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1 Introduction

This thesis treats aspects of matroid theory — an area of study introduced by Hassler
Whitney in 1935. Matroids are mathematical structures that generalize the concept of
independence from linear algebra and have applications in numerous fields of combinatorics,
particularly in combinatorial optimization and graph theory.

The primary focus of this thesis lies on the Tutte polynomial, a two-variable polynomial
defined on matroids. To ensure a thorough exploration of the Tutte polynomial and also
increase the accessibility of this thesis, we begin by discussing the fundamentals of matroid
theory. This will be explored in Section 2. After going over the foundational definition of
matroids as well as other important terminology, it will be introduced how new matroids
can be created out of already existing ones through operations defined on matroids. Fur-
thermore, the dynamic interplay between matroids and graphs will be explored, as well as
the concept of duality for graphs and matroids.

In Section 3, our focus shifts to the central aspect of this thesis, the Tutte polynomial.
After proving that it is well-defined through the corank-nullity polynomial, we proceed
to showcase its diverse applications. The Tutte polynomial not only serves as a versatile
tool for deriving graph theoretical results but also uncovers its role in various contexts,
including Tutte-Grothendieck invariants. In this context, we also introduce the chromatic
polynomial, initially proposed by Birkhoff. The Tutte polynomial, alongside the chromatic
polynomial have emerged as crucial mathematical constructs, with applications extending
far beyond their initial definitions. These polynomials capture essential characteristics of
matroids and graphs and shed light on their intricate properties. Furthermore the flow
polynomial will be introduced when talking about acyclic orientations and nowhere-zero
flows.

This thesis mainly builds upon the foundational work presented in Gary Gordon and
Jennifer McNulty’s book Matroids: A Geometric Introduction | ], utilizing their ter-
minology and notation for consistency and clarity. Additionally, it is worth noting that
this thesis includes proofs for certain theorems that are not covered in | ] and even
corrections. Throughout, the provided information and newly acquired knowledge are rein-
forced through the utilization of illustrative examples. While the material presented herein
is approachable for those without prior knowledge of matroids, a basic understanding of
linear algebra and graph theory concepts is recommended to fully appreciate the insights
and connections that this paper provides.
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This chapter introduces the fundamentals of matroid theory, which are essential for un-
derstanding the central component of this thesis. Additionally, it explores the connection
between graph theory and matroids. For a more in-depth understanding of the basics of
matroids, refer to | , Chapter 1 - 4] or the paper What is a Matroid? by James Oxley

[0x103].

2.1 Defining a Matroid

There are many different definitions for a matroid, however, this thesis will be using Whit-
ney’s initial definition in terms of a generalized notion of independence. Consider the
matrix A with entries in an arbitrary field. Let E be the set of the column vectors of A
and let 7 represent the collection of all subsets of E that are linearly independent. The
sets F and Z generate the pair (E,Z) which is a particular example of a matroid. The term
"matroid” already suggests a structure which indicates a connection with matrices and
indeed matroids were introduced by Hassler Whitney in 1935 as an abstract generalization
of a matrix, where the Greek-derived suffix ”-0id” means similar in shape or form.

Definition 2.1. Let F be a finite set and Z a family of subsets of E. The pair M = (E,7)
is called a matroid if Z has the following properties:

(1) 740,
(I2) if JEZANIC J, then I €Z,
(I3) if I, J € Z with |I] < |J|, then Jz € J\I:ITU{z} € L.

The collection of sets Z forms the independent sets of the matroid M.

The third characteristic (13) is also called augmentation. Note that since Z is non-trivial
and is closed under subsets the empty set () is contained in Z.

Definition 2.2. Let M = (E,Z) be a matroid. Every B € Z which does not have an
independent superset, meaning A € 7 : B C A, is called basis of the matroid M.

Considering two arbitrary bases By and Bj of the matroid M = (E,Z) with |B1| < | B2,
then according to the augmentation of the independent sets of M there exists an

l‘EBQ\Bl:{x}UBl eT.

Since this contradicts the assumption that By is a basis, it holds |B;| = |Ba|. This shows
that all bases of a matroid have the same cardinality.
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Definition 2.3. Let M = (E,Z) be a matroid. The rank of a subset A of E, written as
r(A), can be defined through the rank function:

oy {PB) = NUL0)
VTN A maxea{ll] 1€ T)

The rank of a matroid M = (E,Z) is r(E), representing the rank of the ground set E.
For simplicity we will write r(M) to refer to the rank of a matroid M. Through Definition
2.2 it becomes clear that the bases of a matroid are the maximal independent sets of the
matroid. Therefore, the rank of a matroid is exactly the cardinality of its bases.

The previously defined matroid which arose from a matrix A, indeed satisfies the prop-
erties (I1) - (I3). Thus, the linear independence of columns of a matrix can always be
captured by a matroid. Furthermore, the rank of the matrix A is equal to the rank of its
corresponding matroid. For an outline of the proof and additional reading, consult [ ,
Chapter 6.1].

Let E = {a,b} be the ground set. Then there are exactly five matroids on E with Z
being either {0}, {0, {a}}, {0, {b}}, {0, {a}, {b}} or {0,{a},{b},{a,b}}. By observing the
matroids My = (E,{0,{a}}) and M3 = (E,{0,{b}}) one might see that both matroids
not only share the same rank, but also have the same number of bases and independent
sets. Both of these numbers are matroid invariants, functions that yield identical values
on isomorphic matroids. These will be further discussed in Section 3, see Definition 3.4.
In general one can say that the matroids Ms and M3 have the same structure. If that is
the case these matroids are called isomorphic, denoted by My = Ms. More specific, two
matroids M; and My with the ground sets E; and Es are isomorphic, if a bijection from
Fq to E5 exists such that a set is independent in M if and only if its image is independent
in MQ.

Although Definition 2.1 is the most common way to define a matroid, there are many
other equivalent ways to describe one.

Definition 2.4. Let M be a matroid with the ground set E. If the subset C' of E is
dependent but every proper subset of C' is independent, then C' is called a circuit in M.

The family of subsets C is the set of circuits of a matroid if and only if it satisfies
(C1) 0 ecC,
(02) If 01,02 € C and Cy C C5 then Cy = Cy,

(C3) If C1,C4 € C with Cy # Co, and x € C; N Cy, then C3 C (C1 UCy) \ {z} for some
CseC.

Matroids can be characterized by their circuits C, see Definition 2.4, especially because
through Z one can define C,

C={CCE|C¢INiIUHICCthenlecI}CPE),
as well as define Z through C,
I={ICE|ifCeCthenC¢I}CPE).
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Definition 2.5. Let E be the ground set of a matroid M.
(i) An element e in F which is in every basis, is called an isthmus.
(ii) An element e in E which is in no basis at all, is called a loop.

These two definitions are essential to define the Tutte polynomial. An interesting obser-
vation is that, based on property (I3), a loop is not in any independent set. This implies
that loops are elements of &£ dependent on themselves. Both of the terms loop and isthmus
originate from graph theory and and will be specifically addressed in the context of graphs
in Section 2.3.

A matroid which has only one element e is sometimes in literature called a loop if e is a
loop, and an isthmus if e is an isthmus.

The last essential term in matroid theory which will be defined in this thesis before
continuing to operations for matroids are spanning sets. A subset S C FE is called a
spanning set of a matroid M if a basis B of M exists such that B C S.

Definition 2.6. Let S be a family of subsets of E with F being the groundset of the
matroid M. § is called spanning sets if it satisfies:

(S1) E €S,
(82) If S € Sand S; C S5 then S; € S,

(S3) If 51,52 € S and [S1| < |S2|, then there exists an element x € Sy \ S; so that
Sy \ {l‘} eS.

