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Preface

Automata theory is one of the most central subjects of theoretical computer science. Finite
automata are the simplest possible machines and they appear explicitely as well as implicitely
in a variety of different subjects and applications in both computer science and mathematics.

In mathematics, automata and formal languages are firmly tied to monoids and semirings. A
large part of these course notes is devoted to developing the theory of automata and formal lan-
guages on this algebraic basis. In the other direction, automata theory finds many mathematical
applications, e.g., in number theory and combinatorics (automatic sequences), in algebra (auto-
matic groups), and logic (automatic structures). In the mentioned applications, automata are
a tool for studying structures which are non-trivial but, at the same, sufficiently simple to have
strong properties.

One of the historically first applications of formal language theory in computer science was for
the improvement of interpreters and compilers. The theory allows to put the definition of a
programming language on a firm theoretical basis and it has long become state of the art to
automatically generate a parser for a programming language from a grammar of this language.
Thus the reliability of crucial components of the infrastructure of computer science could be
greatly increased. Now, there are many additional applications, too numerous to mention here,
among them also quite recent ones, e.g., connected to the XML document format (XSLT and
tree transducers, grammar-based XML compression, etc.).



vi



Chapter 1

Semirings and formal series

In this chapter we will see a strong generalisation of the elementary theory of formal languages.
It will turn out that many of the central results remain valid in the more general setting where
the formal languages P(A*) over some alphabet A with the operations U and - is replaced
by the formal series with coefficients in an arbitrary continuous semiring. Moreover, once
the algebraic background is sufficiently developed, proofs known from the elementary theory
of formal languages can — in most cases — be carried over to this more general setting in a
straightforward way. We will thus obtain considerably more general results which do not only
include the elementary theory of formal languages as special case, but also other interesting
and useful types of languages and automata, e.g. weighted automata where costs are assigned
to transitions. Moreover, this more general theory has been exploited for obtaining new results
about the notions of the elementary theory.

As a starting point, let us consider the notion of context-free grammar. The language L =
{a™b™ | n = 0} can be generated by the context-free grammar given by S — aSb | e. The usual
perspective on a grammar is to consider the given production rules from a generative point of
view: we start with S and, at each step, make a choice which production rule to apply until
eventually S does no longer occur and we have thus generated a word in L. In our algebraic
setting we will instead consider a nonterminal of a grammar as a variable for a language, i.e., a
set of words, and the production rules as equations that have to be satisfied by the variables.
This example is then rephrased as S = aSb u {e¢}. We can observe that L is a set of words
which satisfies the equation L = aLb u {¢}. While working with finite strings is crucial for the
first, generative perspective, it is irrelevant for the second based on equations. We can thus lift
the requirement that the object we insert for a variable must be a language, i.e., a set of words
and consider the insertion of an element of an arbitrary continuous semiring.

In order to fully develop this point of view, we start with some basic results about complete
partial orders and then proceed to discuss the most central notion of this first chapter: that
of a continuous semiring. On this basis we then consider systems of algebraic equations which
generalise grammars in the manner sketched above.



1.1 Complete partial orders

1.1.1 Suprema

Definition 1.1. (S, <) is a partial order if (S, <) is reflexive, transitive, and anti-symmetric'.

Definition 1.2. Let (S, <) be a partial order, b€ S and X < S. Then b is called upper bound
of X if b > x for all x € X. Furthermore, b is called supremum (least upper bound) of X if b is
an upper bound of X and if, for every upper bound ¢ of X: b < c.

Note that a supremum is unique if it exists (for suppose a set X had two suprema b; and bo,
then, since both are upper bounds, b; < by and by < b; and hence by the anti-symmetry of <
we have by = by). We often write sup X for the supremum of a set X. Using the notation sup X
we implicitly assert the existence of the supremum (its uniqueness then follows as above).

Definition 1.3. A partial order (5, <) is called complete if every increasing sequence sy < $1 <
-+« has a supremum in S.

Note that an increasing sequence is a countable set with order type w. Therefore the above
notion is also called w-complete in the literature. Since we will only be considering this type of

complete partial orders in this course, we use the simpler terminology.
Example 1.1. (P(X), <) is complete with sup{X; | i € N} = | J,.y Xi. However, for infinite X,

the partial order (Pgn(X), <) of finite subsets of X is not complete.

Definition 1.4. Let (S,<) be a complete partial order and f : S — S. Then f is called

continuous if for all k € {1,...,n}, for all ay,...,ax_1,ax41,...,an € S, and for all increasing
sequences by < by < --- we have:
f(al) .- 'aak—hsup{bi | 1€ N}uak—i-l? s 7an) = Sup{f(a17 s 7ak—lubi7ak+17 s ,(In) | i€ N}

Lemma 1.1. Let (S,<) be a complete partial order and f : S™ — S continuous. For all
ie{l,...,n} let x;0 <xi1 <--- be an increasing sequence. Then

F(suptery, | j1 € N}, .. sup{ang, | jn € NY) = sup{f(z1j,. . any) | 5 € N}

Proof. will be done as exercise. O

1.1.2 Fixed points

Definition 1.5. Let (S, <) be a partial order and f: S — S. Then z € S is called fized point
of fif f(z) = x and =z is called least fized point of f if x < y for every fixed point y of f.

If a least fixed point exists it is unique (since < is a partial order). In analogy to the notational
convention concerning the supremum we write lfp(f) for the least fixed point of f and by using
this notation implicitly assert the existence of a (and hence the) least fixed point of f.

Ezample 1.2. Consider the partial order (P(N), <). Define
f:P(N)—->PN),X—{0}uXu(X+2)

where X +k := {z+k | z € X}. Then 2N is a fixed point of f because {0} U2N U (2N +2) = 2N.
Furthermore, also N is a fixed point of f and so is 2N U (2N + 2k + 1) for all £ € N.

1(S, <) is anti-symmetric if 2 < y and y < x implies = = y.

2



Definition 1.6. Let (5, <) be a partial order. Then f : S™ — S is called monotone if for all
x1,...,xp €8, for all ke {1,...,n} and for all 2} € S with z} > z;, we have

f(xla o 71'71) < f(xla o 7xk717x;cvxk+17 .. ~xn)-

Lemma 1.2. Let (S,<) be a complete partial order and f : S™ — S continuous. Then f is
monotone.

Proof. Let 1,...,2,€ S, ke {l,...,n} and z; < ) € S. Define yg = z;, and y; = x) fori > 1.
Then yp < y1 < --- is an increasing sequence and we have sup{y; | i € N} = z}. Then
f@1, o e, Ty Tyt - ) = f(@1, ., ooy, sup{yi [ 1€ Ny 2pqn, .. 2n)
=sup{f(z1,...,Tk—1,Yis Tht1,---,%n) | 1 € N}
>f(x1a"'7xn)‘
]

In a partial order (S, <) we say that x € S is the least element of (S, <) if x <y for all y € S.
If a least element exists, it is unique (again, by anti-symmetry).

Theorem 1.1 (Kleene’s fixed point theorem?). Let (S, <) be a complete partial order with least
element 0 € S and let f : S — S be continuous. Then lfp(f) = sup{f*(0) | i € N}.

Proof. We will consider the sequence 0 = £°(0), £1(0), f2(0),.... Since 0 is the least element we
have 0 < f(0) and since f is monotone, fi(0) < f*1(0) implies f**1(0) < fi*2(0) and hence
by induction f9(0) < f}(0) < --- is an increasing sequence. Therefore sup{f?(0) | i € N} exists.
Furthermore,

f(sup{f*(0) | i € N}) = sup{f"**(0) | i € N} = sup{f'(0) | i € N}

and hence sup{f*(0) | i € N} is fixed point of f. It remains to show that it is the least fixed
point of f. To that aim, let ¢ be a fixed point of f. Since 0 is least element we have 0 < ¢ and,
if f4(0) < ¢, then fi*1(0) = f(f(0)) < f(c) = ¢ and hence by induction f(0) < c for all i € N,
So ¢ is upper bound of {f?(0) | i € N} and hence sup{f(0) | i € N} < c. O

Ezample 1.3. The complete partial order (P(N),<) has the least element ¢J. The function
f : P(N) — P(N) defined in Example 1.2 is continuous®. By the fixed point theorem, f has a
least fixed point which we can approximate by the sequence

(@) = @, (@) = {0}, (@) = {0,2}, (D) = {0,2,4},...
A straightforward induction shows that Ifp(f) = | J,on /() = 2N .

1.2 Continuous semirings

1.2.1 Semirings

Definition 1.7. A semiring is a structure (R, +,0,-,1) s.t.

“named after Stephen Cole Kleene (1909-1994)
3Show this as exercise. More precisely, show f({J;oyXi) = U,en f(Xi) by proving set-inclusion in both
directions.



1. {R,+,0) is a commutative monoid,

2. (R,+,1) is a monoid,

3. forall z,y,ze R: - (y+2)=z-y+x-zand (x+y)-z=x-2+y- 2 and
4. forallze R: - 0=0 -2 =0.

5. 0#1

Note that conditions 1-4 above together with 0 = 1 imply Vxx = 0 because x = -1 = x-0 = 0.
We therefore add condition 5 to avoid this trivial situation.

Ezample 1.4. 1. Every ring and hence also every field is a semiring, in particular (Z, +,0, -, 1),
<Q7 +707 "y 1>7 <R> +, Oa s 1>7 cee
2. (N, +,0,-,1) is a semiring.

3. The Boolean semiring is B = ({0, 1}, v, 0, A, 1) with logical (inclusive) disjunction as sum
and logical conjunction as product.

4. Let N*® = N u {00}, then both (N*, +,0,-,1) as well as (N* min, o0, +,0) are semirings
(note that 0-00 = 00-0 = 0). We use N to denote the first of these semirings. When we
want to speak about the second we either mention the operations explicitly or call it the
min-+-semiring.

5. Let N = N U {00, —0}, then (N, max, —c0, +,0) with —c0 + 00 = 00 + —00 = —0 is a
semiring. This semiring is also called the max-+-semiring.

6. Let RY = {x e R | z = 0} u {00}, then (R, +,0,-,1) is a semiring.

7. An alphabet is a finite set of symbols. The formal languages over an alphabet A form
the semiring (P(A*), U, J, -, {e}). As a reminder, the concatenation of formal languages
is defined as Ly L2 = {w1w2 | w1 € Ll,wg € LQ}.

1.2.2 The natural order

Definition 1.8. A semiring R is called naturally ordered if the relation = defined as
TEyYy < dzzx+z=y
is a partial order. In that case we call £ the natural order of A.

The relation E is reflexive and transitive in every semiring. Hence it is a partial order iff it is
anti-symmetric.

Ezample 1.5. The semiring (N, +,0, -, 1) is naturally ordered since C is just the usual order <.
The semiring (Z, +,0, -, 1) is not naturally ordered since x E y is true for all z,y € Z (but there
is more than one integer). The semiring (P(A*), U, &, -, {€}) is naturally ordered with C=C.

Proposition 1.1. Let R be a naturally ordered semiring. Then 0 is the least element of (R, E)

and R is zerosumfree, i.e., x +y = 0 implies x = y = 0.

Proof. 0 + x = « for all z € R and hence 0 is the least element of R. Now, if x +y = 0, then
x E 0 and y £ 0 and since also 0 E z and 0 E y we have x =y = 0. ]

This shows that, in particular, no ring and hence no field is a naturally ordered semiring (since
rings are not zerosumfree).



1.2.3 Continuity

Definition 1.9. A naturally ordered semiring (R, +,0, -, 1) is called continuous if

1. E is a complete partial order, and

2. + and - are continuous functions w.r.t. (R, Z).

A remark analogous to that after the definition of complete partial order: also in the above
definition of continuity we speak about countable sets with order type w, hence the above
notions are also often called w-continuity and w-continuous semirings respectively. Again, since
we will work only with this type of continuous semirings in this course, we use the simpler
terminology.

Ezample 1.6. The semiring (P(A*), u, , -, {e}) is continuous. We already know that P(A*) is
a naturally ordered semiring, that the natural order is <, that this natural order is complete
and that sup{xz; | i € N} = [ J,.y ;. It remains to show that P(A*) is continuous. To that aim
note that
ZL‘USUp{yZ’|’i€N}=ZL‘Uin= U(:Cuyi)zsup{xuyﬂieN}.
€N €N

Due to the commutativity of addition in a semiring, this suffices to show that addition is
continuous. For multiplication, consider

x-sup{yi|ieN}=x-in =) U(x-yi)zsup{x-yi]ieN},
€N €N

where the equation (*) can be proved carefully by proving set-inclusions in both directions. For
multiplication from the right a calculation symmetric to the above can be carried out.

Continuous semirings are the central notion of this first chapter. Their importance stems
from the fact that they allow the definition of (well-behaved) infinite sums and consequently a
generalisation of the Kleene-star, one of the most important operations on formal languages.

If {z; | i € N} is an arbitrary subset (and hence not necessarily an increasing sequence) we still
have the property that the partial sums zg + -+ + z, = Yo @; of >,y #; form an increasing
sequence since ;" jz; & Z?jol x; and therefore the supremum of the partial sums exists.

Consequently:

Definition 1.10. Let (R, +,0,-,1) be a continuous semiring and {z; | i € N} € R. Then we
define

in = sup{i x; | n e N}
i=0

ieN

As a first observation about infinite sums in this context, one can show that the order of
summation does not matter. More precisely: let ¢ : N — N be a bijection, then » , yz; =
2ieN Ti(i)-

We extend the definition of an infinite sum to an arbitrary countably infinite index set I by
el Ti i= Dinen To(n) for ¢ : N — I being an arbitrary bijection. Infinite sums in continuous
semirings also have the following properties:

Proposition 1.2. Let N =4, ; I;. Then X cnxi =Y ;c; Zielj x;.

Without Proof. O



Proposition 1.3. Let R be a continuous semiring, let x € R and for all i € N let y; € R. Then

- (Yw)=D(xy)  and  (Dlyi) -z = (vi ).

€N €N €N €N

Proof. We have
Z - (2 Yyi) = - SUP{Z y; | n e N} by definition,
ieN i=0

n
= sup{z - Z yi | n e N} by continuity of -,
i=0

= sup{Z(x ~y;) | ne N} by distributivity, and

=0
= Z(x - Y;) by definition.
1€N

For multiplication from the right an analogous calculation can be done. O

Having defined infinite sums now allows to define the generalisation of the Kleene-star.

Definition 1.11. Let R be a continuous semiring and let x € R. Then we define

x*szZ and xt 22331

=0 =1

where ' =gz ---- -z fori>1and 20 = 1.

1 times

Ezample 1.7. Consider the continuous semiring (P(A*), u, , -, {e}) and let L € P(A*). Then
L* = J;=¢ L' is the ordinary Kleene-star.

Proposition 1.4. Let R be a continuous semiring, then we have
+ % *

T =xx* =¥z and ¥ =1+t

for all z € R.

Proof.

and analogously for z*z = x*. Moreover,

x*szizxoﬁ-in:l—kar.

=0 =1



1.3 Algebraic systems

1.3.1 Polynomials

We know univariate polynomials, i.e., expressions of the form
n .
P(x) = Z a;z'
i=0

and multivariate polynomials, i.e., expressions of the form

P(zi,...,25) = 2 iy iyt - xyr for finite B < N™.
(il,...,in)EE

Several standard results about polynomials require multiplication to be commutative (for exam-
ple the evaluation of a polynomial is not a homomorphism otherwise). Using the above notation
already hints at the assumption of commutativity since we order the variables so that, in each
product term, every x; appears in front of all x; with ¢ < j. In this course we do not assume
commutativity and hence we will work with more general expressions. Consequently we define:

Definition 1.12. Let R be a continuous semiring, Y = {y1,...,y,} be a set of variables and
let R' € R. An R'-product term with variables in Y is an expression of the form

. / . .
aoYi, 1Yi, 02 - - - Yiar  with ag,...,ar € R and iy,...,ix € {1,...,n}.

An R’-polynomial with variables in'Y is an expression of the form ", ¢; where t1,..., ¢, are
R’-product terms with variables in Y. The set of R’-polynomials with variables in Y is denoted
as R'[Y].

Note that — depending on R’ — the set R'[Y] may not form a semiring, it may not even be
closed under addition. In fact, we will often consider R’ which are not closed under addition,
see, e.g., Example 1.9.

Ezample 1.8. Let R = N® and Y = {y1,92}, then 3y133 + v1 + 5 is a {1, 3, 5}-polynomial with
variables in Y. Note that — formally — this polynomial is written as 3y;lys1y21 + 1y11 + 5 but
we will use the simplified notation where factors 1 are left out.

Ezxample 1.9. Let R = P(A*) and Y = {y1,y2}, then {a}yi{ctyi{c}ya{c} U {a}y2{b} U {c} is a
{{w} | w € A*}-polynomial with variables in Y. Note that A* is not a subset of P(A*). But
since {{w} | w € A*}-polynomials appear frequently we often write them — in abuse of notation
—in the form ay?ys U aysb U €.

Let R, R, and Y = {yi1,...,yn} be as in the above definition and let p € R'[Y]. Then, as
usual, the polynomial p induces a polynomial function p : R® — R by replacing y; by 7; € R. As
usual, we will not distinguish notationally between a polynomial and the polynomial function
it induces.

