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Abstract

We present formula equations—first-order formulas with unknowns standing for
predicates—as a general formalism for treating certain questions in logic and com-
puter science, like the Auflösungsproblem and loop invariant generation. We inves-
tigate the relationship between problems of loop invariant generation and inductive
theorem proving. Furthermore, we obtain decidability and undecidability results
for formula equations in certain languages, most notably that of affine terms over
ℚ.
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INTRODUCTION

This thesis has its origin in automated inductive theorem proving. Induction is
an important proof method that can be applied to many different structures, but
the case most relevant to us is that of the natural numbers. A simplified version
of the problem looks like this: given a set of axioms Γ and a formula 𝜑, both in
the language of the natural numbers, find a proof by induction of 𝜑 from Γ. The
difficulty lies in the fact that it is sometimes not sufficient to apply induction to
the goal formula directly, but to a different formula that we do not know, which
we call an induction formula. Finding such induction formulas is the central task
of inductive theorem proving.

Our work is specifically based on an approach based on tree grammars that was
first presented in [EH15]. The idea is to compute a certain number of instance
proofs, i.e., proofs of 𝜑(0), 𝜑(1),…, 𝜑(𝑘) for some 𝑘, and analyze the terms and
instances of axioms occurring in them. Next, we attempt to generalize these terms
by computing a parametric grammar. If we succeed, this grammar contains all
information about how to instantiate the induction formula in the hypothetical
induction proof, but it tells us nothing about the induction formula itself.

From the grammar, we can extract an induction proof schema

1. Γ1 implies 𝑋(0, ̄𝑡1),
2. Γ2 and 𝑋(𝑖, ̄𝑡2) implies 𝑋(𝑖 + 1, ̄𝑡3),
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3. Γ3 and ∀𝑛𝑋(𝑛, ̄𝑡4) implies 𝜑(𝑛).

where 𝑋 stands for the unknown induction formula and Γ1,2,3, ̄𝑡1,2,3,4 stand for the
axioms and instance terms computed by the grammar. Thus, the problem has been
reduced to that of finding a quantifier-free formula satisfying three constraints.

These three constraints bear a striking similarity to another situation where an un-
known formula is sought, namely loop invariant generation in software verification.
Consider, for example, the following program 𝑝:

for 𝑖 ∶= 0,…, 𝑛 do
𝑝′

end for

Now suppose that we want to show that under some axioms Γ, a formula 𝜑 holds
after running 𝑝. This can be accomplished by finding an invariant of the loop,
that is, a formula that holds before the first iteration of the loop and is preserved
by the loop body 𝑝′. As in the case of induction, we cannot generally assume that
𝜑 itself can serve as the invariant. Consequently, we have to find a formula 𝐼(𝑖)
such that

1. Γ implies 𝐼(0),
2. Γ, 𝑖 < 𝑛 and 𝐼(𝑖) imply that 𝐼(𝑖 + 1) holds after 𝑝′,
3. Γ and 𝐼(𝑛) imply 𝜑.

The similarity between the induction and invariant generation problems suggested
two questions:

Question 1. Can we make the analogy between the problems of finding induction
formulas and finding loop invariants precise by constructing a program correspond-
ing to each induction problem such that the invariants of the program are exactly
the induction formulas of the original problem?

Question 2. If the answer to Question 1 is “yes”, can we use this fact to reduce
induction problems to loop invariant problems and tackle them with the wealth of
methods that have been developed for loop invariant generation?

The short answer to both questions turns out to be “no, but …”. We treat Question
1 in Chapter 3. There we shall see that expressing any non-trivial induction
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problem as a program requires us to take nondeterminism into account, and that
is where the simple analogy we have presented earlier breaks down. We turn to
dynamic logic, a form of modal logic that generalizes the Hoare calculus, to clarify
the difference between the treatments of nondeterminism in inductive theorem
proving and formal verification.

Question 2 is, strictly speaking, rendered moot by the negative answer to Question
1. This precipitated a change in perspective on our part: instead of trying to reduce
one kind of problem to the other, we decided to focus on the fact that both kinds
of problems are easily expressible in a common formalism, namely that of formula
equations.

What we call a formula equation is nothing other than a second-order formula
∃𝑋1…𝑋𝑛 𝜑(𝑋1,…,𝑋𝑛) where the 𝑋𝑖 are predicate variables and 𝜑 contains no
other second-order variables. This immediately leads to the definition of a solu-
tion problem: the question of whether formula equations of a given form have
solutions—that is, instantiations of the second-order variables with formulas such
that the resulting formula is valid—in a given class modulo a given theory. Clearly,
then, both the problems we discussed previously can be viewed as solution prob-
lems.

The question of how to solve formula equations has a history going back to the
19th century (see [Wer17a, Wer17b]). It was considered by Schröder in the con-
text of propositional logic under the name Auflösungsproblem [Sch95]. The Auflö-
sungsproblem is related to the notion of Boolean unification: given propositional
formulas 𝜑,𝜓 with Boolean variables, find a substitution 𝜎 such that 𝜑𝜎 = 𝜓𝜎
modulo the theory of Boolean algebra. We can view this as an instance of the Auf-
lösungsproblem because every substitution 𝜎 that makes (𝜑 ↔ 𝜓)𝜎 true modulo
Boolean algebra serves as a unifier for 𝜑 and 𝜓. On the other hand, solving a for-
mula 𝜑 is tantamount to unifying 𝜑 with ⊤. Boolean unification has been studied
extensively, see [MN89] and [MN88, Baa97]. It plays a role in several application
areas such as database systems [KKR90, KKR95] and logic programming [BS87].

There is a parallel between Boolean unification problems and equations over e.g.
the rational numbers: solving the equation 𝑡(𝑥1,…, 𝑥𝑛) = 0 amounts to finding
terms 𝑔1,…, 𝑔𝑛 such that 𝑡(𝑔1,…, 𝑔𝑛) evaluates to 0 modulo the theory of ℚ; sim-
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ilarly, solving the Boolean unification problem 𝜑(𝑋1,…,𝑋𝑛) amounts to finding
formulas 𝐺1,…,𝐺𝑛 such that 𝜑(𝐺1,…,𝐺𝑛) is equivalent to ⊤ modulo equality.
In other words, the problem is to solve the “equation” 𝜑(𝑋1,…,𝑋𝑛) ↔ ⊤. This
parallel is the origin of the term “formula equation”.

Boolean unification has been extended to first-order logic under the name “Boolean
unification with predicates” (BUP) in [EHW17]. There, the authors consider what
we would now call the solution problem of first-order logic with equality with
quantifier-free solutions. They show that the problem is undecidable if 𝜑 is of the
form ∀ ̄𝑥 𝜑′ or ∃ ̄𝑥 𝜑′ with 𝜑′ quantifier-free by reduction from the Post correspon-
dence problem and the validity problem of first-order logic, respectively. On the
other hand, they prove that for quantifier-free 𝜑, the problem is Π𝑝

2-complete. We
present an updated version of the PCP reduction in Chapter 2.

The problem of solving formula equations is related to that of second-order quanti-
fier elimination: we say that a theory 𝒯 has quantifier elimination if every formula
is equivalent to a quantifier-free formula modulo 𝒯. Consider the second-order
formula 𝜓 ≡ ∃𝑋𝜑(𝑋). If we can find a solution 𝐺 to the formula equation 𝜑(𝑋)
modulo 𝒯, then 𝜓 is equivalent to the quantifier-free formula 𝜑(𝐺). On the other
hand, a theory having second-order quantifier elimination does not necessarily al-
low us to solve formula equations, as it does not guarantee the existence of a
witness. Ackermann investigated second-order quantifier elimination in [Ack35].

The authors of [BGMR15] advocate the use of sets of constrained Horn clauses as
a target language for problems of program verification. They give a procedure for
extracting verification conditions from a program formalism with assertions and
subroutine calls that results in nonlinear constrained Horn clauses, i.e., those with
more than one formula variable in the antecedent. Formula equations are more
general in not restricting the number of positive formula variables that can occur
in a clause, resulting in a structure that has no obvious correlate in programs.
We follow the line of reasoning of [BGMR15] in considering a logical formalism
useful for the representation and solution of problems of program verification and
we extend it from solving sets of constrained Horn clauses to solving formula
equations. Thus, we arrive at

Question 3. Can methods for invariant generation, viewed as procedures for
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solving classes of Horn formula equations, be generalized to solving general formula
equations?

In Chapter 4, we consider this question specifically in the context of affine spaces
over ℚ. The corresponding invariant generation problem is that of finding affine
invariants—i.e., those that can be written as systems of linear equations—for pro-
grams that only contain affine operations in their assignments. We show that the
formula equations describing invariants form a nontrivial subclass of all affine for-
mula equations and extend a particular invariant generation procedure to cover all
affine formula equations. As a result, we obtain a decision procedure for what we
call affine solution problems.

Chapter 5 builds on the work on Chapter 4 and widens the scope to take inequalities
into account. We consider solution problems both over the integers and the rational
numbers. Crucially, by adapting a proof from [Mon19], we obtain an undecidability
result for solution problems in the presence of inequalities and multiplication,
thereby establishing an upper bound on decidable solution problems.
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CHAPTER 1

LOGICAL PRELIMINARIES

1.1 Many-sorted first-order logic

While the basic constructs of first-order logic are well-known, we will present a
many-sorted version of first-order logic that may be less familiar. The treatment
is very similar to that found in [End02]. Note that many-sorted first-order logic
possesses no greater expressive power than ordinary (single-sorted) first-order logic.

Let 𝒮 be a finite nonempty set whose elements we will call sorts. Then a first-order
language ℒ over 𝒮 is a collection of

• constant symbols, each belonging to a sort. We write 𝑐 ∶ 𝜎 for a symbol 𝑐
belonging to sort 𝜎.

• function symbols. Associated with each function symbol 𝑓 is a finite nonempty
list of sorts 𝜎1,…, 𝜎𝑛 ∈ 𝒮, called the domain of 𝑓, and a sort 𝜏 ∈ 𝒮, called
the codomain of 𝑓. As a slight abuse of notation, we say that 𝑓 is of the type
𝜎1 ×…× 𝜎𝑛 → 𝜏 (written as 𝑓∶ 𝜎1 ×…× 𝜎𝑛 → 𝜏).

• predicate symbols. Associated with each predicate symbol 𝑃 is a finite (pos-
sibly empty) list 𝜎1,…, 𝜎𝑛 of sorts in 𝒮. Accordingly we call 𝑃 a predicate
symbol of type 𝜎1 × … × 𝜎𝑛 (written as 𝑃∶ 𝜎1 × … × 𝜎𝑛). We assume
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Chapter 1: Logical preliminaries

that ℒ always includes, for each sort 𝜎, a predicate symbol =𝜎 ∶ 𝜎 × 𝜎 and
subsequently omit the subscript.

In addition to ℒ, we also assume that for each 𝜎 ∈ 𝒮, there is an infinite set Var𝜎

containing variables of sort 𝜎. We write Var for the set ⋃𝜎∈𝒮 Var𝜎.

Now terms over ℒ (or ℒ-terms) are constructed inductively. Each term unam-
biguously belongs to a sort. We write Terms𝜎(ℒ) for the set of ℒ-terms of sort 𝜎
and Terms(ℒ) for ⋃𝜎∈𝒮 Terms𝜎(ℒ).

• If 𝑥 ∈ Var𝜎, then 𝑥 ∈ Terms𝜎(ℒ).
• If 𝑐 ∶ 𝜎 is a constant symbol of ℒ, then 𝑐 ∈ 𝑇𝑒𝑟𝑚𝑠𝜎(ℒ).
• If 𝑓∶ 𝜎1 ×…× 𝜎𝑛 → 𝜏 is a function symbol of ℒ and

𝑡1 ∈ Terms𝜎1
(ℒ),…, 𝑡𝑛 ∈ Terms𝜎𝑛

(ℒ), then 𝑓(𝑡1,…, 𝑡𝑛) ∈ Terms𝜏(ℒ).

Similarly, formulas over ℒ (or ℒ-formulas) are constructed inductively. We write
Forms(ℒ) for the set of ℒ-formulas.

• If 𝑃 is a predicate symbol of ℒ of sort 𝜎1 × … × 𝜎𝑛 and 𝑡1 ∶ 𝜎1,…, 𝑡𝑛 ∶ 𝜎𝑛

are ℒ-terms, then 𝑃(𝑡1,…, 𝑡𝑛) ∈ Forms(ℒ). Formulas of this kind are called
atomic formulas.

• If 𝜑,𝜓 ∈ Forms(ℒ), then ¬𝜑, 𝜑∧𝜓, 𝜑∨𝜓, and 𝜑 → 𝜓 are ℒ-formulas. The
connectives ¬,∧, ∨,→ are called propositional connectives.

• If 𝜑 is an ℒ-formula and 𝑥 ∈ Var, then ∀𝑥𝜑 and ∃𝑥𝜑 are ℒ-formulas. The
connectives ∀𝑥 and ∃𝑥 are called quantifiers.

We use the symbol ≡ to denote syntactic equality of formulas and the symbols
⇒,⇔ as abbreviations of the meta-expressions “if … then …” and “… if and only if
…”.

The symbols ∧ and ∨ bind more tightly than →, so 𝜑 ∧ 𝜓 → 𝜑 ∨ 𝜓 is read as
(𝜑∧  𝜓) →  (𝜑∨𝜓). The quantifiers ∀𝑥 and ∃𝑥 bind more tightly than the binary
propositional connectives, so ∀𝑥𝜑 ∧ 𝜓 is read as (∀𝑥𝜑) ∧ 𝜓. If a quantifier is
intended to apply as far to the right as syntactically possible, we denote this by
placing a period after the quantifier. Thus, ∀𝑥. 𝜑 ∧ 𝜓 stands for ∀𝑥 (𝜑 ∧ 𝜓).

We can define what it means for variables to occur freely in formulas. We write
𝐹𝑉 (𝜑) for the free variables of 𝜑.
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1.1 Many-sorted first-order logic

• If 𝑃(𝑡1,…, 𝑡𝑛) is an atomic formula, then

𝐹𝑉 (𝑃(𝑡1,…, 𝑡𝑛)) = { 𝑣 ∈ Var | 𝑣 occurs in some 𝑡𝑖} .

• If 𝜑,𝜓 are formulas, then

𝐹𝑉 (¬𝜑) = 𝐹𝑉 (𝜑)
𝐹𝑉 (𝜑 ∧ 𝜓) = 𝐹𝑉 (𝜑 ∨ 𝜓) = 𝐹𝑉 (𝜑 → 𝜓) = 𝐹𝑉 (𝜑) ∪ 𝐹𝑉 (𝜓),

𝐹𝑉 (∀𝑥𝜑) = 𝐹𝑉 (∃𝑥𝜑) = 𝐹𝑉 (𝜑) ∖ {𝑥}.

If 𝐹𝑉 (𝜑) = ∅, then 𝜑 is called closed.

Let 𝑥1,…, 𝑥𝑛 and 𝑢1,…, 𝑢𝑛 be lists of variables and terms, respectively, such that
the 𝑥𝑖 are distinct and 𝑥𝑖 and 𝑢𝑖 are of the same sort for all 𝑖 ∈ {1,…, 𝑛}. The
substitution [𝑥1\𝑢1,…, 𝑥𝑛\𝑢𝑛] (abbreviated as [ ̄𝑥\�̄�]) is a function both from terms
to terms and from formulas to formulas. On terms, it is defined inductively by

𝑥𝑖[ ̄𝑥\�̄�] = 𝑢𝑖 for 𝑖 ∈ {1,…, 𝑛},
𝑦[ ̄𝑥\�̄�] = 𝑦 for all variables 𝑦 ∉ {𝑥1,…, 𝑥𝑛},

𝑓(𝑡1,…, 𝑡𝑚)[ ̄𝑥\�̄�] = 𝑓(𝑡1[ ̄𝑥\�̄�],…, 𝑡𝑛[ ̄𝑥\�̄�]).

Thus, [𝑥1\𝑢1,…, 𝑥𝑛\𝑢𝑛] replaces every occurrence of 𝑥𝑖 by the corresponding 𝑢𝑖.
This is also the behavior we expect on formulas, but we have to define substitution
a little more carefully there. On the one hand, we do not want to substitute bound
occurrences of variables. On the other hand, we need to take care not to “capture”
variables under a quantifier by substitution. As an example, consider 𝜑 ≡ ∀𝑥𝑥 = 𝑦
and the substitution [𝑦\𝑥]. Applied naively, 𝜑[𝑦\𝑥] would result in ∀𝑥𝑥 = 𝑥, so
the term on the right-hand side is now bound by the quantifier when it was not
before. The solution is to rename bound variables such that no capturing occurs.
In the example, we can for instance replace the 𝑥 in 𝜑 by 𝑧, whence 𝜑[𝑦\𝑥] results
in ∀𝑧 𝑧 = 𝑥.

We will often write terms and formulas as 𝑡(𝑥1,…, 𝑥𝑛) or 𝜑(𝑥1,…, 𝑥𝑛), respectively.
This does not indicate that all the variables 𝑥1,…, 𝑥𝑛 occur in 𝑡 (resp. 𝜑), nor does
it mean that no other variables occur in 𝑡 (resp. 𝜑). Rather, we use this notation
mostly to allow for easier substitutions: if 𝑢1,…, 𝑢𝑛 are terms of appropriate sorts,
then 𝑡(𝑢1,…, 𝑢𝑛) abbreviates 𝑡[𝑥1\𝑢1,…, 𝑥𝑛\𝑢𝑛], and analogously for formulas. If
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Chapter 1: Logical preliminaries

we intend to say that there are no free variables in a term or formula other than
those indicated, we say that the formula is fully indicated.

We can now define what a structure for an 𝒮-sorted language ℒ is. The defini-
tion is largely analogous to the single-sorted case. Let (𝑀𝜎)𝜎∈𝒮 be a family of
nonempty, pairwise disjoint sets indexed by 𝒮. Furthermore, let ⋅ℳ be a function
that interprets the elements of ℒ in a “well-sorted” manner, that is:

• If 𝑐 ∶ 𝜎 is a constant symbol, then 𝑐ℳ ∈ 𝑀𝜎.
• If 𝑓∶ 𝜎1 × … × 𝜎𝑛 → 𝜏 is a function symbol, then 𝑓ℳ is a function from

𝑀𝜎1
×…×𝑀𝜎𝑛

to 𝑀𝜏.
• If 𝑃∶ 𝜎1 ×…×𝜎𝑛 is a predicate symbol, then 𝑃ℳ ⊆ 𝑀𝜎1

×…×𝑀𝜎𝑛
. Recall

our stipulation that every language ℒ contain a predicate symbol =𝜎 for
each sort 𝜎. We further stipulate that =ℳ

𝜎 always be the identity relation
on 𝑀𝜎.

Then the pair ℳ = ((𝑀𝜎)𝜎∈𝒮, ⋅ℳ) is called an ℒ-structure.

The function ⋅ℳ on its own is not enough to assign a value in ℳ to every
term. In order to do so, we also need to assign values to the variables. If
ℳ = ((𝑀𝜎)𝜎∈𝒮, ⋅ℳ) is an ℒ-structure, then a valuation on ℳ is a function
𝑣∶ Var → ⋃𝜎∈𝒮 𝑀𝜎 such that for each 𝜎, 𝑣|Var𝜎

∶ Var𝜎 → 𝑀𝜎. In other words, a
valuation on ℳ associates an element of ℳ with each variable while preserving
sorts. We write Val(ℳ) for the set of valuations on ℳ.

Valuations can easily be extended from functions on variables to functions on
terms over ℒ. We do not distinguish syntactically between these different uses of
valuations.

• If 𝑐 is a constant symbol, then 𝑣(𝑐) = 𝑐ℳ.
• If 𝑓(𝑡1,…, 𝑡𝑛) is an ℒ-term, then 𝑣(𝑓(𝑡1,…, 𝑡𝑛)) = 𝑓ℳ(𝑣(𝑡1),…, 𝑣(𝑡𝑛)).

It is easy to see that 𝑣(𝑡) only depends on the values of 𝑣 on variables that actually
occur in 𝑡.

This leads us to the definition of the relation “𝜑 is true for valuation 𝑣 in the
structure ℳ”, written as (ℳ, 𝑣) ⊧ 𝜑:
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1.1 Many-sorted first-order logic

• Let 𝜑 = 𝑃(𝑡1,…, 𝑡𝑛) be an atomic formula. Then

(ℳ, 𝑣) ⊧ 𝜑 iff (𝑣(𝑡1),…, 𝑣(𝑡𝑛)) ∈ 𝑃ℳ.

• Let 𝜑,𝜓 be formulas. Then

(ℳ, 𝑣) ⊧ ¬𝜑 iff (ℳ, 𝑣) ̸⊧ 𝜑,
(ℳ, 𝑣) ⊧ 𝜑 ∧ 𝜓 iff (ℳ, 𝑣) ⊧ 𝜑 and (ℳ, 𝑣) ⊧ 𝜓,
(ℳ, 𝑣) ⊧ 𝜑 ∨ 𝜓 iff (ℳ, 𝑣) ⊧ 𝜑 or (ℳ, 𝑣) ⊧ 𝜓,
(ℳ, 𝑣) ⊧ 𝜑 → 𝜓 iff (ℳ, 𝑣) ̸⊧ 𝜑 or (ℳ, 𝑣) ⊧ 𝜓.

• Let 𝜑 be a formula. For two valuations 𝑣, 𝑤 and a variable 𝑥, we write
𝑣 =𝑥 𝑤 to mean that 𝑣 and 𝑤 agree on all variables except possibly 𝑥. Then

(ℳ, 𝑣) ⊧ ∀𝑥𝜑 iff (ℳ,𝑤) ⊧ 𝜑 for all 𝑤 ∈ Val(ℳ) with 𝑣 =𝑥 𝑤,
(ℳ, 𝑣) ⊧ ∃𝑥𝜑 iff (ℳ,𝑤) ⊧ 𝜑 for some 𝑤 ∈ Val(ℳ) with 𝑣 =𝑥 𝑤.

As for terms, the relation (ℳ, 𝑣) ⊧ 𝜑 only depends on the values of 𝑣 on the free
variables of 𝜑. As a consequence, the truth of a closed formula in a structure does
not depend on a valuation at all. Thus, for a closed formula 𝜑, we write ℳ ⊧ 𝜑 iff
(ℳ, 𝑣) ⊧ 𝜑 for any 𝑣 ∈ Val(ℳ).

It is typical, given an ℒ-structure ℳ, to use elements of ℳ in terms and formulas
as if they were constant symbols of ℒ.

We can generalize the interpretation function ⋅ℳ to all terms and formulas.

• If 𝑥1 ∶ 𝜎1,…, 𝑥𝑛 ∶ 𝜎𝑛 ∈ Var and 𝑡(𝑥1,…, 𝑥𝑛) ∈ Terms𝜏(ℒ) is a fully indicated
term, then

𝑡ℳ ∶
𝑛
∏
𝑖=1

𝑀𝜎𝑖
→ 𝜏, (𝑥1,…, 𝑥𝑛) ↦ 𝑡(𝑥1,…, 𝑥𝑛)ℳ.

• If 𝑥1 ∶ 𝜎1,…, 𝑥𝑛 ∶ 𝜎𝑛 ∈ Var and 𝜑(𝑥1,…, 𝑥𝑛) ∈ Forms(ℒ) is a fully indicated
formula, then

𝜑ℳ = {(𝑎1,…, 𝑎𝑛) ∈
𝑛
∏
𝑖=1

𝑀𝜎𝑖
∣ ℳ ⊧ 𝜑(𝑎1,…, 𝑎𝑛)} .

Note that 𝜑(𝑎1,…, 𝑎𝑛) is closed because 𝜑 has no free variables other than
𝑥1,…, 𝑥𝑛, so ℳ ⊧ 𝜑(𝑎1,…, 𝑎𝑛) is meaningful.
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The following proposition about the interpretations of terms and formulas is easily
proved.

Proposition 1.1. Let 𝒮 be a set of sorts, ℒ an 𝒮-sorted language, and ℳ =
((𝑀𝜎)𝜎∈𝒮, ⋅ℳ) an ℒ-structure. Let 𝑀 = ⋃𝜎∈𝑆 𝑀𝜎. Furthermore, let

• 𝑡( ̄𝑥), 𝑡1( ̄𝑥),…, 𝑡𝑛( ̄𝑥) ∈ Terms(ℒ),
• 𝜑( ̄𝑥), 𝜓( ̄𝑥), 𝜑1( ̄𝑥),…, 𝜑𝑘( ̄𝑥) ∈ Forms(ℒ).

Then:

1. (⋁𝑚
𝑖=1

𝜑𝑖)ℳ = ⋃𝑚
𝑖=1 𝜑

ℳ
𝑖

2. (⋀𝑚
𝑖=1

𝜑𝑖)ℳ = ⋂𝑚
𝑖=1 𝜑

ℳ
𝑖

3. 𝜑[ ̄𝑥\ ̄𝑡]ℳ = ( ̄𝑡ℳ)−1(𝜑ℳ)
4. ℳ ⊧ ∀ ̄𝑥. 𝜑( ̄𝑥) → 𝜓( ̄𝑥) iff 𝜑ℳ ⊆ 𝜓ℳ

A set 𝒯 of closed formulas is true in a structure ℳ, written as ℳ ⊧ 𝒯, if all
formulas in 𝒯 are true in ℳ. In this case, ℳ is called a model of 𝒯. If ℳ is an
ℒ-structure, we call the set Th(ℳ) of all closed ℒ-formulas that are true in ℳ
the theory of ℳ.

Let ℒ be a first-order language, 𝒯 a set of closed formulas, and 𝜑 an ℒ-formula.
We say that 𝒯 entails 𝜑, written as 𝒯 ⊧ 𝜑, if ℳ ⊧ 𝜑 for every model ℳ of 𝒯.

A set of closed formulas 𝒯 is called a theory if it is closed under entailment, i.e.,
for all formulas 𝜑, 𝒯 ⊧ 𝜑 implies 𝜑 ∈ 𝒯.

Finally, let us mention sequent notation, which we will use at several points in
this thesis. Fundamentally, a sequent is a pair (Γ,Δ) of sets of formulas, typically
written as Γ ⊢ Δ. Γ is called the antecedent of the sequent and Δ the succedent.
If Γ = {𝐴1,…,𝐴𝑚} and Δ = {𝐵1,…,𝐵𝑛}, then Γ ⊢ Δ can also be written as
𝐴1,…,𝐴𝑚 ⊢ 𝐵1,…,𝐵𝑛. We may even mix sets and individual formulas when
writing sequents, as in Γ, {𝜑(𝑢𝑖)}

𝑚
𝑖=1 , 𝑥 = 𝑦 ⊢ Δ.

The sequent Γ ⊢ Δ abbreviates the formula ⋀Γ → ⋁Δ. In other words, the
commas in the antecedent of 𝐴1,…,𝐴𝑚 ⊢ 𝐵1,…,𝐵𝑛 are interpreted conjunctively
and those in the succedent are interpreted disjunctively, with the turnstile symbol
⊢ denoting an implication. For this reason, sequents typically do not contain top-
level conjunctions in the antecedent or top-level disjunctions in the succedent. The
empty sequent ⊢ is equivalent to ⊥.
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1.2 Rewriting and normal forms

1.2 Rewriting and normal forms

We will briefly discuss the concept of rewriting. We follow the terminology of [BN98].
An abstract reduction system is just a binary relation ⇝ on some set 𝑀. We write
the reflexive, transitive closure of such a relation ⇝ as ⇝∗. If 𝑥 ∈ 𝑀 and there
is a 𝑦 ∈  𝑀 such that 𝑥 ⇝ 𝑦, we call 𝑥 reducible, otherwise we call it irreducible
or a normal form. If 𝑦 is a normal form and 𝑥 ⇝∗ 𝑦, we say that 𝑦 is a normal
form of 𝑥. We say that ⇝ is normalizing if every 𝑥 ∈  𝑀 has a normal form and
terminating if there are no infinite sequences 𝑥0 ⇝ 𝑥1 ⇝ 𝑥2 ⇝ … (i.e., every
sequence of reductions eventually leads to a normal form). In particular, termina-
tion implies that ⇝ is irreflexive. We say that ⇝ is confluent if, whenever 𝑥 ⇝∗ 𝑦1

and 𝑥 ⇝∗ 𝑦2, there is a 𝑧 ∈ 𝑀 such that 𝑦1 ⇝∗ 𝑧 and 𝑦2 ⇝∗ 𝑧. It is easy to see
that if ⇝ is confluent then every element of 𝑀 has at most one normal form. This
immediately implies that if ⇝ is both normalizing and confluent, every element of
𝑀 has a unique normal form.

Now let ℒ be a logical language. A rewrite rule is an equation 𝑠 = 𝑡 where 𝑠, 𝑡
are ℒ-terms such that 𝑠 is not a variable and 𝑡 contains no variables other than
those in 𝑠. Rewrite rules are intended to be read left to right, that is, the left-hand
term can be replaced by the right-hand term, but not the other way around. A
term rewriting system is a set of rewrite rules. A term rewriting system 𝑅 induces
a rewriting relation as follows: let ⇝𝑅 be the least binary relation on Terms(ℒ)
that subsumes all the rewrite rules of 𝑅 (i.e., if 𝑠 = 𝑡 ∈  𝑅, then 𝑠 ⇝𝑅 𝑡) and is
compatible with term construction. By identifying 𝑅 with ⇝𝑅, we can regard 𝑅 as
an abstract reduction system and consequently apply concepts like normalization,
confluence, etc., to it.

The case that is particularly relevant for us is that of rewriting formulas. There are
several important syntactical classes of formulas that can be described as normal
forms with respect to certain sets of rewriting rules. Strictly speaking, this does not
fit the definition of a term rewriting system, since we are not dealing with terms
over a logical language. However, the same principle applies: we define sets of
rewriting rules and obtain rewriting relations by extending them to be compatible
with formula construction.

We list the rules in question in the following definition.

15



Chapter 1: Logical preliminaries

Definition 1.2 (Logical rewrite rules). Let 𝜑,𝜓, 𝜗 be formulas.

𝜑 → 𝜓 ⇝ ¬𝜑 ∨ 𝜓 (→-el)
¬¬𝜑 ⇝ 𝜑 (¬¬)

¬(𝜑 ∧ 𝜓) ⇝ ¬𝜑 ∨ ¬𝜓 (¬∧)
¬(𝜑 ∨ 𝜓) ⇝ ¬𝜑 ∧ ¬𝜓 (¬∨)

¬∀𝑥𝜑 ⇝ ∃𝑥¬𝜑 (¬∀)
¬∃𝑥𝜑 ⇝ ∀𝑥¬𝜑 (¬∃)

𝜑 ∨ (𝜓 ∧ 𝜗) ⇝ (𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜗), (𝜑 ∧ 𝜓) ∨ 𝜗 ⇝ (𝜑 ∨ 𝜗) ∧ (𝜓 ∨ 𝜗) (∨∧)
𝜑 ∧ (𝜓 ∨ 𝜗) ⇝ (𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜗), (𝜑 ∨ 𝜓) ∧ 𝜗 ⇝ (𝜑 ∧ 𝜗) ∨ (𝜓 ∧ 𝜗) (∧∨)

∀𝑥𝜑 ∧ 𝜓 ⇝ ∀𝑥 (𝜑 ∧ 𝜓), 𝜑 ∧ ∀𝑥𝜓 ⇝ ∀𝑥 (𝜑 ∧ 𝜓) (∀∧)
∀𝑥𝜑 ∨ 𝜓 ⇝ ∀𝑥 (𝜑 ∨ 𝜓), 𝜑 ∨ ∀𝑥𝜓 ⇝ ∀𝑥 (𝜑 ∨ 𝜓) (∀∨)
∀𝑥𝜑 → 𝜓 ⇝ ∃𝑥 (𝜑 → 𝜓) (∀ →∶ ℓ)
𝜑 → ∀𝑥𝜓 ⇝ ∀𝑥 (𝜑 → 𝜓) (∀ →∶ 𝑟)
∃𝑥𝜑 ∧ 𝜓 ⇝ ∃𝑥 (𝜑 ∧ 𝜓), 𝜑 ∧ ∃𝑥𝜓 ⇝ ∃𝑥 (𝜑 ∧ 𝜓) (∃∧)
∃𝑥𝜑 ∨ 𝜓 ⇝ ∃𝑥 (𝜑 ∨ 𝜓), 𝜑 ∨ ∃𝑥𝜓 ⇝ ∃𝑥 (𝜑 ∨ 𝜓) (∃∨)
∃𝑥𝜑 → 𝜓 ⇝ ∀𝑥 (𝜑 → 𝜓) (∃ →∶ ℓ)
𝜑 → ∃𝑥𝜓 ⇝ ∃𝑥 (𝜑 → 𝜓) (∃ →∶ 𝑟)

The rules →-el, ¬¬, ¬∧, ¬∨, ¬∃, ¬∀, ∨∧, ∧∨, ∀∧, ∃∨, ∀ →∶ ℓ, and ∃ →∶ 𝑟 preserve
equivalence. The rules ∀∨, ∃∧, ∀ →∶ 𝑟, and ∃ →∶ ℓ only preserve equivalence if
the quantified variable 𝑥 does not occur freely in the unquantified subformula. We
can always ensure that these conditions hold for a formula if we stipulate that no
two quantifiers quantify over the same variable and that no variable occurs both
freely and bound in the formula.

Before we proceed to the various normal forms on formulas, we need to define one
more concept.

Definition 1.3 (Literal). A literal is an atomic formula or negated atomic formula.

Definition 1.4 (Negation normal form). Negation normal form (NNF) is the
normal form with respect to the set {→-el, ¬¬, ¬∧, ¬∨, ¬∀, ¬∃}; that is to say,
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1.2 Rewriting and normal forms

a formula is in NNF if none of the aforementioned rewrite rules can be applied to
it.

It is easy to see that a formula is in negation normal form if it is composed only
of literals, ∧, ∨, ∀, and ∃. Moreover, if 𝜑 is a formula, then any NNF of 𝜑 is
equivalent to 𝜑 because all relevant rewrite rules preserve equivalence.

Definition 1.5 (Prenex normal form). Prenex normal form is the normal form
with respect to the set {¬∀, ¬∃, ∀∧, ∀∨, ∀ →∶ ℓ, ∀ →∶ 𝑟, ∀∧, ∀∨, ∀ →∶ ℓ,
∀ →∶ 𝑟}. Formulas in prenex normal form are also said to be prenex.

We have remarked before that not all of these rules preserve equivalence. This
means that naively applying them to a formula will not necessarily result in an
equivalent prenex formula. However, we can always obtain an equivalent prenex
formula by renaming bound quantifiers before applying the rewriting rules.

Intuitively, a formula is in prenex normal form if it starts with a (possibly empty)
block of quantifiers followed by a quantifier-free formula, which is called its matrix.

Definition 1.6 (Quantifier complexity). We inductively define the classes Π𝑛 and
Σ𝑛 of prenex formulas for 𝑛 ∈ ℕ:

1. If 𝜑 is quantifier-free, then 𝜑 is both Π0 and Σ0.
2. If 𝜑 is of the form ∀𝑥1…∀𝑥𝑛 𝜓 where 𝜓 is Σ𝑛, then 𝜑 is Π𝑛+1.
3. If 𝜑 is of the form ∃𝑥1…∃𝑥𝑛 𝜓 where 𝜓 is Π𝑛, then 𝜑 is Σ𝑛+1.

We have already established that every first-order formula is equivalent to a for-
mula in prenex normal form. Therefore, every formula is equivalent to a Π𝑛 or
Σ𝑛 formula for some 𝑛. Moreover, since adding vacuous quantifiers to a formula
preserves equivalence, every Π𝑛 formula is also equivalent to a Π𝑛+1 and a Σ𝑛+1

formula.

Definition 1.7 (Polarity). Let 𝜑 be a first-order formula. We assign to each
subformula 𝜓 of 𝜑 a value pol(𝜓) ∈ {−1,+1}, called its polarity: let 𝑛 be the
number of negations and antecedents of implications above 𝜓. Then pol(𝜓) =
(−1)𝑛. In particular, 𝜑 itself has polarity +1.
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Definition 1.8 (Strong and weak quantifiers). Let 𝜑 be a first-order formula and
𝜓 ≡ 𝑄𝑥𝜓′ with 𝑄 ∈ {∀, ∃} a subformula of 𝜑. Then 𝑄𝑥 is called a strong
quantifier if 𝑄 = ∀ and pol(𝜓) = +1 or 𝑄 = ∃ and pol(𝜓) = −1. Otherwise, 𝑄𝑥
is called a weak quantifier.

Simply put, strong quantifiers are negated existential and non-negated universal
ones. Conversely, weak quantifiers are negated universal and non-negated existen-
tial ones.

Since prenex formulas never contain negated quantifiers, the characterization of
strong and weak quantifiers is very simple in that case: “strong” and “weak” just
coincide with “universal” and “existential”.

Definition 1.9 (Clause, dual clause).

1. A clause is a disjunction of literals.
2. A dual clause is the dual form of a clause, that is, a conjunction of literals.

Definition 1.10 (Conjunctive normal form). Conjunctive normal form (CNF) is
the normal form on quantifier-free formulas with respect to the rules {→-el,¬¬,
¬∧, ¬∨, ∨∧ }.

Remark. In other words, a formula 𝜑 is in CNF if it is a conjunction of clauses,
i.e.,

𝜑 ≡
𝑚
⋀
𝑖=1

𝑛𝑖

⋁
𝑗=1

𝐿𝑖,

where the 𝐿𝑖 are literals.

Clearly, if a formula is in CNF, it is also in NNF.

The clause ¬𝐴1 ∨ … ∨ ¬𝐴𝑚 ∨ 𝐵1 ∨ … ∨ 𝐵𝑛 is logically equivalent to the formula
𝐴1 ∧ … ∧ 𝐴𝑚 → 𝐵1 ∨ … ∨ 𝐵𝑛. For this reason, we typically write it in sequent
form as 𝐴1,…,𝐴𝑚 ⊢ 𝐵1,…,𝐵𝑛.

We can slightly generalize conjunctive normal form to Π1 formulas. Moreover, it
is common to regard the CNF of a formula as a set of clauses.
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1.2 Rewriting and normal forms

Definition 1.11 (Cl(𝜑)). Let 𝜑 be a Π1 formula and 𝜓 ≡ ∀ ̄𝑥𝜓′ a prenex normal
form of 𝜑. Then the CNF of 𝜓′ is unique modulo associativity and idempotence.
If the CNF is

𝑚
⋀
𝑖=1

𝑛𝑖

⋁
𝑗=1

𝐿𝑖,𝑗,

where 𝐿𝑖,𝑗 are literals, then Cl(𝜑) is the set

{{𝐿𝑖,𝑗 ∣ 𝑗 ∈  {1,…, 𝑛𝑖}} ∣ 𝑖 ∈ {1,…,𝑚}} .

It follows that

⊧ 𝜑 ↔ ∀ ̄𝑥 ⋀{{⋁𝑐 ∣ 𝑐 ∈  Cl(𝜑)}} .

The dual of the conjunctive normal form is the disjunctive normal form. Its
definition and the procedure for obtaining it are very much analogous.

Definition 1.12 (Disjunctive normal form). Disjunctive normal form (DNF) is
the normal form on quantifier-free formulas with respect to {→-el,¬¬, ¬∧, ¬∨,
∧∨ }.

A formula 𝜑 is in DNF if it is a disjunction of dual clauses.

To close out this section, let us briefly touch on skolemization. There are two
procedures, duals of one another, referred to by that name. The first is a map sk−

from first-order formulas over a language ℒ to formulas over a language ℒ′ ⊇ ℒ
that only contain strong quantifiers. It does in general not preserve equivalence,
but it does preserve satisfiability, i.e., 𝜑 is true in some ℒ-structure iff sk−(𝜑) is
true in some ℒ′-structure. As a consequence, this form of skolemization is integral
for automated theorem proving with refutational systems like resolution: 𝜑 is valid
iff ¬𝜑 is unsatisfiable iff sk−(¬𝜑) is unsatisfiable.

Let 𝜑 be a formula. sk− works as follows: for each weak quantifier 𝑄𝑥 in 𝜑, let
𝑦1,…, 𝑦𝑛 be the variables in 𝜑 that are strongly quantified above 𝑄𝑥. We choose
a fresh 𝑛-ary function symbol 𝑓𝑥 and replace all occurrences of 𝑥 that are bound
by 𝑄𝑥 by 𝑓𝑥(𝑦1,…, 𝑦𝑛). Finally we delete the quantifier 𝑄𝑥.

Example 1.13. Consider the formula 𝜑 ≡ ∀𝑥𝑃(𝑥)∨∃𝑦∀𝑧∃𝑤𝑄(𝑦, 𝑧, 𝑤). We have
sk−(𝜑) ≡ ∀𝑥𝑃(𝑥) ∨ ∀𝑧𝑄(𝑓𝑦, 𝑧, 𝑓𝑤(𝑧)).
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The dual operation sk+ maps formulas over ℒ to formulas over some ℒ′ ⊇ ℒ that
only contain weak quantifiers. It works in exactly the opposite way as sk− and
consequently preserves not satisfiability, but validity, so 𝜑 is true in all ℒ-structures
iff sk+(𝜑) is true in all ℒ′-structures. This makes sk+ relevant to theorem proving
in direct systems like LK since provability in such calculi is equivalent to validity.

1.3 Proofs

We will mostly use formal proofs in our investigation of inductive theorem proving
in Section 2.3. We use Gentzen’s proof calculus LK. This calculus operates on
sequents instead of arbitrary first-order formulas. For an exhaustive discussion of
LK, see [Tak87].

Definition 1.14 (Inference rules of LK). An 𝑛-ary inference rule is an expression
of the form Γ1 ⊢ Δ1 … Γ𝑛 ⊢ Δ𝑛 rΓ ⊢ Δ

. We list the inference rules of LK
below. In all of these rules, the sequents above the line are called premises and the
sequent below the line is called the conclusion. Moreover, in all rules except 𝑐𝑢𝑡,
the formulas that are emphasized in the conclusion are called the main formulas,
while those that are emphasized in the premises are called auxiliary formulas.

1. Axioms:

𝐴 ⊢ 𝐴 ⊢ 𝑡 = 𝑡

Here, 𝐴 is an atomic formula and 𝑡 is a term.
2. Contraction:

𝜑,𝜑, Γ ⊢ Δ
c:l𝜑, Γ ⊢ Δ

Γ ⊢ Δ,𝜑, 𝜑 c:rΓ ⊢ Δ,𝜑

3. Weakening:

Γ ⊢ Δ w:l𝜑, Γ ⊢ Δ
Γ ⊢ Δ w:r

Γ ⊢ Δ,𝜑

4. Propositional rules:

Γ ⊢ Δ,𝜑
¬:l¬𝜑, Γ ⊢ Δ

𝜑, Γ ⊢ Δ ¬:rΓ ⊢ Δ,¬𝜑
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𝜑,𝜓, Γ ⊢ Δ
∧:l𝜑 ∧ 𝜓, Γ ⊢ Δ

Γ ⊢ Δ,𝜑 Π ⊢ Λ,𝜓
∧:rΓ,Π ⊢ Δ,Λ, 𝜑 ∧ 𝜓

𝜑, Γ ⊢ Δ 𝜓,Π ⊢ Λ
∨:l𝜑 ∨ 𝜓, Γ,Π ⊢ Δ,Λ

Γ ⊢ Δ,𝜑, 𝜓
∨:rΓ ⊢ Δ,𝜑 ∨ 𝜓

Γ ⊢ Δ,𝜑 𝜓,Π ⊢ Λ
→:l𝜑 → 𝜓,Γ,Π ⊢ Δ,Λ

𝜑, Γ ⊢ Δ,𝜓
∨:rΓ ⊢ Δ,𝜑 → 𝜓

5. Quantifier rules:
𝜑[𝑥\𝑡], Γ ⊢ Δ

∀:l∀𝑥𝜑, Γ ⊢ Δ
Γ ⊢ Δ,𝜑[𝑥\𝛼]

∀:rΓ ⊢ Δ,∀𝑥𝜑

𝜑[𝑥\𝛼], Γ ⊢ Δ
∃:l∃𝑥𝜑, Γ ⊢ Δ

Γ ⊢ Δ,𝜑[𝑥\𝑡]
∃:rΓ ⊢ Δ, ∃𝑥𝜑

Here, 𝑡 is any term, while 𝛼 is a variable that does not occur in Γ, Δ or 𝐴,
called an eigenvariable. The inference rules that use eigenvariables are called
strong quantifier rules, the others weak quantifier rules.

6. The cut rule:
Γ ⊢ Δ,𝜑 𝜑,Π ⊢ Λ

cutΓ,Π, ⊢ Δ,Λ
The formula 𝜑 is called the cut formula of the inference.

7. The equality rule:
𝑠 = 𝑡, Γ ⊢ Δ,𝜑(𝑠) eq
𝑠 = 𝑡, Γ ⊢ Δ,𝜑(𝑡)

LK proofs are constructed inductively from instances of the inference rules.

1.4 Arithmetic

Definition 1.15 (Arithmetical language). A first-order language ℒ is called arith-
metical if it contains the sort Nat and

• the constant symbol 0∶ Nat,
• the function symbols

𝑠∶ Nat → Nat, 𝑝 ∶ Nat → Nat,
+∶ Nat × Nat → Nat, −∶ Nat → Nat,
⋅ ∶ Nat × Nat → Nat,
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• and the relation symbol ≤∶ Nat × Nat.

The language of arithmetic ℒ𝐴 is the smallest arithmetical language, i.e., ℒ𝐴

contains only the sort Nat and the symbols described above.