Lemma 2.7. A matroid M has exactly one spanning set, if and only if every element of
M is an isthmus. Furthermore, M has ezxactly one independent set if and only if every
element of M is a loop.

Proof. The proof follows from Definition 2.1, 2.5 and 2.6. O

As a brief comment on Lemma 2.7, for the matroid where every element is a loop, the
only independent set is the empty set. Similarly, when all elements are isthmuses, the only
spanning set is equal to the matroid’s only basis and its ground set; furthermore, it holds
Z="P(E).

2.2 New Matroids from existing ones

Like for most of the structures in mathematics, operations for matroids can be defined,
which create new matroids from already existing ones. Although there are many operations,
only three operations will be discussed in this thesis, deletion, contraction and duality. In
this section the focus lies on deletion and contraction, both reducing a matroid by one
element from the ground set. Duality will be discussed later on in Section 2.4.
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Definition 2.8. Let E be the ground set of a matroid M.

Deletion For e € F, where e is not an isthmus, the matroid M — e is defined by
the ground set E \ {e} and the independent sets are all those in M
which do not include e.

Contraction For e € E, where e is not a loop, the matroid M /e is defined by the
ground set E \ {e} and the independent sets are all those in M which
contain e, however e will be removed from each of the sets.

If e € E is neither a loop nor an isthmus, the independent sets of M — e and M /e fulfill
(I1)-(13), thus both are matroids. Deletion and contraction split the independent sets of
the matroid M into two families, those which contain e and those which do not. These
operations also partition the bases of M in the same way:

Proposition 2.9. Let E be the ground set of a matroid M.

(i) The bases of the matroid M — e, where e € E is not a isthmus, are exactly the bases
of M which do not contain e.

(ii) The bases of the matroid M /e, where e € E is not a loop, are those bases of M which
do contain e, with e being remowved.

Proof. To prove (i) let Zpr—e = {I € Zps | e ¢ I} be the independent sets of M — e, with
Iy denoting the independent sets of M. Note that since e is not an isthmus, M has bases
that do not contain e. Those bases will be included in Zp;_.. Since Zp;—. € Zps and the
bases of Z,; are the independent sets with the greatest cardinality, the independent sets
with the greatest cardinality in Zp;_., the bases of M — e, are exactly the bases of M which
do not contain e.

Proposition 2.9 (ii) follows analogously. O
Through Proposition 2.9 it is clear that after the deletion of an element the rank stays

the same and the contraction of an element results in a reduction of the rank. A similar
observation can be made about the circuits of a matroid.

Proposition 2.10. Let e € E with E being the ground set of a matroid M and e neither
being an isthmus nor a loop. Then the following equations hold:
(1) Rank function Let A C E with e ¢ A. Then
(a) Deletion: ra;_c(A) = rar(A)
(b) Contraction: rys/.(A) =ry(AUe) —1
(2) Circuits
(a) Deletion: C' is a circuit of M — e if and only if e ¢ C and C' is a circuit of M.
(b) Contraction: C' is a circuit of M/e if and only if
(i) CU{e} is a circuit in M, or

(ii) C is a circuit of M and C U {e} contains no circuits except C.
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The reason for defining deletion of an element e under the condition that e is not an
isthmus, is that it results in the matroid M — e having no bases and Proposition 2.9 would
not be fulfilled by M —e. In addition to that, if M — e has no bases it would follow through
the augmentation that Z = (), which would violate (I1).

In similar fashion, a loop e is not included in any independent set, resulting in M /e not
having any independent sets. This again violates (I1), therefore M /e is not a matroid.

Proposition 2.11. Let a,b € E with E being the ground set of a matroid M. Assuming
everything is well defined, we have

(1) (M —a)~b=(M—b)—a,

(2) (M/a)/b= (M/b)/a,
(3) (M/a) =b= (M —b)/a.

For the proof of Proposition 2.11 refer to | |[Pages 106-107]. Assuming everything
is well defined means that for M — a the element a is not an isthmus in M and for M/a a
is not a loop in M, analogous with the element b.

Before finishing this subsection and starting with graph theory, a small example will be
discussed to illustrate the subject of deletion and contraction of an element in a matroid.

Example 2.12. Consider the uniform matroid Uz 4. In general a uniform matroid Uy, , is
defined as a matroid with the ground set E = {ej,es,...,e,} and Z are all subsets of FE
having k or fewer elements, with k < n,

Un = {E.{A € P(E): |A] < k}}

For Uy 4 we have the ground set E' = {e1, e2, e3, e4} and the independent sets are ), {e;} and
{ei,e;}, fori,j =1,...,4, with ¢ # j. Since this matroid has neither loops nor isthmuses,
the operations deletion and contraction are well defined for all elements of F.

The matroid Us 4 — e4 has the ground set E' = {e1,es,e3} and the independent sets are
all those of the original matroid which do not contain ey, which are 0, {e;} and {e;, e;}, for
i, =1,...,3 where ¢ # j. As one can see, the resulting matroid is Us 3.

Now for Usa/es, the ground set is again E' = {ej, ez, e3}. The independent sets of Us 4
that do contain eq are {es},{e1,e4},{e2,e4} and {es3,e4}. By removing e4 from each of
those sets we get the independent sets 0, {e1}, {e2} and {es}, which gives us exactly the
uniform matroid Uy 3.

Example 2.12 not only illustrates deletion and contraction on a matroid and provides
the definition of a uniform matroid, an interesting observation can also be made: reducing
the uniform matroid Us 4 by deleting or contracting an element of its ground set results
in another uniform matroid. To this end the following lemma will be introduced [ ,
Pages 106-107, 111].
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Lemma 2.13. Let Uy, be an uniform matroid with the ground set E and e € E is neither
a loop nor an isthmus.

Uk.n — e results in the uniform matroid Uy ,—1, as long as k < n.

Ukn/e results in the uniform matroid Uy_1 ,—1, as long as k > 0.

Uniform matroids of the form U, ,, are called Boolean Algebras and are denoted B,,. Those
matroids only have one basis, namely E. Since every element is included in every basis, all
elements are isthmuses. In contrast to the uniform matroid Uy ,, where the only independent
set is (). Therefore, every element is a loop.

By going over these examples another fascinating property of uniform matroids can be
observed:

Lemma 2.14. Consider the uniform matroid Uy, ,, with 0 < k < n. Then every element of
Uk n is neither a loop nor an isthmus.

Proof. Let Uy, be the uniform matroid with 0 < k < n, the ground set £ = {e1, €2, ..., e,}
and the independent sets Z. We want to prove that every e; € E for i = 1,...,n is neither
a loop nor an isthmus.

Since k > 1, every subset of E with one element is included: {e;} € Z for all i = 1,...,n.
Due to the augmentation this yields, that every element is in at least one basis, therefore,
no element is a loop.

Now to show that no element of Uy, , is an isthmus we consider an arbitrary element e; with
i€ {l,2,..,n}. Since k < n a set B C F exists with k£ elements which does not include
e;. Since the matroid is uniform the rank is k, hence, B is a basis. Therefore e; is not an
isthmus. O

2.3 Matroids resulting from Graphs

Before defining a matroid, an abstract example was given about a matroid associated to a
matrix. A matroid M is called representable over a field F if a matrix A exists with entries
in F and the independencies among its columns mirror exactly those in the matroid M.