Ezample 1.10. Let A = {a,b}, R = P(A*), R' = {{w} | we A*}, Y = {y1,y2} and p(y1,y2) =
ay?ys U aysb U e. Let Ly = {a' | i € N} and Ly = {a’b’ | i € N}. Then

p(L1,Lo) = al?Lywalsb ue = {a't’ |i>j=0} uf{ad |i=1}ue={a'V |i>j}

7



1.3.2 R'-algebraic systems

Definition 1.13. Let R be a continuous semiring and R’ € R. An R’-algebraic system in the
variables Y = {y1,...,yn} is a system of equations of the form

Yi = Di(Y1,.--,Yn), 1<i<n
with p;(Y) € R'[Y].

Definition 1.14. Let R be a continuous semiring and R’ < R, let Y = p(Y') be an R’-algebraic
system with n equations and let o € R™. Then o is called solution of Y = p(Y') if o = p(0o).

Example 1.11. Every a € R is unique solution of the trivial R-algebraic system y; = a.

This example illustrates that it is usually more interesting to consider R’-algebraic systems for
a strict subset R’ of R; if ' = R, then every element can be defined as solution of a trivial
system as above.

Ezxample 1.12. Consider the R -algebraic system

_1 +1
y1—4y1 5

This has — as can be checked by a quick calculation — the solution % e RY. In addition, it also
has the solution co € RY. Moreover, it is clear that oo € RY is a solution for many similar
algebraic systems.

This example illustrates that the “non-infinite”, i.e. smaller, solutions tend to be more interest-
ing than the infinite solutions. We will make this more precise soon.

Ezample 1.13. Let A = {a, b} and consider the following A*-algebraic system® in the continuous
semiring P(A*):

y=aybue
A solution of this system is {a’b’ | i € N} as the following calculation shows:

a{a’d’ | i e NYb U {e} = {a*T1b"! | i e N} U {a"°} = {a'b’ | i € N}.

Ezample 1.14. Again in P({a,b}*) consider the {a,b}*-algebraic system

Y1 = Y292
Y2 = U1
* 2\ %
A solution of this system is g), other solutions are Gg) or <Z*> or (222;*> or more
L* * a(CLQ)* 2\ % 2% 2\+ 2%
generally I for any L € P(A*) but not a(a?) because a(a®)*a(a®)* = (a*)" # a(a®)

1A% is not a subset of P(A*) and hence there is no such thing as a A*-algebraic system in P(A*). But -
along the lines of the notation introduced in Example 1.9 — we abbreviate “{{w} | w € A*}-algebraic system” as
“A*_algebraic system”.



1.3.3 Solvability

We will now show that every algebraic system is solvable and has a unique least solution. To
that aim, we first have to observe that the product of complete partial orders is a complete
partial order.

Lemma 1.3. Let I be a set, for all i € I let (S;,<;) be a complete partial order. Define a
relation < on S :=[],.;Si by

(@i)ier < (Wa)ier  Wff xi <;y; foralliel.

Then (S, <) is a complete partial order. Moreover, if (2o ;)icr < (T14)ier < -+ is an increasing
sequence in S, then
sup{(zn,i)ier | n € N} = (sup{zn,; | n € N})er.

Proof. It is easy to check that (S,<) is a partial order. For completeness let (zg;)ic;r <
(1,i)ier < --- be an increasing sequence in S. Then, for all i € I, zo; <; 1, <; --- is an
increasing sequence in S; and hence it has a supremum z; = sup{z,; | n € N}. We claim that
(xi)ier = sup{(@n.i)ier | n € N}. First, (z;)ier is an upper bound because x; =; x,,; for all n € N.
Let now (b;)icr be an upper bound as well, then b; >; x,; for all n € N,i € I. Since x; was the
least upper bound of {z, ; | n € N} we have b; >; z; and consequently (b;)icr = (zi)ier- O

Definition 1.15. Let R be a continuous semiring, R < R and Y = {y1,...,yn} a set of
variables. A solution o of an R’-algebraic system Y = p(Y) is called least solution of Y = p(Y')
if for every solution 7 of Y = p(Y): 0 C 7.

In the above definition, E is the order obtained from the n-fold product of the natural order on
R. By Lemma 1.3, this is a complete partial order. Note that, if Y = p(Y') has a least solution,
then it is unique (due to anti-symmetry of ).

There is a very specific reason for why we are interested in a least solution: keeping in mind
the relation between context-free grammars and systems of algebraic equations discussed in the
beginning of this chapter, consider the fact that the productions of a context-free grammar pro-
vide an inductive definition of the language generated by the grammar. An inductive definition
has always two aspects: on the one hand the operation permitted for generating elements of
the inductively defined set and, on the other hand, the understanding that the set thus defined
contains only objects obtained from the permitted operation. This second aspect is usually
self-evident and thus not mentioned. It is also implicit in the definition of the language of a
context-free grammar. However, it gets lost when we move to considering any solution of a
system of equations. In this context, we have to make it explicit by asking for a least solution.

n
Given polynomials py,...,px € R'[y1,...,yn] we can form the vector p = | : | which induces
Pk
ay pi(ai, ..., ap)
the polynomial function p : R* — RF, e : . For the sake of brevity, such
an pr(at, ... an)

a vector of polynomials p will also be called a polynomial.

Lemma 1.4. Let R be a continuous semiring, then every polynomial p : R — R* is continuous.

Proof. will be done as exercise. O



Theorem 1.2. Let R be a continuous semiring, R € R and let Y = p(Y) be an R'-algebraic
system in n variables. Then Y = p(Y) has a least solution in R™. This least solution is

Ifp(p) = sup{p'(0) | i € N}

Proof. The solutions of Y = p(Y) are the fixed points of p : R® — R". By Lemma 1.3 we
know that R" is a complete partial order. R™ has a least element 0. By Lemma 1.4 we know
that p : R — R" is continuous. Therefore the fixed point theorem applies and shows that p
has a least fixed point (and hence that Y = p(Y') has a least solution) and that this solution is

lfp(p) = sup{p’(0) | i e N}. =
Ezample 1.15. Continuing Example 1.13 let A = {a, b} and consider the A*-algebraic system
y=aybue.

We can now use the fixed point theorem to compute a solution as follows. First, observe that

=afe}bue = {ab,c}
= afab,e}b U e = {aabb, ab, e}

At this point one may form the conjecture that p"(&) = {a’b’ | 0 < i < n}. Let us show this
for all n € N by induction. For n = 0 this has been shown in the above calculation. For the
induction step, observe that

D) = pp (D)) = afa¥ |0 <i < b e
= {0 0<i<n}ue={ab' |0<i<n+1}.

Now, by Theorem 1.2, we know that the least solution of y = p(y) is sup{p" (&) | n € N}. In
P(A*) the supremum is infinite union, so the least solution of y = p(y) is

sup{p" (&) [ ne N} = | Jp"(@) = | J{a'd' |0 <i < n} = {a'' | i e N},

neN neN

1.3.4 Context-free grammars

A particularly important special case of algebraic systems are context-free grammars. As a
reminder (and already in a suitable notation for our purposes), a context-free grammar is a
tuple G = (Y, A, P,y1) where Y = {y1,...,y,} are the nonterminals, A are the terminals and
P cY x (Y uA)* are the production rules. A production rule (y,«) is usually written as
Yy — «, a finite set of production rules with the same left-hand side is usually written as
y — aj | -+ | ap. The nonterminal y; is the starting symbol.

The one-step derivation relation of G is defined as a =g o if a = a1yas, o’ = a1Bas, and
y — [ is a production rule of G. Derivability in at most k steps is denoted as « :>Z,k o
and derivation in a finite number of steps is denoted as a —§ «/. If the grammar is clear
from the context we often omit the subscript G. The language of a grammar is defined as

L(G) = {we A* | y1 =* w}.
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Ezample 1.16. G =Y, A, P,y;) for Y = {y1,y2,y3}, A = {a,b} and P =

y1 — y2bys3
Y2 —ays | €

ys — ays | bys | €
is a context-free grammar.

Definition 1.16. Let G = (Y, A, P,y1) be a context-free grammar and Y = {y1,...,y,}. Then
we define the corresponding A*-algebraic system in the continuous semiring P(A*) of formal
languages to be Y = p(Y’) where

pi(Y) = U o forl <i<n.
(yi,oz)EP

Ezample 1.17. The grammar G from Example 1.16 corresponds to the following {a, b}*-algebraic
system in P(A*):

y1 = y2bys3
Yo =ayz2 Ve

Y3 =ayzubysue

Theorem 1.3. Let G = (Y, A, P,y1) be a context-free grammar and let Y = p(Y') the corre-
sponding algebraic system with least solution o = (o1,...,0,). Let G; = (Y, A, P,y;>. Then
L(Gz) = 0y.

Proof. For t € N, let L! = {w € A* | y; =>S" w}. For the left-to-right inclusion we will show by
induction on ¢ that L! < p'(&");. For ¢t = 0 we have L? = =p(@")i. Solet we Lf“, ie.,
Yi = VoY, U1 - Y Uk =" vpwivy -+ wivg = w. Then wj € Lﬁj and by induction hypothesis
wj € p'(@™)i; and hence w € vop! (F")i,v1 -+ - P (D™)i vk S pi(P'(B™)) = P (P™)i. Thus we
obtain L(G;) = Ueny Lt € Usen P (@™)i = 05

For the right-to-left inclusion, we will show p'(@™); < L(G;) for 1 < i < n by induction on t.
For t = 0 we have p°(@"); = @& < L(G;). So let w € p™H(&™); = p;(p'(2™)). By induction
hypothesis we have w € p;(L(G1), ..., L(Gy)), i.e. there is a product term voy;, v1 - - - ¥;, Vg in p;
s.t. w € voL(Gyy )vr - - L(Gyy, )y, i.e. there are words w; € L(Gy;) s.t. w = vowyvy - - - wyvy. Since
yi; =" w;, we also have y; = voyi; v1 - - - ¥i, vy =" w and hence w € L(G;). So L(G;) is an
upper bound of {p'(Z"); | t € N} and since o; is the least upper bound of {p!(Z"); | t € N} we
have o; € L(G;). O

1.4 Formal series

1.4.1 The continuous semiring R{A*)

In previous courses you have already seen formal power series with, e.g., real-valued coefficients.
These are expressions of the form ), a;q" with a; € R and ¢ being a variable. Sometimes one
would like to evaluate a power series (i.e. substitute a concrete value for ¢) but often one treats
a formal power series as a formal object rather than as a function ¢ — >y a;q*, hence the
term formal power series.

In this course we will consider formal series in another context: instead of working over a single
variable ¢ (and hence the multiplicative monoid freely generated by ¢) we work over an alphabet

11



A (and hence the multiplicative (non-commutative) monoid freely generated by A). Since the
elements of A* are no longer powers of a word we will simply speak about formal series.

Definition 1.17. Let A be an alphabet and R a continuous semiring. A formal series over A*
with coefficients in R is a function r : A* — R. We often write (r,w) for r(w) and a formal
series as a whole is written as >, 44 (r, w)w. We write R{A*)) for the set of all formal series
over A* with coefficients in R.

We define the structure (RCA*), +,0, -, 1) as follows: addition and (Cauchy-)multiplication on
R{A*) are defined as usual:

(D) (nwyw)+ ()] (s,whw) = Y7 ((rw) + (s,w))w

weA* weA* weEA*
(), (hww)-( ) (sswyw)= Y7 (Y, (ru)(s,0)w
wEA* wEA* weA* y,veA*

uv=w
0 is the formal series where all coefficients are 0 and 1 is the formal series le.

The relationship between formal series over A* and formal languages is that a formal language
L € P(A*) can be identified with a function x; : A* — {0,1}, i.e., a formal series with
coefficients in {0, 1}. This relationship will be analysed in more depth in Proposition 1.7.

It is also possible to consider formal series over an arbitrary monoid M (instead of the monoid
freely generated by A). But then many results of formal language theory do not longer hold (in
particular: Kleene’s theorem which states that the rational languages are exactly the recognis-
able languages fails). Therefore, in this course, we will only consider formal series over A*.

Proposition 1.5. Let A be an alphabet and let R be a continuous semiring. Then R{A*)) is
a continuous Semiring.

Proof. Tt is straightforward to show that R{A*) is a semiring’. We have 71 T ry iff (r1,w) C
(re,w) for all w e A*, i.e. the natural order on R{A*)) is the product of countably many copies
of the natural order in A. By Lemma 1.3 this is a complete partial order and its supremum is

given component-wise, i.e. for any increasing sequence ro = r; £ - - - we have
sup{ Z (ri,w)w |ie N} = Z sup{(r;, w) | i € N}w. *)
weA* weA*

It remains to show that + and - are continuous. We have

7+ sup{s; | i € N} = Z (r,w)w + sup{ Z (si,w)w | i € N}

weA* weA*

—() Z (r, w)w + Z sup{(s;,w) | i € N}w

weA* weA*

Z ((r,w) + sup{(s;,w) | i € N})w

weA*

= > sup{(r,w) + (si,w) | i € N}w

weA*

_(%) Sup{ Z ((7’711)) + (Sivw))w | S N}

weA*
= sup{ Z (r,w)w + Z (si, w)w | i € N}
weA* weA*

=sup{r +s; | i € N}.

5 . -
°Prove some properties as exercise!
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This suffices for + since + is commutative. For - we have:

r-sup{s; | i e N} = 2 (r,w)w - sup{ Z (si,w)w | i € N}

weA¥* weA*
() Z (ryw)w - Z sup{(s;,w) | i € N}w
weA* weA*

(Y (uwysupf(si,v) | i€ Npw

weA*  yweA*
w=w

> (Y sup{(ru)(si,v) | ie Npw

weA¥*  yveA*
uv=w

Now there is only finitely many pairs u,v s.t. uv = w and a finite sum in R is a continuous
function. Therefore we can apply Lemma 1.1 in order to obtain

Z sup{ 2 (ryu)(si,v) | i€ Njw

weA* u,veA¥*
uv=w

) gupf Z ( 2 (r,u)(si,v))w | i € N}

wEA¥*  yveA*
uv=w

=sup{r-s; | ieN}.
For multiplication from the right an analogous calculation shows continuity. O
Having shown that R{A*) is a continuous semiring we obtain a %-operation on formal series.

Before we analyse this operation in more detail, we make the preparatory observation that
infinite sums of formal series are given component-wise in the following Lemma.

Lemma 1.5. Let A be an alphabet and R be a continuous semiring. Let ro,r1,... € RCA™).

Then
Srn=Y Y rmww= Y Y (.

neN neN we A* weA* neN

Proof. We have

Z 2 (rp, w)w = sup{Z Z (ri,w)w | n e N}

neN we A* i=0 weA*

= sup{ Z Z(ri,w)w | n e N}

weA* i=0

=(%) Z Sup{Z(ri,w) | n € N}w
i=0

weA*

= Z (Z(rmw))w

weA* neN
where (x) refers to the equation (*) in the proof of Proposition 1.5. O
The star-operation in a continuous semiring is defined as 7* = >} _7". The following proposi-
tion further explicates this definition for the case of a semiring of formal series: the coefficient

(r*,w) is obtained as sum over the values of all decompositions of w where the value of a de-
composition is the product of the values of its components. In order to state and prove this
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proposition we first make the notion of decomposition precise. If S is a set and k € N we
write S¥ for the set of k-tuples of elements of S. In particular, S° = {()}, the set consist-
ing of the empty tuple. A decomposition of w € A* is a tuple (uq,...,u,) € (A*)" for some
n = 0s.t. uy---u, = w. Note that u; = ¢ is possible so that every word has infinitely many
decompositions. In particular, w = ¢ has the decompositions (), (¢), (¢,¢),.. ..

Proposition 1.6. Let A be an alphabet, R a continuous semiring, and r € R{A*). Then

DD IS YN ) (T

weA* neN (uq,...,up)e(A*)" i=1

UL Up =W

Proof. We will first prove that, for all we A* and all n e N

(", w) = > [ [0 us) )

(Ut ety JE(A) i=1

UL Uy =W
by induction on n. For the case n = 0 observe that
0 .
1 ifw=e
% qlew- 3o
(11, ) E(A%)0 i1 Oe(a®)0 e
Ul uUg=w e=w

which is (7%, w). For the induction step, we have

(" w) = (r-r"w) = 2 (r,u)(r™, v) =11 Z r,uy) 2 H(r,vi)

uy,vEA* uy,veEA* V1,...,unEA¥ 1=1
ULV=w U v=w V1 Up =0
n+1

= Z H(r, Uz).

(u1,.. ,un+1)€(14*)"+1 i=1
UL Un+1=wW

We then have

D R WO YESTUESD WO YD Y s (I

neN weA* neN weA*  neN (uq,...,up)e(A*)" i=1
UL Up =W

d

Corollary 1.1. Let A be an alphabet, R a continuous semiring, and r € R{A*)) with (r,e) = 0.
Then

|w|

=D D YR | (A

weA* n=0 (uq,...,un)e(A*)" i=1
UL Up =W

Proof. Ifuy,...,up € A* withug - - u, = wand u; = e forsomed € {1,...,n}, then [ [\, (r,u;) =
0, so it suffices to consider decompositions into non-emtpy words. Every such decomposition of
w consists of at most |w| words. O

In particular, (r,e) = 0 implies (r*,e) = 1.
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1.4.2 P(A*) and BLA*)

Definition 1.18. Let R and S be semirings. A function ¢ : R — S is called semiring homo-
morphism if p(0) = 0, o(1) = 1, p(z +y) = ¢(z) + ¢(y) and @(z - y) = @(z) - o(y).

Often, it will be clear from the context that we speak about semiring homomorphisms. Then
we will just say homomorphism. As always, an isomorphism is a bijective homomorphism.