We will use 𝑥 < 𝑦 to abbreviate 𝑥 ≤ 𝑦 ∧ 𝑥 ≠ 𝑦 and occasionally write 𝑥 ≥ 𝑦 and
𝑥 > 𝑦 for 𝑦 ≤ 𝑥 and 𝑦 < 𝑥, respectively.

The intended interpretations of 𝑝 and − are the truncated predecessor and truncated
subtraction functions, respectively:

𝑝(0) = 0, 𝑥 − 0 = 𝑥,
𝑝(𝑠𝑥) = 𝑥, 𝑥 − 𝑠𝑦 = 𝑝(𝑥 − 𝑦).

If ℒ is an arithmetical language and 𝑛 ∈ ℕ, then we use �̄� to denote the ℒ-term
𝑠…𝑠⏟

𝑛
0∶ Nat, the numeral corresponding to 𝑛.

We define a collection of arithmetical axioms that we will refer to later.

Definition 1.16 (Arithmetical axioms).

• Successor:

∀𝑥 𝑠𝑥 ≠ 0 (S1)
∀𝑥, 𝑦. 𝑠𝑥 = 𝑠𝑦 → 𝑥 = 𝑦 (S2)
∀𝑥. 𝑥 = 0 ∨ ∃𝑦 𝑥 = 𝑠𝑦 (S3)

• Predecessor:

𝑝0 = 0 (P1)
∀𝑥𝑝𝑠𝑥 = 𝑥, (P2)

• Addition:

∀𝑥𝑥 + 0 = 𝑥 (A1)
∀𝑥𝑥 + 𝑠𝑦 = 𝑠(𝑥 + 𝑦) (A2)

• Subtraction:

∀𝑥𝑥 − 0 = 0 (Mi1)
∀𝑥, 𝑦 𝑥 − 𝑠𝑦 = 𝑝(𝑥 − 𝑦) (Mi2)
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• Multiplication:

∀𝑥𝑥 ⋅ 0 = 0 (M1)
∀𝑥, 𝑦 𝑥 ⋅ 𝑠𝑦 = 𝑥 ⋅ 𝑦 + 𝑥 (M2)

• Order:

∀𝑥0 ≤ 𝑥, (O1)
∀𝑥𝑥 ≤ 𝑥, (O2)

∀𝑥, 𝑦. 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 → 𝑥 = 𝑦 (O3)
∀𝑥, 𝑦, 𝑧. 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 (O4)

∀𝑥, 𝑦. 𝑥 ≤ 𝑦 ∨ 𝑥 ≥ 𝑦 (O5)
∀𝑥, 𝑦. 𝑥 ≤ 𝑦 ↔ ∃𝑧. 𝑧 + 𝑥 = 𝑦 (OA)

∀𝑥, 𝑦. 𝑥 ≤ 𝑦 ↔ 𝑥 < 𝑠𝑦 (OS1)
∀𝑥, 𝑦. 𝑥 < 𝑦 ↔ 𝑠𝑥 ≤ 𝑦 (OS2)
∀𝑥, 𝑦. 𝑥 > 0 ↔ 𝑠𝑝𝑥 = 𝑥 (OSP)
∀𝑥, 𝑦. 𝑥 ≤ 𝑦 → 𝑥 − 𝑦 = 0 (OMi)

∀𝑥, 𝑦. 𝑥 > 𝑦 → 𝑥 − 𝑠𝑦 < 𝑥 − 𝑦 (OSMi)

Definition 1.17 (Robinson arithmetic). Robinson arithmetic (Q) is the theory
axiomatized by the arithmetical axioms (S1)–(S3), (A1), (A2), (M1), (M2), and
(OA).

Definition 1.18 (Peano arithmetic). Let ℒ be an arithmetical language and 𝜑(𝑛)
an ℒ-formula, where 𝑛 is a variable of sort Nat. Then the induction axiom for
𝜑(𝑛) is the formula

IND𝜑(𝑛) ≡ 𝜑(0) ∧ ∀𝑖 (𝜑(𝑖) → 𝜑(𝑠𝑖)) → ∀𝑛𝜑(𝑛) (IND)

Peano arithmetic (PA) is the ℒ𝐴-theory that is axiomatized by the axioms of Q
plus the induction axioms for all ℒ𝐴-formulas.

Later, we will also use a slightly different induction principle. This is justified
because the two principles are equivalent under very weak assumptions.
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Lemma 1.19. Let ℒ be an arithmetical language and for 𝜑(𝑛) ∈ Forms(ℒ) let
IND′

𝜑(𝑛) be the ℒ-formula

IND′
𝜑(𝑛) ≡ ∀𝑛. 𝜑(0) ∧ ∀𝑖 (𝜑(𝑖) ∧ 𝑖 < 𝑛 → 𝜑(𝑠𝑖)) → 𝜑(𝑛).

Furthermore, let

𝒯 = {(O2), (OS2)} ∪ { IND𝜑(𝑛) ∣ 𝜑(𝑛) ∈ Forms(ℒ)} ,

𝒯′ = {(O2), (OS2)} ∪ { IND′
𝜑(𝑛) ∣ 𝜑(𝑛) ∈ Forms(ℒ)} .

Then 𝒯′ = 𝒯.

Proof. We show 𝒯 ⊧ IND′
𝜑(𝑛) and 𝒯′ ⊧ IND𝜑(𝑛) for all formulas 𝜑(𝑛). Note that

IND𝜑(𝑛) is equivalent to ∀𝑛. 𝜑(0) ∧ ∀𝑖 (𝜑(𝑖) → 𝜑(𝑠𝑖)) → 𝜑(𝑛).

We deal with the easier case first. Let ℳ be a model of 𝒯′, 𝑣 ∈ Val(ℳ), and
assume (ℳ, 𝑣) ⊧ 𝜑(0)∧∀𝑖 (𝜑(𝑖) → 𝜑(𝑠𝑖)). Clearly, we also have (ℳ, 𝑣) ⊧ ∀𝑖. 𝜑(𝑖)∧
𝑖 < 𝑛 → 𝜑(𝑠𝑖) and because ℳ ⊧ IND′

𝜑(𝑛) we obtain (ℳ, 𝑣) ⊧ 𝜑(𝑛). Therefore,
ℳ ⊧ IND𝜑(𝑛).

For the converse case, let ℳ be a model of 𝒯, 𝑣 ∈ Val(ℳ), and assume (ℳ, 𝑣) ⊧
𝜑(0) ∧ ∀𝑖 (𝜑(𝑖) ∧ 𝑖 < 𝑛 → 𝜑(𝑠𝑖)). Now let 𝜑′(𝑗) ≡ 𝑗 ≤ 𝑛 → 𝜑(𝑗) and consider
IND𝜑′(𝑗):

IND𝜑′(𝑗) ≡ ∀𝑗. 𝜑′(0) ∧ ∀𝑖 (𝜑′(𝑖) → 𝜑′(𝑠𝑖)) → 𝜑′(𝑗)
≡ ∀𝑗. (0 ≤ 𝑛 → 𝜑(0))

∧ ∀𝑖 ((𝑖 ≤ 𝑛 → 𝜑(𝑖)) → (𝑠𝑖 ≤ 𝑛 → 𝜑(𝑠𝑖)))
→ 𝑗 ≤ 𝑛 → 𝜑(𝑗)

Because

(𝑖 ≤ 𝑛 → 𝜑(𝑖)) → (𝑠𝑖 ≤ 𝑛 → 𝜑(𝑠𝑖)) ⇔ (𝑖 ≤ 𝑛 → 𝜑(𝑖)) ∧ 𝑠𝑖 ≤ 𝑛 → 𝜑(𝑠𝑖)
(OS2)
⇔ (𝑖 ≤ 𝑛 → 𝜑(𝑖)) ∧ 𝑖 < 𝑛 → 𝜑(𝑠𝑖)
⇔ 𝜑(𝑖) ∧ 𝑖 < 𝑛 → 𝜑(𝑠𝑖),

IND𝜑′(𝑗) is equivalent to ∀𝑗. (0 ≤ 𝑛 → 𝜑(0)) ∧ ∀𝑖 (𝜑(𝑖) ∧ 𝑖 < 𝑛 → 𝜑(𝑠𝑖)) → 𝑗 ≤
𝑛 → 𝜑(𝑗) in all models of 𝒮. Since ℳ ⊧ 0 ≤ 𝑛 → 𝜑(0) and ℳ ⊧ ∀𝑖 (𝜑(𝑖)∧𝑖 < 𝑛 →
𝜑(𝑠𝑖)) → 𝑗 ≤ 𝑛 → 𝜑(𝑗) by assumption, we thus obtain (ℳ, 𝑣) ⊧ 𝑛 ≤ 𝑛 → 𝜑(𝑛).
Because (O2) is satisfied in ℳ, (ℳ, 𝑣) ⊧ 𝜑(𝑛).
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1.5 Lattices

Definition 1.20 (Lattice). A lattice is a partially ordered set ⟨𝐿,≤⟩ in which any
two elements have supremum and infimum, i.e., for 𝑥, 𝑦 ∈ 𝑃 there are 𝑠, 𝑖 ∈ 𝐿 such
that

𝑠 ≥ 𝑥 ∧ 𝑠 ≥ 𝑦 ∧ ∀𝑠′. 𝑠′ ≥ 𝑥 ∧ 𝑠′ ≥ 𝑦 → 𝑠′ ≥ 𝑠,
𝑖 ≤ 𝑥 ∧ 𝑖 ≤ 𝑦 ∧ ∀𝑖′. 𝑖′ ≤ 𝑥 ∧ 𝑖′ ≤ 𝑦 → 𝑖′ ≤ 𝑖.

The supremum and infimum of 𝑥 and 𝑦 are typically written as 𝑥 ∨ 𝑦 and 𝑥 ∧ 𝑦,
respectively. It is easy to see that ∨ and ∧ are associative, commutative, and
idempotent.

A lattice ⟨𝐿,≤⟩ is called complete if every subset of 𝐿 has supremum and infimum.
It is immediately clear that every complete lattice has both a least and a greatest
element.

Proposition 1.21. Let ⟨𝐿,≤⟩ be a partially ordered set in which all subsets have
infima. Then ⟨𝐿,≤⟩ is a complete lattice.

Proof. Let 𝑀 ⊆ 𝐿. We only need to show that the supremum of 𝑀 exists. Let
𝑆 = {𝑥 ∈ 𝐿 | ∀𝑦 ∈ 𝑀 𝑦 ≤ 𝑥} be the set of upper bounds of 𝑀 and 𝑠 = inf𝑆.
We claim that 𝑠 = sup𝑀. Since every 𝑚 ∈ 𝑀 is a lower bound of 𝑆 and 𝑠 is
the greatest lower bound of 𝑆, we have ∀𝑚 ∈ 𝑀 𝑚 ≤ 𝑠, which means that 𝑠 is
an upper bound of 𝑀. That it is the least upper bound is immediate from its
definition.

Definition 1.22 (Ascending chain condition). A partially ordered set 𝑃 satis-
fies the ascending chain condition (ACC) if there is no infinite strictly ascending
sequence 𝑥0 < 𝑥1 < … in 𝑃.

An equivalent formulation of the ACC is that every infinite weakly ascending
sequence 𝑥0 ≤ 𝑥1 ≤ … must be eventually constant, i.e., there must be some
𝑖 ∈ ℕ such that 𝑥𝑘 = 𝑥𝑖 for all 𝑘 ≥ 𝑖.

Example 1.23. Let 𝑉 be a vector space (over any field). Consider the partially
ordered set ⟨Lin𝑉 ,⊆⟩ of linear subspaces of 𝑉. Since 𝐴 ⊆ 𝑉 is a linear subspace
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of 𝑉 iff it contains 0 and is closed under linear combinations, it follows that for
nonempty 𝑀 ⊆ Lin𝑉, ⋀𝑀 = ⋂𝑀 ∈ Lin𝑉. Moreover, ⋀∅ = 𝑉 ∈ Lin𝑉. By
1.21, Lin𝑉 is therefore a complete lattice.

If dim𝑉 = 𝑛 ∈ ℕ, then Lin𝑉 satisfies ACC. To see this, observe that dim is
a strictly monotone function from Lin𝑉 to [0, 𝑛] ⊆ ℕ and [0, 𝑛], as a finite set,
satisfies ACC. Since a strictly monotone function preserves strictly ascending se-
quences, Lin𝑉 must satisfy ACC as well.

We will later make use of the following famous theorem. A proof can be found
in [Tar55].

Theorem 1.24 (Knaster-Tarski). Let ⟨𝑃 ,≤⟩ be a complete lattice and let 𝐹∶ 𝑃 →
𝑃 be a monotone function. Then the set { 𝑥 ∈ 𝑃 | 𝐹(𝑥) = 𝑥} of fixed points of 𝐹
is a complete lattice.
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CHAPTER 2

FORMULA EQUATIONS, INDUCTION
PROOFS, AND GRAMMARS

2.1 Formula equations

We now introduce the central concepts of this thesis: formula equations and solu-
tion problems. For the definition, we briefly recall second-order logic. In second-
order logic, one may quantify over functions and predicates. Consequently, second-
order formulas can contain function and predicate variables. These are typed in
exactly the same way as the constant function and predicate symbols of first-order
logic; for instance, we can have a predicate variable 𝑋 of type 𝜎1×…×𝜎𝑛. Function
variables work analogously, but we will not be needing them.

Definition 2.1 (Formula equation). Let ℒ be a first-order language over the set
of sorts 𝒮.

1. A formula variable of type 𝜎1 ×…×𝜎𝑛 is a second-order predicate variable
𝑋 of type 𝜎1 ×…× 𝜎𝑛.

2. If 𝑋∶ 𝜎1 ×…×𝜎𝑛 is a formula variable, then we call atomic formulas of the
form 𝑋(𝑡1,…, 𝑡𝑛) variable atoms. By contrast, we may refer to conventional
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first-order atoms as constant atoms.
3. Let 𝜑 be a formula such that

• 𝜑 is first-order closed, i.e., it contains no free first-order variables, and
• 𝜑 may contain variable atoms in addition to constant ℒ-atoms.

Let 𝑋1,…,𝑋𝑛 be the formula variables occurring in 𝜑. Then the second-
order formula Φ ≡ ∃𝑋1,…,𝑋𝑛 𝜑 is called an ℒ-formula equation. The for-
mula variables 𝑋1,…,𝑋𝑛 are called the unknowns of Φ and 𝜑 is called the
matrix of Φ.

We say that a formula equation Φ is quantifier-free, Π𝑛, Σ𝑛 if its matrix has the
respective property.

In the sequel, when we write a formula equation as ∃�̄� 𝜑, we mean that
𝜑 is the matrix of the formula equation.

Definition 2.2 (Solution of a formula equation). Let Φ ≡ ∃�̄� 𝜑 be an ℒ-formula
equation with unknowns 𝑋1,…,𝑋𝑛 and 𝒯 an ℒ-theory. A second-order substi-
tution 𝜏 = [𝑋1\𝜓1,…,𝑋𝑛\𝜓𝑛], where 𝜓1,…, 𝜓𝑛 are ℒ-formulas of appropriate
types, is a 𝒯-solution of Φ if 𝒯 ⊧ 𝜑𝜏.

We refer to these second-order formulas as “equations” because there is a parallel
with algebraic equations and their solutions. Note that 𝜏 is a 𝒯-solution of ∃�̄� 𝜑
iff 𝒯 ⊧ 𝜑𝜏 ↔ ⊤. Thus, 𝜏 assigns “values” to the variables of 𝜑 in such a way that
𝜑 becomes “equal” to ⊤ (modulo 𝒯). This is analogous to how a solution of an
ordinary equation 𝑡(𝑥1,…, 𝑥𝑛) = 0 is a substitution of the variables in 𝑡 by values
such that 𝑡 becomes equal to 0.

Example 2.3. Φ ≡ ∃𝑋. ∀𝑛. 𝑋(2 ⋅ 𝑛) ∧ (𝑋(𝑛) → ¬𝑋(𝑠𝑛)) is a ℒ𝐴-formula
equation with one unary unknown. [𝑋(𝑛)\𝜓(𝑛) ≡ ∃𝑘 𝑛 = 2 ⋅ 𝑘] is a PA-solution
of Φ because

PA ⊧ ∀𝑛. ∃𝑘 2 ⋅ 𝑛 = 2 ⋅ 𝑘 ∧ (∃𝑘 𝑛 = 2 ⋅ 𝑘 → ∄𝑘 𝑠𝑛 = 2 ⋅ 𝑘).

Definition 2.4 (Solution problem). Let ℒ be a first-order language. A solution
problem over ℒ has three components:

1. An ℒ-theory 𝒯, called the background theory;
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2. A class ℱ of ℒ-formula equations;
3. A class 𝒞 of ℒ-formulas (the candidate solutions).

Given 𝒯,ℱ,𝒞 as above, the solution problem ⟨𝒯,ℱ,𝒞⟩ is the set of formula equa-
tions in ℱ that have 𝒯-solutions in 𝒞, i.e., the set

{∃�̄� 𝜑 ∈ ℱ ∣ ∃ ̄𝜓 ∈ 𝒞 s.t. 𝒯 ⊧ 𝜑[𝑋1\𝜓1,…,𝑋𝑛\𝜓𝑛]} .

If 𝒫 = ⟨𝒯,ℱ,𝒞⟩ is a solution problem, we call the formula equations in ℱ instances
of 𝒫 and those that are in 𝒫 positive instances of 𝒫.

When the class of candidate solutions that we have in mind is clear, for instance
in the context of discussing a particular solution problem, we will leave it implicit.
Thus, in such a context, by the question “does Φ have a solution?” we actually
mean “does Φ have a solution in the class 𝒞?”.

Example 2.5. Consider the solution problem 𝒫 = ⟨PA,ℱ, 𝒞⟩, where 𝒞 is the set
of purely existential formulas of ℒ𝐴 and ℱ is the set of all ℒ𝐴-formula equations.
Then Φ from Example 2.3 is a positive instance of 𝒫, since Φ ∈ ℱ, 𝜓(𝑛) ∈ 𝒞, and
[𝑋(𝑛)\𝜓(𝑛)] is a PA-solution of Φ.

Let us give some more general examples of the expressive power of formula equa-
tions.

Example 2.6.

1. Let ℒ be any first-order language and ℱ the set of formula equations without
unknowns—in other words, closed first-order formulas—over ℒ. The solution
problem ⟨∅,ℱ, ∅⟩ is the problem of first-order validity.

2. Let 𝒞 = {⊤,⊥} and ℱ the set of formula equations that contain only nullary
formula variables and propositional connectives. Then ⟨∅,ℱ, 𝒞⟩ is SAT.

3. Provability in Peano arithmetic can be obtained as a solution problem as
follows. A formula 𝜑 is provable in PA iff 𝜑 is provable from a single
induction axiom and the axioms of a finitely axiomatizable base theory such
as Robinson arithmetic Q in first-order logic, see e.g. [HW18, Corollary 2.1].
Let 𝒞 be the class of all first-order formulas over ℒ𝐴. Furthermore, let 𝑋 be
a unary formula variable, IND𝑋 the induction axiom for 𝑋 (cf. Definition
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1.18), and ℱ the set of all formula equations of the form ∃𝑋. 𝑄∧IND𝑋 → 𝜑,
where 𝑄 is the conjunction of the axioms of Robinson arithmetic and 𝜑 is
a closed ℒ𝐴-formula. Then ⟨∅,ℱ, 𝒞⟩ is the problem of provability in Peano
arithmetic.

These examples show that a large variety of questions can be formulated as solution
problems, among them some that are undecidable or whose algorithmic solution
poses considerable difficulties in practice. We are particularly interested in the
decidability of loop invariant generation.

2.2 Quantified solution problems

Here we will show that Π1 and Σ1 formula equations are generally unsolvable.
The proof originally appeared in [EHW17]; we present an updated version that is
based on many-sorted logic and contains more details.

First, we need to define a specific language.

Definition 2.7 (ℒ𝑃𝐶𝑃). ℒ𝑃𝐶𝑃 is the language containing

• the sorts Nat, BS, and IS;
• the constant symbols 0∶ Nat, 𝜀𝐵 ∶ BS, and 𝜀𝐼 ∶ IS;
• the function symbols

𝑠∶ Nat → Nat, 𝑠0, 𝑠1 ∶ BS → BS,
lw, rw ∶ IS → BS, len ∶ IS → Nat,

𝑝𝑖 ∶ IS → IS for every 𝑖 ≥ 1;

• and the predicate symbol 𝑃∶ Nat.

The intended interpretation of ℒ𝑃𝐶𝑃 is as follows: The sort Nat represents the
natural numbers, BS represents finite binary sequences, and IS represents finite
sequences of natural numbers. The symbols lw, rw, len, and 𝑃 will be explained
later.
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We extend the usual notation ̄⋅ for numerals to other terms of ℒ𝒫:

�̄� = 𝑠𝑘0∶ Nat for 𝑘 ∈ ℕ,
𝑎1 ⋯𝑎𝑘 = 𝑠𝑎1

⋯𝑠𝑎𝑘
𝜀𝐵 ∶ BS for 𝑎1,…, 𝑎𝑘 ∈ {0, 1},

(𝑞1,…, 𝑞𝑘) = 𝑝𝑞1
⋯𝑝𝑞𝑘

𝜀𝐼 ∶ IS for 𝑞1,…, 𝑞𝑘 ∈ {1,…, 𝑛}.

Thus, we can encode natural numbers, binary strings, and sequences of numbers
in {1,…, 𝑛}. Note that in all cases, equality of the encodings implies equality of
the original objects. Moreover, it is easy to see that the three encodings cover the
entirety of Terms(ℒ𝑃𝐶𝑃) apart from those containing lw, rw, or len.

If 𝑠 = 𝑎1 ⋯𝑎𝑘 is a binary string and 𝑡 ∶ BS is an ℒ𝑃𝐶𝑃-term, then we write 𝑠 ∗ 𝑡
for the ℒ𝑃𝐶𝑃-term 𝑠𝑎1

⋯𝑠𝑎𝑘
𝑡 ∶ BS.

Definition 2.8 (The existential and universal solution problems). Let 𝒞 be the
class of quantifier-free formulas over ℒ𝑃𝐶𝑃, ℰ the set of Σ1 formula equations and 𝒰
the set of Π1 formula equations over ℒ𝑃𝐶𝑃. Then the solution problem ⟨∅, ℰ, 𝒞⟩ is
called the existential solution problem and ⟨∅, 𝒰, 𝒞⟩ is called the universal solution
problem.

Both the existential and the universal solution problem are undecidable, but the
proofs are very different. The existential solution problem is quickly dealt with.

Theorem 2.9. The existential solution problem is undecidable.

Proof. By reduction from the validity problem of first-order logic.

By application of validity-preserving skolemization sk+ and prenexification, the va-
lidity problem of first-order logic reduces to the validity problem of formulas of the
form ∃ ̄𝑥 𝜑 with 𝜑 quantifier-free. This problem, in turn, obviously reduces to the
existential solution problem. Since the first-order validity problem is undecidable,
the existential solution problem must be undecidable as well.

We will prove the undecidability of the universal solution problem by a reduction
from the Post Correspondence Problem (PCP). Let us first define PCP.

Definition 2.10 (Modified Post Correspondence Problem). An instance of the
Post Correspondence Problem is a sequence 𝒫 = (𝑣1, 𝑤1),…(𝑣𝑛, 𝑤𝑛), where 𝑛 ≥
2,𝑣𝑖, 𝑤𝑖 ∈ {0, 1}∗, 𝑣1 ≠ 𝑤1 and 𝑣1, 𝑤1 ≠ 𝜀.
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A solution of an instance 𝒫 of the PCP is a sequence 𝑞1,…, 𝑞𝑚 such that

𝑣𝑞1
…𝑣𝑞𝑚

𝑣1 = 𝑤𝑞1
…𝑤𝑞𝑚

𝑤1 (2.1)

Remark. The “modification” is the requirement that both sides in (2.1) must end
at index 1.

PCP is a famous example of an undecidable problem.

Theorem 2.11. The modified PCP is undecidable.

A proof can be found in [Sip12].

Our aim is now to construct, for a given instance 𝒫 of the modified PCP, an
instance ∃𝑋∀ ̄𝑦 𝜑𝒫(𝑋, 𝑦) of the universal solution problem that has a solution iff
𝒫 does.

Every instance of the modified PCP induces a theory.

Definition 2.12 (𝒯𝒫). Let 𝒫 = (𝑣1, 𝑤1),…(𝑣𝑚, 𝑤𝑚) be an instance of the mod-
ified PCP. Then 𝒯𝒫 is the set containing the following ℒ𝑃𝐶𝑃-formulas:

LW0 ≡ lw𝜀𝐼 = 𝑣1, RW0 ≡ rw𝜀𝐼 = 𝑤1,
LW1(𝑥) ≡ lw(𝑝1𝑥) = 𝑣1 ∗ lw𝑥, RW1(𝑥) ≡ rw(𝑝1𝑥) = 𝑤1 ∗ rw𝑥,

⋮ ⋮
LW𝑚(𝑥) ≡ lw(𝑝𝑚𝑥) = 𝑣𝑚 ∗ lw𝑥, RW𝑚(𝑥) ≡ rw(𝑝𝑚𝑥) = 𝑤𝑚 ∗ rw𝑥

LEN0 ≡ len 𝜀𝐼 = 0, NS(𝑥) ≡ lw𝑥 ≠ rw𝑥,
LEN1(𝑥) ≡ len(𝑝1𝑥) = 𝑠(len𝑥),

⋮
LEN𝑚(𝑥) ≡ len(𝑝𝑚𝑥) = 𝑠(len𝑥).

If 𝑡 ∶ IS is a term, we write 𝒯𝒫(𝑡) for the set {𝜓(𝑡) | 𝜓 ∈ 𝒯𝒫}.

Clearly, lw and rw represent the functions that map a sequence (𝑝𝑖1
,…, 𝑝𝑖𝑞

) to
𝑣𝑖1

⋯𝑣𝑖𝑞
𝑣1 and 𝑤𝑖1

⋯𝑤𝑖𝑞
𝑣1, respectively, and len represents the function that maps

such a sequence to its length 𝑞.
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We can view the formulas LW0 – LW𝑚, RW0 – RW𝑚, and LEN0 – LEN𝑚 as
rewrite rules in the sense of Section 1.2. by reading them from left to right.
Consequently, they induce a rewriting relation ⇝𝒫.

Lemma 2.13. Let 𝒫 be an instance of the modified PCP and ⇝𝒫 the rewriting
relation induced by 𝒯𝒫. Then ⇝𝒫 is terminating and confluent.

Proof. All reducible terms are of the form lw(𝑝𝑖𝑘
⋯𝑝𝑖1

𝜀𝐼), rw(𝑝𝑖𝑘
⋯𝑝𝑖1

𝜀𝐼), or
len(𝑝𝑖𝑘

⋯𝑝𝑖1
𝜀𝐼). We only consider the first case, the others are proved analo-

gously. For 𝑘 = 0, we have lw𝜀𝐼 ⇝𝒫 𝑣1 by the only applicable rewrite rule LW0.
Now assume that every term of the form lw(𝑝𝑖𝑘

⋯𝑝𝑖1
𝜀𝐼) has a unique normal form

𝑡. Then lw(𝑝𝑖𝑘+1
𝑝𝑖𝑘

⋯𝑝𝑖1
𝜀𝐼) ⇝𝒫 𝑣𝑖𝑘+1

∗ lw(𝑝𝑖𝑘
⋯𝑝𝑖1

𝜀𝐼) ⇝∗
𝒫 𝑣𝑖𝑘+1

∗ 𝑡. Again, there
is only one applicable rule, so the normal form is unique.

Let ∼𝒫 be the relation on ℒ𝑃𝐶𝑃-terms defined by 𝑠 ∼𝒫 𝑡 iff 𝑠 and 𝑡 share a ⇝𝒫-
normal form. Since ⇝𝒫 is strongly normalizing and confluent, ∼𝒫 is an equivalence
relation. We denote the equivalence class of 𝑡 modulo this relation by [𝑡]𝒫.

Note that all of the rewrite rules operate on terms starting with lw, rw, or len.
This implies that all terms that do not contain any of these symbols are already
in normal form. In particular, this includes all terms of the sort IS.

Definition 2.14 (Standard model). Let 𝒫 be an instance of the modified PCP. A
𝒫-standard model is an ℒ𝑃𝐶𝑃-structure ℳ such that 𝑀 = { [𝑡]𝒫 | 𝑡 ∈ Terms(ℒ𝑃𝐶𝑃)}
and 𝑡ℳ = [𝑡]𝒫 for all ℒ𝑃𝐶𝑃-terms 𝑡.

We call an ℒ𝑃𝐶𝑃-formula 𝒫-standard valid if it holds in all 𝒫-standard models.
Conversely, a formula is called 𝒫-standard unsatisfiable if it holds in no 𝒫-standard
model. As usual, we will drop the 𝒫 if it is unambiguous.

For a given 𝒫, how many 𝒫-standard models are there, and what do they look
like? The carrier sets of the three sorts are uniquely determined by the relation
∼𝒫, which is itself uniquely determined by 𝒫. Moreover, each of the function
symbols lw, rw, len admits only one interpretation. The only remaining degree of
freedom is in the interpretation of the predicate symbol 𝑃. It is easy to see that
for any set 𝑆 ⊆ ℕ, there is a 𝒫-standard model ℳ such that 𝑃ℳ = { 𝑖 ∣ 𝑖 ∈ 𝑆}.
Consequently, any formula not containing 𝑃 must either be standard valid or
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standard unsatisfiable. Note also that each element of the sort Nat has exactly
one representation—that is, member of the equivalence class—of the form �̄� for
some 𝑛 ∈ ℕ. Analogously, each element of the sort IS has a unique representation
of the form 𝑎1 ⋯𝑎𝑞, where 𝑎𝑖 ∈ {0, 1}. Meanwhile, the elements of the sort IS
are equivalence classes with only a single member, each of which has the form
(𝑝𝑖1

,…, 𝑝𝑖𝑞
) with 𝑖𝑗 ≤ 𝑚.

The next lemma shows why we are justified in using the name “standard model”.

Lemma 2.15. Let 𝒫 be an instance of the modified PCP. Then the axioms LW0

– LW𝑚, RW0 – RW𝑚 of 𝒯𝒫 are 𝒫-standard valid. NS is 𝒫-standard valid iff 𝒫
has no solution.

Proof. The first part is obvious from the definition of a 𝒫-standard model. For
the second part, we first show that

[lw(𝑞𝑘,…, 𝑞1)]𝒫 = 𝑣𝑞𝑘
⋯𝑣𝑞1

𝑣1

and

[rw(𝑞𝑘,…, 𝑞1)]𝒫 = 𝑤𝑞𝑘
⋯𝑤𝑞1

𝑤1.

Again, we only prove the first statement. For 𝑘 = 0 we obtain

[lw()]𝒫 = [lw𝜀𝐼]𝒫 = 𝑣1.

Now assume [lw(𝑞𝑘,…, 𝑞1)]𝒫 = 𝑣𝑞𝑘
⋯𝑣𝑞1

𝑣1. Then

[lw(𝑞𝑘+1𝑞𝑘,…, 𝑞1)]𝒫 = 𝑣𝑞𝑘+1
∗ [lw(𝑞𝑘,…, 𝑞1)]𝒫

= 𝑣𝑞𝑘+1
∗ 𝑣𝑞𝑘

⋯𝑣𝑞1
𝑣1

= 𝑣𝑞𝑘+1
⋯𝑣𝑞1

𝑣1.

Now let ℳ be a 𝒫-standard model. It follows that

ℳ ⊧ lw(𝑞𝑘,…, 𝑞1) = 𝑣𝑞𝑘
⋯𝑣𝑞1

𝑣1 ∧ rw(𝑞𝑘,…, 𝑞1) = 𝑤𝑞𝑘
⋯𝑤𝑞1

𝑤1.

Assume that (𝑞𝑘,…, 𝑞1) is a solution of 𝒫. Then 𝑣𝑞𝑘
⋯𝑣𝑞1

𝑣1 = 𝑤𝑞𝑘
⋯𝑤𝑞1

𝑤1 and
consequently

ℳ ⊧ lw(𝑞𝑘,…, 𝑞1) = 𝑣𝑞𝑘
⋯𝑣𝑞1

𝑣1

= 𝑤𝑞𝑘
⋯𝑤𝑞1

𝑤1

= rw(𝑞𝑘,…, 𝑞1),
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so ℳ ̸⊧NS.

For the other direction, assume that ℳ ̸⊧NS. Then there is ̃𝑡 ∶ IS ∈ ℳ such that
ℳ ⊧ lw ̃𝑡 = rw ̃𝑡. By the definition of a standard model, ̃𝑡 is an equivalence class
of ∼𝒫, and since ̃𝑡 belongs to the sort IS, there is only one element 𝑡 in ̃𝑡. Clearly,
𝑡 must be of the form (𝑞𝑘 ⋯𝑞1) for some 𝑞1,…, 𝑞𝑘 ∈ {1,…, 𝑛}, so in fact

ℳ ⊧ 𝑣𝑞𝑘
⋯𝑣𝑞1

𝑣1 = lw(𝑞𝑘,…, 𝑞1)
= rw(𝑞𝑘,…, 𝑞1)
= 𝑤𝑞𝑘

⋯𝑤𝑞1
𝑤1.

It follows that (𝑞𝑘,…, 𝑞1) is a solution of 𝒫.

Definition 2.16 (𝜑𝒫).

1. Let 𝑡 ∶ IS be an ℒ𝑃𝐶𝑃-term and 𝑚,𝑛 ∈ ℕ. Then

𝒞𝑚
𝑛 = {𝑝𝑖1

⋯𝑝𝑖𝑞
𝑡 ∣ 𝑞 ∈ {0,…, 𝑛}, 𝑖𝑞 ∈ {1,…,𝑚}} .

2. Let 𝒫 be an instance of the modified PCP, 𝑚 the length of 𝒫, and 𝒯𝒫 the
theory induced by 𝒫. Moreover, let 𝑋∶ Nat× IS be a formula variable. We
define three sequents:

𝑆𝒫
0 (𝑋, 𝛾) ≡ 𝒯𝒫(𝛾), 𝑃 (0) ⊢ 𝑋(0, 𝛾),

𝑆𝒫
1 (𝑋, 𝜈, 𝛾) ≡ {

𝒯𝒫(𝛾), {𝑋(𝜈, 𝑡) | 𝑡 ∈ 𝒞𝑚
1 (𝛾)} ,

𝑃 (len 𝛾) → 𝑃(𝑠(len 𝛾))
} ⊢ 𝑋(𝑠𝜈, 𝛾),

𝑆𝒫
2 (𝑋, 𝛼) ≡ 𝑋(𝛼, 𝜀𝐼) ⊢ 𝑃(𝛼).

Then 𝜑𝒫(𝑋) ≡ ∀𝛼, 𝛾, 𝜈. 𝑆𝒫
0 (𝑋, 𝛾) ∧ 𝑆𝒫

1 (𝑋, 𝜈, 𝛾) ∧ 𝑆𝒫
2 (𝑋, 𝛼).

The intended meaning of 𝑋(�̄�, ̄𝑡) is “𝑡 cannot be extended by 𝑛 terms such that
the result is a solution of 𝒫” and the intended meaning of 𝑃(�̄�) is “there is no
solution of 𝒫 of length 𝑛”.

Before we perform the reduction, we define some auxiliary formulas.

Definition 2.17. Let 𝑚,𝑛 ∈ ℕ. For any ℒ𝑃𝐶𝑃-formula 𝜓(𝑦∶ Nat, 𝑧 ∶ IS) and
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variables 𝜈, 𝛾, we define the sequents

Θ𝑚
𝑛 (𝜓, 𝜈, 𝛾) ≡ {

{𝑃(𝑠𝑖(len 𝛾)) → 𝑃(𝑠𝑖+1(len 𝛾)) ∣ 𝑖 < 𝑛} ,
{ 𝜓(𝜈, 𝑡) | 𝑡 ∈ 𝒞𝑚

𝑛 (𝛾)}
} ⊢ 𝜓(𝑠𝑛𝜈, 𝛾),

Σ𝑚
𝑛 (𝜓, 𝛾) ≡ 𝑃(0), { 𝑃(𝑠𝑖(len 𝛾)) → 𝑃(𝑠𝑖+1(len 𝛾)) ∣ 𝑖 < 𝑛} ⊢ 𝜓(𝑠𝑛0, 𝛾).

Lemma 2.18. Let 𝒫 be a negative instance of the modified PCP and let 𝑚 be the
length of 𝒫. If 𝜓 is a solution of ∃𝑋. 𝜑𝒫(𝑋), then the sequents Θ𝑚

𝑛 (𝜓, 𝜈, 𝛾) and
Σ𝑚

𝑛 (𝜓, 𝛾) are 𝒫-standard valid for all 𝑛 ∈ ℕ.

Proof. We first show the standard validity of Θ𝑚
𝑛 . 𝒮1(𝜓, 𝜈, 𝛾) is valid by assump-

tion. By Lemma 2.15, this means that the sequent

𝑆′
1(𝜓, 𝜈, 𝛾) ≡ 𝑃(len 𝛾) → 𝑃(𝑠(len 𝛾)), { 𝜓(𝜈, 𝑡) | 𝑡 ∈ 𝒞𝑚

1 (𝛾)} ⊢ 𝜓(𝑠𝜈, 𝛾)

is standard valid as well. In particular, for 𝑘 ∈ ℕ all sequents in

𝒮𝑘 = {𝑆′
1(𝜓, 𝑠𝑛−𝑘−1𝜈, 𝑢) ∣ 𝑢 ∈ 𝒞𝑘(𝛾)}

and the sequent 𝑇 ≡ 𝑆′
1(𝜓, 𝑠𝑛−1𝜈, 𝛾) are standard valid. Consider 𝒮1:

{
𝑃(len 𝛾) → 𝑃(𝑠(len 𝛾)),
{ 𝜓(𝑠𝑛−2𝜈, 𝑡) ∣ 𝑡 ∈ 𝒞𝑚

1 (𝛾)}
} ⊢ 𝜓(𝑠𝑛−1𝜈, 𝛾),

{
𝑃(len(𝑝1𝛾)) → 𝑃(𝑠(len(𝑝1𝛾))),
{ 𝜓(𝑠𝑛−2𝜈, 𝑡) ∣ 𝑡 ∈ 𝒞𝑚

1 (𝑝1𝛾)}
} ⊢ 𝜓(𝑠𝑛−1𝜈, 𝑝1𝛾),

⋮

{
𝑃(len(𝑝𝑚𝛾)) → 𝑃(𝑠(len(𝑝𝑚𝛾))),
{ 𝜓(𝑠𝑛−2𝜈, 𝑡) ∣ 𝑡 ∈ 𝒞𝑚

1 (𝑝𝑚𝛾)}
} ⊢ 𝜓(𝑠𝑛−1𝜈, 𝑝𝑚𝛾)

Observe that all the formulas in the succedents of these sequents occur in the
antecedent of 𝑇. This means that using the cut rule, we can show that the sequent

{𝑃(len 𝑡) → 𝑃(𝑠(len 𝑡)) | 𝑡 ∈ 𝒞𝑚
1 } , {𝜓(𝑠𝑛−2𝜈, 𝑡) ∣ 𝑡 ∈ 𝒞𝑚

2 (𝛾)} ⊢ 𝜓(𝑠𝑛𝜈, 𝛾)

is standard valid. By repeating this process with the sets 𝒮2,…, 𝒮𝑛−1, we prove
that

Θ𝑚
𝑛 (𝜓, 𝜈, 𝛾) ≡ {

{𝑃(𝑠𝑖(len 𝛾)) → 𝑃(𝑠𝑖+1(len 𝛾)) ∣ 𝑖 < 𝑛} ,
{𝜓(𝜈, 𝑡) | 𝑡 ∈ 𝒞𝑚

𝑛 (𝛾)}
} ⊢ 𝜓(𝑠𝑛𝜈, 𝛾)
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is standard valid.

For the standard validity of Σ𝑚
𝑛 , observe that by assumption and Lemma 2.15, the

sequent

𝑆′
0(𝛾) ≡ 𝑃(0) ⊢ 𝜓(0, 𝛾)

is standard valid. Now consider

{𝑆′
0(𝑡) | 𝑡 ∈ 𝒞1(𝛾)} =

⎧{{
⎨{{⎩

𝑃(0) ⊢ 𝜓(0, 𝛾),
𝑃 (0) ⊢ 𝜓(0, 𝑝1𝛾),

⋮
𝑃 (0) ⊢ 𝜓(0, 𝑝𝑚𝛾)

⎫}}
⎬}}⎭

.

By applying the cut rule to these sequents and 𝑆′
1(𝜓, 0, 𝛾), we obtain the stan-

dard validity of 𝑃(0), 𝑃 (len 𝛾) → 𝑃(𝑠(len 𝛾)) ⊢ 𝜓(𝑠0, 𝛾). By repeating the same
process with 𝑆′

1(𝜓, 𝑠0, 𝛾),…, 𝑆′
1(𝜓, 𝑠𝑛−10, 𝛾), we eventually arrive at the standard

validity of

Σ𝑚
𝑛 (𝜓, 𝛾) ≡ 𝑃(0), { 𝑃(𝑠𝑖(len 𝛾)) → 𝑃(𝑠𝑖+1(len 𝛾)) ∣ 𝑖 < 𝑛} ⊢ 𝜓(𝑠𝑛0, 𝛾).

Lemma 2.19. Let 𝒫 be an instance of the modified PCP and 𝜑 a ground quantifier-
free ℒ𝑃𝐶𝑃-formula.

1. Let 𝜑′ be the formula obtained by replacing all standard-valid =-atoms in 𝜑
by ⊤ and all standard-unsatisfiable =-atoms by ⊥. Then 𝜑 ↔ 𝜑′ is standard
valid and 𝜑′ only contains the predicate symbol 𝑃.

2. Assume that 𝜑 contains only the predicate symbol 𝑃. Let 𝑡, 𝑢 ∶ Nat and let
𝜑′ be the formula obtained by replacing all terms 𝑡′ in 𝜑 such that 𝑡′ ∼𝒫 𝑡
by 𝑢. If 𝜑 is standard valid, so is 𝜑′.

Proof. For 1, observe that every ground =-atom 𝑡 = 𝑢 is either standard valid (if
𝑡 ∼𝒫 𝑢) or standard unsatisfiable (if 𝑡 ≁𝒫 𝑢). The claim follows immediately.

For 2, we argue by contraposition. Let ℳ ̸⊧ 𝜑′. If the replacement turns a term
𝑤 into 𝑤′, there must be unique terms 𝑟𝑤(𝑥), 𝑣𝑤 such that

𝑣𝑤 ∼𝒫 𝑡,
𝑤 = 𝑟𝑤(𝑣𝑤),
𝑤′ = 𝑟𝑤(𝑢).
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Now let 𝑆 = { [𝑟𝑤(𝑣𝑤)]𝒫 ∣ [𝑟𝑤(𝑢)]𝒫 ∈ 𝑃ℳ} and let 𝒩 be the standard model with
𝑃𝒩 = 𝑆. Then 𝒩 ̸⊧ 𝜑.

Lemma 2.20. Let 𝒫 be an instance of the modified PCP, 𝑡(𝑥), 𝑢(𝑥) ∶ Nat terms,
and 𝑚,𝑛, 𝑑 ∈ ℕ. Then 𝑡(�̄�) = 𝑢(�̄�) ↔ 𝑡(𝑚 + 𝑑) = 𝑢(𝑛 + 𝑑) is standard valid.

Proof. Trivial.

Lemma 2.21. Let 𝒫 be an instance of the modified PCP. If ∃𝑋𝜑𝒫(𝑋) is a positive
instance of the universal solution problem, then 𝒫 has a solution.

