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Preface

Automata theory is one of the most central subjects of theoretical computer science. Finite
automata are the simplest possible machines and they appear explicitely as well as implicitely
in a variety of different subjects and applications in both computer science and mathematics.

In mathematics, automata and formal languages are firmly tied to monoids and semirings. A
large part of these course notes is devoted to developing the theory of automata and formal lan-
guages on this algebraic basis. In the other direction, automata theory finds many mathematical
applications, e.g., in number theory and combinatorics (automatic sequences), in algebra (auto-
matic groups), and logic (automatic structures). In the mentioned applications, automata are
a tool for studying structures which are non-trivial but, at the same, sufficiently simple to have
strong properties.

One of the historically first applications of formal language theory in computer science was for
the improvement of interpreters and compilers. The theory allows to put the definition of a
programming language on a firm theoretical basis and it has long become state of the art to
automatically generate a parser for a programming language from a grammar of this language.
Thus the reliability of crucial components of the infrastructure of computer science could be
greatly increased. Now, there are many additional applications, too numerous to mention here,
among them also quite recent ones, e.g., connected to the XML document format (XSLT and
tree transducers, grammar-based XML compression, etc.).

v
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Chapter 1

Semirings and formal series

In this chapter we will see a strong generalisation of the elementary theory of formal languages.
It will turn out that many of the central results remain valid in the more general setting where
the formal languages PpA˚q over some alphabet A with the operations Y and ¨ is replaced
by the formal series with coefficients in an arbitrary continuous semiring. Moreover, once
the algebraic background is sufficiently developed, proofs known from the elementary theory
of formal languages can – in most cases – be carried over to this more general setting in a
straightforward way. We will thus obtain considerably more general results which do not only
include the elementary theory of formal languages as special case, but also other interesting
and useful types of languages and automata, e.g. weighted automata where costs are assigned
to transitions. Moreover, this more general theory has been exploited for obtaining new results
about the notions of the elementary theory.

As a starting point, let us consider the notion of context-free grammar. The language L “

tanbn | n ě 0u can be generated by the context-free grammar given by S Ñ aSb | ε. The usual
perspective on a grammar is to consider the given production rules from a generative point of
view: we start with S and, at each step, make a choice which production rule to apply until
eventually S does no longer occur and we have thus generated a word in L. In our algebraic
setting we will instead consider a nonterminal of a grammar as a variable for a language, i.e., a
set of words, and the production rules as equations that have to be satisfied by the variables.
This example is then rephrased as S “ aSb Y tεu. We can observe that L is a set of words
which satisfies the equation L “ aLb Y tεu. While working with finite strings is crucial for the
first, generative perspective, it is irrelevant for the second based on equations. We can thus lift
the requirement that the object we insert for a variable must be a language, i.e., a set of words
and consider the insertion of an element of an arbitrary continuous semiring.

In order to fully develop this point of view, we start with some basic results about complete
partial orders and then proceed to discuss the most central notion of this first chapter: that
of a continuous semiring. On this basis we then consider systems of algebraic equations which
generalise grammars in the manner sketched above.
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1.1 Complete partial orders

1.1.1 Suprema

Definition 1.1. pS,ďq is a partial order if pS,ďq is reflexive, transitive, and anti-symmetric1.

Definition 1.2. Let pS,ďq be a partial order, b P S and X Ď S. Then b is called upper bound
of X if b ě x for all x P X. Furthermore, b is called supremum (least upper bound) of X if b is
an upper bound of X and if, for every upper bound c of X: b ď c.

Note that a supremum is unique if it exists (for suppose a set X had two suprema b1 and b2,
then, since both are upper bounds, b1 ď b2 and b2 ď b1 and hence by the anti-symmetry of ď

we have b1 “ b2). We often write supX for the supremum of a set X. Using the notation supX
we implicitly assert the existence of the supremum (its uniqueness then follows as above).

Definition 1.3. A partial order pS,ďq is called complete if every increasing sequence s0 ď s1 ď

¨ ¨ ¨ has a supremum in S.

Note that an increasing sequence is a countable set with order type ω. Therefore the above
notion is also called ω-complete in the literature. Since we will only be considering this type of
complete partial orders in this course, we use the simpler terminology.

Example 1.1. pPpXq,Ďq is complete with suptXi | i P Nu “
Ť

iPNXi. However, for infinite X,
the partial order pPfinpXq,Ďq of finite subsets of X is not complete.

Definition 1.4. Let pS,ďq be a complete partial order and f : Sn Ñ S. Then f is called
continuous if for all k P t1, . . . , nu, for all a1, . . . , ak´1, ak`1, . . . , an P S, and for all increasing
sequences b0 ď b1 ď ¨ ¨ ¨ we have:

fpa1, . . . , ak´1, suptbi | i P Nu, ak`1, . . . , anq “ suptfpa1, . . . , ak´1, bi, ak`1, . . . , anq | i P Nu

Lemma 1.1. Let pS,ďq be a complete partial order and f : Sn Ñ S continuous. For all
i P t1, . . . , nu let xi,0 ď xi,1 ď ¨ ¨ ¨ be an increasing sequence. Then

fpsuptx1,j1 | j1 P Nu, . . . , suptxn,jn | jn P Nuq “ suptfpx1,j , . . . , xn,jq | j P Nu.

Proof. will be done as exercise.

1.1.2 Fixed points

Definition 1.5. Let pS,ďq be a partial order and f : S Ñ S. Then x P S is called fixed point
of f if fpxq “ x and x is called least fixed point of f if x ď y for every fixed point y of f .

If a least fixed point exists it is unique (since ď is a partial order). In analogy to the notational
convention concerning the supremum we write lfppfq for the least fixed point of f and by using
this notation implicitly assert the existence of a (and hence the) least fixed point of f .

Example 1.2. Consider the partial order pPpNq,Ďq. Define

f : PpNq Ñ PpNq, X ÞÑ t0u YX Y pX ` 2q

where X`k :“ tx`k | x P Xu. Then 2N is a fixed point of f because t0uY2NYp2N`2q “ 2N.
Furthermore, also N is a fixed point of f and so is 2N Y p2N ` 2k ` 1q for all k P N.

1
pS,ďq is anti-symmetric if x ď y and y ď x implies x “ y.
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Definition 1.6. Let pS,ďq be a partial order. Then f : Sn Ñ S is called monotone if for all
x1, . . . , xn P S, for all k P t1, . . . , nu and for all x1

k P S with x1
k ě xk we have

fpx1, . . . , xnq ď fpx1, . . . , xk´1, x
1
k, xk`1, . . . xnq.

Lemma 1.2. Let pS,ďq be a complete partial order and f : Sn Ñ S continuous. Then f is
monotone.

Proof. Let x1, . . . , xn P S, k P t1, . . . , nu and xk ď x1
k P S. Define y0 “ xk and yi “ x1

k for i ě 1.
Then y0 ď y1 ď ¨ ¨ ¨ is an increasing sequence and we have suptyi | i P Nu “ x1

k. Then

fpx1, . . . , xk´1, x
1
k, xk`1, . . . , xnq “ fpx1, . . . , xk´1, suptyi | i P Nu, xk`1, . . . , xnq

“ suptfpx1, . . . , xk´1, yi, xk`1, . . . , xnq | i P Nu

ě fpx1, . . . , xnq.

In a partial order pS,ďq we say that x P S is the least element of pS,ďq if x ď y for all y P S.
If a least element exists, it is unique (again, by anti-symmetry).

Theorem 1.1 (Kleene’s fixed point theorem2). Let pS,ďq be a complete partial order with least
element 0 P S and let f : S Ñ S be continuous. Then lfppfq “ suptf ip0q | i P Nu.

Proof. We will consider the sequence 0 “ f0p0q, f1p0q, f2p0q, . . .. Since 0 is the least element we
have 0 ď fp0q and since f is monotone, f ip0q ď f i`1p0q implies f i`1p0q ď f i`2p0q and hence
by induction f0p0q ď f1p0q ď ¨ ¨ ¨ is an increasing sequence. Therefore suptf ip0q | i P Nu exists.
Furthermore,

fpsuptf ip0q | i P Nuq “ suptf i`1p0q | i P Nu “ suptf ip0q | i P Nu

and hence suptf ip0q | i P Nu is fixed point of f . It remains to show that it is the least fixed
point of f . To that aim, let c be a fixed point of f . Since 0 is least element we have 0 ď c and,
if f ip0q ď c, then f i`1p0q “ fpf ip0qq ď fpcq “ c and hence by induction f ip0q ď c for all i P N.
So c is upper bound of tf ip0q | i P Nu and hence suptf ip0q | i P Nu ď c.

Example 1.3. The complete partial order pPpNq,Ďq has the least element H. The function
f : PpNq Ñ PpNq defined in Example 1.2 is continuous3. By the fixed point theorem, f has a
least fixed point which we can approximate by the sequence

f0pHq “ H, f1pHq “ t0u, f2pHq “ t0, 2u, f3pHq “ t0, 2, 4u, . . .

A straightforward induction shows that lfppfq “
Ť

iPN f
ipHq “ 2N .

1.2 Continuous semirings

1.2.1 Semirings

Definition 1.7. A semiring is a structure xR,`, 0, ¨, 1y s.t.

2named after Stephen Cole Kleene (1909-1994)
3Show this as exercise. More precisely, show fp

Ť

iPN Xiq “
Ť

iPN fpXiq by proving set-inclusion in both
directions.
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1. xR,`, 0y is a commutative monoid,

2. xR, ¨, 1y is a monoid,

3. for all x, y, z P R: x ¨ py ` zq “ x ¨ y ` x ¨ z and px` yq ¨ z “ x ¨ z ` y ¨ z, and

4. for all x P R: x ¨ 0 “ 0 ¨ x “ 0.

5. 0 ‰ 1

Note that conditions 1-4 above together with 0 “ 1 imply @xx “ 0 because x “ x ¨1 “ x ¨0 “ 0.
We therefore add condition 5 to avoid this trivial situation.

Example 1.4. 1. Every ring and hence also every field is a semiring, in particular xZ,`, 0, ¨, 1y,
xQ,`, 0, ¨, 1y, xR,`, 0, ¨, 1y, . . .

2. xN,`, 0, ¨, 1y is a semiring.

3. The Boolean semiring is B “ xt0, 1u,_, 0,^, 1y with logical (inclusive) disjunction as sum
and logical conjunction as product.

4. Let N8 “ N Y t8u, then both xN8,`, 0, ¨, 1y as well as xN8,min,8,`, 0y are semirings
(note that 0 ¨ 8 “ 8 ¨ 0 “ 0). We use N8 to denote the first of these semirings. When we
want to speak about the second we either mention the operations explicitly or call it the
min-`-semiring.

5. Let N̄ “ N Y t8,´8u, then xN̄,max,´8,`, 0y with ´8 ` 8 “ 8 ` ´8 “ ´8 is a
semiring. This semiring is also called the max-`-semiring.

6. Let R8
` “ tx P R | x ě 0u Y t8u, then xR8

` ,`, 0, ¨, 1y is a semiring.

7. An alphabet is a finite set of symbols. The formal languages over an alphabet A form
the semiring xPpA˚q,Y,H, ¨, tεuy. As a reminder, the concatenation of formal languages
is defined as L1 ¨ L2 “ tw1w2 | w1 P L1, w2 P L2u.

1.2.2 The natural order

Definition 1.8. A semiring R is called naturally ordered if the relation Ď defined as

x Ď y ðñ Dz x` z “ y

is a partial order. In that case we call Ď the natural order of A.

The relation Ď is reflexive and transitive in every semiring. Hence it is a partial order iff it is
anti-symmetric.

Example 1.5. The semiring xN,`, 0, ¨, 1y is naturally ordered since Ď is just the usual order ď.
The semiring xZ,`, 0, ¨, 1y is not naturally ordered since x Ď y is true for all x, y P Z (but there
is more than one integer). The semiring xPpA˚q,Y,H, ¨, tεuy is naturally ordered with Ď“Ď.

Proposition 1.1. Let R be a naturally ordered semiring. Then 0 is the least element of pR,Ďq

and R is zerosumfree, i.e., x` y “ 0 implies x “ y “ 0.

Proof. 0 ` x “ x for all x P R and hence 0 is the least element of R. Now, if x ` y “ 0, then
x Ď 0 and y Ď 0 and since also 0 Ď x and 0 Ď y we have x “ y “ 0.

This shows that, in particular, no ring and hence no field is a naturally ordered semiring (since
rings are not zerosumfree).

4



1.2.3 Continuity

Definition 1.9. A naturally ordered semiring xR,`, 0, ¨, 1y is called continuous if

1. Ď is a complete partial order, and

2. ` and ¨ are continuous functions w.r.t. pR,Ďq.

A remark analogous to that after the definition of complete partial order: also in the above
definition of continuity we speak about countable sets with order type ω, hence the above
notions are also often called ω-continuity and ω-continuous semirings respectively. Again, since
we will work only with this type of continuous semirings in this course, we use the simpler
terminology.

Example 1.6. The semiring xPpA˚q,Y,H, ¨, tεuy is continuous. We already know that PpA˚q is
a naturally ordered semiring, that the natural order is Ď, that this natural order is complete
and that suptxi | i P Nu “

Ť

iPN xi. It remains to show that PpA˚q is continuous. To that aim
note that

xY suptyi | i P Nu “ xY
ď

iPN
yi “

ď

iPN
pxY yiq “ suptxY yi | i P Nu.

Due to the commutativity of addition in a semiring, this suffices to show that addition is
continuous. For multiplication, consider

x ¨ suptyi | i P Nu “ x ¨
ď

iPN
yi “p˚q

ď

iPN
px ¨ yiq “ suptx ¨ yi | i P Nu,

where the equation p˚q can be proved carefully by proving set-inclusions in both directions. For
multiplication from the right a calculation symmetric to the above can be carried out.

Continuous semirings are the central notion of this first chapter. Their importance stems
from the fact that they allow the definition of (well-behaved) infinite sums and consequently a
generalisation of the Kleene-star, one of the most important operations on formal languages.

If txi | i P Nu is an arbitrary subset (and hence not necessarily an increasing sequence) we still
have the property that the partial sums x0 ` ¨ ¨ ¨ ` xn “

řn
i“0 xi of

ř

iPN xi form an increasing
sequence since

řn
i“0 xi Ď

řn`1
i“0 xi and therefore the supremum of the partial sums exists.

Consequently:

Definition 1.10. Let xR,`, 0, ¨, 1y be a continuous semiring and txi | i P Nu Ď R. Then we
define

ÿ

iPN
xi :“ supt

n
ÿ

i“0

xi | n P Nu

As a first observation about infinite sums in this context, one can show that the order of
summation does not matter. More precisely: let φ : N Ñ N be a bijection, then

ř

iPN xi “
ř

iPN xφpiq.

We extend the definition of an infinite sum to an arbitrary countably infinite index set I by
ř

iPI xi :“
ř

nPN xφpnq for φ : N Ñ I being an arbitrary bijection. Infinite sums in continuous
semirings also have the following properties:

Proposition 1.2. Let N “
Ţ

jPJ Ij. Then
ř

iPN xi “
ř

jPJ

ř

iPIj
xi.

Without Proof.
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Proposition 1.3. Let R be a continuous semiring, let x P R and for all i P N let yi P R. Then

x ¨
`

ÿ

iPN
yiq “

ÿ

iPN
px ¨ yiq and

`

ÿ

iPN
yiq ¨ x “

ÿ

iPN
pyi ¨ xq.

Proof. We have

x ¨
`

ÿ

iPN
yiq “ x ¨ supt

n
ÿ

i“0

yi | n P Nu by definition,

“ suptx ¨

n
ÿ

i“0

yi | n P Nu by continuity of ¨,

“ supt

n
ÿ

i“0

px ¨ yiq | n P Nu by distributivity, and

“
ÿ

iPN
px ¨ yiq by definition.

For multiplication from the right an analogous calculation can be done.

Having defined infinite sums now allows to define the generalisation of the Kleene-star.

Definition 1.11. Let R be a continuous semiring and let x P R. Then we define

x˚ “
ÿ

iě0

xi and x` “
ÿ

iě1

xi

where xi “ x ¨ ¨ ¨ ¨ ¨ x
looomooon

for i ě 1 and x0 “ 1.

i times

Example 1.7. Consider the continuous semiring xPpA˚q,Y,H, ¨, tεuy and let L P PpA˚q. Then
L˚ “

Ť

iě0 L
i is the ordinary Kleene-star.

Proposition 1.4. Let R be a continuous semiring, then we have

x` “ xx˚ “ x˚x and x˚ “ 1 ` x`

for all x P R.

Proof.

xx˚ “ x
ÿ

iě0

xi “
ÿ

iě0

xi`1 “
ÿ

iě1

xi “ x`

and analogously for x˚x “ x`. Moreover,

x˚ “
ÿ

iě0

xi “ x0 `
ÿ

iě1

xi “ 1 ` x`.

6



1.3 Algebraic systems

1.3.1 Polynomials

We know univariate polynomials, i.e., expressions of the form

P pxq “

n
ÿ

i“0

aix
i

and multivariate polynomials, i.e., expressions of the form

P px1, . . . , xnq “
ÿ

pi1,...,inqPE

ai1,...,inx
i1
1 ¨ ¨ ¨xinn for finite E Ď Nn.