Lemma 1.6. Let R and S be continuous semirings and ¢ : R — S an isomorphism. Then
o(x*) = @(x)* for all x € R.

Proof. First, note that x = y iff p(z) E p(y): for if 3z + 2z = y, then ¢(x) + p(2) = ¢(y). In
the other direction, if 3z ¢(z) + 2z = (y), then  + ¢~ 1(2) = y. So ¢ is an isomorphism for the
partial orders (R,=) and (S,E) and therefore

p(supla, | i € N}) = sup{ip() | i € N},
Then, for any z € R, we have
(%) = p(sup{ D 2" | n = 0}) = sup{ Y] p(2)" | n > 0} = p(2)*,
i=0 i=0
O]

Proposition 1.7. The continuous semirings {P(A*), u, d, -, {e}) and BKLA*)) are isomorphic.

Proof. The mapping ¢ : P(A*) — BLA*), L — >, 4+ xr(w)w is clearly a bijection. It is also
a homomorphism since () = 0, 0({e}) =€, p(L1 U L) = ¢(L1) + ¢(L2) and

o(L1) - @(La) = (Y] xua(w)w)( Y] xr,(ws)ws)

wiEA* woEA¥
= >0 D xmw)xm))w= > w=p(Li-Ly).
weA* W=wW1w2 weLy Lo

w1 EA*,wQEA*

d

So we can identify a formal language L < A* with a formal series over A* with coefficients in
B. This observation clarifies the nature of the generalisation considered: the generalisation of
a language is a formal series in the continuous semiring R{A*)). This generalises the notion
of a word being element of a language from a Boolean function to a function r : A* — R.
Most of the theory of formal languages thus generalises from P(A*) to R{A*)) for an arbitrary
continuous semiring R.

1.4.3 Calculations in semirings of formal series

Ezample 1.18. In B{{a, b}*) we have:

(@+b)" =(a+b) - (a+b)= > w
we{a,b}”
(a+b)*=2a~l—b Z w
n=0 we{a,b}*
(a+b)*a(a + b)* Z w
we{a,b}*
ng(w)=1

15



where n,(w) € N is the number of occurrences of the letter = in the word w. So, computations
in B{A*) can be carried out just as we know them from working with regular expressions.

Ezample 1.19. In N*{{a,b}*)) we have:

(@+b0)" =(a+b) - (a+b)= > w
we{a,b}n
(a+b)*=2a+b Z w
n=0 we{a,b}*
(a+b)*ala +b)* = Z Ng(w)w
we{a,b}*

The third equation is proved in detail as follows: let 7 = (a + b)*a(a + b)* € N*{a, b}*). We
will compute the coefficient (r,w) for w € {a,b}*. To that aim, let 1 = (a + b)*,ry = a €
N*{{a,b}*). Then the definition of the Cauchy-product implies that

(ryw) = Z (r1,u1)(ro, ug)(ry, us)

u1,u2,u3€{a,b}*
UL U2 U3 =W

Since all coefficients of r; and r9 are either 0 or 1, also the product (r1,u1)(re, u2)(r1,us) can
only be 0 or 1. Moreover, it is 1 iff all factors are 1. But the only word ug s.t. (r2,u2) = 1 is a,
SO

- Z 1
u1,usze{a,b}*

Ul auz=w

and this is the number of ways one can write w as ujaus and hence
= ng(w).

Ezample 1.20. Let R be the min-+-semiring (N min, o0, +,0) and let A = {a, b}. The elements
of R{A*)) are formal Min-series, i.e., mappings r : A* — N% which we write as Mine 4% (r, w)w.
The usual notational convention for power series is that all words which are not mentioned
explicitly have the additive unit as coefficient. In R the additive unit is oo, so, for example,

0 ifw=c¢
Oc =
o0 otherwise
in R{A*). The continuous semiring R{A*)) has a min operation which is defined pointwise

and whose unit is o0 : A* — R, w + o0. Moreover, it has a plus operation @ which is defined
via the Cauchy product formula as

(r1 ® ro,w) = min{(ry,u) + (r2,v) | u,v € A*, uv = w}

and has Oe as unit. The formula for the star of a formal series shown in Proposition 1.6 becomes

= Min Mlnmm{z roug) | Uty Uy € A¥ ug o uy = whw
weA* neN
or, put differently:
(r*,w) = Mlnmln{z roug) | ul, .., Uy € A% Uy uy = w}

=1
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for all w € A*. In particular, for the calculation of (r*, w) for w = babaab we have to consider
all decompositions of w into {a, b, ab} and minimise over their respective values (where the value
of a decomposition is the sum of the coefficients of its components, in the case of r this is just
the number of components). We have

b-a-b-a-a-b|6
b-ab-a-a-b|b
b-a-b-a-ab|5

b-ab-a-ab |4

Since all other decompositions lead to a sum of oo, we have (r*,w) = 4. For the general case,

we obtain
0 fw=c¢
(T*vw) = {

|w| — ngp(w)  otherwise

We have already seen that every context-free grammar can be considered an algebraic system
in P(A*) and — by the above isomorphism-result Proposition 1.7 — as an algebraic system in
B{A*%. The generalisation from a language L € P(A*) to a formal series r € R{A*) hence
immediately gives rises to a class of algebraic systems that corresponds to R{A*) as context-
free grammars correspond to P(A*): the {{aw} | a € R,w € A*}-algebraic systems in R{A*).
The set of components of solutions of these systems hence generalises the notion of a context-free
language from P(A*) to RLA*)).

Example 1.21. Let us consider the following algebraic system in RY{{a, b}*):

“ Lyl +1—()
y =50yt 3oyt e =ply).

We can think of this as a stochastic process which — at each point in time — outputs a with
probability %, b with probability % and stops with probability %. The least solution of this
algebraic system is a formal series 0 € RY{{a,b}*) s.t. (o,w) is the probability that this
process outputs the word w € {a,b}*. The least element of RY{{a,b}*) is 0, the series all of
whose coefficients are 0 € RY. We compute o by proceeding as in Example 1.15:

p°(0) =0

1
Pl(o)—f

11 1.1 1 1 1 1
2(0) = ca~e+ ~b-e+-ec=-a+—b+-¢

We form the conjecture
1/1 na(w) 1 np(w)
7 — —_| = —
ro- 3 56) ()
we{a,b}<m
and prove it by induction. For n = 0, 1,2 it is shown above. For the induction step we have

1 1/1 na(w) 1 np(w) 1 1/1 na(w) 1 np(w) 1
n+1 _IH -~ - = - e - -
PO =M ga ), 4<2> <4> wtgh ) 4<2> (4) vy

wef{a,b}<" we{a,b} <"
Z 1<1>na(w)<1>nb(w) N Z 1<1>na(w)<1>nb(w) +15
weaf{a,b}<" 4\2 4 web{a,b} =" 4\2 4 4
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and since {a, b} <"1 = a{a,b}=" U b{a,b}=" U {¢} we have

2600
= -z - w.
wef{a,b}<n+1 4\2 4

By the fixed point theorem we know that o = sup{p"(0) | n € N} so we obtain

1/1 ng(w) 1 np(w)
o =sup { Z 4(2> <4> w | neN}

wef{a,b}<n

and since the supremum of a sequence of formal series is computed component-wise and the
components only change once each (from 0 to the final value) we have

OO
= - = - w.
wefa,b}* 4\2 4

1.4.4 Context-free grammars and N®

Moving to a more general semiring can also provide a means for analysing aspects of elementary
notions from formal language theory. We will see an example for this now. Let G = (Y, A, P,y1)
be a context-free grammar and Y = {y1,...,yn}. We define the one-step leftmost derivation
relation as « gg o if a = agyas, o = a1fas, y — B is a production rule of G, a1 € A* and
az € (AU Y)*. It is easy to show that a word is derivable in a grammar iff it has a leftmost
derivation.

Ezample 1.22. Let A = {a, b, c, o} and define a grammar by the production rules
S—SoS|alb|ec
Then the word b o a o b has the following two distinct leftmost derivations:

S=—So0S=—=boS=0boSoS=—"boaod

S=—S085=—S0S08=—%boaob

In contexts where o is interpreted as a non-associative operation these two different leftmost
derivations, and hence different parse trees, will yield different interpretations. In many appli-
cations this is undesirable, therefore (non-)ambiguity is an important aspect of grammars.

For w € L(G;) write d;(w) for the number of leftmost derivations of the word w in G; =
(Y, A, P,y;). Ambiguity can be characterised nicely by transforming a context-free grammar
into an algebraic system in N*A*)) instead of P(A*). This is done just as in Definition 1.16.
Then one can obtain the following:

Theorem 1.4. Let G = (Y, A, P,y1) be a context-free grammar, let Y = {y1,...,yn}, and let
Y = p(Y) the corresponding algebraic system in N®{A*) with least solution o = (o1,...,0p).

Then o; = Y cax di(w)w for 1 <i<n.
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1.5 DMatrices

Automata are a central notion of formal language theory. In order to develop our theory of
automata we first study matrices over a continuous semiring. This section is devoted to them,
in particular to proving that the square matrices over a continuous semiring form a continuous
semiring. This will, as in the case of formal series, give us a star of matrices. We will then see
how to calculute the star of a matrix in terms of +, - and star of the underlying semiring.

1.5.1 The continuous semiring R/*!

Definition 1.19. Let R be a semiring and I, J finite sets. A mapping M : I x J — R is called
matriz. The values of M are denoted by M; ; for i € I,j € J. The set of all such matrices is
denoted by R'*7.

For M, N € R"™*/ we define:
(M + N)ij = M;; + Nij.

We also define 0 € R™*/ by 0;; =0
For M € R™7 and N € R7*K we define:

(M- N)ig = > M jN;
jeJ

We also define 1 € R™*! by 1;; =1ifi = j and 0 otherwise.

We thus obtain a structure (R'*!, +,0, -, 1). It is straightforward to show that, if R is a semiring,
then also (RT*1 +,0,-,1) is.

Proposition 1.8. Let R be a continuous semiring, then R is a continuous semiring.

Proof. R™! is a semiring. Note that M = N iff M;; © N, ; for all 7,j € I. Therefore we can
apply Lemma 1.3 to conclude that that (R/*!,C) is a complete partial order and that, for any

increasing sequence My = M; E ---, and for all 4, j € I we have
(sup{M, | n € N})ij = sup{(Mn)i; | n € N} (*)
Let us first show that + is continuous. To that aim let My & M; E --- be an increasing

sequence and fix 7,5 € I. Then we have

(sup{My, | n e N} + N); j = (sup{M,, | ne N}); ; + N;
=) sup{(M,);; | n € N} + N;;
= sup{(My)i; + Nij | n e N}
= sup{(M,, + N);; | n e N}
=) (sup{M,, + N | n e N});

And therefore we have sup{M,, + N | n € N} = sup{M,, | n € N} + N.

5Prove some properties as exercise!

19



For showing that - is continuous, let again My = M; E --- be an increasing sequence and fix
i,k € I. Then we have

(sup{My |neN}-N);, = Z(sup{Mn | neN}); Nk
jel

=0 sup{(M,)ij | n e N}N
jel

then by continuity of polynomials in R together with Lemma 1.1

—SUP{Z )i,j Nk | m € N}
gel

= sup{(M, - N);x | n e N}
=) (sup{M,, - N | n € N});x

For multiplication from the left proceed analogously. O

Since R™*! is a continuous semiring, there is also a star-operation on matrices: M* = Dien M i.
The star of a matrix will play an important role for finite automata. We will therefore study it
more closely here (before moving on to automata).

1.5.2 The star of a matrix

Ezample 1.23. Let I = {1,...,n} and M € R be a diagonal matrix. Then

i i

Ny -3 -

€N 1eN My, ieN m

In general, the computation of the star of a matrix is considerably more complicated. Before
we study an algorithm to compute the star of a matrix, we relate it to more familiar notions:
we will now show that the star of a matrix is closely related to the paths in a graph. As usual,
a graph is a pair (V, E) where V is a finite set of vertices and F € V x V is the set of edges. A
path is a list ey, ..., e, of edges s.t. for all i = 1...,n — 1 there are z,y,z € V s.t. ¢; = (x,y)
and e;1+1 = (y,z). If the graph is clear from the context, and i,j € V, we write P,(i,7) for
the set of paths from ¢ to j of length n and P(i,j) for the set of all paths from i to j. If R
is a continuous semiring, an R-weighted graph is a tuple (V, E,w) s.t. (V, E) is a graph and
w:FE — R. We extend w to w: V x V — R by setting w(i,j) = 0 if (i,j) ¢ E. Then we can
identify an R-weighted graph with a matrix M € RV*V by letting M; ; = w((4,7)). The weight
of a path p = ey, ..., e, is then defined as w(p) = [ [;_; w(e;). Note that this implicitely defines
the weight of the empty path to be 1 € R.

Proposition 1.9. Let R be a continuous semiring and M = (V, E,w) an R-weighted graph.
Then (M*)i; = Spep w(p)-

Proof. We will first show by induction on n that (M")i; = >cp, ;5 w(p). For n = 0 this holds
trivially since MY is the identity matrix. For the induction step, observe that

Mn+1 zg Z Mzk Mn 7j =M Z Z ’LU(p) = Z w((z,k))w(p) = Z

keV keV pePn(k’,j) keV PpE Py 1+1(4,5)
pepn (k»])
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But now

= (Z M");; = Z(Mn)i,j = w(p) = Z w(p).

neN neN neN peP, (3,5) peP(i,5)

d

The aim of this section is to prove a theorem that reduces the computation of the star of a
matrix to the computation of the stars of smaller matrices. Applying this result recursively
gives a procedure to compute the star of any matrix in R’*! provided we know how to compute
the star in R. In order to prove that theorem we need some preliminary results first.

Lemma 1.7. Let R be a continuous semiring and x,y € R. Then the sum-star equation
(z+y)" = (@%y) 2" = 2™ (ya™)"

holds.

Proof. First note that, for all a,b € R, we have:

(ab)*a = (Z(ab)i)a = Z(ab)ia = Z a(ba)’ = aZ(ba)i =

ieN ieN ieN €N

Therefore it suffices to prove (x + y)* = x*(yx*)*. For ¢, € N define’

Syr = Z aPOygPL - yaPr
P0,--.,preN
po+-+pr=q

The definition of S, directly entails that (z + y)" = > ren Sq,r, SO we have

q+r=1
*
(x+y) =Zx+y Z SqT—ZSq,T.
ieN q,r,ieN q,reN
q+7“:i
Furthermore, for all » € N we have
") = 3y 3 ey T
poeN p1EN preN
= Z ZPOygPL .y = Z Z ZPOyzPL P = Z S
Po,--,prEN qeN po,...,preN qeN
pott+pr=gq

and therefore also

a*(ya*)* = a* Y (ye*) = Y 2 (yr*) = ), ) Ser = Y, Sur

reN reN reN geN q,reN

Lemma 1.8. In a continuous semiring R we have (x + y)* = (x + yz*y)* (1 + yx™*).

"For example, if R = P(A*) and z,y € A, then S, . is the set of all words which consist of ¢ occurrences of z
and r occurrences of y.
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Proof.

(@ +y)* =L BT (@) = Y@y = D (@Fy) Pt + ) (aty) P e
j=0 =0 j>0

= (z¥ya*y)*x* + (zyaty) xFys* = (aFyxty)* (1 + ya*)
:Lem. 1.7 (ZL‘ + yx*y)*(l + yw*)

O]

We have seen that R’ is a continuous semiring. If J is another finite set, then applying
Proposition 1.8 again shows that (R7*!)/*7 is a continuous semiring as well. An element M
in (RT*1)7*/ is a matrix of matrices but can be considered a matrix of elements of R as the

following proposition shows:

Proposition 1.10. Let R be a continuous semiring, I,J finite sets. Then the continuous
semirings (RT*1)7*) and RUXI)*UXT) gre jsomorphic.

Proof. Define ¢ : (R!*1)/xJ — RUXJ)x(IxJ) by (P(M))(i1,j1),(i2.da) = (Miy i)y go- 1t s straight-
forward to verify that ¢ is an isomorphism. O

We will often decompose a matrix. Let M € R™*! Iy w I, = I. For k,l € {1,2} we write
M (I, I;) for the matrix obtained from keeping the rows with indices in I and the columns
with indices in I; and deleting all others. In the context of a fixed partition I = I} w I we will
often write M}, as an abbreviation for M (I, ;). Proposition 1.10 above shows that we can

) ) . . (M1 Mg
identify M € R'*! with the matrix < ' .
Y Myy Mo,y

Theorem 1.5. Let R be a continuous semiring, let M € R gnd let I = I, w I5. Then

(M*)11 = (

(M*)12 = (M*)1,1 M 2M5,
(M*)22 = (Mag + Mz 1 M M 2)*
(M*)a1 = (M*)22Ma 1 M7 4

Proof. Let My = (jwol’l ]WO ) and My = <]WO ]\401’2>, then
2,2 2,1

)

My 1 + My o M3 oMy q)*

M* = (My + My)* =Lem- 18 (M 4+ My M My)* (1 + Moy M),

M 0
* 1,1
We have M| = ( 0 M2*2> and hence
M11+M12M2*2M21 0 )
My + MMMy = ' ’ ’ ' .
! 2 A2 < 0 M272 + M2,1Mik,1M1,2
Furthermore
* ) )
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Therefore

M* = (Ml + MQMI*MQ)*(l + MQMl*)

_ ((Ml,l + M172M2*’2M271)* 0 ) ( 1 M172M2*72>
0 (Moo + Mo M My 2)* ) \ Mo, M7y 1

_ ( (M1 + Mo M3y M) (M + M1,2Mf‘,1M2,1)*M1,2M§,2>
(Ma2 + Mo My My 2)* Mo 1 M4 (M2 + Mo 1 M My 2)*

Ezample 1.24. Let I = {1,2,3} and R = B{{a,b}*)) and M € R/ be

b 0
M = 0 b
0 0

> O Q

Preparing for the application of Theorem 1.5, let I; = {1} and Iy = {2,3}. We then have
(Ml,l)* = (a)* = (a*)
. (0 b\' /1 0) (0 b\ (0 0\ (1 b
(Mz,z)_§<00 “lo 1) o/To o) \o1

Now, by Theorem 1.5 we have

(M*)11 = <(a) +(b 0) <(1) 11)> (2) >* = ((a +b%)*)

(M*)15 = ((a+69)%) (b 0) (3 ll’>:((a+b3>*b (a +6)"1?)