Proof. By contradiction. Assume that 𝜓(𝑦, 𝑧) is a solution of ∃𝑋𝜑𝒫(𝑋) and 𝒫
has no solution. Let 𝑚 be the size of 𝒫, 𝑘 an upper bound on the sizes of terms
in 𝜓 and 𝑛, 𝑞1, 𝑞2 ∈ ℕ such that 𝑛 > 𝑘 and 𝑞2 > 𝑞1 > 2𝑛. By Lemma 2.18,

Θ𝑚
𝑛 (𝜓, 𝑞1 − 𝑛, 𝜀𝐼) ≡{𝑃(𝑠𝑖(len 𝜀𝐼)) → 𝑃(𝑠𝑖+1(len 𝜀𝐼)) ∣ 𝑖 < 𝑛} ,

{𝜓(𝑞1 − 𝑛, 𝑡) | 𝑡 ∈ 𝒞𝑚
𝑛 (𝜀𝐼)}

⊢ 𝜓(𝑞1, 𝜀𝐼)

is standard valid. Since len 𝜀𝐼 = 0 holds in every standard model, this simplifies
to

{𝑃(𝑖) → 𝑃(𝑖 + 1) ∣ 𝑖 < 𝑛} , {𝜓(𝑞1 − 𝑛, 𝑡) | 𝑡 ∈ 𝒞𝑚
𝑛 (𝜀𝐼)} ⊢ 𝜓(𝑞1, 𝜀𝐼)

By Lemma 2.19, for each ground instance 𝜓(𝑢, 𝑡) of 𝜓 there is a formula 𝜅𝑢,𝑡

containing only the predicate symbol 𝑃 such that 𝜓(𝑢, 𝑡) ↔ 𝜅𝑢,𝑡 is standard valid.
Note that since we only replace =-atoms by ⊤ or ⊥, 𝜅𝑢,𝑡 contains no terms that
𝜓(𝑢, 𝑡) does not already contain. Consequently, the sequent

{𝑃(𝑖) → 𝑃(𝑖 + 1) ∣ 𝑖 < 𝑛} , { 𝜅𝑞1−𝑛,𝑡 ∣ 𝑡 ∈ 𝒞𝑚
𝑛 (𝜀𝐼)} ⊢ 𝜅𝑞1,𝜀𝐼

is standard valid. Now consider what happens when we replace all occurrences of
𝑞1 in this sequent by 𝑞2. The antecedent cannot contain 𝑞1 due to our assumptions
about 𝑞1,𝑚, and 𝑛, which only leaves 𝜅𝑞1,𝜀𝐼

. Here, the replacement yields 𝜅𝑞2,𝜀𝐼
,

because due to Lemma 2.20, each atom 𝑡(𝑞1) = 𝑢(𝑞1) in 𝜓(𝑞1, 𝜀𝐼) is standard
valid (or standard unsatisfiable) if 𝑡(𝑞2) = 𝑢(𝑞2) in 𝜓(𝑞2, 𝜀𝐼) is standard valid (or
standard unsatisfiable). Therefore, we obtain the standard validity of

𝑇 ≡ {𝑃(𝑖) → 𝑃(𝑖 + 1) ∣ 𝑖 < 𝑛} , { 𝜅𝑞1−𝑛,𝑡 ∣ 𝑡 ∈ 𝒞𝑚
𝑛 (𝜀𝐼)} ⊢ 𝜅𝑞2,𝜀𝐼
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again by Lemma 2.19. We also know that for each 𝑡 ∈ 𝒞𝑚
𝑛 (𝜀𝐼), the sequent

Σ𝑚
𝑞1−𝑛(𝜓, 𝑡) ≡𝑃(0), { 𝑃(𝑠𝑖(len 𝑡)) → 𝑃(𝑠𝑖+1(len 𝑡)) ∣ 𝑖 < 𝑞1 − 𝑛}

⊢ 𝜓(𝑞1 − 𝑛, 𝑡)

is standard valid by Lemma 2.15. Like before, we can replace 𝜓(𝑞1 − 𝑛, 𝑡) by
𝜅𝑞1−𝑛,𝑡 without compromising standard validity. This allows us to cut these se-
quents with 𝑇, from which we obtain the standard valid sequent

𝑃(0), {𝑃(𝑖) → 𝑃(𝑖 + 1) ∣ 𝑖 < 𝑞1} ⊢ 𝜅𝑞2,𝜀𝐼
.

To see this, observe that for 𝑡 ∈ 𝒞𝑚
𝑛 (𝜀𝐼), len 𝑡 = �̄� for some 𝑘 ≤ 𝑛. Since the

sequent 𝑆3(𝜓, 𝑞2) ≡ 𝜓(𝑞2, 𝜀𝐼) ⊢ 𝑃(𝑞2) is standard valid by assumption, it also fol-
lows that 𝑃(0), {𝑃(𝑖) → 𝑃(𝑖 + 1) ∣ 𝑖 < 𝑞1} ⊢ 𝑃(𝑞2) is standard valid. But there
is a standard model ℳ such that 𝑃ℳ = { [𝑠𝑖0]𝒫 ∣ 𝑖 < 𝑞2}, which is a contradic-
tion.

Definition 2.22 (L𝑛,R𝑛,N𝑛, 𝜎𝑛). Let 𝒫 be an instance of the modified PCP, 𝑚
the size of 𝒫, and 𝑛 ∈ ℕ. Then we define the sets

L𝒫
𝑛 = ⋃

𝑡∈𝒞𝑚
𝑛 (𝜀𝐼)

{LW0,LW1(𝑡),…,LW𝑚(𝑡)},

R𝒫
𝑛 = ⋃

𝑡∈𝒞𝑚
𝑛 (𝜀𝐼)

{RW0,RW1(𝑡),…,RW𝑚(𝑡)},

N𝒫
𝑛 = {NS(𝑡) | 𝑡 ∈ 𝒞𝑚

𝑛 (𝜀𝐼)} .

Furthermore, we define the formulas

𝜎𝒫
𝑛 (𝑧) ≡ 𝑃(0) ∧ ⋀

𝑖<𝑛
(𝑃 (𝑠𝑖(len 𝑧)) → 𝑃(𝑠𝑖+1(len 𝑧))) ∧ ⋀

𝑡∈𝒞𝑚
𝑛 (𝑧)

𝒯𝒫(𝑡)

The following properties of 𝜎𝒫
𝑛 are easy to prove.

Lemma 2.23. Let 𝒫 be an instance of the modified PCP.

1. If 𝑘 > 𝑛, then 𝜎𝒫
𝑘 (𝑧) → 𝜎𝒫

𝑛 (𝑧) is valid.
2. 𝜎𝒫

𝑛 (𝜀𝐼) → 𝑃(�̄�) is valid for all 𝑛 ∈ ℕ.
3. 𝜎𝒫

𝑛 (𝜀𝐼) → 𝜓 is valid for all 𝑛 ∈ ℕ and 𝜓 ∈ L𝒫
𝑛 ∪ R𝒫

𝑛 ∪ N𝒫
𝑛 .
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Lemma 2.24. Let 𝒫 be an instance of the modified PCP. If 𝑞1,…, 𝑞𝑛 is a solution
of 𝒫, then ¬𝜎𝒫

𝑛 (𝜀𝐼) is valid.

Proof. By contraposition. Assume that 𝜎𝒫
𝑛 (𝜀𝐼) is valid. By Lemma 2.23, this

implies the validity of L𝒫
𝑛 ∪ R𝒫

𝑛 ∪ N𝒫
𝑛 . It is easy to see that a solution of length 𝑛

would contradict the validity of this set.

Lemma 2.25. Let 𝒫 be a positive instance of the modified PCP. Then ∃𝑋𝜑𝒫(𝑋)
is a positive instance of the universal solution problem.

Proof. Let 𝑞1,…, 𝑞𝑛 be a solution of 𝒫 and 𝑚 the length of 𝒫. We define a formula
𝜓(𝑦, 𝑧) as follows:

(𝑦 = 0 → 𝜎𝒫
0 (𝑧))

∧ (𝑦 ≠ 0 ∧ 𝑦 = ̄1 → 𝜎𝒫
1 (𝑧))

⋮
∧ (𝑦 ≠ 0 ∧ … ∧ 𝑦 = 𝑛 − 1 → 𝜎𝒫

𝑛−1(𝑧))
∧ (𝑦 ≠ 0 ∧ … ∧ 𝑦 ≠ 𝑛 − 1 → 𝜎𝒫

𝑛 (𝑧))

We claim that 𝜓(𝑦, 𝑧) is a solution of ∃𝑋𝜑𝒫(𝑋), i.e., that the sequents

∀𝑧𝑆0(𝜓, 𝑧) ≡ ∀𝑧. 𝒯𝒫(𝑧), 𝑃 (0) ⊢ 𝜓(0, 𝑧),

∀𝑦, 𝑧 𝑆1(𝜓, 𝑦, 𝑧) ≡ ∀𝑦, 𝑧.{
𝒯𝒫(𝑧), { 𝜓(𝑦, 𝑡) | 𝑡 ∈ 𝒞𝑚

1 (𝑧)} ,
𝑃 (len 𝑧) → 𝑃(𝑠(len 𝑧))

} ⊢ 𝜓(𝑠𝑦, 𝑧),

∀𝑦𝑆2(𝜓, 𝑦) ≡ ∀𝑦. 𝜓(𝑦, 𝜀𝐼) ⊢ 𝑃(𝑦).

are valid.

For ∀𝑧𝑆0(𝜓, 𝑧), observe that 𝜓(0, 𝑧) is equivalent to 𝑃(0)∧𝒯𝒫(𝑧), so the validity
of the sequent follows immediately.

For ∀𝑦, 𝑧 𝑆1(𝜓, 𝑦, 𝑧), we have to prove 𝜓(𝑠𝑦, 𝑧) from the assumptions

𝒯𝒫(𝑧),
𝑃 (len 𝑧) → 𝑃(𝑠(len 𝑧)),
{ 𝜓(𝑦, 𝑡) | 𝑡 ∈ 𝒞𝑚

1 (𝑧)} .

There are three cases to distinguish.
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• 𝑠𝑦 = 0: 𝜓(𝑠𝑦, 𝑧) is equivalent to 𝜎𝒫
0 (𝑧). We further distinguish cases accord-

ing to the value of 𝑦. If 𝑦 ≠ 0 ∧ … ∧ 𝑦 ≠ 𝑘 − 1, 𝑦 = 𝑘 for some 𝑘 < 𝑛, then
clearly 𝜓(𝑦, 𝑧) ⇔ 𝜎𝒫

𝑘 (𝑧), and hence 𝜓(𝑠𝑦, 𝑧) follows from 𝜓(𝑦, 𝑧) by Lemma
2.23. If 𝑦 ≠ 0 ∧ … ∧ 𝑦 ≠ 𝑛 − 1, then 𝜓(𝑦, 𝑧) ⇔ 𝜎𝒫

𝑛 (𝑧) and the claim follows
in the same way.

• 𝑠𝑦 ≠ 0 ∧ … ∧ 𝑠𝑦 ≠ 𝑘 − 1 ∧ 𝑠𝑦 = 𝑘 for some 1 ≤ 𝑘 < 𝑛: This immediately
implies 𝑦 ≠ 0∧…∧𝑦 ≠ 𝑘 − 2, 𝑦 = 𝑘 − 1. Now let 𝑡 ∈ 𝒞𝑚

1 (𝑧). By assumption,
we know 𝜓(𝑦, 𝑡) ≡ 𝜓(𝑘 − 1, 𝑡). In particular, this implies len 𝑡 = len 𝑧 ∨
len 𝑡 = 𝑠(len 𝑧). Thus, we know

𝜎𝒫
𝑘−1(𝑡) ≡ 𝑃(0) ∧ ⋀

𝑖<𝑘−1
(𝑃 (len 𝑡) → 𝑃(𝑠(len 𝑡))) ∧ ⋀

𝑢∈𝒞𝑚
𝑘−1(𝑡)

𝒯𝒫(𝑢)

for all 𝑡 ∈ 𝒞𝑚
1 (𝑧). It is easy to see that this implies

𝑃(0) ∧ ⋀
𝑖<𝑘

(𝑃 (len 𝑧) → 𝑃(𝑠(len 𝑧))) ∧ ⋀
𝑢∈𝒞𝑚

𝑘 (𝑧)
𝒯𝒫(𝑢)

by the definition of 𝒞𝑚
𝑛 . We have thus established 𝜎𝒫

𝑘 (𝑧), which implies
𝜓(𝑠𝑦, 𝑧) because 𝑠𝑦 = �̄�.

• 𝑠𝑦 ≠ 0 ∧ … ∧ 𝑠𝑦 ≠ 𝑛 − 1: By a similar argument to the previous case, we
can deduce 𝜎𝒫

𝑛−1(𝑡) ∨ 𝜎𝒫
𝑛 (𝑡) for all 𝑡 ∈ 𝒞𝑚

1 (𝑧). This formula implies 𝜎𝒫
𝑛−1(𝑡)

by Lemma 2.23. We deduce 𝜎𝒫
𝑛 (𝑧) and hence 𝜓(𝑠𝑦, 𝑧) in the same way as in

the previous case.

Finally, for ∀𝑦𝑆3(𝜓, 𝑦), we have to prove 𝑃(𝑦) from 𝜓(𝑦, 𝜀𝐼). If 𝑦 = 𝑖 for 𝑖 < 𝑛,
then 𝜓(𝑦, 𝜀𝐼) ⇒ 𝜎𝒫

𝑖 (𝜀𝐼), which implies 𝑃(𝑖) and hence 𝑃(𝑦). On the other hand, if
𝑦 ≠ 0∧…∧𝑦 ≠ 𝑛 − 1, then 𝜓(𝑦, 𝜀𝑖) implies 𝜎𝒫

𝑛 (𝜀𝐼). But by Lemma 2.24, ¬𝜎𝒫
𝑛 (𝜀𝐼)

is valid, so we can deduce 𝑃(𝑦) by ex falso quodlibet.

2.3 Inductive theorem proving

Inductive theorem proving, or the task of automatically finding proofs containing
induction inferences, is a prime example of a problem that can be modeled with
formula equations. In this section, we will define the problem and show how it
can be represented as a solution problem with quantifier-free candidate solutions.
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Tree grammars, which we briefly discuss in Section 2.4, play an integral role in the
translation.

For any formula 𝜑 ≡ 𝑄𝑥1…𝑄𝑥𝑛𝜓, where 𝑄𝑖 ∈ {∀, ∃} and 𝜓 is quantifier-free, and
terms 𝑡1,…, 𝑡𝑖, we call 𝜓[ ̄𝑥\ ̄𝑡] an instance of 𝜑. We call a sequent Γ ⊢ Δ such that
all formulas in Γ are Π1 and all formulas in Δ are Σ1 a Σ1 sequent.

Definition 2.26 (Herbrand sequent). Let Γ ⊢ Δ be a Σ1 sequent. Then an
Herbrand sequent of Γ ⊢ Δ is a sequent Γ′ ⊢ Δ′ such that

• Γ′ comprises instances of formulas in Γ and Δ′ comprises instances of for-
mulas in Δ;

• ⊧ ⋀Γ′ → ⋁Δ′.

We present the following version of Herbrand’s Theorem without proof.

Theorem 2.27. Let Γ ⊢ Δ be a Σ1 sequent. Then ⊧ Γ ⊢ Δ iff Γ ⊢ Δ has an
Herbrand sequent.

Later, we will need to consider Herbrand sequents as sets of terms. Therefore, we
introduce new function symbols for all formulas in the original Σ1 sequent, which
allows us to translate from the formula to the term level. To this end, we assume
that o is a fresh sort symbol.

Definition 2.28 (Function symbols for formulas). Let

∀𝑥1 ∶ 𝜎1,…, 𝑥𝑛 ∶ 𝜎𝑛 𝜑( ̄𝑥)

with 𝜑 quantifier-free be a closed Π1-formula. Then [∀ ̄𝑥 𝜑( ̄𝑥)] is a fresh function
symbol of the sort 𝜎1 ×…×𝜎𝑛 → o. The symbol [∃ ̄𝑥 𝜑( ̄𝑥)] is defined analogously.

The symbol [∀ ̄𝑥 𝜑( ̄𝑥)] allows us to represent instances of ∀ ̄𝑥 𝜑( ̄𝑥) as terms: the
instance 𝜑(𝑡1,…, 𝑡𝑛) is represented by the term [∀ ̄𝑥 𝜑( ̄𝑥)](𝑡1,…, 𝑡𝑛).

Definition 2.29 (Term set of a Herbrand sequent). Let

Γ ⊢ Δ ≡ ∀ ̄𝑥1 𝛾1( ̄𝑥1),…, ∀ ̄𝑥𝑚 𝛾𝑚( ̄𝑥𝑚) ⊢ ∃ ̄𝑥1 𝛿1( ̄𝑥1),…, ∃ ̄𝑥𝑛 𝛿𝑛( ̄𝑥𝑛)

be a Σ1 sequent and 𝐻 ≡ Γ′ ⊢ Δ′ an Herbrand sequent of Γ ⊢ Δ. Then the term
set of 𝐻 is the set

𝑇 (𝐻) = { [∀ ̄𝑥𝑖 𝛾𝑖( ̄𝑥𝑖)]( ̄𝑡) ∣ 𝛾𝑖( ̄𝑡) ∈ Γ′} ∪ { [∃ ̄𝑥𝑗 𝛿𝑖( ̄𝑥𝑗)]( ̄𝑡) ∣ 𝛿𝑗( ̄𝑡) ∈ Δ′} .
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In practice, we will only consider Σ1 sequents Γ ⊢ Δ where Δ only contains a
single quantifier-free formula 𝜑. Consequently, any Herbrand sequent 𝐻 of Γ ⊢ Δ
will have the form Γ′ ⊢ 𝜑 and the term set of 𝐻 reduces to

𝑇 (𝐻) = { [∀ ̄𝑥 𝛾( ̄𝑥)]( ̄𝑡) ∣ 𝛾( ̄𝑡) ∈ Γ′} ∪ {[𝜑]}.

We define provability using induction via an LK rule. A conventional induction
rule looks like the following:

Γ ⊢ Δ,𝜑(0) 𝜑(𝜈), Π ⊢ Λ, 𝜑(𝑠𝜈)
Γ,Π ⊢ Λ,𝜑(𝛼)

However, for technical reasons, we will choose a slightly different rule in the spirit
of Lemma 1.19.

Definition 2.30 (Induction rule). Let ℒ be an arithmetical language and 𝜑(𝛼)
an ℒ-formula. The induction rule is the inference rule

Γ ⊢ Δ,𝜑(0) 𝜑(𝜈), 𝜈 < 𝛼,Π ⊢ Λ,𝜑(𝑠𝜈)
indΓ,Π ⊢ Λ,𝜑(𝛼)

When we say that a sequent is “provable in LK+ induction”, we mean that it is
provable using the LK rules given in Definition 1.14 plus the rule ind. We have
shown in Lemma 1.19 that under fairly weak conditions (the axioms (O2) and
(OS2)), the ind rule is equivalent to the conventional induction rule.

We will specifically be interested in proofs of the form

𝜋0
Γ ⊢ 𝜑(𝛼, 0)

𝜋1
𝜑(𝛼, 𝜈), 𝜈 < 𝛼,Π ⊢ 𝜑(𝛼, 𝑠𝜈)

indΓ,Π ⊢ 𝜑(𝛼, 𝛼)
𝜋2

𝜑(𝛼, 𝛼), Λ ⊢ 𝜓(𝛼)
cutΓ,Π,Λ ⊢ 𝜓(𝛼)

(2.2)

where 𝜓 is quantifier-free and 𝜋0, 𝜋1, 𝜋2 contain no further induction inferences.
To simplify things in the sequel, we codify this combination of induction and cut
as an inference rule of its own.

Definition 2.31 (Non-analytic induction rule). The non-analytic induction rule
is the inference rule
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Γ ⊢ 𝜑(0) 𝜑(𝜈), 𝜈 < 𝛼,Π ⊢ 𝜑(𝑠𝜈) 𝜑(𝛼), Λ ⊢ Δ
ind∗Γ,Π,Λ ⊢ Δ

This rule is called “non-analytic” because the premises contain a formula that is
not present in the end-sequent. It is obvious that in the presence of the cut rule,
LK with ind is equivalent to LK with ind∗.

Using the non-analytic induction rule, the proof in (2.2) can be written as
𝜋0

Γ ⊢ 𝜑(𝛼, 0)
𝜋1

𝜑(𝛼, 𝜈), 𝜈 < 𝛼,Π ⊢ 𝜑(𝛼, 𝑠𝜈)
𝜋2

𝜑(𝛼, 𝛼), Λ ⊢ 𝜓(𝛼)
ind∗Γ,Π,Λ ⊢ 𝜓(𝛼)

(2.3)

Let us consider two special cases in more detail. First, let ∀Γ,∀Π,∀Λ be sets
of closed Π1 formulas, Γ,Π,Λ the sets of their matrices, and Γ′, Π′, Λ′ sets of
instances of ∀Γ,∀Π,∀Λ.

Second, assume that 𝜑(𝛼, 𝜈) ≡ ∀𝑦𝜑′(𝛼, 𝜈, 𝑦) with 𝜑′ quantifier-free. In this case,
we may assume that 𝜋0, 𝜋1, 𝜋2 have the forms

𝜋0 =

𝜋′
0

Γ′ ⊢ 𝜑′(𝛼, 0, 𝛾)
∀:l, c:l

∀Γ ⊢ 𝜑′(𝛼, 0, 𝛾)
∀:r∀Γ ⊢ ∀𝑦𝜑′(𝛼, 0, 𝑦)

𝜋1 =

𝜋′
1

{𝜑′(𝛼, 𝜈, 𝑡𝑖)}
𝑚
𝑖=1 , 𝜈 < 𝛼,Π′ ⊢ 𝜑′(𝛼, 𝑠𝜈, 𝛾)

∀:l, c:l
∀𝑦𝜑′(𝛼, 𝜈, 𝑦), 𝜈 < 𝛼,∀Π ⊢ 𝜑′(𝛼, 𝑠𝜈, 𝛾)

∀:r∀𝑦𝜑′(𝛼, 𝜈, 𝑦), 𝜈 < 𝛼,∀Π ⊢ ∀𝑦𝜑′(𝛼, 𝑠𝜈, 𝑦)

𝜋2 =
𝜋′

2

{𝜑′(𝛼, 𝛼, 𝑢𝑖)}
𝑚
𝑖=1 , Λ

′ ⊢ 𝜓(𝛼)
∀:l, c:l

∀𝑦𝜑′(𝛼, 𝛼, 𝑦), ∀Λ ⊢ 𝜓(𝛼)

where a doubled inference line represents a block of several applications of the
indicated rules. Let 𝒮𝑖 denote the conclusion of 𝜋′

𝑖 and ∀𝒮𝑖 the conclusion of 𝜋𝑖.
Then by substituting into (2.3), we obtain

𝜋′
0

𝒮0 ∗
∀𝒮0

𝜋′
1

𝒮1 ∗
∀𝒮1

𝜋′
2

𝒮2 ∗
∀𝒮2 ind∗∀Γ,∀Π,∀Λ ⊢ 𝜓(𝛼)

(2.4)
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By an analogous argument, if the conditions on Γ,Π,Λ remain the same, but
𝜑(𝛼, 𝜈) ≡ ∃𝑦𝜑′(𝛼, 𝜈, 𝑦), we obtain a proof of the same form with the sequents

𝒮0 ≡ Γ′ ⊢ {𝜑′(𝛼, 0, 𝑢𝑖)}
𝑚
𝑖=1 , 𝑎

∀𝒮0 ≡ ∀Γ ⊢ ∃𝑦𝜑′(𝛼, 0, 𝑦),

𝒮1 ≡ {
𝜑′(𝛼, 𝜈, 𝛾),
𝜈 < 𝛼,Π′ } ⊢ {𝜑′(𝛼, 𝑠𝜈, 𝑡𝑖)}

𝑛
𝑖=1 ,

∀𝒮1 ≡ {
∃𝑦𝜑′(𝛼, 𝜈, 𝑦),
𝜈 < 𝛼,∀Π

} ⊢ ∃𝑦𝜑′(𝛼, 𝑠𝜈, 𝑦),

𝒮2 ≡ 𝜑′(𝛼, 𝛼, 𝛾), Λ′ ⊢ 𝜓(𝛼),
∀𝒮2 ≡ ∃𝑦𝜑′(𝛼, 𝛼, 𝑦), ∀Λ ⊢ 𝜓(𝛼).

Proofs of these two forms are obviously completely determined by the sets Γ′, Π′, Λ′,
the formulas 𝜑′ and 𝜓′, and the terms 𝑡1,…, 𝑡𝑛 and 𝑢1,…, 𝑢𝑚. This leads us to
the following definition.

Definition 2.32 (Simple induction proof). Let ℒ be an arithmetical language
and 𝒯 a theory over ℒ. Furthermore, let ∀Γ be a set of closed Π1-formulas. A
universal simple induction proof of ∀Γ ⊢ 𝜓(𝛼) over 𝒯 (universal 𝒯-sip) is a triple
of sequents

𝒮0 ≡ Γ′(𝛼, 𝛾) ⊢ 𝜑(𝛼, 0, 𝛾),
𝒮1 ≡ Π′(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, {𝜑(𝛼, 𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}

𝑛
𝑖=1 ⊢ 𝜑(𝛼, 𝑠𝜈, 𝛾),

𝒮2 ≡ Λ′(𝛼), {𝜑(𝛼, 𝛼, 𝑢𝑖(𝛼))}
𝑚
𝑖=1 ⊢ 𝜓(𝛼),

where

• all formulas, terms, and sets are fully indicated,
• 𝛼, 𝜈∶ Nat,
• Γ′, Π′, Λ′ comprise instances of ∀Σ,

such that 𝒯 ⊢LK 𝒮𝑖 for 𝑖 ∈ {0, 1, 2}.

Dually, an existential simple induction proof of ∀Γ ⊢ 𝜓(𝛼) over 𝒯 (existential
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𝒯-sip) is a triple of sequents

𝒮0 ≡ Γ′(𝛼) ⊢ {𝜑(𝛼, 0, 𝑢𝑖(𝛼))}
𝑚
𝑖=1 ,

𝒮1 ≡ Π′(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, 𝜑(𝛼, 𝜈, 𝛾) ⊢ {𝜑(𝛼, 𝑠𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}
𝑛
𝑖=1 ,

𝒮2 ≡ Λ′(𝛼, 𝛾), 𝜑(𝛼, 𝛼, 𝛾) ⊢ 𝜓(𝛼),

with the same conditions as in the universal case.

In either case, the terms 𝑡1,…, 𝑡𝑛 are called the step terms, 𝑢1,…, 𝑢𝑚 are called
the base terms, and 𝜑 is called the induction formula of the sip.

The fact that we allow sips to depend on a background theory will prove useful
in later in Chapter 3. It is clear that universal and existential simple induction
proofs (over the empty background theory) can be used to reconstruct proofs of
the form (2.4).

Example 2.33. Consider the language of arithmetic ℒ𝐴 augmented with the
function symbols 𝑓∶ Nat → Nat and 𝑔∶ Nat × Nat → Nat. Let

∀Γ = {∀𝑥𝑥 ⋅ 𝑠0 = 𝑥, ∀𝑥 𝑠0 ⋅ 𝑥 = 𝑥,
𝑓(0) = 𝑠0, ∀𝑥 𝑓(𝑠𝑥) = 𝑠𝑥 ⋅ 𝑓(𝑥),
∀𝑥 𝑔(𝑥, 0) = 𝑥, ∀𝑥, 𝑦 𝑔(𝑥, 𝑠𝑦) = 𝑔(𝑥 ⋅ 𝑠𝑦, 𝑦),
∀𝑥, 𝑦, 𝑧 (𝑥 ⋅ 𝑦) ⋅ 𝑧 = 𝑥 ⋅ (𝑦 ⋅ 𝑧)},

i.e., ∀Γ contains some theorems of arithmetic and an axiomatization of two defi-
nitions 𝑓∶ ℕ → ℕ and 𝑔∶ ℕ × ℕ → ℕ of the factorial function given by

𝑓(0) = 1, 𝑔(𝑚, 0) = 𝑚,
𝑓(𝑛 + 1) = (𝑛 + 1) ⋅ 𝑓(𝑛), 𝑔(𝑚, 𝑛 + 1) = 𝑔(𝑚 ⋅ (𝑛 + 1), 𝑛).

Furthermore, let 𝜓 ≡ ∀Γ ⊢ 𝑔(1, 𝛼) = 𝑓(𝛼) be the claim that the two definitions
are equivalent. In order to prove this claim from the assumptions ∀Γ, we need the
induction formula

∀𝑦𝜑(𝜈, 𝑦) ≡ ∀𝑦 𝑔(𝑦, 𝜈) = 𝑦 ⋅ 𝑓(𝜈),
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of which 𝜓 is merely the special case with 𝑦 = 1. Now let 𝜋 be the triple of sequents

Γ′ ⊢ 𝑔(𝛾, 0) = 𝛾 ⋅ 𝑓(0),
Π′, 𝜈 < 𝛼, 𝑔(𝛾 ⋅ 𝑠𝜈, 𝜈) = (𝛾 ⋅ 𝑠𝜈) ⋅ 𝑓(𝜈) ⊢ 𝑔(𝛾, 𝑠𝜈) = 𝛾 ⋅ 𝑓(𝑠𝜈),

Λ′, 𝑔(𝑠0, 𝛼) = 𝑠0 ⋅ 𝑓(𝛼) ⊢ 𝑔(𝑠0, 𝛼) = 𝑓(𝛼)

where

Γ′ = {𝑓(0) = 𝑠0, 𝑔(𝛾, 0) = 𝛾, 𝛾 ⋅ 𝑠0 = 𝛾},

Π′ =
⎧{
⎨{⎩

𝑓(𝑠𝜈) = 𝑠𝜈 ⋅ 𝑓(𝜈),
𝑔(𝛾, 𝑠𝜈) = 𝑔(𝛾 ⋅ 𝑠𝜈, 𝜈),

(𝛾 ⋅ 𝑠𝜈) ⋅ 𝑓(𝜈) = 𝛾 ⋅ (𝑠𝜈 ⋅ 𝑓(𝜈))

⎫}
⎬}⎭

,

Λ′ = {𝑠0 ⋅ 𝑓(𝛼) = 𝑓(𝛼)}.

It is easy to see that Γ′, Π′, Λ′ are in fact valid and 𝜋 therefore is a simple induction
proof of ∀Γ ⊢ 𝜓 with the induction formula ∀𝑦𝜑. Its sole base term is 𝛼 and its
sole step term is 𝛾 ⋅ 𝑠𝜈.

Given a set ∀Γ of universally quantified axioms and a quantifier-free formula 𝜓(𝛼),
a question immediately presents itself: is there a universal (or existential) simple
induction proof 𝜋 of 𝜓 with some induction formula ∀𝑦𝜑(𝛼, 𝜈, 𝑦) (or ∃𝑦𝜑(𝛼, 𝜈, 𝑦))?
As Example 2.33 shows, 𝜑 can be a nontrivial generalization of 𝜓. The approach
taken towards answering this question in [EH15] is based on tree grammars, which
we will consider now.

2.4 Parametric grammars

Let us restate the question at the end of the previous section: given ∀Γ ⊢ 𝜓(𝛼),
is there a quantifier-free formula 𝜑 such that there is a universal (respectively
existential) simple induction proof 𝜋 with induction formula ∀𝑦𝜑 (respectively
∃𝑦𝜑)?

We give a high-level overview of the approach to the universal version of this
question taken in [EH15]. First, we fix a 𝑘 ∈ ℕ and consider the instances ∀Γ ⊢
𝜑(0),…, ∀Γ ⊢ 𝜑(𝑘) of the goal sequent. If one of these instances is not valid,
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then there is certainly no proof of the general sequent. Otherwise, these instance
sequents have Herbrand sequents 𝐻0,…,𝐻𝑘. The next step is to find a parametric
grammar (see Definition 2.39) 𝐺 such that 𝐿(𝐺∀

𝑖 ) ⊇ 𝑇 (𝐻𝑖). Intuitively, this means
that there is some regularity in the term sets and 𝐺 generalizes this regularity.
From 𝐺, in turn, we obtain a formula equation called a simple induction proof
schema (see Definition 2.43).

Before we can introduce parametric grammars, we need some preliminary defini-
tions.

Definition 2.34 (Regular tree grammar). A regular tree grammar is a tuple
⟨𝜏,𝑁,Σ, 𝑃 ⟩, where

• 𝑁 is a set of constant symbols (the set of nonterminals);
• Σ is a set of constant and function symbols, disjoint from 𝑁 (the set of

terminals);
• 𝜏 ∈ 𝑁 is the starting symbol;
• 𝑃 is a set of productions over 𝑁 and Σ, that is, expressions of the form 𝛼 → 𝑡

where 𝛼 ∈ 𝑁 and 𝑡 ∈ Terms(𝑁 ∪ Σ).

Multiple productions 𝛼 → 𝑡1,…, 𝛼 → 𝑡𝑛 starting from the same nonterminal are
typically written concisely as 𝛼 → 𝑡1|…|𝑡𝑛.

The language of a regular tree grammar is defined via a (derivability) relation ⇝.
Let 𝐺 = ⟨𝜏,𝑁,Σ, 𝑃 ⟩ be a regular tree grammar. Let 𝑠 ∈ Terms(𝑁 ∪ Σ) and
𝛼 → 𝑡 ∈ 𝑃. Then 𝑠 ⇝ 𝑠[𝛼\𝑡]. We denote the reflexive, transitive closure of ⇝ by
⇝∗.

Definition 2.35 (Language of a regular tree grammar). Let 𝐺 = ⟨𝜏,𝑁,Σ, 𝑃 ⟩ be
a regular tree grammar. The language of 𝐺, written as 𝐿(𝐺), is defined by

𝐿(𝐺) = { 𝑡 ∈ Terms(Σ) | 𝜏 ⇝∗ 𝑡} .

Example 2.36. Consider the regular tree grammar 𝐺 = ⟨𝜑,𝑁,Σ, 𝑃 ⟩ with

𝑁 = {𝜑, 𝑥, 𝑦}
Σ = {𝑎/0, 𝑏/0, 𝑔/1, 𝑓/2}
𝑃 = {𝜑 → 𝑓(𝑥, 𝑦), 𝑥 → 𝑎|𝑔(𝑦), 𝑦 → 𝑎|𝑏}.
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Then

𝐿(𝐺) = {𝑓(𝑎, 𝑎), 𝑓(𝑎, 𝑏), 𝑓(𝑔(𝑎), 𝑎), 𝑓(𝑔(𝑎), 𝑏), 𝑓(𝑔(𝑏), 𝑎), 𝑓(𝑔(𝑏), 𝑏)}.

In particular, we will be considering totally rigid acyclic grammars. Total rigidity
is defined via a restriction on the derivation relation, acyclicity by a condition on
productions.

Definition 2.37 (Totally rigid acyclic tree grammar). We obtain totally rigid
acyclic tree grammars by imposing the following additional restrictions on regular
tree grammars:

• Total rigidity: for each nonterminal 𝛼, at most one production of the form
𝛼 → 𝑡 can occur in a derivation.

• Acyclicity: the nonterminals can be linearly ordered such that for each pro-
duction 𝛼 → 𝑡, all nonterminals in 𝑡 are greater than 𝛼.

Note the difference between these conditions: acyclicity is a property that a given
tree grammar either does or does not satisfy. By contrast, we can always view any
tree grammar as a totally rigid one by restricting the notion of derivability.

Example 2.38. Let 𝐺 be the grammar from Example 2.36. It is easy to see that
𝐺 is acyclic if we put the nonterminals in the order 𝜑 < 𝑥 < 𝑦. If we view it as a to-
tally rigid grammar, its language is reduced to {𝑓(𝑎, 𝑎), 𝑓(𝑎, 𝑏), 𝑓(𝑔(𝑎), 𝑎), 𝑓(𝑔(𝑏), 𝑏)}.

Definition 2.39 (Parametric grammar). Let ℒ be an arithmetical language and
𝐺 a regular tree grammar with exactly the nonterminals 𝜏, 𝛼, 𝜈, 𝛾, 𝛾∗. 𝐺 is a
parametric grammar if each of its productions has one of these forms:

• 𝜏 → 𝑡(𝛼, 𝜈, 𝛾),
• 𝛾 → 𝑡(𝛼, 𝜈, 𝛾),
• 𝛾∗ → 𝑡(𝛼),

where 𝑡 is an ℒ-term.

Out of context, these production forms seem arbitrary. In fact, they closely mimic
the structure of simple induction proofs. Consequently, we can extract parametric
grammars from both universal and existential sips.
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Definition 2.40 (Extracting parametric grammars from simple induction proofs).
Let 𝜋 be the universal simple induction proof

𝒮0 ≡ Γ′(𝛼, 𝛾) ⊢ 𝜑(𝛼, 0, 𝛾),
𝒮1 ≡ Π′(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, {𝜑(𝛼, 𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}

𝑛
𝑖=1 ⊢ 𝜑(𝛼, 𝑠𝜈, 𝛾),

𝒮2 ≡ Λ′(𝛼), {𝜑(𝛼, 𝛼, 𝑢𝑖(𝛼))}
𝑚
𝑖=1 ⊢ 𝜓(𝛼)

of ∀Γ ⊢ 𝜓(𝛼). Then 𝐺(𝜋) is the parametric grammar with the productions

{ 𝜏 →  [∀ ̄𝑥 𝜗( ̄𝑥)](𝑠1,…, 𝑠𝑘) | ∀ ̄𝑥 𝜗( ̄𝑥) ∈  ∀Γ, 𝜗(𝑠1,…, 𝑠𝑘) ∈  Γ′ ∪ Π′ ∪ Λ′}
∪ { 𝛾 → 𝑡𝑖(𝛼, 𝜈, 𝛾) | 𝑖 ∈ {1,…, 𝑛}}
∪ { 𝛾∗ →  𝑢𝑖(𝛼) | 𝑖 ∈  {1,…,𝑚}} .

If 𝜋 is the existential sip

𝒮0 ≡ Γ′(𝛼) ⊢ {𝜑(𝛼, 0, 𝑢𝑖(𝛼))}
𝑚
𝑖=1 ,

𝒮1 ≡ Π′(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, 𝜑(𝛼, 𝜈, 𝛾) ⊢ {𝜑(𝛼, 𝑠𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}
𝑛
𝑖=1 ,

𝒮2 ≡ Λ′(𝛼, 𝛾), 𝜑(𝛼, 𝛼, 𝛾) ⊢ 𝜓(𝛼),

of ∀Γ ⊢ 𝜓(𝛼), then 𝐺(𝜋) is defined in exactly the same way.

Parametric grammars are not interesting as grammars in themselves. Rather,
they can be instantiated with natural numbers, resulting in totally rigid acyclic
tree grammars. Thus, a parametric grammar can be seen as a scheme generalizing
a sequence of tree grammars.

In fact, we can instantiate a parametric grammar in two different ways (“universal”
and “existential”) to obtain proper tree grammars.

Definition 2.41 (Universal instance grammars of a parametric grammar). Let
𝐺 = ⟨𝜏,𝑁,ℒ, 𝑃 ⟩ be a parametric grammar and 𝑛 ∈ ℕ. Then the 𝑛-th universal in-
stance grammar of 𝐺 is the totally rigid acyclic tree grammar 𝐺∀

𝑛 = ⟨𝜏,𝑁𝑛, ℒ, 𝑃𝑛⟩,
where 𝑁𝑛 = {𝜏, 𝛾0,…, 𝛾𝑛} and

𝑃𝑛 ={ 𝜏 → 𝑡(�̄�, 𝛾0) | 𝜏 → 𝑡(𝛼, 𝛾) ∈ 𝑃}
∪{ 𝜏 → 𝑡(�̄�, ̄𝑖, 𝛾𝑖+1) ∣ 𝜏 → 𝑡(𝛼, 𝜈, 𝛾) ∈ 𝑃 , 0 ≤ 𝑖 < 𝑛}
∪{ 𝛾𝑖 → 𝑡(�̄�, ̄𝑖, 𝛾𝑖+1) ∣ 𝛾 → 𝑡(𝛼, 𝜈, 𝛾) ∈ 𝑃 , 0 ≤ 𝑖 < 𝑛}
∪{ 𝛾𝑛 → 𝑡(�̄�) | 𝛾∗ → 𝑡(𝛼) ∈ 𝑃}
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The nonterminals of 𝐺∀
𝑛 are clearly ordered by 𝜏 < 𝛾0 < 𝛾1 < … < 𝛾𝑛.

The language of 𝐺∀
𝑛 can be described as follows: Let

𝐿𝑛(𝐺∀
𝑛) = { 𝑡(�̄�) | 𝛾∗ → 𝑡(𝛼) ∈ 𝑃} ,

𝐿𝑘(𝐺∀
𝑛) = { 𝑡(�̄�, �̄�, 𝑡′) ∣ 𝛾 → 𝑡(𝛼, 𝜈, 𝛾) ∈ 𝑃 , 𝑡′ ∈ 𝐿𝑘+1(𝐺∀

𝑛)} , 0 ≤ 𝑘 < 𝑛.

Then

𝐿(𝐺∀
𝑛) ={ 𝑡(�̄�, �̄�, 𝑡′) ∣ 𝜏 → 𝑡(𝛼, 𝜈, 𝛾) ∈ 𝑃 , 0 < 𝑘 ≤ 𝑛, 𝑡′ ∈ 𝐿𝑘(𝐺∀

𝑛)}
∪{ 𝑡(�̄�, 𝑡′) ∣ 𝜏 → 𝑡(𝛼, 𝛽) ∈ 𝑃 , 𝑡′ ∈ 𝐿0(𝐺∀

𝑛)} .

The definition of existential instance grammars is dual to that of universal instance
grammars:

Definition 2.42 (Existential instance grammars of a parametric grammar). Let
𝐺 = ⟨𝜏,𝑁,ℒ, 𝑃 ⟩ be a parametric grammar and 𝑛 ∈ ℕ. Then the 𝑛-th exis-
tential instance grammar of 𝐺 is the totally rigid acyclic tree grammar 𝐺∃

𝑛 =
⟨𝜏,𝑁𝑛, ℒ, 𝑃𝑛⟩, where 𝑁𝑛 = {𝜏, 𝛾0,…, 𝛾𝑛} and

𝑃𝑛 ={ 𝜏 → 𝑡(�̄�, 𝛾𝑛) | 𝜏 → 𝑡(𝛼, 𝛾) ∈ 𝑃}
∪{ 𝜏 → 𝑡(�̄�, ̄𝑖, 𝛾𝑖) ∣ 𝜏 → 𝑡(𝛼, 𝜈, 𝛾) ∈ 𝑃 , 0 ≤ 𝑖 < 𝑛}
∪{ 𝛾𝑖+1 → 𝑡(�̄�, ̄𝑖, 𝛾𝑖) ∣ 𝛾 → 𝑡(𝛼, 𝜈, 𝛾) ∈ 𝑃 , 0 ≤ 𝑖 < 𝑛}
∪{ 𝛾0 → 𝑡(�̄�) | 𝛾∗ → 𝑡(𝛼) ∈ 𝑃} .

The order on the nonterminals of 𝐺∃
𝑛 is easily seen to be 𝜏 < 𝛾𝑛 < 𝛾𝑛−1 < … < 𝛾0.

We can also give a description of the language of 𝐺∃
𝑛: Let

𝐿0(𝐺∃
𝑛) = { 𝑡(�̄�) | 𝛾∗ → 𝑡(𝛼) ∈ 𝑃} ,

𝐿𝑘+1(𝐺∃
𝑛) = { 𝑡(�̄�, �̄�, 𝑡′) ∣ 𝛾 → 𝑡(𝛼, 𝜈, 𝛾) ∈ 𝑃 , 𝑡′ ∈ 𝐿𝑘(𝐺∃

𝑛)} , 0 ≤ 𝑘 < 𝑛.

Then

𝐿(𝐺∃
𝑛) ={ 𝑡(�̄�, �̄�, 𝑡′) ∣ 0 ≤ 𝑘 < 𝑛, 𝜏 → 𝑡(𝛼, 𝜈, 𝛾) ∈ 𝑃 , 𝑡′ ∈ 𝐿𝑘(𝐺∃

𝑛)}
∪{ 𝑡(�̄�, 𝑡′) ∣ 𝜏 → 𝑡(𝛼, 𝛽) ∈ 𝑃 , 𝑡′ ∈ 𝐿𝑛(𝐺∃

𝑛)}
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Imagine that we have a (universal or existential) sip of a sequent ∀Γ ⊢ 𝜓(𝛼). If
we compute the parametric grammar 𝐺(𝜋), we cannot completely reconstruct 𝜋
from it, since the induction formula 𝜑 has been lost in the translation. The only
option is to introduce a formula variable for the unknown induction formula. This
leads us to the following definition.

Definition 2.43 (Simple induction proof schema). Let ℒ be an arithmetical lan-
guage. A universal simple induction proof schema is a formula equation

∃𝑋. ∀𝛼, 𝜈, 𝛾. 𝒮0 ∧ 𝒮1 ∧ 𝒮2,

where

𝒮0 ≡ Γ′(𝛼, 𝛾) ⊢ 𝑋(𝛼, 0, 𝛾),
𝒮1 ≡ Π′(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, {𝑋(𝛼, 𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}

𝑛
𝑖=1 ⊢ 𝑋(𝛼, 𝑠𝜈, 𝛾),

𝒮2 ≡ Λ′(𝛼), {𝑋(𝛼, 𝛼, 𝑢𝑖(𝛼))}
𝑚
𝑖=1 ⊢ 𝜓(𝛼),

and

• All formulas, terms, and sets are fully indicated,
• 𝑋 is a formula variable of sort Nat × Nat × 𝜏 for some sort 𝜏,
• 𝜓 is a quantifier-free formula of sort Nat,
• Γ′, Π′, Λ′ are sets of quantifier-free formulas,

such that ⊢LK 𝒮𝑖 for 𝑖 ∈ {0, 1, 2}.

Dually, an existential simple induction proof schema is a formula equation

∃𝑋. ∀𝛼, 𝜈, 𝛾. 𝒮0 ∧ 𝒮1 ∧ 𝒮2,

where

𝒮0 ≡ Γ′(𝛼) ⊢ {𝑋(𝛼, 0, 𝑢𝑖(𝛼))}
𝑚
𝑖=1

𝒮1 ≡ Π′(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼,𝑋(𝛼, 𝜈, 𝛾) ⊢ {𝑋(𝛼, 𝑠𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}
𝑛
𝑖=1

𝒮2 ≡ Λ′(𝛼, 𝛾),𝑋(𝛼, 𝛼, 𝛾) ⊢ 𝜓(𝛼)

with the same conditions as in the universal case.
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A simple induction proof schema is completely determined by the instance sets
Γ′, Π′, Λ′, the formula 𝜓, and the sets of step terms and base terms.

Simply put, a simple induction proof schema is like a simple induction proof with
an undetermined induction formula of which we only know that it is Π1 or Σ1 and
the terms it is instantiated with.

Simple induction schemas directly induce two solution problems.

Definition 2.44 (Induction problems). Let ℒ be an arithmetical language, 𝒯 an
ℒ-theory, 𝒞 the class of quantifier-free ℒ-formulas of the form 𝜑(𝛼, 𝜈, 𝛾), where
𝛼, 𝜈∶ Nat, and Φ∀ and Φ∃ the classes of universal and existential simple induction
proof schemas over ℒ, respectively. Then the universal induction problem over 𝒯
is the solution problem ⟨𝒯,Φ∀, 𝒞⟩ and the existential induction problem over 𝒯 is
the solution problem ⟨𝒯,Φ∃, 𝒞⟩.

As we have hinted earlier, simple induction proof schemas can be extracted from
parametric grammars.

