
B A C H E L O R T H E S I S

The Beth-Definability Theorem and
the Complexity of Explicit

Definitions

carried out at the

Institute of Discrete Mathematics and Geometry

TU Wien

under the supervision of

Assoc.Prof.Dr Stefan Hetzl

by

Florian Grünstäudl

matriculation number: 12004126

Lienfeldergasse 73/17

1160 Wien

Vienna, March 21, 2024

Contents

1 Introduction 2

2 Sequent Calculus 3
2.1 Formal Proofs in LK . 3
2.2 Craig’s Interpolation Theorem . 7
2.3 The Beth Definability Theorem . 16

3 Computability Theory 20
3.1 Coding of Formulas . 21

4 Complexity of Explicit Definitions 24

1

1 Introduction

The Sequent Calculus LK is a formal proof system first introduced by Gerhard Gentzen
in the 1930s. In Chapter 2 of this thesis will introduce the most important notions of the
Sequent Calculus up to the Cut Elimination Theorem (also known asGentzen’s Hauptsatz.
Using cut elimination, we will proceed to prove Craig’s Interpolation Theorem, which in
turn is the basis for the proof of Beth’s Definablility Theorem, which states that in LK
implicitly defined predicates (functions, constants) can also be explictly defined. ([BL],
[T])

The goal of Chapter 4 is to show that the quantifier complexity of the explicit defini-
tions obtained from Beth’s Definability Theorem is not computable ([F]). The proof will
use elements such as the coding of formulas, the undecidablilty of the halting problem and
a fixed point lemma for arithmetical languages, which are briefly discussed in Chapter 3
([H]).

2

2 Sequent Calculus

In this thesis we will work with first order logic over a language L and use the standard
definitions of terms and formulas. For a formula (sequent, proof) X we will denote the
set of all predicate symbols that appear in X by P (X), the set of all function symbols
by F (X), the set of all free variables by Vf (X), the set of all bound variables by Vb(X)
and the set of all constants by K(X). Moreover, we define V (X) := Vf (X) ∪ Vb(X).

The substitution of a term t for a variable a into a formula (sequent, proof) X will
be denoted by X[a/t].

Unless otherwise stated, we will denote formulas by the uppercase arabic letters
A,B,C,D, . . . or the lowercase greek letters φ, ψ, . . . and finite sequences of formulas
by the uppercase greek letters Γ,Π,∆,Λ.

2.1 Formal Proofs in LK

Definition 2.1.1. Let Γ,Π be finite sequences of formulas, then Γ ⊢ Π is called a
sequent. A sequent of the form A ⊢ A for a formula A is called initial sequent or axiom.
An inference is an expression of the form

S1 S2

S
oder

S1

S
,

where S, S1, S2 are sequents. S1 and S2 are called upper sequents of the inference and S
is called lower sequent of the inference. We denote the set of all initial sequents by A.

Definition 2.1.2. The following are the inference rules in LK:

(a) structural rules

• weakening left and right

Γ ⊢ Π
(w:l)

D,Γ ⊢ Π

Γ ⊢ Π
(w:r)

Γ ⊢ Π, D

• contraction left and right

D,D,Γ ⊢ Π
(c:l)

D,Γ ⊢ Π

Γ ⊢ Π, D,D
(c:r)

Γ ⊢ Π, D

• permutation left and right

Γ, C,D,∆ ⊢ Π
(p:l)

Γ, D,C,∆ ⊢ Π

Γ ⊢ ∆, C,D,Π
(p:r)

Γ ⊢ ∆, D,C,Π

• cut-rule
Γ ⊢ ∆, D D,Π ⊢ Λ

(cut)
Γ,Π ⊢ ∆,Λ

(b) logical rules

3

• Introduction of ¬ left and right

Γ ⊢ D,Π
(¬:l)

¬D,Γ ⊢ Π

D,Γ ⊢ Π
(¬:r)

Γ ⊢ ¬D,Π

• Introduction of ∧ left

C,Γ ⊢ Π
(∧:l)

C ∧D,Γ ⊢ Π
and

D,Γ ⊢ Π
(∧:l)

C ∧D,Γ ⊢ Π

• Introduction of ∧ right

Γ ⊢ C,Π Γ ⊢ D,Π
(∧:r)

Γ ⊢ C ∧D,Π

• Introduction of ∨ right

Γ ⊢ Π, C
(∨:r)

Γ ⊢ Π, C ∨D
and

Γ ⊢ Π, D
(∨:r)

Γ ⊢ Π, C ∨D

• Introduction of ∨ left

Γ, C ⊢ Π Γ, D ⊢ Π
(∨:l)

Γ, C ∨D ⊢ Π

• Introduction → left and right

Γ ⊢ ∆, C D,Π ⊢ Λ
(→:l)

C → D,Γ,Π ⊢ ∆,Λ

C,Γ ⊢ Π, D
(→:r)

Γ ⊢ C → D,Π

• Introduction of ∀ left and right

F,Γ ⊢ Π
(∀:l)

∀xF [t/x],Γ ⊢ Π

Γ ⊢ F,Π
(∀:r)

Γ ⊢ ∀xF [a/x],Π

provided that a /∈ Vf (Γ ⊢ ∀xF (x),Π). Here a is called eigenvariable of the
inference and t is an arbitrary term in F .

• Introduction of ∃ left and right

F,Γ ⊢ Π
(∃:l)

∃xF [t/x],Γ ⊢ Π

Γ ⊢ Π, F
(∃:r)

Γ ⊢ ∃xF [a/x],Π

provided that a /∈ Vf (Γ ⊢ ∀xF (x),Π). Here a is called eigenvariable of the
inference and t is an arbitrary term in F .

Definition 2.1.3. A proof P in the sequent calculus LK is a tree whose vertices are
sequents with the following properties

(a) Every uppermost sequent is an initial sequent.

4

(b) Every sequent in P , except the lowermost sequent, is an upper sequent in one of
the inference rules listed in Definition 2.1.2, and the lower sequent of this inference
rule is a vertex in P .

A sequent S is provable in LK if it appears in a proof P . A formula A is provable in
LK if the sequent ⊢ A is provable.

Example 2.1.4. The following are examples of LK proofs of the formulas A ∨ ¬A and
A ∨B → ¬(¬A ∧ ¬B).

A ⊢ A
(¬:r)

⊢ A,¬A
(∨:r)

⊢ A,A ∨ ¬A
(p:r)

⊢ A ∨ ¬A,A
(∨:r)

⊢ A ∨ ¬A,A ∨ ¬A
(c:r)

⊢ A ∨ ¬A

.

A ⊢ A
(¬:l)

A,¬A ⊢
(∧:l)

A,¬A ∧ ¬B ⊢
(¬:r)

A ⊢ ¬(¬A ∧ ¬B)

B ⊢ B
(¬:l)

B,¬B ⊢
(∧:l)

B,¬A ∧ ¬B ⊢
(¬:r)

B ⊢ ¬(¬A ∧ ¬B)
(∨:r)

A ∨B ⊢ ¬(¬A ∧ ¬B)
(→:r)

⊢ A ∨B → ¬(¬A ∧ ¬B)

Definition 2.1.5. Let our first order language L contain the binary relation scmbol =.
The sequent calculus with equality (LKe) is obtained from LK by adding the followting
sequents as initial sequents:

• ⊢ t = t, where t is a term

• t1 = t2 ⊢ t2 = t1, where t1, t2 are terms

• t1 = t2, t2 = t3 ⊢ t1 = t3 where t1, t2, t3 are terms

• t1 = s1, . . . , tn = sn ⊢ R(t1, . . . , tn) = R(s1, . . . , sn) where ti, si are terms for
i = 1, . . . , n and R is an n-ary relation symbol.

• t1 = s1, . . . , tn = sn ⊢ f(t1, . . . , tn) = f(s1, . . . , sn) where ti, si are terms for i =
1, . . . , n and f is an n-ary relation symbol.

For later usage we prove the following lemma. Note that is also a consequence of
Theorem 2.1.9.

Lemma 2.1.6. Let A,B,C,D be formulas,, Γ a finite sequence of formulas, a, a1, . . . , am
variables such that a occurs in C. Moreover, let f, f ′ be n-ary function symbols and x a
bound variable. Then we have that

(1) Γ ⊢ A→ B if and only if Γ, A ⊢ B.

5

(2) A ∧B ⊢ C if and only if A,B ⊢ C.

(3) A,B ⊢ ∀xC(x) if and only if A,B ⊢ C(a), provided that a /∈ V (A,B, ∀xC(x)).

(4) A,B ⊢ C ∧D if and only if A,B ⊢ C and A,B ⊢ D.

(5) If A,B ⊢ C → D then A ∧ C ⊢ B → D.

(6) If Γ ⊢ f(a1, . . . , an) = f ′(a1, . . . , an) then Γ ⊢ f(a1, . . . , an) = y ↔ f ′(a1, . . . , an) =
y (in LKe).