0 b 0\ / « (0 b\
(@ o)« G)ere o) =(us o)
Now another application of Theorem 1.5 shows that the star of an anti-diagonal matrix is
0 a\"_((ap)* (aB)*a
<5 0> = <(504)*5 (Ba)* and hence

B (b%a*b)* (b%a*b)*b
B ((ba*bZ)*ba*b (ba*b2)*> '

(M*)22

Finally,
(M*)a 1 — (b2a*b)* (b%a*b)*b\ (0 (a*) = (b%a*b)*b*a*
207\ (ba*0?)*ba*b  (ba*b?)* ) \b ) \" ) T\ (ba*b2)*ba*
Summing up we have obtained:

(a+ b3)* (a+063)*b  (a+b)*b?
M* = | (b®a*b)*b*a*  (b*a*b)* (b%a*b)*b
(ba*b?)*ba*  (ba*b?)*ba*b  (ba*b?)*
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1.6 Regular languages

1.6.1 Finite automata

Definition 1.20. Let R be a continuous semiring and R’ € R. An R’-automaton in R is a
tuple A = (I, M, S, P) where

e [ is a finite set of states,
o M e R is the transition matriz,

o S e R is the initial state vector, and

e P e R s the final state vector.
The behaviour ||A|| € R of the R'-automaton A is defined as || A| = SM*P.

The intention of the above definition is that the entry M; ; of the matrix M determines the
element of R’ associated to the edge from state i to state j. Note that this definition permits
more than one initial state and (as the traditional definition) also more than one final state.
Moreover, to each starting and final state (each entering and exiting edge) we can associate an
element of R’ as well.

It is possible to extend the above definition of finite automata to an infinite set of states I.
The results of Section 1.5 also hold in this more general setting. This allows to treat pushdown
automata in an arbitrary continuous semiring A. However, we do not follow this direction here
— in this course all automata will have a finite number of states.

Ezxample 1.25. The matrix M discussed in Example 1.24 corresponds to the following diagram

a
()
b
The entry (M*); ; is the language recognised by the paths from i to j. Indicating 1 as the only
initial and the only final state can be done by setting

9
S=( 00 and P=|0
0

This is represented in the diagram as

(but often we will omit the label £ on entering and exiting edges of a diagram). Then the
behaviour of the automaton A = ({1,2,3}, M, S, P) in P(A*) is

|A|| = SM*P = (a + b%)*
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Ezample 1.26. Let A = {a, b} and consider the automaton

a,b
b

A - =0

in BLA*). Then M = e 0 0] = (M*)11. By

Theorem 1.5 we have (M*)11 = (My1 + M12M59Ms1)* = (a + b+ ba)*. But in BLA*)) we
have (a + b+ ba)* = (a + b)* and hence ||A|| = >}, c4+ w. In particular the simpler automaton

a+th b> and note that ||Al| = (¢ 0) M* (6

a,b

If we move to N*(A*) we have a more complicated behaviour. The coefficient of a word w
turns out to be the number of accepting paths of w. Considering A in N*{A*) we claim that
JAll = X eax 27w where ny,(w) is the number of occurrences of ba in w. This can be
shown as follows: first, as above we have || A|| = (a + b + ba)*. Now, by Corollary 1.1, we have

has the same behaviour.

|w|

Z Z Z Ha+b+baul)

weA* n=0 (uy,...,un)e(A¥)™ i=1
UL Uy =W

(a+ b+ ba)*

|w|

22 o lw

weA* n=0uyy,...,upe{a,b,ba}*
UL+ Uy =W

_ Z 9Mba(w)

weA*

because for each occurrence of ba in w we can make the choice of whether to consider it as
u; = ba or as u; = b and u;11 = a and these choices are independent.

The above examples are classical automata; more precisely: for A = {ai,...,a,} and R’ =
{Xoe + Mar + -+ Aan | Aoy..., A € {0,1}} they are R’-automata in R{A*). But our
more general context allows to put weights on the transitions (hence the terminology “weighted
automata”) by taking \; ¢ {0,1}. We thus define:

Definition 1.21. Let R be a continuous semiring, A = {aq,...,a,} be an alphabet and R’ =
{Xoe + Mag + -+ + Apan | Ao,---,An € R}, An R’-automaton in R{A*) is called weighted
automaton in R{A*)).

When working in the min-plus semiring one can think of the weight as cost (since we want
to minimise it) and, dually, in the max-plus semiring as gains (which we want to maximise).
Under certain conditions, real-valued weights can be considered probabilities.

Ezample 1.27. Let A = {a,b}, R = (N, max, —c0, +,0) where N = N U {—00, 00} with 4+ +
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(—00) = —o0. Consider the following automaton A in R{A*)):

Max{0a,00,3ab}  Max{0a,0b}

Max{2ba,0¢}
Oe

The above automaton has 1 as only initial and only final state: it reads a word of a’s and b’s
looking out for the subword ab. The “greedy” strategy would be to take the edge 3ab when an
occurrence of ab is encountered. However, this does not maximise the gain. If the current ab is
matched by a ba later without any ab’s in between, then it pays out to move to state 2, thus
collecting gains of 4 instead of only 3 (since a ba in state 1 is useless).

We have
M- Max{0a, 0b, 3ab} 2ab
| Max{2ba,0c}  Max{0a, 0b}
and ||A|| = (M*)11 = Max{M;1, M2 ® MQ’“’2 @ My} where we write @ for the addition in
R{A*)) which is defined via the Cauchy formula. Concerning M3, first note that, by Corol-
lary 1.1,

n

Max{0a, 0b}*, w) = Max Max Max{0a, 0b},u;) = 0
( { } ) n=0,...,|w| (ul,...,un)e(A*)"i_Z;( { } )

In R{A*), the sum of three formal series is defined via the Cauchy formula as

(rm®ro@r3,w) = Max  {(r1,u1) + (r2, u2) + (r3,u3)}.
ul,ug,ugeA*
UIU2UI=W

Thus we obtain

(r,w) := (M12® Mjo @ M1, w)
= Max {(2ab,u1) + 0 + (max{2ba,Oc}, u3)}

uy,uz,u3€A*
UL UUZ=W

= Max {(2ab,u1) + (2ba,us3), (2ab,u1) + (0e,u3z)}
ul,ug,ugeA*
UL UUI=W

4 if we abA*ba
=<2 if we abA*\(abA*ba)

—oo  otherwise
and

(s,w) := (Max{M,1, M12® M3, ® M1}, w)
= (Max{0a, 0b, 3ab, 7}, w)
(4 if we abA*ba

3 if w=ab
=12 if w e abA*\((abA*ba) U ab) = abAT\abA*ba
0 ifw=aorw=>

—o0  otherwise
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By applying Proposition 1.6 in R{A*))> we obtain

(s*,w) = Max *{(s,ul) 4+t (s,un)}

UL yeeryUnE

UL Up =W
Now, whenever u; € abAT\abA*ba then the decomposition w; = abujii---u;y) leads to a
higher coeflicient, so the line with coefficient 2 is never used in the computation of a maximum.
Similarily, if u; = abvba with v € A* s.t. v contains an a, then ng(u;) = 2 (where ngp(u) is the
number of occurrences of ab in ). So the line with coefficient 4 is only used on wu; € abb*ba in
the computation of a maximum. Moreover, note that if u; € bA* in a maximal decomposition,
then u; = b for otherwise —oo0 must appear as summand. Furthermore, the line with coefficient 4
is never used on a u; € abb*ba if u;+1 = b in a maximal decomposition, for then ngp(u;u;+1) = 2
and using the line with coefficient 3 would give a better decomposition.

Therefore, the decomposition of w which maximises (s*,w) is w = ugviuy - - - vu, where
V1y..., Uy € abb¥ba, uy, ..., u, € aA* U {e}, up € A* and n is maximal. Then we obtain

(s*,w) = 4n + 3ngp(ug -+ up)
where n is obtained from that decomposition of w.

Note that the notion of finite automaton as defined above does not make any assumption on
the continuous semiring R, in particular it is not required that R = S{A*)) for some continuous
semiring S and some alphabet A. The generality of this notion of automaton (just as that of
the notion of algebraic system) thus goes beyond what is required for formal language theory,
as the following example shows.

Ezample 1.28. Let G(V, E) be a graph. Let R = (N* min, 00, +,0) and let w : E — R. Then
M = (V, E,w) is an R-weighted graph and the weight of a path is the sum of the weights of its
edges. Leti,j € V,let S e {00,0}'*" be co everywhere except at position i and P € {c0, 0}V *! be
o0 everywhere except at position j. Then A = (V, M, S, P) is an {0, 1, o0}-automaton in R (but
not in RCA*) (1)) and we have ||A|| = S(M*)P = (M*);; = min{> ", w(e;) | (e1,...,en) €
P(i,j)}, i.e., the automaton computes the length of the shortest path from i to j.

1.6.2 Kleene’s theorem

In the context of the elementary theory of formal languages, Kleene’s theorem states that regular
expressions define the same class of languages as finite automata: the regular languages. In this
section we prove an analogous result in our more general context.

Definition 1.22. Let R be a continuous semiring and R’ € R. Then the automatic closure of
R’ is defined as Aut(R’) = {x € R | there is R'-automaton A s.t. z = || Al|}.

Definition 1.23. Let R be a continuous semiring and R’ € R. The rational closure Rat(R')
of R’ is the smallest set which contains 0, 1, all x € R’ and is closed under +, - and .

Expressions built from R’,0,1 as well as +,-,* are also called R'-rational expressions. For
R =P(A*)and R’ = {{w} | w e A*}, the R'-rational-expressions are just the regular expressions
well-known from theoretical computer science. Kleene’s theorem will then be formulated as
follows: for all {0,1} € R’ < R we have Rat(R') = Aut(R’). The proof of this result will occupy
the remainder of this section. Before we start with the actual proof, it will be helpful to define
a notion of normal form for automata.

Definition 1.24. An R’-automaton A = (I, M, S, P) is called normalised if
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1. There is an ip € I s.t. S, = 1 and S; = 0 for ig # i.
2. There is an if € I, it # 19 s.t. P, = 1 and P; = 0 for 7 # 4.
3. Mi,io =Mi =0foralliel.

£,0

Lemma 1.9. For every R'-automaton A there is a normalised R’ © {0, 1}-automaton A’ s.t.

AT = 1Al

Proof. Let A = (I, M, S, P) be an R'-automaton, let ig, it ¢ I be new states and define A" =
({ig,is} v I, M’ S", P") where

00 S 0
S'=(1 o0, M=[0o0 0], P=|1
0 P M 0
We have
HA/H = S'M"P' = (M,*)ioﬂ'f'

Using the partition I’ = I} w Iy = {ig, it} U I for Theorem 1.5 we obtain

(M"™)11 = (My1 + My o M5 My )™ = ( (0 O> + <§> M*(0 P))*

00
_ (0 SM*P\T _ (1 0\, (0 SM*P . 0 SM*P\' (1 SM*P
-~ \0 0 ~\0 1 0 0 , 0 0 -~ \0 1 '
=2
Therefore (M), i, = SM*P and we obtain ||A'|| = SM*P = || A]|. O

Lemma 1.10. Let R be a continuous semiring, {0,1} € R’ < R. Then Rat(R’) < Aut(R').

Proof. For any z € R’ we have ||({1}, (0), (1), (2))]| = (1) (0)* (z) ==

For closure under addition, let Ay = (11, My, S1, P1) and Ay = (I3, Ms, Sa, P») be R'-automata
with I; U Iy = J and define A = (I; v 2, M, S, P) by

(M 0O B (P
M_<0 M2>, S=(S1 S2), P_<P2>.

Then, clearly A is an R’-automaton and we have || A|| = SM*P = Si{M{P; + SoMiP, =
AL + [l Az]].

For closure under product, let A; and As be as above. By Lemma 1.9 we can assume w.l.o.g.
that A; and As are normalised. Define A = (I1 u I3, M, S, P) by

(M PS5 B _ (0
M_<0 M2>, S=(5 0), P—<P2>.

Since A; and Ay are normalised, Py Ss € {0,1}/1*2 ¢ R'1*12 and hence A is an R’-automaton.
Using the partition I; w Is for Theorem 1.5 we obtain

(M*)LQ = (M171 + M172M;72M271)*M172M;72 = (M1 + Plsle*O)*PlslMQ* = M{kplngQ*

and hence
| Al = SM*P = S1(M*)1 2P, = S1M{ P1Sa M3 Py = || Ar][| Az]|-
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For closure under star, let A = (I, M, S, P) be an R’ automaton. Let g ¢ I be a new state and
define A" = ({qo} v I, M',S’, P’) by

M’:Gi ]\SD S'=(1 0), P’=<(1)>.

Using the partition {go} w I for Theorem 1.5 we obtain

A = S"M™P" = (M™)11 = (0+ SM*P)* = || A|*

Lemma 1.11. Let R be a continuous semiring, R’ = R. Then Aut(R') < Rat(R').

Proof. We first show that M e R implies M* € Rat(R')"*! by induction on |I|. If |I| =1,
then clearly (m)* = (m*) e Rat(R')*!. For the induction step, consider any partition I =
Iy w I into two non-empty parts. Then, by Theorem 1.5, (M*)11 = (M1 + My oM3 oM 1)*.
By induction hypothesis M, € Rat(R')>*2, hence M1 + Mo M5 oMo € Rat(R')1*N and
therefore, again by induction hypothesis, (M*)11 € Rat(Rat(R'))"*"1 = Rat(R')" "1, For the
(M*); ; with (4,5) # (1,1) proceed analogously. We obtain M* € Rat(R')1*.

Let A = (I,M, S, P) be an R-automaton, then ||Al| = SM*P = %, ..; Si(M*); ;P; and since
(M*);; € Rat(R'), also ||A| € Rat(R). O

We have thus proved Kleene’s theorem:

Theorem 1.6. Let R be a continuous semiring and {0,1} € R’ < R. Then 2Qqut(R') = Rat(R').

This result shows that two structurally quite different specification formalisms, rational ex-
pressions on the one hand and automata on the other hand, define the same closure operator.
A situation like this is evidence that we are dealing with an important closure operator. It
is a strong generalisation of the usual Kleene theorem from the elementary theory of formal
languages:

Corollary 1.2. Let R = P(A*) and R' = {&,{e}} v {{z} | z € A}. Then Aut(R') = Rat(R').
An L € 2t(R’) is called regular language.

1.6.3 Linear systems

So far we have seen that regular expressions and automata are equivalent in the sense that they
define the same closure operator. As in the elementary theory of formal languages, a certain
kind of grammars (or in our setting: algebraic systems) is equivalent to these as well.

Definition 1.25. Let R be a continuous semiring, R € R and Y = {y1,...,y,}. An R-
algebraic system Y = p(Y') is called linear if there are m; ;,q; € R’ s.t.

pi(yb .. ,yn) =m;1y1 + ...+ MinYn + qi, for1 <i<n.

Thus linear systems generalise right-linear grammars (of which we know that they generate
exactly the regular languages). An R'-linear system is often written as Y = MY + @ where

q1
M = (m;j)i1<ij<n and Q =
an
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Definition 1.26. Let R be a continuous semiring and R’ € R. Then the linear closure Lin(R') of
R’ is defined as Lin(R) = {z € R | x is component of the least solution of an R'-linear system}.

Proposition 1.11. Let R be a continuous semiring, R € R and let Y = MY + Q be an
R’ -linear system. Then M*Q is its least solution.

Proof. Write p(Y') = MY + Q. We show p"(0) = > 5, M'Q by induction on n. For n = 0,
p(0) = 0. For the induction step we have p"*1(0) = P(Qo<ion MQ) = MY ocion MQ+Q=
20<i<n+1 MZQ'

Now, the least solution of Y = p(Y) is

sup{p"(0) | n € N} = sup{ 2 M'Q | n e N} = sup{ 2 M'"|neN}Q=M*Q.

0<i<n 0<i<n

Theorem 1.7. Let R be a continuous semiring and {0,1} € R' < R. Then Lin(R') = Aut(R’).

Proof. For the left-to-right direction let z € £in(R’). Then z is i-th component of the least
solution of an R'-linear system Y = MY + @ where Y = {y1,...,yn}. From Proposition 1.11
we know that this solution is M*Q. Now let S € {0,1}'*" be 0 everywhere except for the i-th
component. Then x = SM*Q. This is the behaviour of the R'-automaton ({1,...,n},S, M, Q).