Definition 2.45 (Extracting universal simple induction proof schemas from para-
metric grammars). Let 𝐺 be a parametric grammar for the sequent ∀Γ,∀Π,∀Λ ⊢
𝜓(𝛼). Then 𝐺 induces a universal simple induction proof schema with the sequents

Γ′ ⊢ 𝑋(𝛼, 0, 𝛾)
Π′, ⋀

𝑡∈𝒮
𝑋(𝛼, 𝜈, 𝑡(𝛼, 𝜈, 𝛾)) ⊢ 𝑋(𝛼, 𝑠𝜈, 𝛾)

Λ′, ⋀
𝑡∈𝒞

𝑋(𝛼, 𝛼, 𝑡(𝛼)) ⊢ 𝜓(𝛼),

where

Γ′ ={𝜌( ̄𝑡(𝛼, 𝛾)) ∣ 𝜏 → [∀ ̄𝑥 𝜌( ̄𝑥)]( ̄𝑡(𝛼, 𝛾)) ∈ 𝐺}
∪{ 𝜌( ̄𝑡(𝛼)) ∣ 𝜏 → [∀ ̄𝑥 𝜌( ̄𝑥)]( ̄𝑡(𝛼)) ∈ 𝐺}

Π′ ={𝜌( ̄𝑡(𝛼, 𝜈, 𝛾)) ∣ 𝜏 → [∀ ̄𝑥 𝜌( ̄𝑥)]( ̄𝑡(𝛼, 𝜈, 𝛾))}
∪ { 𝜌( ̄𝑡(𝛼)) ∣ 𝜏 → [∀ ̄𝑥 𝜌( ̄𝑥)]( ̄𝑡(𝛼)) ∈ 𝐺}

Λ′ ={𝜌( ̄𝑡(𝛼)) ∣ 𝜏 → [∀ ̄𝑥 𝜌( ̄𝑥)]( ̄𝑡(𝛼)) ∈ 𝐺}
𝒮 ={ 𝑡(𝛼, 𝜈, 𝛾) | 𝛾 → 𝑡(𝛼, 𝜈, 𝛾) ∈ 𝐺}
𝒞 ={ 𝑡(𝛼) | 𝛾𝑒𝑛𝑑 → 𝑡(𝛼) ∈ 𝐺}
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Chapter 2: Formula equations, induction proofs, and grammars

Similarly, 𝐺 also induces an existential simple induction proof schema:

Γ′ ⊢ ⋁
𝑡∈𝒞

𝑋(𝛼, 0, 𝑡(𝛼))

Π′, 𝑋(𝛼, 𝜈, 𝛾) ⊢ ⋁
𝑡∈𝒮

𝑋(𝛼, 𝑠𝜈, 𝑡(𝛼, 𝜈, 𝛾))

Λ′, 𝑋(𝛼, 𝛼, 𝛾) ⊢ 𝜓(𝛼),

with Γ′, Π′, Λ′, 𝒮, 𝒞 defined in exactly the same way as in the universal case.

We have introduced formula equations and solution problems and shown how the
problem of inductive theorem proving can be expressed in these terms by using
parametric grammars as a translation mechanism.

54



CHAPTER 3

NONDETERMINISTIC PROGRAMS
AND DYNAMIC LOGIC

In this chapter, we will investigate formula equations in the context of the deduc-
tive verification of nondeterministic imperative programs. Concretely, we define a
simple programming language called IMP that supports nondeterministic assign-
ments.

The motivation of this investigation comes from the program of inductive theorem
proving via tree grammars as described in Section 2.3. The original idea was
this: let 𝜋 be an existential simple induction proof schema and 𝐺𝜋 its associated
parametric grammar. Recall that 𝜋 is a formula equation whose solutions are
induction formulas. The terms used for instantiating a solution 𝜄 are computed by
𝐺𝜋, but the propositional structure of 𝜄 is unknown. It is clear that a parametric
grammar can be viewed as a nondeterministic program 𝑝 that takes 𝑛 ∈ ℕ as an
input and outputs exactly the elements of the 𝑛th instance language of 𝐺. We
hoped that the solutions of 𝜋 would then coincide with invariants of 𝑝, but this
is not the case—at least not for the conventional meaning of “invariant”. While
e.g. Hoare calculus can be adapted for nondeterministic programs, the result is
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Chapter 3: Nondeterministic programs and dynamic logic

a deductive system for invariants of all executions of nondeterministic programs.
However, what we need are “invariants” that are preserved by some execution of a
program. This dichotomy between “universal” and “existential” invariants suggests
a kind of modal logic in which each program induces two modalities,resulting in
the modal logic known as dynamic logic. Thus, the first step towards realizing the
analogy between induction formulas and loop invariants is an investigation based
on dynamic logic.

3.1 Dynamic Logic

Our treatment of dynamic logic is based on [HTK00]. The modalities of dynamic
logic are induced by programs. Therefore, we first describe a general framework
for programs that we will build our definition of dynamic logic on.

Definition 3.1 (Regular program). Let ℒ be a first-order language. The regular
programs over ℒ are inductively defined as follows:

1. If 𝑥 is a variable and 𝑡 is an ℒ-term, then 𝑥 ∶= 𝑡 is a regular program.
2. If 𝜑 is a quantifier-free ℒ-formula, then 𝜑? is a regular program.
3. If 𝑝, 𝑞 are regular programs, then 𝑝; 𝑞 is a regular program.
4. If 𝑝, 𝑞 are regular programs, then 𝑝 ∪ 𝑞 is a regular program.
5. If 𝑝 is a regular program, then 𝑝∗ is a regular program.

The semantics of regular programs will be described in Definition 3.2. If the
language ℒ under discussion is unambiguous, we will just refer to regular programs.

The condition of quantifier-freeness in 2 makes this a definition of regular programs
with poor tests. If we allowed all first-order or even dynamic logic formulas, we
would obtain regular programs with rich tests. Allowing dynamic logic formulas
would, of course, require us to define regular programs and dynamic logic by
mutual induction. Fortunately, poor tests easily suffice for our purposes.

Intuitively, these constructs have the following meanings:

1. 𝑥 ∶= 𝑡 is the assignment of the term 𝑡 to the variable 𝑥.
2. 𝜑? is the test whether 𝜑 is true in the current program state.
3. 𝑝; 𝑞 is the sequential composition of 𝑝 and 𝑞. It first executes 𝑝 and then 𝑞.
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3.1 Dynamic Logic

4. 𝑝 ∪ 𝑞 is the nondeterministic choice between 𝑝 and 𝑞. It executes either 𝑝 or
𝑞.

5. 𝑝∗ is the nondeterministic iteration of 𝑝. It executes 𝑝 zero or more times.

Let us make these intuitions precise.

Definition 3.2 (Input/output relation). Let ℒ be a logical language and ℳ an
ℒ-structure. Every regular program 𝑝 over ℒ induces a binary relation 𝑝ℳ on the
valuations of ℳ, the input/output relation:

1. (𝑥 ∶= 𝑡)ℳ = { (𝑣, 𝑣[𝑥\𝑣(𝑡)]) | 𝑣 ∈ Val(ℳ)}.
2. (𝜑?)ℳ = { (𝑣, 𝑣) | 𝑣 ∈ Val(ℳ), (ℳ, 𝑣) ⊧ 𝜑}.
3. (𝑝; 𝑞)ℳ = 𝑝ℳ ∘ 𝑞ℳ.
4. (𝑝 ∪ 𝑞)ℳ = 𝑝ℳ ∪ 𝑞ℳ.
5. (𝑝∗)ℳ = ⋃𝑛∈ℕ(𝑝

ℳ)𝑛

We write 𝑝ℳ(𝑣) for the set {𝑢 ∈ Val(ℳ) ∣ (𝑣, 𝑢) ∈ 𝑝ℳ}.

Observe that a regular program’s meaning is completely determined
by which input states it associates to which output states, not by its
“implementation details”. For instance, consider the programs ⊤? ∪ ⊥? and
⊤?. The first one nondeterministically chooses between succeeding and failing, the
second always succeeds. Nevertheless, they are semantically equivalent, since they
both induce the identity relation (on every structure).

Moreover, since the relational product ∘ is associative, the programs (𝑝; 𝑞); 𝑟 and
𝑝; (𝑞; 𝑟) are semantically equivalent, and so we can consider the composition op-
erator ; associative as well. Likewise, we can regard the choice operator ∪ as
associative and commutative.

We are now ready to introduce dynamic logic.

Definition 3.3 (First-order dynamic logic). Let ℒ be a first-order language and
𝒫 some class of regular programs over ℒ. The formulas of dynamic logic over ℒ
and 𝒫 ((ℒ,𝒫)-DL) are constructed the same way as first-order ℒ-formulas, with
the addition of modalities:

If 𝜑 is a (ℒ,𝒫)-DL formula and 𝑝 ∈ 𝒫, then [𝑝]𝜑 and ⟨𝑝⟩𝜑 are also (ℒ,𝒫)-DL
formulas.
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Chapter 3: Nondeterministic programs and dynamic logic

As usual, we will just refer to DL if there is no danger of confusion about what ℒ
and 𝒫 are.

The semantics of DL formulas is an extension of the semantics of regular programs.

Definition 3.4 (Semantics of DL). Let ℒ be a first-order language, 𝒫 a class of
regular programs over ℒ, and ℳ an ℒ-structure. Recall that for 𝑝 ∈ 𝒫, 𝑝ℳ is the
input-output relation of 𝑝 on ℳ.

We extend the definition of the relation (ℳ, 𝑣) ⊧ 𝜑 for 𝑣 ∈ Val(ℳ) from first-
order logic to the connectives [⋅] and ⟨⋅⟩: If 𝜑 is a DL formula and 𝑝 ∈ 𝒫, then
(ℳ, 𝑣) ⊧𝐷𝐿 [𝑝]𝜑 iff for all 𝑢 ∈ 𝑝ℳ(𝑣), (ℳ, 𝑢) ⊧𝐷𝐿 𝜑. Likewise, (ℳ, 𝑣) ⊧𝐷𝐿 ⟨𝑝⟩𝜑
iff there is a 𝑢 ∈ 𝑝ℳ(𝑣) such that (ℳ, 𝑢) ⊧𝐷𝐿 𝜑.

As in first-order logic, we say that a DL formula 𝜑 holds in ℳ, written as ℳ ⊧𝐷𝐿 𝜑,
if (ℳ, 𝑣) ⊧𝐷𝐿 𝜑 for all 𝑣 ∈ Val(ℳ). Likewise, the relations ⊧𝐷𝐿 𝜑 and 𝒯 ⊧𝐷𝐿 𝜑
are defined analogously to first-order logic.

To reduce notational clutter, we will sometimes write 𝑣 ⊧𝐷𝐿 𝜑 instead of (ℳ, 𝑣) ⊧𝐷𝐿

𝜑 in cases where the structure can safely be left implicit.

The semantics of the modalities can be explained as follows. If 𝑝 is a regular
program and ℳ an ℒ-structure, each valuation 𝑣 ∈ Val(ℳ) can be interpreted as
a state of all the variables occurring in 𝑝 (and also of every other variable, but their
values are irrelevant). Then 𝑝ℳ(𝑣) is the set of all states that can be the result of
running 𝑝 to completion, starting from 𝑣. It follows that [𝑝]𝜑 holds in the state 𝑣 if
𝜑 holds in every possible end-state of 𝑝 and ⟨𝑝⟩𝜑 holds if 𝜑 holds in some end-state
of 𝑝. Clearly, if 𝑝ℳ(𝑣) = ∅, then (ℳ, 𝑣) ⊧ [𝑝]𝜑 ↔ ⊤ and (ℳ, 𝑣) ⊧ ⟨𝑝⟩𝜑 ↔ ⊥.

Let us give some simple valid formulas of DL.

Proposition 3.5. The following formulas of DL are valid:

1. [𝑝]𝜑 ↔ ¬⟨𝑝⟩¬𝜑.
2. [𝑝; 𝑞]𝜑 ↔ [𝑝][𝑞]𝜑.
3. ⟨𝑝; 𝑞⟩𝜑 ↔ ⟨𝑝⟩⟨𝑞⟩𝜑.
4. [𝜑?]𝜓 ↔ 𝜑 → 𝜓.
5. ⟨𝜑?⟩𝜓 ↔ 𝜑 ∧ 𝜓.
6. [𝑝 ∪ 𝑞]𝜑 ↔ [𝑝]𝜑 ∧ [𝑞]𝜑.
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3.1 Dynamic Logic

7. ⟨𝑝 ∪ 𝑞⟩𝜑 ↔ ⟨𝑝⟩𝜑 ∨ ⟨𝑞⟩𝜑.
8. [𝑥 ∶= 𝑡]𝜑 ↔ 𝜑[𝑥\𝑡] ↔ ⟨𝑥 ∶= 𝑡⟩𝜑.
9. [𝑝∗]𝜑 ↔ 𝜑 ∧ [𝑝∗](𝜑 → [𝑝]𝜑) (the induction principle of dynamic logic)

Proof. We only prove the induction principle. Let ℳ be a structure and 𝑣 ∈
Val(ℳ), and assume 𝑣 ⊧𝐷𝐿 [𝑝∗]𝜑. Since 𝑣 ∈ (𝑝∗)ℳ(𝑣), this implies 𝑣 ⊧𝐷𝐿 𝜑.
Now assume 𝑢 ∈ (𝑝∗)ℳ(𝑣). We need to show 𝑢 ⊧𝐷𝐿 𝜑 → [𝑝]𝜑. By assumption,
𝑣 ⊧𝐷𝐿 [𝑝∗]𝜑, so 𝑢 ⊧𝐷𝐿 𝜑. To see that 𝑢 ⊧𝐷𝐿 [𝑝]𝜑, observe that if 𝑤 ∈ 𝑝ℳ(𝑢), then
𝑤 ∈ (𝑝∗)ℳ(𝑣) and hence 𝑤 ⊧𝐷𝐿 𝜑, again by assumption. This concludes the proof
of the forward direction.

For the other direction, assume 𝑣 ⊧𝐷𝐿 𝜑 ∧ [𝑝∗](𝜑 → [𝑝]𝜑). We need to show
𝑢 ⊧ 𝜑 for all 𝑢 ∈ (𝑝∗)ℳ(𝑣). The latter is equivalent to the existence of a sequence
𝑣 = 𝑤0 𝑝ℳ 𝑤1 𝑝ℳ … 𝑝ℳ 𝑤𝑛−1 𝑝ℳ 𝑤𝑛 = 𝑢. We proceed by induction on 𝑛. If
𝑛 = 0, then 𝑣 = 𝑢 and we know 𝑣 ⊧𝐷𝐿 𝜑 by assumption. For the step case, suppose
we already know 𝑤𝑛 ⊧𝐷𝐿 𝜑. Since 𝑤𝑛 ∈ (𝑝∗)ℳ(𝑣), we also have 𝑤𝑛 ⊧𝐷𝐿 𝜑 → [𝑝]𝜑.
From these two facts and 𝑤𝑛 𝑝ℳ 𝑢, we conclude 𝑢 ⊧𝐷𝐿 𝜑.

We also easily obtain a version of the generalization rule familiar from other modal
logics.

Lemma 3.6. Let ℳ be a structure, 𝜑 a DL formula, and 𝑝 a regular program. If
ℳ ⊧𝐷𝐿 𝜑, then ℳ ⊧ [𝑝]𝜑. In other words, the inference rule

𝜑
[𝑝]𝜑

is sound.

Formulas of the forms 𝜑 → [𝑝]𝜓 and 𝜑 → ⟨𝑝⟩𝜓 are of particular interest to us. By
the explanation above, the former expresses “if 𝜑 holds in the current state, then
running 𝑝 will always result in a state in which 𝜓 holds”. Likewise, the latter can
be interpreted as “if 𝜑 holds in the current state, then there is some execution of
𝑝 that results in a state satisfying 𝜓”. This means that 𝜑 → [𝑝]𝜓 is equivalent to
the Hoare triple {𝜑}𝑝{𝜓}, while 𝜑 → ⟨𝑝⟩𝜓 is not expressible in Hoare logic.

Regular programs permit nondeterministic choice between any two programs. We
will restrict ourselves to a much less general class of programs that only contain
nondeterministic assignments.
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Chapter 3: Nondeterministic programs and dynamic logic

Definition 3.7 (IMP). Let ℒ be a first-order language. We define IMPℒ pro-
grams as abbreviations of certain regular programs:

skip ≡ ⊤?
𝑥 ∶= 𝑡1 | ⋯ | 𝑡𝑛 ≡ 𝑥 ∶= 𝑡1 ∪… ∪ 𝑥 ∶= 𝑡𝑛

if 𝜑 then 𝑝 else 𝑞 ≡ (𝜑?; 𝑝) ∪ (¬𝜑?; 𝑞)
while 𝜑 do 𝑝 ≡ (𝜑?; 𝑝)∗; ¬𝜑?

The sequential composition operator ; of IMP is interpreted as that of regular
programs.

Let us briefly discuss the semantics of IMP. The trivial program skip leaves
every state unchanged (i.e. skipℳ = id𝑀); 𝑥 ∶= 𝑡1 | ⋯ | 𝑡𝑛 assigns one of the
terms 𝑡1,…, 𝑡𝑛 to the variable 𝑥; if-then-else, while, and composition have their
classical meanings. It is important to note that even though the definitions of
if-then-else and while include nondeterministic operators, they are themselves
deterministic, due to the way in which those operators are used. The tests 𝜑? and
¬𝜑? in if-then-else ensure that only one of the two subprograms can actually
execute in any given state, and in while, these same tests ensure that the iteration
cannot terminate while 𝜑 still holds and must terminate when 𝜑 ceases to hold.
Thus, assignments are the only source of nondeterminism in IMP.

Observe also that skip is the neutral element with respect to sequential composi-
tion, as far as semantics is concerned. This means that, semantically speaking, we
can assume that every program is either skip or of the form 𝑝; 𝑞 with 𝑞 ≠ skip.

In the sequel, “DL” refers to (ℒ, IMPℒ)-DL for some language ℒ.

As for regular programs, we give a few simple valid formulas for DL with IMP
programs.

Proposition 3.8. The following DL formulas are valid:

1. [skip]𝜑 ↔ 𝜑 ↔ ⟨skip⟩𝜑.
2. [𝑥 ∶= 𝑡1|…|𝑡𝑛]𝜑 ↔ ⋀𝑛

𝑖=1
𝜑[𝑥\𝑡𝑖].

3. ⟨𝑥 ∶= 𝑡1|…|𝑡𝑛⟩𝜑 ↔ ⋁𝑛
𝑖=1

𝜑[𝑥\𝑡𝑖].
4. [if 𝛾 then 𝑝 else 𝑞]𝜑 ↔ (𝛾 ∧ [𝑝]𝜑) ∨ (¬𝛾 ∧ [𝑞]𝜑).
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5. ⟨if 𝛾 then 𝑝 else 𝑞⟩𝜑 ↔ (𝛾 ∧ ⟨𝑝⟩𝜑) ∨ (¬𝛾 ∧ ⟨𝑞⟩𝜑)).

Proof. All items follow straightforwardly from Proposition 3.5: 1 from 4 and 5; 2
and 3 from 6, 7, 8; 4 and 5 from 2, 4, 6 and 3, 5, 7, respectively.

3.2 Verification conditions

In this section we will only deal with arithmetical languages. In fact, we will
restrict our attention to structures in which the sort Nat has a certain inductive
property. This allows us to formulate strong assumptions about the termination
of loops.

In order to be able to prove termination of loops and some invariants, we will
require some basic facts about the ≤ relation and the operations 𝑝 and − (see
Definition 1.15). Therefore, we define a small arithmetical theory that will be
sufficient for these purposes.

Definition 3.9 (Qmin). Qmin is the theory generated by the arithmetical axioms
(O1) – (O5), (OS1), (OS2), (OSP), (OMi), and (OSMi) (cf. Definition 1.16 in
Chapter 1).

Definition 3.10 (Inductive structure, convergence rule). Let ℒ be an arithmetical
language and ℳ an ℒ-structure. We call ℳ inductive if ℳ ⊧ Qmin and, for all
first-order formulas 𝜏 and regular programs 𝑝 not containing 𝜈, ℳ satisfies the
convergence property:

ℳ ⊧𝐷𝐿 𝜏(𝑠𝜈) → ⟨𝑝⟩𝜏(𝜈)

implies

ℳ ⊧𝐷𝐿 𝜏(𝛼) → ⟨𝑝∗⟩𝜏(0).

In other words, the convergence rule

𝜏(𝑠𝜈) → ⟨𝑝⟩𝜏(𝜈)
𝜏(𝛼) → ⟨𝑝∗⟩𝜏(0)
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(with the aforementioned conditions on 𝜏 and 𝑝) is sound for inductive structures.

In the sequel, we write Γ ⊧𝑖𝑛𝑑
𝐷𝐿 𝜓 if ℳ ⊧𝐷𝐿 Γ implies ℳ ⊧𝐷𝐿 𝜓 for all inductive

structures ℳ.

Our aim is to define a set of sufficient first-order conditions, called verification
conditions, for a formula of the form 𝜑 → [𝑝]𝜓 or 𝜑 → ⟨𝑝⟩𝜓 to be valid in
inductive structures. Unfortunately, these conditions cannot simply be extracted
from the triple of 𝜑, 𝑝, 𝜓. Rather, it is necessary to annotate certain instructions
of 𝑝 with formulas.

Definition 3.11 (Annotated IMP program). Let ℒ be an arithmetical language.
An annotated IMPℒ program is an IMPℒ program 𝑝 in which each conditional
and loop instruction carries an annotation:

• {𝛼} if 𝜑 then 𝑝 else 𝑞, where 𝛼 is an ℒ-formula;
• while 𝜑 {𝜄; 𝑡} do 𝑝, where 𝜄 is an ℒ-formula (the invariant of the loop) and

𝑡 ∶ Nat is an ℒ-term (the termination witness of the loop).

We extend the semantics of IMP programs to annotated IMP programs by simply
erasing all annotations. If erasing all annotations from an annotated program 𝑝′

yields 𝑝, we call 𝑝′ an annotation of 𝑝.

We immediately obtain the following lemma.

Lemma 3.12. Let 𝑝 be an IMP program, 𝑝′ an annotation of 𝑝, and 𝜑 a DL
formula. Then ⊧𝐷𝐿 [𝑝]𝜑 ↔ [𝑝′]𝜑 and ⊧𝐷𝐿 ⟨𝑝⟩𝜑 ↔ ⟨𝑝′⟩𝜑.

We can now define the aforementioned verification conditions.

Definition 3.13 (Verification conditions). Let ℒ be an arithmetical language.
Let 𝜑,𝜓 be formulas and 𝑝 an annotated IMP program. We define the sets
VC� ({𝜑} 𝑝 {𝜓}) of box verification conditions and VC♦ ({𝜑} 𝑝 {𝜓}) of diamond
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verification conditions by induction.

VC� ({𝜑} skip {𝜓}) = VC♦ ({𝜑} skip {𝜓})
= {𝜑 → 𝜓},

VC� ({𝜑} 𝑝; 𝑥 ∶= 𝑡1|…|𝑡𝑛 {𝜓}) = VC� ({𝜑} 𝑝{
𝑛
⋀
𝑖=1

𝜓[𝑥\𝑡𝑖]}) ,

VC♦ ({𝜑} 𝑥 ∶= 𝑡1|…|𝑡𝑛 {𝜓}) = VC♦ ({𝜑} 𝑝{
𝑛
⋁
𝑖=1

𝜓[𝑥\𝑡𝑖]}) ,

VC� ({𝜑} 𝑝; {𝛼} if 𝛾 then 𝑞 else 𝑟 {𝜓}) = VC� ({𝜑} 𝑝 {𝛼})
∪ VC� ({𝛼 ∧ 𝛾} 𝑞 {𝜓})
∪ VC� ({𝛼 ∧ ¬𝛾} 𝑟 {𝜓}) ,

VC♦ ({𝜑} 𝑝; {𝛼} if 𝛾 then 𝑞 else 𝑟 {𝜓}) = VC♦ ({𝜑} 𝑝 {𝛼})
∪ VC♦ ({𝛼 ∧ 𝛾} 𝑞 {𝜓})
∪ VC♦ ({𝛼 ∧ ¬𝛾} 𝑟 {𝜓}) ,

VC� ({𝜑} 𝑝;while 𝛾 {𝜄; 𝑡} do 𝑞 {𝜓}) = VC� ({𝜑} 𝑝 {𝜄})
∪ VC� ({𝜄 ∧ 𝛾} 𝑞 {𝜄})
∪ {𝜄 ∧ ¬𝛾 → 𝜓},

VC♦ ({𝜑} 𝑝;while 𝛾 {𝜄; 𝑡} do 𝑞 {𝜓}) = VC♦ ({𝜑} 𝑝 {𝜄})
∪ VC♦ ({𝜄 ∧ 𝛾 ∧ 𝑡 = 𝑧} 𝑞 {𝜄 ∧ 𝑡 < 𝑧})
∪ {𝜄 ∧ ¬𝛾 → 𝜓}.

In the conditions for the while loop, 𝑧 is a fresh variable that does not occur in 𝛾,
𝑡, 𝑞, or 𝜄.

Recall the defining property we expect of these verification conditions:
VC� ({𝜑} 𝑝 {𝜓}) should imply 𝜑 →  [𝑝]𝜓 and VC♦ ({𝜑} 𝑝 {𝜓}) should imply 𝜑 →
⟨𝑝⟩𝜓. We will show that this is actually the case in Theorem 3.15.

We can now see the reason for the annotations on conditionals and loops. With-
out them, we could not straightforwardly define the verification conditions for
𝑝; if 𝛾 then 𝑞 else 𝑟 and 𝑝;while 𝛾 {𝜄; 𝑡} do 𝑞 based on those of 𝑝 and the
subsequent conditional or loop, respectively.

Note that most of the definition is symmetrical in � and ♦. The one exception is
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the fact that the diamond conditions for the while loop involve the loop’s termina-
tion witness. This is the case because ⟨while 𝛾 {𝜄; 𝑡} do 𝑞⟩𝜓 asserts that there is
at least one execution of while 𝛾 do 𝑞 from the current state that leads to a state
satisfying 𝜓. In particular, it must be possible to execute while 𝛾 do 𝑞 in the
current state 𝑣 and get to any state at all. We enforce this by ensuring that the
termination witness always decreases for at least one of the possible executions of
the loop body. Because its sort is Nat, this implies that (while 𝛾 do 𝑞)ℳ(𝑣) ≠ ∅
for an inductive structure ℳ. Moreover, since we need the invariant 𝜄 to hold after
the loop, there must be some execution of the body preserving 𝜄, and in fact these
two conditions must be simultaneously fulfilled by one execution. This stipulation
is captured by the set VC♦ ({𝜄 ∧ 𝛾 ∧ 𝑡 = 𝑧} 𝑞 {𝜄 ∧ 𝑡 < 𝑧}).

The termination condition on while loops may seem extremely restrictive: there
needs to be a type of the sort Nat that bounds the possible number of iterations.
This means that while we can express very general programs, our capacity for
verification, at least in the diamond case, is effectively restricted to for loops.
However, for our purposes this restriction is immaterial—we will see that the only
loops we require iterate from 0 to 𝛼 or the other way around.

The following lemma will be useful in the proof of Theorem 3.15.

Lemma 3.14. Let 𝜑,𝜓, 𝜌 be DL formulas and 𝑝, 𝑞 regular programs. Then

𝜑 → [𝑝]𝜓, 𝜓 → [𝑞]𝜌 ⊧𝐷𝐿 𝜑 → [𝑝; 𝑞]𝜌,
𝜑 → ⟨𝑝⟩𝜓, 𝜓 → ⟨𝑞⟩𝜌 ⊧𝐷𝐿 𝜑 → ⟨𝑝; 𝑞⟩𝜌.

Proof. Let ℳ be a structure such that ℳ ⊧𝐷𝐿 𝜑 → [𝑝]𝜓 and ℳ ⊧𝐷𝐿 𝜓 → [𝑞]𝜌.
Let 𝑣 ∈ Valℳ and assume (ℳ, 𝑣) ⊧𝐷𝐿 𝜑. We need to show (ℳ, 𝑣) ⊧𝐷𝐿 [𝑝; 𝑞]𝜌, or
in other words, (ℳ, 𝑢) ⊧𝐷𝐿 𝜌 for all 𝑢 ∈ (𝑝; 𝑞)ℳ(𝑣). Therefore, let 𝑢 ∈ (𝑝; 𝑞)ℳ(𝑣).
This means that there is some 𝑤 ∈ Valℳ such that 𝑣 𝑝ℳ 𝑤 and 𝑤 𝑞ℳ 𝑢. By
assumption, we have

(ℳ, 𝑣) ⊧𝐷𝐿 𝜑 and (3.1)
(ℳ, 𝑣) ⊧𝐷𝐿 𝜑 → [𝑝]𝜓, (3.2)

so we easily obtain (ℳ, 𝑣) ⊧𝐷𝐿 [𝑝]𝜓 and hence (ℳ,𝑤) ⊧𝐷𝐿 𝜓. By repeating the
same argument with 𝑤,𝜓, 𝑞, 𝜌 instead of 𝑣, 𝜑, 𝑝, 𝜓, we deduce (ℳ, 𝑢) ⊧𝐷𝐿 𝜌.
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The diamond case is handled analogously.

We now prove that the verification conditions indeed have the desired property.

Theorem 3.15. Let 𝑝 be an annotated IMP program and 𝜑,𝜓 DL formulas. Then

VC� ({𝜑} 𝑝 {𝜓}) ⊧𝑖𝑛𝑑
𝐷𝐿 𝜑 → [𝑝]𝜓,

VC♦ ({𝜑} 𝑝 {𝜓}) ⊧𝑖𝑛𝑑
𝐷𝐿 𝜑 → ⟨𝑝⟩𝜓.

Proof. By induction on 𝑝. Let ℳ be an inductive structure. We need to show

ℳ ⊧𝐷𝐿 ⋀VC� ({𝜑} 𝑝 {𝜓}) ⇒ ℳ ⊧𝐷𝐿 𝜑 → [𝑝]𝜓,

ℳ ⊧𝐷𝐿 ⋀VC♦ ({𝜑} 𝑝 {𝜓}) ⇒ ℳ ⊧𝐷𝐿 𝜑 → ⟨𝑝⟩𝜓.

The base case of skip follows immediately because

VC� ({𝜑} skip {𝜓}) = {𝜑 → 𝜓} = VC♦ ({𝜑} skip {𝜓})

by definition and

ℳ ⊧𝐷𝐿 𝜑 → [skip]𝜓 ⇔ ℳ ⊧𝐷𝐿 𝜑 → 𝜓 ⇔ ℳ ⊧𝐷𝐿 𝜑 → ⟨𝑝⟩𝜓

by Proposition 3.8.

For the case of 𝑝; 𝑥 ∶= 𝑡1|…|𝑡𝑛 we have

VC� ({𝜑} 𝑝; 𝑥 ∶= 𝑡1|…|𝑡𝑛 {𝜓}) = VC� ({𝜑} 𝑝{
𝑛
⋀
𝑖=1

𝜓[𝑥\𝑎𝑖})

by definition. By the induction hypothesis, we can deduce

ℳ ⊧𝐷𝐿 𝜑 → [𝑝]
𝑛
⋀
𝑖=1

𝜓[𝑥\𝑡𝑖].

From there, we obtain

ℳ ⊧𝐷𝐿 𝜑 → [𝑝]
𝑛
⋀
𝑖=1

𝜓[𝑥\𝑡𝑖] ⇔ ℳ ⊧𝐷𝐿 𝜑 → [𝑝][𝑥 ∶= 𝑡1|…|𝑡𝑛]𝜓

⇔ ℳ ⊧𝐷𝐿 𝜑 → [𝑝; 𝑥 ∶= 𝑡1|…|𝑡𝑛]𝜓
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by Propositions 3.5 and 3.8. The diamond conditions are handled analogously.

For 𝑝; {𝛼} if 𝛾 then 𝑞 else 𝑟, let us first consider the box case. Assume

ℳ ⊧𝐷𝐿 ⋀VC� ({𝜑} 𝑝; {𝛼} if 𝛾 then 𝑞 else 𝑟 {𝜓}) .

By the induction hypothesis, we obtain

ℳ ⊧𝐷𝐿 𝜑 → [𝑝]𝛼, (3.3)
ℳ ⊧𝐷𝐿 𝛼 ∧ 𝛾 → [𝑞]𝜓, (3.4)
ℳ ⊧𝐷𝐿 𝛼 ∧ ¬𝛾 → [𝑟]𝜓. (3.5)

Our goal is

ℳ ⊧𝐷𝐿 𝜑 → [𝑝; {𝛼}if 𝛾 then 𝑞 else 𝑟]𝜓.

By Lemma 3.14 and (3.3), it suffices to show

ℳ ⊧𝐷𝐿 𝛼 → [if 𝛾 then 𝑞 else 𝑟]𝜓.

We can transform this formula according to Propositions 3.5 and 3.8:

𝛼 → [if 𝛾 then 𝑞 else 𝑟]𝜓 ⇔𝐷𝐿 𝛼 → [(𝛾?; 𝑞) ∪ (¬𝛾?; 𝑟)]𝜓
⇔𝐷𝐿 𝛼 → ([𝛾?; 𝑞]𝜓 ∧ [¬𝛾?; 𝑟]𝜓)
⇔𝐷𝐿 𝛼 → ((𝛾 → [𝑞]𝜓) ∧ (¬𝛾 → [𝑟]𝜓))
⇔𝐷𝐿 (𝛼 ∧ 𝛾 → [𝑞]𝜓) ∧ (𝛼 ∧ ¬𝛾[𝑟]𝜓).

ℳ ⊧𝐷𝐿 (𝛼 ∧ 𝛾 → [𝑞]𝜓) ∧ (𝛼 ∧ ¬𝛾[𝑟]𝜓) follows immediately from (3.4) and (3.5).
The diamond case is completely analogous.

Now let us consider 𝜑 → [𝑝;while 𝛾 {𝜄; 𝑡} do 𝑞]. Assume

ℳ ⊧𝐷𝐿 VC� ({𝜑} 𝑝;while 𝛾 {𝜄; 𝑡} do 𝑞 {𝜓}) .

In the same way as in the if-then-else case, we use the induction hypothesis to
immediately dispense with 𝜑 → [𝑝]𝜄 and obtain

ℳ ⊧𝐷𝐿 𝜄 ∧ 𝛾 → [𝑞]𝜄, (3.6)
ℳ ⊧𝐷𝐿 𝜄 ∧ ¬𝛾 → 𝜓. (3.7)
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What we need to show is ℳ ⊧𝐷𝐿 𝜄 → [while 𝛾 {𝜄; 𝑡} do 𝑞]𝜓, which we can rewrite:

𝜄 → [while 𝛾 {𝜄; 𝑡} do 𝑞]𝜓 ⇔ 𝜄 → [(𝛾?; 𝑞)∗; ¬𝛾?]𝜓
⇔ 𝜄 → [(𝛾?; 𝑞)∗][¬𝛾?]𝜓
⇔ 𝜄 → [(𝛾?; 𝑞)∗](¬𝛾 → 𝜓)

Because of (3.7), it is sufficient to show

ℳ ⊧𝐷𝐿 𝜄 → [(𝛾?; 𝑞)∗]𝜄,

which is equivalent to

ℳ ⊧𝐷𝐿 𝜄 → 𝜄 ∧ [(𝛾?; 𝑞)∗](𝜄 → [𝛾?; 𝑞]𝜄))

by the induction principle (9 in 3.5). We obtain ℳ ⊧𝐷𝐿 (𝜄 → [𝛾?; 𝑞]𝜄) from (3.6),
so ℳ ⊧𝐷𝐿 [(𝛾?; 𝑞)∗](𝜄 → [𝛾?; 𝑞]𝜄) follows by generalization and the rest by simple
propositional manipulations.

Now for the diamond case. Assume

ℳ ⊧𝐷𝐿 ⋀VC♦ ({𝜑} 𝑝;while 𝛾 {𝜄; 𝑡} do 𝑞 {𝜓}) .

By a similar argument as before, we obtain

ℳ ⊧𝐷𝐿 𝜄 ∧ 𝛾 ∧ 𝑡 = 𝑧 → ⟨𝑞⟩(𝜄 ∧ 𝑡 < 𝑧), (3.8)
ℳ ⊧𝐷𝐿 𝜄 ∧ ¬𝛾 → 𝜓. (3.9)

and only need to prove

ℳ ⊧𝐷𝐿 𝜄 → ⟨while 𝛾 do 𝑞⟩𝜄
⇔ ℳ ⊧𝐷𝐿 𝜄 → ⟨(𝛾?; 𝑞)∗⟩(𝜄 ∧ ¬𝛾).

For technical reasons, we will instead prove

ℳ ⊧𝐷𝐿 𝜄 → ⟨((𝛾?; 𝑞) ∪ ¬𝛾?)∗⟩(𝜄 ∧ ¬𝛾). (3.10)

This substitution is justified because the programs (𝛾?; 𝑞)∗ and ((𝛾?; 𝑞) ∪ ¬𝛾?)∗

are semantically equivalent; we show this in Lemma 3.16. To prove (3.10), we will
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apply the DL convergence rule (see Definition 3.10) to the program ((𝛾?; 𝑞)∪¬𝛾?)∗

and the formula

𝜏(𝑛) ≡ 𝜄 ∧ (¬𝛾 ∨ 𝑡 ≤ 𝑛),

which intuitively says that there are at most 𝑛 iterations left in the loop.

Consider the premise of the convergence inference:

𝜎(𝑛) ≡ 𝜏(𝑠𝑛) → ⟨(𝛾?; 𝑞) ∪ ¬𝛾?⟩𝜏(𝑛)
⇔𝐷𝐿 𝜏(𝑠𝑛) → ⟨𝛾?; 𝑞⟩𝜏(𝑛) ∨ ⟨¬𝛾?⟩𝜏(𝑛)
⇔𝐷𝐿 𝜏(𝑠𝑛) → (𝛾 ∧ ⟨𝑞⟩𝜏(𝑛)) ∨ (¬𝛾 ∧ 𝜏(𝑛))
⇔𝐷𝐿 𝜄 ∧ (¬𝛾 ∨ 𝑡 ≤ 𝑠𝑛) → (𝛾 ∧ ⟨𝑞⟩(𝜄 ∧ (¬𝛾 ∨ 𝑡 ≤ 𝑛)))

∨ (¬𝛾 ∧ 𝜄 ∧ (¬𝛾 ∨ 𝑡 ≤ 𝑛)).

In order to use the convergence rule, we must prove ℳ ⊧𝐷𝐿 𝜎. For each valuation
𝑣, there are two cases to consider.

• 𝑣 ⊧𝐷𝐿 𝛾: In this case, (3.8) implies

𝑣 ⊧𝐷𝐿 𝜄 ∧ 𝑡 = 𝑧 → ⟨𝑞⟩(𝜄 ∧ 𝑡 < 𝑧) (3.11)

and 𝑣 ⊧ 𝜎(𝑛) is equivalent to

𝑣 ⊧𝐷𝐿 𝜄 ∧ 𝑡 ≤ 𝑠𝑛 → ⟨𝑞⟩(𝜄 ∧ 𝑡 ≤ 𝑛),

which is easily derived from (3.11) and the axioms of Qmin.
• 𝑣 ⊧𝐷𝐿 ¬𝛾: 𝜎 reduces to the tautology 𝜄 → 𝜄 at 𝑣.

We have now shown ℳ ⊧𝐷𝐿 𝜎(𝑛). By the convergence rule, we may conclude

ℳ ⊧𝐷𝐿 𝜏(𝑡) → ⟨((𝛾?; 𝑞) ∪ ¬𝛾?)∗⟩𝜏(0)
⇒ ℳ ⊧𝐷𝐿 𝜄 ∧ (¬𝛾 ∨ 𝑡 ≤ 𝑡) → ⟨((𝛾?; 𝑞) ∪ ¬𝛾?)∗⟩𝜏(0)
⇒ ℳ ⊧𝐷𝐿 𝜄 → ⟨((𝛾?; 𝑞) ∪ ¬𝛾?)∗⟩𝜏(0).

To conclude the proof of (3.10), we only need to show ℳ ⊧𝐷𝐿 𝜏(0) → ¬𝛾. Towards
a contradiction, assume 𝑣 ⊧ 𝛾 ∧ 𝑡 = 0. Together with

𝑣 ⊧𝐷𝐿 𝛾 ∧ 𝜄 ∧ 𝑡 = 𝑧 → ⟨𝑞⟩(𝜄 ∧ 𝑡 < 𝑧),
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which we obtain from (3.8), we can deduce 𝑣 ⊧𝐷𝐿 ⟨𝑞⟩(𝜄 ∧ 𝑡 < 0), which contradicts
the assumption that ℳ ⊧ Qmin. Therefore 𝑣 ⊧𝐷𝐿 𝜏(0) → ¬𝛾 and, since 𝑣 was
arbitrary, ℳ ⊧𝐷𝐿 𝜏(0) → ¬𝛾.

Lemma 3.16. Let 𝛾 be a formula and 𝑝 a program. Let

𝑟 = 𝛾?; 𝑝,
𝑠 = (𝛾?; 𝑝) ∪ ¬𝛾?.

Then 𝑟∗ and 𝑠∗ are equivalent, i.e., (𝑟∗)ℳ = (𝑠∗)ℳ for all structures ℳ.

Proof. Let ℳ be a structure. Then (𝑟∗)ℳ ⊆ (𝑠∗)ℳ is clear. For the other direc-
tion, we need to show that (𝑟∗)ℳ is reflexive and closed under composition with 𝑠.
The former is trivial. For the latter, assume that (𝑢, 𝑣) ∈  (𝑟∗)ℳ and (𝑣, 𝑤) ∈  𝑠ℳ.
This means that either (𝑣, 𝑤) ∈  (𝛾?; 𝑝)ℳ = 𝑟ℳ or (𝑣, 𝑤) ∈  (¬𝛾?)ℳ ⊆ idℳ. In
both cases (𝑢, 𝑤) ∈  (𝑟∗)ℳ follows immediately.

Corollary 3.17. Let 𝑝 be an IMP program, 𝑝′ an annotation of 𝑝, and 𝜑,𝜓
formulas. Then

VC� ({𝜑} 𝑝′ {𝜓}) ⊧𝑖𝑛𝑑
𝐷𝐿 𝜑 → [𝑝]𝜓,

VC♦ ({𝜑} 𝑝′ {𝜓}) ⊧𝑖𝑛𝑑
𝐷𝐿 𝜑 → ⟨𝑝⟩𝜓.

Proof. From Theorem 3.15 and the semantic equivalence of 𝑝 and 𝑝′.

It follows that each formula of the form 𝜑 → [𝑝]𝜓 or 𝜑 → ⟨𝑝⟩𝜓 induces a formula
equation. Consider the case 𝜑 → [𝑝]𝜓 and let 𝑝′ be an annotation of 𝑝 in which
each while and if instruction is annotated with a fresh formula variable. Then
∃�̄�. ⋀VC� ({𝜑} 𝑝′ {𝜓}) is a formula equation whose solvability implies ⊧𝑖𝑛𝑑

𝐷𝐿 𝜑 →
[𝑝]𝜓.

Definition 3.18 (Verification equations). Let 𝑝 be an IMP program, 𝜑,𝜓 first-
order formulas, 𝑛 the number of loops in 𝑝, 𝑡1 ∶ Nat,…, 𝑡𝑛 ∶ Nat terms, and 𝑝′

an annotation of 𝑝 in which each conditional and loop is annotated with a fresh
formula variable and the termination witness of the 𝑖-th loop is 𝑡𝑖. Then the
formula equations

VE� ({𝜑} 𝑝 {𝜓} ; ̄𝑡) ≡ ∃�̄�. ⋀VC� ({𝜑} 𝑝′ {𝜓}) ,

VE♦ ({𝜑} 𝑝 {𝜓} ; ̄𝑡) ≡ ∃�̄�. ⋀VC♦ ({𝜑} 𝑝′ {𝜓})
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are, respectively, the box verification equation and the diamond verification equa-
tion of ⟨𝜑, 𝑝, 𝜓, ̄𝑡⟩.

Given 𝜑, 𝑝, 𝜓, ̄𝑡, we are justified in speaking of the box (or diamond) verification
equation determined by ⟨𝜑, 𝑝, 𝜓, ̄𝑡⟩ because, while there may be many ways to
annotate 𝑝 in accordance with Definition 3.18, such annotations only differ in the
names of the fresh formula variables and are thus equivalent.

3.3 From simple induction proofs to programs

We will now investigate the relationship between induction proofs and IMP pro-
grams. The translation is somewhat more straightforward in the existential case.
This is because in an existential sip, terms are introduced “with” the implication,
so to speak. By contrast, in the universal case, they are introduced “against” the
implication.

3.3.1 The existential case

Let 𝜋 be the existential simple induction proof

𝒮0 ≡ Γ(𝛼) ⊢ {𝜑(𝛼, 0, 𝑢𝑖(𝛼))}
𝑚
𝑖=1

𝒮1 ≡ Π(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, 𝜑(𝛼, 𝜈, 𝛾) ⊢ {𝜑(𝛼, 𝑠𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}
𝑛
𝑖=1

𝒮2 ≡ Λ(𝛼, 𝛾), 𝜑(𝛼, 𝛼, 𝛾) ⊢ 𝜓(𝛼).