Several standard results about polynomials require multiplication to be commutative (for exam-
ple the evaluation of a polynomial is not a homomorphism otherwise). Using the above notation
already hints at the assumption of commutativity since we order the variables so that, in each
product term, every xi appears in front of all xj with i ă j. In this course we do not assume
commutativity and hence we will work with more general expressions. Consequently we define:

Definition 1.12. Let R be a continuous semiring, Y “ ty1, . . . , ynu be a set of variables and
let R1 Ď R. An R1-product term with variables in Y is an expression of the form

a0yi1a1yi2a2 ¨ ¨ ¨ yikak with a0, . . . , ak P R1 and i1, . . . , ik P t1, . . . , nu.

An R1-polynomial with variables in Y is an expression of the form
řm
i“1 ti where t1, . . . , tm are

R1-product terms with variables in Y . The set of R1-polynomials with variables in Y is denoted
as R1rY s.

Note that – depending on R1 – the set R1rY s may not form a semiring, it may not even be
closed under addition. In fact, we will often consider R1 which are not closed under addition,
see, e.g., Example 1.9.

Example 1.8. Let R “ N8 and Y “ ty1, y2u, then 3y1y
2
2 ` y1 ` 5 is a t1, 3, 5u-polynomial with

variables in Y . Note that – formally – this polynomial is written as 3y11y21y21 ` 1y11 ` 5 but
we will use the simplified notation where factors 1 are left out.

Example 1.9. Let R “ PpA˚q and Y “ ty1, y2u, then tauy1tεuy1tεuy2tεu Y tauy2tbu Y tεu is a
ttwu | w P A˚u-polynomial with variables in Y . Note that A˚ is not a subset of PpA˚q. But
since ttwu | w P A˚u-polynomials appear frequently we often write them – in abuse of notation
– in the form ay21y2 Y ay2bY ε.

Let R, R1, and Y “ ty1, . . . , ynu be as in the above definition and let p P R1rY s. Then, as
usual, the polynomial p induces a polynomial function p : Rn Ñ R by replacing yi by ri P R. As
usual, we will not distinguish notationally between a polynomial and the polynomial function
it induces.

Example 1.10. Let A “ ta, bu, R “ PpA˚q, R1 “ ttwu | w P A˚u, Y “ ty1, y2u and ppy1, y2q “

ay21y2 Y ay2bY ε. Let L1 “ tai | i P Nu and L2 “ taibi | i P Nu. Then

ppL1, L2q “ aL2
1L2 Y aL2bY ε “ taibj | i ą j ě 0u Y taibi | i ě 1u Y ε “ taibj | i ě ju.

7



1.3.2 R1-algebraic systems

Definition 1.13. Let R be a continuous semiring and R1 Ď R. An R1-algebraic system in the
variables Y “ ty1, . . . , ynu is a system of equations of the form

yi “ pipy1, . . . , ynq, 1 ď i ď n

with pipY q P R1rY s.

Definition 1.14. Let R be a continuous semiring and R1 Ď R, let Y “ ppY q be an R1-algebraic
system with n equations and let σ P Rn. Then σ is called solution of Y “ ppY q if σ “ ppσq.

Example 1.11. Every a P R is unique solution of the trivial R-algebraic system y1 “ a.

This example illustrates that it is usually more interesting to consider R1-algebraic systems for
a strict subset R1 of R; if R1 “ R, then every element can be defined as solution of a trivial
system as above.

Example 1.12. Consider the R8
` -algebraic system

y1 “
1

4
y1 `

1

2
.

This has – as can be checked by a quick calculation – the solution 2
3 P R8

` . In addition, it also
has the solution 8 P R8

` . Moreover, it is clear that 8 P R8
` is a solution for many similar

algebraic systems.

This example illustrates that the “non-infinite”, i.e. smaller, solutions tend to be more interest-
ing than the infinite solutions. We will make this more precise soon.

Example 1.13. Let A “ ta, bu and consider the following A˚-algebraic system4 in the continuous
semiring PpA˚q:

y “ aybY ε

A solution of this system is taibi | i P Nu as the following calculation shows:

ataibi | i P NubY tεu “ tai`1bi`1 | i P Nu Y ta0b0u “ taibi | i P Nu.

Example 1.14. Again in Ppta, bu˚q consider the ta, bu˚-algebraic system

y1 “ y2y2

y2 “ y1y1

A solution of this system is

ˆ

H

H

˙

, other solutions are

ˆ

tεu
tεu

˙

or

ˆ

a˚

a˚

˙

or

ˆ

pa2q˚

pa2q˚

˙

or more

generally

ˆ

L˚

L˚

˙

for any L P PpA˚q but not

ˆ

apa2q˚

apa2q˚

˙

because apa2q˚apa2q˚ “ pa2q` ‰ apa2q˚

4A˚ is not a subset of PpA˚
q and hence there is no such thing as a A˚-algebraic system in PpA˚

q. But –
along the lines of the notation introduced in Example 1.9 – we abbreviate “ttwu | w P A˚

u-algebraic system” as
“A˚-algebraic system”.
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1.3.3 Solvability

We will now show that every algebraic system is solvable and has a unique least solution. To
that aim, we first have to observe that the product of complete partial orders is a complete
partial order.

Lemma 1.3. Let I be a set, for all i P I let pSi,ďiq be a complete partial order. Define a
relation ď on S :“

ś

iPI Si by

pxiqiPI ď pyiqiPI iff xi ďi yi for all i P I.

Then pS,ďq is a complete partial order. Moreover, if px0,iqiPI ď px1,iqiPI ď ¨ ¨ ¨ is an increasing
sequence in S, then

suptpxn,iqiPI | n P Nu “ psuptxn,i | n P NuqiPI .

Proof. It is easy to check that pS,ďq is a partial order. For completeness let px0,iqiPI ď

px1,iqiPI ď ¨ ¨ ¨ be an increasing sequence in S. Then, for all i P I, x0,i ďi x1,i ďi ¨ ¨ ¨ is an
increasing sequence in Si and hence it has a supremum xi “ suptxn,i | n P Nu. We claim that
pxiqiPI “ suptpxn,iqiPI | n P Nu. First, pxiqiPI is an upper bound because xi ěi xn,i for all n P N.
Let now pbiqiPI be an upper bound as well, then bi ěi xn,i for all n P N, i P I. Since xi was the
least upper bound of txn,i | n P Nu we have bi ěi xi and consequently pbiqiPI ě pxiqiPI .

Definition 1.15. Let R be a continuous semiring, R1 Ď R and Y “ ty1, . . . , ynu a set of
variables. A solution σ of an R1-algebraic system Y “ ppY q is called least solution of Y “ ppY q

if for every solution τ of Y “ ppY q: σ Ď τ .

In the above definition, Ď is the order obtained from the n-fold product of the natural order on
R. By Lemma 1.3, this is a complete partial order. Note that, if Y “ ppY q has a least solution,
then it is unique (due to anti-symmetry of Ď).

There is a very specific reason for why we are interested in a least solution: keeping in mind
the relation between context-free grammars and systems of algebraic equations discussed in the
beginning of this chapter, consider the fact that the productions of a context-free grammar pro-
vide an inductive definition of the language generated by the grammar. An inductive definition
has always two aspects: on the one hand the operation permitted for generating elements of
the inductively defined set and, on the other hand, the understanding that the set thus defined
contains only objects obtained from the permitted operation. This second aspect is usually
self-evident and thus not mentioned. It is also implicit in the definition of the language of a
context-free grammar. However, it gets lost when we move to considering any solution of a
system of equations. In this context, we have to make it explicit by asking for a least solution.

Given polynomials p1, . . . , pk P R1ry1, . . . , yns we can form the vector p “

¨

˚

˝

p1
...
pk

˛

‹

‚

which induces

the polynomial function p : Rn Ñ Rk,

¨

˚

˝

a1
...
an

˛

‹

‚

ÞÑ

¨

˚

˝

p1pa1, . . . , anq
...

pkpa1, . . . , anq

˛

‹

‚

. For the sake of brevity, such

a vector of polynomials p will also be called a polynomial.

Lemma 1.4. Let R be a continuous semiring, then every polynomial p : Rn Ñ Rk is continuous.

Proof. will be done as exercise.
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Theorem 1.2. Let R be a continuous semiring, R1 Ď R and let Y “ ppY q be an R1-algebraic
system in n variables. Then Y “ ppY q has a least solution in Rn. This least solution is
lfpppq “ suptpip0q | i P Nu

Proof. The solutions of Y “ ppY q are the fixed points of p : Rn Ñ Rn. By Lemma 1.3 we
know that Rn is a complete partial order. Rn has a least element 0. By Lemma 1.4 we know
that p : Rn Ñ Rn is continuous. Therefore the fixed point theorem applies and shows that p
has a least fixed point (and hence that Y “ ppY q has a least solution) and that this solution is
lfpppq “ suptpip0q | i P Nu.

Example 1.15. Continuing Example 1.13 let A “ ta, bu and consider the A˚-algebraic system

y “ aybY ε.

We can now use the fixed point theorem to compute a solution as follows. First, observe that

p0pHq “ H

p1pHq “ aHbY ε “ tεu

p2pHq “ atεubY ε “ tab, εu

p3pHq “ atab, εubY ε “ taabb, ab, εu

...

At this point one may form the conjecture that pnpHq “ taibi | 0 ď i ă nu. Let us show this
for all n P N by induction. For n “ 0 this has been shown in the above calculation. For the
induction step, observe that

pn`1pHq “ pppnpHqq “ ataibi | 0 ď i ă nubY ε

“ tai`1bi`1 | 0 ď i ă nu Y ε “ taibi | 0 ď i ă n` 1u.

Now, by Theorem 1.2, we know that the least solution of y “ ppyq is suptpnpHq | n P Nu. In
PpA˚q the supremum is infinite union, so the least solution of y “ ppyq is

suptpnpHq | n P Nu “
ď

nPN
pnpHq “

ď

nPN
taibi | 0 ď i ă nu “ taibi | i P Nu.

1.3.4 Context-free grammars

A particularly important special case of algebraic systems are context-free grammars. As a
reminder (and already in a suitable notation for our purposes), a context-free grammar is a
tuple G “ xY,A, P, y1y where Y “ ty1, . . . , ynu are the nonterminals, A are the terminals and
P Ď Y ˆ pY Y Aq˚ are the production rules. A production rule py, αq is usually written as
y Ñ α, a finite set of production rules with the same left-hand side is usually written as
y Ñ α1 | ¨ ¨ ¨ | αn. The nonterminal y1 is the starting symbol.

The one-step derivation relation of G is defined as α ùñG α1 if α “ α1yα2, α
1 “ α1βα2, and

y Ñ β is a production rule of G. Derivability in at most k steps is denoted as α ùñ
ďk
G α1

and derivation in a finite number of steps is denoted as α ùñ˚
G α1. If the grammar is clear

from the context we often omit the subscript G. The language of a grammar is defined as
LpGq “ tw P A˚ | y1 ùñ˚ wu.
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Example 1.16. G “ xY,A, P, y1y for Y “ ty1, y2, y3u, A “ ta, bu and P “

y1 Ñ y2by3

y2 Ñ ay2 | ε

y3 Ñ ay3 | by3 | ε

is a context-free grammar.

Definition 1.16. Let G “ xY,A, P, y1y be a context-free grammar and Y “ ty1, . . . , ynu. Then
we define the corresponding A˚-algebraic system in the continuous semiring PpA˚q of formal
languages to be Y “ ppY q where

pipY q “
ď

pyi,αqPP

α for 1 ď i ď n.

Example 1.17. The grammar G from Example 1.16 corresponds to the following ta, bu˚-algebraic
system in PpA˚q:

y1 “ y2by3

y2 “ ay2 Y ε

y3 “ ay3 Y by3 Y ε

Theorem 1.3. Let G “ xY,A, P, y1y be a context-free grammar and let Y “ ppY q the corre-
sponding algebraic system with least solution σ “ pσ1, . . . , σnq. Let Gi “ xY,A, P, yiy. Then
LpGiq “ σi.

Proof. For t P N, let Lti “ tw P A˚ | yi ùñďt wu. For the left-to-right inclusion we will show by
induction on t that Lti Ď ptpHnqi. For t “ 0 we have L0

i “ H “ p0pHnqi. So let w P Lt`1
i , i.e.,

yi ùñ v0yi1v1 ¨ ¨ ¨ yikvk ùñďt v0w1v1 ¨ ¨ ¨wkvk “ w. Then wj P Ltij and by induction hypothesis

wj P ptpHnqij and hence w P v0p
tpHnqi1v1 ¨ ¨ ¨ ptpHnqikvk Ď pipp

tpHnqq “ pt`1pHnqi. Thus we
obtain LpGiq “

Ť

tPN L
t
i Ď

Ť

tPN p
tpHnqi “ σi.

For the right-to-left inclusion, we will show ptpHnqi Ď LpGiq for 1 ď i ď n by induction on t.
For t “ 0 we have p0pHnqi “ H Ď LpGiq. So let w P pt`1pHnqi “ pipp

tpHnqq. By induction
hypothesis we have w P pipLpG1q, . . . , LpGnqq, i.e. there is a product term v0yi1v1 ¨ ¨ ¨ yikvk in pi
s.t. w P v0LpGi1qv1 ¨ ¨ ¨LpGikqvk, i.e. there are words wj P LpGij q s.t. w “ v0w1v1 ¨ ¨ ¨wkvk. Since
yij ùñ˚ wj , we also have yi ùñ v0yi1v1 ¨ ¨ ¨ yikvk ùñ˚ w and hence w P LpGiq. So LpGiq is an
upper bound of tptpHnqi | t P Nu and since σi is the least upper bound of tptpHnqi | t P Nu we
have σi Ď LpGiq.

1.4 Formal series

1.4.1 The continuous semiring RxxA˚yy

In previous courses you have already seen formal power series with, e.g., real-valued coefficients.
These are expressions of the form

ř

iPN aiq
i with ai P R and q being a variable. Sometimes one

would like to evaluate a power series (i.e. substitute a concrete value for q) but often one treats
a formal power series as a formal object rather than as a function q ÞÑ

ř

iPN aiq
i, hence the

term formal power series.

In this course we will consider formal series in another context: instead of working over a single
variable q (and hence the multiplicative monoid freely generated by q) we work over an alphabet
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A (and hence the multiplicative (non-commutative) monoid freely generated by A). Since the
elements of A˚ are no longer powers of a word we will simply speak about formal series.

Definition 1.17. Let A be an alphabet and R a continuous semiring. A formal series over A˚

with coefficients in R is a function r : A˚ Ñ R. We often write pr, wq for rpwq and a formal
series as a whole is written as

ř

wPA˚pr, wqw. We write RxxA˚yy for the set of all formal series
over A˚ with coefficients in R.

We define the structure xRxxA˚yy,`, 0, ¨, 1y as follows: addition and (Cauchy-)multiplication on
RxxA˚yy are defined as usual:

p
ÿ

wPA˚

pr, wqwq ` p
ÿ

wPA˚

ps, wqwq “
ÿ

wPA˚

ppr, wq ` ps, wqqw

p
ÿ

wPA˚

pr, wqwq ¨ p
ÿ

wPA˚

ps, wqwq “
ÿ

wPA˚

p
ÿ

u,vPA˚

uv“w

pr, uqps, vqqw

0 is the formal series where all coefficients are 0 and 1 is the formal series 1ε.

The relationship between formal series over A˚ and formal languages is that a formal language
L P PpA˚q can be identified with a function χL : A˚ Ñ t0, 1u, i.e., a formal series with
coefficients in t0, 1u. This relationship will be analysed in more depth in Proposition 1.7.

It is also possible to consider formal series over an arbitrary monoid M (instead of the monoid
freely generated by A). But then many results of formal language theory do not longer hold (in
particular: Kleene’s theorem which states that the rational languages are exactly the recognis-
able languages fails). Therefore, in this course, we will only consider formal series over A˚.

Proposition 1.5. Let A be an alphabet and let R be a continuous semiring. Then RxxA˚yy is
a continuous semiring.

Proof. It is straightforward to show that RxxA˚yy is a semiring5. We have r1 Ď r2 iff pr1, wq Ď

pr2, wq for all w P A˚, i.e. the natural order on RxxA˚yy is the product of countably many copies
of the natural order in A. By Lemma 1.3 this is a complete partial order and its supremum is
given component-wise, i.e. for any increasing sequence r0 Ď r1 Ď ¨ ¨ ¨ we have

supt
ÿ

wPA˚

pri, wqw | i P Nu “
ÿ

wPA˚

suptpri, wq | i P Nuw. (*)

It remains to show that ` and ¨ are continuous. We have

r ` suptsi | i P Nu “
ÿ

wPA˚

pr, wqw ` supt
ÿ

wPA˚

psi, wqw | i P Nu

“p˚q
ÿ

wPA˚

pr, wqw `
ÿ

wPA˚

suptpsi, wq | i P Nuw

“
ÿ

wPA˚

`

pr, wq ` suptpsi, wq | i P Nu
˘

w

“
ÿ

wPA˚

suptpr, wq ` psi, wq | i P Nuw

“p˚q supt
ÿ

wPA˚

`

pr, wq ` psi, wq
˘

w | i P Nu

“ supt
ÿ

wPA˚

pr, wqw `
ÿ

wPA˚

psi, wqw | i P Nu

“ suptr ` si | i P Nu.