For the right-to-left direction let = € Aut(R’). By Lemma 1.9 we can assume that = = ||A||
for a normalised R’-automaton A = (I,S, M, P), i.e. there is some i s.t. all components of S
are 0 except the i-th which is 1. Therefore x = (M*P); which, by Proposition 1.11, is the i-th
component of the least solution of the R'-linear system Y = MY + P, hence z € Lin(R’). [
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Chapter 2

Algebraic automata theory

In this chapter we will focus on regular languages and deterministic finite automata. It will
turn out that there is an intimate relationship between finite automata and finite monoids.
This relationship goes so far that one can establish a one-to-one correspondence between certain
classes, so-called varieties, of finite monoids and classes of regular languages. We will see one
of the most important such correspondences, Schiitzenberger’s characterisation of the star-free
languages as the languages recognisable by aperiodic monoids.

In order to arrive at this characterisation and to motivate the notions underlying this corre-
spondence, it pays out to first study the Myhill-Nerode theorem. This result is an algebraic
characterisation of the class of regular languages and is based on the construction of the minimal
deterministic finite automaton of a regular language.

2.1 The Myhill-Nerode theorem

2.1.1 The right-congruence of a DFA

Let M be a monoid and @ be a set. A right monoid action of M on @ is a function - : @ x M — Q
S.t.

q-e=gq, and

q- (m1m2) = (q -my) - ma.

A right monoid action is best thought of as each m € M inducing a function from @ to Q
with e inducing the identity function and composition in the monoid M being composition of
functions. Let A be an alphabet and M = A* the freely generated monoid. Then a monoid
action - of M is uniquely determined by the action of the generators x € A. In this chapter, we
will notate a deterministic finite automaton (DFA) as a tuple D = (Q, A, -, qo, F') where Q, A,
go and F' have the usual meaning and - is a right monoid action of the freely generated monoid
A* on Q. The action of the generators A on (@ is represented as a diagram as usual for DFAs.
While — at this point — this is only a change in notation, we will later consider monoids different
from A* and their action on Q.

An important property of finite state automata which recognise infinite languages is that there
are differents words which are indistinguishable to the automaton since they lead to the same
state. This is, for example, used in the proof of the pumping lemma where we observe that
a word w with |w| > |@Q| induces a path which must contain one state twice, say qo - u1 and
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qo + uiuz. This loop can then be “pumped” because the words u; and ujus, since they are
leading to the same state, are indistinguishable to the automaton. Moreover, in a deterministic
finite automaton, every word induces a unique path of states. We can hence make this notion
of indistinguishability precise as follows:

Definition 2.1. Let D = (Q, A, -, qo, F') be a DFA. Define the relation ~p on A* by wy; ~p wo
iff go - w1 = qo - w2.

The relation ~p is clearly an equivalence relation. Moreover, ~p is right-congruent, i.e., when-
ever wi ~p wa, then for all v € A*: wiv ~p waov because gy-w1 = qo-ws implies qo-w1v = ¢o-wWov
for all v € A*. Therefore ~p is also called the right-congruence of D. Note that ~p is not a
congruence relation, see the following example:

Example 2.1. Let D be the following DFA:
a

b

Then a ~p b and therefore aw ~p bw for all w € A*. However, ~p is not left-congruent, in
particular we have aa #p ab.

Moreover, since ~p is right congruent, wy ~p wy implies wiv € L(D) iff wov € L(D) for all
v € A*. However, the converse is not true. Consider the following example.

Example 2.2. Let D be the following DFA:

Here av € L(D) iff v € {a,b}" iff bv € L(D) but a #p b because 1 -a =2 and 1-b = 3.

Definition 2.2. Let (X,~) be an equivalence relation. The index of ~ is the number of
equivalence classes of ~.

Note that it is an immediate consequence of the definition of ~p that the index of ~p is at
most |Q|. We also write [¢]~, or just [¢] for the class induced by a state, i.e., [¢] = {w e A* |
qo - w = q}. Assume that D is a DFA where every state is accessible, i.e., for all ¢ € @ there is
a wg € A* s.t. qo - wg = q. Then, for q1,¢2 € Q with ¢1 # g2 we have wy, *p wy,. Therefore, in
a DFA where all states are accessible, the index of ~p is exactly |Q|.

We now proceed to study what the relation ~p tells us about the automaton D. To that aim,
the notion of isomorphism of automata will turn out to be crucial.

Definition 2.3. Let D = (Q, A,-,qo, F) and D' = {(Q', A, -, q(,, F') be DFAs. Then D and D’
are called isomorphic, written as D ~ D', if there is a bijection ¢ : Q — @’ s.t.

L. ¢(q0) = 40,
2. (F) = F', and
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3. forallge Q and x € A: ¢(q) - = ¢(q - x).

It is not difficult to show that two isomorphic automata accept the same language'. The
implication in the other direction is of course not true: there are non-isomorphic automata
which accept the same language. However:

Lemma 2.1. Let D = {(Q,A,-,q0, F) and D' ={Q', A,-,q,, F') be DFAs where every state is
accessible. If L(D) = L(D') and ~p=~p, then D ~ D'".

Proof. Let us first observe that, for all v,w e A*:
g-v=qo wiffv~pwiff v~p wiff ¢{-v =g w. (*)

Let g € Q). Since q is accessible, every g € (Q can be written as ¢g - w = ¢ for some w € A*. We
define p : Q — Q',q0 - w — ¢ - w. Reading (*) from left to right shows that ¢ is well-defined.
Reading (*) from right to left shows that ¢ is injective. The function ¢ is also surjective: let
¢’ € Q. Then, since ¢ is accessible, there is w s.t. ¢ - w = ¢’. Then ¢(go - w) = q; - w = ¢'.

For 1. we have p(qo) = ¢(qo - €) = ¢( - € = ¢(. For 3., let w e A* s.t. go - w = ¢. Then we have
0(a) -z =g w) z= (g w) z=qy wz, and
o(q-x) = ¢((g0 - w) - x) = (g0 - wx) = g - we.

For 2. note that, for every ¢ € Q, we have

[o()]~p = {we A" [ gy -w = ¢(q)}
={we A gy -w = ¢(q - v)}

where v € A* s.t. qp - v = ¢ and thus

[o(@)]~, = {we A" | g - w = g5 - v}
:{’U}GA*|’U)~D/’U}
={we A" |w~p v}

={weA* | -w=q- v=q}

= [d]~p-
Therefore
1) = Jlalen = Ule@lp = U 1y
geF qeF q'ep(F)
and since L(D') = U ep[d']~,,, we have F' = o(F). O

2.1.2 The right-congruence of a language

We have seen that, for a DFA D which accepts the language L, the relation ~p satisfies:
whenever w; ~p ws, then for all v € A*: wyv € L iff wov € L. Instead of starting with the
definition of ~p based on D and deriving this property, we can start with the language L and
define the coarsest equivalence relation which satisfies this property.

Definition 2.4. Let L € A*. Define the relation ~; on A* by wy ~, we iff for all v € A*:
wiv € L iff wov € L.

Do it as exercise!
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The relation ~; contains important information about L. In particular it allows a characteri-
sation of the regular languages, the Myhill-Nerode theorem: L < A* is regular iff index(~p) is
finite. This theorem is the main result of Section 2.1. A first important property of ~y, is that
it is also a right-congruence, i.e., if w; ~p we and u € A*, then wiu ~p wou, we hence also
speak of the right-congruence of L. Another important property is:

Lemma 2.2. Let D be a DFA, then wi ~p wa implies wy ~L(D) W2

Proof. Let D ={Q, A,-,qo, F). If w1 ~p wy, then gy -w; = qo - wy and therefore, for all v e A*:
qo-wyv € Fiff go-wov € I, i.e. for all v e A*: wyv e L(D) iff wov € L(D), i.e., w1 ~p(py wa2. O

Definition 2.5. Let (X, ~;) and (X, ~2) be two equivalence relations. We say that ~3 is a
refinement of ~1 f Ve,ye X:x ~oy=2~1 9.

If ~5 is a refinement of ~; we also say that ~ is finer than ~1 and that ~1 is coarser than ~s.
If ~5 is a refinement of ~1, then each ~1-equivalence class is a disjoint union of ~o-equivalence
classes. Consequently, the index of ~; is at most that of ~5. So the above Lemma shows that
~p is finer than ~p) for all DFAs D.

Ezxample 2.3. Continuing Example 2.2, note that, since all states are accessible, the equivalence
classes of ~p are [1], [2], [3] and [4]. On the other hand, the language accepted by D is
L ={we A* | |lw| = 2}. Therefore the equivalence classes of ~, are

{we A" [ |w] = 0} = {e}
{we A" | |w| = 1} = {a, b}
{fwe A" | |lw]| =2} =L

And we have [1] = {e}, [2] U [3] = {a,b} and [4] = L.

A priori, it is not clear how to compute the equivalence classes of ~ in general. However,
~1 is closely related to the left-quotients of L which can be computed systematically in a
straightforward way.

Definition 2.6. Let L £ A* and v € A*. We define the left-quotient v 'L = {w € A* | vw € L}.

The left-quotient v~ 'L can be thought of as the set of all w € A* s.t., if we have already read

v, reading w will lead us into L. Note that w € v~'L iff vw € L, so, in particular, v € L iff
—1

eev L.

Lemma 2.3. Let L € A* and vi,v9 € A*. Then vflL = v;lL iff vi ~ va.

Proof. vi'L = vy'L iff {w € A* | vjw € L} = {w € A* | vow € L} iff for all w € A*:
nwe L < vwe L iff vy ~p ve. O

In order to compute with left-quotients, the following observations are helpful.

Lemma 2.4. Let L, Ly, Lo € A* and u,v € A*, then

1. v (L1 U Ly) =v 'Ly v 'Ly, and
2. (w) 'L = (v Hu"1L)).

34



Proof. For 1. we have
v Ly U Ly) = {we A* |vw e Ly U Ly}
={we A" |Jvwe L1} u{we A" | vw € Lo}
=v 'Ly uv L.
For 2., note first that u='L = {wy € A* | uwp € L}. Then we have
v (u L) = {we A* |vweu 'L}
={we A" | vw = wp,uwg € L}
={we A" | wow € L}

= (wv) L.

Ezample 2.4. Let A = {a,b} and L = A*ab. We compute the left-quotients of L:

e 'lL=1L
a'L=bulL
b 'L=1L

a'bul)=abva'L=a'L=buUL

b bul)=b"tbubL=cUlL

alevul)=atevalL=a'L=buL
bleul)=bleub'L=b"'L=1L

Note how every line except the first of the above calculation contributes an edge to the below

diagram. A line which contains a left-quotient that is new w.r.t. the lines so far creates a new
vertex.

The above list is saturated in the sense that it contains e 'L = L and for every left-quotient
v~!L it contains, it also contains a~!(v~'L) and b='(v"!'L). A set which is saturated in this
sense contains all left-quotients, since every w € A* can be written as w = x1 -+ -2, with x; € A
and thus w™ L =z (- - x5 (27 L)) ---) occurs in the set.

Note that L from the above example has a finite number of left-quotients, or, equivalently: a
finite number of ~-equivalence classes.

2.1.3 The minimal DFA of a regular language

Definition 2.7. Let L € A* s.t. the index of ~, is finite. Define the canonical automaton of
Las D(L) ={(Q,A,-,qo, F) where Q = {w 'L |we A*}, qg = 'L=L, F = {w 'L |we L}
and w™ Lz = (wz) L.

Since ~, is of finite index there are, by Lemma 2.3, only finitely many left-quotients and so
Q is finite. Clearly qo € Q and F < Q. Also note that F = {w™'L | w e A* ¢ e w'L}. If
wi'L = wy 'L, then (wiz) 'L = 27 (w;'L) = 2~ (wy 'L) = (wex) 'L, so - is well-defined.
Hence D(L) is indeed a DFA.
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Ezample 2.5. Let A = {a,b} and L = A*ab. Continuing Example 2.4 and following Defini-
tion 2.7, D(L) is:

The initial state is e 1L = L, the set of final states is fixed to {¢ U L} because € U L is the only
left-quotient that contains e.

Lemma 2.5. Let L < A* s.t. ~1 is of finite index and let D(L) = {Q,A,-,qo, F) be the
canonical automaton. Then

1. v L w = (vw)7 'L,
2. L(D(L)) = L, and
3. ~p(L) = ~L-

Proof. Let us first prove v~!L-w = (vw) 'L by induction on |w|. If w = €, we have v L. e =
v~1L. For the induction step, let w = zw’, then we have

v L zw’ = (0L x) o w’ = (va) L w’ = (vaw) L.

For 2. we have
L(D(L) ={weA* |L-we F}={weA* |ee L-w} =" {we A* |ec w™ 'L}

and since ¢ € w™'L iff w € L we obtain L(D(L)) = L.

For 3. note that wy ~py w2 iff L-wy = L - wy iff (by 1.) wflL = w;lL iff (by Lemma 2.3)
w1 ~1, Wa. O

We are now ready to prove the Myhill-Nerode theorem.

Theorem 2.1. Let L € A*. Then L is regular iff the index of ~p, is finite.

Proof. For the left-to-right direction, let D be a DFA that accepts L. Then ~p is a refinement
of ~; and therefore the index of ~, is at most the index of ~p. But the index of ~p is at
most the number of states in D which is finite.

The other direction follows directly from Lemma 2.5/2. O

The Myhill-Nerode theorem is an algebraic characterisation of the regular languages. It does
not refer to any notion of automaton, grammar or a similar formalism.

Ezample 2.6. Let L = {a"b" | n € N}. We can show that L is not regular as follows: let
p,q € N s.t. p# q. Then a? #, a? because a’bP € L but a%b? ¢ L. So there are infinitely many
~-classes, hence by the Myhill-Nerode theorem, L is not regular.

The size of an automaton is the number of its states. Consequently an automaton is called
minimal if it has a minimal number of states

Theorem 2.2. Let L be a regular language. Then D(L) is the unique minimal DFA for L up
to isomorphism.
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Proof. We first show that D(L) is a minimal automaton. To that aim, let D be any DFA that
accepts L. Then ~p is a refinement of ~, hence the index of ~p is at least the index of ~,
and therefore the number of states of D is at least the index of ~p=~p) which, since every
state in D(L) is reachable, is the number of states in D(L).

Now let D be any minimal DFA and assume w.l.o.g. that all states in D are accessible. Then
the number of states in D is equal to the number of states in D(L). Therefore the index of
~p is equal to the index of ~p(ry. But ~p is a refinement of ~p=~p ) hence ~p=~p(p).
Therefore by Lemma 2.1 we see that D ~ D(L). O

2.2 Transition monoids

2.2.1 Quotient monoids

Definition 2.8. Let M be a monoid. An equivalence relation ~ on M is called congruence if
x ~ y implies that, for all z1,20 € M: z1x29 & z1Yy25.

Lemma 2.6. Let M be a monoid and ~ a congruence on M. Then M/~ with the natural
operations forms a monoid.

Proof. The unit element of M/~ is [e] and the operation is defined as [z][y] = [zy]. To see that
the operation is well-defined let 21 ~ 22 and y; ~ y2. Then, for all i,j,k,l € {1,2}, we have
x;y; ~ xy; because x; ~ xy, implies z;y; ~ xxy; and y; ~ y; implies x3y; ~ xxy; and therefore
x;y; ~ xky;. Then associativity and [e] being a unit element follow directly from the respective
properties of M. O

Definition 2.9. Let ¢ : M — N be a monoid homomorphism. Define the relation ~, on M
by m1 ~, ma < p(mi) = p(ma).

Clearly, ~, is an equivalence relation. Moreover, it is also a congruence: let m1, mg, mg, my € M
and my1 ~, mg. Then

p(mamima) = o(ms)e(mi)p(ma) = o(ms)e(ma)p(ms) = p(msmomy)
and therefore mgmimy ~, mamamy.
Lemma 2.7. Let M, N be monoids, ¢ : M — N a homomorphism. Then M/~, ~ p(M).
Proof. Define ¢ : M/~, — @(M),[m] — ¢(m). First observe that m; ~, ma iff (m1) = p(ma).
Reading this from left to right shows that ¢ is well-defined. Reading it from right to left shows

that @ is injective. Moreover, ¢ is surjective since ¥Yn € ¢(M)3Im € M s.t. n = ¢(m). It remains
to show that @ is a homomorphism. To that aim, observe that

o([e])
@([m1][ma]) = p([mimz]) = p(mimz) = p(m1)p(m2) = o([m1])@([me]).

¢(e) = e, and,

O]

It will occasionally be convenient to present a monoid in terms of generators and relations.
Remember that, for an alphabet A, we write A* for the monoid freely generated by A, i.e. for
the set of all words of finite length consisting of letters of A.
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Definition 2.10. Let uy, vi,...,upn, v, € A*. Then we say that the coarsest? congruence ~

which satisfies u1 ~ v1,...,u, = v, is the congruence induced by the equations uqx = v1,...,uy =
Up. In this situation, the monoid 4*/~ is called the monoid given by the generators A and the
relations up = vy, ..., Uy, = Uy. A%/~ is written as (A | ug = v1,...,uy = Vp).

Ezample 2.7. {a,b | a*> = a,b®> = b,ab = ba) consists of four elements: [], [a], [b], [ab] which
represent, respectively, the empty word, the words consisting of a only, the words consisting of
b only, and the words containing both a and b.

It will often be useful to consider quotients up to isomorphism. To that aim, we define the
following abstract notion of quotient.

Proposition 2.1. Let M, N be monoids. Then the following are equivalent:

1. there is a surjective homomorphism o : M — N

2. there is a congruence ~ on M s.t. N ~ M/x.

In this case we say that “IV is a quotient of M”.