A similar connection can be made with graphs and matroids. Let G be an undirected
graph with edge set E and V denoting the set of its vertices. Consider Z as a collection of
all subsets of edges in E that are acyclic. Then M = (E,7) is a matroid. M(G) is used
to denote the matroid associated with G and will be referred to as the cycle matroid of
the graph GG. Matroids which result through a graph are called graphic, more precisely,
matroids that are isomorphic to the cycle matroid of some graph | , Page 5]. Not every
matroid is graphic, since not for every matroid M a graph G exists such that M = M(G).

As a reminder, an edge of a graph is defined by its two incident vertices, e = (v,w) € FE
with v,w € V. Note that since G is undirected, the edges (v, w) and (w,v) are equivalent.
Let M(G) = (F,Z) denote the cycle matroid of the graph G. For every A € Z, and only
for the elements in Z, the subgraph (V, A) of G is a forest. Suppose G is connected then
it has at least one spanning tree. Spanning trees are those subgraphs of G which have the
same vertex set as G and are trees, meaning they are acyclic and connected. An important
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characteristic of spanning trees is that by adding an edge e € E which was not yet included,
a cycle would be created'. Therefore, the bases of M(G) are exactly the edge sets of the
spanning trees of G. Knowing that every spanning tree of G has the same number of edges,
exactly |V| — 1 many, it follows clearly that the rank of M(G) is |V| — 1. In the case of G
not being connected, one considers the spanning trees of each of the connected components
of G. The rank would then be |V| — k(G), with x(G) being the number of connected
components.

In graph theory, it is important to note the coexistence of two terms: cycles and circuits.
Both terms refer to specific structures within graphs, with circuits being closed paths for
a graph G, whereas, cycles are circuits with only the first and last vertex being the same.
Notably, the circuits of M (G) are exactly the edge sets of the cycles in G.

A question that might arise is what a cycle matroid looks like if the corresponding graph
is not connected. The answer is very simple, because for every graph G, which might not
be connected, there exists a connected graph G’ such that M (G) = M(G’). This connected
graph can be obtained by merging two vertices from two different connected components
of G and repeating this process until we have a connected graph G’. Thus in general it can
be assumed that the cycle matroid M(G) comes from a connected graph. For an outline
of the proof see | , Section 1.4]. One can conclude from the previous statements, that
if an isolated vertex, a vertex with no incident edges, were to be added to the graph G
resulting in the graph G’, the cycle matroid of G’ would be the same as for G.

Definition 2.15. Let G be a graph with the set of edges denoted by F.
(i) An edge e € E is called a loop, if the incident vertices are the same, e = (v, v).

(ii) An edge e € F is called an isthmus, if by removing e the number of connected
components increases by 1.

Loops and isthmuses were already introduced in the context of matroid theory and as
one might have already guessed, a loop (isthmus) in a graph G is a loop (isthmus) of its
cycle matroid M (G). Moreover, the operations deletion and contraction can also be defined
for graphs:

Definition 2.16. Let G = (V, E) be an arbitrary graph.

Deletion G — e with e € E, is the graph that has the edge set £\ {e} and
the same vertex set as G.

Contraction G /e with e € E, where e is not a loop, is the graph with the edge set E \ {e}
and the two vertices which were incident to e are merged.

Since the process of merging two vertices might not be immediately evident, we will
demonstrate this. Let e = (v, w) be the edge which is contracted from the graph G = (V, E)
with v # w. The vertex set of the resulting graph is V'\{v} and all edges which were incident
to v in G are now incident to w.

!That is exactly how Kruskals Algorithm operates at finding the Minimal Spanning Tree (MST).
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Proposition 2.17. Let G be a graph with M(G) being its cycle matroid. Assuming every-
thing is well defined, both M(G) — e and M(G)/e are graphic matroids and

M(G—-e)=M(G)—e
M(GJe) = M(G)/e

For the proof of Proposition 2.17, see [ |[Pages 157-158]. As for Proposition 2.11,
assuming everything is well defined means that for M (G) — e the edge e is not an isthmus
for the graph G and for M(G)/e and M (G/e) e is not a loop in G.

2.4 Duality of Graphs and Matroids

One of the most important characteristic that matroids have is a well-developed theory of
duality, which is a helpful tool in solving many problems in matroid theory. Duality is a
significant and pervasive concept in mathematics. Next to deletion and contraction it is
the most basic matroid operation. First consider duality in graph theory. Planar graphs,
graphs that can be drawn in the plane without its edges crossing, have duals. For planar
graphs it makes sense to define so called regions or faces which are denoted by F', which
are those areas surrounded by the edges of the graph | ]

For instance, the complete graph? K, is a planar graph, however, one can also draw
it with its edges crossing. Hence, being planar is a property of the graph itself and not
the particular drawing of that graph. Consider a planar graph G drawn without its edges
crossing. The dual graph G* has a vertex for each region of G and two vertices are adjacent
by an edge e* when the corresponding regions share an edge ¢ in G.

Figure 2.1: Graph G on the left and its dual graph G* on the right.

2A complete graph, denoted K, with n being the number of vertices, is a graph where every vertex is
connected to every other vertex by an edge.
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Let G be the graph in Figure® 2.1. G has exactly three regions: the two triangles
{e1,e2,e5} and {e3,eq,e5} and the outer region. In each region, denoted as f;, will be a
vertex v of the dual graph G*. For every edge e of G the two vertices in the corresponding
regions which are incident to e will be connected.

Evidently, the number of regions of a graph G is the same as the number of vertices of
the dual graph G*. The dual graph G* is always connected and if G itself is connected
the dual graph of G* would be G. Furthermore, there is a natural bijection between the
edge sets of G and G*, because the dual graph has exactly one edge e* for every edge e the
original graph has. Therefore, it can be assumed that both graphs have the same edge set

[ J

Theorem 2.18. Let G be a connected planar graph. Then
VI —|E|+|F| = 2.

Theorem 2.18 is called Fuler’s Formula for planar graphs and has many proofs, some of
which can be found in Eppstein’s ”Twenty-one Proofs of Fuler’s Formula: V - E + F =
27 [ ].

In Figure 2.1 one can observe that for a spanning tree of GG, for example the spanning
tree with the edge set {e1,eq,e3}, the in G* associated complementary edges, in our case
{e},et}, form a spanning tree of G*. This characteristic of spanning trees of dual graphs
motivates the definition of dual matroids. The dual of a matroid M, denoted as M*, is
defined on the same ground set as M, with the bases of M* being simply the complements
of the bases of M:

B(M*)={E\B : BeB(M)}

with B(M) denoting the set of bases of the matroid M.

Forming the dual matroid of M* would result in the matroid M again, (M*)* = M. As
already mentioned above, for planar graphs on the other hand, (G*)* = G is only the case
if graph G is connected. If M has rank r, meaning the cardinality of its bases is r, the dual
matroid M* has bases with cardinality of |E| — r. Hence

r(M)+r(M*) = |E|.

Proposition 2.19. Let E be the ground set of the matroid M. The bases, independent
and spanning sets of the dual matroid M* are determined as follows:

(i) B is a basis of M, if and only if E\ B is a basis of M*.
(ii) I is an independent set of M, if and only if E\ I is a spanning set of M*.
(iii) S is a spanning set of M, if and only if E'\ S is an independent set of M*.

The proof of Proposition 2.19 can be found in | |[Pages 116-117].
Taking note of these observations, we can make some intuitive observations for specific

3Figure 2.1 was created using https://app.diagrams.net/.
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instances. Suppose the matroid M has exactly one spanning set. Through Lemma 2.7 we
conclude that every element of M is an isthmus and the spanning set (and basis) of M is
FE itself. With Proposition 2.19 it follows that the dual matroid of M* has only the empty
set as its independent sets (and bases), hence, every element of M* is a loop. Further, let e
be an isthmus in M. Since e is in every basis of M, it will be in no basis of M*. Therefore,
e is a loop of M* if and only if e is an isthmus of M | ].