5Prove some properties as exercise!
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This suffices for ` since ` is commutative. For ¨ we have:

r ¨ suptsi | i P Nu “
ÿ

wPA˚

pr, wqw ¨ supt
ÿ

wPA˚

psi, wqw | i P Nu

“p˚q
ÿ

wPA˚

pr, wqw ¨
ÿ

wPA˚

suptpsi, wq | i P Nuw

“
ÿ

wPA˚

`

ÿ

u,vPA˚

uv“w

pr, uq suptpsi, vq | i P Nu
˘

w

“
ÿ

wPA˚

`

ÿ

u,vPA˚

uv“w

suptpr, uqpsi, vq | i P Nu
˘

w

Now there is only finitely many pairs u, v s.t. uv “ w and a finite sum in R is a continuous
function. Therefore we can apply Lemma 1.1 in order to obtain

“
ÿ

wPA˚

supt
ÿ

u,vPA˚

uv“w

pr, uqpsi, vq | i P Nuw

“p˚q supt
ÿ

wPA˚

`

ÿ

u,vPA˚

uv“w

pr, uqpsi, vq
˘

w | i P Nu

“ suptr ¨ si | i P Nu.

For multiplication from the right an analogous calculation shows continuity.

Having shown that RxxA˚yy is a continuous semiring we obtain a ˚-operation on formal series.
Before we analyse this operation in more detail, we make the preparatory observation that
infinite sums of formal series are given component-wise in the following Lemma.

Lemma 1.5. Let A be an alphabet and R be a continuous semiring. Let r0, r1, . . . P RxxA˚yy.
Then

ÿ

nPN
rn “

ÿ

nPN

ÿ

wPA˚

prn, wqw “
ÿ

wPA˚

ÿ

nPN
prn, wqw.

Proof. We have

ÿ

nPN

ÿ

wPA˚

prn, wqw “ supt

n
ÿ

i“0

ÿ

wPA˚

pri, wqw | n P Nu

“ supt
ÿ

wPA˚

n
ÿ

i“0

pri, wqw | n P Nu

“p˚q
ÿ

wPA˚

supt

n
ÿ

i“0

pri, wq | n P Nuw

“
ÿ

wPA˚

`

ÿ

nPN
prn, wq

˘

w

where p˚q refers to the equation p˚q in the proof of Proposition 1.5.

The star-operation in a continuous semiring is defined as r˚ “
ř

nPN r
n. The following proposi-

tion further explicates this definition for the case of a semiring of formal series: the coefficient
pr˚, wq is obtained as sum over the values of all decompositions of w where the value of a de-
composition is the product of the values of its components. In order to state and prove this
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proposition we first make the notion of decomposition precise. If S is a set and k P N we
write Sk for the set of k-tuples of elements of S. In particular, S0 “ tpqu, the set consist-
ing of the empty tuple. A decomposition of w P A˚ is a tuple pu1, . . . , unq P pA˚qn for some
n ě 0 s.t. u1 ¨ ¨ ¨un “ w. Note that ui “ ε is possible so that every word has infinitely many
decompositions. In particular, w “ ε has the decompositions pq, pεq, pε, εq, . . ..

Proposition 1.6. Let A be an alphabet, R a continuous semiring, and r P RxxA˚yy. Then

r˚ “
ÿ

wPA˚

ÿ

nPN

ÿ

pu1,...,unqPpA˚qn

u1¨¨¨un“w

n
ź

i“1

pr, uiqw

Proof. We will first prove that, for all w P A˚ and all n P N

prn, wq “
ÿ

pu1,...,unqPpA˚qn

u1¨¨¨un“w

n
ź

i“1

pr, uiq (*)

by induction on n. For the case n “ 0 observe that

ÿ

pu1,...,u0qPpA˚q0

u1¨¨¨u0“w

0
ź

i“1

pr, uiq “
ÿ

pqPpA˚q0

ε“w

1 “

#

1 if w “ ε

0 if w ‰ ε

which is pr0, wq. For the induction step, we have

prn`1, wq “ pr ¨ rn, wq “
ÿ

u1,vPA˚

u1v“w

pr, u1qprn, vq “IH
ÿ

u1,vPA˚

u1v“w

pr, u1q
ÿ

v1,...,vnPA˚

v1¨¨¨vn“v

n
ź

i“1

pr, viq

“
ÿ

pu1,...,un`1qPpA˚qn`1

u1¨¨¨un`1“w

n`1
ź

i“1

pr, uiq.

We then have

r˚ “
ÿ

nPN
rn “Lem. 1.5

ÿ

wPA˚

`

ÿ

nPN
prn, wq

˘

w “
ÿ

wPA˚

`

ÿ

nPN

ÿ

pu1,...,unqPpA˚qn

u1¨¨¨un“w

n
ź

i“1

pr, uiq
˘

w.

Corollary 1.1. Let A be an alphabet, R a continuous semiring, and r P RxxA˚yy with pr, εq “ 0.
Then

r˚ “
ÿ

wPA˚

|w|
ÿ

n“0

ÿ

pu1,...,unqPpA˚qn

u1¨¨¨un“w

n
ź

i“1

pr, uiqw

Proof. If u1, . . . , un P A˚ with u1 ¨ ¨ ¨un “ w and ui “ ε for some i P t1, . . . , nu, then
śn
i“1pr, uiq “

0, so it suffices to consider decompositions into non-emtpy words. Every such decomposition of
w consists of at most |w| words.

In particular, pr, εq “ 0 implies pr˚, εq “ 1.
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1.4.2 PpA˚q and BxxA˚yy

Definition 1.18. Let R and S be semirings. A function φ : R Ñ S is called semiring homo-
morphism if φp0q “ 0, φp1q “ 1, φpx` yq “ φpxq ` φpyq and φpx ¨ yq “ φpxq ¨ φpyq.

Often, it will be clear from the context that we speak about semiring homomorphisms. Then
we will just say homomorphism. As always, an isomorphism is a bijective homomorphism.

Lemma 1.6. Let R and S be continuous semirings and φ : R Ñ S an isomorphism. Then
φpx˚q “ φpxq˚ for all x P R.

Proof. First, note that x Ď y iff φpxq Ď φpyq: for if Dz x ` z “ y, then φpxq ` φpzq “ φpyq. In
the other direction, if Dz φpxq ` z “ φpyq, then x`φ´1pzq “ y. So φ is an isomorphism for the
partial orders pR,Ďq and pS,Ďq and therefore

φpsuptxi | i P Nuq “ suptφpxiq | i P Nu.

Then, for any x P R, we have

φpx˚q “ φpsupt

n
ÿ

i“0

xi | n ě 0uq “ supt

n
ÿ

i“0

φpxqi | n ě 0u “ φpxq˚,

Proposition 1.7. The continuous semirings xPpA˚q,Y,H, ¨, tεuy and BxxA˚yy are isomorphic.

Proof. The mapping φ : PpA˚q Ñ BxxA˚yy, L ÞÑ
ř

wPA˚ χLpwqw is clearly a bijection. It is also
a homomorphism since φpHq “ 0, φptεuq “ ε, φpL1 Y L2q “ φpL1q ` φpL2q and

φpL1q ¨ φpL2q “ p
ÿ

w1PA˚

χL1pw1qw1qp
ÿ

w2PA˚

χL2pw2qw2q

“
ÿ

wPA˚

p
ÿ

w“w1w2
w1PA˚,w2PA˚

χL1pw1qχL2pw2qqw “
ÿ

wPL1¨L2

w “ φpL1 ¨ L2q.

So we can identify a formal language L Ď A˚ with a formal series over A˚ with coefficients in
B. This observation clarifies the nature of the generalisation considered: the generalisation of
a language is a formal series in the continuous semiring RxxA˚yy. This generalises the notion
of a word being element of a language from a Boolean function to a function r : A˚ Ñ R.
Most of the theory of formal languages thus generalises from PpA˚q to RxxA˚yy for an arbitrary
continuous semiring R.

1.4.3 Calculations in semirings of formal series

Example 1.18. In Bxxta, bu˚yy we have:

pa` bqn “ pa` bq ¨ ¨ ¨ ¨ ¨ pa` bq “
ÿ

wPta,bun

w

pa` bq˚ “
ÿ

ně0

pa` bqn “
ÿ

wPta,bu˚

w

pa` bq˚apa` bq˚ “
ÿ

wPta,bu˚

napwqě1

w
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where nxpwq P N is the number of occurrences of the letter x in the word w. So, computations
in BxxA˚yy can be carried out just as we know them from working with regular expressions.

Example 1.19. In N8xxta, bu˚yy we have:

pa` bqn “ pa` bq ¨ ¨ ¨ ¨ ¨ pa` bq “
ÿ

wPta,bun

w

pa` bq˚ “
ÿ

ně0

pa` bqn “
ÿ

wPta,bu˚

w

pa` bq˚apa` bq˚ “
ÿ

wPta,bu˚

napwqw

The third equation is proved in detail as follows: let r “ pa ` bq˚apa ` bq˚ P N8xxta, bu˚yy. We
will compute the coefficient pr, wq for w P ta, bu˚. To that aim, let r1 “ pa ` bq˚, r2 “ a P

N8xxta, bu˚yy. Then the definition of the Cauchy-product implies that

pr, wq “
ÿ

u1,u2,u3Pta,bu˚

u1u2u3“w

pr1, u1qpr2, u2qpr1, u3q

Since all coefficients of r1 and r2 are either 0 or 1, also the product pr1, u1qpr2, u2qpr1, u3q can
only be 0 or 1. Moreover, it is 1 iff all factors are 1. But the only word u2 s.t. pr2, u2q “ 1 is a,
so

“
ÿ

u1,u3Pta,bu˚

u1au3“w

1

and this is the number of ways one can write w as u1au2 and hence

“ napwq.

Example 1.20. Let R be the min-`-semiring xN8,min,8,`, 0y and let A “ ta, bu. The elements
of RxxA˚yy are formal Min-series, i.e., mappings r : A˚ Ñ N8 which we write as MinwPA˚pr, wqw.
The usual notational convention for power series is that all words which are not mentioned
explicitly have the additive unit as coefficient. In R the additive unit is 8, so, for example,

0ε “

#

0 if w “ ε

8 otherwise

in RxxA˚yy. The continuous semiring RxxA˚yy has a min operation which is defined pointwise
and whose unit is 8 : A˚ Ñ R,w ÞÑ 8. Moreover, it has a plus operation ‘ which is defined
via the Cauchy product formula as

pr1 ‘ r2, wq “ mintpr1, uq ` pr2, vq | u, v P A˚, uv “ wu

and has 0ε as unit. The formula for the star of a formal series shown in Proposition 1.6 becomes

r˚ “ Min
wPA˚

Min
nPN

mint

n
ÿ

i“1

pr, uiq | u1, . . . , un P A˚, u1 ¨ ¨ ¨un “ wuw

or, put differently:

pr˚, wq “ Min
nPN

mint

n
ÿ

i“1

pr, uiq | u1, . . . , un P A˚, u1 ¨ ¨ ¨un “ wu
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for all w P A˚. In particular, for the calculation of pr˚, wq for w “ babaab we have to consider
all decompositions of w into ta, b, abu and minimise over their respective values (where the value
of a decomposition is the sum of the coefficients of its components, in the case of r this is just
the number of components). We have

b ¨ a ¨ b ¨ a ¨ a ¨ b 6
b ¨ ab ¨ a ¨ a ¨ b 5
b ¨ a ¨ b ¨ a ¨ ab 5
b ¨ ab ¨ a ¨ ab 4

Since all other decompositions lead to a sum of 8, we have pr˚, wq “ 4. For the general case,
we obtain

pr˚, wq “

#

8 if w “ ε

|w| ´ nabpwq otherwise

We have already seen that every context-free grammar can be considered an algebraic system
in PpA˚q and – by the above isomorphism-result Proposition 1.7 – as an algebraic system in
BxxA˚yy. The generalisation from a language L P PpA˚q to a formal series r P RxxA˚yy hence
immediately gives rises to a class of algebraic systems that corresponds to RxxA˚yy as context-
free grammars correspond to PpA˚q: the ttawu | a P R,w P A˚u-algebraic systems in RxxA˚yy.
The set of components of solutions of these systems hence generalises the notion of a context-free
language from PpA˚q to RxxA˚yy.

Example 1.21. Let us consider the following algebraic system in R8
` xxta, bu˚yy:

y “
1

2
ay `

1

4
by `

1

4
ε “ ppyq.

We can think of this as a stochastic process which – at each point in time – outputs a with
probability 1

2 , b with probability 1
4 and stops with probability 1

4 . The least solution of this
algebraic system is a formal series σ P R8

` xxta, bu˚yy s.t. pσ,wq is the probability that this
process outputs the word w P ta, bu˚. The least element of R8

` xxta, bu˚yy is 0, the series all of
whose coefficients are 0 P R8

` . We compute σ by proceeding as in Example 1.15:

p0p0q “ 0

p1p0q “
1

4
ε

p2p0q “
1

2
a
1

4
ε`

1

4
b
1

4
ε`

1

4
ε “

1

8
a`

1

16
b`

1

4
ε

p3p0q “ . . .

...

We form the conjecture

pnp0q “
ÿ

wPta,buăn

1

4

ˆ

1

2

˙napwqˆ1

4

˙nbpwq

w

and prove it by induction. For n “ 0, 1, 2 it is shown above. For the induction step we have

pn`1p0q “IH 1

2
a

ÿ

wPta,buăn

1

4

ˆ

1

2

˙napwqˆ1

4

˙nbpwq

w `
1

4
b

ÿ

wPta,buăn

1

4

ˆ

1

2

˙napwqˆ1

4

˙nbpwq

w `
1

4
ε

“
ÿ

wPata,buăn

1

4

ˆ

1

2

˙napwqˆ1

4

˙nbpwq

w `
ÿ

wPbta,buăn

1

4

ˆ

1

2

˙napwqˆ1

4

˙nbpwq

w `
1

4
ε
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and since ta, buăn`1 “ ata, buăn Y bta, buăn Y tεu we have

“
ÿ

wPta,buăn`1

1

4

ˆ

1

2

˙napwqˆ1

4

˙nbpwq

w.

By the fixed point theorem we know that σ “ suptpnp0q | n P Nu so we obtain

σ “ sup
␣

ÿ

wPta,buăn

1

4

ˆ

1

2

˙napwqˆ1

4

˙nbpwq

w | n P N
(

and since the supremum of a sequence of formal series is computed component-wise and the
components only change once each (from 0 to the final value) we have

“
ÿ

wPta,bu˚

1

4

ˆ

1

2

˙napwqˆ1

4

˙nbpwq

w.

1.4.4 Context-free grammars and N8

Moving to a more general semiring can also provide a means for analysing aspects of elementary
notions from formal language theory. We will see an example for this now. Let G “ xY,A, P, y1y

be a context-free grammar and Y “ ty1, . . . , ynu. We define the one-step leftmost derivation

relation as α
lm

ùñG α
1 if α “ α1yα2, α

1 “ α1βα2, y Ñ β is a production rule of G, α1 P A˚ and
α2 P pA Y Y q˚. It is easy to show that a word is derivable in a grammar iff it has a leftmost
derivation.

Example 1.22. Let A “ ta, b, c, ˝u and define a grammar by the production rules

S Ñ S ˝ S | a | b | c

Then the word b ˝ a ˝ b has the following two distinct leftmost derivations:

S ùñ S ˝ S ùñ b ˝ S ùñ b ˝ S ˝ S ùñ˚ b ˝ a ˝ b

S ùñ S ˝ S ùñ S ˝ S ˝ S ùñ˚ b ˝ a ˝ b

In contexts where ˝ is interpreted as a non-associative operation these two different leftmost
derivations, and hence different parse trees, will yield different interpretations. In many appli-
cations this is undesirable, therefore (non-)ambiguity is an important aspect of grammars.

For w P LpGiq write dipwq for the number of leftmost derivations of the word w in Gi “

xY,A, P, yiy. Ambiguity can be characterised nicely by transforming a context-free grammar
into an algebraic system in N8xxA˚yy instead of PpA˚q. This is done just as in Definition 1.16.
Then one can obtain the following:

Theorem 1.4. Let G “ xY,A, P, y1y be a context-free grammar, let Y “ ty1, . . . , ynu, and let
Y “ ppY q the corresponding algebraic system in N8xxA˚yy with least solution σ “ pσ1, . . . , σnq.
Then σi “

ř

wPA˚ dipwqw for 1 ď i ď n.
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1.5 Matrices

Automata are a central notion of formal language theory. In order to develop our theory of
automata we first study matrices over a continuous semiring. This section is devoted to them,
in particular to proving that the square matrices over a continuous semiring form a continuous
semiring. This will, as in the case of formal series, give us a star of matrices. We will then see
how to calculute the star of a matrix in terms of `, ¨ and star of the underlying semiring.

1.5.1 The continuous semiring RIˆI

Definition 1.19. Let R be a semiring and I, J finite sets. A mapping M : I ˆJ Ñ R is called
matrix. The values of M are denoted by Mi,j for i P I, j P J . The set of all such matrices is
denoted by RIˆJ .