Proof. For 1. = 2.let ¢ : M — N be surjective. Then ~, is a congruence and M/~,, is a monoid
with M/~, ~ o(M). Since ¢ is surjective, p(M) = N.

For 2. = 1. let ~ be a congruence on M and ¢ : M/~ — N an isomorphism. Define ¢ : M —
N,m — @([m]). Since 1 is the composition of the two surjective homomorphisms m — [m]
and ¢ it is a surjective homomorphism too. O

2.2.2 The transition monoid of a DFA

For a finite set Q we will write Q¥ for the set of all functions from @ to Q. Given a DFA
D ={(Q, A, q,F), aword we A* induces the transition

TD,w:Q_)qu'_)q'w'
Note that 7p . = id for every DFA D. If D is clear from the context we will often just write .

Definition 2.11. Let D = {Q, A, -, qo, F) be a DFA, then the transition monoid M (D) of D is
defined as

M(D) ={mw eQ? | we A*}

with unit 7p . € M (D) and the monoid operation defined by 7p w, © Tpws = TDwiws-

Note that the operation in this monoid is not the usual composition of functions (f o g)(z) =
f(g(x)) but instead the reversed composition (f o g)(z) = g(f(z)). This notation is more
convenient as it corresponds directly to the concatenation of words. Note that M (D) is closed
under composition (of functions) since A* is closed under composition (of words) and that
7pe = id. Therefore M(D) is a submonoid of Q. Since Q@ is finite, so is M (D). Also note
that 7p : A* > Q%9 w — Tp,w is a monoid homomorphism. It allows to define the monoid
M (D) as the submonoid 7p(A*) of Q%.

%j.e. the one which only makes the necessary identifications
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Example 2.8. Let D be the following DFA:

b a,b
Mﬂ“
b

In order to compute the transition monoid M (D) we create the following table:

1 2 3

= |1 2 3

To |2 3 3

™ |1 1 3

Taa |3 3 3

Tap |1 3 3

The |2 2 3

Tbb 1 1 3 Tob = Tp
Taaa |3 3 3 Taaa = Taa
Taab | 3 3 3 Taab = Taa
Taba | 2 3 3 Tapa = Ta
Toaa | 3 3 3 Thaa = Taa
Toab |1 1 3 Toap =T

Now the table is saturated, because every w € A* not in the table contains a subword with an
equation on the right-hand side (and hence it induces the same function as a shorter word).
This concludes the computation and we have:

M(D) = {id, Ta; Tb: Taa; Tabs Tha}
Definition 2.12. Let D = (Q, A, -, qo, F) be a DFA and 7p : A* — Q9w ~— Tp.,. Then the
congruence ~,, is called congruence of D and written more succinctly as ~p.
By definition we have wy ~p wa iff w1 ~7, wo iff Tp ., = TDw, I VgeEQ 1 q- w1 = q-wo.
Lemma 2.8. Let D be a DFA. Then M (D) ~ A*/~p.

Proof. Observe that 7p : A* — M(D),w — Tp, is a surjective homomorphism, so, by
Lemma 2.7, A%*/~,  ~ 7p(A*) = M(D). O

So we see that there are two ways to think about the transition monoid of an automaton: either,
literally, as the monoid of transitions with composition of functions as operation, or as monoid
of ~p-equivalence classes with composition of words.

Ezample 2.9. The monoid M (D) from Example 2.8 is isomorphic to the generator and relations
representation
{a,b| a = aba,b=b* = bab, a* = a*b = a® = ba®)

which consists of the ~p-equivalence classes
(], [al, [0], [a?], [ab], [bal.

Note that the congruence ~p of D is a refinement of the right-congruence ~p of D, i.e.,
w1 ~p we implies wy ~p wo.
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Example 2.10. Letting D be the DFA from Example 2.8, we have wy ~p ws iff 1-wy; =1 wy
iff w1 and we have the same entry in the first column. So the ~p-equivalence classes are

[¢]
[a]

[e]xp w [b]xp v ab]xp

f\/D =
~D =

For example, a ~p ba, since, for membership in L(D) = A*a?A*, the leading b is irrelevant.

2.2.3 Languages recognised by a monoid

Definition 2.13. Let L € A* and ¢ : A* — M be a monoid homomorphism. We say that
L is recognised by o if there is a P € M s.t. L = ¢~ !(P). In this case we also say that L is
recognised by M.

Note that if M; is a monoid that recognises L and M> is isomorphic to Mj, then also My
recognises L. Moreover, if ¢ : A* — M recognises L & A*, then L can also be recognised by
the surjective homomorphism ¢ : A* — ¢(A*) in the submonoid p(A*) of M.

Ezample 2.11. Let A = {a,b}. Consider the monoid (%/2z,+,0) and the homomorphism ¢ :
A* — Zjoz defined by p(a) = 1 and ¢(b) = 0. Then ¢~1({0}) is the set of words that contain
an even number of a’s.

Lemma 2.9. Let L € A* and ¢ : A* — M be a homomorphism. The following are equivalent:

1. L is recognised by .
2. Ywe A*: we L < p(w) € ¢(L).
3. ¢ (L)) = L.

Proof. (1) = (2): Let P € M s.t. L = o }(P) and let w € A*. If w € L then o(w) € p(L).
For the other direction let p(w) € ¢(L). Then there is a v € L s.t. p(w) = ¢(v) € P. Therefore
we L.

(2) = (3): ¢ (L) = {ve A* [ p(v) e p(L)} =®) {ve A* |ve L} = L.

(3) = (1): let P = ¢(L) € M. Then L = ¢~ !(P), so L is recognised by . O
So, quite naturally, p(L) isa P € M s.t. L = ¢~ 1(P). In case ¢ is surjective (L) is® the only
such P.

Lemma 2.10. Let D be a DFA recognising a language L < A*. Then M (D) recognises L.
Proof. Let D ={(Q,A,-,q,F), 7p : A* - M(D),w — Tp,, and P = {Te€ M(D) | qo-7 € F}.

Then
wGL@qO-TD’w€F<:>TD,w€P<:>TD(w)EP@wETBI(P)

and hence L = 7, (P). O

Ezample 2.12. The monoid M (D) of Example 2.8 recognises the language A*a?A*, more pre-
cisely: the homomorphism 7p : A* — M (D) satisfies 7, (7p(L)) = L. We have 7p(L) = {74a}-

3Show this as exercise.
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Theorem 2.3. A language L = A* is regular iff L is recognised by a finite monoid.

Proof. The implication from left to right follows directly from Lemma 2.10. For the other
direction, let L. £ A*, M be a finite monoid, ¢ : A* — M a homomorphism and P < M s.t.
L = ¢~ 1(P). We define the DFA D = (M, A, e, P) by m-x = mp(x) for me M,z € A. First
we claim that m - w = mp(w) for all w e A*. To show that proceed by induction on |w|. For
w = ¢ we have m - & = m = mep(e). For the words on length 1 this follows directly from the
definition. For a word w with |w| = 2, let w = wjws s.t. both w; and wy have length at least
1. We then have

m-w=m-wiws = (m-wy)- wy =mp(wy) - we =me(w;)p(wy) = me(wiws) = me(w).
Summing up, we have
weL(D)ee wePepw)ePeowep '(P)=1L

and therefore L(D) = L. O

2.2.4 The syntactic monoid

Definition 2.14. Let L € A*. The syntactic congruence ~p, is the relation on A* defined as:
wy ~p, wo iff for all u,v € A*: uwwiv € L < uwov € L.

So we have now seen four equivalence relation: the two right-congruences ~p and ~, and the
two congruences ~p and ~j. Given a DFA D which recognises a language L we have the
following diagram

where an upward line indicates “is a refinement of”. We have already seen that ~p is a
refinement of ~p and that ~p is a refinement of ~;. Let now w; ~p wo and u,v € A*, then
uuv € L iff qp - uwqiv € F iff gy - uwev € F iff uwov € L. So ~p is a refinement of ~;. For the
remaining arrow, let wy ~y, we and v € A*, then wyv € L iff wov € L and hence wy ~p, ws.

Lemma 2.11. Let L © A* be regular. Then ~, = ~p(r).

Proof. Let D(L) ={Q, A, -, qo, F). We have

wy =pr) w2 it Ve Q: q-wy = ¢q-ws
ifVue A*: w 'L -wy =u 'L -wy
iff (by Lemma 2.5/1) Vu € A*: (uw;) 'L = (uwy) 'L
iff (by Lemma 2.3) Yu € A*: vw; ~p, uws
iff Yu,v € A*: uwiv € L < uwov € L

iff w1 X1, wa.
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In Lemma 2.5/3 we have already shown that ~ =~p(). So, in terms of the above diagram
we see that, if D is the minimal automaton, then the D-line and the L-line coincide.

Definition 2.15. Let L < A*. The syntactic monoid of L is defined as M (L) = A*/~,.
Theorem 2.4. Let L < A* be a regular language. Then M (L) ~ M(D(L)).

Proof. We have
M(L) _ A*/%L _Lem. 2.11 A*/QD(L) 2Lem. 2.8 M(D(L))

Corollary 2.1. Let L < A* be a regular language. Then M (L) recognises L.

This corollary follows from Theorem 2.4 and Lemma 2.10. A closer look at the proofs of these
two results reveals that 7y : A* — M(D(L)),w = Tp(). recognises L. Concatenating
Tp(z) With the isomorphism ¢ : M(D(L)) — M(L), Tp(r)w > [w]~, We obtain the syntactic
homomorphism n : A* — M(L),w > [w]~, which recognises L, i.e., L = n~!(n(L)).

2.2.5 The monoids recognising a fixed language

We will now see a generalisation of the minimality and uniqueness property of D(L): the
monoids which recognise L are exactly the monoids which are divided by the syntactic monoid
M(L) of L. Let us first make precise what being a divisor means.

Definition 2.16. Let M, N be monoids. Then N is a divisor of M, written as N < M, if N is
a quotient of a submonoid of M.

Theorem 2.5. Let L < A* and M be a monoid. Then M recognises L iff M (L) < M.

Proof. For the left to right direction, let ¢ : A* — M be a homomorphism that recognises L,
then so does the surjective homomorphism ¢ : A* — p(A*). Note that ¢(A*) is a submonoid of
M and that p(A*) ~ A%/~,. Let n: A* - M(L),w — [w]x~, be the syntactic homomorphism.
Now we claim that ~, is a refinement of ~: let wy ~, ws and let u,v € A*, then vwiv € L
iff p(uwiv) € (L) iff p(u)p(wi)e(v) € p(L) iff p(u)p(w)p(v) € o(L) iff p(uwyw) € (L) iff
uwav € L. We define 7 : A%/~, — A%/~ [w]sx, — [w]x, and observe that 7 is a surjective
homomorphism. Therefore M (L) is a quotient of p(A*) which is a submonoid of M, hence
M(L) < M.

-

M(L) = 4%/~

For the right to left direction let n : A* — M(L),w — [w]~,. If M(L) < M, then there is a
submonoid N of M and a surjective homomorphism 8 : N — M(L). Define ¢y : A — N by
picking for each x € A an element ¢g(z) € 7! (n(x)). Then there is a unique homomorphism
¢ : A* — N which extends ¢g. Thus § o ¢ is a homomorphism. By definition of ¢ we have
(Bop)(x) =n(x) for all z € A and therefore S o p =1n. So we have

L=tem 29 =i (n(L)) = o187 (n(L)))
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and letting P = B~1(n(L)) € N we see that N, and therefore also M, recognises L.
A*

N
N

N
A
)

cM

M(L

2.3 Star height

In this section we study the star height of regular languages, i.e., the number of nested stars
necessary to specify a language by a regular expression. Of particular interest are the star-free
languages, i.e., those that can be specified by a star-free regular expression. We will prove
Schiitzenberger’s theorem which characterises the star-free languages as those whose syntactic
monoid is aperiodic.

2.3.1 Star-free languages

Definition 2.17. Let A be an alphabet. An A-regular expression is an expression formed from
r € A, e and ¢ with -, U, * and €.

A regular expression F defines a regular language, written as L(F), in the straightforward way.
Note that the alphabet must be fixed for L(E®) = A*\L(FE) to be well-defined. We also write
Ey n Ey for (ES U ES)¢ and Ej\Es for Ej n ES.

Ezample 2.13. Letting A = {a,b} and E = b(a(aa)*)°b, observe that L(E) is the set of words
in A* which start and end with a b between which is anything but an odd number of a’s.

Definition 2.18. Let E be an A-regular expression. The star height h(E) is defined as follows:
1. h(z) = h(e) = h(J) = 0 for all z € A.
2. h(E1 v E3) = h(F; - Ey) = max{h(E1), h(E2)}.
3. h(Ej) = h(Ep) +
4. h(E§) = h(Ep).
Definition 2.19. Let L < A*. Then the star height of L is h(L) = min{h(E) | L(F) = L}.
A language L with h(L) = 0 is also called star-free.

Ezample 2.14. Let A = {a,b}. The A-regular expression (ab)* has star height 1. However,
L((ab)*) has star height 0 as the following equivalence shows:

(ab)* = ((a@° N D\ A>T U TV T)) U e

What is the star height of the language (aa)* ? The above trick does not work directly. At

this point, the answer is not clear. In fact, at the end of this section we will be able to show
h(L((aa)*)) = 1.

43



Usually, the alphabet is clear from the context. However, in this section we will work with
different alphabets and so we want to make it explicit in the notation for the set of star-free
languages.

Definition 2.20. Let A be an alphabet. Then SF(A) is the set of star-free languages in A.

Clearly, SF(A) is closed under concatenation and the Boolean operations.

Lemma 2.12. Let B < A. Then 1. B* € SF(A) and 2. SF(B) < SF(A).

Proof. For 1. consider the A-regular expression Ep = J\(U,ea p F°2I°) and observe that
L(ER) = B*. For 2. let L € SF(B) and let E be a star-free B-regular expression s.t. L(E) = L.
Then E is also an A-regular expression and L(E n Ep) = L(E) n B* = L. O

Schiitzenberger’s theorem provides an algebraic characterisation of the star-free languages as
those recognised by aperiodic monoids.

Definition 2.21. A monoid M is called aperiodic if for every © € M there is an n € N s.t.
" n+1_

=z
Example 2.15. Let G be an aperiodic group, then multiplying z" = 2"*! with 2™ yields 2 = 1.
Thus G = {1}. So there are no non-trivial aperiodic groups.

Note that, if M is aperiodic and N is a submonoid of M then trivially also N is aperiodic.
Moreover, if M is aperiodic and N is a quotient of M, i.e. there exists a surjective homomorphism
@ : M — N, then N is aperiodic. This can be shown as follows: let y € N, then there is an
re M and an n € N with p(z) = y and 2" = 2""!. Therefore we have

"= (@) = p(a") = pa"t) = p(z)" T =y
As a consequence, if M is aperiodic and N < M then also IV is aperiodic.

Theorem (Schiitzenberger). Let L < A*. Then the following are equivalent:

1. L is star-free.
2. M(L) is a finite aperiodic monoid.
3. L is recognised by a finite aperiodic monoid.

FEzample 2.16. Based on this theorem we can now show that the star height of L((aa)*) is 1.
That it is at most 1 is clear from the given regular expression. But it must also be at least
1 since the syntactic monoid of L((aa)*) is not aperiodic. To see that, one can carry out the
routine computation of M (D(L)) and check, for each of its finitely many elements, whether it
is aperiodic or not.

A shortcut is to observe that aa =~ € but a %; ¢ and that hence, for all n > 0 we have
[a]?" = [¢] and [a]?>"*! = [a] and therefore M (L) = A*/~, is not aperiodic.

The rest of this section is devoted to the proof of Schiitzenberger’s theorem. The implication
from 2 to 3 follows directly from the fact that M (L) recognises L. For the implication from
3 to 2 assume that L is recognised by a finite aperiodic monoid M. Then, by Theorem 2.5,
M(L) < M so, by the above observations, also M (L) is aperiodic. So the proof consists
essentially of bridging the gap between star-freeness and aperiodicity. The direction from star-
freeness to aperiodicity is rather straightforward and will be finished in the below Lemma 2.13.
The other direction will need considerably more work.
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Lemma 2.13. Let L < A* be a star-free language. Then M (L) is finite and aperiodic.

Proof. Since every star-free language is regular, M (L) is finite. For aperiodicity it suffices to
show that there is an n € N s.t. for all w,u,v € A*:

ww™ e L < uw"ve L,

i.e., w" ~ w"l. Because then for all [w] € M(L) = A*/~, we have [w]" = [w"] = [w""!] =
[w]™*! thus M (L) is aperiodic.

Let E be a star-free A-regular expression. We show by induction on E that there is n(F) s.t.
for all w e A*: w™E) ~; w"E+l For B = & let n() = 0, then vw’v ¢ & and uw'v ¢ .
For E = x € A, let n(x) = 2. Then uw?v = x implies w = £ and wv = z which in turn implies
uw3v = x and vice versa. For E = ¢, let n(¢) = 1. Then uw'v = ¢ iff u = v = w = ¢ iff
uw?v = e.

If E = Ey U Es, let n(F) = max{n(E1),n(E2)}. Then
uw™ Py e L(E)
iff uw™ By e L(E) or uw™ Py e L(Es)
iff uw™ Py e L(EY) or uw™ Pl e L(Es)
iff uw™ )y e L(E).
If E = ES, let n(E) = n(Ep). Then uw™ v e L(E) iff uw™Fy ¢ L(Ep) iff uw™ ) v ¢ L(Ep)
iff uw™ B+ e L(E).
If E = E1Fs let n(E) = n(FE1) + n(Ey) + 1. Let u,v,w € A*, then we have
ww™ POUER) T, ¢ (B By)
iff uw™ Py’ € L(E;) and v" € L(Es) s.t. v'v" = w™F+y or
W'w" P2y e L(Ey) and v € L(E)) s.buu = ww™F+!
iff ww™ Py e L(E;) with v” as above or
w2ty e L(F,) with u” as above

iff ww™EVIEI42) e [(B)Ey).