Proof. (1) Let P be a proof of Γ ⊢ A→ B, then

.... P
Γ ⊢ A→ B

A ⊢ A B ⊢ B
(→.l)

A,A→ B ⊢ B
(p:l)

A→ B,A ⊢ B
(cut)

Γ, A ⊢ B

is a proof of Γ, A ⊢ B. This shows the if part, the only if part is →:r.

(2) Let P be a proof of A ∧B ⊢ C, then

A ⊢ A
(w:l, p:r, w:r)

A,B ⊢ A,C
B ⊢ B

(w:l, p:r, w:r)
A,B ⊢ B,C

(∧:r)
A,B ⊢ A ∧B,C

.... P
A ∧B ⊢ C

(cut)
A,B ⊢ C,C

(c:r)
A,B ⊢ C

is a proof of A,B ⊢ C. This shows the if part, the only if part is ∧:l.

(3) Let P be a proof of A,B ⊢ ∀xC(x), then

.... P
A,B ⊢ ∀xC(x)

C(a) ⊢ C(a)
(∀:l)

∀xC(x) ⊢ C(a)
(cut)

A,B ⊢ C(a)

is a proof of A,B ⊢ C(a). This shows the if part, the only if part is ∀:r.

(4) Let P be a proof of A,B ⊢ C ∧D, then

.... P
A,B ⊢ C ∧D

C ⊢ C
(∧:l , w:l)

A,B,C ∧D ⊢ C
(cut)

A,B,A,B ⊢ C
(p:l, c:l)

A,B ⊢ C

is a proof of A,B ⊢ C. A proof of A,B ⊢ D can be constructed analogously. This
shows the if part, the only if part is ∧:r.

6

(5) By (1) there is a proof P of A,B,C ⊢ D. Therefore

.... P
A,B,C ⊢ D

(p:l, →:r)
A,C ⊢ B → D

(∧:l, p:l, ∧:l)
A ∧ C,A ∧ C ⊢ B → D

(c:l)
A ∧ C ⊢ B → D

is a proof of A ∧ C ⊢ B → D.

(6) By transitivity of ” = ”, (1) and (2) we have that

f(ā) = f ′(ā), f(ā) = y ⊢ f ′(ā) = y

is LK provable. Therefore

...
Γ ⊢ f(ā) = f ′(ā)

...
f(ā) = f ′(ā), f(ā) = y ⊢ f ′(ā) = y

(cut)
Γ, f(ā) = y ⊢ f ′(ā) = y

is a LK proof. Then, by (1),

Γ ⊢ f(ā) = y → f ′(ā) = y

is LK provable. Exchanging the roles of f, f ′ shows that

Γ ⊢ f ′(ā) = y → f(ā) = y

is LK provable. Applying (4) to these proofs, we obtain a proof of

Γ ⊢ f(ā) = y ↔ f ′(ā) = y.

Definition 2.1.7. A proof P in LK is called cut-free if none of the inference rules in P
is the cut-rule.

Theorem 2.1.8 (Cut-Elimination Theorem). Let S be a sequent and P be a LK proof
of S. Then there is a cut-free LK proof P ′ of S.

Theorem 2.1.9 (Completeness Theorem for LK). ⊢ A if and only if ⊨ A for formulas
A.

2.2 Craig’s Interpolation Theorem

We will show Craig’s Interpolation Theorem for LK, which we will later use to show
Beth’s Definability Theorem. The proof is based on [BL] and [T]. Note that a similar
result can be shown for LKe.

7

Definition 2.2.1. Let Γ ⊢ Π be a sequent. ⟨(Γ1; Π1), (Γ2; Π2)⟩ is called a partition of
Γ ⊢ Π, if Γ1,Γ2 is a permutation of Γ and Π1,Π2 is a permutation of Π.

For technical reasons, we extend the language L and the set of axioms A in the
following way: L⊤⊥ := L ∪ {⊤,⊥} and A⊤⊥ := A ∪ {⊢ ⊤,⊥ ⊢}

Definition 2.2.2. Let S be a sequent and X = ⟨(Γ1; Γ2), (Π1; Π2)⟩ a partition of S. A
triple (C,P1,P2) is called interpolation of S with respect to X if the following conditions
are met:

1. C is a L⊤⊥ forumla.

2. P1 is a A⊤⊥ proof of Γ1 ⊢ Π1, C and P2 is a A⊤⊥ proof of C,Γ2 ⊢ Π2.

3. P (C) ⊆ (P (Γ1,Π1) ∩ P (Γ2,Π2)) ∪ {⊤,⊥}

4. V (C) ⊆ V (Γ1,Π1) ∩ V (Γ2,Π2)

5. K(C) ⊂ K(Γ1,Π1) ∩K(Γ2,Π2)

6. F (C) ⊆ F (Γ1,Π1) ∩ F (Γ2,Π2)

If just the conditions 1. to 3. are met, we call (C,P1,P2) a weak interpolation of S w.r.t.
X .

Lemma 2.2.3. Let S be a sequent that is provable from A⊤⊥ in LK and let X be a
partition of S. Then there is a weak interpolation (C,P1,P2) of S w.r.t X .

Proof. According to Theorem 2.1.8 there is a cut-free LK proof P of S from A⊤⊥. We
show the lemma by induction on the number of inferences l(P) in P .

For the induction base (i.e. l(P) = 1) we have that P has the form A ⊢ A for some
formula A, or that P is one of the sequents ⊢ ⊤ or ⊥ ⊢ respectively. In the case that P
is of the form A ⊢ A, there are four possible partitions X of A ⊢ A.

(1) X = ⟨(;A), (A;)⟩: We define C = ¬A, the proofs P1,P2 belonging to C are

P1 =
A ⊢ A

(¬:r)
⊢ A,¬A and P2 =

A ⊢ A
(¬:l)

A,¬A ⊢ .

(2) X = ⟨(A;), (;A)⟩: We define C = A, the proofs P1,P2 belonging to C are

P1 = A ⊢ A and P2 = A ⊢ A.

(3) X = ⟨(A;A)(;)⟩: We define C = ⊥, the proofs P1,P2 belonging to C are

P1 :
A ⊢ A

(w:r)
A ⊢ A,⊥ and P2 = ⊥ ⊢.

(4) X = ⟨(;), (A;A)⟩: We define C = ⊤, the proofs P1,P2 belonging to C are

P1 = ⊢ ⊤ and P2 =
A ⊢ A

(w:l)
A,⊤ ⊢ A .

8

If P is ⊢ ⊤, then there are two possible partitions of S.

(1) X = ⟨(;⊤), (;)⟩: We define C = ⊥, the proofs P1,P2 belonging to C are

P1 :
⊢ ⊤

(w:r)
⊢ ⊤,⊥ and P2 = ⊥ ⊢.

(2) X = ⟨(;), (;⊤)⟩: We define C = ⊤, the proofs P1,P2 belonging to C are

P1 = ⊢ ⊤ and P2 =
⊢ ⊤

(w:l)
⊤ ⊢ ⊤

.

If P is ⊥ ⊢, then there are two possible partitions of S.

(1) X = ⟨(⊥;), (;)⟩: We define C = ⊥, the proofs P1,P2 belonging to C are

P1 =
⊥ ⊢

(w:r)
⊥ ⊢ ⊥

and P2 = ⊥ ⊢.

(2) X = ⟨(;), (⊥;)⟩: We define C = ⊤, the proofs P1,P2 belonging to C are

P1 = ⊢ ⊤ and P2 =
⊥ ⊢

(w:l)
⊤,⊥ ⊢ .

In all the above cases we have P (C) ⊆ (P (Γ1,Π1) ∩ P (Γ2,Π2)) ∪ {⊤,⊥}, therefore
(C,P1,P2) is always a weak interpolation.

As induction hypothesis, we assume that for every sequent S with a cut-free LK proof
P of length l(P) < n and every partition X of S, there is an interpolation (C,P1,P2) of
S w.r.t. X .

Let S be a LK provable sequent with a cut-free of length l(P) = n. Depending on
the last inference in P we distinguish between several cases:

(a) The last inference is a structural rule.

• The last inference is w:l or w:r (w.l.o.g. we only consider the case w:r). In this
case S has the form Γ ⊢ Π, A and P has the form

..... P
′

Γ ⊢ Π
(w:r)

Γ ⊢ Π, A

where P ′ is a proof of Γ ⊢ Π. Let X = ⟨(Γ1; Π1, A), (Γ2; Π2)⟩ be a partition
of S. We define the partition X ′ := ⟨(Γ1; Π1), (Γ2; Π2)⟩ of Γ ⊢ Π. By the
induction hypothesis, there exists a weak interpolation (C ′,P ′

1,P ′
2) of Γ ⊢ Π

w.r.t X ′. We define C := C ′, P2 := P ′
2 and

P1 :=

.....
P ′

1

Γ1 ⊢ Π1, C
(w:r)

Γ1 ⊢ Π1, C, A
(p:r)

Γ1 ⊢ Π1, A, C

9

Clearly P1 is a proof of Γ1 ⊢ Π1, A, C and P2 a proof of C,Γ2 ⊢ Π2. By
the induction hypothesis, we have P (C ′) ⊆ (P (Γ1,Π1) ∩ P (Γ2,Π2)) ∪ {⊤,⊥},
and therefore P (C) ⊆ (P (Γ1,Π1, A) ∩ P (Γ2,Π2)) ∪ {⊤,⊥}. This shows that
(C,P1,P2) is a weak interpolation of S w.r.t X .