For M,N P RIˆJ we define:

pM `Nqi,j “ Mi,j `Ni,j .

We also define 0 P RIˆJ by 0i,j “ 0

For M P RIˆJ and N P RJˆK we define:

pM ¨Nqi,k “
ÿ

jPJ

Mi,jNj,k

We also define 1 P RIˆI by 1i,j “ 1 if i “ j and 0 otherwise.

We thus obtain a structure xRIˆI ,`, 0, ¨, 1y. It is straightforward to show that, if R is a semiring,
then also xRIˆI ,`, 0, ¨, 1y is6.

Proposition 1.8. Let R be a continuous semiring, then RIˆI is a continuous semiring.

Proof. RIˆI is a semiring. Note that M Ď N iff Mi,j Ď Ni,j for all i, j P I. Therefore we can
apply Lemma 1.3 to conclude that that pRIˆI ,Ďq is a complete partial order and that, for any
increasing sequence M0 Ď M1 Ď ¨ ¨ ¨ , and for all i, j P I we have

psuptMn | n P Nuqi,j “ suptpMnqi,j | n P Nu (*)

Let us first show that ` is continuous. To that aim let M0 Ď M1 Ď ¨ ¨ ¨ be an increasing
sequence and fix i, j P I. Then we have

psuptMn | n P Nu `Nqi,j “ psuptMn | n P Nuqi,j `Ni,j

“p˚q suptpMnqi,j | n P Nu `Ni,j

“ suptpMnqi,j `Ni,j | n P Nu

“ suptpMn `Nqi,j | n P Nu

“p˚q psuptMn `N | n P Nuqi,j

And therefore we have suptMn `N | n P Nu “ suptMn | n P Nu `N .

6Prove some properties as exercise!
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For showing that ¨ is continuous, let again M0 Ď M1 Ď ¨ ¨ ¨ be an increasing sequence and fix
i, k P I. Then we have

psuptMn | n P Nu ¨Nqi,k “
ÿ

jPI

psuptMn | n P Nuqi,jNj,k

“p˚q
ÿ

jPI

suptpMnqi,j | n P NuNj,k

then by continuity of polynomials in R together with Lemma 1.1

“ supt
ÿ

jPI

pMnqi,jNj,k | n P Nu

“ suptpMn ¨Nqi,k | n P Nu

“p˚q psuptMn ¨N | n P Nuqi,k

For multiplication from the left proceed analogously.

Since RIˆI is a continuous semiring, there is also a star-operation on matrices: M˚ “
ř

iPNM
i.

The star of a matrix will play an important role for finite automata. We will therefore study it
more closely here (before moving on to automata).

1.5.2 The star of a matrix

Example 1.23. Let I “ t1, . . . , nu and M P RIˆI be a diagonal matrix. Then

M˚ “
ÿ

iPN
M i “

ÿ

iPN

¨

˚

˝

m1

. . .

mn

˛

‹

‚

i

“

ÿ

iPN

¨

˚

˝

mi
1

. . .

mi
n

˛

‹

‚

“

¨

˚

˝

m˚
1

. . .

m˚
n

˛

‹

‚

In general, the computation of the star of a matrix is considerably more complicated. Before
we study an algorithm to compute the star of a matrix, we relate it to more familiar notions:
we will now show that the star of a matrix is closely related to the paths in a graph. As usual,
a graph is a pair pV,Eq where V is a finite set of vertices and E Ď V ˆ V is the set of edges. A
path is a list e1, . . . , en of edges s.t. for all i “ 1 . . . , n ´ 1 there are x, y, z P V s.t. ei “ px, yq

and ei`1 “ py, zq. If the graph is clear from the context, and i, j P V , we write Pnpi, jq for
the set of paths from i to j of length n and P pi, jq for the set of all paths from i to j. If R
is a continuous semiring, an R-weighted graph is a tuple pV,E,wq s.t. pV,Eq is a graph and
w : E Ñ R. We extend w to w : V ˆ V Ñ R by setting wpi, jq “ 0 if pi, jq R E. Then we can
identify an R-weighted graph with a matrix M P RV ˆV by letting Mi,j “ wppi, jqq. The weight
of a path p “ e1, . . . , en is then defined as wppq “

śn
i“1wpeiq. Note that this implicitely defines

the weight of the empty path to be 1 P R.

Proposition 1.9. Let R be a continuous semiring and M “ pV,E,wq an R-weighted graph.
Then pM˚qi,j “

ř

pPP pi,jq wppq.

Proof. We will first show by induction on n that pMnqi,j “
ř

pPPnpi,jq wppq. For n “ 0 this holds

trivially since M0 is the identity matrix. For the induction step, observe that

pMn`1qi,j “
ÿ

kPV

Mi,kpMnqk,j “IH
ÿ

kPV

wppi, kqq
ÿ

pPPnpk,jq

wppq “
ÿ

kPV
pPPnpk,jq

wppi, kqqwppq “
ÿ

pPPn`1pi,jq

wppq.
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But now

pM˚qi,j “ p
ÿ

nPN
Mnqi,j “

ÿ

nPN
pMnqi,j “

ÿ

nPN

ÿ

pPPnpi,jq

wppq “
ÿ

pPP pi,jq

wppq.

The aim of this section is to prove a theorem that reduces the computation of the star of a
matrix to the computation of the stars of smaller matrices. Applying this result recursively
gives a procedure to compute the star of any matrix in RIˆI provided we know how to compute
the star in R. In order to prove that theorem we need some preliminary results first.

Lemma 1.7. Let R be a continuous semiring and x, y P R. Then the sum-star equation

px` yq˚ “ px˚yq˚x˚ “ x˚pyx˚q˚

holds.

Proof. First note that, for all a, b P R, we have:

pabq˚a “
`

ÿ

iPN
pabqi

˘

a “
ÿ

iPN
pabqia “

ÿ

iPN
apbaqi “ a

ÿ

iPN
pbaqi “ apbaq˚.

Therefore it suffices to prove px` yq˚ “ x˚pyx˚q˚. For q, r P N define7

Sq,r “
ÿ

p0,...,prPN
p0`¨¨¨`pr“q

xp0yxp1 ¨ ¨ ¨ yxpr .

The definition of Sq,r directly entails that px` yqi “
ř

q,rPN
q`r“i

Sq,r, so we have

px` yq˚ “
ÿ

iPN
px` yqi “

ÿ

q,r,iPN
q`r“i

Sq,r “
ÿ

q,rPN
Sq,r.

Furthermore, for all r P N we have

x˚pyx˚qr “
ÿ

p0PN
xp0y

ÿ

p1PN
xp1 ¨ ¨ ¨ y

ÿ

prPN
xpr

“
ÿ

p0,...,prPN
xp0yxp1 ¨ ¨ ¨ yxpr “

ÿ

qPN

ÿ

p0,...,prPN
p0`¨¨¨`pr“q

xp0yxp1 ¨ ¨ ¨ yxpr “
ÿ

qPN
Sq,r

and therefore also

x˚pyx˚q˚ “ x˚
ÿ

rPN
pyx˚qr “

ÿ

rPN
x˚pyx˚qr “

ÿ

rPN

ÿ

qPN
Sq,r “

ÿ

q,rPN
Sq,r.

Lemma 1.8. In a continuous semiring R we have px` yq˚ “ px` yx˚yq˚p1 ` yx˚q.

7For example, if R “ PpA˚
q and x, y P A, then Sq,r is the set of all words which consist of q occurrences of x

and r occurrences of y.
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Proof.

px` yq˚ “Lem. 1.7 px˚yq˚x˚ “
ÿ

jě0

px˚yqjx˚ “
ÿ

jě0

px˚yq2jx˚ `
ÿ

jě0

px˚yq2j`1x˚

“ px˚yx˚yq˚x˚ ` px˚yx˚yq˚x˚yx˚ “ px˚yx˚yq˚x˚p1 ` yx˚q

“Lem. 1.7 px` yx˚yq˚p1 ` yx˚q.

We have seen that RIˆI is a continuous semiring. If J is another finite set, then applying
Proposition 1.8 again shows that pRIˆIqJˆJ is a continuous semiring as well. An element M
in pRIˆIqJˆJ is a matrix of matrices but can be considered a matrix of elements of R as the
following proposition shows:

Proposition 1.10. Let R be a continuous semiring, I, J finite sets. Then the continuous
semirings pRIˆIqJˆJ and RpIˆJqˆpIˆJq are isomorphic.

Proof. Define φ : pRIˆIqJˆJ Ñ RpIˆJqˆpIˆJq by pφpMqqpi1,j1q,pi2,j2q “ pMi1,i2qj1,j2 . It is straight-
forward to verify that φ is an isomorphism.

We will often decompose a matrix. Let M P RIˆI , I1 Z I2 “ I. For k, l P t1, 2u we write
MpIk, Ilq for the matrix obtained from keeping the rows with indices in Ik and the columns
with indices in Il and deleting all others. In the context of a fixed partition I “ I1 Z I2 we will
often write Mk,l as an abbreviation for MpIk, Ilq. Proposition 1.10 above shows that we can

identify M P RIˆI with the matrix

ˆ

M1,1 M1,2

M2,1 M2,2

˙

.

Theorem 1.5. Let R be a continuous semiring, let M P RIˆI and let I “ I1 Z I2. Then

pM˚q1,1 “ pM1,1 `M1,2M
˚
2,2M2,1q˚

pM˚q1,2 “ pM˚q1,1M1,2M
˚
2,2

pM˚q2,2 “ pM2,2 `M2,1M
˚
1,1M1,2q˚

pM˚q2,1 “ pM˚q2,2M2,1M
˚
1,1

Proof. Let M1 “

ˆ

M1,1 0
0 M2,2

˙

and M2 “

ˆ

0 M1,2

M2,1 0

˙

, then

M˚ “ pM1 `M2q˚ “Lem. 1.8 pM1 `M2M
˚
1M2q˚p1 `M2M

˚
1 q.

We have M˚
1 “

ˆ

M˚
1,1 0

0 M˚
2,2

˙

and hence

M1 `M2M
˚
1M2 “

ˆ

M1,1 `M1,2M
˚
2,2M2,1 0

0 M2,2 `M2,1M
˚
1,1M1,2

˙

.

Furthermore

1 `M2M
˚
1 “

ˆ

1 M1,2M
˚
2,2

M2,1M
˚
1,1 1

˙

.
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Therefore

M˚ “ pM1 `M2M
˚
1M2q˚p1 `M2M

˚
1 q

“

ˆ

pM1,1 `M1,2M
˚
2,2M2,1q˚ 0

0 pM2,2 `M2,1M
˚
1,1M1,2q˚

˙ˆ

1 M1,2M
˚
2,2

M2,1M
˚
1,1 1

˙

“

ˆ

pM1,1 `M1,2M
˚
2,2M2,1q˚ pM1,1 `M1,2M

˚
1,1M2,1q˚M1,2M

˚
2,2

pM2,2 `M2,1M
˚
1,1M1,2q˚M2,1M

˚
1,1 pM2,2 `M2,1M

˚
1,1M1,2q˚

˙

Example 1.24. Let I “ t1, 2, 3u and R “ Bxxta, bu˚yy and M P RIˆI be

M “

¨

˝

a b 0
0 0 b
b 0 0

˛

‚

Preparing for the application of Theorem 1.5, let I1 “ t1u and I2 “ t2, 3u. We then have

pM1,1q˚ “
`

a
˘˚

“
`

a˚
˘

pM2,2q˚ “

ÿ

iPN

ˆ

0 b
0 0

˙i

“

ˆ

1 0
0 1

˙

`

ˆ

0 b
0 0

˙

`

ˆ

0 0
0 0

˙

“

ˆ

1 b
0 1

˙

Now, by Theorem 1.5 we have

pM˚q1,1 “

ˆ

`

a
˘

`
`

b 0
˘

ˆ

1 b
0 1

˙ˆ

0
b

˙˙˚

“
`

pa` b3q˚
˘

pM˚q1,2 “
`

pa` b3q˚
˘ `

b 0
˘

ˆ

1 b
0 1

˙

“
`

pa` b3q˚b pa` b3q˚b2
˘

pM˚q2,2 “

ˆˆ

0 b
0 0

˙

`

ˆ

0
b

˙

`

a˚
˘ `

b 0
˘

˙˚

“

ˆ

0 b
ba˚b 0

˙˚

Now another application of Theorem 1.5 shows that the star of an anti-diagonal matrix is
ˆ

0 α
β 0

˙˚

“

ˆ

pαβq˚ pαβq˚α
pβαq˚β pβαq˚

˙

and hence

“

ˆ

pb2a˚bq˚ pb2a˚bq˚b
pba˚b2q˚ba˚b pba˚b2q˚

˙

.

Finally,

pM˚q2,1 “

ˆ

pb2a˚bq˚ pb2a˚bq˚b
pba˚b2q˚ba˚b pba˚b2q˚

˙ˆ

0
b

˙

`

a˚
˘

“

ˆ

pb2a˚bq˚b2a˚

pba˚b2q˚ba˚

˙

Summing up we have obtained:

M˚ “

¨

˝

pa` b3q˚ pa` b3q˚b pa` b3q˚b2

pb2a˚bq˚b2a˚ pb2a˚bq˚ pb2a˚bq˚b
pba˚b2q˚ba˚ pba˚b2q˚ba˚b pba˚b2q˚

˛

‚
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1.6 Regular languages

1.6.1 Finite automata

Definition 1.20. Let R be a continuous semiring and R1 Ď R. An R1-automaton in R is a
tuple A “ pI,M, S, P q where

� I is a finite set of states,

� M P R1IˆI is the transition matrix,

� S P R11ˆI is the initial state vector, and

� P P R1Iˆ1 is the final state vector.

The behaviour ∥A∥ P R of the R1-automaton A is defined as ∥A∥ “ SM˚P .

The intention of the above definition is that the entry Mi,j of the matrix M determines the
element of R1 associated to the edge from state i to state j. Note that this definition permits
more than one initial state and (as the traditional definition) also more than one final state.
Moreover, to each starting and final state (each entering and exiting edge) we can associate an
element of R1 as well.

It is possible to extend the above definition of finite automata to an infinite set of states I.
The results of Section 1.5 also hold in this more general setting. This allows to treat pushdown
automata in an arbitrary continuous semiring A. However, we do not follow this direction here
– in this course all automata will have a finite number of states.

Example 1.25. The matrix M discussed in Example 1.24 corresponds to the following diagram

1

a

��
b // 2

b
��
3

b

__

The entry pM˚qi,j is the language recognised by the paths from i to j. Indicating 1 as the only
initial and the only final state can be done by setting

S “
`

ε 0 0
˘

and P “

¨

˝

ε
0
0

˛

‚.

This is represented in the diagram as

ε // 1

a

��
b //

ε

��

2

b
��
3

b

__

(but often we will omit the label ε on entering and exiting edges of a diagram). Then the
behaviour of the automaton A “ pt1, 2, 3u,M, S, P q in PpA˚q is

∥A∥ “ SM˚P “ pa` b3q˚
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Example 1.26. Let A “ ta, bu and consider the automaton

A “
// 1

��

a,b

�� b **
2

a
jj

in BxxA˚yy. Then M “

ˆ

a` b b
a 0

˙

and note that ∥A∥ “
`

ε 0
˘

M˚

ˆ

ε
0

˙

“ pM˚q1,1. By

Theorem 1.5 we have pM˚q1,1 “ pM1,1 ` M1,2M
˚
2,2M2,1q˚ “ pa ` b ` baq˚. But in BxxA˚yy we

have pa` b` baq˚ “ pa` bq˚ and hence ∥A∥ “
ř

wPA˚ w. In particular the simpler automaton

A1 “
// 1

a,b

��
//

has the same behaviour.

If we move to N8xxA˚yy we have a more complicated behaviour. The coefficient of a word w
turns out to be the number of accepting paths of w. Considering A in N8xxA˚yy we claim that
∥A∥ “

ř

wPA˚ 2nbapwqw where nbapwq is the number of occurrences of ba in w. This can be
shown as follows: first, as above we have ∥A∥ “ pa` b` baq˚. Now, by Corollary 1.1, we have

pa` b` baq˚ “
ÿ

wPA˚

|w|
ÿ

n“0

ÿ

pu1,...,unqPpA˚qn

u1¨¨¨un“w

n
ź

i“1

pa` b` ba, uiq w

“
ÿ

wPA˚

|w|
ÿ

n“0

ÿ

u1,...,unPta,b,bau˚

u1¨¨¨un“w

1 w

“
ÿ

wPA˚

2nbapwq w

because for each occurrence of ba in w we can make the choice of whether to consider it as
ui “ ba or as ui “ b and ui`1 “ a and these choices are independent.

The above examples are classical automata; more precisely: for A “ ta1, . . . , anu and R1 “

tλ0ε ` λ1a1 ` ¨ ¨ ¨ ` λnan | λ0, . . . , λn P t0, 1uu they are R1-automata in RxxA˚yy. But our
more general context allows to put weights on the transitions (hence the terminology “weighted
automata”) by taking λi R t0, 1u. We thus define:

Definition 1.21. Let R be a continuous semiring, A “ ta1, . . . , anu be an alphabet and R1 “

tλ0ε ` λ1a1 ` ¨ ¨ ¨ ` λnan | λ0, . . . , λn P Ru. An R1-automaton in RxxA˚yy is called weighted
automaton in RxxA˚yy.