The same applies to planar graphs. Suppose graph G has an isthmus e. The regions
that are incident to the edge e in G are actually the same, the outer region f. Vertex v* of
graph G* which represents the region f will have a loop for every isthmus G has. On the
other hand, if e is a loop, the region which is surrounded only by e itself is adjacent only
to one other region. One can gather that for G* the edge e is an isthmus.

11
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William Tutte was born in England in the year 1917. During World War II he was part of
the Bletchey Park group as a cryptanalysist, where he was decoding the FISH messages.
After the war he studied for a doctorate in mathematics. His original motivation for defining
a bivariate polynomial for graphs is based on the chromatic polynomial. That is the reason
why he called it originally the dichromatic polynomial, however, it is now known as the Tutte
polynomial. Henry Crapo extended Tutte’s work to matroids, while Thomas Brylawski
demonstrated numerous fundamental results regarding the Tutte polynomial for matroids.
This chapter introduces the Tutte polynomial defined on a matroid, provides the proof of
its well-definedness as well as discusses Tutte-Grothendieck invariants. Furthermore, the
chromatic polynomial will be thoroughly covered. Afterwards it elaborates on a specific
Tutte-Grothendieck invariant, namley the number of acyclic orientations. To this end the
flow polynomial will be introduced as well. This chapter is mostly based on Chapter 9 of

[ J

3.1 Well-definedness and Tutte-Grothendieck invariants

Definition 3.1. Let M be a matroid with ground set E. The Tutte polynomial t(M;x,y)
is defined recursively through:

(i) t(M;z,y) =t(M — e;x,y) + t(M/e; x,y), if e is neither a loop nor an isthmus;
(ii) t(M;z,y) =z -t(M/e;x,y), if e is an isthmus;
(iii) t(M;z,y) =y -t(M — e;z,y), if e is a loop;
(iv) t(M;z,y) =1, if E = 0.

Example 3.2. We want to find the Tutte polynomial of the uniform matroids Us 2 and Us 3.
The matroid Us 2 with the ground set E = {e;, ez} has the independent sets 0, {e1}, {ea}
and {e1, es}. Both elements e; and e are in the only basis the matroid has, therefore, both
are isthmuses. The Tutte polynomial can be calculated by

t(Us;z,y) = - (Uzo — €25 2,y)
=T (Ul,l;xay)'

Since the uniform matroid U;; has only the independent set {e;} apart from the empty
set, it follows that,

t(UQQ;ﬂj,y) =Tr-x- (U070;‘r7y)

:.’132.

12
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Let us continue with finding the Tutte polynomial for the matroid Us3. This matroid
already encountered us in Example 2.12. For Us 3, just like the matroid Us 4, all elements
are neither isthmuses nor loops, which one might remember from Lemma 2.14.

Using (i) from Definition 3.1 yields,

t(Uag;2,y) = (U3 — e3; 2, y) + t(Ua3/e3; ,y)
- t(U2,2; x, y) + t(U1,2; x, y)

As calculated above, it is known that ¢(Us2;x,y) = x2. Since Ui 2 has only two elements
which are again neither an isthmus nor a loop it follows that

t(Usz3;2,y) = 2° + (U2 — €232, y) + (U1 2/e2; 2, y)
=2+ t(Ura;2,y) +t(Uoa; x,y).

The matroid Uy has only one element which is a loop. Uy 1, on the other hand, has only
an isthmus as an element.
The last element will now be removed, hence we get,

tUsziz,y) =2 +x- (Urn —eis2,y) +y- (Uoa/er; z,y)
=z’ +r+y.

The order in which an element is deleted and contracted when computing the Tutte
polynomial does not matter. Definition 3.1 would not make sense if it did.

Definition 3.3. Let M = (E,Z) be a matroid and r the rank function. The corank-nullity
polynomial of the matroid M is defined as

S(Miu,0) = 3 ()= Al=r(4),
ACE

The corank of A C E is r(E) — r(A). It is the minimal number of elements which have to
be added to A such that A is a basis. The nullity of A C E is |A| — r(A), which is the
minimal number of elements which have to be removed from A such that A is independent.

Definition 3.4. A matroid invariant is defined as a function f : M — R, with M being
the class of all matroids and R a commutative ring. The function f has to satisfy the
property

M, =2 My — f(Ml) = f(MQ)

Invariants are a familiar and important idea in mathematics. In graph theory the chro-
matic polynomial is a graph invariant which will be discussed in Section 3.2. Some matroid
invariants like the number of bases or the number of independent sets were already in-
troduced throughout this work. What is more, the Tutte polynomial is a well-defined
invariant. This will be proven by writing the Tutte polynomial as a closed form using the
corank-nullity polynomial which is an invariant in matroid theory as well.

13
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Theorem 3.5. Let M be a matroid. The Tutte polynomial can be obtained through the
corank-nullity polynomial, with

t(M,.%',y) = S(M,.’,E - 1ay_ 1)
Further, the Tutte polynomial is a well-defined matroid invariant.

Proof. The proof that the corank-nullity polynomial s(M;x— 1,y — 1) obeys Definition 3.1
for every ground set element e, is done by induction on n = |E|. To recall, we want to
prove

HM;z,y) = Y (o — 1) E A (g — 1)l (), (3.1)
ACE
Let M be an arbitrary matroid with ground set E. For E = (), it is known through the
definition of the Tutte polynomial that it is 1. Since the corank and nullity of the empty
set, the only subset of F, equals 0, the right hand side of 3.1 is equal to

s(My;z—1,y—1)=(z—-1)%y—-1)°=1.

Although the base case of our induction was already presented with E = (), we will also
look at the case of E only having one element e. If e is an isthmus the Tutte polynomial
has to be t(M;x,y) = x and t(M;z,y) = y for e being a loop. Let e be an isthmus, then
r(E) =r({e}) =1 and () = 0. The nullity of both subsets is 0 and the corank equals 1
for {e} and 0 for 0, giving us

s(Miz—1Ly—1)= (-1 (y-1)"+(@-1)(y-1)°" ==

For e being a loop, r(E) = r(0) = r({e}) = 0. Therefore the corank of both subsets is
equal to 0 and the nullity of () is 0 and of {e} is 1. Computing s(M;z — 1,y — 1) gives us
y and Theorem 3.5 holds for |E| = 1.

Let |E| = n with n > 2 and assume that for |E| = n — 1 equation 3.1 holds. Let e € E,
then three cases have to be considered: e can either be an isthmus, a loop or neither. For
the purpose of simplification let 74 and 7. denote the rank functions of M — e and M/e
respectively.

Case 1: Let e be an isthmus. Removing an isthmus will change the rank of a matroid,
r(E) —1 = r.(E \ {e}) as well as the rank of those subsets A containing e. For every
A C E\ {e} the rank stays the same. We split the subsets of E into two sets S and Sa,
the ones that contain e and the ones that do not. So

s(Miz =Ly —1) = 3 (a— 1By - 1)A-r

ACE
— Z (z — 1)"E)=r(A) (y — 1)lAl=r(A) 4 Z (z — 1)TE)=r(A) gy — 1)l Al=r(A),
AeS, A€S;

For any subset A in &1 the corank and nullity of A, computed in M, are the same as the
ones of A\ {e} computed in M /e. This leads to

14
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Z (z — 1)"E)=r(A) (y — 1)lAl=r(4) — Z (z — 1)reBEMeD=re(B) () _ 1)IBl=re(B)
A€S, BCE\{e}
=s(M/e;z — 1,y —1).