The case of a partition X̃ = ⟨(Γ1; Π1), (Γ2; Π2, A)⟩ can be shown analogously.

• The last inference is p:r or p:l (w.l.o.g. we only consider p:r). In this case S
has the form Γ ⊢ Π, B,A,∆ and P has the form

..... P
′

Γ ⊢ Π, A,B,∆
(p:r)

Γ ⊢ Π, B,A,∆

where P ′ is a proof of Γ ⊢ Π, A,B,∆. Let X = ⟨(Γ1; Π1, B,∆1),
(Γ2; Π2, A,∆2)⟩ be a partition of S. Then X is a partition of Γ ⊢ Π, A,B,∆.
Therefore, by the induction hypothesis, there existes a weak interpolation
(C,P1,P2) of Γ ⊢ Π, A,B,∆ w.r.t X . Clearly this is also a weak interpolation
for S w.r.t. X . Weak interpolations for the other possible partitions are
obtained analogously.

• The last inference is c:r or c:l (w.l.o.g. c:r). In this case S has the form Γ ⊢ Π, A
and P has the form

..... P
′

Γ ⊢ Π, A,A
(c:r)

Γ ⊢ Π, A

where P ′ is a proof of Γ ⊢ Π, A,A. Let X be a partition von S. If X has the
form ⟨(Γ1; Π1), (Γ2; Π2, A)⟩, we define X ′ := ⟨(Γ1; Π1), (Γ2; Π2, A,A)⟩. Then
X ′ is a partition of Γ ⊢ Π, A,A. By the induction hypothesis, there exists a
weak interpolation (C ′,P ′

1,P ′
2) of Γ ⊢ Π, A,A w.r.t. X ′. We define C := C ′,

P1 := P ′
1 and

P2 :=

.....
P ′

2

C,Γ2 ⊢ Π2, A,A
(c:r)

C,Γ2,⊢ Π2, A

By the induction hypothesis, we have P (C) ⊆ (P (Γ1,Π1) ∩ P (Γ2,Π2, A)) ∪
{⊤,⊥}, therefore (C,P1,P2) is a weak interpolation of S w.r.t. X .

If X has the form ⟨(Γ1; Π1, A), (Γ2; Π2)⟩, we define X ′ := ⟨(Γ1; Π1, A,A), (Γ2; Π2)⟩.
Then X ′ is a partition of Γ ⊢ Π, A,A. Therefore, there exists a weak inter-
polation (C ′,P ′

1,P ′
2) of Γ ⊢ Π, A,A w.r.t X ′. We define C := C ′,P2 := P ′

2

and

P1 :=

.....
P ′

1

Γ1 ⊢ Π1, A,A,C
(p:r)

Γ1 ⊢ Π1, C, A,A
(c:r)

Γ1 ⊢ Π1, C, A
(p:r)

Γ1 ⊢ Π1, A, C

10

By the induction hypothesis, we have P (C) ⊆ (P (Γ1,Π1, A) ∩ P (Γ2,Π2)) ∪
{⊤,⊥}.Therefore, (C,P1,P2) is a weak interpolation of S w.r.t. X .

(b) The last inferene in P is a logical rule.

• The last inference is ¬:l or ¬:r (w.l.o.g ¬:l). In this case S has the form
S = ¬A,Γ ⊢ Π and P has the form

..... P
′

Γ ⊢ Π, A
(¬:l)

¬A,Γ ⊢ Π

Let X = ⟨(¬A,Γ1; Π1), (Γ2; Π2)⟩ be a partition of S. We define
X ′ := ⟨(Γ1; Π1, A), (Γ2; Π2)⟩. Then X ′ is a partition of Γ ⊢ Π, A. Therefore,
there exists a weak interpolation (C ′,P ′

1,P ′
2) of Γ ⊢ Π, A w.r.t. X ′. We define

C := C ′, P2 := P ′
2 and

P1 :=

.....
P ′

1

Γ1 ⊢ Π1, A, C
′
(p:r)

Γ1 ⊢ Π1, C, A
(¬:l)

¬A,Γ1 ⊢ Π1, C

By the induction hypothesis, we have P (C) ⊆ (P (Γ1,Π1, A) ∩ P (Γ2,Π2)) ∪
{⊤,⊥}. Therefore, (C,P1,P2) is a weak interpolation of S w.r.t. X . The case
of a partition X = ⟨(Γ1; Π1), (¬A,Γ2; Π2)⟩ is analogous.

• The last inference is ∧:r. In this case S has the form Γ ⊢ Π, A ∧B and P has
the form

..... P
′

Γ ⊢ Π, A

..... P̃
Γ ⊢ Π, B

(∧:r)
Γ ⊢ Π, A ∧B

where P ′ and P̃ are proofs of Γ ⊢ Π, A and Γ ⊢ Π, B.

Let X = ⟨(Γ1; Π1), (Γ2; Π2, A ∧B)⟩ be a partition of S.
Then X ′ := ⟨(Γ1; Π1), (Γ2; Π2, A)⟩ and X̃ := ⟨(Γ1; Π1), (Γ2; Π2, B)⟩ are par-
titions of Γ ⊢ Π, A and Γ ⊢ Π, B respectively. Therefore, we obtain weak
interpolations (C ′,P ′

1,P ′
2) of Γ ⊢ Π, A w.r.t. X ′ and (C̃, P̃1, P̃2) of Γ ⊢ Π, B

w.r.t. X̃ . We define C := C ′ ∧ C̃,

P1 :=

.....
P ′

1

Γ1 ⊢ Π1, C
′

......
P̃1

Γ1 ⊢ Π1, C̃
(∧:r)

Γ1 ⊢ Π1, C
′ ∧ C̃

11

and

P2 :=

.....
P ′

2

C ′,Γ2 ⊢ Π2, A
(∧:l)

C ′ ∧ C̃,Γ2 ⊢ Π2

......
P̃2

C̃,Γ2 ⊢ Π2, B
(∧:l)

C ′ ∧ C̃,Γ2 ⊢ Π2, B
(∧:r)

C ′ ∧ C̃,Γ2 ⊢ Π2, A ∧B
By the induction hypothesis, we have P (C ′) ⊆ (PK(Γ1,Π1)∩ P (Γ2,Π2, A))∪
{⊤,⊥} and P (C̃) ⊆ (P (Γ1,Π1) ∩ PK(Γ2,Π2, B)) ∪ {⊤,⊥}. This implies
P (C) ⊆ (P (Γ1,Π1) ∩ P (Γ2,Π2, A ∧ B)) ∪ {⊤,⊥}. Therefore, (C,P1,P2) is
a weak interpolation of S w.r.t. X .

For a partition X = ⟨(Γ1; Π1A∧B), (Γ2; Π2)⟩ of S we define the partitions X ′ :=
⟨(Γ1; Π1, A), (Γ2; Π2)⟩ and X̃ := ⟨(Γ1; Π1, B), (Γ2; Π2)⟩ of Γ ⊢ Π, A and Γ ⊢
Π, B. By the induction hypothesis, there are weak interpolations (C ′,P ′

1,P ′
2) of

Γ ⊢ Π, A w.r.t. X ′ and (C̃, P̃1, P̃2) of Γ ⊢ Π, B w.r.t X̃ . We define C := C ′∨C̃,

P1 :=

.....
P ′

1

Γ1 ⊢ Π1, A, C
′

(∨:r)
Γ1 ⊢ Π1, A, C

′ ∨ C̃
(p:r)

Γ1 ⊢ Π1, C
′ ∨ C̃, A

......
P̃1

Γ1 ⊢ Π1, B,A
(∨:r)

Γ1 ⊢ Π1, B, C
′ ∨ C̃

(p:r)
Γ1 ⊢ Π1, C

′ ∨ C̃, B
(∧:r)

Γ1 ⊢ Π1, C
′ ∨ C̃, A ∧B

(p:r)
Γ1 ⊢ Π1, A ∧B,C ′ ∨ C̃

and

P2 :=

.....
P ′

2

C ′,Γ2 ⊢ Π2

......
P̃2

C̃,Γ2 ⊢ Π2 ∨:l
C ′ ∨ C̃,Γ2 ⊢ Π2

Analogously to the previous partition we have that (C,P1,P2) is a weak in-
terpolation of S w.r.t. X .