Observe that the induction formula 𝜑 plays a role similar to that of a loop invariant:
𝒮0 asserts that 𝜑 holds “at the beginning”, 𝒮1 asserts that the step from 𝜈 to 𝑠𝜈
preserves 𝜑, and 𝒮2 asserts that “at the end”, 𝜑 implies a certain goal formula.
In this section, we will make this analogy precise. Since, in general, there are
multiple step and base terms, it is intuitively clear that extracting a program from
𝜋 must result in a nondeterministic program. This raises a problem, however:
usually, an invariant of a nondeterministic program is a formula that holds across
all possible executions of the program. By contrast, 𝒮1 only requires that if
𝜑(𝛼, 𝜈, 𝛾) holds, then so does 𝜑(𝛼, 𝑠𝜈, 𝑡𝑖) for some 𝑖 ∈ {1,…, 𝑛}. This corresponds
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to the concept of an invariant that holds for some execution of a nondeterministic
program. Dynamic logic has allowed us to formalize this notion.

Definition 3.19 (Program of an existential simple induction proof). Let 𝜋 be the
existential simple induction proof

𝒮0 ≡ Γ(𝛼) ⊢ {𝜑(𝛼, 0, 𝑢𝑖(𝛼))}
𝑚
𝑖=1

𝒮1 ≡ Π(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, 𝜑(𝛼, 𝜈, 𝛾) ⊢ {𝜑(𝛼, 𝑠𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}
𝑟
𝑖=1

𝒮2 ≡ Λ(𝛼, 𝛾), 𝜑(𝛼, 𝛼, 𝛾) ⊢ 𝜓(𝛼).

Then 𝑝(𝜋) is the annotated IMP program

𝜈 ∶= 0;
𝛾 ∶= 𝑢1(𝛼)|…|𝑢𝑚(𝛼);
while 𝜈 < 𝛼 ∧ ⋀Π(𝛼, 𝜈, 𝛾) do

{𝜑(𝛼, 𝜈, 𝛾) ∧ 𝜈 ≤ 𝛼; 𝛼 − 𝜈}
𝛾 ∶= 𝑡1(𝛼, 𝜈, 𝛾) | ⋯ | 𝑡𝑟(𝛼, 𝜈, 𝛾);
𝜈 ∶= 𝜈 + 1;

end while

We immediately obtain

Lemma 3.20. Let 𝜋 be the existential Qmin-sip

Γ(𝛼) ⊢ {𝜑(𝛼, 0, 𝑢𝑖(𝛼))}
𝑚
𝑖=1

Π(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, 𝜑(𝛼, 𝜈, 𝛾) ⊢ {𝜑(𝛼, 𝑠𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}
𝑟
𝑖=1

Λ(𝛼, 𝛾), 𝜑(𝛼, 𝛼, 𝛾) ⊢ 𝜓(𝛼).

Then

Qmin ⊧ VC♦ ({⋀Γ(𝛼)} ⟨𝑝(𝜋)⟩ {⋀Λ(𝛼, 𝛾) ∧ 𝜈 = 𝛼 → 𝜓(𝛼)})

and consequently

⊧𝑖𝑛𝑑
𝐷𝐿 ⋀Γ(𝛼) → ⟨𝑝(𝜋)⟩(⋀Λ(𝛼, 𝛾) ∧ 𝜈 = 𝛼 → 𝜓(𝛼)).
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Proof. Consider VC♦ ({⋀Γ(𝛼)} 𝑝(𝜋) {⋀Λ(𝛼, 𝛾) ∧ 𝜈 = 𝛼 → 𝜓(𝛼)}):

Γ(𝛼) ⊢ {𝜑(𝛼, 0, 𝑢𝑖)}
𝑚
𝑖=1

Γ(𝛼) ⊢ 0 ≤ 𝛼
Π(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, 𝜑(𝛼, 𝜈, 𝛾), 𝜈 ≤ 𝛼, 𝛼 − 𝜈 = 𝑧 ⊢ {𝜑(𝛼, 𝑠𝜈, 𝑡𝑖)}

𝑟
𝑖=1

Π(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, 𝜑(𝛼, 𝜈, 𝛾), 𝜈 ≤ 𝛼, 𝛼 − 𝜈 = 𝑧 ⊢ 𝑠𝜈 ≤ 𝛼
Π(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, 𝜑(𝛼, 𝜈, 𝛾), 𝜈 ≤ 𝛼, 𝛼 − 𝜈 = 𝑧 ⊢ 𝛼 − 𝑠𝜈 < 𝑧
𝜑(𝛼, 𝜈, 𝛾), 𝜈 ≤ 𝛼, (¬𝜈 < 𝛼 ∨ ¬⋀Π(𝛼, 𝜈, 𝛾)) ⊢ ⋀Λ(𝛼, 𝛾) ∧ 𝜈 = 𝛼 → 𝜓(𝛼).

The last sequent can be rearranged to

Λ(𝛼, 𝛾), 𝜈 = 𝛼, 𝜑(𝛼, 𝜈, 𝛾), 𝜈 ≤ 𝛼, (¬𝜈 < 𝛼 ∨ ¬⋀Π(𝛼, 𝜈, 𝛾)) ⊢ 𝜓(𝛼).

Since the formulas

0 ≤ 𝛼,
𝜈 < 𝛼 ∧ 𝛼 − 𝜈 = 𝑧 → 𝜈 ≤ 𝛼 ∧ 𝑠𝜈 ≤ 𝛼 ∧ 𝛼 − 𝑠𝜈 < 𝑧,

𝜈 = 𝛼 → 𝜈 ≤ 𝛼 ∧ ¬𝜈 < 𝛼

are valid modulo Qmin, we can reduce these to

Γ(𝛼) ⊢ {𝜑(𝛼, 0, 𝑢𝑖)}
𝑚
𝑖=1

Π(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, 𝜑(𝛼, 𝜈, 𝛾) ⊢ {𝜑(𝛼, 𝑠𝜈, 𝑡𝑖)}
𝑟
𝑖=1

Λ(𝛼, 𝛾), 𝜑(𝛼, 𝛼, 𝛾) ⊢ 𝜓(𝛼)

which is just 𝜋. The sequents of 𝜋 are valid modulo Qmin by definition, so it follows
that Qmin ⊧ VC♦ ({⋀Γ′(𝛼)} 𝑝(𝜋) {⋀Λ′(𝛼, 𝛾) ∧ 𝜈 = 𝛼 → 𝜓(𝛼)}). The second part
of the claim follows by Theorem 3.15.

Corollary 3.21. Let 𝜋 be an existential simple induction proof as in Lemma 3.20.
Let ∀Γ,∀Π,∀Λ be sets of closed Π1 formulas such that Γ,Π,Λ are instances of
∀Γ,∀Π,∀Λ, respectively. Then ∀Γ,∀Π,∀Λ ⊧𝑖𝑛𝑑

𝐷𝐿 𝜓(𝛼).

Proof. Let ℳ be an inductive model of ∀Γ ∪ ∀Π ∪ ∀Λ. We first prove ℳ ⊧𝐷𝐿

⟨𝑝(𝜋)⟩𝜓(𝛼). By Lemma 3.20, we have

ℳ ⊧𝐷𝐿 Γ(𝛼) → ⟨𝑝(𝜋)⟩(Λ(𝛼, 𝛾) ∧ 𝜈 = 𝛼 → 𝜓(𝛼))
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and hence

ℳ ⊧𝐷𝐿 ⟨𝑝(𝜋)⟩(𝜈 = 𝛼 → 𝜓(𝛼)).

Observe that in ℳ, the loop condition 𝜈 < 𝛼∧⋀Π(𝛼, 𝜈, 𝛾) is equivalent to 𝜈 < 𝛼,
so we have

ℳ ⊧𝐷𝐿[𝑝(𝜋)](𝜈 ≤ 𝛼 ∧ 𝜈 ≥ 𝛼)
⇔[𝑝(𝜋)](𝜈 = 𝛼).

It is easy to see that ⟨𝑝(𝜋)⟩(𝜈 = 𝛼 → 𝜓(𝛼)) and [𝑝(𝜋)](𝜈 = 𝛼) jointly imply
⟨𝑝(𝜋)⟩𝜓(𝛼), and ℳ ⊧𝐷𝐿 ⟨𝑝(𝜋)⟩𝜓(𝛼) follows immediately.

By the definition of a simple induction proof, 𝜓(𝛼) is fully indicated, so 𝛼 is its
only free variable. Now let 𝑣 ∈ Val(ℳ). As we have just shown, (ℳ, 𝑣) ⊧𝐷𝐿

⟨𝑝(𝜋)⟩𝜓(𝛼), so there is a 𝑤 ∈ Val(ℳ) such that (𝑣, 𝑤) ∈ 𝑝(𝜋)ℳ and (ℳ,𝑤) ⊧𝐷𝐿

𝜓(𝛼). Since 𝑝(𝜋) never modifies 𝛼, 𝑣 and 𝑤 must agree on 𝛼, and hence (ℳ, 𝑣) ⊧𝐷𝐿

𝜓(𝛼). Since 𝑣 was arbitrary, we obtain ℳ ⊧𝐷𝐿 𝜓(𝛼).

It is worthwhile to look at this corollary and its proof in a little more detail. In a
sense, the statement ∀Γ,∀Π,∀Λ ⊧𝑖𝑛𝑑

𝐷𝐿 𝜓(𝛼) is unremarkable: we already know that
𝜋 being a sip implies that ∀Γ,∀Π,∀Λ ⊢ 𝜓(𝛼) is provable in LK with induction.
What is interesting about this corollary is that we prove it purely by reasoning
about programs, although we obviously presuppose some notion of induction in
the definition of inductive structures.

It is straightforward to obtain results analogous to Lemma 3.20 and Corollary 3.21
for simple induction proof schemas.

Definition 3.22 (Program of an existential simple induction proof schema). Let
𝜋 be the existential simple induction proof schema with the sequents

Γ(𝛼) ⊢ {𝑋(𝛼, 0, 𝑢𝑖(𝛼))}
𝑚
𝑖=1

Π(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼,𝑋(𝛼, 𝜈, 𝛾) ⊢ {𝑋(𝛼, 𝑠𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}
𝑟
𝑖=1

Λ(𝛼, 𝛾),𝑋(𝛼, 𝛼, 𝛾) ⊢ 𝜓(𝛼).

Then 𝑝(𝜋) is the annotated IMP program
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𝜈 ∶= 0;
𝛾 ∶= 𝑢1(𝛼)|…|𝑢𝑚(𝛼);
while 𝜈 < 𝛼 ∧ ⋀Π(𝛼, 𝜈, 𝛾) do

{𝑋(𝛼, 𝜈, 𝛾); 𝛼 − 𝜈}
𝛾 ∶= 𝑡1(𝛼, 𝜈, 𝛾)|…|𝑡𝑟(𝛼, 𝜈, 𝛾);
𝜈 ∶= 𝑠𝜈;

end while

This leads us to another solution problem.

Definition 3.23 (Existential verification problem). Let ℒ be an arithmetical lan-
guage, 𝒞 the class of quantifier-free ℒ-formulas of the form 𝜑(𝛼, 𝜈, 𝛾) ∧ 𝜈 ≤ 𝛼,
where 𝜈, 𝛼∶ Nat, and Φ the set of all verification equations

VE♦ ({Γ} 𝑝(𝜋) {Λ ∧ 𝜈 = 𝛼 → 𝜓} ; 𝛼 − 𝜈)

where 𝜋 is an existential sip-schema. Then ⟨Qmin, Φ, 𝒞⟩ is the existential verifica-
tion problem over ℒ.

We can now state this chapter’s main theorem in its existential version.

Theorem 3.24. Let ℒ be an arithmetical language. Then an ℒ-formula 𝜑 is
a solution of the instance 𝜋 of the existential induction problem over Qmin iff
𝜑 ∧ 𝜈 ≤ 𝛼 is a solution of the instance

VE♦ ({Γ} 𝑝(𝜋) {Λ ∧ 𝜈 = 𝛼 → 𝜓} ; 𝛼 − 𝜈)

of the existential verification problem.

Proof. Let 𝜋 be the existential simple induction proof schema

𝒮0 ≡ Γ(𝛼) ⊢ {𝑋(𝛼, 0, 𝑢𝑖(𝛼))}
𝑚
𝑖=1

𝒮1 ≡ Π(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼,𝑋(𝛼, 𝜈, 𝛾) ⊢ {𝑋(𝛼, 𝑠𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}
𝑟
𝑖=1

𝒮2 ≡ Λ(𝛼, 𝛾),𝑋(𝛼, 𝛼, 𝛾) ⊢ 𝜓(𝛼).

Then the set of verification conditions

VC♦ ({⋀Γ(𝛼)} 𝑝(𝜋) {⋀Λ(𝛼, 𝛽) ∧ 𝜈 = 𝛼 → 𝜓(𝛼)})
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contains the formulas (written in sequent form)

𝒮′
0 ≡ Γ(𝛼) ⊢ {𝑋(𝛼, 0, 𝑢𝑖(𝛼))}

𝑚
𝑖=1

𝒮′
1 ≡ Γ(𝛼) ⊢ 0 ≤ 𝛼

𝒮′
2 ≡ Π(𝛼, 𝜈, 𝛾),𝑋(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, 𝛼 − 𝜈 = 𝑧 ⊢ {𝑋(𝛼, 𝑠𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}

𝑟
𝑖=1

𝒮′
3 ≡ Π(𝛼, 𝜈, 𝛾),𝑋(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, 𝛼 − 𝜈 = 𝑧 ⊢ 𝑠𝜈 ≤ 𝛼

𝒮′
4 ≡ Π(𝛼, 𝜈, 𝛾),𝑋(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, 𝛼 − 𝜈 = 𝑧 ⊢ 𝛼 − 𝑠𝜈 < 𝑧

𝒮′
5 ≡ Λ(𝛼, 𝛾), 𝜈 = 𝛼, (¬𝜈 < 𝛼 ∨ ¬⋀Π(𝛼, 𝜈, 𝛾)),𝑋(𝛼, 𝜈, 𝛾) ⊢ 𝜓(𝛼).

Since we are only interested in solutions of the form 𝜌(𝛼, 𝜈, 𝛾) ∧ 𝜈 ≤ 𝛼, we can
replace these sequents by

𝒮′
0 ≡ Γ(𝛼) ⊢ {𝑋(𝛼, 0, 𝑢𝑖(𝛼))}

𝑚
𝑖=1

𝒮′
1 ≡ Γ(𝛼) ⊢ 0 ≤ 𝛼

𝒮′
2 ≡ Π(𝛼, 𝜈, 𝛾),𝑋(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, 𝛼 − 𝜈 = 𝑧 ⊢ {𝑋(𝛼, 𝑠𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}

𝑟
𝑖=1

𝒮′
3 ≡ Π(𝛼, 𝜈, 𝛾),𝑋(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, 𝛼 − 𝜈 = 𝑧 ⊢ 𝑠𝜈 ≤ 𝛼

𝒮′
4 ≡ Π(𝛼, 𝜈, 𝛾),𝑋(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, 𝛼 − 𝜈 = 𝑧 ⊢ 𝛼 − 𝑠𝜈 < 𝑧

𝒮′
5 ≡ Λ(𝛼, 𝛾), 𝜈 = 𝛼, (¬𝜈 < 𝛼 ∨ ¬⋀Π(𝛼, 𝜈, 𝛾)),𝑋(𝛼, 𝜈, 𝛾), 𝜈 ≤ 𝛼 ⊢ 𝜓(𝛼).

and ignore the condition on solutions.

The theorem then easily follows by observing that for any formula 𝜑(𝛼, 𝜈, 𝛾),

Qmin ⊧
2
⋀
𝑖=0

𝒮𝑖[𝑋\𝜑] ↔
5
⋀
𝑖=0

𝒮′
𝑖[𝑋\𝜑].

3.3.2 The universal case

Consider the universal simple induction proof 𝜋:

Γ(𝛼, 𝛾) ⊢ 𝜑(𝛼, 0, 𝛾),
Π(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, {𝜑(𝛼, 𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}

𝑟
𝑖=1 ⊢ 𝜑(𝛼, 𝑠𝜈, 𝛾)

Λ(𝛼), {𝜑(𝛼, 𝛼, 𝑢𝑖(𝛼))}
𝑚
𝑖=1 ⊢ 𝜓(𝛼).

We cannot translate this into a program quite as straightforwardly as in the ex-
istential case. In the second sequent, the step terms occur in the antecedent, but
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the natural direction is from the antecedent to the succedent. The same holds
for the terms in the third sequent. Consequently, we will have to rewrite 𝜋 a bit
before we can proceed. By simple propositional manipulation, we can obtain the
equivalent form

¬𝜑(𝛼, 0, 𝛽) ⊢ ¬Γ(𝛼, 𝛽),
Π(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼,¬𝜑(𝛼, 𝑠𝜈, 𝛾) ⊢ {¬𝜑(𝛼, 𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}

𝑟
𝑖=1

Λ(𝛼), ¬𝜓(𝛼) ⊢ {¬𝜑(𝛼, 𝛼, 𝑢𝑖(𝛼))}
𝑚
𝑖=1 .

In the same way as an existential simple induction proof suggests a loop counting
from 0 to 𝛼, here we obtain a loop counting down from 𝛼 to 0. We capture this
intuition in the following definition.

Definition 3.25 (Program of a universal simple induction proof). Let 𝜋 be the
universal simple induction proof

Γ(𝛼, 𝛽) ⊢ 𝜑(𝛼, 0, 𝛽),
Π(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, {𝜑(𝛼, 𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}

𝑟
𝑖=1 ⊢ 𝜑(𝛼, 𝑠𝜈, 𝛾)

Λ(𝛼), {𝜑(𝛼, 𝛼, 𝑢𝑖(𝛼))}
𝑚
𝑖=1 ⊢ 𝜓(𝛼).

Then 𝑝(𝜋) is the annotated IMP program

𝜈 ∶= 𝛼;
𝛾 ∶= 𝑢1(𝛼)|…|𝑢𝑚(𝛼);
while 𝜈 > 0 ∧ ⋀Π(𝛼, 𝑝𝜈, 𝛾) do

{¬𝜑(𝛼, 𝜈, 𝛾) ∧ 𝜈 ≤ 𝛼; 𝜈}
𝜈 ∶= 𝑝𝜈;
𝛾 ∶= 𝑡1(𝛼, 𝜈, 𝛾)|…|𝑡𝑟(𝛼, 𝜈, 𝛾);

end while

The following lemma, echoing Lemma 3.20, follows immediately.

Lemma 3.26. Let 𝜋 be the universal simple induction proof

Γ(𝛼, 𝛾) ⊢ 𝜑(𝛼, 0, 𝛾),
Π(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, {𝜑(𝛼, 𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}

𝑟
𝑖=1 ⊢ 𝜑(𝛼, 𝑠𝜈, 𝛾)

Λ(𝛼), {𝜑(𝛼, 𝛼, 𝑢𝑖(𝛼))}
𝑚
𝑖=1 ⊢ 𝜓(𝛼).
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Then

Qmin ⊧ VC♦ ({⋀Λ(𝛼) ∧ ¬𝜓(𝛼)} ⟨𝑝(𝜋)⟩ {⋀Γ(𝛼, 𝛾) ∧ 𝜈 = 0 → ⊥})

and consequently

⊧𝑖𝑛𝑑
𝐷𝐿 ⋀Λ(𝛼) ∧ ¬𝜓(𝛼) → ⟨𝑝(𝜋)⟩(⋀Γ(𝛼, 𝛾) ∧ 𝜈 = 0 → ⊥).

Proof. Consider VC♦ ({⋀Λ(𝛼) ∧ ¬𝜓(𝛼)} ⟨𝑝(𝜋)⟩ {⋀Γ(𝛼, 𝛾) ∧ 𝜈 = 0 → ⊥}):

Λ(𝛼), ¬𝜓(𝛼) ⊢ {¬𝜑(𝛼, 𝛼, 𝑢𝑖(𝛼))}
𝑚
𝑖=1

Π(𝛼, 𝑝𝜈, 𝛾), 𝜈 > 0, ¬𝜑(𝛼, 𝜈, 𝛾), 𝜈 ≤ 𝛼, 𝜈 = 𝑧 ⊢ {¬𝜑(𝛼, 𝑝𝜈, 𝑡𝑖(𝛼, 𝑝𝜈, 𝛾))}
𝑟
𝑖=1

Π(𝛼, 𝑝𝜈, 𝛾), 𝜈 > 0, ¬𝜑(𝛼, 𝜈, 𝛾), 𝜈 ≤ 𝛼, 𝜈 = 𝑧 ⊢ 𝑝𝜈 ≤ 𝛼
Π(𝛼, 𝑝𝜈, 𝛾), 𝜈 > 0, ¬𝜑(𝛼, 𝜈, 𝛾), 𝜈 ≤ 𝛼, 𝜈 = 𝑧 ⊢ 𝑝𝜈 < 𝑧

⎧{
⎨{⎩

(⋁¬Π′(𝛼, 𝜈, 𝛾) ∨ ¬𝜈 > 0),
¬𝜑(𝛼, 𝜈, 𝛾),
𝜈 = 0, Γ(𝛼, 𝛾)

⎫}
⎬}⎭

⊢ ⋀Γ(𝛼, 𝛾) ∧ 𝜈 = 0 → ⊥

These sequents are propositionally equivalent to

Λ(𝛼), {𝜑(𝛼, 𝛼, 𝑢𝑖(𝛼))}
𝑚
𝑖=1 ⊢ 𝜓(𝛼)

⎧{
⎨{⎩

Π(𝛼, 𝑝𝜈, 𝛾), 𝜈 > 0,
𝜈 ≤ 𝛼, 𝜈 = 𝑧,

{𝜑(𝛼, 𝑝𝜈, 𝑡𝑖(𝛼, 𝑝𝜈, 𝛾))}
𝑟
𝑖=1

⎫}
⎬}⎭

⊢ 𝜑(𝛼, 𝜈, 𝛾)

Π(𝛼, 𝑝𝜈, 𝛾), 𝜈 > 0, 𝜈 ≤ 𝛼, 𝜈 = 𝑧 ⊢ 𝑝𝜈 ≤ 𝛼,𝜑(𝛼, 𝜈, 𝛾)
Π(𝛼, 𝑝𝜈, 𝛾), 𝜈 > 0, 𝜈 ≤ 𝛼, 𝜈 = 𝑧 ⊢ 𝑝𝜈 < 𝑧, 𝜑(𝛼, 𝜈, 𝛾)

Γ(𝛼, 𝛾), (⋁¬Π′(𝛼, 𝜈, 𝛾) ∨ ¬𝜈 > 0), 𝜈 = 0 ⊢ 𝜑(𝛼, 𝜈, 𝛾).

The third and fourth sequent are easily seen to be valid modulo Qmin. Moreover,
because

Qmin ⊧ 𝑠𝜈 > 0,
Qmin ⊧ 𝑠𝜈 ≤ 𝛼 → 𝜈 < 𝛼,
Qmin ⊧ 𝜈 > 0 ∧ 𝜈 ≤ 𝛼 → 𝜈 = 𝑠𝑝𝜈 ∧ 𝑝𝜈 < 𝑧 ∧ 𝑝𝜈 ≤ 𝛼,
Qmin ⊧ ¬0 > 0,

77



Chapter 3: Nondeterministic programs and dynamic logic

we can replace 𝜈 and 𝑝𝜈 in sequent 2 by 𝑠𝜈 and 𝜈, respectively, and simplify the
sequents to

Λ(𝛼), {𝜑(𝛼, 𝛼, 𝑢𝑖(𝛼))}
𝑚
𝑖=1 ⊢ 𝜓(𝛼)

Π(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, {𝜑(𝛼, 𝑝𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}
𝑟
𝑖=1 ⊢ 𝜑(𝛼, 𝑠𝜈, 𝛾),

Γ(𝛼, 𝛾) ⊢ 𝜑(𝛼, 0, 𝛾)

Again, we have reduced the verification conditions to 𝜋. The claim follows just as
in Lemma 3.20.

Corollary 3.27. Let 𝜋 be a universal simple induction proof as in Lemma 3.26.
Let ∀Γ,∀Π,∀Λ be sets of closed Π1 formulas such that Γ,Π,Λ are instances of
∀Γ,∀Π,∀Λ, respectively. Then ∀Γ,∀Π,∀Λ ⊧𝑖𝑛𝑑

𝐷𝐿 𝜓(𝛼).

Proof. We proceed as in the proof of 3.21. Let ℳ be inductive with ℳ ⊧ ∀Γ ∪
∀Π ∪ ∀Λ. Then by Lemma 3.26,

ℳ ⊧𝐷𝐿 ⋀Λ(𝛼) ∧ ¬𝜓(𝛼) → ⟨𝑝(𝜋)⟩(⋀Γ(𝛼, 𝛾) ∧ 𝜈 = 0 → ⊥)

and consequently

ℳ ⊧𝐷𝐿 ¬𝜓(𝛼) → ⟨𝑝(𝜋)⟩(𝜈 = 0 → ⊥).

We can further simplify this formula to ℳ ⊧𝐷𝐿 ¬𝜓(𝛼) → ⟨𝑝(𝜋)⟩⊥ because ℳ ⊧
Π(𝛼, 𝜈, 𝛾). The claim follows immediately.

Again, it is worth considering this proof in a little more detail. We start from the
assumption that 𝜓(𝛼) is false in some state of an inductive model ℳ that satisfies
the axioms in ∀Γ,∀Π,∀Λ. This immediately implies that 𝜑(𝛼, 𝛼, 𝑢𝑖) is also false
for some term 𝑢𝑖. From there, we construct ever smaller counterexamples to 𝜑
until we arrive at 0, but ∀Γ implies ∀𝑦. 𝜑(𝛼, 0, 𝑦), a contradiction. Thus, 𝜓(𝛼)
must be true. This proof corresponds to the formulation of induction as Fermat’s
“principle of infinite descent”: if for every 𝜈 with ¬𝜑(𝜈) there is a 𝜈′ < 𝜈 with
¬𝜑(𝜈′), then 𝜑 must hold everywhere.

We define the programs corresponding to universal sip-schemas and their solution
problems.
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Definition 3.28 (Program of a universal simple induction proof schema). Let 𝜋
be the universal simple induction proof schema with the sequents

Γ(𝛼, 𝛾) ⊢ 𝑋(𝛼, 0, 𝛾),
Π(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, {𝑋(𝛼, 𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}

𝑟
𝑖=1 ⊢ 𝑋(𝛼, 𝑠𝜈, 𝛾)

Λ(𝛼), {𝑋(𝛼, 𝛼, 𝑢𝑖(𝛼))}
𝑚
𝑖=1 ⊢ 𝜓(𝛼).

Then 𝑝(𝜋) is the annotated IMP program

𝜈 ∶= 𝛼;
𝛾 ∶= 𝑢1(𝛼)|…|𝑢𝑚(𝛼);
while 𝜈 > 0 ∧ ⋀Π(𝛼, 𝑝𝜈, 𝛾) do

{𝑋(𝛼, 𝜈, 𝛾); 𝜈}
𝜈 ∶= 𝑝𝜈;
𝛾 ∶= 𝑡1(𝛼, 𝜈, 𝛾)|…|𝑡𝑟(𝛼, 𝜈, 𝛾);

end while

Definition 3.29 (Universal verification problem). Let ℒ be an arithmetical lan-
guage, 𝒞 the class of quantifier-free ℒ-formulas of the form 𝜑(𝛼, 𝜈, 𝛾) ∧ 𝜈 ≤ 𝛼,
where 𝜈, 𝛼∶ Nat, and Φ the set of all verification equations

VE♦ ({Λ′(𝛼) ∧ ¬𝜓(𝛼)} 𝑝(𝜋) {Γ′(𝛼, 𝛾) ∧ 𝜈 = 0 → ⊥} ; 𝜈)

where 𝜋 is a universal sip-schema. Then ⟨Qmin, Φ, 𝒞⟩ is the universal verification
problem over ℒ.

We can now complete this chapter’s main result by proving the universal case.

Theorem 3.30. Let ℒ be an arithmetical language. Then an ℒ-formula 𝜑 is
a solution of the instance 𝜋 of the universal induction problem over Qmin iff
¬𝜑 ∧ 𝜈 ≤ 𝛼 is a solution of the instance

VE♦ ({Λ(𝛼) ∧ ¬𝜓(𝛼)} 𝑝(𝜋) {Γ(𝛼, 𝛾) ∧ 𝜈 = 0 → ⊥} ; 𝜈)

of the universal verification problem.
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Proof. Let 𝜋 be the universal simple induction proof schema with the sequents

Γ(𝛼, 𝛽) ⊢ 𝑋(𝛼, 0, 𝛽),
Π(𝛼, 𝜈, 𝛾), 𝜈 < 𝛼, {𝑋(𝛼, 𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}

𝑟
𝑖=1 ⊢ 𝑋(𝛼, 𝑠𝜈, 𝛾)

Λ(𝛼), {𝑋(𝛼, 𝛼, 𝑢𝑖(𝛼))}
𝑚
𝑖=1 ⊢ 𝜓(𝛼).

Now consider VC♦ ({⋀Λ(𝛼) ∧ ¬𝜓(𝛼)} 𝑝(𝜋) {⋀Γ(𝛼, 𝛾) ∧ 𝜈 = 0 → ⊥}):

Λ(𝛼), ¬𝜓(𝛼) ⊢ {𝑋(𝛼, 𝛼, 𝑢𝑖(𝛼))}
𝑚
𝑖=1

Π(𝛼, 𝑝𝜈, 𝛾), 𝜈 > 0,𝑋(𝛼, 𝜈, 𝛾), 𝜈 = 𝑧 ⊢ {𝑋(𝛼, 𝑝𝜈, 𝑡𝑖(𝛼, 𝑝𝜈, 𝛾))}
𝑟
𝑖=1

Π(𝛼, 𝑝𝜈, 𝛾), 𝜈 > 0,𝑋(𝛼, 𝜈, 𝛾), 𝜈 = 𝑧 ⊢ 𝑝𝜈 < 𝛼
Π(𝛼, 𝑝𝜈, 𝛾), 𝜈 > 0,𝑋(𝛼, 𝜈, 𝛾), 𝜈 = 𝑧 ⊢ 𝑝𝜈 < 𝑧

(⋁¬Π(𝛼, 𝜈, 𝛾) ∨ ¬𝜈 > 0),𝑋(𝛼, 𝜈, 𝛾) ⊢ Γ(𝛼, 𝛾) ∧ 𝜈 = 0 → ⊥.

Now let 𝜑(𝛼, 𝜈, 𝛾) be a formula and substitute ¬𝜑(𝛼, 𝜈, 𝛾) ∧ 𝜈 ≤ 𝛼 for 𝑋:

Λ(𝛼), ¬𝜓(𝛼) ⊢ {¬𝜑(𝛼, 𝛼, 𝑢𝑚(𝛼))}𝑚
𝑖=1

Λ(𝛼), ¬𝜓(𝛼) ⊢ 𝛼 ≤ 𝛼
Π(𝛼, 𝑝𝜈, 𝛾), 𝜈 > 0, ¬𝜑(𝛼, 𝜈, 𝛾), 𝜈 ≤ 𝛼, 𝜈 = 𝑧 ⊢ {¬𝜑(𝛼, 𝑝𝜈, 𝑡𝑖(𝛼, 𝑝𝜈, 𝛾))}

𝑟
𝑖=1

Π(𝛼, 𝑝𝜈, 𝛾), 𝜈 > 0, ¬𝜑(𝛼, 𝜈, 𝛾), 𝜈 ≤ 𝛼, 𝜈 = 𝑧 ⊢ 𝑝𝜈 ≤ 𝛼
Π(𝛼, 𝑝𝜈, 𝛾), 𝜈 > 0, ¬𝜑(𝛼, 𝜈, 𝛾), 𝜈 ≤ 𝛼, 𝜈 = 𝑧 ⊢ 𝑝𝜈 < 𝑧

(⋁¬Π(𝛼, 𝜈, 𝛾) ∨ ¬𝜈 > 0) , ¬𝜑(𝛼, 𝜈, 𝛾), 𝜈 ≤ 𝛼 ⊢ Γ(𝛼, 𝛾) ∧ 𝜈 = 0 → ⊥.

Some rearranging yields

Λ(𝛼), {𝜑(𝛼, 𝛼, 𝑢𝑚(𝛼))}𝑚
𝑖=1 ⊢ 𝜓(𝛼)

Λ(𝛼), 𝛼 > 𝛼 ⊢ 𝜓(𝛼)

⎧{
⎨{⎩

Π(𝛼, 𝑝𝜈, 𝛾),
{𝜑(𝛼, 𝑝𝜈, 𝑡𝑖(𝛼, 𝑝𝜈, 𝛾))}

𝑟
𝑖=1 ,

𝜈 > 0, 𝜈 ≤ 𝛼, 𝜈 = 𝑧

⎫}
⎬}⎭

⊢ 𝜑(𝛼, 𝜈, 𝛾)

Π(𝛼, 𝑝𝜈, 𝛾), 𝜈 > 0, 𝜈 ≤ 𝛼, 𝜈 = 𝑧 ⊢ 𝑝𝜈 ≤ 𝛼,𝜑(𝛼, 𝜈, 𝛾)
Π(𝛼, 𝑝𝜈, 𝛾), 𝜈 > 0, 𝜈 ≤ 𝛼, 𝜈 = 𝑧 ⊢ 𝑝𝜈 < 𝑧, 𝜑(𝛼, 𝜈, 𝛾)

{
Γ(𝛼, 𝛾), 𝜈 = 0, 𝜈 ≤ 𝛼,

(⋁¬Π(𝛼, 𝜈, 𝛾) ∨ ¬𝜈 > 0)
} ⊢ 𝜑(𝛼, 𝜈, 𝛾).
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Modulo Qmin, we can simplify as in the proof of Lemma 3.26:

Λ(𝛼) {𝜑(𝛼, 𝛼, 𝑢𝑚(𝛼))}𝑚
𝑖=1 ⊢ 𝜓(𝛼)

Π(𝛼, 𝜈, 𝛾) {𝜑(𝛼, 𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}
𝑟
𝑖=1 , 𝜈 < 𝛼 ⊢ 𝜑(𝛼, 𝑠𝜈, 𝛾)

Γ(𝛼, 𝛾) ⊢ 𝜑(𝛼, 0, 𝛾).

This is exactly

𝒮0[𝑋\𝜑(𝛼, 𝜈, 𝛾)],
𝒮1[𝑋\𝜑(𝛼, 𝜈, 𝛾)],
𝒮2[𝑋\𝜑(𝛼, 𝜈, 𝛾)],

which completes the proof.

3.4 Converting parametric grammars to programs

The main result of this chapter was proved in the previous section. In this section,
we will show that just as there is a connection between simple induction proofs
and IMP programs, there is also one between parametric grammars and IMP
programs: For any parametric grammar, we can define a program that computes
exactly the grammar’s language.

We will restrict ourselves to the existential case, the universal case works analo-
gously.

Definition 3.31 (Existential program of a parametric grammar). Let 𝐺 be a
parametric grammar with productions

𝜏 → 𝑤𝑒𝑛𝑑
1 (𝛼, 𝛾) | ⋯ | 𝑤𝑒𝑛𝑑

ℓ (𝛼, 𝛾),
𝜏 → 𝑤1(𝛼, 𝜈, 𝛾) | ⋯ | 𝑤𝑘(𝛼, 𝜈, 𝛾),
𝛾 → 𝑡1(𝛼, 𝜈, 𝛾) | ⋯ | 𝑡𝑟(𝛼, 𝜈, 𝛾),
𝛾∗ → 𝑢1(𝛼) | ⋯ | 𝑢𝑚(𝛼).

Then 𝑝∃(𝐺), the existential program of 𝐺, is the IMP program
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𝜈 ∶= 0;
𝛿 ∶= 0;
while 𝜈 < 𝛼 do

𝛿 ∶= 𝛿 | 𝑠𝛿;
𝜈 ∶= 𝑠𝜈;

end while
𝜈 ∶= 0;
𝛾 ∶= 𝑢1(𝛼) | ⋯ | 𝑢𝑚(𝛼);
while 𝜈 < 𝛿 do

𝛾 ∶= 𝑡1(𝛼, 𝜈, 𝛾) | ⋯ | 𝑡𝑟(𝛼, 𝜈, 𝛾);
𝜈 ∶= 𝑠𝜈;

end while
if 𝛿 = 𝛼 then

𝜏 ∶= 𝑤𝑒𝑛𝑑
1 (𝛼, 𝛾) | ⋯ | 𝑤𝑒𝑛𝑑

ℓ (𝛼, 𝛾);
else

𝜏 ∶= 𝑤1(𝛼, 𝜈, 𝛾) | ⋯ | 𝑤𝑘(𝛼, 𝜈, 𝛾);
end if

The first loop in 𝑝(𝐺) nondeterministically sets 𝛿 to a value between 0 and 𝛼.
Note that we could not accomplish this in a single nondeterministic assignment
because it is not clear a priori how many possible terms there are. Since 𝛿 is the
upper limit of the second loop, the second loop will run somewhere between 0 and
𝛼 times.

For the remainder of this section, we will write 𝐺𝑛 for 𝐺∃
𝑛 and 𝑝(𝐺) for 𝑝∃(𝐺).

We will show that 𝑝(𝐺) computes the existential instance languages of 𝐺 in two
lemmas. Lemma 3.32 shows that the instance languages of 𝐺 form an upper bound
for the output of 𝑝(𝐺); Lemma 3.33 shows that each element of 𝐿(𝐺𝑛) is actually
realized.

Lemma 3.32. Recall the definition of Qmin (Definition 3.9). Let 𝐺 be a parametric
grammar, 𝑝(𝐺) its existential program, and 𝑛 ∈ ℕ. Then

Qmin ⊧𝐷𝐿 𝛼 = �̄� → [𝑝(𝐺)] 𝜏 ∈ 𝐿(𝐺𝑛)

where 𝜏 ∈ 𝑆 abbreviates ⋁
𝑤∈𝑆

𝜏 = 𝑤.
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Proof. Note, first of all, that since 𝛼 never changes throughout 𝑝(𝐺), the precon-
dition 𝛼 = �̄� stays valid throughout the entire program. We may thus assume
w.l.o.g. that 𝛼 = �̄� is part of all invariants and intermediate formulas.

Let 𝑝′ be the annotation

𝜈 ∶= 0;
𝛿 ∶= 0;
while 𝜈 < 𝛼 do

{𝐽; 𝛼 − 𝜈}
𝛿 ∶= 𝛿 | 𝑠𝛿;
𝜈 ∶= 𝑠𝜈;

end while
𝜈 ∶= 0;
𝛾 ∶= 𝑢1(𝛼) | ⋯ | 𝑢𝑚(𝛼);
while 𝜈 < 𝛿 do

{𝜈 ≤ 𝛿 ≤ 𝛼 ∧ 𝐼; 𝛿 − 𝜈}
𝛾 ∶= 𝑡1(𝛼, 𝜈, 𝛾) | ⋯ | 𝑡𝑟(𝛼, 𝜈, 𝛾);
𝜈 ∶= 𝑠𝜈;

end while
{𝜈 = 𝛿 ≤ 𝛼 ∧ 𝐼}
if 𝛿 = 𝛼 then

𝜏 ∶= 𝑤𝑒𝑛𝑑
1 (𝛼, 𝛾) | ⋯ | 𝑤𝑒𝑛𝑑

ℓ (𝛼, 𝛾);
else

𝜏 ∶= 𝑤1(𝛼, 𝜈, 𝛾) | ⋯ | 𝑤𝑘(𝛼, 𝜈, 𝛾);
end if

of 𝑃(𝐺), where

𝐼(𝜈, 𝛾) ≡
𝑛
⋁
𝑖=0

(𝜈 = ̄𝑖 ∧ 𝛾 ∈ 𝐿𝑖(𝐺𝑛)),

𝐽(𝛼, 𝜈, 𝛿) ≡ 𝛿 ≤ 𝜈 ≤ 𝛼.
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Now consider VC� ({𝛼 = �̄�}𝑃 ′ {⋁
𝑤∈𝐿(𝐺𝑛)

𝜏 = 𝑤}):

𝛼 = �̄� ⊢ 𝐽(𝛼, 0, 0)
𝐽(𝛼, 𝜈, 𝛿), 𝜈 < 𝛼 ⊢ 𝐽(𝛼, 𝑠𝜈, 𝛿), 𝐽(𝛼, 𝑠𝜈, 𝑠𝛿)

𝐽(𝛼, 𝜈, 𝛿), 𝜈 ≥ 𝛼 ⊢ 0 ≤ 𝛿 ≤ 𝛼 ∧
𝑚
⋀
𝑗=1

𝐼(0, 𝑢𝑗(𝛼))

𝜈 ≤ 𝛿 ≤ 𝛼, 𝐼(𝜈, 𝛾), 𝜈 < 𝛿 ⊢ 𝑠𝜈 ≤ 𝛿 ≤ 𝛼 ∧
𝑟
⋀
𝑗=1

𝐼(𝑠𝜈, 𝑡𝑗(𝛼, 𝜈, 𝛾))

𝜈 ≤ 𝛿 ≤ 𝛼, 𝐼(𝜈, 𝛾), 𝜈 ≥ 𝛿 ⊢ 𝜈 = 𝛿 ≤ 𝛼 ∧ 𝐼(𝜈, 𝛾)

𝜈 = 𝛿 ≤ 𝛼, 𝐼(𝜈, 𝛾), 𝛿 = 𝛼 ⊢
ℓ
⋀
𝑗=1

𝑤𝑒𝑛𝑑
𝑗 (𝛼, 𝛾) ∈ 𝐿(𝐺𝑛)

𝜈 = 𝛿 ≤ 𝛼, 𝐼(𝜈, 𝛾), 𝛿 ≠ 𝛼) ⊢
𝑘
⋀
𝑗=1

𝑤𝑗(𝛼, 𝜈, 𝛾) ∈ 𝐿(𝐺𝑛).

After substituting 𝐼 and 𝐽 in the verification conditions and simplifying, we are
left with:

𝛼 = �̄� ⊢ 0 ≤ 𝛼
𝛿 ≤ 𝜈 < 𝛼 ⊢ 𝛿 ≤ 𝑠𝜈 ≤ 𝛼 ∧ 𝑠𝛿 ≤ 𝑠𝜈 ≤ 𝛼

𝛿 ≤ 𝜈 = 𝛼 ⊢ 0 ≤ 𝛿 ≤ 𝛼 ∧
𝑚
⋀
𝑗=1

𝑢𝑗(𝛼) ∈ 𝐿0(𝐺𝑛) (3.12)

{
𝜈 < 𝛿 ≤ 𝛼,

⋁𝑛
𝑖=0

(𝜈 = ̄𝑖 ∧ 𝛾 ∈ 𝐿𝑖(𝐺𝑛))
} ⊢ 𝑠𝜈 ≤ 𝛿 ≤ 𝛼

{
𝜈 < 𝛿 ≤ 𝛼,

⋁𝑛
𝑖=0

(𝜈 = ̄𝑖 ∧ 𝛾 ∈ 𝐿𝑖(𝐺𝑛))
} ⊢ {(𝑠𝜈 = ̄𝑖 ∧ 𝑡𝑗(𝛼, 𝜈, 𝛾) ∈ 𝐿𝑖(𝐺𝑛))}

𝑛
𝑖=0

𝑗 ∈  {1,…, 𝑟}, (3.13)

{
𝜈 = 𝛿 ≤ 𝛼,

⋁𝑛
𝑖=0

(𝜈 = ̄𝑖 ∧ 𝛾 ∈ 𝐿𝑖(𝐺𝑛))
} ⊢ {𝜈 = ̄𝑖 ∧ 𝛾 ∈ 𝐿𝑖(𝐺𝑛)}

𝑛
𝑖=0

{
𝜈 = 𝛿 = 𝛼,

⋁𝑛
𝑖=0

(𝜈 = ̄𝑖 ∧ 𝛾 ∈ 𝐿𝑖(𝐺𝑛))
} ⊢ 𝑤𝑒𝑛𝑑

𝑗 (𝛼, 𝛾) ∈ 𝐿(𝐺𝑛), 𝑗 ∈  {1,…, ℓ} (3.14)
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{
𝜈 = 𝛿 < 𝛼,

⋁𝑛
𝑖=0

(𝜈 = ̄𝑖 ∧ 𝛾 ∈ 𝐿𝑖(𝐺𝑛))
} ⊢ 𝑤𝑗(𝛼, 𝜈, 𝛾) ∈ 𝐿(𝐺𝑛), 𝑗 ∈  {1,…, 𝑘}. (3.15)

Most of these are easily seen to be valid modulo Qmin, but we comment on four
specific ones:

• (3.12): Due to the implicit assumption 𝛼 = �̄�, 𝑢𝑗(𝛼) ∈ 𝐿0(𝐺𝑛) holds by
definition.

• (3.13): Follows by 𝛼 = �̄� and the definition of 𝐿𝑖(𝐺𝑛).
• (3.14): The antecedent implies 𝜈 = �̄� and 𝛾 ∈ 𝐿𝑛(𝐺𝑛) and consequently

𝑤𝑒𝑛𝑑
𝑗 (𝛼, 𝛾) ∈ 𝐿(𝐺𝑛) for any 𝑗.

• (3.15): The antecedent implies 𝜈 = ̄𝑖 and 𝛾 ∈ 𝐿𝑖(𝐺𝑛) for some 𝑖 < 𝑛 and
hence 𝑤𝑗(𝛼, 𝜈, 𝛾) ∈ 𝐿(𝐺𝑛) for any 𝑗.

Thus, we have shown Qmin ⊧𝐷𝐿 ⋀VC� ({𝛼 = �̄�} 𝑝′ {𝜏 ∈ 𝐿(𝐺𝑛)}). Qmin ⊧𝐷𝐿 𝛼 =
�̄� → [𝑝(𝐺)]𝜏 ∈ 𝐿(𝐺𝑛) follows by Corollary 3.17.

Lemma 3.33. Let 𝐺 be a parametric grammar, 𝑝(𝐺) its existential program, 𝑛 ∈ ℕ
and 𝑤 ∈ 𝐿(𝐺𝑛). Then Qmin ⊧𝐷𝐿 𝛼 = �̄� → ⟨𝑝(𝐺)⟩𝜏 = 𝑤.

