximal Φ-term”.

Example A.8. In this example, let Γ “ {P pxq_ Qpxq, P pyq_Qpyq, c “ d,
 Rpgpdqq, Spgpcqq} and ∆ “ {Spvq _  Qphpvqq, Rpuq _ Qphpuqq, T pc, dq}.
Hence h is a ∆-colored function symbol and g a Γ-colored function symbol,
while the constant symbols c and d are gray.

We present a resolution refutation of Γ Y ∆ in combination with the in-
terpolant extraction such that each label is of the form C | PIpCq, where C is
the clause of the refutation and PIpCq is sometimes given in a simplified but
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logically equivalent form. The presentation of the refutation is split into parts
in order to improve readability.

Note that at the paramodulation inference p>q, case 1 is erroneously se-
lected due to d occurring in the maximal Γ-colored term gpdq, even though d
is also contained in the maximal ∆-colored term hpgpdqq.

 Rpgpdqq | K Rpuq _Qphpuqq | J res
uÞÑgpdq

Qphpgpdqqq |  Rpgpdqq P pxq _  Qpxq | K res
x ÞÑhpgpdqq

P phpgpdqqq |  Rpgpdqq ^  Qphpgpdqqq c “ d | K par
id
p>q

P phpgpcqqq | pc “ d^ Rpgpdqq ^  Qphpgpdqqqq _ pc ‰ d^ gpcq “ gpdqq

 Spgpcqq | K Spvq _  Qphpvqq | J res
v ÞÑgpcq

 Qphpgpcqqq |  Spgpcqq  P pyq _Qpyq | K res
y ÞÑhpgpcqq

 P phpgpcqqq |  Spgpcqq ^Qphpgpcqqq

By combining these two derivation by means of a final resolution inference
on the last remaining literal employing a trivial substitution, we obtain the
empty clause and the corresponding interpolant PIp�q:

pc “ d^ Rpgpdqq^ Qphpgpdqqqq _ pc ‰ d^gpcq “ gpdqq _  Spgpcqq ^Qphpgpcqqq

Lifting PIp�q and adding appropriate quantifiers gives the final result I of
the interpolant extraction:

DygpcqDygpdq@xhpgpcqq@xhpgpdqq

(
pc “ d^ Rpygpdqq ^  Qpxhpgpdqqqq _

pc ‰ d^ ygpcq “ ygpdqq _  Spygpcqq ^Qpxhpgpcqqq
)

Now we show that Γ 2 I. Note that as Γ � c “ d, no model of Γ
satisfies pc ‰ d ^ ygpcq “ ygpdqq. The remaining two disjuncts imply that
@xhpgpcqq@xhpgpdqqp Qpxhpgpdqqq_Qpxhpgpcqqqq, but we can easily find a model of
Γ where at least one domain element satisfies the predicate Q and another do-
main element does not. Any such model is a countermodel to the proposition
Γ � I. 4
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