• The last inference is ∀:l. Then S has the form ∀xF [t/x],Γ ⊢ Π and P has the
form

..... P
′

F,Γ ⊢ Π

∀xF (x),Γ ⊢ Π

for a proof P ′ of F,Γ ⊢ Π, where t is a term in F .
Let X = ⟨(∀xF [t/x],Γ1; Π1), (Γ2; Π2)⟩ be a partition of S. Then X ′ :=
⟨(F,Γ1; Π1), (Γ2; Π2)⟩ is a partition of F,Γ ⊢ Π. Therefore, there is a weak in-
terpolation (C ′,P ′

1,P ′
2) of F (t),Γ ⊢ Π w.r.t. X ′. We define C := C ′, P2 := P ′

2

12

and

P1 :=

.....
P ′

1

F,Γ1 ⊢ Π1, C
′

(∀:l)
∀xF [t/x],Γ1 ⊢ Π1, C

′

Since P (F) = P (∀xF [t/x]) we have P (C) ⊆ (P (∀xF [t/x],Γ1,Π1)∩P (Γ2,Π2,))∪
{⊤,⊥} and (C,P1,P2) is a weak interpolation of S w.r.t. X . The case
X = ⟨(Γ1; Π1), (∀xF [t/x],Γ2; Π2)⟩ is analogous.

• The last inference is ∀:r. Then S has the form Γ ⊢ Π,∀xF [a/x] and P has the
form

..... P
′

Γ ⊢ Π, F

Γ ⊢ Π,∀xF [a/x]
for a proof P ′ of Γ ⊢ Π, F . Note that a does not occur in Γ ⊢ Π,∀xF [a/x].
Let X = ⟨(Γ1; Π1), (Γ2; Π2,∀xF [a/x])⟩ be a partition of S. Then X ′ :=
⟨(Γ1; Π1), (Γ2; Π2, F)⟩ is a partition of Γ ⊢ Π, F . Therefore, there exists a weak
interpolation (C ′,P ′

1,P ′
2) of Γ ⊢ Π, F w.r.t. X ′. Since a is an eigenvariable, it

does not occur in Γ1,Γ2 ⊢ Π1,Π2. We define C := ∀xC ′[a/x]

P1 :=

.....
P ′

1

Γ1 ⊢ Π1, C
′

(∀:r)
Γ1 ⊢ Π1∀xC ′[a/x]

and

P2 :=

.....
P ′

2

C ′(a),Γ2 ⊢ Π2, F
(∀:l)

∀xC ′[a/x],Γ2 ⊢ Π2, F
(∀:r)

∀xC ′[a/x],Γ2 ⊢ Π2, ∀xF [a/x]
Since P (C ′) = P (∀xC ′[a/x]) we have that (C,P1,P2) is a weak interpolation
of S w.r.t. X .

For a partition X = ⟨(Γ1; Π1, ∀xF [a/x]), (Γ2; Π2)⟩ of S we define
X ′ := ⟨(Γ1; Π1, F), (Γ2; Π2)⟩. Then X ′ is a partition of Γ ⊢ Π, F . Therefore,
there exists a weak interpolation (C ′,P ′

1,P ′
2) of Γ ⊢ Π, F w.r.t. X ′.

Since a is an eigenvariable, it does not occur in Γ1,Γ2 ⊢ Π1,Π2. We define

13

C := ∃xC ′[a/x],

P1 :=

.....
P ′

1

Γ1 ⊢ Π1F,C
′

(∃:r)
Γ1 ⊢ Π1, F,∃xC ′[a/x]

(p:r)
Γ1 ⊢ Π1,∃xC ′[a/x], F (a)

(∀:r)
Γ1 ⊢ Π1, ∃xC ′[a/x], ∀xF [a/x]

(p:r)
Γ1 ⊢ Π1,∀xF (x),∃xC ′[a/x]

and

P2 :=

.....
P ′

2

C ′,Γ2 ⊢ Π2
(∃:l)

∃xC ′[a/x],Γ2 ⊢ Π2

Since P (C ′) = P (∃xC ′[a/x]) this yields a weak interpolation (C,P1,P2) of S
w.r.t. X .

• The inferences ∨:r, ∨:l, →:r, →:l, ∃:r and ∃:l are done in a similar way to one
of the inferences above.

Definition 2.2.4. Let S be a sequent, X a partition of S and (C,P1,P2) a weak inter-
polation of S w.r.t. X . A term t is a critical term of (C,P1,P2) if one of the following
conditions hold:

• t ∈ Vf (C) and t /∈ Vf (Γ1,Π1) ∩ Vf (Γ2,Π2)

• t ∈ K(C) and t /∈ K(Γ1; Π1) ∩K(Γ2; Π2)

• t = f(t1, . . . tj) for terms t1, . . . tj, f ∈ F (C) and f /∈ F (Γ1; Π1) ∩ F (Γ2; Π2)

Lemma 2.2.5. Let S be a sequent, X a partition of S and (C,P1,P2) be a weak inter-
polation of S w.r.t. X . Then there exists an interpolation (D,Q1,Q2) of S w.r.t. to
X .

Proof. We have to eliminate all critical terms of (C,P1,P2). To do so, we recursively
define

C0 := C, ϕ0
1 := P1, ϕ0

2 := P2.

If (Ci, ϕ
i
1, ϕ

i
2) is already defined such that ϕi

1 is a proof of Γ1 ⊢ Π1, Ci and ϕ
i
2 is a proof of

Ci,Γ2 ⊢ Π2, we define Ci+1, ϕ
i+1
1 , ϕi+1

2 in the following way:
We chose one critical term t such that ∥t∥ is maximal.1 If ∥t∥ > 1, we have t =

f(t1, . . . tk) for a function symbol f and terms t1, . . . tk. Since t is a critical term we have
f /∈ F (Γ1; Π1) ∩ F (Γ2; Π2). There are three cases:

1∥t∥ denotes the number of symbols in t (i.e. ∥t∥ = 1 for t ∈ K(L)∪V (L) and ∥t∥ = 1+∥t1∥+· · ·+∥tk∥
for t = f(t1, . . . tk)).

14

(1) f ∈ F (Γ1; Π1) and f /∈ F (Γ2; Π2). By assumption ϕi
2 is a proof of C(t),Γ2 ⊢ Π2.

Let ϕi
2[t/α] be the result of replacing all occurences of t in ϕi

2 with the free variable
α not occuring in Γ2,Π2, Ci and

ϕi+1
2 :=

......
ϕi
2[t/α]

Ci[t/α],Γ2 ⊢ Π2
(∃:l)

∃xCi[α/x],Γ2 ⊢ Π2

where x is a bound variable not occuring in C. Then ϕi+1
2 is a proof:

Firstly, since f does not occur in Γ2,Π2 neither does t and the replacement of t with
α does not change Γ2,Π2. Secondly, since α is also a term, none of the rules ∀ : l and
∃ : r is invalid after the replacement. Since t is not a variable, it cannot appear as an
eigenvariable in one of the rules ∃ : l or ∀ : r. Therefore all quantifier introduction
in ϕi+1

2 are valid. Clearly, all the other inference rules are also preserved. Finally,
since α does not occur in Γ2,Π2∃xCi(x) the last ∃ : l introduction is valid and ϕi+1

2

is a proof.

Now we define Ci+1 := ∃xCi[t/x] and

ϕi+1
1 :=

......
ϕi
1

Γ1 ⊢ Π1, Ci(t)
(∃:r)

Γ1 ⊢ Π1,∃xCi[t/x]

Then (Ci+1, ϕ
i+1
1 , ϕi+1

2) is a (weak) interpolation of S w.r.t. X , moreover P (Ci) =
P (Ci+1).

(2) f ∈ FC(Γ2; Π2) and f /∈ FC(Γ1; Π1). Apart from using universal quantifiers instead
of existential quantifiers and changing the roles of ϕi

1 and ϕ
i
2, this case is analogous

to (1).

(3) f /∈ FC(Γ2; Π2) and f /∈ FC(Γ1; Π1). We can simply define the interpolation
(Ci+1, ϕ

i+1
1 , ϕi+1

2) in the same way as in (1) or (2).

If ∥t∥ = 1 then t is either a free variable or a constant. We construct (Ci+1, ϕ
i+1
1 , ϕi+1

2) in
the same way as before, except in the case that t is a free variable we use it directly as
eigenvariable for the introduction of ∃:l and ∀:r respectively.

Since there are only finitely many critical terms in C, there exists n ∈ ω such that
(Cn, ϕ

n
1 , ϕ

n
2) is a weak interpolation of S w.r.t. X and C does not contain any critical

terms. Therefore, (D,Q1,Q2) := (Cn, ϕ
n
1 , ϕ

n
2) is an interpolation of S w.r.t. X .

Theorem 2.2.6 (Craig’s Interpolation Theorem). Let S be a sequent and X a partition
of S. If S is LK provable from A⊤⊥, then there exists an interpolation (C,P1,P2) of S
w.r.t. to X .

Proof. Follows immediately from Lemma 2.2.3 and Lemma 2.2.5.