2.3.2 Local divisors

Lemma 2.14. Let M be a monoid and k € M. Then My = (kM n Mk, o, k) with xkoky = zky
is a monoid and a divisor of M.

For example, if A = {a,b}, then A% ~is the set of words that start and end with aba. In
particular, also aba, ababa € A}, which shows that, in general, kM n Mk # kMk. In A%, we

aba
have, e.g., abacbaba o ababa = abacbababa.

Proof. The operation is well-defined since z1k = xok and y1k = yok implies x1ky1 = x1kys =
x2kys. Furthermore, M, is closed under o since xky = kz'y and xky = zy’k. The operation is
associative since

(xkoky)okz = xkyokz = xy'kokz = xy'kz = xkyz, and
zko(kyokz)=xzko (ykokz) =xkoy'kz = xkokyz = zkyz.
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Also k is a unit element since ko kx = kx and kx ok =2’k ok = 2’k = kx.

Let M' = {x € M | kx € Mk}. Then M’ is a submonoid of M, because if x € M with
kx € Mk and y € M with ky € Mk, then xy € M and kxy = 2'ky = 2'y'k € Mk. Moreover,
¢ : M'" — Mg,z — kzx is a homomorphism because ¢(1) = k and ¢(x)p(y) = kx o ky =
2’k oky = 2'ky = kxy = p(zy). It remains to show that ¢ is surjective: let z € My, then there
are z,x' € M s.t. z = kx = 2'k. Now ¢(x) = kx = 2, x € M and kx = 2’k € Mk hence z € M.
Therefore M, is a divisor of M. O

My, is called local divisor of M at k.

Lemma 2.15. Let M be aperiodic and x1,...,xp € M. Then x1---xr = 1 iff z; = 1 for all
ie{l,..., k}.

Proof. The right to left direction is trivial. For the left to right direction, assume zy = 1. Then

1 =2y =aryy =...=a"y"” = 2" y” = £ -1 = z. Analogously one can show that zy = 1 also

implies y = 1. The result then follows by induction. O

Lemma 2.16. If M is a finite aperiodic monoid and k € M\{1}, then My is aperiodic and
| M| < |M].

Proof. We first show (kz)® = kz® for all i > 0 in M}, by induction. The induction base i = 0 is
trivial, for the induction step we have

(km)”l =kxo (k:ac)Z M proks' = 2'kokat = 2'kat = kgt

Therefore 2™ = x"*! in M implies (kz)" = (kz)"*! in M. Furthermore, 1 ¢ kM n Mk, for
suppose 1 = kx for some x € M, then by Lemma 2.15, k = 1 which contradicts the assumption.
Therefore |My| < |M]. O

2.3.3 Schiitzenberger’s theorem

Before we prove the main lemma, we need one more simple result about star-free languages.

Lemma 2.17. Let A and B be alphabets, let X < A" and ¢ : X* — B* be a homomorphism
s.t. 1. for allu e X: ¢(u) € B and 2. for all b e B: ¢~ 1(b) € SF(A). Let L € SF(B), then
¢ 1(L) e SF(A).

This lemma is shown, essentially, by replacing in a star-free regular expression for L over B
each letter b € B by a star-free regular expression for ¢ ~!(b) over A. The result is a star-free
regular expression for ¢ ~!(L) over A.

Proof. We proceed by induction on the structure of a star-free regular expression which defines
LeSF(B). If L = &, then o~ (¥) = &. If L = {&}, then ¢~ 1({e}) = {¢} by assumption 1. on
@. If L = {b} for a b e B, then, by assumption 2. on ¢, ¢~ ({b}) € SF(A).

If L =Ly ULy for Ly, Ly € SF(B), then ¢ Y(L) = ¢ (L1 U Ly) = o Y (L1) U ¢ }(L2), and
thus ¢~ 1(L) € SF(B) by induction hypothesis.

If L = L§ for Lo € SF(B), then
ML) = ¢ H(LE) = {we A* | p(w) ¢ Lo} = {we A |w ¢ ¢~ (Lo)} = A"\¢ ™! (Lo) = ¢ (Lo)".
and thus p~!(L) € SF(A) by induction hypothesis.
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If L = LiLy for Ly, Ly € SF(B), we claim that o~ (L1 Ls) = ¢ 1(L1)p ! (Ls). For the right-to-
left direction, let w € ¢~ !(L1)p~!(Lz), then w = wiwy with wy € ¢~ (L1) and wa € = 1(Ly),
i.e., o(w1) € Ly and p(ws) € Lo, so p(wiws) € L1La, ie., w = wiwy € ¢~ 1 (L1Ls). For the left-
to-right direction, let w € ¢ ™1 (L1Ly). We have w = u1 ---uy, € X, so p(w) = @(uy) - -~ ¢(un) €
LiLy and thus, by assumption 1. on ¢, there is a k € {0,...,n} s.t. o(u1)---@(ug) € L1 and
o(ugs1) - p(up) € Lo. Letting wy = wug---ug and wy = ugyq--- Uy, we have w = wiws,
¢(w1) € L1, and p(wz) € La. Therefore w € ¢~ 1(L1)¢~1(Ly). Thus, =1 (L) = p Y (L1Ls) =
¢ (L) 1 (Ly) € SF(A) by induction hypothesis. O

The lexicographic order < on N x N is defined by:

(my,n1) < (me2,n2) iff m; <mgyor

mi1 = meo and ny < no

The following is the main lemma:

Lemma 2.18. Let A be an alphabet, M a finite aperiodic monoid and let ¢ : A* — M be a
homomorphism. Then for all pe M we have ¢~ (p) € SF(A).

Proof. We proceed by induction on the lexicographic order on (|M],|A|). If A = &, then
A* = {e} and clearly every subset of {¢} is a star-free language. For the case p = 1 we claim
that ¢~ !1(1) = {x € A | p(z) = 1}*. To show this, let w = x1---z, with 2; € A. For
the left-to-right direction assume w € ¢~!(1). Then p(w) = ¢(z1)---p(z,) = 1 and so, by
Lemma 2.15, ¢(x;) = 1 for all ¢ € {1,...,n}. For the right-to-left direction we immediately
obtain ¢(w) = p(x1) - p(x,) = 1. So by Lemma 2.12 we have ¢~ '(1) € SF(A). This covers
both the case |M| =1 and ¢(x) =1 for all € A.

So, for the induction step, let ¢ € A with ¢(c) # 1. Let B = A\{c} and ¢, : B* — M be the
restriction of ¢ to B*. We claim that

P =t v e ) (e (p2) med n A%e)p (ps)

The right-to-left inclusion is straightforward since ¢ 1(q) € ¢~1(q) and o~ (p1)e " (p2) t(p3)
o~ Y(p) if p = p1paps. For the left-to-right inclusion, let w € ¢ ~!(p). If w does not contain ¢, then
w € o, 1(p). If w contains ¢, then w = wywyws with wy, w3 € B* and wy € cA* n A*c. Therefore
p(w) = p(wi)p(w2)p(ws) = @c(wi)p(wz)pc(ws) and letting p1 = pe(w1), p2 = p(ws), and
ps = pc(ws) we have w € o (p1) (9™ (p2) N eA™ n A*c)oc (ps).

Since (|M|,|B|) < (|M],|A|) we can apply the induction hypothesis to ¢, : B* — M to obtain
©0-1(q) € SF(B) and hence, by Lemma 2.12, . '(q) € SF(A) for q € {p, p1, p3}. Since SF(A) is
closed under union and concatenation, it suffices to show that

© Y (p) N cA* N A¥c e SF(A) for all p e p(c)M n Mp(c).

The rest of this proof is devoted to doing this. Let T' = ¢.(B*), then T is a submonoid of M.
We use T as alphabet and consider the free monoid 7*. We also consider the submonoid (B*c)*
of A* and define

T:(B*e)* = T*, vic- - vpe — pe(v1) - @c(vk)

for k > 0 and v; € B*. Note that 7 is a homomorphism since
T(vic: - vie)T(Vig1c - vRe) = (V1) -+ (Vi) pe(Vie1) - - - @e(vr) = T(vie - vge)
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z—(c)r

MSD(C) Y {1} — Mgo(c)

Figure 2.1: Lemma 2.18, induction step

Furthermore, define
Y : T* — My as the unique homomorphic extension of ¢ (v) — p(cvc).

This function is well-defined since ¢.(v1) = @c(v2) implies ¢(v1) = ¢(v2) and hence also
p(cvie) = @(cvac), see Figure 2.1. Let w = wvic---vge for k > 0 and v; € B*. Then, in

M), we have

cvic) o -+ o p(cvge)

(
(
(e)p(v1)p(c) o -+ o p(c)p(vr)p(c)
(c)p(v1) - ple)p(vr)p(c)

(

Therefore cw € ¢ '(p) iff w e 771(¢p~1(p)) for all p € M), so the diagram in Figure 2.1
commutes. This shows p~(p) N cA* N A*c = c- 771 (1 (p)) for all p € p(c)M ~n Mp(c).

So it suffices to show 7 (1)~ (p)) € SF(A) for all p € M, (). By Lemma 2.16, the monoid M,

is aperiodic and | M| < [M] so we can apply the induction hypothesis to ¢ : T* — M) to
obtain 1~ (p) € SF(T). Now, observe that 7(w) € T for all w € B*c and that, for t € T,

PU(E) = {vie- e e (B*O)* | polvr) - pelvn) = 1} = furc e Bre| gol(vr) = t} = o, (B)e.

By induction hypothesis applied to . we have p;1(t) € SF(B) < SF(A) and thus 7 1(¢) €
SF(A). Therefore Lemma 2.17 can be applied to yield 771(y~1(p)) € SF(A). O

Theorem 2.6 (Schiitzenberger). Let L < A*. Then the following are equivalent:

1. L is star-free.
2. M(L) is a finite aperiodic monoid.

3. L is recognised by a finite aperiodic monoid.

Proof. 1. = 2. is Lemma 2.13. 2. = 3. follows from M (L) recognising L. For 3. = 1. assume
that M recognises L, i.e., that there is a homomorphism ¢ : A* - M and a P < M s.t.
o Y(P)=L. Then L = Uper ¢~ !(p) and hence, by Lemma 2.18, L is star-free. O

Corollary 2.2. There is an algorithm which, given a regular language L as input, e.g., as a
DFA, determines whether L is star-free.

Proof. The algorithm first computes the minimal automaton D(L) from L and then the transi-

tion monoid M (D(L)) from D(L). Since M (L) ~ M(D(L)), checking M (D(L)) for aperiodicity
yields the required result. Aperiodicity of a finite monoid is decidable. O
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To this day it is unknown whether there exists a regular language of star height 2 or higher.
This is known as the (generalised) star height problem.

2.4 The variety theorem

Schiitzenberger’s theorem is a characterisation of a class of languages by the class of monoids
which recognise them. There are more abstract algebraic reasons for the possibility of such a
characterisation: in this section we will consider varieties of (finite) monoids and wvarieties of
regular languages and show that “being recognised by” is a one-to-one correspondence between
these (Eilenberg’s variety theorem). Thus one can build a dictionary of monoid properties and
classes of regular languages and translate back and forth between them. Schiitzenberger’s result
in this frame shows that the star-free languages correspond to aperiodic monoids. There are
many other such correspondences. We will, for example, characterise the languages recognised
by finite commutative groups in the exercises.

Definition 2.22. A class M of finite monoids is a variety if M satisfies the following conditions:

1. If M € M and N is a submonoid of M, then N € M.
2. If M e M and N is a quotient of M, then N € M.

3. If My, ..., M, GM, then H?:l M; e M.

It is straightforward to show that, in the above definition, conditions 1. and 2. can be replaced
by the following condition

4. If M e M and N < M, then N € M.

Example 2.17. The finite aperiodic monoids form a variety: if M is aperiodic and N is a
submonoid of M, then N is also aperiodic. If M is aperiodic and ¢ : M — N is surjective, then
N is aperiodic, since, for every y € N there is an x € M s.t. p(x) = y and thus y” = p(z)" =
¢(z") and thus zFt1 = ¥ implies y**! = y*. If My,..., M, are aperiodic, then [}, M; is
aperiodic too.

Note that we are considering only finite monoids in the above definition. Therefore, and in
contrast to the notion of variety considered in Birkhoff’s theorem in universal algebra, we only
demand closure under finite products. As in the case of Birkhoff’s theorem, varieties in our
sense also permit a characterisation in terms of (a certain kind of) equations but we will not go
into this topic here.

Definition 2.23. A class of regular languages is a function £ which maps each alphabet A to
a set L4 of regular languages.

Definition 2.24. A variety of regular languages is a class £ of regular languages which satisfies
the following conditions for all alphabets A and B:

1. L4 is a closed under finite union, finite intersection and complement.
2. For every Le L4 and every v € A: v 1L e L4 and Lo~ = {we A* |wr e L} € La.

3. For every L € L4 and every homomorphism ¢ : B* — A*: ¢~ !(L) e Lp.
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From now on we simply speak about a “variety of languages” instead of the longer “variety of
regular languages” and a “variety of monoids” instead of the longer “variety of finite monoids”.

Definition 2.25. For a variety of monoids M and an alphabet A we define
d(M)s={L< A" | M(L) e M}

We have thus defined a mapping ® from the varieties of monoids to classes of regular languages.
The main result of this section is:

Theorem 2.7 (Eilenberg). ® is a bijection between the varieties of monoids and the varieties
of languages.

Before we start to prove this result we make some preliminary observations.

Example 2.18. Let AP be the variety of aperiodic monoids, then, by Schiitzenberger’s theorem,
O(AP) is the class of star-free languages, i.e., for every alphabet A, ®(AP)y is the set of
star-free languages over A.

Lemma 2.19. Let M be a variety of monoids and let A be an alphabet. Then

O(M)yg = {L < A* | there is a monoid M € M which recognises L}.

Proof. If L € ®(M) 4 then M (L) € M and, by Corollary 2.1, M (L) recognises L. On the other
hand, if there is an M € M which recognises L, then, by Theorem 2.5, M (L) < M and therefore
M (L) € M by the closure properties of a variety. Hence L € ®(M) 4. d

Lemma 2.20. Let M be a variety of monoids, then ®(M) is a variety of languages.

Proof. Fix an alphabet A. Let L1, Ly € ®(M)4, let n; : A* — M(Ly) and ny : A* — M(Lg)
be the syntactic homomorphisms of L; and Lo, then Ly = n; *(n1(L1)) and Lo = 15 ' (n2(La)).
Define M = M (L) x M(Lz) and let n : A* - M, w — (m(w),n2(w)). Then

Ly A Ly = (m(L1) x n2(Lg)).

Let L € ®(M)a4, let n : A* — M(L) be the syntactic homomorphism, then n~1(n(L)) = L.
Then = (M(L)\n(L)) = A*\L so M(L) € M recognises A*\L. Let z € A and define P = {m €
M(L) | n(x)men(L)}. Then
0 (P) = {we A" | n(w) € P} = {we A | n(z)n(w) e n(L)} =
={we A* | nzw) en(L)} = {we A* |zwe L} = 27 'L,
so M (L) recognises x~'L. The proof for Lz ! is analogous. Let B be an alphabet and ¢ : B* —

A* be a homomorphism. Then ¢ = no ¢ : B* — M(L) and ¥~ *(n(L)) = ¢~ (n~t(n(L))) =
o Y(L), so M (L) recognises ¢~ !(L). O

The above lemma shows that ®, as a mapping from the varieties of monoids to the varieties of
languages is well-defined. Before proving injectivity of @, we need some lemmas.
Lemma 2.21. Let M be a monoid, let ~1 and ~o be congruences on M s.t. ~1 is a refinement

of 9. Then M/~, is a quotient of M/~,.

Proof. The homomorphism ¢ : M/~; — M/~, [m]~, — [m]x, is surjective. O

~1
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Lemma 2.22. Let M be a monoid and (~;)ier be a family of congruences on M. Define m ~ n
by m ~;n for alli e I. Then M/~ is isomorphic to a submonoid of | [;c; M/~;.

Proof. For i € I let mj : M — M/~;;m — [m]~,. Moreover, let 7 : M — [[..; M/~;,m —
(mi(m))ier- Then m ~ n iff m ~; n. Therefore M/~ = M/~ ~ 7(M) which is a submonoid of
Hz‘e[ M/*i’ O

Lemma 2.23. Let M be a variety of monoids and let M € M. Then there is an alphabet A
and languages Ly, ..., Ly, € ®(M)4 s.t. M <[ [}, M(L;).

Proof. Let A = M and ¢ : M* — M be the homomorphism induced by the identity mapping.
For m € M the language L,, = ¢~ !(m) is recognised by M and thus L,, € ®(M),. Let
n = |M| and Ly,..., L, be the languages L,, for m € M.

For v,w € M* define v ~ w by v ~,, w for all m € M. Then ~ is a congruence relation. If
v~ w, then v & w 8o eve € Ly, iff ewe € Ly(,). Since v € Ly, = o o), v~ w
implies w € Ly, = ¢ (p(v)), Le., o(v) = p(w), i.e., v~y w.