When working in the min-plus semiring one can think of the weight as cost (since we want
to minimise it) and, dually, in the max-plus semiring as gains (which we want to maximise).
Under certain conditions, real-valued weights can be considered probabilities.

Example 1.27. Let A “ ta, bu, R “ xN̄,max,´8,`, 0y where N̄ “ N Y t´8,`8u with `8 `
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p´8q “ ´8. Consider the following automaton A in RxxA˚yy:

0ε // 1

Maxt0a,0b,3abu

�� 2ab
++

0ε

��

2
Maxt2ba,0εu

kk

Maxt0a,0bu

��

The above automaton has 1 as only initial and only final state: it reads a word of a’s and b’s
looking out for the subword ab. The “greedy” strategy would be to take the edge 3ab when an
occurrence of ab is encountered. However, this does not maximise the gain. If the current ab is
matched by a ba later without any ab’s in between, then it pays out to move to state 2, thus
collecting gains of 4 instead of only 3 (since a ba in state 1 is useless).

We have

M “

ˆ

Maxt0a, 0b, 3abu 2ab
Maxt2ba, 0εu Maxt0a, 0bu

˙

and ∥A∥ “ pM˚q1,1 “ MaxtM1,1,M1,2 ‘ M˚
2,2 ‘ M2,1u where we write ‘ for the addition in

RxxA˚yy which is defined via the Cauchy formula. Concerning M˚
2,2 first note that, by Corol-

lary 1.1,

pMaxt0a, 0bu˚, wq “ Max
n“0,...,|w|

Max
pu1,...,unqPpA˚qn

n
ÿ

i“1

pMaxt0a, 0bu, uiq “ 0

In RxxA˚yy, the sum of three formal series is defined via the Cauchy formula as

pr1 ‘ r2 ‘ r3, wq “ Max
u1,u2,u3PA˚

u1u2u3“w

tpr1, u1q ` pr2, u2q ` pr3, u3qu.

Thus we obtain

pr, wq :“ pM1,2 ‘M˚
2,2 ‘M2,1, wq

“ Max
u1,u2,u3PA˚

u1u2u3“w

tp2ab, u1q ` 0 ` pmaxt2ba, 0εu, u3qu

“ Max
u1,u2,u3PA˚

u1u2u3“w

tp2ab, u1q ` p2ba, u3q, p2ab, u1q ` p0ε, u3qu

“

$

’

&

’

%

4 if w P abA˚ba

2 if w P abA˚zpabA˚baq

´8 otherwise

and

ps, wq :“ pMaxtM1,1,M1,2 ‘M˚
2,2 ‘M2,1u, wq

“ pMaxt0a, 0b, 3ab, ru, wq

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

4 if w P abA˚ba

3 if w “ ab

2 if w P abA˚zppabA˚baq Y abq “ abA`zabA˚ba

0 if w “ a or w “ b

´8 otherwise
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By applying Proposition 1.6 in RxxA˚yy we obtain

ps˚, wq “ Max
u1,...,unPA˚

u1¨¨¨un“w

tps, u1q ` ¨ ¨ ¨ ` ps, unqu

Now, whenever ui P abA`zabA˚ba then the decomposition ui “ abui`1 ¨ ¨ ¨ui`k leads to a
higher coefficient, so the line with coefficient 2 is never used in the computation of a maximum.
Similarily, if ui “ abvba with v P A˚ s.t. v contains an a, then nabpuiq ě 2 (where nabpuq is the
number of occurrences of ab in u). So the line with coefficient 4 is only used on ui P abb˚ba in
the computation of a maximum. Moreover, note that if ui P bA˚ in a maximal decomposition,
then ui “ b for otherwise ´8 must appear as summand. Furthermore, the line with coefficient 4
is never used on a ui P abb˚ba if ui`1 “ b in a maximal decomposition, for then nabpuiui`1q ě 2
and using the line with coefficient 3 would give a better decomposition.

Therefore, the decomposition of w which maximises ps˚, wq is w “ u0v1u1 ¨ ¨ ¨ vnun where
v1, . . . , vn P abb˚ba, u1, . . . , un P aA˚ Y tεu, u0 P A˚ and n is maximal. Then we obtain

ps˚, wq “ 4n` 3nabpu0 ¨ ¨ ¨unq

where n is obtained from that decomposition of w.

Note that the notion of finite automaton as defined above does not make any assumption on
the continuous semiring R, in particular it is not required that R “ SxxA˚yy for some continuous
semiring S and some alphabet A. The generality of this notion of automaton (just as that of
the notion of algebraic system) thus goes beyond what is required for formal language theory,
as the following example shows.

Example 1.28. Let GpV,Eq be a graph. Let R “ xN8,min,8,`, 0y and let w : E Ñ R. Then
M “ pV,E,wq is an R-weighted graph and the weight of a path is the sum of the weights of its
edges. Let i, j P V , let S P t8, 0u1ˆV be 8 everywhere except at position i and P P t8, 0uV ˆ1 be
8 everywhere except at position j. Then A “ pV,M, S, P q is an t0, 1,8u-automaton in R (but
not in RxxA˚yy (!)) and we have ∥A∥ “ SpM˚qP “ pM˚qi,j “ mint

řn
i“1wpeiq | pe1, . . . , enq P

P pi, jqu, i.e., the automaton computes the length of the shortest path from i to j.

1.6.2 Kleene’s theorem

In the context of the elementary theory of formal languages, Kleene’s theorem states that regular
expressions define the same class of languages as finite automata: the regular languages. In this
section we prove an analogous result in our more general context.

Definition 1.22. Let R be a continuous semiring and R1 Ď R. Then the automatic closure of
R1 is defined as AutpR1q “ tx P R | there is R1-automaton A s.t. x “ ∥A∥u.

Definition 1.23. Let R be a continuous semiring and R1 Ď R. The rational closure RatpR1q

of R1 is the smallest set which contains 0, 1, all x P R1 and is closed under `, ¨ and ˚.

Expressions built from R1, 0, 1 as well as `, ¨, ˚ are also called R1-rational expressions. For
R “ PpA˚q and R1 “ ttwu | w P A˚u, the R1-rational-expressions are just the regular expressions
well-known from theoretical computer science. Kleene’s theorem will then be formulated as
follows: for all t0, 1u Ď R1 Ď R we have RatpR1q “ AutpR1q. The proof of this result will occupy
the remainder of this section. Before we start with the actual proof, it will be helpful to define
a notion of normal form for automata.

Definition 1.24. An R1-automaton A “ pI,M, S, P q is called normalised if
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1. There is an i0 P I s.t. Si0 “ 1 and Si “ 0 for i0 ‰ i.

2. There is an if P I, if ‰ i0 s.t. Pif “ 1 and Pi “ 0 for i ‰ if .

3. Mi,i0 “ Mif ,i “ 0 for all i P I.

Lemma 1.9. For every R1-automaton A there is a normalised R1 Y t0, 1u-automaton A1 s.t.
∥A1∥ “ ∥A∥.

Proof. Let A “ pI,M, S, P q be an R1-automaton, let i0, if R I be new states and define A1 “

pti0, ifu Y I,M 1, S1, P 1q where

S1 “
`

1 0 0
˘

, M 1 “

¨

˝

0 0 S
0 0 0
0 P M

˛

‚, P 1 “

¨

˝

0
1
0

˛

‚.

We have

∥A1∥ “ S1M 1˚P 1 “ pM 1˚qi0,if .

Using the partition I 1 “ I1 Z I2 “ ti0, ifu Y I for Theorem 1.5 we obtain

pM 1˚q1,1 “ pM1,1 `M1,2M
˚
2,2M2,1q˚ “

`

ˆ

0 0
0 0

˙

`

ˆ

S
0

˙

M˚
`

0 P
˘ ˘˚

“

ˆ

0 SM˚P
0 0

˙˚

“

ˆ

1 0
0 1

˙

`

ˆ

0 SM˚P
0 0

˙

`
ÿ

iě2

ˆ

0 SM˚P
0 0

˙i

“

ˆ

1 SM˚P
0 1

˙

.

Therefore pM 1˚qi0,if “ SM˚P and we obtain ∥A1∥ “ SM˚P “ ∥A∥.

Lemma 1.10. Let R be a continuous semiring, t0, 1u Ď R1 Ď R. Then RatpR1q Ď AutpR1q.

Proof. For any x P R1 we have ∥pt1u,
`

0
˘

,
`

1
˘

,
`

x
˘

q∥ “
`

1
˘ `

0
˘˚ `

x
˘

“ x.

For closure under addition, let A1 “ pI1,M1, S1, P1q and A2 “ pI2,M2, S2, P2q be R1-automata
with I1 Y I2 “ H and define A “ pI1 Y I2,M, S, P q by

M “

ˆ

M1 0
0 M2

˙

, S “
`

S1 S2
˘

, P “

ˆ

P1

P2

˙

.

Then, clearly A is an R1-automaton and we have ∥A∥ “ SM˚P “ S1M
˚
1 P1 ` S2M

˚
2 P2 “

∥A1∥ ` ∥A2∥.
For closure under product, let A1 and A2 be as above. By Lemma 1.9 we can assume w.l.o.g.
that A1 and A2 are normalised. Define A “ pI1 Y I2,M, S, P q by

M “

ˆ

M1 P1S2
0 M2

˙

, S “
`

S1 0
˘

, P “

ˆ

0
P2

˙

.

Since A1 and A2 are normalised, P1S2 P t0, 1uI1ˆI2 Ď R1I1ˆI2 and hence A is an R1-automaton.
Using the partition I1 Z I2 for Theorem 1.5 we obtain

pM˚q1,2 “ pM1,1 `M1,2M
˚
2,2M2,1q˚M1,2M

˚
2,2 “ pM1 ` P1S1M

˚
2 0q˚P1S1M

˚
2 “ M˚

1 P1S2M
˚
2

and hence
∥A∥ “ SM˚P “ S1pM˚q1,2P2 “ S1M

˚
1 P1S2M

˚
2 P2 “ ∥A1∥∥A2∥.
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For closure under star, let A “ pI,M, S, P q be an R1 automaton. Let q0 R I be a new state and
define A1 “ ptq0u Y I,M 1, S1, P 1q by

M 1 “

ˆ

0 S
P M

˙

, S1 “
`

1 0
˘

, P 1 “

ˆ

1
0

˙

.

Using the partition tq0u Z I for Theorem 1.5 we obtain

∥A1∥ “ S1M 1˚P 1 “ pM 1˚q1,1 “ p0 ` SM˚P q˚ “ ∥A∥˚

Lemma 1.11. Let R be a continuous semiring, R1 Ď R. Then AutpR1q Ď RatpR1q.

Proof. We first show that M P R1IˆI implies M˚ P RatpR1qIˆI by induction on |I|. If |I| “ 1,
then clearly

`

m
˘˚

“
`

m˚
˘

P RatpR1qIˆI . For the induction step, consider any partition I “

I1 Z I2 into two non-empty parts. Then, by Theorem 1.5, pM˚q1,1 “ pM1,1 ` M1,2M
˚
2,2M2,1q˚.

By induction hypothesis M˚
2,2 P RatpR1qI2ˆI2 , hence M1,1 ` M1,2M

˚
2,2M2,1 P RatpR1qI1ˆI1 and

therefore, again by induction hypothesis, pM˚q1,1 P RatpRatpR1qqI1ˆI1 “ RatpR1qI1ˆI1 . For the
pM˚qi,j with pi, jq ‰ p1, 1q proceed analogously. We obtain M˚ P RatpR1qIˆI .

Let A “ pI,M, S, P q be an R1-automaton, then ∥A∥ “ SM˚P “
ř

i,jPI SipM
˚qi,jPj and since

pM˚qi,j P RatpR1q, also ∥A∥ P RatpR1q.

We have thus proved Kleene’s theorem:

Theorem 1.6. Let R be a continuous semiring and t0, 1u Ď R1 Ď R. Then AutpR1q “ RatpR1q.

This result shows that two structurally quite different specification formalisms, rational ex-
pressions on the one hand and automata on the other hand, define the same closure operator.
A situation like this is evidence that we are dealing with an important closure operator. It
is a strong generalisation of the usual Kleene theorem from the elementary theory of formal
languages:

Corollary 1.2. Let R “ PpA˚q and R1 “ tH, tεuu Y ttxu | x P Au. Then AutpR1q “ RatpR1q.
An L P AutpR1q is called regular language.

1.6.3 Linear systems

So far we have seen that regular expressions and automata are equivalent in the sense that they
define the same closure operator. As in the elementary theory of formal languages, a certain
kind of grammars (or in our setting: algebraic systems) is equivalent to these as well.

Definition 1.25. Let R be a continuous semiring, R1 Ď R and Y “ ty1, . . . , ynu. An R1-
algebraic system Y “ ppY q is called linear if there are mi,j , qi P R1 s.t.

pipy1, . . . , ynq “ mi,1y1 ` . . .`mi,nyn ` qi, for 1 ď i ď n.

Thus linear systems generalise right-linear grammars (of which we know that they generate
exactly the regular languages). An R1-linear system is often written as Y “ MY ` Q where

M “ pmi,jq1ďi,jďn and Q “

¨

˚

˝

q1
...
qn

˛

‹

‚

.
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Definition 1.26. LetR be a continuous semiring andR1 Ď R. Then the linear closure LinpR1q of
R1 is defined as LinpR1q “ tx P R | x is component of the least solution of an R1-linear systemu.

Proposition 1.11. Let R be a continuous semiring, R1 Ď R and let Y “ MY ` Q be an
R1-linear system. Then M˚Q is its least solution.

Proof. Write ppY q “ MY ` Q. We show pnp0q “
ř

0ďiănM
iQ by induction on n. For n “ 0,

p0p0q “ 0. For the induction step we have pn`1p0q “ pp
ř

0ďiănM
iQq “ M

ř

0ďiănM
iQ`Q “

ř

0ďiăn`1M
iQ.

Now, the least solution of Y “ ppY q is

suptpnp0q | n P Nu “ supt
ÿ

0ďiăn

M iQ | n P Nu “ supt
ÿ

0ďiăn

M i | n P NuQ “ M˚Q.

Theorem 1.7. Let R be a continuous semiring and t0, 1u Ď R1 Ď R. Then LinpR1q “ AutpR1q.

Proof. For the left-to-right direction let x P LinpR1q. Then x is i-th component of the least
solution of an R1-linear system Y “ MY ` Q where Y “ ty1, . . . , ynu. From Proposition 1.11
we know that this solution is M˚Q. Now let S P t0, 1u1ˆn be 0 everywhere except for the i-th
component. Then x “ SM˚Q. This is the behaviour of the R1-automaton pt1, . . . , nu, S,M,Qq.

For the right-to-left direction let x P AutpR1q. By Lemma 1.9 we can assume that x “ ∥A∥
for a normalised R1-automaton A “ pI, S,M,P q, i.e. there is some i s.t. all components of S
are 0 except the i-th which is 1. Therefore x “ pM˚P qi which, by Proposition 1.11, is the i-th
component of the least solution of the R1-linear system Y “ MY ` P , hence x P LinpR1q.
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Chapter 2

Algebraic automata theory

In this chapter we will focus on regular languages and deterministic finite automata. It will
turn out that there is an intimate relationship between finite automata and finite monoids.
This relationship goes so far that one can establish a one-to-one correspondence between certain
classes, so-called varieties, of finite monoids and classes of regular languages. We will see one
of the most important such correspondences, Schützenberger’s characterisation of the star-free
languages as the languages recognisable by aperiodic monoids.

In order to arrive at this characterisation and to motivate the notions underlying this corre-
spondence, it pays out to first study the Myhill-Nerode theorem. This result is an algebraic
characterisation of the class of regular languages and is based on the construction of the minimal
deterministic finite automaton of a regular language.

2.1 The Myhill-Nerode theorem

2.1.1 The right-congruence of a DFA

LetM be a monoid and Q be a set. A right monoid action ofM on Q is a function ¨ : QˆM Ñ Q
s.t.

q ¨ e “ q, and

q ¨ pm1m2q “ pq ¨m1q ¨m2.

A right monoid action is best thought of as each m P M inducing a function from Q to Q
with e inducing the identity function and composition in the monoid M being composition of
functions. Let A be an alphabet and M “ A˚ the freely generated monoid. Then a monoid
action ¨ of M is uniquely determined by the action of the generators x P A. In this chapter, we
will notate a deterministic finite automaton (DFA) as a tuple D “ xQ,A, ¨, q0, F y where Q, A,
q0 and F have the usual meaning and ¨ is a right monoid action of the freely generated monoid
A˚ on Q. The action of the generators A on Q is represented as a diagram as usual for DFAs.
While – at this point – this is only a change in notation, we will later consider monoids different
from A˚ and their action on Q.