Proof. As in the proof of Lemma 3.32, we will tacitly assume 𝛼 = �̄�.

Clearly, 𝑤 is either of the form 𝑤𝑖(�̄�, �̄�, 𝑤′) with 𝑘 < 𝑛 and 𝑤′ ∈ 𝐿𝑘(𝐺𝑛) or
𝑤𝑒𝑛𝑑

𝑖 (�̄�, 𝑤′) with 𝑤′ ∈ 𝐿𝑛(𝐺𝑛). We will only treat the former case, the latter
works analogously. Therefore, let 𝑘 < 𝑛 be arbitrary and 𝑤′ ∈ 𝐿𝑘(𝐺𝑛). This
implies that there are 𝑖0,…, 𝑖𝑘+1 and 𝑤′

0,…,𝑤′
𝑘 such that

𝑤′
0 = 𝑢𝑖0

(�̄�) ∈ 𝐿0(𝐺𝑛),
𝑤′

1 = 𝑡𝑖1
(�̄�, 0, 𝑤′

0) ∈ 𝐿1(𝐺𝑛),
⋮

𝑤′
𝑘 = 𝑡𝑖𝑘

(�̄�, 𝑘 − 1,𝑤′
𝑘−1) ∈ 𝐿𝑘(𝐺𝑛),

𝑤 = 𝑤𝑖𝑘+1
(�̄�, �̄�, 𝑤′

𝑘) ∈ 𝐿(𝐺𝑛).

Let 𝑝′ be the annotation
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𝜈 ∶= 0;
𝛿 ∶= 0;
while 𝜈 < 𝛼 do

{𝐽; 𝛼 − 𝜈}
𝛿 ∶= 𝛿 | 𝑠𝛿;
𝜈 ∶= 𝑠𝜈;

end while
𝜈 ∶= 0;
𝛾 ∶= 𝑢1(𝛼) | ⋯ | 𝑢𝑚(𝛼);
while 𝜈 < 𝛿 do

{𝜈 ≤ 𝛿 ≤ 𝛼 ∧ 𝐼; 𝛿 − 𝜈}
𝛾 ∶= 𝑡1(𝛼, 𝜈, 𝛾) | ⋯ | 𝑡𝑟(𝛼, 𝜈, 𝛾);
𝜈 ∶= 𝑠𝜈;

end while
{𝜈 = 𝛿 ≤ 𝛼 ∧ 𝐼}
if 𝛿 = 𝛼 then

𝜏 ∶= 𝑤𝑒𝑛𝑑
1 (𝛼, 𝛾) | ⋯ | 𝑤𝑒𝑛𝑑

ℓ (𝛼, 𝛾);
else

𝜏 ∶= 𝑤1(𝛼, 𝜈, 𝛾) | ⋯ | 𝑤𝑘(𝛼, 𝜈, 𝛾);
end if

where

𝐼(𝜈, 𝛾) ≡ 𝜈 ≤ 𝛿 = �̄� ∧
𝑘
⋁
𝑗=1

(𝜈 = ̄𝑗 ∧ 𝛾 = 𝑤′
𝑗),

𝐽(𝛼, 𝜈, 𝛿) ≡ 𝛿 ≤ �̄� ∧ 𝜈 ≤ 𝛼 ∧ �̄� − 𝛿 ≤ 𝛼 − 𝜈.

Since 𝜈 = 𝛼 at the end of the first loop, 𝐽 forces 𝛿 to become equal to �̄�, while 𝐼
encodes the step-by-step construction of 𝑤.

Now consider VC♦ ({𝛼 = �̄�}𝑃 ′ {𝜏 = 𝑤}):

𝛼 = �̄� ⊢ 𝐽(𝛼, 0, 0)

⎧{
⎨{⎩

𝐽(𝛼, 𝜈, 𝛿),
𝜈 < 𝛼,

𝛼 − 𝜈 = 𝑧

⎫}
⎬}⎭

⊢ 𝐽(𝛼, 𝑠𝜈, 𝛿), 𝐽(𝛼, 𝑠𝜈, 𝑠𝛿) (3.16)
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⎧{
⎨{⎩

𝐽(𝛼, 𝜈, 𝛿),
𝜈 < 𝛼,

𝛼 − 𝜈 = 𝑧

⎫}
⎬}⎭

⊢ 𝛼 − 𝑠𝜈 < 𝑧

𝐽(𝛼, 𝜈, 𝛿), 𝜈 ≥ 𝛼 ⊢ {𝐼(0, 𝑢𝑖(𝛼))}
𝑚
𝑖=1 (3.17)

⎧{
⎨{⎩

𝜈 < 𝛿 ≤ 𝛼,
𝐼(𝜈, 𝛾),
𝛿 − 𝜈 = 𝑧

⎫}
⎬}⎭

⊢ 𝑠𝜈 ≤ 𝛿 ≤ 𝛼

⎧{
⎨{⎩

𝜈 < 𝛿 ≤ 𝛼,
𝐼(𝜈, 𝛾),
𝛿 − 𝜈 = 𝑧

⎫}
⎬}⎭

⊢ 𝛿 − 𝑠𝜈 < 𝑧

⎧{
⎨{⎩

𝜈 < 𝛿 ≤ 𝛼,
𝐼(𝜈, 𝛾),
𝛿 − 𝜈 = 𝑧

⎫}
⎬}⎭

⊢ {𝐼(𝑠𝜈, 𝑡𝑖(𝛼, 𝜈, 𝛾))}
𝑟
𝑖=1 (3.18)

𝐼(𝜈, 𝛾), 𝜈 ≥ 𝛿 ⊢ 𝜈 = 𝛿 ≤ 𝛼 ∧ 𝐼(𝜈, 𝛾)

𝜈 = 𝛿 ≤ 𝛼, 𝐼(𝜈, 𝛾), 𝛿 = 𝛼 ⊢ {𝑤𝑒𝑛𝑑
𝑖 (𝛼, 𝛾) = 𝑤}ℓ

𝑖=1
(3.19)

𝜈 = 𝛿 ≤ 𝛼, 𝐼(𝜈, 𝛾), 𝛿 ≠ 𝛼 ⊢ {𝑤𝑘(𝛼, 𝜈, 𝛾) = 𝑤}𝑘
𝑖=1 . (3.20)

We once again discuss some of these formulas:

• (3.16): Assume the antecedent. If 𝛿 = �̄�, the first disjunct of the consequent
holds; otherwise—which is to say, if 𝛿 < �̄�—the second disjunct holds.

• (3.17): In order to show the disjunction in 𝐼, we have to show one disjunct.
We obtain 𝑢𝑖0

(𝛼) = 𝑤′
0 from 𝑤′

0 = 𝑢𝑖0
(�̄�) and 𝛼 = �̄�.

• (3.18): The antecedent implies 𝜈 = ̄𝑗 and 𝛾 = 𝑤′
𝑗 for some 𝑗 ∈ {0,…, 𝑘 −

1}. Clearly, 𝑠𝜈 ≤ �̄�. Moreover, 𝑤′
𝑗+1 = 𝑡𝑖𝑗+1

(�̄�, ̄𝑗, 𝑤′), so the rest of the
consequent follows.

• (3.19): This formula is trivially true because 𝐼 and 𝛿 = 𝛼 jointly imply
�̄� = �̄�, in contradiction to our assumption.

• (3.20): The consequent follows because 𝑤 = 𝑤𝑖𝑘+1
(�̄�, �̄�, 𝑤′

𝑘).

This concludes the proof of the case 𝑘 < 𝑛. The proof of the case 𝑘 = 𝑛 proceeds
analogously.

Theorem 3.34. Let 𝐺 be a parametric grammar, 𝑝(𝐺) its existential program,
𝑛 ∈ ℕ and 𝑤 a term. Then Qmin ⊧𝐷𝐿 𝛼 = �̄� → ⟨𝑃(𝐺)⟩𝜏 = 𝑤 iff 𝑤 ∈ 𝐿(𝐺𝑛).

87



Chapter 3: Nondeterministic programs and dynamic logic

Proof. Assume 𝛼 = �̄� → ⟨𝑃(𝐺)⟩𝜏 = 𝑤. By Lemma 3.32, 𝛼 = �̄� → [𝑃(𝐺)]𝜏 ∈
𝐿(𝐺𝑛). Together these imply 𝛼 = �̄� → ⟨𝑃(𝐺)⟩(𝜏 = 𝑤 ∧ 𝜏 ∈ 𝐿(𝐺𝑛)), whence
follows 𝑤 ∈ 𝐿(𝐺𝑛).

The other direction was proved in Lemma 3.33.

The above translation from grammars to programs, together with the results of
the previous section, suggests a joint relationship between simple induction proofs,
parametric grammars, and IMP programs. However, there is something of a
mismatch here: recall that the language of a parametric grammar consists of terms
representing formulas. It follows that the program of a parametric grammar also
computes a language of (terms representing) formulas. By contrast, the program
we extract from a simple induction proof produces “actual” terms; the formulas
in the sip only occur as pre-, post-, and loop conditions. We believe that this
difference is merely technical, not essential; unifying the two notions of program
is a topic for future research.
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CHAPTER 4

THE AFFINE SOLUTION PROBLEM

Algorithms for computing affine invariants of affine programs have been given
in [MOS04] and its precursor [Kar76]. When translated to formula equations,
their methods provide solutions for formula equations which are conjunctions of
affine Horn clauses. We significantly generalize this result to arbitrary quantifier-
free formula equations. The gist is that an affine formula equation 𝜑 can be
clausified and the clauses translated into statements about affine spaces over ℚ
called affine conditions; during this process, the unknown formulas in 𝜑 (the pred-
icate variables) become unknown affine subspaces of ℚ𝑘 for some 𝑘. At this point,
we use the fact that affine subspaces of ℚ𝑘 have a certain disjunction property: if
a subspace 𝒴 is covered by ⋃𝑛

𝑖=1 𝒳𝑖, then it is already covered by some 𝒳𝑖0
. This

allows us to break the affine conditions of 𝜑 apart into affine Horn conditions. If
a solution to some set of affine Horn conditions exists, we find it with an itera-
tion procedure that is guaranteed to terminate. In fact, the procedure returns the
smallest subspaces satisfying all affine Horn conditions.

The results of this chapter have been published in [HZ19].
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4.1 Affine formula equations

Definition 4.1 (ℒaff). Let ℒaff be the first-order language consisting of

• the constant symbols 0 and 1;
• the binary function symbol +;
• countably many unary function symbols { 𝑐 | 𝑐 ∈ ℚ};
• the binary predicate symbol =.

In the sequel, let Th(ℚ) be the theory of ℚ over ℒaff, where 0 and 1 are interpreted
as the rational numbers 0 and 1, + as actual addition, and each unary function
symbol 𝑐 as the function 𝑥 ↦ 𝑐𝑥. We will abbreviate the term 𝑐1 as 𝑐 and the
term −1𝑡 as −𝑡.

For the rest of this chapter, we will tacitly interpret terms and formulas
over ℒaff modulo Th(ℚ). Since Th(ℚ) entails associativity and commutativity
of addition and distributivity of scalar multiplication over addition, we can assume
without loss of generality that every term 𝑡(𝑥1,…, 𝑥𝑛) is of the form 𝑐0+∑𝑛

𝑖=1 𝑐𝑖𝑥𝑖

and every atomic formula 𝐴(𝑥1,…, 𝑥𝑛) is of the form 𝑡(𝑥1,…, 𝑥𝑛) = 0. We call
such atomic formulas linear equations and conjunctions of linear equations linear
equation systems.

If 𝜑 is a formula over ℒaff containing exactly the individual variables 𝑥1,…, 𝑥𝑛, we
may assume without loss of generality that each term in 𝜑 actually contains all the
individual variables 𝑥1,…, 𝑥𝑛. This is because Th(ℚ) ⊧ ∑𝑛

𝑖=1 𝑐𝑖𝑥𝑖 = ∑𝑛
𝑖=1 𝑐𝑖𝑥𝑖 +

0𝑦, so we can always add variables to terms without affecting their meanings. The
same holds for atomic formulas, for the same reason. Note that we do not make
the same stipulation for formula variables, i.e., formula variables in 𝜑 may contain
any subset of individual variables of 𝜑.

Definition 4.2 (Affine formula equation). An affine formula equation is a Π1

ℒaff-formula equation Φ.

Let 𝑥1,…, 𝑥𝑛 be the individual variables in Φ and 𝑋1,…,𝑋𝑚 the formula variables
in Φ with respective arities 𝑘1,…, 𝑘𝑚. Then the tuple ⟨𝑛; 𝑘1,…, 𝑘𝑚⟩ is called the
dimensions of Φ.

We can now define the affine solution problem.
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Definition 4.3 (Affine solution problem). The affine solution problem is the so-
lution problem ⟨Th(ℚ),ℱ, 𝒞⟩ where 𝒞 is the class of linear equation systems and
ℱ is the class of affine formula equations.

In other words, the affine solution problem captures the following question: given
a Π1 formula equation ∃�̄� 𝜑 over ℒaff with unknowns 𝑋1,…,𝑋𝑛, are there linear
equation systems 𝜓1,…, 𝜓𝑛 such that 𝜑[𝑋1\𝜓1,…,𝑋𝑛\𝜓𝑛] is valid modulo Th(ℚ)?

The main result of this chapter is

Theorem 4.4. The affine solution problem is decidable.

In Section 4.3, we will develop the results necessary to prove Theorem 4.4. Through-
out the rest of this chapter, we will illustrate the decision procedure with a running
example.

Example 4.5. Let Φ ≡ ∃𝑋. 𝜑 be the affine formula equation

Φ ≡ ∃𝑋. 𝜑

≡ ∃𝑋. ∀𝑥, 𝑦.
⎛⎜⎜⎜
⎝

𝑋(1, 0)
∧ (𝑋(𝑥, 𝑦) → 𝑋(−𝑦, 𝑥) ∨ 𝑋(𝑥,−𝑦))

∧ (𝑋(𝑥, 𝑦) → 𝑥 = 𝑦 ∨ 𝑦 = 0)

⎞⎟⎟⎟
⎠

.

The dimensions of Φ are ⟨2; 2⟩.

4.2 Invariant generation in affine programs

In [MOS04] the authors consider a formalism for the verification of affine programs
based on state transition diagrams: a program consists of points connected by di-
rected edges, each of which is labelled with either an affine variable assignment
or a subroutine call. There are no guards of any kind; loops continue iterating
or terminate nondeterministically. Operations other than affine assignments are
abstracted as nondeterministic assignments 𝑥 ∶= ? that may set a variable to
an arbitrary value. The authors present an algorithm that calculates, for each
program point, the set of all linear equations that hold at that point whenever ex-
ecution reaches it. This algorithm is based on iteratively computing (an abstract
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representation of) the set of runs that reach each program point. This idea has no
obvious analogue in formula equations, since there is no sense of “flow” from one
location to the next. Instead, we take the position that an affine formula equation
describes a relationship between certain affine spaces and their images and preim-
ages under some affine transformations. It is then straightforward to iteratively
calculate minimal affine spaces that can possibly satisfy this relationship. If they
do, they are a (maximally precise) solution; if they do not, then no solution exists.

Let us present the transformation from the graph formalism of [MOS04] to formula
equations in a bit more detail. Each procedure 𝑝 in the program has an entry point
𝑒𝑝 and a return point 𝑟𝑝. Moreover, there is a special procedure Main whose entry
and return points serve as the entry and return points of the whole program. For
each point 𝑠, let 𝑋𝑠 be a formula variable over all individual variables of the
program. We give the resulting formula equation as a set of constrained Horn
clauses:

• ⊢ 𝑋𝑒Main
( ̄𝑥) asserts that at the start of the program, no nontrivial linear

equations are valid;

• If 𝑠
𝑥𝑗∶=𝑡(�̄�)
−−−−−→ 𝑠′ is an edge in the program, then we add the clause 𝑋𝑠( ̄𝑥) ⊢

𝑋𝑠′ [𝑥𝑗\𝑡( ̄𝑥)].

• If 𝑠
𝑥𝑗∶=?
−−−→ 𝑠′ is an edge in the program, then we add the clauses 𝑋𝑠( ̄𝑥) ⊢

𝑋𝑠′ [𝑥𝑗\0] and 𝑋𝑠( ̄𝑥) ⊢ 𝑋𝑠′ [𝑥𝑗\1]. The idea here is that if (𝑥1,…, 0,…, 𝑥𝑛)
and (𝑥1,…, 1,…, 𝑥𝑛) both solve the linear equation system 𝑋𝑠′ , then so does
(𝑥1,…, 𝑦,…, 𝑥𝑛) for any 𝑦 ∈ ℚ.

• If 𝑠
𝑝
−→ 𝑠′ is an edge in the program and 𝑝 is a procedure, we add the clauses

𝑋𝑠( ̄𝑥) ⊢ 𝑋𝑒𝑝
( ̄𝑥) and 𝑋𝑟𝑝

( ̄𝑥) ⊢ 𝑋𝑠′( ̄𝑥).

These formula equations are even simpler than in the case of Hoare calculus: there
is only at most one negative formula variable in each clause; constrained Horn
clauses with this property are called linear constrained Horn clauses. Moreover,
due to the absence of guards, there are no constant formulas in these clauses.

Note that [MOS04] is not concerned with whether a solution exists; in fact, the
existence of a solution of 𝜑 is not in question, since we can let 𝑋𝑝 ≡ ⊤ for
all program points 𝑝 of 𝑃. Rather, they compute a strongest solution for each
unknown in 𝜑. In this sense, our approach diverges from theirs. Moreover, it is
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easily seen that in general, a formula equation need not have a unique strongest
solution. It turns out, however, that our algorithm MinimalSolution produces
a maximally strong solution. We will elaborate on this in Sections 4.3.4 and 4.4.

4.3 Deciding affine solution problems

This section is devoted to proving Theorem 4.4. We proceed as follows: Let Φ ≡
∃�̄� 𝜑 be an affine formula equation. We first translate 𝜑 into a set of clauses Cl(𝜑).
Each clause 𝐶 induces a statement 𝒞 that asserts the inclusion of an intersection of
affine spaces in a union of affine spaces. The statements we obtain in this way from
clauses in Cl(𝜑) form the set AC(𝜑) of affine conditions of 𝜑. Notably, solutions
of 𝜑 and AC(𝜑) correspond to each other. We decompose the affine conditions
into projections that are amenable to algorithmic solving, obtaining the set Pr(𝜑).
Then we apply Algorithm 4.3.4, which iteratively computes a solution of Pr(𝜑)
if a solution exists and reports failure otherwise. The resulting tuple of affine
subspaces can be translated back into a tuple of linear equation systems.

4.3.1 Clausification

Let Φ ≡ ∃�̄� 𝜑 be an affine formula equation. By definition, 𝜑 is Π1, so it is of the
form ∀ ̄𝑥 𝜑′ with 𝜑′ quantifier-free. It follows that 𝜑′ is a Boolean combination
of linear equations and formula variables. However, it is more convenient for us
to regard linear equation systems as the atoms of 𝜑′. Therefore, we use the word
“clause” to refer to a disjunction of possibly negated linear equation systems (and
formula variables, which range over linear equation systems).

As per Definition 1.11, we thus obtain the set Cl(𝜑) containing clauses of the form

𝐴( ̄𝑥),𝑋1( ̄𝑠1( ̄𝑥)),…,𝑋𝑚( ̄𝑠𝑚( ̄𝑥))
⊢

𝐵1( ̄𝑥),…,𝐵𝑟( ̄𝑥), 𝑌1( ̄𝑡1( ̄𝑥)),…, 𝑌𝑛( ̄𝑡𝑛( ̄𝑥)),

where 𝑠𝑖, 𝑡𝑖 are affine terms; 𝐴,𝐵𝑖 are linear equation systems, and 𝑋𝑖, 𝑌𝑖 are for-
mula variables ranging over linear equation systems. As per the usual convention,
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such a clause is implicitly universally closed over its individual variables. Note that
for 𝑖 ≠ 𝑗, 𝑋𝑖 and 𝑋𝑗 are not necessarily distinct formula variables; for instance,
a clause might contain the same formula variable multiple times with different
terms. Note that there is only a single constant literal on the left-hand side. This
is the case because a conjunction of linear equation systems is just a single linear
equation system.

In principle, any kind of clause form transformation that preserves satisfiability
will serve here if we are only interested in the existence of solutions, but for trans-
formations that do not preserve logical equivalence, it may be unclear how the
solutions of the original formula equation and the clause form relate to each other.
Thus, for the sake of simplicity, we choose the naive method of computing a clause
form by distributivity.

Example 4.6. Let Φ ≡ ∃�̄�. 𝜑 be the affine formula equation defined in Example
4.5. As it happens, 𝜑 is already in clause form; writing the clauses of 𝜑 as sequents
yields

⊢ 𝑋(1, 0)
𝑋(−𝑥, 𝑦) ⊢ 𝑋(−𝑦, 𝑥),𝑋(𝑥,−𝑦)
𝑋(𝑥, 𝑦) ⊢ 𝑥 = 𝑦, 𝑦 = 0.

4.3.2 Affine geometry

By first-order semantics, linear equation systems map directly to affine subspaces
of ℚ𝑛 for some 𝑛. Having decomposed an affine formula equation into clauses,
in this section we will reinterpret these clauses as descriptions of relationships
between certain affine spaces and affine transformations. In other words, we will
move from syntax to semantics and consider the problem from the perspective of
linear algebra. We will need some elementary results of affine geometry. Let us
start by reviewing some important concepts. For a more rigorous treatment, see
[ST71].

We will exclusively deal with finite-dimensional vector spaces over ℚ.
Consequently, we may assume that all vector spaces we consider are of
the form ℚ𝑛 for 𝑛 ∈ ℕ.
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Let us review the definition of linear and affine combinations. A linear combination
of vectors 𝑎1,…, 𝑎𝑛 ∈ ℚ𝑚 is a sum ∑𝑛

𝑖=1 𝑐𝑖𝑎𝑖 with 𝑐𝑖 ∈ ℚ. An affine combination
is a linear combination with the additional condition that ∑𝑛

𝑖=1 𝑐𝑖 = 1. The set of
all linear combinations of elements of 𝑀 ⊆ ℚ𝑚 is called the linear hull of 𝑀 and
written as [𝑀].

An affine subspace 𝒜 of ℚ𝑛 is a subset of ℚ𝑛 that can be written as 𝑎 + ⃗𝒜 for a
vector 𝑎 ∈ ℚ𝑛 and a linear subspace ⃗𝒜 ⊆ ℚ𝑛. The dimension of 𝒜 is the dimension
of ⃗𝒜.

A coordinate system ⟨𝑎;𝐵⟩ of an affine subspace 𝒜 consists of an element 𝑎 of 𝒜
and a basis 𝐵 of ⃗𝒜. For convenience, we also say that ∅ is a coordinate system of
itself.

Definition 4.7 (Aff). Affℚ𝑛 is the set containing the empty set and all affine
subspaces of ℚ𝑛.

Proposition 4.8. Let 𝑛 ∈ ℕ.

1. Affℚ𝑛 contains precisely those subsets of ℚ𝑛 that are closed under affine
combinations.

2. Affℚ𝑛 is a complete lattice.
3. Affℚ𝑛 satisfies ACC.

Proof.

1. The empty set is trivially closed under affine combinations. For an affine
subspace 𝒜 = 𝑎+ ⃗𝒜 of ℚ𝑛, let 𝑏, 𝑐 ∈ 𝒜 and 𝑡 ∈ [0, 1]∩ℚ. Then 𝑏 = 𝑎+𝑏′ and
𝑐 = 𝑎+𝑐′ with 𝑏′, 𝑐′ ∈ ⃗𝒜. It follows that 𝑡𝑏+(1−𝑡)𝑐 = 𝑎+𝑡𝑏′ + (1 − 𝑡)𝑐′⏟⏟⏟⏟⏟⏟⏟

∈ ⃗𝒜

∈

𝒜, so 𝒜 is closed under affine combinations.
Now let 𝒜 ⊆ ℚ𝑛 be nonempty and closed under affine combinations. We
need to show that 𝒜 can be written as 𝑎 + 𝐴 for some 𝑎 ∈ 𝒜 and some
linear subspace 𝐴 of ℚ𝑛. Let 𝑎 ∈ 𝒜 be arbitrary and 𝐴 = {𝑥 − 𝑎 | 𝑥 ∈ 𝒜}.
Clearly, ⃗0 ∈ 𝐴. If 𝑏, 𝑐 ∈ 𝐴 and 𝜆 ∈ ℚ, then 𝑏 = 𝑏′ − 𝑎, 𝑐 = 𝑐′ − 𝑎 with
𝑏′, 𝑐′ ∈ 𝒜 and 𝑎+ 𝑏 + 𝜆𝑐 = −𝜆𝑎+ 1𝑏′ −𝜆𝑐′ ∈ 𝒜 because 𝒜 is closed under
affine combinations. Consequently, 𝑏 + 𝜆𝑐 ∈ 𝐴, so 𝐴 is closed under linear
combinations. This shows that 𝒜 is an affine subspace of ℚ𝑛.
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2. It is sufficient to show that Affℚ𝑛 is closed under arbitrary intersections.
⋂∅ = ℚ𝑛, so let 𝑆 ⊆ Affℚ𝑛 be nonempty. By 1, every element of 𝑆 is
closed under affine combinations and hence ⋂𝑆 is as well. It follows that
⋂𝑆 ∈ Affℚ𝑛.

3. The argument is analogous to the one in Example 1.23.

An affine transformation 𝒯 from ℚ𝑚 to ℚ𝑛 is a map that can be written as a
linear map followed by a translation, i.e., 𝒯 is affine if there is a matrix 𝐴 ∈ ℚ𝑛×𝑚

and a vector 𝑏 ∈ ℚ𝑛 such that 𝒯∶ 𝑥 ↦ 𝐴𝑥 + 𝑏. The images and preimages of
affine subspaces under affine transformations are themselves affine subspaces or
else empty.

The following proposition shows the connection between formulas and terms of
ℒaff and affine spaces and transformations, respectively.

Proposition 4.9.

1. Let 𝑚,𝑛 ∈ ℕ, 𝒯∶ ℚ𝑚 → ℚ𝑛 affine, ℬ ∈ Affℚ𝑚, and 𝒞 ∈ Affℚ𝑛. Then
𝒯(ℬ) ∈ Affℚ𝑛 and 𝒯−1(𝒞) ∈ Affℚ𝑚.

2. Let 𝒜 ⊆ ℚ𝑛. Then 𝒜 ∈ Affℚ𝑛 iff there is a linear equation system
𝐴(𝑥1,…, 𝑥𝑛) such that 𝒜 = 𝐴ℚ.

3. Let 𝒯∶ ℚ𝑚 → ℚ𝑛. Then 𝒯 is affine iff there are ℒaff-terms 𝑡1( ̄𝑥),…, 𝑡𝑛( ̄𝑥)
such that 𝒯 = (𝑡1,…, 𝑡𝑛)ℚ.

Proof. For 1., it is immediately clear that the image and preimage of an affine
subspace (or the empty set) under a translation are again an affine subspace (or
empty). Since 𝒯 is the composition of a linear transformation and a translation,
we can assume without loss of generality that 𝒯 is linear. Let 𝑎, 𝑏 ∈ 𝒯(ℬ) and
𝑡 ∈ [0, 1] ∩ ℚ. Then 𝑎 = 𝒯(𝑎′) and 𝑏 = 𝒯(𝑏′) for some 𝑎′, 𝑏′ ∈ ℬ. It follows that

𝑡𝑎 + (1 − 𝑡)𝑏 = 𝑡(𝒯(𝑎′)) + (1 − 𝑡)(𝒯(𝑏′)) = 𝒯(𝑡𝑎′ + (1 − 𝑡)𝑏′) ∈ 𝒯(ℬ).

Now let 𝑎, 𝑏 ∈ 𝒯−1(𝒞) and 𝑡 ∈ [0, 1] ∩ ℚ Then we have

𝒯(𝑡𝑎 + (1 − 𝑡)𝑏) = 𝑡𝒯(𝑎) + (1 − 𝑡)𝒯(𝑏) ∈ 𝒞,

so 𝑡(𝑎) + (1 − 𝑡)𝑏 ∈ 𝒯−1(𝒞).
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For 2., let 𝒜 = 𝐴ℚ for a linear equation system 𝐴(𝑥1,…, 𝑥𝑛). We may assume that
𝐴 consists of a single equation ∑𝑛

𝑖=1 𝑐𝑖𝑥𝑖 + 𝑐0 = 0; the case of multiple equations
follows immediately. Let 𝑎, 𝑏 ∈ 𝒜 and 𝑡 ∈ [0, 1] ∩ ℚ. Then

ℚ ⊧
𝑛

∑
𝑖=1

𝑐𝑖(𝑡𝑎 + (1 − 𝑡)𝑏) + 𝑐0 = 𝑡(
𝑛

∑
𝑖=1

𝑐𝑖𝑎𝑖 + 𝑐0) + (1 − 𝑡)(
𝑛

∑
𝑖=1

𝑐𝑖𝑏𝑖 + 𝑐0) = 0.

Conversely, let 𝒜 ∈ Affℚ𝑛. If 𝒜 = ∅, then 𝒜 = ⊥ℚ. Otherwise, 𝒜 is an affine
subspace of ℚ𝑛, so 𝒜 = 𝑎+ ⃗𝒜 for a linear subspace ⃗𝒜. Let 𝑏1,…, 𝑏𝑘 be a basis of

⃗𝒜. We obtain the desired linear equation system by solving

⎛⎜⎜⎜⎜⎜⎜
⎝

1 𝑏𝑇
0

0 𝑏𝑇
1

⋮ ⋮
0 𝑏𝑇

𝑘

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

𝑐0

⋮
𝑐𝑛

⎞⎟⎟⎟
⎠

= ̄0.

for ̄𝑐.

For 3., let 𝒯 = ̄𝑡ℚ for ℒaff-terms 𝑡1( ̄𝑥),…, 𝑡𝑛( ̄𝑥), where 𝑡𝑗( ̄𝑥) = ∑𝑚
𝑖=1 𝑎𝑖,𝑗𝑥𝑗 + 𝑏𝑖.

This implies

𝒯( ̄𝑥) =
⎛⎜⎜⎜
⎝

∑𝑚
𝑖=1 𝑎1,𝑖𝑥𝑖 + 𝑏1

⋮
∑𝑚

𝑖=1 𝑎𝑛,𝑖𝑥𝑖 + 𝑏𝑛

⎞⎟⎟⎟
⎠

= (𝑎𝑖,𝑗) ̄𝑥 +
⎛⎜⎜⎜
⎝

𝑏1

⋮
𝑏𝑛

⎞⎟⎟⎟
⎠

,

so 𝒯 is affine.

On the other hand, if 𝒯 is affine, it can be written as

𝒯( ̄𝑥) = 𝐴 ̄𝑥 + 𝑏.

From this we obtain terms 𝑡𝑗( ̄𝑥) = ∑𝑚
𝑖=1 𝑎𝑖,𝑗𝑥𝑖 + 𝑏𝑖 for 𝑗 = 1,…, 𝑛 such that

𝒯 = ̄𝑡ℚ.

We can now perform the switch from syntax to semantics. To this end, we define
a certain form of linear algebraic statement that corresponds to a logical clause in
the language ℒaff. These are the affine conditions.

Definition 4.10 (Affine condition). Let 𝑚,𝑛, ℓ, 𝑟 ∈ ℕ. An affine condition 𝒞 is a
statement of the form

𝒜∩
ℓ
⋂
𝑖=1

𝒯−1
𝑖 (𝒳𝑖) ⊆

𝑚
⋃
𝑖=1

ℬ𝑖 ∪
ℓ+𝑟
⋃

𝑗=ℓ+1
𝒯−1

𝑗 (𝒳𝑗),
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where 𝒜,ℬ1,…,ℬ𝑚 ∈ Affℚ𝑛 and for 𝑖 = 1,…, ℓ + 𝑟, 𝒯𝑖 ∶ ℚ𝑛 → ℚ𝑘𝑖 is an affine
transformation and 𝒳𝑖 is a variable ranging over Affℚ𝑘𝑖 . The tuple ⟨𝑛; 𝑘1,…, 𝑘ℓ+𝑟⟩
is called the dimensions of 𝒞.

A tuple ̄ℱ ∈ Affℚ𝑘1 ×…× Affℚ𝑘𝑙+𝑟 is a solution of 𝒞 if 𝒞[�̄�\ ̄ℱ] is true.

We obtain the affine condition corresponding to a clause, and thence the affine
conditions corresponding to an affine formula equation, by semantic interpretation
of terms and linear equation systems.

Definition 4.11 (Affine conditions of an affine formula equation). Let Φ ≡ ∃�̄� 𝜑
be an affine formula equation and

𝐶 ≡ 𝐴( ̄𝑥),𝑋1( ̄𝑡1( ̄𝑥)),…,𝑋ℓ( ̄𝑡ℓ( ̄𝑥))
⊢

𝐵1( ̄𝑥),…,𝐵𝑚( ̄𝑥),𝑋ℓ+1( ̄𝑡ℓ+1( ̄𝑥)),…,𝑋ℓ+𝑟( ̄𝑡ℓ+𝑟( ̄𝑥)),

a clause with dimensions ⟨𝑛; 𝑘1,…, 𝑘ℓ+𝑟⟩ in Cl(𝜑). Then we call

𝒞 ∶≡ 𝐴ℚ ∩
ℓ
⋂
𝑖=1

( ̄𝑡ℚ𝑖 )−1(𝒳𝑖) ⊆
𝑚
⋃
𝑖=1

𝐵ℚ
𝑖 ∪

ℓ+𝑟
⋃

𝑗=ℓ+1
( ̄𝑡ℚ𝑗 )−1(𝒳𝑗)

the affine condition corresponding to 𝐶. The dimensions of 𝒞 are equal to those
of 𝐶.

We say that 𝒞 is an affine condition of 𝜑 iff it corresponds to some clause in Cl(𝜑).
We write AC(𝜑) for the set of affine conditions of 𝜑.

Example 4.12. Consider the affine formula equation Φ ≡ ∃�̄� 𝜑 from Example
4.6. We obtain the affine conditions of 𝜑 by translating each of the clauses:

ℚ2 ⊆ 𝒯−1
1 (𝒳),

𝒮−1(𝒳) ⊆ 𝒯−1
2 (𝒳) ∪ 𝒯−1

3 (𝒳),
𝒳 ⊆ ℬ1 ∪ ℬ2,

98



4.3 Deciding affine solution problems

where 𝒳 is a variable ranging over Affℚ2 and

𝒯1 ∶ (
𝑥
𝑦

) ↦ (
1
0
) ℬ1 = (

0
0
)+ [(

1
1
)]

𝒯2 ∶ (
𝑥
𝑦

) ↦ (
−𝑦
𝑥

) ℬ2 = (
0
0
)+ [(

1
0
)]

𝒯3 ∶ (
𝑥
𝑦

) ↦ (
𝑥
−𝑦

) 𝒮∶ (
𝑥
𝑦

) ↦ (
−𝑥
𝑦

) .

ℬ1 and ℬ2 are straightforwardly obtained as solution spaces of the linear equations
𝑥 = 𝑦 and 𝑦 = 0, respectively.

The following theorem shows that the translation from clauses to affine conditions
is fit for our purpose because solutions of one translate to solutions of the other.

Theorem 4.13. Let ∃�̄� 𝜑 be an affine formula equation, 𝐶 ∈ Cl(𝜑), 𝒞 the corre-
sponding affine condition, and ̄𝐹 a tuple of linear equation systems of appropriate
arities. Then ℚ ⊧ 𝐶[�̄�\ ̄𝐹 ] iff ̄𝐹ℚ is a solution of 𝒞.

Proof. Let 𝑊,𝑍 be such that 𝐶[�̄�\ ̄𝐹 ] is syntactically equal to 𝑊 ⊢ 𝑍 and 𝒲,𝒵
such that 𝒞[�̄�\ ̄𝐹ℚ] is syntactically equal to 𝒲 ⊆ 𝒵.

Then 𝒲 = 𝑊ℚ and 𝒵 = 𝑍ℚ by Proposition 1.1 1–3. Moreover, by Proposition 1.1
4, 𝒲 ⊆ 𝒵 iff ℚ ⊧ 𝑊 → 𝑍, from which the claim follows immediately.

Corollary 4.14. Let Φ ≡ ∃�̄� 𝜑 be an affine formula equation. Then Φ has a
solution iff AC(𝜑) does.

Proof. If Φ has a solution ̄𝐹, then ̄𝐹ℚ is a solution of AC(𝜑) by Theorem 4.13.
Conversely, if AC(𝜑) has a solution ℱ1,…,ℱ𝑛, then by Proposition 4.9, there are
linear equation systems 𝐹1,…, 𝐹𝑛 such that 𝐹ℚ

𝑖 = ℱ𝑖. ̄𝐹 is then a solution of Φ
(again by Theorem 4.13).

Corollary 4.14 shows that to solving an affine formula equation Φ—an object of
predicate logic—reduces to solving the set of affine conditions of Φ, which are
objects of linear algebra. Thus, we will leave logic behind for the moment and
consider the problem from the perspective of linear algebra.
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4.3.3 Projections

In the previous section, we transformed an affine formula equation into a set of
affine conditions, which are statements about affine subspaces of ℚ𝑛. When de-
veloping our solution algorithm, we want to work with a more restricted form of
affine conditions that only allows a single set on the right-hand side instead of a
union. We will see in Lemma 4.18 and Corollary 4.19 why restricting our attention
to these simpler conditions does not result in a loss of generality.

Definition 4.15 (Affine Horn condition). We call affine conditions of the form

𝒜∩
ℓ
⋂
𝑖=1

𝒮−1
𝑖 (𝒳𝑖) ⊆ ℬ or 𝒜∩

ℓ
⋂
𝑖=1

𝒮−1
𝑖 (𝒳𝑖) ⊆ 𝒮−1(𝒴)

affine Horn conditions.

Remark. The name “affine Horn condition” is due to the similarity in form be-
tween these conditions and Horn clauses, which are clauses containing at most one
positive literal. Written in sequent form, this means that a Horn clause has the
form 𝐴1,…,𝐴𝑛 ⊢ 𝐵 for atomic formulas 𝐴1,…,𝐴𝑛, 𝐵.

Definition 4.16 (Projections).

1. Let

𝒞 ∶ 𝒜 ∩
ℓ
⋂
𝑖=1

𝒯−1
𝑖 (𝒳𝑖) ⊆

𝑚
⋃
𝑖=1

ℬ𝑖 ∪
ℓ+𝑟
⋃

𝑗=ℓ+1
𝒯−1

𝑗 (𝒳𝑗)

be an affine condition. We call the affine Horn conditions

𝒜∩
ℓ
⋂
𝑖=1

𝒯−1
𝑖 (𝒳𝑖) ⊆ ℬ𝑖0

, 𝑖0 ∈ {1,…,𝑚},

𝒜 ∩
ℓ
⋂
𝑖=1

𝒯−1
𝑖 (𝒳𝑖) ⊆ 𝒯−1

𝑗0
(𝒳𝑗0

), 𝑗0 ∈ {ℓ + 1,…, ℓ + 𝑟}

projections of 𝒞. The latter form can equivalently be written as

𝒯𝑗0
(𝒜 ∩

ℓ
⋂
𝑖=1

𝒯−1
𝑖 (𝒳𝑖)) ⊆ 𝒳𝑗0

.

2. Let 𝑆 be a set of affine conditions. We call a set of affine Horn conditions a
projection of 𝑆 if it consists of exactly one projection of each element of 𝑆.
We write Pr(𝑆) for the set of projections of 𝑆.
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3. Let ∃�̄� 𝜑 be an affine formula equation. We abbreviate Pr(AC(𝜑)) as Pr(𝜑)
and call its elements affine projections of 𝜑.

Example 4.17. Let AC(𝜑) be the affine conditions of 𝜑 from Example 4.12. The
first affine condition is already an affine Horn condition and hence has only itself as
a projection. Since the latter two affine conditions each have 2 projections, there
are four affine projections of 𝜑:

𝒯1(ℚ2) ⊆ 𝒳
𝒯2(𝒮−1(𝒳)) ⊆ 𝒳

𝒳 ⊆ ℬ1

(P1)

𝒯1(ℚ2) ⊆ 𝒳
𝒯3(𝒮−1(𝒳)) ⊆ 𝒳

𝒳 ⊆ ℬ1

(P3)

𝒯1(ℚ2) ⊆ 𝒳
𝒯2(𝒮−1(𝒳)) ⊆ 𝒳

𝒳 ⊆ ℬ2

(P2)

𝒯1(ℚ2) ⊆ 𝒳
𝒯3(𝒮−1(𝒳)) ⊆ 𝒳

𝒳 ⊆ ℬ2

(P4)

The motivation behind projections is the following. A single affine condition 𝒞,
considered abstractly, has the form ⋂𝑖∈𝐼 ℳ𝑖 ⊆ ⋃𝑗∈𝐽 𝒩𝑗, where the ℳ𝑖,𝒩𝑗 are
elements of Affℚ𝑛. Suppose we replace 𝒞 with the disjunction over its projections
𝒞′ ≡ ⋁

𝑗∈𝐽
(⋂𝑖∈𝐼 ℳ𝑖 ⊆ 𝒩𝑗). If the ℳ𝑖,𝒩𝑗 were general sets, 𝒞′ would be strictly

stronger than 𝒞, since 𝒞′ asserts that ℳ = ⋂𝑖∈𝐼 ℳ𝑖 is contained in one of the
𝒩𝑗, whereas 𝒞 only asserts that ℳ is contained in the union of the 𝒩𝑗. However,
a family (𝒜𝑖)𝑖∈𝐼 of affine subspaces of ℚ𝑛 cannot cover another subspace ℬ unless
ℬ is already contained in one of the 𝒜𝑖. Consequently, 𝒞 and 𝒞′ are actually
equivalent and we can restrict our attention to affine Horn conditions. We will
spend the rest of this subsection making this reasoning precise.

Lemma 4.18. Let 𝒜1,…,𝒜𝑛 be proper affine subspaces of ℚ𝑚. Then ⋃𝑛
𝑖=1 𝒜𝑖 ⊊

ℚ𝑚.

Proof. By induction on 𝑛. The case of 𝑛 = 1 is immediate.

Now assume the lemma holds for 𝑛 and let 𝒜1,…,𝒜𝑛+1 be proper subspaces of ℚ𝑚.
We may assume without loss of generality that 𝒜𝑖 ⊈ ⋃𝑛+1

𝑗=1
𝑗≠𝑖

𝒜𝑗 for 𝑖 = 1,…, 𝑛 + 1,

because otherwise this case reduces to that of 𝑛 subspaces and we are done. It

101



Chapter 4: The affine solution problem

follows that there are vectors

𝑎 ∈ 𝒜1 ∖
𝑛+1
⋃
𝑖=2

𝒜𝑖,

𝑏 ∈ 𝒜𝑛+1 ∖
𝑛
⋃
𝑖=1

𝒜𝑖.

Consider the family of vectors { 𝑐(𝜆) ∶= 𝑎 + 𝜆(𝑏 − 𝑎) | 𝜆 ∈  ℚ}.

• Assume 𝑐(𝜆) ∈ 𝒜1 for some 𝜆 ≠ 0. Since 𝑎 ∈ 𝒜1, it follows that 𝑏 = (1 −
1
𝜆)𝑎 + 1

𝜆𝑐(𝜆) ∈ 𝒜1, which is a contradiction. Therefore, 𝑐(𝜆) ∈ 𝒜1 only for
𝜆 = 0.

• 𝑐(𝜆) ∈ 𝒜𝑛+1 only for 𝜆 = 1. The argument is analogous to the previous
case.

• For any 2 ≤ 𝑖 ≤ 𝑛, assume 𝑐(𝜆), 𝑐(𝜇) ∈ 𝒜𝑖 and 𝜆 ≠ 𝜇. Let 𝜈 = 𝜆
𝜆−𝜇 . Then

𝑎 = (1 − 𝜈)𝑐(𝜆) + 𝜈𝑐(𝜇) ∈ 𝒜𝑖, but 𝑎 ∉ 𝒜𝑖 by assumption. Therefore, there
is at most one 𝜆 ∈ ℚ such that 𝑐(𝜆) ∈ 𝒜𝑖.

This means that for each 𝑖 = 1,…, 𝑛+1, there is at most one 𝜆 such that 𝑐(𝜆) ∈ 𝒜𝑖.
It is therefore possible to choose 𝜆0 ∈ ℚ such that 𝑐(𝜆0) is in none of the 𝒜𝑖. From
this, we obtain ⋃𝑛+1

𝑖=1 𝒜𝑖 ⊊ ℚ𝑚.

Corollary 4.19. Let 𝒜1,…,𝒜𝑛, ℬ be affine subspaces of ℚ𝑚. If ℬ ⊆ ⋃𝑛
𝑖=1 𝒜𝑖,

then ℬ ⊆ 𝒜𝑖0
for some 𝑖0.

Proof. By contraposition. Assume that ℬ ⊈ 𝒜𝑖 for all 𝑖. This means that all of the
sets 𝒜𝑖 ∩ℬ are either empty or proper affine subspaces of ℬ. By applying Lemma
4.18 to ℬ and the 𝒜𝑖 ∩ℬ (ignoring the empty sets), we obtain ⋃𝑛

𝑖=1(𝒜𝑖 ∩ℬ) ⊊ ℬ.
It follows that ℬ ⊈ ⋃𝑛

𝑖=1 𝒜𝑖.