Sometimes the following corollary is refered to as Craigs’s Interpolation Theorem.

15

Corollary 2.2.7 (Craig’s Interpolation Theorem). Let A,B be formulas such that A→ B
is provable in LK.

If A and B have at least one predicate symbol in common, then there exists a formula
C such that A → C and C → B are provable in LK and C only contains free variables,
constants, function symbols and predicate symbols that appear in both A and B.

Proof. By assumption, the sequent S := A ⊢ B is provable in LK. Consider the partition
⟨(A; ∅), (∅;B)⟩ of S. By Theorem 2.2.6 there exists a formula C such that A ⊢ C and
C ⊢ B are provable in LK from A⊤⊥.

Let R be a k-ary predicate symbol that appears both in A and in B. We define the
formula R′ as ∀x1 . . . ∀xkR(x1, . . . , xk) and C’ as the formula we obtain by replacing every
occurence of ⊤ in C by R′ → R′ and every occurence of ⊥ in C by ¬(R′ → R′). Since
⊢ R′ → R′ and ¬(R′ → R′) ⊢ are LK provable from A, so is C ′. Moreover C ′ only
contains free variables, constants, function symbols and predicate symbols that appear
both in A and in B.

An adaption of the proof above shows that Craig’s Interpolation Theorem also holds
for LKe.

Theorem 2.2.8 (Craig’s Interpolation Theorem for LKe). Let A,B be formulas such that
A → B is provable in LKe. If A and B have at least one predicate symbol in common,
then there exists a formula C such that A → C and C → B are provable in LKe and
C only contains free variables, constants, function symbols and predicate symbols that
appear both in A and B.

2.3 The Beth Definability Theorem

The proof of Beth’s Definability Theorem is based on [T].

Definition 2.3.1. Let R,R′ be n-ary predicate symbols, f, f ′ function symbols, c, c′

constants and A(.) a formula.

(1) A defines R implicitly if

A(R) ∧ A(R′) → ∀x1 . . . ∀xn (R(x1, . . . xn) ↔ R′(x1, . . . xn))

is LK provable.

(2) A defines f implictly if

A(f) ∧ A(f ′) → ∀x1 . . . ∀xn f(x1, . . . , xn) = f ′(x1, . . . , xn)

is LKe provable.

(3) A defines c implictly if

A(c) ∧ A(c′) → c = c′

is LKe provable.

16

Definition 2.3.2. Let R be a n-ary predicate symbol, f a function symbol, c a constant
and A(.) a formula.

(1) A defines R explicitly if there is a formula ϕ(a1, . . . an) such that

A(R) → ∀x1 . . . ∀xn(R(x1, . . . xn) ↔ ϕ(x1, . . . xn))

is LK provable.

(2) A defines f explicitly if there is a formula ϕ(a1, . . . an+1) such that

A(f) → (∀x1 . . . ∀xn+1(f(x1, . . . xn) = xn+1 ↔ ϕ(x1, . . . xn+1)))

is LKe provable.

(3) A defines c explicitly if there is a formula ϕ(a1) such that

A(c) → (x = c↔ ϕ(x))

is LKe provable.

Theorem 2.3.3 (Beth’s Definability Theorem). (1) Let R be a predicate symbol that
is defined implicitly by the formula A(.). Then there is a explicit definition of R
and the formula defining R only contains predicate, function symbols and constans
that appear in A(.).

(2) Let f be a function symbol that is defined implicitly by the formula A(.). Then there
is an explicit definition of f and the formula defining f only contains predicate,
function symbols and constants that appear in A.

(3) Let c be a constant that is defined implicitly by the formula A(.). Then there is an
explicit definition of c and the formula defining c only contains predicate, function
symbols and constants that appear in A.

Proof. (1) Since A(.) defines R implicitly, the formula

A(R) ∧ A(R′) → ∀x1 . . . ∀xn(R(x1, . . . xn) ↔ R′(x1, . . . xn))

is LK provable. Let a1, . . . an be free variables. By Lemma 2.1.6 (1)-(3), we have
that

A(R), A(R′) ⊢ R(a1, . . . an) ↔ R′(a1, . . . an)

is LK provable. Recall that D1 ↔ D2 is an abbreviation of (D1 → D2)∧(D2 → D1)
for arbitrary formulas D1, D2. Therefore, by Lemma 2.1.6 (4)-(5)

A(R) ∧R(a1, . . . an) ⊢ A(R′) → R′(a1, . . . an)

is LK provable. Applying Craig’s Interpolation Theorem (Corollary 2.2.7) yields a
formula C such that

⊢ A(R) ∧R(a1, . . . an) → C (1)

17

and

⊢ C → (A(R′) → R′(a1, . . . an)) (2)

are LK provable and C only contains predicate symbols, function symbols and
constants appearing in both A(R) ∧R(a1, . . . an) and A(R′) → R′(a1, . . . an).

By Lemma 2.1.6, we have that the sequent in (1) is proveable if and only if

A(R) ⊢ R(a1, . . . am) → C

is provable.

Again by Lemma 2.1.6, the sequent in (2) is provable if and only if

S := A(R′) ⊢ C → R′(a1, . . . , am)

is provable. We replace every appearance of R′ in the proof of S with R. Since R
does not appear in C this yields a proof of

A(R) ⊢ C → R(a1, . . . an).

Therefore, by Lemma 2.1.6 we have that

A(R) ⊢ R(a1, . . . an) ↔ C

is provable. Now we apply ∀:r to each of the variables a1, . . . an and obtain a proof
of

A(R) ⊢ ∀x1 . . . ∀xn(R(x1, . . . , xn) ↔ C(x1, . . . xn)).

(2) Consider the predicate symbols defined by R(x1, . . . , xn, y) ↔ f(x1, . . . , xn) = y
and R′(x1, . . . , xn, y) ↔ f ′(x1, . . . , xn) = y. Applying Lemma 2.1.6 (3), (6) to our
assumption yields that

⊢ A(f) ∧ A(f ′) → ∀x1 . . . ∀xn∀y(R(x1, . . . , xn, y) ↔ R′(x1, . . . , xn, y))

is LKe provable. In analogy to (1) we see that

A(f) ∧R(a1, . . . , an, b) ⊢ A(f ′) → R′(a1, . . . , an, b)

is LKe provable. Craig’s Interpolation Theorem yields a formula C such that

⊢ A(f) ∧R(a1, . . . , an, b) → C

and
⊢ C → (A(f ′) → R′(a1, . . . , an, b)

are LKe provable. From that, we obtain a LKe proof of

A(f) ⊢ ∀x1, . . . , xn∀y(R(x1, . . . , xn, y) ↔ C(x1, . . . xn, y))

in an analogous way to (1).

18

(3) Consider the predicate symbols defined by R(x) ↔ x = c and R′(x) ↔ x = c′ and
proceed in analogy to (2).

We also consider the following model theoretic version of Beth’s Definability Theorem.

Corollary 2.3.4. Let L1 and L2 be two first-order languages and ϕ be a L1∪L2 formula.
Suppose that for all L1 ∪ L2 models M,N ⊨ ϕ we have, that if ML1 = NL1 then M =
N. Then for every L2 predicate symbol R there exists a L1 formula A such that ϕ ⊨
R(a1, . . . , an) ↔ A(a1, . . . an).

The same is true for function symbols and constants.

Proof. Follows immediately from Theorem 2.3.3 and Theorem 2.1.9.

19

3 Computability Theory

First we recall some basic definitions and concepts of computability theory. For further
information and detailed proofs see [H].

Definition 3.1. The primitive recursive functions are the smallest set of functions, that
contain the constant function 0, the successor function S and all projections πk

i : Nk → N
and are closed under composition and primitive recursion.

Definition 3.2. A partial function from Nj → N is a function f : D → N for some
D ⊆ N j. We write f(x̄) ↓ if x ∈ D (i.e. if f is defined at x̄) and f(x̄) ↑ if x̄ /∈ D (i.e. if
f is not defined at x̄).

Remark 3.3. Note that in Definition 3.2 D = Nj is a valid domain for a partial function,
i.e. every total function can be viewed as a partial function.

Definition 3.4. The partial recursive functions, or computable functions, are the small-
est set of functions that contain the primitive recursive functions and are closed under
minimization.

If f : Nk+1 → N is partial recursive, so is

µf(x̄) :=

{
y if f(x̄, y) = 0 and ∀y′ < y : f(x̄, y′) ↓ ∧f(x̄, y′) ̸= 0
undefined if there is no such y

Proposition 3.5. A function f is partial recursive if and only if it is Turing-computable.

Definition 3.6. A set A ⊆ Nk is called decidable if its characteristic function 1A is
partial recursive. A is called undecidable if it is not decidable.

Since there are only countably many partial recursive functions, we can enumerate
them. From now on let {φe : e ∈ N} be a fixed enumeration of all partial recursice
functions.