An important property of finite state automata which recognise infinite languages is that there
are differents words which are indistinguishable to the automaton since they lead to the same
state. This is, for example, used in the proof of the pumping lemma where we observe that
a word w with |w| ą |Q| induces a path which must contain one state twice, say q0 ¨ u1 and
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q0 ¨ u1u2. This loop can then be “pumped” because the words u1 and u1u2, since they are
leading to the same state, are indistinguishable to the automaton. Moreover, in a deterministic
finite automaton, every word induces a unique path of states. We can hence make this notion
of indistinguishability precise as follows:

Definition 2.1. Let D “ xQ,A, ¨, q0, F y be a DFA. Define the relation „D on A˚ by w1 „D w2

iff q0 ¨ w1 “ q0 ¨ w2.

The relation „D is clearly an equivalence relation. Moreover, „D is right-congruent, i.e., when-
ever w1 „D w2, then for all v P A˚: w1v „D w2v because q0 ¨w1 “ q0 ¨w2 implies q0 ¨w1v “ q0 ¨w2v
for all v P A˚. Therefore „D is also called the right-congruence of D. Note that „D is not a
congruence relation, see the following example:

Example 2.1. Let D be the following DFA:

// 1
a,b // 2

b

ff

a

��

Then a „D b and therefore aw „D bw for all w P A˚. However, „D is not left-congruent, in
particular we have aa ȷD ab.

Moreover, since „D is right congruent, w1 „D w2 implies w1v P LpDq iff w2v P LpDq for all
v P A˚. However, the converse is not true. Consider the following example.

Example 2.2. Let D be the following DFA:

2
a,b // 4

a,b

��

// 1

b ((

a 66

3

a,b

<<

Here av P LpDq iff v P ta, bu` iff bv P LpDq but a ȷD b because 1 ¨ a “ 2 and 1 ¨ b “ 3.

Definition 2.2. Let pX,„q be an equivalence relation. The index of „ is the number of
equivalence classes of „.

Note that it is an immediate consequence of the definition of „D that the index of „D is at
most |Q|. We also write rqs„D or just rqs for the class induced by a state, i.e., rqs “ tw P A˚ |

q0 ¨ w “ qu. Assume that D is a DFA where every state is accessible, i.e., for all q P Q there is
a wq P A˚ s.t. q0 ¨ wq “ q. Then, for q1, q2 P Q with q1 ‰ q2 we have wq1 ȷD wq2 . Therefore, in
a DFA where all states are accessible, the index of „D is exactly |Q|.

We now proceed to study what the relation „D tells us about the automaton D. To that aim,
the notion of isomorphism of automata will turn out to be crucial.

Definition 2.3. Let D “ xQ,A, ¨, q0, F y and D1 “ xQ1, A, ¨, q1
0, F

1y be DFAs. Then D and D1

are called isomorphic, written as D » D1, if there is a bijection φ : Q Ñ Q1 s.t.

1. φpq0q “ q1
0,

2. φpF q “ F 1, and
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3. for all q P Q and x P A: φpqq ¨ x “ φpq ¨ xq.

It is not difficult to show that two isomorphic automata accept the same language1. The
implication in the other direction is of course not true: there are non-isomorphic automata
which accept the same language. However:

Lemma 2.1. Let D “ xQ,A, ¨, q0, F y and D1 “ xQ1, A, ¨, q1
0, F

1y be DFAs where every state is
accessible. If LpDq “ LpD1q and „D“„D1, then D » D1.

Proof. Let us first observe that, for all v, w P A˚:

q0 ¨ v “ q0 ¨ w iff v „D w iff v „D1 w iff q1
0 ¨ v “ q1

0 ¨ w. (*)

Let q P Q. Since q is accessible, every q P Q can be written as q0 ¨ w “ q for some w P A˚. We
define φ : Q Ñ Q1, q0 ¨ w ÞÑ q1

0 ¨ w. Reading (*) from left to right shows that φ is well-defined.
Reading (*) from right to left shows that φ is injective. The function φ is also surjective: let
q1 P Q1. Then, since q1 is accessible, there is w s.t. q1

0 ¨ w “ q1. Then φpq0 ¨ wq “ q1
0 ¨ w “ q1.

For 1. we have φpq0q “ φpq0 ¨ εq “ q1
0 ¨ ε “ q1

0. For 3., let w P A˚ s.t. q0 ¨ w “ q. Then we have

φpqq ¨ x “ φpq0 ¨ wq ¨ x “ pq1
0 ¨ wq ¨ x “ q1

0 ¨ wx, and

φpq ¨ xq “ φppq0 ¨ wq ¨ xq “ φpq0 ¨ wxq “ q1
0 ¨ wx.

For 2. note that, for every q P Q, we have

rφpqqs„D1 “ tw P A˚ | q1
0 ¨ w “ φpqqu

“ tw P A˚ | q1
0 ¨ w “ φpq0 ¨ vqu

where v P A˚ s.t. q0 ¨ v “ q and thus

rφpqqs„D1 “ tw P A˚ | q1
0 ¨ w “ q1

0 ¨ vu

“ tw P A˚ | w „D1 vu

“ tw P A˚ | w „D vu

“ tw P A˚ | q0 ¨ w “ q0 ¨ v “ qu

“ rqs„D .

Therefore
LpDq “

ď

qPF

rqs„D “
ď

qPF

rφpqqs„D1 “
ď

q1PφpF q

rq1s„D1

and since LpD1q “
Ť

q1PF 1rq1s„D1 we have F 1 “ φpF q.

2.1.2 The right-congruence of a language

We have seen that, for a DFA D which accepts the language L, the relation „D satisfies:
whenever w1 „D w2, then for all v P A˚: w1v P L iff w2v P L. Instead of starting with the
definition of „D based on D and deriving this property, we can start with the language L and
define the coarsest equivalence relation which satisfies this property.

Definition 2.4. Let L Ď A˚. Define the relation „L on A˚ by w1 „L w2 iff for all v P A˚:
w1v P L iff w2v P L.

1Do it as exercise!
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The relation „L contains important information about L. In particular it allows a characteri-
sation of the regular languages, the Myhill-Nerode theorem: L Ď A˚ is regular iff indexp„Lq is
finite. This theorem is the main result of Section 2.1. A first important property of „L is that
it is also a right-congruence, i.e., if w1 „L w2 and u P A˚, then w1u „L w2u, we hence also
speak of the right-congruence of L. Another important property is:

Lemma 2.2. Let D be a DFA, then w1 „D w2 implies w1 „LpDq w2.

Proof. Let D “ xQ,A, ¨, q0, F y. If w1 „D w2, then q0 ¨w1 “ q0 ¨w2 and therefore, for all v P A˚:
q0 ¨w1v P F iff q0 ¨w2v P F , i.e. for all v P A˚: w1v P LpDq iff w2v P LpDq, i.e., w1 „LpDq w2.

Definition 2.5. Let pX,„1q and pX,„2q be two equivalence relations. We say that „2 is a
refinement of „1 if @x, y P X : x „2 y ñ x „1 y.

If „2 is a refinement of „1 we also say that „2 is finer than „1 and that „1 is coarser than „2.
If „2 is a refinement of „1, then each „1-equivalence class is a disjoint union of „2-equivalence
classes. Consequently, the index of „1 is at most that of „2. So the above Lemma shows that
„D is finer than „LpDq for all DFAs D.

Example 2.3. Continuing Example 2.2, note that, since all states are accessible, the equivalence
classes of „D are r1s, r2s, r3s and r4s. On the other hand, the language accepted by D is
L “ tw P A˚ | |w| ě 2u. Therefore the equivalence classes of „L are

tw P A˚ | |w| “ 0u “ tεu

tw P A˚ | |w| “ 1u “ ta, bu

tw P A˚ | |w| ě 2u “ L

And we have r1s “ tεu, r2s Y r3s “ ta, bu and r4s “ L.

A priori, it is not clear how to compute the equivalence classes of „L in general. However,
„L is closely related to the left-quotients of L which can be computed systematically in a
straightforward way.

Definition 2.6. Let L Ď A˚ and v P A˚. We define the left-quotient v´1L “ tw P A˚ | vw P Lu.

The left-quotient v´1L can be thought of as the set of all w P A˚ s.t., if we have already read
v, reading w will lead us into L. Note that w P v´1L iff vw P L, so, in particular, v P L iff
ε P v´1L.

Lemma 2.3. Let L Ď A˚ and v1, v2 P A˚. Then v´1
1 L “ v´1

2 L iff v1 „L v2.

Proof. v´1
1 L “ v´1

2 L iff tw P A˚ | v1w P Lu “ tw P A˚ | v2w P Lu iff for all w P A˚:
v1w P L ô v2w P L iff v1 „L v2.

In order to compute with left-quotients, the following observations are helpful.

Lemma 2.4. Let L,L1, L2 Ď A˚ and u, v P A˚, then

1. v´1pL1 Y L2q “ v´1L1 Y v´1L2, and

2. puvq´1L “ pv´1pu´1Lqq.
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Proof. For 1. we have

v´1pL1 Y L2q “ tw P A˚ | vw P L1 Y L2u

“ tw P A˚ | vw P L1u Y tw P A˚ | vw P L2u

“ v´1L1 Y v´1L2.

For 2., note first that u´1L “ tw0 P A˚ | uw0 P Lu. Then we have

v´1pu´1Lq “ tw P A˚ | vw P u´1Lu

“ tw P A˚ | vw “ w0, uw0 P Lu

“ tw P A˚ | uvw P Lu

“ puvq´1L.

Example 2.4. Let A “ ta, bu and L “ A˚ab. We compute the left-quotients of L:

ε´1L “ L

a´1L “ bY L

b´1L “ L

a´1pbY Lq “ a´1bY a´1L “ a´1L “ bY L

b´1pbY Lq “ b´1bY b´1L “ εY L

a´1pεY Lq “ a´1εY a´1L “ a´1L “ bY L

b´1pεY Lq “ b´1εY b´1L “ b´1L “ L

Note how every line except the first of the above calculation contributes an edge to the below
diagram. A line which contains a left-quotient that is new w.r.t. the lines so far creates a new
vertex.

L

b
��

a // bYL

a
��

b // εYL
aff

b

aa

The above list is saturated in the sense that it contains ε´1L “ L and for every left-quotient
v´1L it contains, it also contains a´1pv´1Lq and b´1pv´1Lq. A set which is saturated in this
sense contains all left-quotients, since every w P A˚ can be written as w “ x1 ¨ ¨ ¨xn with xi P A
and thus w´1L “ x´1

n p¨ ¨ ¨ ¨ ¨ ¨x´1
2 px´1

1 Lqqq ¨ ¨ ¨ q occurs in the set.

Note that L from the above example has a finite number of left-quotients, or, equivalently: a
finite number of „L-equivalence classes.

2.1.3 The minimal DFA of a regular language

Definition 2.7. Let L Ď A˚ s.t. the index of „L is finite. Define the canonical automaton of
L as DpLq “ xQ,A, ¨, q0, F y where Q “ tw´1L | w P A˚u, q0 “ ε´1L “ L, F “ tw´1L | w P Lu

and w´1L ¨ x “ pwxq´1L.

Since „L is of finite index there are, by Lemma 2.3, only finitely many left-quotients and so
Q is finite. Clearly q0 P Q and F Ď Q. Also note that F “ tw´1L | w P A˚, ε P w´1Lu. If
w´1
1 L “ w´1

2 L, then pw1xq´1L “ x´1pw´1
1 Lq “ x´1pw´1

2 Lq “ pw2xq´1L, so ¨ is well-defined.
Hence DpLq is indeed a DFA.
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Example 2.5. Let A “ ta, bu and L “ A˚ab. Continuing Example 2.4 and following Defini-
tion 2.7, DpLq is:

// L

b
��

a // bYL

a
��

b // εYL
aff

b

aa

The initial state is ε´1L “ L, the set of final states is fixed to tεYLu because εYL is the only
left-quotient that contains ε.

Lemma 2.5. Let L Ď A˚ s.t. „L is of finite index and let DpLq “ xQ,A, ¨, q0, F y be the
canonical automaton. Then

1. v´1L ¨ w “ pvwq´1L,

2. LpDpLqq “ L, and

3. „DpLq “ „L.

Proof. Let us first prove v´1L ¨w “ pvwq´1L by induction on |w|. If w “ ε, we have v´1L ¨ ε “

v´1L. For the induction step, let w “ xw1, then we have

v´1L ¨ xw1 “ pv´1L ¨ xq ¨ w1 “ pvxq´1L ¨ w1 “IH pvxw1q´1L.

For 2. we have

LpDpLqq “ tw P A˚ | L ¨ w P F u “ tw P A˚ | ε P L ¨ wu “1. tw P A˚ | ε P w´1Lu

and since ε P w´1L iff w P L we obtain LpDpLqq “ L.

For 3. note that w1 „DpLq w2 iff L ¨ w1 “ L ¨ w2 iff (by 1.) w´1
1 L “ w´1

2 L iff (by Lemma 2.3)
w1 „L w2.

We are now ready to prove the Myhill-Nerode theorem.

Theorem 2.1. Let L Ď A˚. Then L is regular iff the index of „L is finite.

Proof. For the left-to-right direction, let D be a DFA that accepts L. Then „D is a refinement
of „L and therefore the index of „L is at most the index of „D. But the index of „D is at
most the number of states in D which is finite.

The other direction follows directly from Lemma 2.5/2.

The Myhill-Nerode theorem is an algebraic characterisation of the regular languages. It does
not refer to any notion of automaton, grammar or a similar formalism.

Example 2.6. Let L “ tanbn | n P Nu. We can show that L is not regular as follows: let
p, q P N s.t. p ‰ q. Then ap ȷL a

q because apbp P L but aqbp R L. So there are infinitely many
„L-classes, hence by the Myhill-Nerode theorem, L is not regular.

The size of an automaton is the number of its states. Consequently an automaton is called
minimal if it has a minimal number of states

Theorem 2.2. Let L be a regular language. Then DpLq is the unique minimal DFA for L up
to isomorphism.
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Proof. We first show that DpLq is a minimal automaton. To that aim, let D be any DFA that
accepts L. Then „D is a refinement of „L, hence the index of „D is at least the index of „L,
and therefore the number of states of D is at least the index of „L“„DpLq which, since every
state in DpLq is reachable, is the number of states in DpLq.

Now let D be any minimal DFA and assume w.l.o.g. that all states in D are accessible. Then
the number of states in D is equal to the number of states in DpLq. Therefore the index of
„D is equal to the index of „DpLq. But „D is a refinement of „L“„DpLq hence „D“„DpLq.
Therefore by Lemma 2.1 we see that D » DpLq.

2.2 Transition monoids

2.2.1 Quotient monoids

Definition 2.8. Let M be a monoid. An equivalence relation « on M is called congruence if
x « y implies that, for all z1, z2 P M : z1xz2 « z1yz2.

Lemma 2.6. Let M be a monoid and « a congruence on M . Then M{« with the natural
operations forms a monoid.

Proof. The unit element of M{« is res and the operation is defined as rxsrys “ rxys. To see that
the operation is well-defined let x1 « x2 and y1 « y2. Then, for all i, j, k, l P t1, 2u, we have
xiyj « xkyl because xi « xk implies xiyj « xkyj and yj « yl implies xkyj « xkyl and therefore
xiyj « xkyl. Then associativity and res being a unit element follow directly from the respective
properties of M .

Definition 2.9. Let φ : M Ñ N be a monoid homomorphism. Define the relation «φ on M
by m1 «φ m2 ô φpm1q “ φpm2q.

Clearly, «φ is an equivalence relation. Moreover, it is also a congruence: letm1,m2,m3,m4 P M
and m1 «φ m2. Then

φpm3m1m4q “ φpm3qφpm1qφpm4q “ φpm3qφpm2qφpm4q “ φpm3m2m4q

and therefore m3m1m4 «φ m3m2m4.

Lemma 2.7. Let M,N be monoids, φ :M Ñ N a homomorphism. Then M{«φ » φpMq.

Proof. Define sφ : M{«φ Ñ φpMq, rms ÞÑ φpmq. First observe thatm1 «φ m2 iff φpm1q “ φpm2q.
Reading this from left to right shows that sφ is well-defined. Reading it from right to left shows
that sφ is injective. Moreover, sφ is surjective since @n P φpMq Dm P M s.t. n “ φpmq. It remains
to show that sφ is a homomorphism. To that aim, observe that

sφpresq “ φpeq “ e, and,

sφprm1srm2sq “ sφprm1m2sq “ φpm1m2q “ φpm1qφpm2q “ sφprm1sqsφprm2sq.

It will occasionally be convenient to present a monoid in terms of generators and relations.
Remember that, for an alphabet A, we write A˚ for the monoid freely generated by A, i.e. for
the set of all words of finite length consisting of letters of A.
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Definition 2.10. Let u1, v1, . . . , un, vn P A˚. Then we say that the coarsest2 congruence «

which satisfies u1 « v1, . . . , un « vn is the congruence induced by the equations u1 “ v1, . . . , un “

vn. In this situation, the monoid A˚
{« is called the monoid given by the generators A and the

relations u1 “ v1, . . . , un “ vn. A
˚
{« is written as xA | u1 “ v1, . . . , un “ vny.

Example 2.7. xa, b | a2 “ a, b2 “ b, ab “ bay consists of four elements: rεs, ras, rbs, rabs which
represent, respectively, the empty word, the words consisting of a only, the words consisting of
b only, and the words containing both a and b.

It will often be useful to consider quotients up to isomorphism. To that aim, we define the
following abstract notion of quotient.