Theorem 4.20. Let 𝒞 be an affine condition with dimensions ⟨𝑛; 𝑘1,…, 𝑘ℓ+𝑟⟩ and
̄ℱ ∈ Affℚ𝑘1 ×…×Affℚ𝑘ℓ+𝑟 . Then ̄ℱ is a solution of 𝒞 iff it is a solution of some

projection of 𝒞.

Proof. Let 𝒲,𝒵1,…,𝒵𝑚 be such that 𝒞[�̄�\ ̄ℱ] is syntactically equal to 𝒲 ⊆
⋃𝑚

𝑖=1 𝒵𝑖. If ℱ satisfies 𝒞, then 𝒲 ⊆ ⋃𝑚
𝑖=1 𝒵𝑖. By Corollary 4.19, this implies that

𝒲 ⊆ 𝒵𝑖0
for some 𝑖0, hence ̄ℱ satisfies a projection of 𝒞. The other direction is

obvious.
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Corollary 4.21. Let 𝑆 be a set of affine conditions with dimensions
⟨𝑛; 𝑘1,…, 𝑘ℓ+𝑟⟩ and ̄ℱ ∈ Affℚ𝑘1 ×…× Affℚ𝑘ℓ+𝑟 . Then ̄ℱ is a solution of 𝑆 iff it
is a solution of some element of Pr(𝑆).

Theorem 4.20 shows that the solvability of affine formula equations reduces to the
solvability of sets of affine Horn conditions. In the next subsections, we will show
that the latter question is decidable.

4.3.4 Finding a fixed point by iteration

In this section, we will present an iterative procedure for solving sets of affine
Horn conditions. To this end, we will interpret these affine conditions in two ways
according to their form: as instructions for constructing affine subspaces from the
bottom up or as checks whether the constructed spaces have grown too large.

Definition 4.22 (Upper and lower bound conditions). Let 𝜓 be a set of affine
Horn conditions. As per Definition 4.15, 𝜓 contains elements of the forms

𝒜∩
𝑚
⋂
𝑖=1

𝒮−1
𝑖 (𝒳𝑖) ⊆ ℬ

and

𝒜∩
𝑚
⋂
𝑖=1

𝒮−1
𝑖 (𝒳𝑖) ⊆ 𝒯−1(𝒴)

⇔ 𝒯(𝒜 ∩
𝑚
⋂
𝑖=1

𝒮−1
𝑖 (𝒳𝑖)) ⊆ 𝒴,

where 𝒜,ℬ are affine subspaces, 𝒮𝑖, 𝒯 are affine transformations, and 𝒳𝑖, 𝒴 are
variables ranging over affine spaces. We call the former kind of affine Horn condi-
tion upper bound conditions and the latter lower bound conditions of 𝜓.

Let 𝜓 be a set of affine Horn conditions with dimensions ⟨𝑘0; 𝑘1,…, 𝑘𝑛⟩. Recall
that this means that the unknown 𝒳𝑖 ranges over Affℚ𝑘𝑖 . It follows that the
candidate solutions of 𝜓 are elements of Affℚ𝑘1 ×…× Affℚ𝑘𝑛 .

Definition 4.23 (CS(𝜓)). Let 𝜓 be a set of affine Horn conditions with dimensions
⟨𝑘0; 𝑘1,…, 𝑘𝑛⟩. We write CS(𝜓) for the lattice Affℚ𝑘1 ×…× Affℚ𝑘𝑛 of candidate
solutions of 𝜓.
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The order on CS(𝜓) is defined by

(𝒰1,…,𝒰𝑛) ≤ (𝒱1,…,𝒱𝑛) if 𝒰1 ⊆ 𝒱1 ∧… ∧ 𝒰𝑛 ⊆ 𝒱𝑛.

Its least element is 0 ∶= (∅,…, ∅). As the finite product of complete lattices of
finite height, CS(𝜓) is complete and has finite height as well.

Let 𝒞 be the lower bound condition 𝒯(𝒜 ∩ ⋂𝑚
𝑖=1 𝒮

−1
𝑖 (𝒳𝑖)) ⊆ 𝒴. Also, let 𝑆 =

(ℱ1,…,ℱ𝑚, 𝒢) ∈ CS(𝒞) be a candidate solution of 𝒞. 𝑆 solves 𝒞 if 𝒞[�̄�\ ̄ℱ, 𝒴\𝒢]
is true, i.e., if 𝒢 contains the set ℱ = 𝒯(𝒜 ∩ ⋂𝑚

𝑖=1 𝒮
−1
𝑖 (ℱ𝑖)). Now consider the

set 𝒢′ = 𝒢 ∨ ℱ. By definition, it is the least element of Affℚ𝑛 containing both
𝒢 and ℱ. If 𝑆 is a solution of 𝒞, then 𝒢′ = 𝒢, otherwise 𝒢′ > 𝒢. In either
case, 𝑆′ = (ℱ1,…,ℱ𝑚, 𝒢′) solves 𝒞 and is in fact the least solution of 𝒞 greater
or equal to 𝑆. This shows that we can always increase a non-solution of a lower
bound condition to a solution by enlarging the space on the right-hand side and
that we do not skip over any solutions in this process. The following definition
formalizes this intuition and generalizes it to sets of lower bound conditions. As a
consequence, we will not generally reach a solution in just one step, but will need
to iterate the process.

Definition 4.24 (Φ). Let 𝜓 be a set of affine Horn conditions. Let 𝒳1,…,𝒳𝑛 be
the variables in 𝜓 and 𝑘1,…, 𝑘𝑛 their respective dimensions. We define an operator
Φ𝜓 ∶ CS(𝜓) → CS(𝜓) in the following manner: Let 1 ≤ 𝛼 ≤ 𝑛 and

𝒯1 (𝒜1 ∩
𝑚1

⋂
𝑖=1

𝒮−1
1,𝑖(𝒳𝑗1,𝑖

)) ⊆ 𝒳𝛼

⋮

𝒯ℓ (𝒜ℓ ∩
𝑚ℓ

⋂
𝑖=1

𝒮−1
ℓ,𝑖 (𝒳𝑗ℓ,𝑖

)) ⊆ 𝒳𝛼

be the lower bound conditions in 𝜓 whose right-hand side is 𝒳𝛼. Then

Φ𝜓(ℱ)𝛼 ∶= ℱ𝛼 ∨
ℓ
⋁

𝑖′=1
𝒯𝑖′ (𝒜𝑖′ ∩

𝑚𝑖′

⋂
𝑖=1

𝒮−1
𝑖′,𝑖(ℱ𝑗𝑖′,𝑖

)) .
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Since each component of Φ𝜓 is a composition of monotone operations (intersection,
supremum, image, preimage), Φ𝜓 is clearly monotone. As previously indicated, Φ𝜓

can be viewed as a procedure for improving an approximate solution of the lower
bound conditions in 𝜓. Indeed, the fixed points of Φ𝜓 are precisely the solutions
of the lower bound conditions.

Lemma 4.25. Let 𝜓 be a set of lower bound conditions. Then a tuple ̄ℱ ∈ CS(𝜓)
solves 𝜓 iff Φ𝜓( ̄ℱ) = ̄ℱ.

Proof. Assume ̄ℱ solves all lower bound conditions in 𝜓. Let

𝒯1 (𝒜1 ∩
𝑚1

⋂
𝑖=1

𝒮−1
1,𝑖(𝒳𝑗1,𝑖

)) ⊆ 𝒳𝛼

⋮

𝒯ℓ (𝒜ℓ ∩
𝑚ℓ

⋂
𝑖=1

𝒮−1
ℓ,𝑖 (𝒳𝑗ℓ,𝑖

)) ⊆ 𝒳𝛼

be the lower bound conditions in 𝜓 whose right-hand side is 𝒳𝛼. Then by assump-
tion,

𝒯1 (𝒜1 ∩
𝑚1

⋂
𝑖=1

𝒮−1
1,𝑖(ℱ𝑗1,𝑖

)) ⊆ ℱ𝛼

⋮

𝒯ℓ (𝒜ℓ ∩
𝑚ℓ

⋂
𝑖=1

𝒮−1
ℓ,𝑖 (ℱ𝑗ℓ,𝑖

)) ⊆ ℱ𝛼

are all true. This implies that

Φ𝜓(ℱ)𝛼 = ℱ𝛼 ∨
ℓ
⋁

𝑖′=1
𝒯𝑖′(𝒜𝑖′ ∩

𝑚𝑖′

⋂
𝑖=1

𝒮−1
𝑖′,𝑖(ℱ𝑗𝑖′,𝑖

))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⊆ℱ𝛼

= ℱ𝛼,

so ̄ℱ is a fixed point of Φ𝜓.

Conversely, assume that ̄ℱ is a fixed point of Φ𝜓, i.e., for every 𝛼,

ℱ𝛼 ∨
ℓ
⋁

𝑖′=1
𝒯𝑖′ (𝒜𝑖′ ∩

𝑚𝑖′

⋂
𝑖=1

𝒮−1
𝑖′,𝑖(ℱ𝑗𝑖′,𝑖

)) = Φ𝜓(ℱ)𝛼 = ℱ𝛼.
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This implies that ⋃ℓ
𝑖′=1 𝒯𝑖′ (𝒜𝑖′ ∩⋂𝑚𝑖′

𝑖=1 𝒮−1
𝑖′,𝑖(ℱ𝑗𝑖′,𝑖

)) ⊆ ℱ𝛼, so ̄ℱ solves all lower
bound conditions whose right-hand side is 𝒳𝛼. Since this works for all 𝛼, ̄ℱ solves
all lower bound conditions.

Lemma 4.25 implies that the solutions of a set 𝜓 of affine Horn conditions are
precisely those fixed points of Φ𝜓 that solve the upper bound conditions of 𝜓. It
is easy to see that if ̄𝒢 ∈ CS(𝜓) solves the upper bound conditions, so does any

̄ℱ ≤ ̄𝒢. If we assume that Φ𝜓 has a least fixed point 𝜇, the solvability of 𝜓 thus
reduces to the question of whether 𝜇 is a solution. Accordingly, we need to prove
the following two things:

1. The least fixed point of Φ𝜓 exists for every 𝜓 and can be computed.
2. It is decidable whether the least fixed point of Φ𝜓 solves 𝜓.

We tackle the first point with the help of a famous theorem of Kleene. The version
given here is slightly less general than usual, but sufficient for our purposes.

Theorem 4.26 (Kleene’s fixed point theorem). Let 𝐿 be a lattice with least element
0 in which all chains have suprema. Let 𝑓∶ 𝐿 → 𝐿 be continuous on chains, i.e.,
for any chain 𝑀, 𝑓(sup𝑀) = sup 𝑓(𝑀). Then 𝑚 = sup { 𝑓 𝑖(0) ∣ 𝑖 ∈ ℕ} is the
least fixed point of 𝑓.

Proof. The continuity of 𝑓 on chains implies that 𝑓 is monotone: if 𝑎, 𝑏 ∈ 𝐿 with
𝑎 ≤ 𝑏, then sup{𝑓(𝑎), 𝑓(𝑏)} = 𝑓(sup{𝑎, 𝑏}) = 𝑓(𝑏), so 𝑓(𝑎) ≤ 𝑓(𝑏). Now consider
{ 𝑓 𝑖(0) ∣ 𝑖 ∈ ℕ}. Because 𝑓 is monotone, this set is a chain and so has a supremum
𝑚 in 𝐿. We have 𝑓(𝑚) = 𝑓(sup { 𝑓 𝑖(0) ∣ 𝑖 ∈ ℕ}) = sup { 𝑓 𝑖+1(0) ∣ 𝑖 ∈ ℕ} = 𝑚, so
𝑚 is a fixed point of 𝑓. Moreover, if 𝑛 is any fixed point of 𝑓, then 𝑓 𝑖(0) ≤ 𝑛 for all
𝑖 ∈ ℕ, as is easily seen by an inductive argument, so 𝑚 = sup { 𝑓 𝑖(0) ∣ 𝑖 ∈ ℕ} ≤ 𝑛.
This means that 𝑚 is the least fixed point of 𝑓.

Definition 4.27 ( ̄ℱ𝜓). Let 𝜓 be a set of affine Horn conditions. Then ̄ℱ𝜓 ∈
CS(𝜓) denotes the least fixed point of Φ𝜓.

To prove that this definition is justified, we show that we can apply Theorem 4.26
to CS(𝜓) and Φ𝜓. Every chain in CS(𝜓) has a supremum—a maximum, in fact—
because Φ𝜓 satisfies ACC. Together with the monotonicity of Φ𝜓 this also implies
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its continuity: if 𝐶 is a chain, then Φ𝜓(sup𝐶) = Φ𝜓(max𝐶) = maxΦ𝜓(𝐶) =
supΦ𝜓(𝐶).

Since the chain {Φ𝑖
𝜓(0) ∣ 𝑖 ∈ ℕ} must be finite, we also obtain the fact that there

is some 𝑘 ∈ ℕ such that ̄ℱ𝜓 = Φ𝑘
𝜓(0).

Theorem 4.28. Let 𝜓 be a set of affine Horn conditions. If there is a solution of
𝜓, then ̄ℱ𝜓 is its least solution. Conversely, if ̄ℱ𝜓 is not a solution of 𝜓, then 𝜓
has no solution.

Proof. Let ̄𝒢 be a solution of 𝜓. In particular, ̄𝒢 must satisfy all lower bound
conditions of 𝜓 and hence be a fixed point of Φ𝜓 by Lemma 4.25. Since ̄ℱ𝜓 is the
least fixed point of Φ𝜓, we have ̄ℱ𝜓 ≤ ̄𝒢. As a solution, ̄𝒢 must also satisfy all
upper bound conditions, and it follows that ̄ℱ𝜓 does as well. The second claim
follows by contraposition.

Theorem 4.29. The function 𝜓 ↦ ̄ℱ𝜓 is computable. Moreover, it is decidable
whether ̄ℱ𝜓 solves 𝜓.

Proof. Computability of 𝜓 ↦ ̄ℱ𝜓: Let 𝜓 be a set of affine Horn conditions. As
remarked previously, repeated application of Φ𝜓 arrives at ̄ℱ𝜓 after finitely many
steps, so we only need to establish that we can compute Φ𝜓. For the purposes
of the computation, we need a finite representation of each element of Affℚ𝑘 we
encounter. For some computation steps, it is more convenient to assume that the
operands are represented by coordinate systems; for others, a representation by a
linear equation system is preferable. Since we can always computably recover a
coordinate system from a linear equation system and vice versa, we may assume
that we have either one available in each of the computation steps.

The computation of Φ𝜓 involves the operations intersection, supremum, and image
as well as preimage under affine transformations. Some cases involving the empty
set are trivial and will not be treated explicitly.

• ∅ is represented by the coordinate system ∅ or the equation system ⊥.
• If 𝒜,ℬ are represented by the equation systems 𝜎, 𝜏, then 𝜎 ∧ 𝜏 represents

𝒜∩ℬ.
• If 𝒜,ℬ are affine subspaces with coordinate systems ⟨𝑎,𝐴⟩ and ⟨𝑏, 𝐵⟩, then

⟨𝑎,𝐴 ∪ 𝐵 ∪ {𝑏 − 𝑎}⟩ is a coordinate system of 𝒜∨ℬ.
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• If 𝒜 ∈ Affℚ𝑚 is represented by the coordinate system ⟨𝑎,𝐴⟩ and 𝒯 ∶ ℚ𝑚 →
ℚ𝑛, 𝑥 ↦ 𝑇𝑥+ 𝑏 is an affine transformation, then ⟨𝑇𝑎+ 𝑏, 𝑇 (𝐴)⟩ is a coordi-
nate system of 𝒯(𝒜).

• If 𝒜 ∈ Affℚ𝑛 is represented by the linear equation system 𝜎( ̄𝑥) and 𝒯 ∶
ℚ𝑚 → ℚ𝑛, 𝑥 ↦ 𝑇𝑥+𝑏 is an affine transformation, then the equation system
𝜎(𝑇 ̄𝑥 + 𝑏) represents 𝒯−1(𝒜).

Decidability: ̄ℱ𝜓 solves all lower bound conditions of 𝜓 by Lemma 4.25. Conse-
quently, it is sufficient to check whether ̄ℱ𝜓 is also a solution of all upper bound
conditions in 𝜓. To do this, we need the same operations as before plus the ability
to decide whether an affine subspace is contained within another. Given a coordi-
nate system ⟨𝑎,𝐴⟩ of an affine subspace 𝒜 and a linear equation system 𝜏 of ℬ,
𝒜 ⊆ ℬ holds iff each element of {𝑎} ∪ { 𝑎 + 𝑏 | 𝑏 ∈ 𝐴} solves 𝜏.

Remark. Obviously, we need representations not only of the sets we compute, but
also of the constant sets occurring in the affine conditions. This is not a problem in
practice: we obtained these sets in the first place as solution sets of linear equation
systems, so these same systems can be used as the representations.

We are now able to define the algorithm MinimalSolution and prove it correct.

Theorem 4.30. Let Ψ be a set of affine conditions. If Ψ is solvable, then
MinimalSolution(𝜓) is a minimal solution of Ψ. If Ψ is unsolvable, then
MinimalSolution(Ψ) = failure.

Proof. By Theorems 4.28 and 4.29, after the end of the for loop in line 7, Sol
contains exactly the least solutions of the solvable 𝜓 ∈ Pr(Ψ). By Corollary 4.21,
Sol is nonempty iff Ψ is solvable, and if Sol ≠ ∅, then each of its elements is a
solution of Ψ. It immediately follows that MinimalSolution outputs a solution
of Ψ if Ψ is solvable and failure otherwise. It only remains to show that in the
positive case, the returned solution is minimal.

Assume Sol ≠ ∅ and let ̄ℱ ∈ Sol be minimal. If ̄𝒢 is any solution of Ψ, then ̄𝒢 is
a solution of some projection of Ψ (again by Corollary 4.21) and hence ̄𝒢 is above
some element of Sol. Since ̄ℱ is minimal in Sol, this shows that ̄𝒢 ≮ ̄ℱ. So ̄ℱ is
in fact a minimal solution of Ψ.
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4.3 Deciding affine solution problems

Procedure 1 MinimalSolution
Input: A set Ψ of affine conditions
Output: An element of CS(Ψ) or failure

1: Sol ∶= ∅
2: for 𝜓 ∈ Pr(Ψ) do
3: compute ̄ℱ𝜓

4: if ̄ℱ𝜓 satisfies the upper bound conditions in 𝜓 then
5: add ̄ℱ𝜓 to Sol
6: end if
7: end for
8: if Sol ≠ ∅ then
9: return a minimal element of Sol

10: else
11: return failure
12: end if

We are now able to prove:

Theorem 4.4. The affine solution problem is decidable.

Proof. Let ∃�̄� 𝜑 be an affine formula equation. By Corollary 4.14, we have that
∃�̄� 𝜑 is solvable iff AC(𝜑) is solvable. The latter is decidable by Theorem 4.30.

Example 4.31. Let P1, P2, P3, P4 be the affine projections defined in Example
4.17. Each projection P𝑖 induces an operator Φ𝑖 on Affℚ3:

Φ1,2 ∶ ℱ ↦ ℱ∨𝒯1(ℚ2) ∨ 𝒯2(𝒮−1(ℱ))
Φ3,4 ∶ ℱ ↦ ℱ∨𝒯1(ℚ2) ∨ 𝒯3(𝒮−1(ℱ))

P1 and P2 induce the same operator because they contain the same lower bound
conditions, and so do P3 and P4.

Iterating Φ1,2 on ∅ ∈ Affℚ2 results in the sequence

∅,{(
1
0
)} ,(

1
0
)+ [(

1
1
)] =∶ ℱ∗

1.
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Since (
1
0
) ∉ℬ1 and (

1
1
) ∉ℬ⃗2, ℱ∗

1 solves neither upper bound condition, so

P1 and P2 are unsolvable.

On the other hand, Φ3,4 results in the iteration sequence

∅,{(
1
0
)} ,(

1
0
)+ [(

1
0
)] =∶ ℱ∗

2.

ℱ∗
2 ⊆ ℬ1 is false and ℱ∗

2 ⊆ ℬ2 is true, so P3 is unsolvable and P4 has the solution
ℱ∗

2.

Remark. As Example 4.31 suggests, it is possible that several projections of an
affine formula equation contain the same lower bound conditions and consequently
induce the same operator. In such cases it is sufficient to only compute the fixed
point once.

4.4 Backwards translation

Let ∃�̄� 𝜑 be an affine formula equation. In the previous sections, we have shown
that it is decidable whether ∃�̄� 𝜑 has a solution in linear equation systems. In
fact, we can effectively compute a maximally strong solution 𝐹1,…, 𝐹𝑛 of ∃�̄� 𝜑,
in the following sense: If 𝐺1,…,𝐺𝑛 is another solution of ∃�̄� 𝜑 such that for
all 𝑖 = 1,…, 𝑛, 𝐺𝑖 → 𝐹𝑖, then for all 𝑖 = 1,…, 𝑛, 𝐺𝑖 ↔ 𝐹𝑖. Let ℱ1,…,ℱ𝑛 be a
solution of AC(𝜑). By Proposition 4.9, there are linear equation systems 𝐹1,…, 𝐹𝑛

such that ℱ𝑖 = 𝐹ℚ
𝑖 . By Corollary 4.14, ̄𝐹 is a solution of 𝜑.

Note that if ℱ ⊆ 𝒢, then 𝐹 → 𝐺. In other words, smaller spaces translate to
stronger formulas. Since we can compute a minimal solution of AC(𝜑) by Theorem
4.30, we also obtain a maximally strong solution of ∃�̄� 𝜑.

Example 4.32. Let ℱ∗
2 be the solution of the projection P4 computed in Example

4.31. We can translate ℱ∗
2 back to the linear equation system 𝐹(𝑥, 𝑦) ≡ 𝑦 = 0.

This gives us the solved formula equation 𝜑[𝑋\𝐹 ]:

0 = 0 ∧ (𝑦 = 0 → 𝑥 = 0 ∨ −𝑦 = 0) ∧ (𝑦 = 0 → 𝑥 = 𝑦 ∨ 𝑦 = 0).

Putting all the results of this chapter together, we obtain the following algorithm
for solving affine formula equations (or proving their unsolvability):
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4.4 Backwards translation

Procedure 2 SolveASP
Input: An instance ∃�̄� 𝜑 of the affine solution problem
Output: A solution of ∃�̄� 𝜑 or failure

1: Compute Cl(𝜑)
2: Compute AC(𝜑) from Cl(𝜑)
3: if MinimalSolution(AC(𝜑)) = failure then
4: return failure
5: else
6: ̄ℱ ∶= MinimalSolution(AC(𝜑))
7: end if
8: Compute linear equation systems ̄𝐹 from ̄ℱ
9: return ̄𝐹
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CHAPTER 5

THE INTERVAL AND POLYHEDRAL
SOLUTION PROBLEMS

In this chapter, we will discuss attempts to generalize the results of Chapter 4.
Specifically, we will move from affine equalities to affine inequalities by adding the
symbol ≤ to the language. Semantically, this means that we will be generalizing
from affine spaces to convex polyhedra.

It would seem natural to take the same approach as in the affine solution problem
discussed in Chapter 4. There are two principal reasons this is not straightfor-
wardly possible. First, we used a covering property of affine subspaces in Lemma
4.18 to reduce the general case to that of a single subspace covering an intersection
of subspaces. This allowed us to read the resulting affine Horn conditions as an
approximation procedure. It is easy to see, however, that convex polyhedra do not
have the same property: there can be convex polyhedra 𝐴,𝐵,𝐶 ⊆ ℚ𝑛 such that
𝐴 ⊆ 𝐵 ∪ 𝐶, but 𝐴 ⊈ 𝐵 and 𝐴 ⊈ 𝐶.

In principle, we could restrict our attention to formula equations which already
have Horn form, but even then, a more serious problem remains: recall that we
showed the termination of Procedure 4.3.4 by demonstrating that the least fixed
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point of a certain operator always exists and is reached after finitely many it-
erations, which is the case because the lattice Affℚ𝑛 is complete and satisfies
the ACC. By contrast, the lattice Polℚ𝑛 of convex polyhedra of ℚ𝑛 has nei-
ther of these properties. To see that Polℚ𝑛 is not complete, consider the set
𝑀 = {𝑃 ∈ Polℚ𝑛 | 𝐵𝑛

1 (0) ⊆ 𝑃}, where 𝐵𝑛
1 (0) is the unit ball around the origin.

Then ⋂𝑀 = 𝐵𝑛
1 (0)∉Polℚ𝑛. To see that the ACC does not hold in Polℚ𝑛, con-

sider the infinite strictly increasing sequence ([−𝑖, 𝑖]𝑛)𝑖∈ℕ of 𝑛-dimensional cubes.

In software verification, widening is used to remedy this problem. Given a partially
ordered set 𝑃, a widening operator on 𝑃 is a partial function ∇∶ 𝑃 × 𝑃 → 𝑃 such
that

• for 𝑥, 𝑦 ∈ 𝑃, if 𝑥∇𝑦 exists, then 𝑥∇𝑦 ≥ 𝑥 and 𝑥∇𝑦 ≥ 𝑦;
• for every weakly ascending sequence (𝑥𝑖)𝑖∈ℕ, the weakly ascending sequence

(𝑦𝑖)𝑖∈ℕ defined by 𝑦0 = 𝑥0 and 𝑦𝑛+1 = 𝑦𝑛∇𝑥𝑛+1 is eventually constant.

For instance, the original widening operator on convex polyhedra, introduced by
Cousot and Halbwachs in [CH78] and called the standard widening in [BHRZ03],
is intuitively defined as follows: Let 𝑃1, 𝑃2 be convex polyhedra in ℚ𝑛. If 𝑃1 = ∅,
then 𝑃1∇𝑃2 = 𝑃2, otherwise 𝑃1∇𝑃2 is the convex polyhedron defined by those
inequalities of 𝑃1 that every point of 𝑃2 satisfies. It is straightforward to show
that this operator fits the definition of a widening.

Obviously, overapproximations such as the standard widening are not suitable for
finding the least fixed point of an operator in general. In software verification, this
induces a tradeoff between precision and speed: coarser widenings may converge
to a fixed point faster, but overestimate the set of reachable program states to
a greater degree, and vice versa for finer widenings. For our purpose—deciding
whether a formula equation has a solution—such a tradeoff is not acceptable, since
it compromises completeness: the minimality of ℱ𝜓 is essential in Theorem 4.28.
Thus, we will have to approach the problem of convex polyhedra from another
angle.

Widening, and the wider topic of abstract interpretation, is discussed in some detail
in Chapter 12 of [BM07]. The framework of abstract interpretation was developed
by Cousot and Cousot in [CC77] and applied to convex polyhedra by Cousot
and Halbwachs in [CH78]. [BHRZ03] features an investigation of procedures for
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refining existing widening operators.

Definition 5.1 (ℒℚ
≤). Let ℒℚ

≤ be the language ℒaff (see 4.1) extended by the
binary relation symbol ≤.

Let Th(ℚ) be the theory of ℚ over ℒℚ
≤, where the symbols of ℒaff are interpreted

as before and ≤ is interpreted as the actual “less than or equal” relation. As in
Chapter 4, we will tacitly interpret ℒℚ

≤-formulas over Th(ℚ). As a consequence,
we could equivalently remove the symbol = from ℒℚ

≤ and define 𝑎 = 𝑏 as an
abbreviation of 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑎. We also define 𝑎 ≥ 𝑏 to mean 𝑏 ≤ 𝑎, 𝑎 < 𝑏 to mean
¬(𝑏 ≤ 𝑎), and 𝑎1 ≤ 𝑎2 ≤ … ≤ 𝑎𝑛−1 ≤ 𝑎𝑛 to mean 𝑎1 ≤ 𝑎2 ∧𝑎2 ≤ 𝑎3 ∧…∧𝑎𝑛−1 ≤
𝑎𝑛.

Definition 5.2 (Polyhedral formula, convex polyhedron). A polyhedral formula
is a conjunction of atoms of the form ∑𝑛

𝑖=1 𝑐𝑖𝑥𝑖 ≤ 𝑐 with 𝑐, 𝑐1,…, 𝑐𝑛 ∈ ℚ.

A convex polyhedron is a set 𝑀 ⊆ ℚ𝑛 such that there is a polyhedral formula
𝜑(𝑥1,…, 𝑥𝑛) with 𝜑ℚ = 𝑀.

Before we proceed, let us define conic and convex combinations. A conic combina-
tion of vectors 𝑎1,…, 𝑎𝑛 ∈ ℚ𝑚 is a linear combination ∑𝑚

𝑖=1 𝑐𝑖𝑎𝑖 such that 𝑐𝑖 ≥ 0
for all 𝑖 ∈  {1,…,𝑚}. A convex combination is a linear combination with the addi-
tional conditions 0 ≤ 𝑐𝑖 ≤ 1 for all 𝑖 ∈  {1,…,𝑚} and ∑𝑛

𝑖=1 𝑐𝑖 = 1. Consequently,
every convex combination is also a conic and affine combination. For 𝑀 ⊆ ℚ𝑛 we
write cone𝑀 for the set of conic combinations over 𝑀, called the conic hull of 𝑀,
and conv𝑀 for the set of convex combinations over 𝑀, the convex hull of 𝑀. A
set 𝑀 satisfying conv𝑀 = 𝑀 is said to be convex. Convex polyhedra are in fact
convex in this sense, as is easily seen. Note that the convex hull of a finite set is
always bounded.

The following well-known theorem shows that convex polyhedra can equivalently
be defined “from without” (as an intersection of half-spaces) and “from within”
(generated by a set of points and a set of rays). It is a generalization of the observa-
tion that affine subspaces can be represented as intersections of affine hyperplanes
or as affine hulls of sets of points.

Theorem 5.3 (Minkowski-Weyl). Let 𝑃 ⊆ ℚ𝑛. The following are equivalent:
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1. 𝑃 is a convex polyhedron.
2. There are finite sets 𝑉 ,𝑅 ⊆ ℚ𝑛 such that 𝑃 = conv𝑉 + cone𝑅.

A proof of Theorem 5.3 can be found in [Zie12], where it is called the main theorem
for polyhedra.

If 𝑃 is a convex polyhedron, we call any polyhedral formula that defines it an
H-representation of 𝑃 and a tuple ⟨𝑉 ,𝑅⟩ such that 𝑃 = conv𝑉 + cone𝑅 a V-
representation of 𝑃.

Proposition 5.4. Let 𝑃 ⊆ ℚ𝑛 be a convex polyhedron and ⟨𝑉 ,𝑅⟩ a V-representation
of 𝑃.

1. 𝑃 = ∅ iff 𝑉 = ∅.
2. 𝑃 is bounded iff 𝑉 = ∅ or 𝑅 = ∅.

Proof. 1. If 𝑉 = ∅, then 𝑃 = ∅ + cone𝑅 = ∅. If 𝑎 ∈ 𝑉, then 𝑎 = 𝑎 + 0 ∈
conv𝑉 + cone𝑅 = 𝑃.

2. By 1, 𝑉 = ∅ implies 𝑃 = ∅ and therefore 𝑃 is bounded. If 𝑅 = ∅, then
𝑃 = conv𝑉 and hence bounded.

We can now define the solution problem that is the subject of this chapter.

Definition 5.5 (Polyhedral solution problem).

1. A polyhedral formula equation is a Π1 formula equation over ℒℚ
≤.

2. The rational polyhedral solution problem is the solution problem ⟨Th(ℚ),ℱ, 𝒞⟩
where 𝒞 is the set of polyhedral formulas and ℱ is the set of polyhedral for-
mula equations.

Open problem. Is the rational polyhedral solution problem decidable?

We will examine this problem from two different perspectives. We will show that
two specific subproblems of the polyhedral decision problem are decidable, and we
will adapt an argument originally presented in [Mon19] to demonstrate that even
a slight extension of the problem results in undecidability.
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5.1 The polyhedral solution problem in the rational plane

5.1 The polyhedral solution problem in the ra-
tional plane

First, we will quickly treat a very simple case of the rational polyhedral solution
problem only involving a single formula variable and rotations in ℚ2.

Theorem 5.6. Let ℱ be the class of formula equations ∃𝑋𝜑 where 𝑋 is a binary
formula variable and 𝜑 is a conjunction of linear Horn clauses of the forms

⊢ 𝑋(𝑎, 𝑏),
𝑋(𝑥, 𝑦) ⊢ 𝑋(𝑠(𝑥, 𝑦), 𝑡(𝑥, 𝑦)),
𝑋(𝑐, 𝑑) ⊢,

with 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℚ and 𝜌∶ ℚ2 → ℚ2,(
𝑥
𝑦

) → (
𝑠(𝑥, 𝑦)
𝑡(𝑥, 𝑦)

) a rotation. Moreover,

let 𝒞 be the class of polyhedral formulas. Then the solution problem ⟨Th(ℚ),ℱ, 𝒞⟩
is decidable.

Proof. Let ∃𝑋𝜑 ∈ ℱ and let

𝑝1 = (
𝑎1

𝑏1
),…, 𝑝𝑚 = (

𝑎𝑚

𝑏𝑚
)

be all the points that occur in clauses of the first form,

𝜌1 ∶ (
𝑥
𝑦

) → (
𝑠1(𝑥, 𝑦)
𝑡1(𝑥, 𝑦)

) ,…, 𝜌𝑛 ∶ (
𝑥
𝑦

) → (
𝑠𝑛(𝑥, 𝑦)
𝑡𝑛(𝑥, 𝑦)

)

all the rotations that occur in clauses of the second form, and

𝑞1 = (
𝑐1

𝑑1
),…, 𝑞ℓ = (

𝑐ℓ

𝑑ℓ
)

all the points that occur in clauses of the third form. 𝑋 describes a convex polyhe-
dron that must include all points 𝑝1,…, 𝑝𝑚, be closed under the rotations 𝜌1,…, 𝜌𝑛,
and exclude the points 𝑞1,…, 𝑞ℓ. We construct the least convex polyhedron 𝑃 sat-
isfying the former two conditions. It is then straightforward to check whether 𝑃
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satisfies the latter condition, and 𝜑 has a solution iff this is the case, due to the
minimality of 𝑃. The construction proceeds as follows. If 𝑚 = 0, then 𝑃 = ∅.
Likewise, if 𝑚 > 0 and 𝑛 = 0, then 𝑃 = conv(𝑝1,…, 𝑝𝑚). Otherwise, consider
the rotations 𝜌1,…, 𝜌𝑛. Clearly, 𝑃 must at least contain the orbits of the 𝑝𝑖 under
these rotations. Such a rotation is periodic iff its angle is ±𝜋/2 or 𝜋 (for a proof,
see Corollary 1 in [Tan96]), in which case its period is at most 4. Thus, if the orbit
of a point 𝑝 under a rotation 𝜌 has more than 4 elements, we can conclude that it
is infinite. There are now two cases to consider. If all the 𝜌𝑖 are periodic—that is,
their angles are all ±𝜋/2 or 𝜋—then we may assume without loss of generality that
there is only one rotation 𝜌 and its angle is either 𝜋/2 or 𝜋. In either case, each
𝑝𝑖 has a finite orbit 𝑂𝑖 and 𝑂 = ⋃𝑛

𝑖=1 𝑂𝑖 is the least set that contains all 𝑝𝑖 and
is closed under 𝜌. It follows that 𝑃 = conv(𝑂) is the least convex set (and thus
certainly the least convex polyhedron) with these properties.

Now assume that one rotation 𝜌𝑗 is aperiodic. This implies that 𝑃 is unbounded,
for if it were bounded, then it would be the convex hull of finitely many points and
thus could not be closed under 𝜌𝑗. Moreover, whenever 𝑃 contains a point 𝑝 ≠ 0,
𝑃 must also contain an entire circle centered at the origin and passing through 𝑝.
This rules out 𝑃 being contained in any halfspace, so 𝑃 = ℚ2.

Example 5.7. Let

Φ ≡ ∃𝑋. ∀𝑥, 𝑦. 𝑋(2, 3)

∧ (𝑋(𝑥, 𝑦) → 𝑋(3
5
𝑥 + 4

5
𝑦,−4

5
𝑥 + 3

5
𝑦))

∧ (𝑋(𝑥, 𝑦) → 𝑋(𝑦,−𝑥))
∧ ¬𝑋(4, 6)

Then, following the terminology from the proof of Theorem 5.6, we have

𝑝 = (
2
3
) , 𝜌1 ∶ (

𝑥
𝑦

) ↦ 1
5
(

3𝑥 + 4𝑦
−4𝑥 + 3𝑦

) ,

𝑞 = (
4
6
) , 𝜌1 ∶ (

𝑥
𝑦

) ↦ (
𝑦
−𝑥

) .

Assume 𝑃 ⊆ ℚ2 is a convex polyhedron that solves Φ. Then 𝑃 must contain 𝑝 and
be closed under 𝜌1 and 𝜌2. Since 𝜌1 is not periodic, this is only possible if 𝑃 = ℚ2,
but on the other hand, 𝑞 ∉ 𝑃, which is a contradiction. Thus, Φ has no solution.
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Extending the above solution problem to more than two dimensions already intro-
duces a massive complication in the fact that rotations can have different axes.

In the next section, we will show the decidability of a more complex subproblem
of the polyhedral decision problem.

5.2 The interval solution problem

The interval solution problem we will be discussing in this section features two
major differences from the general polyhedral solution problem. First, the sets
we consider are not general convex polyhedra, but rather products of (bounded
or unbouded) intervals, or in other words, convex polyhedra aligned along the
coordinate axes. Second, we will be working over the integers instead of the rational
numbers. The main reason for this is that it allows us to ignore negations in
formulas, which will simplify technical matters significantly.

Definition 5.8 (ℒℤ
≤). Let ℒℤ

≤ be the first-order language consisting of

• the constants 0 and 1;
• the binary function symbol +;
• the unary function symbols { 𝑐 | 𝑐 ∈ ℤ};
• the binary predicate symbols = and ≤.

In the sequel, let Th(ℤ) be the theory of ℤ over ℒℤ
≤, where 0 and 1 are interpreted

as the integers 0 and 1, + as actual addition, each unary function symbol 𝑐 as the
function 𝑥 ↦ 𝑐𝑥, and ≤ as the actual “less than or equal” relation.

We will interpret terms and formulas of ℒℤ
≤ modulo Th(ℤ), as usual. We also use

𝑎 ≥ 𝑏, 𝑎 < 𝑏, and 𝑎1 ≤ … ≤ 𝑎𝑛 in the same sense as in the case of ℚ. There are
two observations about Th(ℤ) that simplify the structure of the formulas we have
to consider.

1. 𝑠( ̄𝑥) = 𝑡( ̄𝑦) is equivalent to 𝑡( ̄𝑦) ≤ 𝑠( ̄𝑥) ∧ 𝑡( ̄𝑦) ≥ 𝑠( ̄𝑥), so we can assume
without loss of generality that all atomic formulas are inequalities.

2. ¬𝑠( ̄𝑥) ≤ 𝑡( ̄𝑦) is equivalent to 𝑠( ̄𝑥) ≥ 𝑡( ̄𝑦) + 1, and we will shortly see that
this allows us to disregard negation entirely.
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Definition 5.9 (Interval formula). An interval formula over the variables 𝑥1,…, 𝑥𝑛

is a conjunction of formulas of the form 𝑥𝑖 ≤ 𝑐 or 𝑥𝑖 ≥ 𝑐 for 𝑐 ∈ ℤ.

Every interval formula can be written as a conjunction of at most 2 linear inequali-
ties per variable it contains. The interpretation of an interval formula 𝐼(𝑥1,…, 𝑥𝑛)
in ℤ is a box in ℤ𝑛, i.e., a product of intervals, each of which may be bounded,
bounded in one direction, or unbounded. Note that since 𝑎𝑥 + 𝑏 ≤ 𝑐 is equivalent
to 𝑥 ≤ ⌊𝑐−𝑏

𝑎 ⌋, allowing general terms in interval formulas would provide no extra
generality.

Definition 5.10 (Interval formula equation). An interval formula equation is a
Π1 formula equation over ℒℤ

≤ in which no term or constant atom contains more
than one individual variable.

Note that formula variables may contain any number of individual variables. Let
us describe the structure of an interval formula equation ∃ ̄𝐼 𝜑 in a little more
detail. By definition, 𝜑 is Π1, and hence in prenex form. Therefore, 𝜑 ≡ ∀ ̄𝑥𝜑′

with 𝜑′ quantifier-free. Since equivalence-preserving transformations do not af-
fect the existence of solutions of a formula equation, we can transform 𝜑′ into
NNF. A formula in NNF is a ∧∨-combination of (possibly negated) atoms, and
by observations 1 and 2, we may disregard both equality atoms and negations.
The result is that we can assume that 𝜑′ is an ∧∨-combination of formulas of the
form 𝐼(𝑎1𝑥𝑖1

+ 𝑏1,…, 𝑎𝑚𝑥𝑖𝑚
+ 𝑏𝑚) (a formula variable instantiated with terms)

or 𝑠(𝑥) ≤ 𝑡 or 𝑠(𝑥) ≥ 𝑡 (constant atoms). Modulo Th(ℤ), each such atom is
equivalent to an atom of the form 𝑥 ≤ 𝑐 or 𝑥 ≥ 𝑐, so the latter are actually the
only atoms we need.

Definition 5.11 (Interval solution problem). The interval solution problem is the
solution problem ⟨Th(ℤ), Φ, 𝒞⟩ where 𝒞 is the class of interval formulas and Φ is
the class of interval formula equations.

As in the case of the affine solution problem, we have:

Theorem 5.12. The interval solution problem is decidable.

The first step to solving the interval solution problem is the observation that the
solution of each formula variable in an interval formula equation can assume one
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of only finitely many forms, according to the shape of the box it describes. For
each dimension of the box, there can be a lower bound, an upper bound, both, or
neither. Moreover, the box might be empty, in which case it is described by the
formula ⊥. This notion is captured in the following definition.

Definition 5.13 (Configuration).

1. Let ∃ ̄𝐼 𝜑 be an interval formula equation and 𝐼(𝑥1,…, 𝑥𝑛) a formula variable
in 𝜑. Let 𝐿,𝑅 ⊆ {1,…, 𝑛} and (ℓ𝑖)𝑖∈𝐿 and (𝑟𝑖)𝑖∈𝑅 be fresh individual
variables. Then the formula

⋀
𝑖∈𝐿

𝑥𝑖 ≥ ℓ𝑖 ∧ ⋀
𝑗∈𝑅

𝑥𝑗  ≤ 𝑟𝑗

is called a configuration of 𝐼. We call the variables (ℓ𝑖)𝑖∈𝐿 and (𝑟𝑖)𝑖∈𝑅 its
interval variables.
Moreover, ⊥ is a configuration of every formula variable.

2. Let ∃ ̄𝐼 𝜑 be an interval formula equation over the formula variables 𝐼1,…, 𝐼𝑚.
Furthermore, let 𝐶1,…,𝐶𝑚 be configurations of 𝐼1,…, 𝐼𝑚 with distinct in-
terval variables. Then [𝐼1\𝐶1,…, 𝐼𝑚\𝐶𝑚] is called a configuration of 𝜑. The
interval variables of a configuration of 𝜑 are those of the 𝐶1,…,𝐶𝑚.
We write Conf(𝜑) for the set of configurations of 𝜑. Configurations that
differ only in the names of interval variables are considered equal.

Theorem 5.14. Let ∃ ̄𝐼 𝜑 be an instance of the interval solution problem. The
following are equivalent:

1. ∃ ̄𝐼 𝜑 has a solution.
2. There is 𝜏 ∈ Conf(𝜑) with interval variables 𝑦1,…, 𝑦𝑛 such that Th(ℤ) ⊧

∃ ̄𝑦 𝜑𝜏.

Proof. By definition, 𝜑 is prenex, so 𝜑 ≡ ∀ ̄𝑥𝜑′ with 𝜑′ quantifier-free.

Assume that 𝜑 has a solution 𝜎 = [𝐼1\𝐹1,…, 𝐼𝑛\𝐹𝑛]. Consider 𝐼𝑘(𝑥1,…, 𝑥𝑚𝑘
) and

𝐹𝑘(𝑥1,…, 𝑥𝑚𝑘
) for 1 ≤ 𝑘 ≤ 𝑛. As an interval formula, 𝐹𝑘 is equivalent to either

⊥ or a formula of the form

⋀
𝑖∈𝐿(𝑘)

𝑥𝑖 ≥ 𝑐𝑘,𝑖 ∧ ⋀
𝑗∈𝑅(𝑘)

𝑥𝑗  ≤ 𝑑𝑘,𝑗
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with 𝐿(𝑘),𝑅(𝑘) ⊆ {1,…,𝑚𝑘} and 𝑐𝑘,𝑖, 𝑑𝑘,𝑗 ∈ ℤ. It follows that for each 𝑘,

𝐶𝑘 ≡ ⋀
𝑖∈𝐿(𝑘)

𝑥𝑖 ≥ ℓ𝑘,𝑖 ∧ ⋀
𝑗∈𝑅(𝑘)

𝑥𝑗  ≤ 𝑟𝑘,𝑗

is a configuration of 𝐼𝑘 and hence 𝜏 = [𝐼1\𝐶1,…, 𝐼𝑚\𝐶𝑚] is a configuration of 𝜑.
Note, moreover, that

𝜑𝜏[ ̄ℓ\ ̄𝑐, ̄𝑟\ ̄𝑑] ≡ 𝜑[𝐼1\𝐶1,…, 𝐼𝑚\𝐶𝑚][ ̄ℓ\ ̄𝑐, ̄𝑟\ ̄𝑑] ≡ 𝜑𝜎.

Since Th(ℤ) ⊧ 𝜑𝜎 by assumption, it follows that Th(ℤ) ⊧ 𝜑𝜏[ ̄ℓ\ ̄𝑐, ̄𝑟\ ̄𝑑] and hence
Th(ℤ) ⊧ ∃ ̄ℓ∃ ̄𝑟 𝜑𝜏.