Proposition 3.7 (Undecidablility of the halting problem). The set {e ∈ N | φe(0) ↓} is
undecidable.

Definition 3.8. Let e ∈ N, if φe(0) ↓, we denote by Steps(φe(0)) the number of steps it
takes the Turing machine e to compute the value of φe(0). Here, every change from one
configuration to another counts as a step.

Lemma 3.9. There is no partial recursive function f such that for all e ∈ N:

φe(0) ↓ implies that Steps(φe(0)) ≤ f(e)

Proof. Suppose such a partial recursive f exists. Then we can use it to decide the halting
problem:

• On input e ∈ N compute f(e).

• Do the first f(e) steps in the computation of φe(0).

– If φe(0) ↓ in the first f(e) steps, we are finished.

– If φe(0) ↑ after the first f(e) steps, by the condition on f we have φe(0) ↑ in
general.

Thus we have decided the halting problem in contradiction to Propostion 3.7. Therefore,
no such f can exist.

20

3.1 Coding of Formulas

In order to encode formulas we need to enumerate predicate symbols, function symbols,
constants and variables. This can be done in the following way:

• Rk
i is the i-th k-ary predicate symbol (for i, k ∈ N)

• fk
i is the i-th k-ary function symbol (for i, k ∈ N)

• ci is the i-th constant (for i ∈ N)

• xi is the i-th variable (for i ∈ N)

Lemma 3.1. There is a (partial) recursive bijection ⟨., .⟩ : N× N → N.

Proof. Consider the bijection defined as

⟨x, y⟩ =

(
x+y−1∑
i=0

i+ 1

)
+ y =

(
x+y∑
i=1

i

)
+ y =

(x+ y)(x+ y + 1)

2
+ y

Since addition and multiplication are primitive recursive and z 7→ z
2
can be written as

µf(z) with f(z, z0) = 2z0 − z, we have that ⟨., .⟩ is partial recursive.

Let l(x) and r(x) denote the inverses of ⟨., .⟩ (i.e. l(⟨x, y⟩) = x) and r(⟨x, y⟩) = y)).

Lemma 3.2. Let k ∈ N\{0}. Then there is a partial recursive bijection ⟨., . . . , .⟩ : Nk →
N.

Proof. If k = 1 we define ⟨x⟩ := x. For k = 2 we use the bijection from Lemma 3.1. For
k ≥ 3 we define the bijection recursively by

⟨x1, . . . xk⟩ := ⟨x1, ⟨x2, . . . xk⟩⟩.

Now we proceed to code finite rooted trees.

Definition 3.3. Let T be a finite, rooted, labeled tree with root r and let T1, . . . Tk be
its subtrees. We recursively define the code of T as #T := ⟨r, k,#T1, . . .#Tk⟩, where
⟨. . . ⟩ is the bijection from Lemma 3.2.

Every term induces a labeled tree in the following way. The tree of a variable or a
constant is a tree with one vertex, whose label is the variable or constant, respectively.
The tree of a term t = f(t1, . . . tk) is the tree with root f and with subtrees T1, . . . Tk,
where Ti is the tree of the term ti for i = 1 . . . k.

Moreover, every formula can be represented by a tree in the following way. A quantifier
induces a vertex with two children, where the first child is the variable and the second
child is the formula without the quantifier. A logical connective induces a node with one
or two children, where the children are the subformulas that are connected by the logical
connective. An atom R(t1, tk) induces a note with k children, where the children are the
terms t1, . . . tk.

21

Example 3.4. The tree of the term t = f 2
1 (f

1
1 (x0), f

2
2 (x0, x1)) is the following.

f 2
1

f 1
1

f 2
2

x0 x0 x1

Figure 1: Tree of f(g(x0), h(x0, x1))

The tree of the formula A := ∀x0(R2
1(t, x0) ∨R1

2(x0)) is

∀

x0

→

R2
1

t x0 x0

R1
1

Figure 2: Tree of ∀x0(R2
1(t, x0) ∨R1

2(x0))

Now we are ready to code terms and formulas

Definition 3.5. We assign codes in the following way.

#xi := ⟨0, i⟩ #fk
i := ⟨k + 1, i⟩

The code #t of a term t is given by the code of its tree.
Moreover, we define

#¬ := ⟨0, 0⟩, # →:= ⟨1, 0⟩, #∀ := ⟨2, 0⟩, #Rk
i := ⟨i+ 3, k⟩

The other logical connectives are considered to be abbreviations. The code #A of a
formula A is given by the code of its tree.

Example 3.6 (Continuation of Example 3.4). The code of t is the natural number

#t = ⟨⟨3, 1⟩, 2, ⟨⟨2, 1⟩, 1, ⟨0, 0⟩⟩, ⟨⟨3, 2⟩, 2, ⟨0, 0⟩, ⟨0, 1⟩⟩⟩

The code of A is the natural number

#A = ⟨⟨2, 0⟩, 2, ⟨0, 0⟩, ⟨⟨1, 0⟩, 2, ⟨⟨4, 2⟩, 2,#t, ⟨0, 0⟩⟩, ⟨⟨3, 1⟩, 1⟨0, ⟩⟩⟩⟩

22

Definition 3.7. For a variable evaluation b of the first k variables we define

#b := ⟨b(x1), . . . , b(xk)⟩

In addition to formulas and variable evaluations, we will also need to encode the
Halting Problem up to a certain level c: Recall that a configuration of a Turing machine
is a tupel A1A2 . . . Ai−1qAi+1 . . . An where Aj is a symbol on the tape of the machine and
q is a state of the Turing machine. Note that given a configuration α of a (deterministic)
Turing machine M one can uniquely determine the next configuration in the execution
of M .

Definition 3.8. For a Turing machine M let ρM be the function that maps every con-
figuration of M to the next configuration in the execution of M .

We define the code of a configuration α = A1 . . . Ai−1qAi+1 . . . An as

#α := ⟨A1, . . . Ai−1, q, Ai+1, . . . , An⟩

We now look at tupels of configurations that represent the first steps in the execution
of a Turing Machine M i.e. at all tupels C = (α0, . . . , αn) such that α0 is a starting
configuration of M and ρM(αi−1) = αi for i ∈ {1, . . . n}. For such a C we define

#C := ⟨α0, . . . , αn⟩

23

4 Complexity of Explicit Definitions

In this section, we will show that the quantifier complexity of the explicit definitions
obtained by Beth’s Definability Theorem (Theorem 2.3.3) is not computable. Unless
otherwise stated, the proof is based on [F].

We will work with a fixed first order language L, containing the predicate constant =,
the individual constant 0 and the function constants S(.),+, ∗, P (.), ⟨., .⟩, −̇,M, ⌊1

2
(.)⌋.

Definition 4.1. The Π0 and Σ0 formulas are the quantifier free formulas. If the Σn and
Πn formulas are already defined, we define the Σn+1 and Πn+1 formulas as follows.

Σn+1 := Σn ∪ Πn ∪ {∃x1 . . . ∃xkA | k ∈ ω,A is a Πn formula}
Πn+1 := Σn ∪ Πn ∪ {∀x1 . . . ∀xkA | k ∈ ω,A is a Σn formula}

Since every formula is equivalent to a formula in prenex form, we will, from now on,
assume that all formulas we work with are in prenex form.

Definition 4.2. Let n ∈ N. We define the numeral n as the term Sn(0). For a formula
φ (or a variable evaluation b) we define ⌜φ⌝ := #φ (⌜b⌝ := #b).

Definition 4.3. A model M is an ω-model if 0, S ∈ L(M), the domain of M is ω, 0 is
interpreted as 0ω and S is interpreted as the successor function.

Definition 4.4. We define the following set T0 of formulas.

T0 := {¬(S(x) = 0), S(x) = S(y) → x = y, x+ 0 = x, x+ S(y) = S(x+ y), x ∗ 0 = 0,

x ∗ (y + 1) = x ∗ y + x, P (0) = 0, P (S(x)) = x, x−̇0 = x, x−̇(y + 1) = P (x−̇y),

M(0) = 0,M(S(x)) = S(0)−̇M(x), x = ⌊1
2
x⌋+ ⌊1

2
x⌋+M(x),

⟨x, y⟩ = ⌊1
2
((x+ y)(x+ y + 1))⌋+ y, ⟨l(x), r(x)⟩ = x,

⟨x, y⟩ = ⟨w, z⟩ → (x = w ∧ y = z), x ̸= 0 → S(P (x)) = x,

(x−̇y = 0 ∧ y−̇x = 0) → x = y}

Remark 4.5. By the observations in Chapter 3 there is an ω-Model for T0 and all the
functions defined are partial recursive.

Moreover, M(x) will be interpreted as M(x) = xmod2, which means that ⌊1
2
x⌋ cor-

responds to the floor funtion applied to x/2 and ⟨x, y⟩ to the bijection defined in Lemma
3.1. This allows us to encode formulas, variable assignments, etc. in T0 (see Chapter
3.1).