Proposition 2.1. Let M,N be monoids. Then the following are equivalent:

1. there is a surjective homomorphism φ :M Ñ N

2. there is a congruence « on M s.t. N » M{«.

In this case we say that “N is a quotient of M”.

Proof. For 1. ñ 2. let φ :M Ñ N be surjective. Then «φ is a congruence and M{«φ is a monoid
with M{«φ » φpMq. Since φ is surjective, φpMq “ N .

For 2. ñ 1. let « be a congruence on M and φ : M{« Ñ N an isomorphism. Define ψ : M Ñ

N,m ÞÑ φprmsq. Since ψ is the composition of the two surjective homomorphisms m ÞÑ rms

and φ it is a surjective homomorphism too.

2.2.2 The transition monoid of a DFA

For a finite set Q we will write QQ for the set of all functions from Q to Q. Given a DFA
D “ xQ,A, ¨, q0, F y, a word w P A˚ induces the transition

τD,w : Q Ñ Q, q ÞÑ q ¨ w.

Note that τD,ε “ id for every DFA D. If D is clear from the context we will often just write τw.

Definition 2.11. Let D “ xQ,A, ¨, q0, F y be a DFA, then the transition monoid MpDq of D is
defined as

MpDq “ tτD,w P QQ | w P A˚u

with unit τD,ε P MpDq and the monoid operation defined by τD,w1 ˝ τD,w2 “ τD,w1w2 .

Note that the operation in this monoid is not the usual composition of functions pf ˝ gqpxq “

fpgpxqq but instead the reversed composition pf ˝ gqpxq “ gpfpxqq. This notation is more
convenient as it corresponds directly to the concatenation of words. Note that MpDq is closed
under composition (of functions) since A˚ is closed under composition (of words) and that
τD,ε “ id. Therefore MpDq is a submonoid of QQ. Since QQ is finite, so is MpDq. Also note
that τD : A˚ Ñ QQ, w ÞÑ τD,w is a monoid homomorphism. It allows to define the monoid
MpDq as the submonoid τDpA˚q of QQ.

2i.e. the one which only makes the necessary identifications
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Example 2.8. Let D be the following DFA:

// 1

b

��
a // 2

a //

b

ff 3

a,b

��

In order to compute the transition monoid MpDq we create the following table:

1 2 3

τε 1 2 3
τa 2 3 3
τb 1 1 3
τaa 3 3 3
τab 1 3 3
τba 2 2 3
τbb 1 1 3 τbb “ τb
τaaa 3 3 3 τaaa “ τaa
τaab 3 3 3 τaab “ τaa
τaba 2 3 3 τaba “ τa
τbaa 3 3 3 τbaa “ τaa
τbab 1 1 3 τbab “ τb

Now the table is saturated, because every w P A˚ not in the table contains a subword with an
equation on the right-hand side (and hence it induces the same function as a shorter word).
This concludes the computation and we have:

MpDq “ tid, τa, τb, τaa, τab, τbau

Definition 2.12. Let D “ xQ,A, ¨, q0, F y be a DFA and τD : A˚ Ñ QQ, w ÞÑ τD,w. Then the
congruence «τD is called congruence of D and written more succinctly as «D.

By definition we have w1 «D w2 iff w1 «τD w2 iff τD,w1 “ τD,w2 iff @q P Q : q ¨ w1 “ q ¨ w2.

Lemma 2.8. Let D be a DFA. Then MpDq » A˚
{«D.

Proof. Observe that τD : A˚ Ñ MpDq, w ÞÑ τD,w is a surjective homomorphism, so, by
Lemma 2.7, A˚

{«τD
» τDpA˚q “ MpDq.

So we see that there are two ways to think about the transition monoid of an automaton: either,
literally, as the monoid of transitions with composition of functions as operation, or as monoid
of «D-equivalence classes with composition of words.

Example 2.9. The monoidMpDq from Example 2.8 is isomorphic to the generator and relations
representation

xa, b | a “ aba, b “ b2 “ bab, a2 “ a2b “ a3 “ ba2y

which consists of the «D-equivalence classes

rεs, ras, rbs, ra2s, rabs, rbas.

Note that the congruence «D of D is a refinement of the right-congruence „D of D, i.e.,
w1 «D w2 implies w1 „D w2.
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Example 2.10. Letting D be the DFA from Example 2.8, we have w1 „D w2 iff 1 ¨ w1 “ 1 ¨ w2

iff w1 and w2 have the same entry in the first column. So the „D-equivalence classes are

rεs„D “ rεs«D Y rbs«D Y rabs«D

ras„D “ ras«D Y rbas«D

ra2s„D “ ra2s«D

For example, a „D ba, since, for membership in LpDq “ A˚a2A˚, the leading b is irrelevant.

2.2.3 Languages recognised by a monoid

Definition 2.13. Let L Ď A˚ and φ : A˚ Ñ M be a monoid homomorphism. We say that
L is recognised by φ if there is a P Ď M s.t. L “ φ´1pP q. In this case we also say that L is
recognised by M .

Note that if M1 is a monoid that recognises L and M2 is isomorphic to M1, then also M2

recognises L. Moreover, if φ : A˚ Ñ M recognises L Ď A˚, then L can also be recognised by
the surjective homomorphism φ : A˚ Ñ φpA˚q in the submonoid φpA˚q of M .

Example 2.11. Let A “ ta, bu. Consider the monoid pZ{2Z,`, 0q and the homomorphism φ :
A˚ Ñ Z{2Z defined by φpaq “ 1 and φpbq “ 0. Then φ´1pt0uq is the set of words that contain
an even number of a’s.

Lemma 2.9. Let L Ď A˚ and φ : A˚ Ñ M be a homomorphism. The following are equivalent:

1. L is recognised by φ.

2. @w P A˚: w P L ô φpwq P φpLq.

3. φ´1pφpLqq “ L.

Proof. p1q ñ p2q: Let P Ď M s.t. L “ φ´1pP q and let w P A˚. If w P L then φpwq P φpLq.
For the other direction let φpwq P φpLq. Then there is a v P L s.t. φpwq “ φpvq P P . Therefore
w P L.

p2q ñ p3q: φ´1pφpLqq “ tv P A˚ | φpvq P φpLqu “(2) tv P A˚ | v P Lu “ L.

p3q ñ p1q: let P “ φpLq Ď M . Then L “ φ´1pP q, so L is recognised by φ.

So, quite naturally, φpLq is a P Ď M s.t. L “ φ´1pP q. In case φ is surjective φpLq is3 the only
such P .

Lemma 2.10. Let D be a DFA recognising a language L Ď A˚. Then MpDq recognises L.

Proof. Let D “ xQ,A, ¨, q0, F y, τD : A˚ Ñ MpDq, w ÞÑ τD,w, and P “ tτ P MpDq | q0 ¨ τ P F u.
Then

w P L ô q0 ¨ τD,w P F ô τD,w P P ô τDpwq P P ô w P τ´1
D pP q

and hence L “ τ´1
D pP q.

Example 2.12. The monoid MpDq of Example 2.8 recognises the language A˚a2A˚, more pre-
cisely: the homomorphism τD : A˚ Ñ MpDq satisfies τ´1

D pτDpLqq “ L. We have τDpLq “ tτaau.

3Show this as exercise.
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Theorem 2.3. A language L Ď A˚ is regular iff L is recognised by a finite monoid.

Proof. The implication from left to right follows directly from Lemma 2.10. For the other
direction, let L Ď A˚, M be a finite monoid, φ : A˚ Ñ M a homomorphism and P Ď M s.t.
L “ φ´1pP q. We define the DFA D “ xM,A, ¨, e, P y by m ¨ x “ mφpxq for m P M,x P A. First
we claim that m ¨ w “ mφpwq for all w P A˚. To show that proceed by induction on |w|. For
w “ ε we have m ¨ ε “ m “ mφpεq. For the words on length 1 this follows directly from the
definition. For a word w with |w| ě 2, let w “ w1w2 s.t. both w1 and w2 have length at least
1. We then have

m ¨ w “ m ¨ w1w2 “ pm ¨ w1q ¨ w2 “ mφpw1q ¨ w2 “ mφpw1qφpw2q “ mφpw1w2q “ mφpwq.

Summing up, we have

w P LpDq ô e ¨ w P P ô φpwq P P ô w P φ´1pP q “ L

and therefore LpDq “ L.

2.2.4 The syntactic monoid

Definition 2.14. Let L Ď A˚. The syntactic congruence «L is the relation on A˚ defined as:
w1 «L w2 iff for all u, v P A˚: uw1v P L ô uw2v P L.

So we have now seen four equivalence relation: the two right-congruences „D and „L and the
two congruences «D and «L. Given a DFA D which recognises a language L we have the
following diagram

«D

„D

«L

„L

where an upward line indicates “is a refinement of”. We have already seen that «D is a
refinement of „D and that „D is a refinement of „L. Let now w1 «D w2 and u, v P A˚, then
uw1v P L iff q0 ¨ uw1v P F iff q0 ¨ uw2v P F iff uw2v P L. So «D is a refinement of «L. For the
remaining arrow, let w1 «L w2 and v P A˚, then w1v P L iff w2v P L and hence w1 „L w2.

Lemma 2.11. Let L Ď A˚ be regular. Then «L “ «DpLq.

Proof. Let DpLq “ xQ,A, ¨, q0, F y. We have

w1 «DpLq w2 iff @q P Q : q ¨ w1 “ q ¨ w2

iff @u P A˚ : u´1L ¨ w1 “ u´1L ¨ w2

iff (by Lemma 2.5/1) @u P A˚ : puw1q´1L “ puw2q´1L

iff (by Lemma 2.3) @u P A˚ : uw1 „L uw2

iff @u, v P A˚ : uw1v P L ô uw2v P L

iff w1 «L w2.
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In Lemma 2.5/3 we have already shown that „L “„DpLq. So, in terms of the above diagram
we see that, if D is the minimal automaton, then the D-line and the L-line coincide.

Definition 2.15. Let L Ď A˚. The syntactic monoid of L is defined as MpLq “ A˚
{«L.

Theorem 2.4. Let L Ď A˚ be a regular language. Then MpLq » MpDpLqq.

Proof. We have
MpLq “ A˚

{«L “Lem. 2.11 A˚
{«DpLq »Lem. 2.8 MpDpLqq

Corollary 2.1. Let L Ď A˚ be a regular language. Then MpLq recognises L.

This corollary follows from Theorem 2.4 and Lemma 2.10. A closer look at the proofs of these
two results reveals that τDpLq : A˚ Ñ MpDpLqq, w ÞÑ τDpLq,w recognises L. Concatenating
τDpLq with the isomorphism ι : MpDpLqq Ñ MpLq, τDpLq,w ÞÑ rws«L we obtain the syntactic
homomorphism η : A˚ Ñ MpLq, w ÞÑ rws«L which recognises L, i.e., L “ η´1pηpLqq.

2.2.5 The monoids recognising a fixed language

We will now see a generalisation of the minimality and uniqueness property of DpLq: the
monoids which recognise L are exactly the monoids which are divided by the syntactic monoid
MpLq of L. Let us first make precise what being a divisor means.

Definition 2.16. Let M,N be monoids. Then N is a divisor of M , written as N ď M , if N is
a quotient of a submonoid of M .

Theorem 2.5. Let L Ď A˚ and M be a monoid. Then M recognises L iff MpLq ď M .

Proof. For the left to right direction, let φ : A˚ Ñ M be a homomorphism that recognises L,
then so does the surjective homomorphism φ : A˚ Ñ φpA˚q. Note that φpA˚q is a submonoid of
M and that φpA˚q » A˚

{«φ. Let η : A˚ Ñ MpLq, w ÞÑ rws«L be the syntactic homomorphism.
Now we claim that «φ is a refinement of «L: let w1 «φ w2 and let u, v P A˚, then uw1v P L
iff φpuw1vq P φpLq iff φpuqφpw1qφpvq P φpLq iff φpuqφpw2qφpvq P φpLq iff φpuw2vq P φpLq iff
uw2v P L. We define π : A˚

{«φ Ñ A˚
{«L, rws«φ ÞÑ rws«L and observe that π is a surjective

homomorphism. Therefore MpLq is a quotient of φpA˚q which is a submonoid of M , hence
MpLq ď M .

A˚

φ

((
η

��

A˚
{«φ » φpA˚q Ď M

π
vv

MpLq “ A˚
{«L

For the right to left direction let η : A˚ Ñ MpLq, w ÞÑ rws«L . If MpLq ď M , then there is a
submonoid N of M and a surjective homomorphism β : N Ñ MpLq. Define φ0 : A Ñ N by
picking for each x P A an element φ0pxq P β´1pηpxqq. Then there is a unique homomorphism
φ : A˚ Ñ N which extends φ0. Thus β ˝ φ is a homomorphism. By definition of φ we have
pβ ˝ φqpxq “ ηpxq for all x P A and therefore β ˝ φ “ η. ¸So we have

L “Lem. 2.9 η´1pηpLqq “ φ´1pβ´1pηpLqqq
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and letting P “ β´1pηpLqq Ď N we see that N , and therefore also M , recognises L.

A˚

φ

""
η

��

N Ď M

β||
MpLq

2.3 Star height

In this section we study the star height of regular languages, i.e., the number of nested stars
necessary to specify a language by a regular expression. Of particular interest are the star-free
languages, i.e., those that can be specified by a star-free regular expression. We will prove
Schützenberger’s theorem which characterises the star-free languages as those whose syntactic
monoid is aperiodic.

2.3.1 Star-free languages

Definition 2.17. Let A be an alphabet. An A-regular expression is an expression formed from
x P A, ε and H with ¨,Y, ˚ and c.

A regular expression E defines a regular language, written as LpEq, in the straightforward way.
Note that the alphabet must be fixed for LpEcq “ A˚zLpEq to be well-defined. We also write
E1 X E2 for pEc

1 Y Ec
2qc and E1zE2 for E1 X Ec

2.

Example 2.13. Letting A “ ta, bu and E “ bpapaaq˚qcb, observe that LpEq is the set of words
in A˚ which start and end with a b between which is anything but an odd number of a’s.

Definition 2.18. Let E be an A-regular expression. The star height hpEq is defined as follows:

1. hpxq “ hpεq “ hpHq “ 0 for all x P A.

2. hpE1 Y E2q “ hpE1 ¨ E2q “ maxthpE1q, hpE2qu.

3. hpE˚
0 q “ hpE0q ` 1.

4. hpEc
0q “ hpE0q.

Definition 2.19. Let L Ď A˚. Then the star height of L is hpLq “ minthpEq | LpEq “ Lu.

A language L with hpLq “ 0 is also called star-free.

Example 2.14. Let A “ ta, bu. The A-regular expression pabq˚ has star height 1. However,
Lppabq˚q has star height 0 as the following equivalence shows:

pabq˚ “ ppaHc X HcbqzpHca2Hc Y Hcb2Hcqq Y ε

What is the star height of the language paaq˚ ? The above trick does not work directly. At
this point, the answer is not clear. In fact, at the end of this section we will be able to show
hpLppaaq˚qq “ 1.
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Usually, the alphabet is clear from the context. However, in this section we will work with
different alphabets and so we want to make it explicit in the notation for the set of star-free
languages.

Definition 2.20. Let A be an alphabet. Then SFpAq is the set of star-free languages in A.

Clearly, SFpAq is closed under concatenation and the Boolean operations.

Lemma 2.12. Let B Ď A. Then 1. B˚ P SFpAq and 2. SFpBq Ď SFpAq.

Proof. For 1. consider the A-regular expression EB “ Hczp
Ť

xPAzB HcxHcq and observe that
LpEBq “ B˚. For 2. let L P SFpBq and let E be a star-free B-regular expression s.t. LpEq “ L.
Then E is also an A-regular expression and LpE X EBq “ LpEq XB˚ “ L.

Schützenberger’s theorem provides an algebraic characterisation of the star-free languages as
those recognised by aperiodic monoids.

Definition 2.21. A monoid M is called aperiodic if for every x P M there is an n P N s.t.
xn “ xn`1.

Example 2.15. Let G be an aperiodic group, then multiplying xn “ xn`1 with x´n yields x “ 1.
Thus G “ t1u. So there are no non-trivial aperiodic groups.

Note that, if M is aperiodic and N is a submonoid of M then trivially also N is aperiodic.
Moreover, ifM is aperiodic andN is a quotient ofM , i.e. there exists a surjective homomorphism
φ : M Ñ N , then N is aperiodic. This can be shown as follows: let y P N , then there is an
x P M and an n P N with φpxq “ y and xn “ xn`1. Therefore we have

yn “ φpxqn “ φpxnq “ φpxn`1q “ φpxqn`1 “ yn`1.

As a consequence, if M is aperiodic and N ď M then also N is aperiodic.

Theorem (Schützenberger). Let L Ď A˚. Then the following are equivalent:

1. L is star-free.

2. MpLq is a finite aperiodic monoid.

3. L is recognised by a finite aperiodic monoid.

Example 2.16. Based on this theorem we can now show that the star height of Lppaaq˚q is 1.
That it is at most 1 is clear from the given regular expression. But it must also be at least
1 since the syntactic monoid of Lppaaq˚q is not aperiodic. To see that, one can carry out the
routine computation of MpDpLqq and check, for each of its finitely many elements, whether it
is aperiodic or not.