Let now be A € Sy. Since the corank changes to r(E) —r(A) = r.(E\{e})+1—r.(A) and
the nullity stays the same, it follows, that

Z (z — 1)"E)=r(A) (yy — 1)lAl=r(A) — Z (z — 1)reBEMeDHI=re(A) () _ 1)lAl=re(4)
A€ES; A€ES;
=(z—1)- Z (2 — 1) (BEMeN=re(A) () _ 1)lAl=re(4)
AES;
=(x—1)-s(M/e;x — 1,y —1).

Hence,

s(Myz—1,y—1)=s(M/e;x—1,y— 1)+ (x—1) - s(M/e;x — 1,y — 1)
=z-s(M/e;z— 1,y —1)
=z-t(M/e;z,y)
= t(M;,y)
The equality s(M;x — 1,y — 1) = x - s(M/e;z — 1,y — 1) holds due to the induction
assumption.

Case 2: Suppose e is a loop. Since case 2 is handled similarly to case 1, this case will be
kept short. Remember that removing a loop does not change the rank of the matroid r(E)
nor of any other subset since it is not contained in any independent set. Let A € Sy, then
since 7(A) = r4(A \ {e}) the corank of A stays the same and the nullity increases by 1,
|A|—7(A) = |A\{e}|+1—7r4(A\{e}). For A € Sy the corank and nullity does not change,

hence,
s(Miz—1,y—1) = Z (z — 1)"E)=r(A) (g — 1)lAl=r(A) 4 Z (z — 1)"E)=r(A) gy — 1)lAl=r(4)
AeS, A€S;
=y—1)-s(M—e;z—1,y—1)+s(M —e;xz — 1,y — 1)
=y-s(M—e;x—1,y—1)
=y-t(M —ez,y)
=t(M;x,y).

Case 3: Let e be neither an isthmus nor a loop. It holds that r4(A \ {e}) = r(A) for all
A CE and r.(A\ {e}) = r(A) — 1 for e € A, else the rank after contracting an element
stays the same. Again we break up the subsets into S; and Sy the same way as above.
Assume A € S;. The corank of A\ {e} in M/e is r.(E \ {e}) —r.(A\ {e}) = r(E) — r(A)
and for the nullity we get |A\ {e}| — rc(A\ {e}) = |A| — r(A). Both are the same and we
get
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Z (z — 1)"E)=r(A) (yy — )Al=r(4) — Z (z — 1)eBMeD—re(A\ed) () _ 1)lA\el=re(A\{e})
AeS, AcS,
=s(M/e;z — 1,y —1).

For A € Sy, r(E) =r4(E \ {e}) and r(A) = r4(A) holds. It follows that

Z (z — 1)"E)=r(A) (y — 1)lAl=r(4) — Z (z — 1)reBE\eD)=ra(A) () _ 1)lAl=ra(4)
AES, AES,
=s(M —e;z— 1,y —1).

With the definition of the Tutte polynomial this yields

=sM/e;z—1,y—1)+s(M —e;x— 1,y — 1)
=s(M;x—1,y—1).

The last equality is done by induction.
O

Theorem 3.5 shows the well-definedness of the Tutte polynomial which is very important,
since through the recursive Definition 3.1 it is not immediately clear. Since the corank-
nullity polynomials of two isomorphic matroids are the same, it is a matroid invariant
and consequently the Tutte polynomial is as well. If the Tutte polynomial of a matroid
is known, the Tutte polynomial of its dual can be easily calculated by switching x and y

[ J
Theorem 3.6. Let M be a matroid with M* denoting its dual matroid. Then
tM 5, y) = t(M;y, )

The proof of Theorem 3.6 can be found in | , Page 333-334].

Through the Tutte polynomial one can gather a lot of interesting information about the
matroid. For example, the number of bases b(M) and the number of independent sets i(M)
as well as the number of spanning sets sp(M) are all deducible from the Tutte polynomial.
All of them satisfy some properties which we can summarize in the next Theorem:

Theorem 3.7. Let M be the class of all matroids and R a commutative ring, and let
[ M — R satisfying

(1) f(My) = f(Ms), if matroids My and My are isomorphic;
(2) f(M)=f(M—e)+ f(M/e), for e neither being an isthmus nor a loop;
(3) f(M)=f(I)-f(M]e), for e being an isthmus;
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(4) f(M) = f(L)- f(M —e), for e being a loop.
Then f(M) =t(M; f(I), f(L)), with I being an isthmus and L a loop.

Proof. For the proof, an inductive method is once again employed. We begin by demon-
strating the theorem’s validity for a matroid with only one element. The induction is then
completed by utilizing the recursive definition of the Tutte polynomial (see Definition 3.1),
combined with the assumed characteristics (2), (3), and (4) of the invariant f.

Consider the matroid M with E denoting its ground set.
Let |[E| = 1 and e € E, then e is either an isthmus or a loop. Suppose e is an isthmus
then the Tutte polynomial of M is t(M;x,y) = x. Using f(I) as x and f(L) as y we get
t(M; f(I), f(L)) = f(I). With (3) it follows that

FM) = f(I) = t(M; f(I), f(L))-

The proof for e being a loop proceeds analogously.

For e € E with |E| > 1 we again have to consider three cases: e being a loop, an isthmus
or neither. Let |F| = n and assume that for every matroid with a (n — 1)- element ground
set the Theorem 3.7 holds.

Case 1: Assume e is an isthmus then

fM) = f(I) - f(M/e)
= f(I) - t(M/e; f(I), f(L))

and through Definition 3.1 (ii) it follows that
FM) = t(M; f(I), f(L))-

Case 2: Let e be a loop. Then with Definition 3.1 (iii) and assumption 3.7 (4) f(M) =
t(M; f(I), f(L)) follows analogously to the first case.

Case 3: Lastly suppose e is neither an isthmus nor a loop, then

f(M) = f(M —e) + f(M]e)
=t(M —e; f(I), f(L)) + t(M/e; f(I), f(L))
= t(M; f(I), f(L)).

O]

A matroid invariant that satisfies (1)-(4) in Theorem 3.7 is called a Tutte-Grothendieck
(T-G) invariant.

The number of subsets a loop (isthmus) can have is evidently two: () and the set contain-
ing the loop (isthmus). Let us consider the number of independent sets ¢(M) for the matroid
M. The independent set of a loop is only @, hence i(L) = 1. For an isthmus i(I) = 2.
Therefore, the number of independent sets of M can be computed by i(M) = t(M;2,1).
Similarly, one can compute the number of bases and spanning sets:

17
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Corollary 3.8. Let M be a matroid. Then
(1) b(M) = t(M;1,1) = s(M;0,0),
(2) i(M) = t(M;2,1) = s(M;1,0),
(3) sp(M) =t(M;1,2) = s(M;0,1),
(4) t(M;2,2) = s(M;1,1) = 21Fl,

Although many characteristics of a matroid can be drawn from the Tutte polynomial
without having to manually solve for them, it is not possible to reproduce the matroid
through it. Matroids which have the same Tutte polynomial are called Tutte-equivalent.
Isomorphic matroids always have the same Tutte polynomial since it is a matroid invari-
ant. However, cases do present themselves in which two non-isomorphic matroids have the
same Tutte polynomial. This interesting observation can be made through | , Exam-
ple 9.11]. In Gordon and McNulty’s example they compare two matroids through their
geometric configurations', which are not discussed in this thesis. For further information
on Tutte-equivalent matroids refer to M. M. Rocha’s thesis ”Tutte- Equivalent Matroids”
[ |, which explores this topic deeply.