We start by proofing Skolemization for T0:

Lemma 4.6 (Skolemization). Let a finite language L′ ⊃ L and a finite set T of L′

formulas such that T ⊨ T0 and T has an ω- model be given. Then there exists a finite
language L∗ and a finite set of quantifier free L∗ formulas T ∗ such that

(1) There is an ω-model for T ∗.

(2) T ∗ ⊨ T .

24

(3) L∗\L′ only contains function constants.

(4) If f ∈ L∗\L′ is a n-ary function constant, then there is a L′ formula A(x1, . . . xn, xn+1)
such that

T ∗ ⊨ f(x1, . . . xn) = xn+1 ↔ A(x1, . . . xn, xn+1).

Proof. We recursively define the sets of formulas Sk : k ∈ N. There is a set S0 of L′

sentences such that T ⊨ S0 and S0 ⊨ T (replace free variables with universally bounded
variables). Then every ω-model of T is also an ω-model of S0. Assume Sk is already
defined and has an ω- model Mk. We define

Sk+1 := Sk ∪ {∀y1 . . . ∀ynQ1w1 . . . QmwmA(y1, . . . yn, fσ(x1, . . . , xn), w1, . . . , wm),

∀y1 . . . ∀ynQ̄1w1 . . . Q̄mwmA(y1, . . . yn, z, w1, . . . , wm) → fσ(y1, . . . yn)−̇z = 0|
fσ is new function constant, σ is a Sk sentence of the form

∀y1 . . . ∀yn∃xQ1w1 . . . QmwmA(y1, . . . yn, x, w1, . . . wm)}

Here we have Qi ∈ {∀,∃} and Q̄i = ∀ if Qi = ∃ (Q̄i = ∃ if Qi = ∀) for all i ∈ {1, . . .m}.
We expand M to an ω-model Mk+1 of Sk+1, i.e. we interpret every new function constant
fσ. Let σ = ∀y1 . . . ∀yn∃xQ1w1 . . . QmwmA(y1, . . . yn, x, w1, . . . wm) ∈ Sk and y1, . . . yn ∈
ω. We define

fMk+1
σ (y1, . . . , yn) := min{z ∈ ω|Mk ⊨ Q1w1 . . . Qmwm(A(y1, . . . , z, w1, . . . , wm))}.

Then Mk+1 is clearly an ω -model of Sk+1. Now define S :=
⋃

k∈N Sk and let T ∗ be the set
of formulas that is the result of removing all quantifiers of all formulas in S. Then S and
therefore also T ∗ have an ω-model M (since for every function constant f ∈ L(T ∗)\L′

there exist k ∈ N, σ ∈ Sk such that f = fσ we can define fM := f
Mk+1
σ). This shows (1).

(2) is clearly also true and (3) holds since we only added function constants.
For (4) we show that the statement is true for Sk, k ∈ ω by induction. The case k = 0

is clearly true since L(S0)\L(L′) = ∅. Suppose (4) holds for Sk and let f ∈ Sk+1, by
construction of Sk+1 there is a sentence σ ∈ Sk (of the proper form) such that

Sk ⊨ f(x, . . . xn) = xn+1 ↔ ∀y1 . . . ∀ynQ̄1w1 . . . Q̄mwmA(y1, . . . yn, xn+1, w1, . . . , wm)︸ ︷︷ ︸
:=Cf

.

Since for every function symbol in Cf property (4) holds by the induction hypothesis,
(4) also holds for f .

Definition 4.7. Let A be a L formula. A is called Σ0
n formula if it is a prenex formula with

exactly n alternating quantifiers and the outermost quantifier is an existential quantifier.
A is called a Π0

n formula if it is a prenex formula with exactly n alternating quantifiers
and the outermost quantier is a universal quantifier.

Lemma 4.8. Let A be a L formula and let A be Σn(Πn). Then there is a Σ0
n(Π

0
n) formula

B such that

T0 ⊨ A↔ B

25

Proof. We show the lemma by induction over n for Σn and Πn formulas simultaneously.
For n = 0 we can simply set B := A. Now suppose the statement is true for n ∈ N and
A is a Σn+1 formula.

If A is also a Σn or a Πn formula, then by assumption there is a Σ0
n (Π0

n) formula Bn

such that T0 ⊨ A ↔ Bn. Let y be a variable that does not occur in Bn and B := ∃yBn.
Then B is a Σ0

n+1 formula and since y does not occur we have T0 ⊨ B ↔ A.
Otherwise A has the form

A = ∃y1 . . . ∃ynAn(y1, . . . yn)

for a Πn formula An. By assumption, there is a Π0
n forumla Bn such that T0 ⊨ An ↔

Bn. Now we define B := ∃wBn((w)0, . . . (wn)). Then B is a Σ0
n+1 formula. Moreover,

since w 7→ ((w)0, . . . , (w)n) is a bijection in every model of T0 we have that T0 ⊨ A ↔
∃wAn((w)0, . . . , (w)0) ↔ ∃wBn((w)0, . . . (w)n) ↔ B. The proof for Πn+1 formulas is
analogous.

In the next step we want to encode additional properties of formulas and Turing
machines. To do so we introduce predicates E and U that tell us, given the code of a
formula φ, whether φ starts with an existential or universal quantifier respectively.

Moreover, we introduce functions Rk,Q, V, Sb such that Rk yields the number of
leading quantifiers in a formula φ when applied to its code, Q yields the code of the
variable bound by the outermost quantifier in a formula φ when applied to the code of
φ, V yields the value b(u) for a variable evaluation b and variable u when applied to the
code of b and u and Sb yields the code of the variable evaluation bu→z when applied to
the code of b and u and z.

Finally, we introduce predicates Tr,H such that Tr holds if applied to the code of
a formula φ and the code of a variable evaluation of its free variables b that makes φ
true, and H holds if applied to e and c such that the Turing machine with code e halts
in exactly c steps.

Definition 4.9. Let

L(T1) := L(T0) ∪ {E,U,D, Sb,Rk,H, V,Q, Tr}

and T1 be the set of formulas containing T0 and the following formulas:

• E(⌜φ⌝) ↔ (⌜φ⌝)1 = ⟨0, 0⟩

• U(⌜φ⌝) ↔ (⌜φ⌝)1 = ⟨0, 0⟩ ∧ ((⌜φ⌝)1)3 = ⟨2, 0⟩

• D(⌜φ⌝) = n↔ ((U(⌜φ⌝) ∧ n = (⌜φ⌝)3) ∨ (E(⌜φ⌝) ∧ ((⌜φ⌝)3)3 = n))

• (Rk(⌜φ⌝) = 0 ↔ ¬E(⌜φ⌝) ∧ ¬U(⌜φ⌝)) ∧ (Rk(⌜φ⌝) = n↔ Rk(D(⌜φ⌝)) = n− 1)

• Q(⌜φ⌝) = n↔ (E(⌜φ⌝) ∧ n = ((⌜φ⌝)3)3) ∨ (U(⌜φ⌝) ∧ n = (⌜φ⌝)3)

• V (⌜b⌝, u) = n↔ b(u) = n

• Sb(⌜b⌝, u, z) = n↔ n = #bu→z

• Tr(⌜φ⌝, ⌜b⌝) ↔ φ(V (⌜b⌝, 0), . . . , V (⌜b⌝, k))

26

• To define H(e, c) we first define the predicate B(e, C) where C is a tupel of a Turing
machine (see Definition 3.8), i.e.

B(e, C) ↔ C = (ci)
n
i=0 ∧ c0 = ce ∧ ∀i ∈ {1, . . . , n} : ρe(ci−1) = ci

where ce is the starting configuration of the Turing machine with code e on input
0 and ρe is as in Definition 3.8. Now we can define H(e, k):

H(e, k) ↔ ∃C(= (ci)
k
i=0) : B(e, C) ∧ ck is final state

Lemma 4.10. The following are consequences of T1.

(1) T1 ⊨ T0

(2) T1 has an ω-model

(3) V (Sb(x, y, z), y) = z and u ̸= y → V (Sb(x, y, z), u) = V (x, u)

(4) Rk(D(x)) = P (Rk(x)) and Rk(x) ̸= 0 → (E(x) ∨ U(x))

(5) E(x) → ¬U(x)

(6) (H(x, y) ∧H(x, z)) → y = z

(7) Rk(⌜φ⌝) = n provided that φ is a formula with n leading quantifiers.

(8) Q(⌜φ⌝) = j provided that the outermost quantifier in φ binds the variable with code
j.

(9) D(⌜φ⌝) = n provided that n is the code of the formula that is obtained by deleting
the outermost quantifier in φ.

(10) E(⌜φ⌝) and U(⌜ψ⌝) provided φ starts with an existential and ψ starts with an
universal quantifier.

(11) H(e, x) ↔ x = t provided Steps(ϕe(0)) = t

Proof. Clear from Definition 4.9

Definition 4.11. Let T2 be the finite set of quanifier free formulas obtained by applying
Lemma 4.6 to T1.