Conversely, assume that 𝜏 is a configuration of 𝜑 with interval variables 𝑦1,…, 𝑦𝑛

such that Th(ℤ) ⊧ ∃ ̄𝑦 𝜑𝜏. It follows that there are 𝑐1,…, 𝑐𝑚 ∈ ℤ such that Th(ℤ) ⊧
𝜓 ≡ 𝜑𝜏[𝑦1\𝑐1,…, 𝑦𝑚\𝑐𝑚]. Now 𝜎 = 𝜏[𝑦1\𝑐1,…, 𝑦𝑚\𝑐𝑚] is a solution of ∃ ̄𝐼 𝜑.

Note that with Theorem 5.14, we have reduced the interval solution problem from a
second-order to a first-order problem: in order to check whether an interval formula
equation is solvable, we only need to compute its finitely many configurations and
check the resulting first-order formulas. If ∃ ̄𝐼 𝜑 is an interval formula equation and
𝜏 is a configuration of 𝜑 with interval variables 𝑦1,…, 𝑦𝑛, then ∃ ̄𝑦 𝜑𝜏 is of the form
∃ ̄𝑦∀ ̄𝑥 𝜑′( ̄𝑥, ̄𝑦). In 𝜑′, all formula variables have been replaced with conjunctions
of atoms of the forms 𝑎𝑥 + 𝑏 ≤ 𝑦 or 𝑎𝑥 + 𝑏 ≥ 𝑦. Consequently, 𝜑′ is an ∧∨-
combination of inequalities of the forms 𝑎𝑥+ 𝑏 ≤ 𝑦, 𝑎𝑥+ 𝑏 ≥ 𝑦, 𝑥 ≤ 𝑐, and 𝑥 ≥ 𝑐.
The next step will be reducing the quantifier complexity of ∃ ̄𝑦∀ ̄𝑥 𝜑′( ̄𝑥, ̄𝑦) to Σ1 by
eliminating the ∀ ̄𝑥 quantifier. Before we can do this, we will need some lemmas.
The first two concern the definability of division with rounding, minimum, and
maximum in Th(ℤ).

Lemma 5.15. Let 𝑎 ∈ ℤ, 𝑎 > 0. Then the functions 𝑥 ↦ ⌊𝑥
𝑎⌋ and 𝑥 ↦ ⌈𝑥

𝑎⌉ are
definable in Th(ℤ).

Proof. Consider the formula

𝐹⌊ ⋅
𝑎 ⌋(𝑥, 𝑦) ≡ 𝑥 − 𝑎 + 1 ≤ 𝑎𝑦 ≤ 𝑥.
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Th(ℤ) ⊧ 𝐹⌊ ⋅
𝑎 ⌋(𝑏, 𝑐) iff 𝑐 ∈ [ 𝑏

𝑎 − 𝑎−1
𝑎 , 𝑏

𝑎 ]. This interval contains exactly one integer,
namely ⌊ 𝑏

𝑎⌋. Therefore, 𝐹⌊ ⋅
𝑎 ⌋(𝑥, 𝑦) defines 𝑥 ↦ ⌊𝑥

𝑎⌋. By an analogous argument,
we obtain

𝐹⌈ ⋅
𝑎 ⌉(𝑥, 𝑦) ≡ 𝑥 ≤ 𝑎𝑦 ≤ 𝑥 + 𝑎 − 1

as the definition of 𝑥 ↦ ⌈𝑥
𝑎⌉.

Lemma 5.16. Let 𝑛 ≥ 1. Then the 𝑛-ary maximum and minimum functions are
definable in Th(ℤ).

Proof. The 𝑛-ary minimum and maximum are defined by

𝐹𝑛
min(𝑥1,…, 𝑥𝑛, 𝑦) ≡

𝑛
⋀
𝑖=1

𝑦 ≤ 𝑥𝑖 ∧
𝑛
⋁
𝑖=1

𝑦 = 𝑥𝑖

and

𝐹𝑛
max(𝑥1,…, 𝑥𝑛, 𝑦) ≡

𝑛
⋀
𝑖=1

𝑦 ≥ 𝑥𝑖 ∧
𝑛
⋁
𝑖=1

𝑦 = 𝑥𝑖,

respectively.

Because of Lemmas 5.15 and 5.16 we are justified in making the following defini-
tons.

Definition 5.17. Let 𝜑(𝑥, ̄𝑦) be an ℒℤ
≤-formula. We define the formulas 𝜑(⌊𝑥

𝑎⌋ , ̄𝑦),
𝜑(⌈𝑥

𝑎⌉ , ̄𝑦), 𝜑(min(𝑥1,…, 𝑥𝑛), ̄𝑦), and 𝜑(max(𝑥1,…, 𝑥𝑛), ̄𝑦) to be abbreviations of
ℒℤ

≤-formulas:

𝜑(⌊𝑥
𝑎
⌋ , ̄𝑦) ≡ ∃𝑧. 𝑥 − 𝑎 + 1 ≤ 𝑎𝑧 ≤ 𝑥 ∧ 𝜑(𝑧, ̄𝑦),

𝜑(⌈𝑥
𝑎
⌉ , ̄𝑦) ≡ ∃𝑧. 𝑥 ≤ 𝑎𝑧 ≤ 𝑥 + 𝑎 − 1 ∧ 𝜑(𝑧, ̄𝑦),

𝜑(min(𝑥1,…, 𝑥𝑛), ̄𝑦) ≡
𝑛
⋁
𝑖=1

𝑛
⋀
𝑗=1

𝑥𝑖 ≤ 𝑥𝑗 ∧ 𝜑(𝑥𝑖, ̄𝑦),

𝜑(max(𝑥1,…, 𝑥𝑛), ̄𝑦) ≡
𝑛
⋁
𝑖=1

𝑛
⋀
𝑗=1

𝑥𝑖 ≥ 𝑥𝑗 ∧ 𝜑(𝑥𝑖, ̄𝑦).
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There is one more technical lemma we will require.

Lemma 5.18. For any first-order formulas 𝜑( ̄𝑥, 𝑦), 𝜓(𝑦), we have

∀ ̄𝑥∃𝑦. 𝜑( ̄𝑥, 𝑦) ∧ 𝜓(𝑦), ∃≤1𝑦𝜓(𝑦) ⊧ ∃𝑦∀ ̄𝑥. 𝜑( ̄𝑥, 𝑦) ∧ 𝜓(𝑦).

Proof. Let ℳ be any model of ∀ ̄𝑥∃𝑦. 𝜑( ̄𝑥, 𝑦) ∧𝜓(𝑦) and ∃≤1𝑦𝜓(𝑦). In particular,
𝜓ℳ ⊆ ℳ contains exactly one element, say 𝑐. Therefore, ℳ ⊧ ∀ ̄𝑥. 𝜑( ̄𝑥, 𝑐) ∧ 𝜓(𝑐)
and hence ℳ ⊧ ∃𝑦∀ ̄𝑥. 𝜑( ̄𝑥, 𝑦) ∧ 𝜓(𝑦).

We can now prove that modulo Th(ℤ), every universal formula of a certain simple
form is equivalent to an existential formula.

Theorem 5.19. Let 𝜑(𝑦1,…, 𝑦𝑛) ≡ ∀ ̄𝑥 𝜑′(𝑥1,…, 𝑥𝑚, 𝑦1,…, 𝑦𝑛) be a fully indi-
cated formula over ℒℤ

≤ such that 𝜑′ is quantifier-free and each atomic formula
in 𝜑′ contains at most one of the 𝑥𝑖. Then there is a formula 𝜓(𝑦1,…, 𝑦𝑛) ≡
∃ ̄𝑧 𝜓′(𝑦1,…, 𝑦𝑛, 𝑧1,…, 𝑧𝑘) with 𝜓′ quantifier-free such that Th(ℤ) ⊧ 𝜑 ↔ 𝜓.

Proof. As we mentioned before, we may assume without loss of generality that
𝜑 contains no negations. We may also assume that every inequality in 𝜑 that
contains 𝑥𝑖 is of the form 𝑎𝑥𝑖 ≤ 𝑡( ̄𝑦) or 𝑎𝑥𝑖 ≥ 𝑡( ̄𝑦) with 𝑎 > 0, because if 𝑎 < 0,
we can multiply the inequality by −1. We first transform 𝜑′ into a formula in
which the variables 𝑥𝑖 only occur with coefficient 1. This is possible because of
the definability of division with rounding.

Let 𝑎𝑥𝑖 ≤ 𝑡( ̄𝑦) be an atom in 𝜑. If 𝑎 = 1, we are done. If 𝑎 > 1, 𝑎𝑥𝑖 ≤ 𝑡( ̄𝑦) is
equivalent to 𝑥𝑖 ≤ ⌊ 𝑡( ̄𝑦)

𝑎 ⌋ in Th(ℤ), and the latter is defined as an abbreviation
of ∃𝑧. 𝑡( ̄𝑦) − 𝑎 + 1 ≤ 𝑎𝑧 ≤ 𝑡( ̄𝑦) ∧ 𝑥 ≤ 𝑧. Likewise, 𝑎𝑥𝑖 ≥ 𝑡( ̄𝑦) with 𝑎 > 1 is
equivalent to ∃𝑧. 𝑡( ̄𝑦) ≤ 𝑎𝑧 ≤ 𝑡( ̄𝑦) + 𝑎 − 1 ∧ 𝑥 ≥ 𝑧 modulo Th(ℤ). By rewriting
all atomic formulas in 𝜑 containing one of the 𝑥𝑖 in this manner, we can ensure
that the 𝑥𝑖 only occur in atoms of the form 𝑥𝑖 ≤ 𝑡( ̄𝑦, ̄𝑧) or 𝑥𝑖 ≥ 𝑡( ̄𝑦, ̄𝑧), at
the cost of introducing new existentially quantified variables below the universal
quantifier block in 𝜑. But since Th(ℤ) ⊧ ∃≤1𝑧𝐹⌊ ⋅

𝑎 ⌋(𝑡( ̄𝑦), 𝑧) —because 𝐹⌊ ⋅
𝑎 ⌋ defines

a function—, we can apply Lemma 5.18 to move the new existential quantifiers
outside the original universal ones. Thus, we obtain a formula 𝜎(𝑦1,…, 𝑦𝑛) ≡
∃ ̄𝑧∀ ̄𝑥 𝜎′(𝑥1,…, 𝑥𝑚, 𝑦1,…, 𝑦𝑛, 𝑧1,…, 𝑧𝑘) that is equivalent to 𝜑 modulo Th(ℤ) and
satisfies the condition that the 𝑥𝑖 only occur with trivial coefficients. We are done
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if we can show that ∀ ̄𝑥 𝜎′( ̄𝑥, ̄𝑦, ̄𝑧) is equivalent to a quantifier-free formula with
the free variables ̄𝑦, ̄𝑧.

The formula ∀ ̄𝑥 𝜎′( ̄𝑥, ̄𝑦, ̄𝑧) is equivalent to a formula of the form ⋀𝑁
𝑘=1

∀ ̄𝑥 𝜎𝑘( ̄𝑥, ̄𝑦, ̄𝑧)∨
𝜏𝑘( ̄𝑦, ̄𝑧), where the 𝜎𝑘 are disjunctions of atoms containing the 𝑥𝑖 and 𝜏𝑘 are dis-
junctions of atoms that do not contain the 𝑥𝑖. The 𝜏𝑘 already have the required
form, so we only need to show that each of the ∀ ̄𝑥 𝜎𝑘( ̄𝑥, ̄𝑦, ̄𝑧) is equivalent to a
formula that only contains ̄𝑦 and ̄𝑧.

𝜎𝑘 is of the form

ℓ1

⋁
𝑖=1

𝑥1 ≥ 𝑠1,𝑖( ̄𝑦, ̄𝑧) ∨
𝑟1

⋁
𝑖=1

𝑥1 ≤ 𝑡1,𝑖( ̄𝑦, ̄𝑧)∨

⋮

∨
ℓ𝑚

⋁
𝑖=1

𝑥𝑚 ≥ 𝑠𝑚,𝑖( ̄𝑦, ̄𝑧) ∨
𝑟𝑚

⋁
𝑖=1

𝑥𝑚 ≤ 𝑡𝑚,𝑖( ̄𝑦, ̄𝑧).

Since each line involves only one of the universally quantified variables, ∀ ̄𝑥 𝜎𝑘 can
equivalently be written as

∀𝑥1.
ℓ1

⋁
𝑖=1

𝑥1 ≥ 𝑠1,𝑖( ̄𝑦, ̄𝑧) ∨
𝑟1

⋁
𝑖=1

𝑥1 ≤ 𝑡1,𝑖( ̄𝑦, ̄𝑧)∨

⋮

∨∀𝑥𝑚.
ℓ𝑚

⋁
𝑖=1

𝑥𝑚 ≥ 𝑠𝑚,𝑖( ̄𝑦, ̄𝑧) ∨
𝑟𝑚

⋁
𝑖=1

𝑥𝑚 ≤ 𝑡𝑚,𝑖( ̄𝑦, ̄𝑧),

so we can restrict our attention to the case of 𝑚 = 1:

∀𝑥𝜎𝑘 ≡ ∀𝑥.
ℓ
⋁
𝑖=1

𝑥 ≥ 𝑠𝑖( ̄𝑦, ̄𝑧) ∨
𝑟
⋁
𝑖=1

𝑥 ≤ 𝑡𝑖( ̄𝑦, ̄𝑧).

This formula can be read as a statement about integer intervals: it asserts that
the intervals [𝑠𝑖( ̄𝑦, ̄𝑧),∞), 𝑖 = 1,…, ℓ, and (−∞, 𝑡𝑖( ̄𝑦, ̄𝑧)], 𝑖 = 1,…, 𝑟, cover ℤ.
Obviously, the truth of this statement depends entirely on the values of the terms
𝑠𝑖( ̄𝑥, ̄𝑦), 𝑡𝑗( ̄𝑥, ̄𝑦). Accordingly, we will reduce it to a quantifier-free formula over the
same free variables. If ℓ = 0 or 𝑟 = 0, then ∀𝑥𝜎𝑗 ↔ ⊥ modulo Th(ℤ) and we are
finished, so assume ℓ, 𝑟 ≥ 1. Observe that ⋃ℓ

𝑖=1[𝑠𝑖( ̄𝑦, ̄𝑧),∞) = [minℓ
𝑖=1 𝑠𝑖( ̄𝑦, ̄𝑧),∞).
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Consequently, we have

Th(ℤ) ⊧ ∀𝑥𝜎𝑘 ≡ ∀𝑥.
ℓ
⋁
𝑖=1

𝑥 ≥ 𝑠𝑖( ̄𝑦, ̄𝑧) ∨
𝑟
⋁
𝑖=1

𝑥 ≤ 𝑡𝑖( ̄𝑦, ̄𝑧)

↔ ∀𝑥. 𝑥 ≥
ℓ

min
𝑖=1

𝑠𝑖( ̄𝑦, ̄𝑧) ∨ 𝑥 ≤ 𝑟max
𝑗=1

𝑡𝑗( ̄𝑦, ̄𝑧)

↔
ℓ

min
𝑖=1

𝑠𝑖( ̄𝑦, ̄𝑧) ≤ 𝑟max
𝑗=1

𝑡𝑗( ̄𝑦, ̄𝑧) + 1.

The last formula is the abbreviation of a quantifier-free ℒℤ
≤-formula. This com-

pletes the proof.

Corollary 5.20. Let ∃ ̄𝐼∀ ̄𝑥 𝜑( ̄𝑥) be an instance of the interval solution problem.
There are quantifier-free ℒℤ

≤-formulas 𝜓1( ̄𝑦, ̄𝑧),…, 𝜓𝑛( ̄𝑦, ̄𝑧) such that ∃ ̄𝐼∀ ̄𝑥 𝜑( ̄𝑥)
has a solution iff Th(ℤ) ⊧ ∃ ̄𝑦∃ ̄𝑧 𝜓𝑖( ̄𝑦, ̄𝑧) for some 𝑖.

Proof. Let ∃ ̄𝐼 𝜑 be an interval formula equation. By Theorem 5.14, ∃ ̄𝐼 𝜑 has a
solution if Th(ℤ) ⊧ ∃ ̄𝑦 𝜑𝜏 for some configuration 𝜏 of 𝜑 with interval variables
̄𝑦. Let 𝜏1,…, 𝜏𝑛 be the finitely many configurations of 𝜑. Each 𝜑𝜏𝑖 is of the

form ∀ ̄𝑥 𝜃𝑖( ̄𝑥, ̄𝑦𝑖) with 𝜃𝑖 quantifier-free. Because of the forms of 𝜑 and 𝜏𝑖, the 𝜑𝜏𝑖

satisfy the prerequisites of Theorem 5.19 and hence we can compute quantifier-free
formulas 𝜓1( ̄𝑦1, ̄𝑧1),…, 𝜓𝑛( ̄𝑦𝑛, ̄𝑧𝑛) such that Th(ℤ) ⊧ 𝜑𝜏𝑖 ↔ ∃ ̄𝑧𝑖 𝜓𝑖. We obtain

∃ ̄𝐼 𝜑 has a solution ⇔ Th(ℤ) ⊧ ∃ ̄𝑦𝑖 𝜑𝜏𝑖 for some 1 ≤ 𝑖 ≤ 𝑛
⇔ Th(ℤ) ⊧ ∃ ̄𝑦𝑖∃ ̄𝑧𝑖 𝜓𝑖 for some 1 ≤ 𝑖 ≤ 𝑛.

It follows from Corollary 5.20 that in order to decide instances of the interval
decision problem, it is sufficient to decide the validity of Σ1 ℒℤ

≤-formulas in Th(ℤ).
In the next section, we briefly describe how that can be accomplished, which will
allow us to complete the proof of Theorem 5.12.

Let 𝜑 be a prenex Σ1 ℒℤ
≤-formula, i.e. 𝜑 ≡ ∃ ̄𝑦 𝜑′ with 𝜑′ quantifier-free. We

can transform 𝜑′ into disjunctive normal form (see Definition 1.12). Due to the
algebraic properties of Th(ℤ), we can assume that this DNF contains only positive
literals and each atom has the form 𝑡( ̄𝑦) ≤ 0 for some ℒℤ

≤-term 𝑡. We therefore
obtain
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Proposition 5.21. Let 𝜑 ≡ ∃ ̄𝑦 𝜑′( ̄𝑦) be a closed Σ1-formula over ℒℤ
≤. Then there

are 𝑀,𝑁1,…,𝑁𝑀 ∈ ℕ and ℒℤ
≤-terms 𝑡𝑖,𝑗 for 1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑗 ≤ 𝑁𝑀 such that

Th(ℤ) ⊧ ∃ ̄𝑦 𝜑′( ̄𝑦) ↔
𝑀
⋁
𝑖=1

∃ ̄𝑦
𝑁𝑖

⋀
𝑗=1

𝑡𝑖,𝑗( ̄𝑦) ≤ 0.

Deciding formulas of the form ∃ ̄𝑦 ⋀𝑁
𝑗=1

𝑡𝑖,𝑗( ̄𝑦) ≤ 0 is a problem of integer linear
programming. This subject is treated in more detail in [KS08] and [WN99]. We
call an ℒℤ

≤-formula of the form ∃ ̄𝑦 ⋀𝑛
𝑖=1

𝑡( ̄𝑦) ≤ 0 a system of linear constraints.

Theorem 5.22. The satisfiability of systems of linear constraints in Th(ℤ) is
decidable.

Sketch of proof. We sketch a proof that is presented in detail in [KS08]. Considered
over ℚ, the satisfiability of a system of linear constraints 𝑆 can be decided by a
variant of the simplex algorithm. Of course a solution obtained in this way may
not be integral. Therefore, we use a branch and bound procedure: if 𝑆 has a
solution in which the variable 𝑥 is assigned a value 𝑐 ∈ ℚ ∖ ℤ, we branch by
defining two new systems of linear constraints 𝑆 ∪ {𝑥 ≤ ⌊𝑐⌋} and 𝑆 ∪ {𝑥 ≥ ⌈𝑐⌉}
and applying the simplex algorithm again. It is not obvious that this branching
procedure terminates, but it can be shown that if there is a solution, there is also
a solution within a computable bound.

Corollary 5.23. The validity of closed Σ1 formulas modulo Th(ℤ) is decidable.

Proof. Immediately by Proposition 5.21 and Theorem 5.22.

We can now prove

Theorem 5.12. The interval solution problem is decidable.

Proof. Let ∃ ̄𝐼 𝜑 ≡ ∃ ̄𝐼∀ ̄𝑥 𝜑′( ̄𝑥) be an interval formula equation. By Theorem 5.14,
∃ ̄𝐼 𝜑 has a solution modulo Th(ℤ) iff there is a configuration 𝜏 of 𝜑 with interval
variables ̄𝑦 such that Th(ℤ) ⊧ ∃ ̄𝑦∀ ̄𝑥 𝜑′𝜏( ̄𝑥, ̄𝑦). By the definition of an interval
formula equation, no atom or term in 𝜑′ contains more than one of the 𝑥𝑖, and
this property is preserved by the substitution 𝜏. Therefore, we can apply Theorem
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5.19 to ∀ ̄𝑥 𝜑′𝜏 and obtain a Th(ℤ)-equivalent formula 𝜓𝜏( ̄𝑦) ≡ ∃ ̄𝑧 𝜓′
𝜏( ̄𝑦, ̄𝑧) with

𝜓′
𝜏 quantifier-free. It follows that 𝜑 has a solution iff for some configuration 𝜏 of

𝜑, Th(ℤ) ⊧ ∃ ̄𝑦∃ ̄𝑧 𝜓′
𝜏( ̄𝑦, ̄𝑧). Since there are only finitely many configurations of 𝜑,

deciding whether a solution of 𝜑 exists amounts to deciding whether Th(ℤ) entails
one of finitely many Σ1 formulas. This is possible by Corollary 5.23.

5.3 An upper bound on polyhedral solution prob-
lems

Finally, we will present a generalization of the polyhedral solution problem that
can be shown to be undecidable. This section is based on David Monniaux’s pa-
per [Mon19]. There, the author reduces the halting problem for register machines
to the problem of deciding whether a register machine has a separating invariant.
We adapt his proof into a reduction of the halting problem to a solution problem
and make the geometric considerations in the original proof more explicit. For this
reason, we will once again need some geometric and topological notions. Since the
only topological space we will be dealing with is ℚ𝑛, we do not need to state them
in their most general forms. Let 𝑀 ⊂ ℚ𝑛. 𝑀 is called open if it contains a ball
around each of its elements. The interior 𝑀 ∘ of 𝑀 is the greatest open subset of
𝑀. It always exists because the union of open sets is open. The boundary 𝜕𝑀 of
𝑀 is the set of all 𝑥 ∈ ℚ𝑛 such that every ball around 𝑥 intersects both 𝑀 and
𝑀𝑐. Clearly, 𝑀 ∘ ∩ 𝜕𝑀 = ∅.

Equipped with these definitions, we can define what it means for a set to be
strictly convex: 𝑀 is strictly convex if it is convex and moreover, for any two
distinct points 𝑝1, 𝑝2 ∈ 𝜕𝑀 and any 𝑡 ∈ (0, 1)∩ℚ we have 𝑡𝑝1 +(1−𝑡)𝑝2 ∈ 𝑀 ∘. In
other words, the line segment connecting 𝑝1 and 𝑝2 does not intersect 𝜕𝑀 except
at its endpoints.

As an example, consider the filled parabola

𝑀 = { (𝑥, 𝑦) ∈ ℚ2 ∣ 𝑦 ≥ 𝑎𝑥2 + 𝑏 + 𝑐}
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where 𝑎 > 0. Then

𝑀 ∘ = { (𝑥, 𝑦) ∈ ℚ2 ∣ 𝑦 > 𝑎𝑥2 + 𝑏 + 𝑐} ,
𝜕𝑀 = { (𝑥, 𝑦) ∈ ℚ2 ∣ 𝑦 = 𝑎𝑥2 + 𝑏 + 𝑐} .

It is easy to check that 𝑀 is in fact strictly convex.

The generalization of affine and polyhedral solution problems that we investigate
in this section amounts to allowing multiplication of variables. In fact, we will
need only a single term containing a squared variable.

Definition 5.24 (ℒℚ
≤,×,Th(ℚ×)). ℒℚ

≤,× is the language ℒℚ
≤ extended by the binary

function symbol ⋅. Th(ℚ×) is the theory of ℚ over ℒℚ
≤,× with the symbols of ℒℚ

≤
interpreted as before and ⋅ interpreted as multiplication.

Definition 5.25 (Generalized polyhedral solution problem).

1. A generalized polyhedral formula equation is a Π1 formula equation over
Th(ℚ×).

2. The generalized polyhedral solution problem is the solution problem ⟨Th(ℚ×), Φ, 𝒞⟩,
where 𝒞 is the class of generalized polyhedral formula equations and Φ is the
class of integral polyhedral formulas.

Theorem 5.26. The generalized polyhedral solution problem is undecidable.

We will prove Theorem 5.26 by reducing the halting problem for a suitable kind
of program to the generalized polyhedral solution problem.

Definition 5.27 (Rational program). A rational program is a tuple 𝑃 = ⟨(𝑥1,…, 𝑥𝑛),
𝑆, 𝜎0,𝐾,Λ⟩ where

1. 𝑥1,…, 𝑥𝑛 are the program variables;
2. 𝑆 is a finite set of states;
3. 𝜎0 ∈ 𝑆 is the starting state;
4. 𝐾 = {𝜅𝜎′

𝜎 ∣ 𝜎, 𝜎′ ∈ 𝑆} is a set of quantifier-free formulas such that Th(ℚ×) ⊧
∀ ̄𝑥 ¬(𝜅𝜎′

𝜎 ( ̄𝑥) ∧ 𝜅𝜎″

𝜎 ( ̄𝑥)) for 𝜎′ ≠ 𝜎″;
5. Λ = {𝜆𝜎′

𝜎 ∣ 𝜎, 𝜎′ ∈ 𝑆} is a set of affine transformations on ℚ𝑛.
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𝐾 and Λ induce a partial transition function 𝜏 ∶ 𝑆 × ℚ𝑛 ↪ 𝑆 × ℚ𝑛:

𝜏(𝜎, ̄𝑥) =
⎧{
⎨{⎩

(𝜎′, 𝜆𝜎′

𝜎 ( ̄𝑥)), if Th(ℚ×) ⊧ 𝜅𝜎′

𝜎 ( ̄𝑥),

undefined, if Th(ℚ×) ̸⊧ 𝜅𝜎′

𝜎 for all 𝜎′ ∈ 𝑆.

𝜏 is well-defined because of the condition on 𝐾.

𝑃 terminates on an input ̄𝑥0 if 𝜏 𝑖(𝜎0, ̄𝑥0) is undefined for some 𝑖 ∈ ℕ.

Example 5.28. Let 𝑃 = ⟨(𝑥, 𝑦, 𝑝), {𝜎, 𝜌}, 𝜎, {𝜅𝜎
𝜎, 𝜅

𝜌
𝜎, 𝜅𝜎

𝜌 , 𝜅
𝜌
𝜌}, {𝜆𝜎

𝜎, 𝜆
𝜌
𝜎, 𝜆𝜎

𝜌 , 𝜆
𝜌
𝜌}⟩,

where

𝜅𝜎
𝜎(𝑥, 𝑦, 𝑝) ≡ ⊥, 𝜅𝜌

𝜎(𝑥, 𝑦, 𝑝) ≡ ⊤,
𝜅𝜎

𝜌(𝑥, 𝑦, 𝑝) ≡ ⊥, 𝜅𝜌
𝜌(𝑥, 𝑦, 𝑝) ≡ 𝑥 ≥ 1,

𝜆𝜎
𝜎 = id, 𝜆𝜌

𝜎(𝑥, 𝑦, 𝑝) = (𝑥, 𝑦, 0),
𝜆𝜎

𝜌 = id, 𝜆𝜌
𝜌(𝑥, 𝑦, 𝑝) = (𝑥 − 1, 𝑦, 𝑝 + 𝑦).

It might be written in pseudocode as
Input: Rational numbers 𝑥, 𝑦, 𝑝 ▷ State 𝜎 is here.

1: 𝑝 ∶= 0
2: while 𝑥 ≥ 1 do ▷ State 𝜌 is here.
3: 𝑥 ∶= 𝑥 − 1 ▷ These two assignments form 𝜆𝜌

𝜌.
4: 𝑝 ∶= 𝑝 + 𝑦
5: end while

It is easy to verify that 𝑃 terminates for any input (𝑥0, 𝑦0, 𝑝0) and the last value
of 𝑝 is max(0, ⌊𝑥0⌋) ⋅ 𝑦0.

The halting problem for rational programs is clearly undecidable since register
machines can be straightforwardly encoded as rational programs.

The proof of Theorem 5.26 also involves a geometric object that we will describe
in some detail.

Definition 5.29 (𝒫𝑛). Let 𝑛 ∈ ℕ. Then 𝒫𝑛 ⊆ ℚ𝑛+2 is the set

{(𝑥1,…, 𝑥𝑛, 𝑦, 𝑧) ∈ ℚ𝑛+2 ∣ 𝑧 ≥ 𝑦2 + 𝑦
2

} .
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Geometrically, 𝒫𝑛 is a parabolic cylinder in ℚ𝑛+2. We will make use of the follow-
ing properties of 𝒫:

1. 𝒫𝑛 is convex.
2. The boundary and interior of 𝒫𝑛 are

𝜕𝒫𝑛 = { ( ̄𝑥, 𝑦, 𝑧) ∈ ℚ𝑛+2 ∣ 2𝑧 = 𝑦2 + 𝑦} ,
𝒫∘

𝑛 = { ( ̄𝑥, 𝑦, 𝑧) ∈ ℚ𝑛+2 ∣ 2𝑧 > 𝑦2 + 𝑦} .

3. 𝒫𝑛 is not strictly convex, but it does have a weaker version of the property
that is sufficient for our purposes. Let 𝑝1 = ( ̄𝑥1, 𝑦1, 𝑧1), 𝑝2 = ( ̄𝑥2, 𝑦2, 𝑧2) ∈
𝜕𝒫𝑛 with 𝑦1 ≠ 𝑦2 and 𝑡 ∈ (0, 1). Moreover, let 𝜋 = ( ̄𝑥, 𝑦, 𝑧) ↦ (𝑦, 𝑧) be
the projection onto the last two coordinates. Because the parabola 𝜋(𝒫𝑛) is
strictly convex and because 𝜋 maps open sets to open sets, we have

𝜋(𝑡𝑝1 + (1 − 𝑡)𝑝2) = 𝑡𝜋(𝑝1) + (1 − 𝑡)𝜋(𝑝2) ∈ 𝜋(𝒫𝑛)∘ = 𝜋(𝒫∘
𝑛),

and since 𝜋−1(𝜋(𝒫∘
𝑛)) = 𝒫∘

𝑛, it follows that 𝑡𝑝1 + (1 − 𝑡)𝑝2 ∈ 𝒫∘
𝑛. In

other words, if 𝑝1 and 𝑝2 are distinct points on the boundary of 𝒫 with
different 𝑛 + 1-th coordinates, then their connecting line does not intersect
the boundary except at its endpoints.

4. As an immediate consequence of the previous point, if 𝑀 ⊆ 𝜕𝒫𝑛 such that
the 𝑛 + 1-th coordinates of all elements of 𝑀 are pairwise distinct, then
conv𝑀 ∩ 𝜕𝒫𝑛 = 𝑀.

Proof of Theorem 5.26. The proof proceeds by reduction from the halting problem
for rational programs. Let 𝑃 = ⟨(𝑥1,…, 𝑥𝑛), 𝑆, 𝜎0,𝐾,Λ⟩ be a rational program
and 𝜏 its transition function. Let ̄𝑥0 ∈ ℚ𝑛. We will construct an instance ∃ ̄𝐼 𝜑 of
the generalized polyhedral solution problem that has a solution iff 𝑃 halts on ̄𝑥0.

Let 𝜎𝑏 be a new state not in 𝑆 and 𝑆′ = 𝑆∪̇{𝜎𝑏}. Moreover, let there be a formula
variable 𝐼𝜎(𝑥1,…, 𝑥𝑛, 𝑦, 𝑧) for all 𝜎 ∈ 𝑆′. For every 𝜎, 𝜎′ ∈ 𝑆, let

𝜑𝜎′

𝜎 ( ̄𝑥, 𝑦, 𝑧) ≡ 𝐼𝜎( ̄𝑥, 𝑦, 𝑧)
∧ 𝜅𝜎′

𝜎 ( ̄𝑥)
∧ 𝑧 = (𝑦2 + 𝑦)/2

→ 𝐼𝜎′(𝜆𝜎′

𝜎 ( ̄𝑥), 𝑦 + 1, 𝑧 + 𝑦 + 1)
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and

𝜑𝜎𝑏𝜎 ( ̄𝑥, 𝑦, 𝑧) ≡ 𝐼𝜎( ̄𝑥, 𝑦, 𝑧) ∧ 𝑧 < (𝑦2 + 𝑦)/2 → 𝐼𝜎𝑏
( ̄𝑥, 𝑖, 𝑦).

Now let

𝜑 ≡ ∀ ̄𝑥∀𝑦∀𝑧. 𝐼𝜎0
( ̄𝑥0, 0, 0)

∧ ¬𝐼𝜎𝑏
( ̄𝑥, 𝑦, 𝑧)

∧ ⋀
𝜎∈𝑆

𝜎′∈𝑆′

𝜑𝜎′

𝜎 ( ̄𝑥, 𝑦, 𝑧).

Furthermore, we introduce the abbreviation (𝜎𝑖, ̄𝑥𝑖) for 𝜏 𝑖(𝜎0, ̄𝑥0).

Now assume that 𝑃 terminates on ̄𝑥0. This means that there is some 𝑘 ∈ ℕ such
that 𝜏(𝜎𝑘, ̄𝑥𝑘) is undefined. For each 𝜎 ∈ 𝑆, we define

̃𝐽𝜎 = { ( ̄𝑥, 𝑖, (𝑖2 + 𝑖)/2) ∈ ℚ𝑛+2 ∣ 𝜎 = 𝜎𝑖 ∧ ̄𝑥 = ̄𝑥𝑖} .

A point ( ̄𝑥, 𝑖, 𝑧) is in ̃𝐽𝜎 iff after 𝑖 execution steps 𝑃 is in state 𝜎, its program
variables have the values ̄𝑥, and 𝑧 = (𝑖2 + 𝑖)/2. Because of the latter equation,
̃𝐽𝜎 ⊆ 𝜕𝒫𝑛, and due to the convexity of 𝒫𝑛, conv ̃𝐽𝜎 ⊆ 𝒫𝑛. Clearly, the 𝑛 + 1-

th coordinates of all elements of ̃𝐽𝜎 are pairwise distinct. We also show that
( ̄𝑥, 𝑖, 𝑧) ∈ conv ̃𝐽𝜎 ∩ 𝜕𝒫𝑛 iff 𝑧 = (𝑖2 + 𝑖)/2 and (𝜎, ̄𝑥) = (𝜎𝑖, ̄𝑥𝑖). For the forward
direction, assume ( ̄𝑥, 𝑖, 𝑧) ∈ conv ̃𝐽𝜎 ∩ 𝜕𝒫𝑛. Then 𝑧 = (𝑖2 + 𝑖)/2 is obvious.
Because of 4, ( ̄𝑥, 𝑖, 𝑧) ∈ ̃𝐽𝜎 and it follows immediately from the definition of ̃𝐽𝜎 that
(𝜎, ̄𝑥) = (𝜎𝑖, ̄𝑥𝑖). Conversely, assume 𝑧 = (𝑖2+𝑖)/2 and (𝜎, ̄𝑥) = (𝜎𝑖, ̄𝑥𝑖). The first
equation implies ( ̄𝑥, 𝑖, 𝑧) ∈ 𝜕𝒫𝑛 and the second implies ( ̄𝑥, 𝑖, 𝑧) ∈ ̃𝐽𝜎 ⊆ conv ̃𝐽𝜎.

Now, for each 𝜎 ∈ 𝑆, let 𝐽𝜎( ̄𝑥, 𝑦, 𝑧) be a H-representation of conv ̃𝐽𝜎. Then by the
previous argument, we have

Th(ℚ×) ⊧ ∀ ̄𝑥∀𝑖∀𝑧. 𝐽𝜎( ̄𝑥, 𝑖, 𝑧) → 𝑧 ≥ (𝑖2 + 𝑖)/2. (5.1)

Moreover, let 𝐽𝜎𝑏
≡ ⊥. We claim that 𝜗 = [(𝐼𝜎\𝐽𝜎)𝜎∈𝑆′ ] is a solution of 𝜑. We

need to show

Th(ℚ×) ⊧ 𝐽𝜎0
(𝑥0, 0, 0),

Th(ℚ×) ⊧ ∀ ̄𝑥∀𝑖∀𝑧 ¬𝐽𝜎𝑏
( ̄𝑥, 𝑖, 𝑧),

Th(ℚ×) ⊧ ∀ ̄𝑥∀𝑖∀𝑧 𝜑𝜎′

𝜎 𝜗( ̄𝑥, 𝑖, 𝑧) for all 𝜎 ∈ 𝑆, 𝜎′ ∈ 𝑆′.
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The first line holds because ( ̄𝑥0, 0, 0) ∈ ̃𝐽𝜎0
and the second line is immediate. For

the third line, let 𝜎 ∈ 𝑆 and 𝜎′ ∈ 𝑆′. If 𝜎′ = 𝜎𝑏, then consider

∀ ̄𝑥∀𝑖∀𝑧𝜑𝜎𝑏𝜎 𝜗( ̄𝑥, 𝑖, 𝑧) ≡ ∀ ̄𝑥∀𝑖∀𝑧. 𝐽𝜎( ̄𝑥, 𝑖, 𝑧) ∧ 𝑧 < (𝑖2 + 𝑖)/2 → 𝐽𝜎𝑏
( ̄𝑥, 𝑖, 𝑧).

From (5.1) we deduce 𝐽𝜎( ̄𝑥, 𝑖, 𝑧)∧𝑧 < (𝑖2+𝑖)/2 →  ⊥, so Th(ℚ×) ⊧ ∀ ̄𝑥∀𝑖∀𝑦𝜑𝜎𝑏𝜎 𝜗( ̄𝑥, 𝑖, 𝑦).
On the other hand, if 𝜎′ ≠ 𝜎𝑏, then 𝜎′ ∈ 𝑆 and we consider

∀ ̄𝑥∀𝑖∀𝑧𝜑𝜎′

𝜎 𝜗( ̄𝑥, 𝑖, 𝑧) ≡ ∀ ̄𝑥∀𝑖∀𝑧. 𝐽𝜎( ̄𝑥, 𝑖, 𝑧)
∧ 𝜅𝜎′

𝜎 ( ̄𝑥)
∧ 𝑧 = (𝑖2 + 𝑖)/2

→ 𝐽𝜎′(𝜆𝜎( ̄𝑥), 𝑖 + 1, 𝑦 + 𝑖 + 1).

Assume 𝐽𝜎( ̄𝑥, 𝑖, 𝑧), 𝜅𝜎′

𝜎 ( ̄𝑥), and 𝑧 = (𝑖2+𝑖)/2. As we have remarked previously, this
means that (𝜎, ̄𝑥) = (𝜎𝑖, ̄𝑥𝑖). Recall that 𝜏(𝜎, ̄𝑥) = (𝜎′, 𝜆𝜎( ̄𝑥)) iff Th(ℚ×) ⊧ 𝜅𝜎′

𝜎 ( ̄𝑥).
It follows that

(𝜎𝑖+1, 𝑥𝑖+1) = 𝜏(𝜎, ̄𝑥) = (𝜎′, 𝜆𝜎( ̄𝑥)),

so (𝜆𝜎( ̄𝑥), 𝑖 + 1, 𝑧 + 𝑖 + 1) ∈ ̃𝐽𝜎′ and hence 𝐽𝜎′(𝜆𝜎( ̄𝑥), 𝑖 + 1, 𝑧 + 𝑖 + 1).

For the other direction, suppose that 𝜑 has a solution 𝜗 = [(𝐼𝜎\𝐽𝜎)𝜎∈𝑆′ ]. From
Th(ℚ×) ⊧ 𝜑𝜗 we immediately obtain Th(ℚ×) ⊧ ∀ ̄𝑥∀𝑖∀𝑧¬𝐽𝜎𝑏

( ̄𝑥, 𝑖, 𝑧). Observe
that for 𝜎 ∈ 𝑆, Th(ℚ×) ⊧ ∀ ̄𝑥∀𝑖∀𝑧. 𝐽𝜎( ̄𝑥, 𝑖, 𝑧) → 𝑧 ≥ (𝑖2 + 𝑖)/2. This is the
case because otherwise, Th(ℚ×) ⊧ ∃ ̄𝑥∃𝑖∃𝑧. 𝐽𝜎( ̄𝑥, 𝑖, 𝑧) ∧ 𝑧 < (𝑖2 + 𝑖)/2, and we
could deduce Th(ℚ×) ⊧ ∃ ̄𝑥∃𝑖∃𝑧 𝐽𝜎𝑏

( ̄𝑥, 𝑖, 𝑧), a contradiction. Now assume that 𝑃
does not terminate. Then there is a state 𝜎 ∈ 𝑆 that is reached infinitely often
during the execution of 𝑃, that is, there is an infinite sequence 𝑖0 < 𝑖1 < …
such that 𝜎𝑖𝑗

= 𝜎. It is easy to see by an inductive argument that for each 𝑖𝑗,
Th(ℚ×) ⊧ 𝐽𝜎( ̄𝑥𝑖𝑗

, 𝑖𝑗, (𝑖2𝑗 + 𝑖𝑗)/2). This means that the interpretation ̃𝐽𝜎 of 𝐽𝜎

contains the infinitely many points ( ̄𝑥𝑖𝑗
, 𝑖𝑗, (𝑖2𝑗 +𝑖𝑗)/2) ∈ 𝜕𝒫. Such a point cannot

be the convex combination of other points of ̃𝐽𝜎 due to Property 4 and must
therefore be a vertex of ̃𝐽𝜎. This implies that ̃𝐽𝜎 is a convex polyhedron with
infinitely many vertices, which is a contradiction. Hence, 𝑃 must terminate.
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CONCLUSION

Let us take a look back at what we have accomplished. Our goal in this thesis
was to demonstrate the expressive power of formula equations and make the case
for using them to express problems of inductive theorem proving and invariant
generation.

The original hypothesis was that instances of these two problems, when formulated
as formula equations, would be structured similarly enough for it to be possible to
use algorithms for invariant generation as black boxes to solve induction problems.
We saw in Chapter 3 that this is not the case—not because of any technical chal-
lenges, but fundamentally. Let us recapitulate the argument. Induction problems
will, in general, involve multiple terms in the base case and the step. This ob-
viously suggests using a nondeterministic program formalism. While notion such
as precondition, postcondition, and invariant are well-defined for such nondeter-
ministic programs, the Hoare-triple {𝜑}𝑝{𝜓} in this case expresses the fact that
if 𝜑 holds before 𝑝, then 𝜓 holds after every possible execution of 𝑝 (a universal
property). The key insight is that the nondeterminism in induction problems is of
a different nature; the property we require in this case is that if 𝜑 holds before 𝑝,
there is some execution of 𝑝 after which 𝜓 holds (an existential property). Unlike
the universal property above, this is not expressible in Hoare logic. Therefore, we
turn to dynamic logic, a modal logic that generalizes Hoare logic and is powerful
enough for our purposes. In dynamic logic, the universal property is expressed as

135



Chapter 5: The interval and polyhedral solution problems

𝜑 →  [𝑝]𝜓 and the existential one as 𝜑 →  ⟨𝑝⟩𝜓. Thus, we obtain the result that
for every simple induction proof schema 𝜋 there is a program 𝑝 such that induction
formulas of 𝜋 correspond precisely to “invariants” needed to prove a formula of
the form 𝜑 →  [𝑝]𝜓.

In Chapter 4, we investigated a specific kind of formula equation, namely affine for-
mula equations. Since using loop invariant procedures without modification does
not work, we approached the problem from a different angle: taking a loop invari-
ant generation procedure and adapting it to our needs. The algorithm in question
finds the strongest affine invariants in programs with only affine assignments and
no control flow structures. We first transformed a given affine formula equation
step by step into a set of affine conditions, which jointly form a statement about
affine subspaces of some ℚ𝑛 and their behavior under affine transformations. This
translation required the insight that any covering of an affine space by countably
many affine spaces is trivial in the sense that it has a subcovering consisting of
just one space. Because of the finite height of the lattice of affine subspaces of
ℚ𝑛, the question of whether subspaces satisfying a set of affine conditions exist is
amenable to a solution by fixed point iteration.

While one may hope that the approach of Chapter 4 can be applied to other
kinds of formula equations, Chapter 5 provides an example of a case where that is
not possible. There, we considered inequalities over the integers and the rational
numbers. This means that on the geometric level, the sets under consideration were
convex polyhedra. Since convex polyhedra do not have the covering property of
affine spaces, formula equations involving inequalities cannot be decomposed in the
same way as affine formula equations, and because convex polyhedra admit infinite
ascending chains, an iteration procedure is not guaranteed to terminate. For these
reasons, we investigated several more specific problems. First, we obtained a
decidability result for the simple case of rotations in the rational plane and formula
equations containing only a single formula variable. Next, we treated the case of
products of intervals over the integers, also showing it to be decidable. Finally,
we showed, following [Mon19], that polyhedral solution problems over the rational
numbers are undecidable if multiplication is admitted.

A number of questions remain open for future research. Chief among them, in
our opinion, are the problem of finding classes of formula equations amenable to
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a fixed point treatment like the one we used for affine formula equations, and the
question of the decidability of the polyhedral solution problem.
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