Now p(M*) = M ~ M*/~,. Since ~ is a refinement of ~,, M*/~, is a quotient of M*/~ by
Lemma 2.21. Moreover, by Lemma 2.22, 4*/~ is isomorphic to a submonoid of [ [,..,; M*/~1,,
which is, by definition, [],,.; M (Ly,). Thus we have obtained M < [ [/, M(Ly). O

Lemma 2.24. Let M and N be varieties of finite monoids. Then M < N iff, for every alphabet
A, ®(M)s < ®(N)a. In particular, M = N iff, for every alphabet A, ®(M) 4 = P(N) 4.

Proof. If M < N then ®(M)4 < ®(N)4 by definition. For the other direction, suppose that
P(M)a < P(N)4 for every alphabet A and let M € M. Then, by Lemma 2.23, there is
an alphabet A and languages Li,...,L, € ®(M)4 S ®(N)a st. M < [[;-; M(L;). Then
M(Ly),...,M(Ly) € N and thus M € N. O
This shows injectivity of ®. We now turn to showing surjectivity of ®.
Lemma 2.25. Let £ be a variety of languages, let A be an alphabet, let L € L and let
n:A* - M(L),w > [w]~,. Then, for every m € M(L) we have n~(m) € L.
Proof. For w e A* define

C(w) = {(u,v) € A* x A* |uwv e L} = {(u,v) € A* x A* |we v Lo},
Then we have

w~p w iff Yu,v e A* : (uwv e L < uw've L) iff C(w) = C(w').

Therefore

[w]~, = ﬂ u Lo A ﬂ (u=tLv™h)e.

(u,v)eC(w) (u,0)¢C(w)

Since L € £ also u'Lv™" € £4. Since L is recognisable, ~; has finite index, so there are
only finitely many sets of the form u='Lv~! for u,v € A*. Since L, is closed under Boolean
operations we have [w]~, € La4.

Let me M(L) and w € A* with n(w) = m, then n71(m) = 7 (n(w)) = [w]~, € La. O

Lemma 2.26. For every variety of languages L there is a variety of monoids M s.t. ®(M) = L.
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Proof. Let L be a variety of languages. Let M be the variety of monoids generated by {M (L) |
L € L4, A alphabet}. We will show that ®(M)4 = L4 for all alphabets A. If L € L4, then
M(L) e M and thus L € ®(M)y4 by definition.

For the other direction let L € ®(M) 4, then M (L) € M, so, by Lemma 2.23, there is an alphabet
B and languages Li,...,L, € ®(M)p s.t. M(L) <[], M(L;) =: M. By Theorem 2.5 the
monoid M recognises L, i.e., there is a homorphism ¢ : A* — M anda P € M s.t. L = o~ }(P).
Let m; : M — M(L;),(mq,...,my) — m; and let ¢; = p om;. Let n; : B* — M(L;) be the
syntactic homomorphism of L;. Since 7); is surjective, there is a homomorphism ; : A* — B*
s.t. ¢; = ¥; on;. Therefore the following diagram commutes:

A* i B*

¥ v i

M —" s M(L)

We want to show that L € £4. We have L = | J,..p ¢ '(m) and, since L4 is closed under union,
it suffices to show ¢ ~!(m) € L4 for all m e M.

Let m = (mq,...,my), then
n

we e tm) = H((m,...,mp)) & Vie{l,...,njweg;(m;) swe ﬂ @5 ' (m;)
i=1

so p~L(m) = " ¢;1(mi) and, since L4 is closed under intersection, it suffices to show
@;1(m) € L4 for all m; € M(L;).

We have ¢; ! (m;) = ¢; *(n; *(m;)) and, since ¢; : A* — B* and L is closed under inverse homo-
morphism, it suffices to show that n; ' (m;) € L5. This follows immediately from Lemma 2.25.

O]

Proof of Theorem 2.7. ® is well-defined by Lemma 2.20, injective by Lemma 2.24, and surjective
by Lemma 2.26. O

Ezample 2.19. Let CG be the class of finite commutative groups. It is easy to verify that CG is
a variety of monoids. So ®(CG) is a variety of languages. For an alphabet A, z € A, m > 1,
and 0 < k < m define

L(z,k,m) = {we A" | ny(w) =k (mod m)}.

One can show that the variety of languages ®(CG) 4 is obtained from taking all Boolean combi-
nations of all languages of the form L(zx,k, m).
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Chapter 3

Further topics

3.1 Automatic sequences

3.1.1 DFAs with output

Definition 3.1. A deterministic finite automaton with output (DFAO)is atuple D = {(Q, %, -, qo, A, T)
where ,Y, -, qo is defined as for a DFA, A is the finite output alphabet and 7 : Q — A is the
output function.

For a DFAO D =<(Q,%,-,q0,A,7) and x € A we define L,(D) = {w e X* | 7(qo - w) = z}.

Ezample 3.1. Consider the following automaton:

We have qp - w = ¢; iff ng(w) =i (mod 4). Let A = {e,1,3} and 7(qo) = 7(q2) = e, 7(q1) = 1,
and 7(g3) = 3. Then, given a w € {a, b}*, this DFAO determines whether the number of a’s in
w is even, congruent 1 modulo 4 or congruent 3 modulo 4.

Every DFA can be considered a DFAO with A = {Y, N} and 7: Q — A defined as

Y if ¢ is a final state
7(q) =

N otherwise

Then L(D) = {w € ¥* | 7(qo - w) = Y}. A DFA hence corresponds to a partition of ¥* into
two regular languages: L(D) and L(D)°. In general, a DFAO D = {(Q, 3, -, qo, A, 7) induces the
partition ¥* = 4), A Lz(D). A finite partition L w --- w L, = ¥* is called regular if all L; are
regular languages.
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Theorem 3.1. A finite partition of ¥* is regular iff it is induced by a DFAQ.

Proof. For the right-to-left direction, fix z € A and consider the DFA D = (@, X, -, qo, F;) with
F,={qeQ|7(q) =x}. Then L(D) = {we X* | q-we F,} ={weX*| (g w)=x}
Therefore each of the classes and hence the partition is regular.
For the left-to-right direction let L1 w --- w L, = ¥* be a regular partition. Then for all
i € {1,...,n} there is a DFA D; = (Q;,%,-, ¢i0, Fi) with L(D;) = L;. W.lo.g. we assume
the @; to be disjoint. Let Q@ = Q1 x -+ X Qn, let o = (q1,0,--.,qn,0) and for x € ¥ and
(q1,---,qn) € Q define

(1, o yqn) -z =(q1 " Ty...,qn - T).

Let Q' = {q€e Q| Jw e X* s.t. qo - w = q}. Now we claim that for every (q1,...,q,) € Q' there
is exactly one i s.t. ¢; € F;. There is at least one because (qi,...,q,) is reachable by a w € X*
and w must be in one of the L;. On the other hand w can also be in at most one of the L; since
the L; are disjoint. Let A = {1,...,n} and define 7: Q" — A by letting 7((q1, - ..,¢n)) be this
unique i. We define the DFAO D =<{Q', %, -, qo, A, 7). Then for all i € {1,...,n} we have

Li(D) = {weX* | 7(gow) =i} = {we X¥| (gw); € i} ={we X" | qowe F;} = L(D;) = L;.

d

3.1.2 k-automatic sequences

First we need to fix some notation about the base-k representation of natural numbers. It is
well known that, for fixed k > 2, every n € N can be written as

T
n = Zaik‘i with 0 < a; < k.
=0

Defining ¥, = {0,...,k — 1} we can consider a, ---ap as a word in X}. For w = a,---ag € X}
we write [w]i for the natural number n defined as above. Note that the base k representation is
not unique due to the possibility of adding leading zeros, i.e., the function [-]x is not injective.
However, each n permits a unique representation without leading zeros, i.e., for every n € N
there is exactly one representation of the form

T
n=2aik:i with 0 < a; < k and a, # 0.
i=0

For n € N we write (n) for the unique word w = a, - - - ap € £y, with [w]; = n and a, # 0. Note
that n = 0 is represented by the empty word € € ¥ since the empty sum is 0. Hence (0); = e.

We will consider infinite words, i.e., infinite sequences over a (finite) alphabet:
Definition 3.2. For an alphabet ¥, define 3¢ = {(an)n>0 | an € £}.

Definition 3.3. A sequence (an)n=0 € A% is called k-automatic if there is a DFAO D =
(Q, 3k, +,q0, A, Ty s.t. ap = 7(qo - w) for all n > 0 and w with [w]; = n.

Ezample 3.2. The Thue-Morse sequence (t,)n>0 is defined by letting t,, be the number of 1’s
modulo 2 in the binary representation of n. Its first few elements are:

10

n 9
0 O

= 0123 456 7 8
t, = 01 1010011
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The Thue-Morse sequence is 2-automatic since it is generated by the following DFAO:

0 0

where the notation ¢/i represents 7(q) = i. The Thue-Morse sequence is one of the most famous
automatic sequences and has numerous interesting properties. For example, it is overlap-free
(i.e. it does not contain a subword of the form zwzwz for x € {0,1},w € {0,1}*) which can be
used for constructing a square-free word over {0, 1, 2}.

Example 3.3. Define es.11(n) as the number of (possibly overlapping) occurrences of the word
11 in the binary representation of n. For example, the word 1101110 contains three occurrences
of the word 11. Then the Rudin-Shapiro sequence (ry,),>0 is defined as r, = (—1)62%11(”). The
Rudin-Shapiro sequence is 2-automatic since it is generated by the following DFAO:

0 0
a
0 1 1
with T(qg ) = (—1)7. Here the subscript denotes the last letter seen and the superscript denotes

the number of occurrences of 11 modulo 2. As one can easily verify, the transitions preserve
these properties. An interesting property of 7, is that it defines a space-filling lattice walk. Let

R if rpprr = (—1)"
L if rppr, = (—1)

The first few elements of (r,)n>0 and (dp)n>0 are:
3

n =0 1 2 45 6 7 8 9 10
r, = 111 -1 1 1 -1 1 1 1 1
dsy = RLL R RR L L R L

Define a walk in Z x Z by starting at (0,0) making a first step to (0,1) and then turning left
or right according to the value of d,,. The result is a walk that contains all points in the first
quadrant which are above (or on) the diagonal.

A k-automatic sequence corresponds to a partition of X7 in the following sense:

Proposition 3.1. A sequence (an)n=0 € A¥ is k-automatic iff [Hgea{w € XF | afuy, = d} is a
reqular partition of ¥j.

Proof. (ayn)n>0 is k-automatic iff there is a DFAO D = {(Q, X, -, qo, A, 7) s.t. ap = 7(qo - w) for
all w € ¥f with [w], = n. In other words we require that Ly(D) = {w € X} | afy), = d}. Then
Theorem 3.1 entails that (an)n>0 is k-automatic iff |H,.0 = {w € 3f | ap,), = d} is a regular
partition of ¥} . O

For defining the notion of k-automatic sequence, it suffices to consider number representations
without leading zeros.

Lemma 3.1. Let (ap)n=0 € AY and let D = (Q, Xk, -, q0, A, 7) s.t. an, = 7(qo0 - (n)) for all
n = 0, then there is a DFAO D" = {Q', Xk, , ¢, A, 7') s.t. a, = 7(q) - w) for all w € X} with
[w]x =n and all n = 0. Moreover, we have ¢, -0 = qj.
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Proof. Let g, be a new state and define Q' = Q U {¢}} and ¢( - 0 = ¢, and ¢, - = qo - z for all
z € ¥;\{0}. The output function 7’ is defined by 7’| = 7 and 7/(¢()) = 7(qo).

Then we claim that 7/(qf, - 0(n)x) = a, for all i > 0. First note that we have 7/(gf, - 0'(n)g) =
7'(g( - (n)g) because ¢( -0 = ¢). If n =0, then 7/(¢(, - (n)x) = 7'(¢() = 7(q0) = ap. If n # 0, then
(n)g starts with an x € 3;\{0} and hence 7/(g} - (n)r) = 7"(q0 - (n)x) = 7(qo0 - (N)k) = an. O

Proposition 3.2. A sequence (an)n>0 s k-automatic iff there is a DFAO D ={Q, Xk, -, qo, A, T)
s.t. ap =7(qo - (n)x) for alln = 0.

Proof. The left-to-right direction is trivial. The right-to-left direction follows from Lemma 3.1.
O

3.1.3 Morphic sequences

A homomorphism ¢ : ¥* — A* can be extended to ¢ : 3 — A% by defining

(P(aoala& s ) = (P(ao)(p(al)gp(QQ) e

Note that, since p(vw) = ¢(v)p(w) every way of splitting (ay)n>0 into finite words will lead
to the same value for ¢((an)n=0). A sequence s € ¥¢ is called fized point of a homomorphism
p: X* - ¥*if p(s) = s. Let p : ¥* — ¥* be a homomorphism. If there is an z € ¥ s.t.
@(z) = zw for some w € L*71 then ¢ is called prolongable on .

Ezample 3.4. Define ¢ : 35 — 35 by ¢(0) = 01 and ¢(1) = 10. Then ¢ is prolongable on both
0 and 1. We have

¢(0) =01
©*(0) = p(01) = 0110
©3(0) = p(0110) = 01101001
©*(0) = ©(01101001) = 0110100110010110

Note that the positions already computed do not change. As we will see now this can be
generalised to yield a mechanism for defining an infinite sequence.

Proposition 3.3. Let ¢ : ¥* — X* be a homomorphism which is prolongable on a € 3, i.e.,
o(a) = aw. Then ¢*(a) = awp(w)p?(w)--- is the unique fived point of v in ¢ that starts
with a.

Proof. First observe that ¢ (a) is indeed a fixed point of ¢ since

p(”(a)) = plawp(w)p?(w) ) = p(a)p(w)e? (W)’ (W) - - = awp(w)p?(w) - = ¢*(a).
Furthermore, assume that s € 3“ is a fixed point of ¢ which starts with a. We claim that s
must start with a®(w)e!(w)---¢!(w) for all [ = —1. Since this determines all finite prefixes
of s it uniquely determines s = ¢*(a). We proceed by induction on [. The case [ = —1 follows
immediately from the assumption that s starts with a. For the induction step, assume that s
starts with a@®(w)p! (w) - - - ¢! (w) for some [ > —1, then

s = ¢(s) = plap’(w)p! (w) - ' (w)t)
= p(a)p(w)p® (w) - " H(w)e(t)
= ap’(w)p(w) - " (w)ep(1).
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In the other direction, note that, if (s,)n>0 is a fixed point of a homomorphism ¢, then ¢ must
be prolongable on sy since ¢(sps182+-+) = ©(S0)p(s182+++) = S0S182+ - .

Definition 3.4. A homomorphism ¢ : ¥* — A* is called k-uniform if |p(z)| = k for all x € X.
A 1l-uniform homomorphism is also called a coding.

If ¢ : ¥* — ¥* is a k-uniform homomorphism and a € ¥ s.t. ¢ is prolongable on a, then ¢“(a)
is called pure morphic sequence. If, in addition, 7 is a coding, then 7(¢“(a)) is called morphic
sequence.

Lemma 3.2. Let s = (sp)n>0 be fized point of a k-uniform homomorphism ¢. Then ¢(s,) =
SknSkn+1° " Skn+k—1 for allm = 0.

Proof. Since ¢ is k-uniform, we have |¢o(sg---s;)| = k(i + 1) and since ¢(s) = s, we have
©(s0-+8i) =80+ Skitk—1. Now we have

o(50 - 5n)
(50 5p—1) = 80" Skn—1, and
(50 5n) = @(S0 " Sn—1)p(sn)

80" " Skn+k—1;

and therefore ¢(s,) = Skn = * Skntk—1- O

Theorem 3.2. A sequence is k-automatic iff it is morphic sequence of a k-uniform homomor-
phism.

Proof. For the left-to-right direction, assume that (ay),>0 is k-automatic. Then there is a DFAO
D ={Q,%,,q0,A, 7y s.t. ap, = 7(qo - (n)x). By Lemma 3.1 we can assume that go-0 = qp. We
consider @) as alphabet and define a homomorphism ¢ : @* — Q* by

¢(q) =(q-0)(g-1)---(¢g-(k—1))  foreach ge Q.

Now ¢ is k-uniform and prolongable on g, so by Proposition 3.3 we know that (s,)n=0 = ¢*“(q0)
is a fixed point of ¢. We claim that s{,), = qo - w for all w € ¥}. We proceed by induction on
|w|: if w =g, then qo - w = qo = [}, = qo since s starts with go. For the induction step, let
w = vx with x € ¥g. Then

IH _Def.

Lem. 3.2
qo.w:qo-vmz S[’U]k.x :em

0(S[u]y )z Sko]e+z = S[vale = S[w]k-

Therefore s, = qo - (n) and hence 7(s,,) = 7(qo - (n)k) = an.

For the right-to-left direction, let ¢ : Q* — Q™ be a k-uniform homomorphism, let s € Q“ with
s =¢(s), 7: Q — A be a coding and let a = 7(s), i.e., ap = 7(s,) for all n = 0. Define the
DFAO (@, Xk, -, s0, A, 7) where ¢ - is the i-th letter of ¢(q). We claim that sg- (n); = s, for all
n = 0. We proceed by induction on n: if n = 0, then sg - (n)r = so - € = s¢. For the induction
step, let n = kn/ + d with 0 < d < k. Then

s0 - (n)k _ (80 . (n/)k) .d _IH Sy - d _Def. D (P(Sn’)d __Lem. 3.2 Sknitd = Sn-

Therefore a,, = 7(s,) = 7(s0 - (n)g). O
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