3.2 The Chromatic Polynomial

In the year 1852, Francis Guthrie wrote a letter to his brother Frederick, in which he posed
the question of whether it was possible to color the regions of a map with a maximum of
four colors in such a way that adjacent regions had different colors. This letter gave rise to
a touchstone problem in modern combinatorics and graph theory, known as the Four Color
Problem. The resolution of this problem by Appel and Haken in 1976 eventually led to
the problem being referred to as the Four Color Theorem. Not only did Appel and Haken
resolve a 125 year-old conjecture, but also their proof was the first significant mathematical
proof that relied heavily on the usage of a computer | .

Think of a geographical map as a planar graph with the boundaries between two regions
being the edges, the vertices as points where two or more boundaries meet and the regions
of the graph being the regions of the map. By forming the dual of the graph one can
consider the coloring of the vertices of the dual graph instead of the regions of the map.
Let G be a graph with vertex set V. A vertex coloring of G is a map ¢ : V — ZT. The
vertices are colored properly if no vertices which are adjacent are colored the same, meaning
if the edge e = (v, w) exists in G then ¢(v) # c(w).

Figure? 3.1 is a demonstration on how to represent the map of Australia as a graph A and
also its dual graph A*. Both graphs have the same number of edges and the vertices of
the dual graph A* are representing the regions of Australia. An interesting observation is
how one handles an island, such as Tasmania, denoted as the vertex T in A*. Since the

! Geometric configurations are geometric pictures of matroids consisting of dots, which are the elements of
FE, and lines connecting the dots, which represent dependencies. It is important to note that although
they remind of a graph, they are NOT a graph.

2Figure 3.1 was made using https://app.diagrams.net/.
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edges of the original graph A are representing the boarders of the graph, let er represent
the boarder of Tasmania. As discussed in Section 2.4, the dual of a loop is an isthmus,
therefore, er is a loop in A and for the dual graph A* an isthmus. Since Tasmania only
shares a boarder with the ocean, or rather the vertex vy is only adjacent to the vertex vo,
it can be colored in any color except the one v has.

Figure 3.1: Demonstration on creating the dual graph A* of Australia.

A very important note is that no graph that has a loop e = (v,v) as an edge can be
colored properly. In the case of coloring a graph which represents a geographical map like
the one on the right of Figure 3.1, these graphs would never have a loop since that would
mean that a country shares a boarder with itself. Graphs which do not have any loops
nor multiple edges are called simple graphs. For example, both graphs which are shown in
Figure 3.2 are simple graphs as well as A*.

The reason why this problem is interesting for this paper is G. D. Birkhoff’s approach in
1912. He defined a univariate function xg(\) defined on a graph G which gives the number
of proper colorings of G using A or fewer colors. It turns out xg(\) is a polynomial in the
variable A and is called the chromatic polynomial. The Four Color Theorem can then be
rephrased in the following way:

Let G be a planar graph and let G have no loops. Then x¢(4) > 0.

In Gordon and McNulty’s book [ | the condition for G' to not have any loops was
omitted, as it is often automatically assumed that a graph G does not have any loops.
However, we believe it should be included for clarity and correctness. While graphs with
multiple edges can still be colored properly, for the purpose of graph coloring, we can
consider multiple edges as if they were a single edge. With the assumption that we are
solely working with simple graphs the condition that G has no loops can be ignored.
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Although no proof of the Four Color Theorem was found in this way, the chromatic poly-
nomial has various other applications and can be generalized to a two-variable polynomial
defined on matroids which we were already introduced to, the Tutte polynomial.

Definition 3.9. Let G be a graph and A € ZT. The chromatic polynomial xc(\) of G
gives the number of proper colorings of G using at most A colors.

The fact that the chromatic polynomial is indeed a polynomial in A will become evident

later through its connection to the Tutte polynomial. T'wo isomorphic graphs, meaning that
there is a one-to-one correspondence between the vertices of those two graphs that preserves
adjacency, have the same chromatic polynomial. Therefore, the chromatic polynomial is a
graph invariant.
The chromatic number is the smallest amount of colors which are needed for a proper
coloring of the graph G. The chromatic polynomial y;(\) is bigger than 0 if and only if G
has a chromatic number of at most A € Z*. Since a graph without edges has no adjacent
vertices, the chromatic number is 1. In no other case it can be 1.

Lemma 3.10. Let G be a graph. G has the chromatic number at most k if and only if G
18 k-partite.

The proof of Lemma 3.10 is trivial, however, it is important to emphasize that trees have
the chromatic number of at most® 2. This result is derived from the fact that trees are
bipartite graphs.

Example 3.11. Before discussing the connection to the Tutte polynomial, two small but
interesting examples will be presented to get a feeling of the chromatic polynomial on
graphs. Consider the complete graph K4 in Figure 3.2a. Since every vertex is adjacent to
every other vertex it is clear that the chromatic number has to be 4. In general the chromatic
number for complete graphs K, is clearly n. Determining the chromatic polynomial x g, (A)
can be done greedily by first analyzing how many colors a vertex could be colored in.

Let us start with coloring vertex v;. Since no vertex is colored yet, A possible colors can
be used to color it. Vertex wvs is adjacent to v; thus it can be colored in any color except
the color v; was assigned to, therefore only A — 1 ways are left. The same logic applies to
vs which is adjacent to v; and vo, thus having A — 2 options and vertex vy has A — 3. The
chromatic polynomial is the product of these possibilities,

XK, (A) = AA = 1)(A = 2)(A = 3).

It is clear that for every number of colors A\ below 4 the chromatic polynomial would return
0, showing that it is not possible to color the complete graph K, properly with less than
4 colors. Setting A = 4 reveals that there are 24 possibilities to color the graph Ky with 4
colors. The chromatic polynomial of any complete graph K,, can be computed by

n

xi,(\) =[x —i+1).

=1

3The chromatic number of trees is always 2 except when it has no edges, which means in this case consisting
of just one vertex.
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This can be shown by induction since the complete graph K, is equal to K, ; but one
vertex removed and all its incident edges.

(a) Complete Graph K4 (b) Tree T

Figure 3.2: Two graphs for Example 3.11.

Now consider the tree T' shown in Figure 3.2b. The leaf v; can be colored in A ways.
The only adjacent vertex to vy is v4 which has A —1. Vertices v2 and vs can have any color,
also the one vy is colored in, except the one vy got, therefore again A — 1. This process can
be continued with the vertices vs, vg and vy which all have A — 1 choices. This results in
the chromatic polynomial being

xr(A) = A(A = 1)°.

The vertices of any tree can be arranged in such a way that the first vertex to be colored is
a leaf, and each successive vertex to be colored is adjacent to exactly one vertex that has
already been colored. Therefore the chromatic polynomial of any tree with n vertices T;, is

xr,(A) = A\ = 1)" L,

This approves our comment from earlier that trees with more than one node have a chro-
matic number of 2, since x7, (1) = 0.

Proposition 3.12. Let G = (V, E) be a simple graph and e an edge in E. Then

Xa(A) = Xc—e(A) = Xa/e(N)-
Proof. Let e = (v,w) be an arbitrary edge in G with v and w being its endpoints. As for
the graph G — e the two vertices v and w are not adjacent anymore and for every proper
coloring of G — e the vertices v and w can be colored either in the same color or a different
one.
If they are colored differently, the coloring is also a proper coloring of G. In fact every
proper coloring of G is a proper coloring of G — e with v and w being differently colored.
On the contrary, if the vertices v and w are being assigned the same color when coloring
G — e, the coloring corresponds to a proper coloring of the graph G/e.