Lemma 4.12. The finitely many formulas in T2 are all quantifier free. Moreover, if φ
is an atomic L(T2) formula, it is provably equivalent to a L(T0) formula.

Proof. By Definition 4.9 and Lemma 4.10 every T1 formula is equivalent to a L(T0)
formula. By Lemma 4.6 every one of these formulas is equivalent to a T2 formula.

27

Now we are ready to define sets of formulas K(e) that will later allow us to make
a connection between the undecidability of the halting problem and the satisfiability of
formulas with quantifier complexity less or equal than a certain c ∈ ω.

To do so, for every e ∈ ω, we introduce the predicate Sat and a constant c. Later
c will be interpreted as the number of steps it takes the Turing machine with code e to
halt on input 0 and Sat will tell us whether a formula φ ∈ Σc is satisfied under a given
variable evaluation b of its free variables. This can be achieved through the following
recursive definition of Sat.

Definition 4.13. Let e ∈ ω. We define the set K(e) of formulas as the union of

• T2

• H(e, c)

• Sat(⌜φ⌝, ⌜b⌝) → Rk(⌜φ⌝)−̇c = 0

• Rk(⌜φ⌝) = 0 → Sat(⌜φ⌝, ⌜b⌝) = Tr(⌜φ⌝, ⌜b⌝)

• (Rk(⌜φ⌝) ̸= 0 ∧Rk(⌜φ⌝)−̇c = 0 ∧ E(⌜φ⌝)) →
Sat(⌜φ⌝, ⌜b⌝) ↔ ∃xSat(D(⌜φ⌝), Sb(⌜b⌝, Q(⌜φ⌝), x))

• (Rk(⌜φ⌝) ̸= 0 ∧Rk(⌜φ⌝)−̇c = 0 ∧ U(⌜φ⌝)) →
Sat(⌜φ⌝, ⌜b⌝) ↔ ∀xSat(D(⌜φ⌝), Sb(⌜b⌝, Q(⌜φ⌝), x))

Before we continue with the proof of the next propositon, which will establish a
connection between the halting problem and satisfiability, we need to cite the Fixed
Point Lemma for arthimetical languages.

Lemma 4.14 (Fixed Point Lemma). Let ϕ(x) be a L- formula and ϕ(x) ∈ Σ0
n, then there

is a L sentence σ such that N ⊨ σ ↔ ϕ(⌜σ⌝) and σ is Σ0
n.

Proof. For the proof see [H],P.28.

Proposition 4.15. There exists a number p ∈ ω that satisfies the following. If φe(0) ↓
in exactly k + p steps, then

(1) For every L(T2) model M with M ⊨ T2, there exists a unique L(K(e)) model A
such that A ⊨ K(e) and AL(T2) = M.

(2) There is no Σk − L(T2) formula φ(x, y) such that

K(e) ⊨ ∀x∀y(Sat(x, y) ↔ φ(x, y)).

(3) K(e) has an ω-model.

Proof. (1) LetM be an L(T2) model s.t. M ⊨ T2. Let A be the model with AL(T2) = M,
cA := k + p and

SatA := {(x, y) ∈M |x = #φ for a L(T2) formula φ, y = #b

for a variable evaluation b and M ⊨ φ[b]}

28

For the uniqueness let A,B be L(K(e)) -models such that AL(T2) = BL(T2). Since
φe(0) ↓ in k + p steps, we have cA = k + p = cB. We show SatA = SatB by
induction on the rank of L(T2) formulas. The base case Rk(⌜φ⌝) = 0 is clear since
Tr ∈ L(T2),

RkA(#φ) = 0 → SatA(#φ,#b) = TrA(#φ,#b) and

RkB(#φ) = 0 → SatB(#φ,#b) = TrB(#φ,#b)

For the inductive step, let RkA(#φ) = RkB(#φ) ̸= 0. We distinguish three cases:

First Case: RkA,B(#φ)−̇cA,B ̸= 0. Then we have (#φ,#b) /∈ SatA,B for all b.

Second Case: RkA,B(#φ)− cA,B = 0 and EA,B(#φ). Then, by the inductive defini-
tion of Sat, we have

(#φ,#b) ∈ SatA ↔ ∃z : (DA(#φ), SbA(#b,Q(#φ), z)) ∈ SatA.

Since Rk(D(⌜φ⌝)) < Rk(⌜φ⌝) by induction hypothesis we get

∃z :(DA(#φ), SbA(#b,Q(#φ), z)) ∈ SatA

↔ ∃z : (DB(#φ), SbB(#b,Q(#φ), z)) ∈ SatB

↔ (#φ,#b) ∈ SatB.

Third Case: Is analogous to the second case with U instead of E.

(2) We chose p such that every atomic L(T2) formula is equivalent to a Σp − L(T0)
formula (provable in T2). Note that such a p exists because of Lemma 4.12.

Assume φ(x, y) is a Σk − L(T2) formula such that

K(e) ⊨ ∀x∀y(Sat(x, y) ↔ φ(x, y))

Since the atomic part of φ is equivalent to a Σp−L(T0) formula, φ itself is equivalent
to a Σk+p − L(T0) formula. By Lemma 4.8 we have that φ is equivalent to a
Σ0

k+p − L(T0) formula.

Now let TR(x) be the formula Sat(x, ⌜∅⌝), where ∅ stands for the empty variable
assingment. Then there is a Σ0

k+p-L(T0) formula φ′ such that

K(e) ⊨ ∀x(TR(x) ↔ φ′(x, ⌜∅⌝)).

By Lemma 4.14 there is a Σ0
k+p - L(T0) sentence σ such that

T0 ⊨ σ ↔ ¬φ′(⌜σ⌝, ⌜∅⌝).

Therefore, we have
K(e) ⊨ σ ↔ ¬TR(⌜σ⌝).

On the other hand, since σ does not contain any free variables, we have that

K(e) ⊨ σ ↔ TR(⌜σ⌝),

in contradiction to (1).

29

(3) Since there is an ω -model for T2, by (1) there is an ω- Model for K(e).

Corollary 4.16. There is a language L′ ⊇ L(T2) such that for every e ∈ N there is a
satisfiable, quantifier free L′ - formula T (e) such that

(1) Let A,B be L′ models such that AL(T2) = BL(T2) and let φe(0) ↓ in exactly k + p
steps. Then we have A = B.

(2) There exists an S ∈ L′\L(T2) such that there is no Σk−L(T2) formula A(x, y) with

T (e) ⊨ ∀x∀yS(x, y) ↔ A(x, y).

Proof. Consider the finite set K(e)∗ given by applying Lemma 4.6 to K(e) and define
T (e) as the conjunction of K(e)∗. Moreover, let S be the Skolemization of Sat in Lemma
4.6. Then (1),(2) hold by Proposition 4.15. Clearly L′ := L(T (e)) does not depend on
e.

Now we are ready to prove the main result of this chapter, i.e. that the quantifier
complexity of the explicit definition obtained by Theorem 2.3.3 is not computable.

Theorem 4.17. There are disjoint languages L1, L2 and an S ∈ L2 such that for every
partial recursive funtion ρ on ω there exists a consistent quantifier free L1 ∪ L2 formula
A with the following properties.

(1) Let A,B be L1 ∪ L2 models with A,B ⊨ A and AL1 = BL1. Then we have A = B.

(2) There is no Σρ(⌜A⌝) − L1 formula C(x, y) such that

A ⊨ ∀x∀y(S(x, y) ↔ C(x, y)).

Proof. Let L1 = L(T2) and L2 = L′\L(T2) from Corollary 4.16. Let ρ be a partial
recursive funtion and let p be as in Proposition 4.15. Then e 7→ ρ(#T (e)) + p is a
partial recursive function. Applying Lemma 3.9 yields an e ∈ ω such that Steps(φe(0)) ≥
ρ(#T (e))+p. Now let k := Steps(φe(0))−p, then Steps(φe(0)) = k+p and ρ(#T (e)) ≤ k.
For A := T (e) (1) and (2) follow from Corollary 4.16

30

References

[T] Takeuti, Gaisi: Proof Theory, 2nd Edition, Elsevier Science Publishers B.V., 1987

[F] Friedman, Harvey: The Complexity of Explicit Definitions, Academic Press Inc.;
Advances in Mathmatics, vol 20, 18-29, 1976

[BL] Baaz, Matthias; Leitsch, Alexander: Methods of Cut-Elimination, Springer
Science + Business Media B.V. , 2011

[H] Hetzl, Stefan: Gödels Incompleteness Theorems, Lecture Notes, 2022, available
at https://www.dmg.tuwien.ac.at/hetzl/teaching/index.html

31

https://www.dmg.tuwien.ac.at/hetzl/teaching/index.html

	Introduction
	Sequent Calculus
	Formal Proofs in LK
	Craig's Interpolation Theorem
	The Beth Definability Theorem

	Computability Theory
	Coding of Formulas

	Complexity of Explicit Definitions