Thus XG—e()‘) = XG()‘) + XG’/@(/\)~ O
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Since the chromatic polynomial of a graph G is defined on its vertices, a connection
between the Tutte polynomial of the cycle matroid M (G) needs some adjustment involving
the vertices, since the Tutte polynomial is defined on the edges of G.

Theorem 3.13. Let G = (V, E) be a connected graph. Then

Xe(N) = (—DVITIXN - ¢(M(G); 1 - A, 0).

Proof. For the proof we want to find an appropriate T-G invariant based on the chromatic
polynomial of the graph G. Through that we can apply Theorem 3.7. However, first we
need to have an understanding of the chromatic polynomial of a connected graph which
has only one edge, either being a loop or an isthmus.

The chromatic polynomial of the connected* graph I with only an isthmus as an edge is
x71(A) = A(A — 1) and of a graph L with only a loop xr(A) = 0. As already mentioned,
if a graph G has a loop as an edge, it cannot be colored properly, meaning its chromatic
polynomial has to be 0 since xg(A) = xr(A) - xag—e(N).

Now let us consider a connected graph G where e represents an isthmus, and v and w
denote the vertices incident to the edge e. The graph G —e consists of exactly two connected
components. These subgraphs of G will be denoted as G, for the one containing the vertex
v and Gy, for the other one. It follows that the chromatic polynomial of the graph G — e
can be calculated by xg_e(\) = xa, (\) - xg, (A) and with Proposition 3.12 we get®

xXG,(A) - X6, (A) = xc(A) + xare(N)-

The subgraph G, can be properly colored in x¢, (\) different ways. For G, let us start
with vertex w which can be colored in A ways. xqg, (A) can then be classified in A classes
each having the size ch()‘) Only one of these classes gives a proper coloring of the graph

G /e, where the vertices v and w have the same color. Hence,

Yoo = xa, (A) ;\XGW()\) _ XG)SA) N XG/;()\)_

Therefore, if e is an isthmus the chromatic polynomial of G is
xa(A) = (A= Dxgre(A)-
Through this observation we now define a function fg based on xg(A), as

=DM xe ()

fa(A) = y

41f we would consider I not being connected, meaning it has isolated vertices and those two which are
connected by the isthmus as its connected components, the chromatic polynomial would be A\*(!) (A=1),
with k() denoting the number of vertices.

5 Although Proposition 3.12 assumes that the graph has to be simple, it still works in this case. Since we
assumed e = (v, w) is an isthmus, meaning not a loop, v # w, nor do more edges exist which are incident
to v and w, the proof is still correct.

22



3 Tutte Polynomial

If fa(\) is a T-G invariant, we can apply Theorem 3.7 and get fg(\) = t(M(G); f1(A\), fL(N)).
Let fa(A) = f(M(G);A) and f : Mgpapn — Z[N], where Mg,qpn denotes the class of all
graphic matroids.

(1)

(2)

(3)

Let us consider a graphic matroid M’ = M (G’) which is isomorphic to M(G). Their
structural properties ensure that the associated graphs G and G’, though possi-
bly not identical, are graph isomorphic, since we only consider connected graphs.
The chromatic polynomials of isomorphic graphs are the same. It follows that
F(M(G); \) = f(M'; X\) and fg is a matroid invariant for graphic matroids.

As mentioned above if G has a loop e as an edge or only consist of a loop the chromatic
polynomial is equal to the null-polynomial, therefore f(A) = 0 and

fa(N) = fL(A) - fa—e(A) = 0.

Let I be the graph with only an isthmus as an edge. Since x7(A) = A(A—1) it follows
that fr(A) = CGARAD — 1)

Now consider the graph G from before with the isthmus e as an edge and the chromatic
polynomial written as xg(A) = (A — 1)x¢/e(A). This gives us

~ (ED)VEe ()
fe(\) = 3
DV = Dxgge (V)
A
(=DV1=2x6/e(N)
A

=(1-))-
= fr(\) - faje(N)-

(4) Let e be neither an isthmus nor a loop. Then with Proposition 3.12 we get

=) xe(V)

fe(\) = 3
_ (DY (xa=e(X) = xc/e(N)
A
(=D (N) N (—=D)IVI=2xg/e(N)
- A A

= fa—e(A) + fa/e(N).

Since fg () satisfies all of the necessary requirements, it is a matroid T-G invariant and
through Theorem 3.7 it follows that

fa(N) =t(M(G);1 - X,0),
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hence,

()" =xa (M)
A
xe(N) = (=DVITIN - ¢(M(G); 1 - A, 0).

t(M(G);1—),0) =

O]

Using the Tutte polynomial representation, it becomes evident that the chromatic poly-
nomial is, indeed, a polynomial:

Proposition 3.14. The chromatic polynomial xc(X) is a polynomial in \.

Example 3.15. Consider the uniform matroid Us 3. Since this matroid is graphic, a graph
G can be derived such that M (G) = U 3. The matroid has 3 elements in its ground set,
therefore, its corresponding graph has 3 edges and none are isthmuses or loops as known
from Lemma 2.14. The rank of the matroid is 2. This yields that the spanning trees of
G need to have exactly 2 edges and G must have at least 3 vertices. If we consider only
connected graphs, G is the complete graph® K3 in Figure 3.3.

€1 €3

€2
V3 (%)

Figure 3.3: Graph K3 with cycle matroid Us 3.

The Tutte polynomial of Us 3 is t(Uz3;x,y) = 22 4+ = + vy, as calculated in Example 3.2.
According to Theorem 3.13 the chromatic polynomial of K3 is

Xi(A) = (=1 7N (1= 22+ (1= 2) +0)
=AM —1)(A—2).

As mentioned in Example 3.11 the chromatic polynomial of the complete graph with three

vertices is exactly
3

xis (V) =[x =i+ 1),
i=1
which agrees with the computation through Theorem 3.13.

Remark. If G is not connected, one can modify the evaluation from Theorem 3.13 like
this
xa(N) = M=)V Dy(ar(G);1 - A, 0),

with £(G) being the number of connected components of G.

S K3 is also called the triangle C3. C, denotes the graph with n vertices which forms a cycle.
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3.3 Acyclic Orientations and Nowhere-Zero Flow

A graph G can be oriented by giving every edge e in the graph a direction. Suppose
e = (v,w) the edge directed from v to w then the vertex v is called tail and w head of
the edge. Let O denote an orientation of G and G the directed graph. An orientation
which does not include any directed cycles is called an acyclic orientation of graph G.
There exist exactly 2/Z! possibilities to orient a graph, with E being the ground set of
the graph. The exact number of acyclic orientations of a graph can be calculated through
the Tutte polynomial, since not only isomorphic graphs have the same number of acyclic
orientations, but graphs with isomorphic cycle matroids as well. Therefore, the number of
acyclic orientations is a T-G invariate. Most of the material that is discussed in this section
can be found in | | and also some input was taken from | ].

Theorem 3.16. Let G be a graph with a(G) denoting the number of acyclic orientations.
Then a(G) = t(M(G);2,0).

The proof of Theorem 3.16 can be found in | , Pages 339-340]. Further, calculating
the Tutte polynomial of the cycle matroid M (G) with x = 0 and y = 2 gives us the exact
number of cycle orientations of the graph G, namely t(M(G);0,2).

Example 3.17. Suppose we have the graph K3 from Figure 3.3, which has the uniform
matroid Uz 3 as its cycle matroid. K3 can be oriented in 23 = 8 different ways. The only
cyclic orientations are those demonstrated in Figure 3.4. This leaves the graph with having
6 acyclic orientations.

€1 €3 €1 €3

€2 €2
V3 (%) V3 V9

Figure 3.4: Cyclic orientations of Graph Kj.

We now consider Us 3, the cycle matroid of the graph K3. As computed in Example 3.2
the Tutte polynomial is t(Uz3;z,y) = 2% + x + y. By inserting 2 as = and 0 as y we get
t(Uz,3;2,0) = 6 as the number of acyclic orientations and naturally ¢(Usz3;0,2) = 2 is the
number of cyclic orientations.

Consider the graph G with the edge set E and the finite abelian group H. Define H
as an additive group with 0 as its identity element and associate an element from H with
each directed edge of Gp. Let w: E — H with e — w(e) be the function which assigns a
so called weight to every edge in E. An H-flow is defined as an assignment of elements to
the edges however for every vertex v the sum of the weights of the edges which have v as
head is equal to the sum of weights of the edges which have v as tail. This characteristic is
called Kirchhoff’s current law. An H-flow is nowhere-zero if for every e in E it holds that

w(e) # 0.
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U1

Figure 3.5: Oriented graph G with a nowhere-zero flow with H = Z4.

For instance, consider the graph G with an orientation shown in Figure 3.5. The edges
were assigned weights from Z, and no edge has the weight 0. As an example of Kirchhoff’s
current law, the only two edges incident to vertex vy are directed from vy and have each a
weight of 2. Adding up all the weights would return 4. In Z,4 this translates to 0 which is
equal to the total sum of weights of edges directed in.

Proposition 3.18. For a given graph G and finite abelian group H, the number of nowhere-
zero flows is independent of the orientation O.

Proof. Tt is possible to transform a given orientation @ into any other orientation O by
reversing the direction of some edges. Let us assume e is an edge in the graph. If we
already have a nowhere-zero flow using a specific orientation O, then by replacing the
weight w(e) with its inverse —w(e) in the group H, we can generate a nowhere-zero flow
in orientation O’ with the reverse direction of e. In this manner, we establish a bijection
between nowhere-zero flows that use @ and those that use O’. O

Define x¢; (k) as the number of nowhere-zero flows in G' with weights as elements in H
and |H| = k. The polynomial xf (k) will be called the flow polynomial.

Theorem 3.19. Let G be a connected graph and H a finite abelian group. Then,
Vi) = (~)VHER L (G);0,1 - k).

Proof. Proving Theorem 3.19 is similar to the proof of Theorem 3.13, therefore, we only
provide a sketch of the proof.

The flow polynomial of a graph L, which has only a loop as an edge is xj (k) =k — 1. As
for a graph I with only an isthmus as an edge the flow polynomial is 0 as a polynomial,
Xj(k) = 0. Graphs which have an isthmus (or more) cannot have a nowhere-zero flow.
This is also the reason why the Tutte evaluation y& (k) = (—1)VHEFL (M (G);0,1 — k)
has x = 0. On the other hand, for the chromatic polynomial the Tutte evaluation xg(\) =
(=1)VI=IX-#(M(G); 1=\, 0) has y = 0, since graphs with loops cannot be colored properly.
We continue by showing

Xa(k) = XGje(k) = XxG—e(k),
and that

fa(k) = (=) HERHG (k)
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is a T-G invariant. This gives us

and

With Theorem 3.7 it follows

t(M(G); f1(k), fL(k))
HM(G);0,1 — k) = (—=1)VHIEF G (k)
(—D)IVIHER (M (G);0,1 — k).

O]

If the graph G is not connected, one can calculate its flow polynomial by inserting
V| + |E| + k(G) instead of |V| + |E| + 1, with xk(G) denoting the number of connected
components of G. An important statement about the connection of the chromatic and flow
polynomial is incorrectly stated in Gordon and McNulty’s book | , Corollary 9.34]
and does not include a proof. The correct equation is expressed in Corollary 3.20 followed
by its proof.

Corollary 3.20. Let G be a connected planar graph with G* as its connected planar dual
graph. Then,

xa- (k) = k- xg (k).
Proof. To prove Corollary 3.20 we will be using Theorem 3.19,
X (k) = (=D)VIHEH T (A1(G);0,1 — k).

With Theorem 3.13 and Theorem 3.6 it follows,
xe- (k) = (=) 17k - 4(M(G*);: 1 - £, 0)
= ()P (M (G); 0,1 — k).

As discussed in Section 2.4, the number of vertices of the graph G* is equal to the number
of regions F' of the original graph G. By using Euler’s Formula 2.18 |V| — |E| + |F| = 2
the number of regions of G' can be calculated by |F| = |E| — |V|+ 2 and with the fact that
the sum of two numbers is even if and only if the difference is even we get

xa- (k) = k - (=D)VIHEH(01(G);0,1 - k)
= k- xg(k)
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To come back to our initial point, when dealing with planar graphs GG, one can analyze
the Four Color Theorem in the context of nowhere-zero flows.

Corollary 3.21. If G is a planar graph and no edge of G is an isthmus, then G has a
nowhere-zero Z4 flow.

Proof. This proof will just be a sketch.

Since G is planar, its dual graph G* exists and is also planar. G* does not have any loops
since GG does not have any isthmuses, therefore, we can apply the Four Color Theorem on
the dual graph G*, to show xg-(4) > 0. With Corollary 3.20 it holds that x5 (4) > 4. O

One note to add is that Corollary 3.21 was based on | , Corollary 9.35], however, the
condition that no edge of G can be an isthmus was added, since without it, the Corollary
would not be correct, due to the fact that a graph with an isthmus cannot have a nowhere-
zero flow. Although no proofs for the Four Color Theorem arose from flows, the flow
polynomial and the chromatic polynomial, they still offer numerous other information and
insights. For recent work in the field of flows see Jackson’s [ ] and Dong and Koh’s

[DRO7].
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4 Conclusion

In conclusion, the world of matroid theory offers a broad spectrum of applications. One
of many is the Tutte polynomial which has applications in computer science, engineer-
ing, optimization, physics, biology and knot theory. It is not only significantly enriching
the common understanding of matroids but also of graphs. The integration of Tutte-
Grothendieck invariants which can be calculated through the Tutte polynomial, provides
an efficient means to explore and solve for matroid properties, simplifying complex tasks.
Moreover, insights on graphs can be made through the Tutte polynomial without lots of
calculation by considering the cycle matroid of a graph, for example the number of acyclic
orientations, spanning trees and proper colorings.

A particularly remarkable relationship is the one between the Tutte polynomial and the
chromatic polynomial. By employing the recursive definition of the Tutte polynomial and
using the cycle matroid of the graph, it becomes feasible to compute the chromatic poly-
nomial, a graph invariant that states the number of proper colorings of a graph. The flow
polynomial is another polynomial that can be computed by utilizing the Tutte polynomial.
It states the number of nowhere-zero flows in a graph, presenting a bridge between combi-
natorics and graph theory. As one was able to see, through the Tutte polynomial, it was
possible to find a connection between the chromatic and the flow polynomial. Profound
interconnections like these can reshape our perception of longstanding problems like the
Four Color Theorem once was. By reframing it through the lens of the flow polynomial,
we gain a fresh insight into this famous theorem.

For those eager to explore more mathematical developments which utilize the Tutte
polynomial further, refer to Universal Tutte Polynomial by O. Bernardi, T. Kalman and

A. Postnikov | | and another collaborative effort of X. Guan, W. Yang and X. Jin for
On the polymatroid Tutte polynomial | | as well as On chromatic and flow polynomial
unique graphs [ ] by the authors Y. Duan, H. Wu and Q. Yu which offer valuable

insights not covered in this thesis.
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