A shortcut is to observe that aa «L ε but a ffL ε and that hence, for all n ě 0 we have
ras2n “ rεs and ras2n`1 “ ras and therefore MpLq “ A˚

{«L is not aperiodic.

The rest of this section is devoted to the proof of Schützenberger’s theorem. The implication
from 2 to 3 follows directly from the fact that MpLq recognises L. For the implication from
3 to 2 assume that L is recognised by a finite aperiodic monoid M . Then, by Theorem 2.5,
MpLq ď M so, by the above observations, also MpLq is aperiodic. So the proof consists
essentially of bridging the gap between star-freeness and aperiodicity. The direction from star-
freeness to aperiodicity is rather straightforward and will be finished in the below Lemma 2.13.
The other direction will need considerably more work.
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Lemma 2.13. Let L Ď A˚ be a star-free language. Then MpLq is finite and aperiodic.

Proof. Since every star-free language is regular, MpLq is finite. For aperiodicity it suffices to
show that there is an n P N s.t. for all w, u, v P A˚:

uwnv P L ô uwn`1v P L,

i.e., wn «L w
n`1. Because then for all rws P MpLq “ A˚

{«L we have rwsn “ rwns “ rwn`1s “

rwsn`1 thus MpLq is aperiodic.

Let E be a star-free A-regular expression. We show by induction on E that there is npEq s.t.
for all w P A˚: wnpEq «L w

npEq`1. For E “ H let npHq “ 0, then uw0v R H and uw1v R H.
For E “ x P A, let npxq “ 2. Then uw2v “ x implies w “ ε and uv “ x which in turn implies
uw3v “ x and vice versa. For E “ ε, let npεq “ 1. Then uw1v “ ε iff u “ v “ w “ ε iff
uw2v “ ε.

If E “ E1 Y E2, let npEq “ maxtnpE1q, npE2qu. Then

uwnpEqv P LpEq

iff uwnpEqv P LpE1q or uwnpEqv P LpE2q

iff uwnpEq`1v P LpE1q or uwnpEq`1v P LpE2q

iff uwnpEq`1v P LpEq.

If E “ Ec
0, let npEq “ npE0q. Then uwnpEqv P LpEq iff uwnpEqv R LpE0q iff uwnpEq`1v R LpE0q

iff uwnpEq`1v P LpEq.

If E “ E1E2 let npEq “ npE1q ` npE2q ` 1. Let u, v, w P A˚, then we have

uwnpE1q`npE2q`1v P LpE1E2q

iff uwnpE1qv1 P LpE1q and v2 P LpE2q s.t. v1v2 “ wnpE2q`1v or

u1wnpE2qv P LpE2q and u2 P LpE1q s.t.u2u1 “ uwnpE1q`1

iff uwnpE1q`1v1 P LpE1q with v2 as above or

u1wnpE2q`1v P LpE2q with u2 as above

iff uwnpE1q`npE2q`2v P LpE1E2q.

2.3.2 Local divisors

Lemma 2.14. Let M be a monoid and k P M . Then Mk “ pkMXMk, ˝, kq with xk˝ky :“ xky
is a monoid and a divisor of M .

For example, if A “ ta, bu, then A˚
aba is the set of words that start and end with aba. In

particular, also aba, ababa P A˚
aba which shows that, in general, kM X Mk ‰ kMk. In A˚

aba we
have, e.g., abacbaba ˝ ababa “ abacbababa.

Proof. The operation is well-defined since x1k “ x2k and y1k “ y2k implies x1ky1 “ x1ky2 “

x2ky2. Furthermore, Mk is closed under ˝ since xky “ kx1y and xky “ xy1k. The operation is
associative since

pxk ˝ kyq ˝ kz “ xky ˝ kz “ xy1k ˝ kz “ xy1kz “ xkyz, and

xk ˝ pky ˝ kzq “ xk ˝ py1k ˝ kzq “ xk ˝ y1kz “ xk ˝ kyz “ xkyz.
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Also k is a unit element since k ˝ kx “ kx and kx ˝ k “ x1k ˝ k “ x1k “ kx.

Let M 1 “ tx P M | kx P Mku. Then M 1 is a submonoid of M , because if x P M with
kx P Mk and y P M with ky P Mk, then xy P M and kxy “ x1ky “ x1y1k P Mk. Moreover,
φ : M 1 Ñ Mk, x ÞÑ kx is a homomorphism because φp1q “ k and φpxqφpyq “ kx ˝ ky “

x1k ˝ ky “ x1ky “ kxy “ φpxyq. It remains to show that φ is surjective: let z P Mk, then there
are x, x1 P M s.t. z “ kx “ x1k. Now φpxq “ kx “ z, x P M and kx “ x1k P Mk hence x P M 1.
Therefore Mk is a divisor of M .

Mk is called local divisor of M at k.

Lemma 2.15. Let M be aperiodic and x1, . . . , xk P M . Then x1 ¨ ¨ ¨xk “ 1 iff xi “ 1 for all
i P t1, . . . , ku.

Proof. The right to left direction is trivial. For the left to right direction, assume xy “ 1. Then
1 “ xy “ xxyy “ . . . “ xnyn “ xn`1yn “ x ¨ 1 “ x. Analogously one can show that xy “ 1 also
implies y “ 1. The result then follows by induction.

Lemma 2.16. If M is a finite aperiodic monoid and k P Mzt1u, then Mk is aperiodic and
|Mk| ă |M |.

Proof. We first show pkxqi “ kxi for all i ě 0 in Mk by induction. The induction base i “ 0 is
trivial, for the induction step we have

pkxqi`1 “ kx ˝ pkxqi “IH kx ˝ kxi “ x1k ˝ kxi “ x1kxi “ kxi`1.

Therefore xn “ xn`1 in M implies pkxqn “ pkxqn`1 in Mk. Furthermore, 1 R kM X Mk, for
suppose 1 “ kx for some x P M , then by Lemma 2.15, k “ 1 which contradicts the assumption.
Therefore |Mk| ă |M |.

2.3.3 Schützenberger’s theorem

Before we prove the main lemma, we need one more simple result about star-free languages.

Lemma 2.17. Let A and B be alphabets, let X Ď A` and φ : X˚ Ñ B˚ be a homomorphism
s.t. 1. for all u P X: φpuq P B and 2. for all b P B: φ´1pbq P SFpAq. Let L P SFpBq, then
φ´1pLq P SFpAq.

This lemma is shown, essentially, by replacing in a star-free regular expression for L over B
each letter b P B by a star-free regular expression for φ´1pbq over A. The result is a star-free
regular expression for φ´1pLq over A.

Proof. We proceed by induction on the structure of a star-free regular expression which defines
L P SFpBq. If L “ H, then φ´1pHq “ H. If L “ tεu, then φ´1ptεuq “ tεu by assumption 1. on
φ. If L “ tbu for a b P B, then, by assumption 2. on φ, φ´1ptbuq P SFpAq.

If L “ L1 Y L2 for L1, L2 P SFpBq, then φ´1pLq “ φ´1pL1 Y L2q “ φ´1pL1q Y φ´1pL2q, and
thus φ´1pLq P SFpBq by induction hypothesis.

If L “ Lc
0 for L0 P SF pBq, then

φ´1pLq “ φ´1pLc
0q “ tw P A˚ | φpwq R L0u “ tw P A˚ | w R φ´1pL0qu “ A˚zφ´1pL0q “ φ´1pL0qc.

and thus φ´1pLq P SFpAq by induction hypothesis.
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If L “ L1L2 for L1, L2 P SFpBq, we claim that φ´1pL1L2q “ φ´1pL1qφ´1pL2q. For the right-to-
left direction, let w P φ´1pL1qφ´1pL2q, then w “ w1w2 with w1 P φ´1pL1q and w2 P φ´1pL2q,
i.e., φpw1q P L1 and φpw2q P L2, so φpw1w2q P L1L2, i.e., w “ w1w2 P φ´1pL1L2q. For the left-
to-right direction, let w P φ´1pL1L2q. We have w “ u1 ¨ ¨ ¨un P X, so φpwq “ φpu1q ¨ ¨ ¨φpunq P

L1L2 and thus, by assumption 1. on φ, there is a k P t0, . . . , nu s.t. φpu1q ¨ ¨ ¨φpukq P L1 and
φpuk`1q ¨ ¨ ¨φpunq P L2. Letting w1 “ u1 ¨ ¨ ¨uk and w2 “ uk`1 ¨ ¨ ¨un, we have w “ w1w2,
φpw1q P L1, and φpw2q P L2. Therefore w P φ´1pL1qφ´1pL2q. Thus, φ´1pLq “ φ´1pL1L2q “

φ´1pL1qφ´1pL2q P SFpAq by induction hypothesis.

The lexicographic order ă on N ˆ N is defined by:

pm1, n1q ă pm2, n2q iff m1 ă m2 or

m1 “ m2 and n1 ă n2

The following is the main lemma:

Lemma 2.18. Let A be an alphabet, M a finite aperiodic monoid and let φ : A˚ Ñ M be a
homomorphism. Then for all p P M we have φ´1ppq P SFpAq.

Proof. We proceed by induction on the lexicographic order on p|M |, |A|q. If A “ H, then
A˚ “ tεu and clearly every subset of tεu is a star-free language. For the case p “ 1 we claim
that φ´1p1q “ tx P A | φpxq “ 1u˚. To show this, let w “ x1 ¨ ¨ ¨xn with xi P A. For
the left-to-right direction assume w P φ´1p1q. Then φpwq “ φpx1q ¨ ¨ ¨φpxnq “ 1 and so, by
Lemma 2.15, φpxiq “ 1 for all i P t1, . . . , nu. For the right-to-left direction we immediately
obtain φpwq “ φpx1q ¨ ¨ ¨φpxnq “ 1. So by Lemma 2.12 we have φ´1p1q P SFpAq. This covers
both the case |M | “ 1 and φpxq “ 1 for all x P A.

So, for the induction step, let c P A with φpcq ‰ 1. Let B “ Aztcu and φc : B
˚ Ñ M be the

restriction of φ to B˚. We claim that

φ´1ppq “ φ´1
c ppq Y

ď

p“p1p2p3

φ´1
c pp1q

`

φ´1pp2q X cA˚ XA˚c
˘

φ´1
c pp3q

The right-to-left inclusion is straightforward since φ´1
c pqq Ď φ´1pqq and φ´1pp1qφ´1pp2qφ´1pp3q Ď

φ´1ppq if p “ p1p2p3. For the left-to-right inclusion, let w P φ´1ppq. If w does not contain c, then
w P φ´1

c ppq. If w contains c, then w “ w1w2w3 with w1, w3 P B˚ and w2 P cA˚ XA˚c. Therefore
φpwq “ φpw1qφpw2qφpw3q “ φcpw1qφpw2qφcpw3q and letting p1 “ φcpw1q, p2 “ φpw2q, and
p3 “ φcpw3q we have w P φ´1

c pp1qpφ´1pp2q X cA˚ XA˚cqφ´1
c pp3q.

Since p|M |, |B|q ă p|M |, |A|q we can apply the induction hypothesis to φc : B
˚ Ñ M to obtain

φ´1
c pqq P SFpBq and hence, by Lemma 2.12, φ´1

c pqq P SFpAq for q P tp, p1, p3u. Since SFpAq is
closed under union and concatenation, it suffices to show that

φ´1ppq X cA˚ XA˚c P SFpAq for all p P φpcqM XMφpcq.

The rest of this proof is devoted to doing this. Let T “ φcpB
˚q, then T is a submonoid of M .

We use T as alphabet and consider the free monoid T ˚. We also consider the submonoid pB˚cq˚

of A˚ and define
τ : pB˚cq˚ Ñ T ˚, v1c ¨ ¨ ¨ vkc ÞÑ φcpv1q ¨ ¨ ¨φcpvkq

for k ě 0 and vi P B˚. Note that τ is a homomorphism since

τpv1c ¨ ¨ ¨ vicqτpvi`1c ¨ ¨ ¨ vkcq “ φcpv1q ¨ ¨ ¨φcpviqφcpvi`1q ¨ ¨ ¨φcpvkq “ τpv1c ¨ ¨ ¨ vkcq
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pB˚cq˚ T ˚

Mφpcq Y t1u Mφpcq

τ

φ ψ

x ÞÑφpcqx

Figure 2.1: Lemma 2.18, induction step

Furthermore, define

ψ : T ˚ Ñ Mφpcq as the unique homomorphic extension of φcpvq ÞÑ φpcvcq.

This function is well-defined since φcpv1q “ φcpv2q implies φpv1q “ φpv2q and hence also
φpcv1cq “ φpcv2cq, see Figure 2.1. Let w “ v1c ¨ ¨ ¨ vkc for k ě 0 and vi P B˚. Then, in
Mφpcq, we have

ψpτpwqq “ ψpφcpv1q ¨ ¨ ¨φcpvkqq

“ φpcv1cq ˝ ¨ ¨ ¨ ˝ φpcvkcq

“ φpcqφpv1qφpcq ˝ ¨ ¨ ¨ ˝ φpcqφpvkqφpcq

“ φpcqφpv1q ¨ ¨ ¨φpcqφpvkqφpcq

“ φpcwq.

Therefore cw P φ´1ppq iff w P τ´1pψ´1ppqq for all p P Mφpcq, so the diagram in Figure 2.1
commutes. This shows φ´1ppq X cA˚ XA˚c “ c ¨ τ´1pψ´1ppqq for all p P φpcqM XMφpcq.

So it suffices to show τ´1pψ´1ppqq P SFpAq for all p P Mφpcq. By Lemma 2.16, the monoid Mφpcq

is aperiodic and |Mφpcq| ă |M | so we can apply the induction hypothesis to ψ : T ˚ Ñ Mφpcq to
obtain ψ´1ppq P SFpT q. Now, observe that τpwq P T for all w P B˚c and that, for t P T ,

τ´1ptq “ tv1c ¨ ¨ ¨ vkc P pB˚cq˚ | φcpv1q ¨ ¨ ¨φcpvkq “ tu “ tv1c P B˚c | φcpv1q “ tu “ φ´1
c ptqc.

By induction hypothesis applied to φc we have φ´1
c ptq P SFpBq Ď SFpAq and thus τ´1ptq P

SFpAq. Therefore Lemma 2.17 can be applied to yield τ´1pψ´1ppqq P SFpAq.

Theorem 2.6 (Schützenberger). Let L Ď A˚. Then the following are equivalent:

1. L is star-free.

2. MpLq is a finite aperiodic monoid.

3. L is recognised by a finite aperiodic monoid.

Proof. 1. ñ 2. is Lemma 2.13. 2. ñ 3. follows from MpLq recognising L. For 3. ñ 1. assume
that M recognises L, i.e., that there is a homomorphism φ : A˚ Ñ M and a P Ď M s.t.
φ´1pP q “ L. Then L “

Ť

pPP φ
´1ppq and hence, by Lemma 2.18, L is star-free.

Corollary 2.2. There is an algorithm which, given a regular language L as input, e.g., as a
DFA, determines whether L is star-free.

Proof. The algorithm first computes the minimal automaton DpLq from L and then the transi-
tion monoidMpDpLqq from DpLq. SinceMpLq » MpDpLqq, checkingMpDpLqq for aperiodicity
yields the required result. Aperiodicity of a finite monoid is decidable.

48



To this day it is unknown whether there exists a regular language of star height 2 or higher.
This is known as the (generalised) star height problem.

2.4 The variety theorem

Schützenberger’s theorem is a characterisation of a class of languages by the class of monoids
which recognise them. There are more abstract algebraic reasons for the possibility of such a
characterisation: in this section we will consider varieties of (finite) monoids and varieties of
regular languages and show that “being recognised by” is a one-to-one correspondence between
these (Eilenberg’s variety theorem). Thus one can build a dictionary of monoid properties and
classes of regular languages and translate back and forth between them. Schützenberger’s result
in this frame shows that the star-free languages correspond to aperiodic monoids. There are
many other such correspondences. We will, for example, characterise the languages recognised
by finite commutative groups in the exercises.

Definition 2.22. A classM of finite monoids is a variety ifM satisfies the following conditions:

1. If M P M and N is a submonoid of M , then N P M.

2. If M P M and N is a quotient of M , then N P M.

3. If M1, . . . ,Mn P M, then
śn
i“1Mi P M.

It is straightforward to show that, in the above definition, conditions 1. and 2. can be replaced
by the following condition

4. If M P M and N ď M , then N P M.

Example 2.17. The finite aperiodic monoids form a variety: if M is aperiodic and N is a
submonoid of M , then N is also aperiodic. If M is aperiodic and φ :M Ñ N is surjective, then
N is aperiodic, since, for every y P N there is an x P M s.t. φpxq “ y and thus yn “ φpxqn “

φpxnq and thus xk`1 “ xk implies yk`1 “ yk. If M1, . . . ,Mn are aperiodic, then
śn
i“1Mi is

aperiodic too.

Note that we are considering only finite monoids in the above definition. Therefore, and in
contrast to the notion of variety considered in Birkhoff’s theorem in universal algebra, we only
demand closure under finite products. As in the case of Birkhoff’s theorem, varieties in our
sense also permit a characterisation in terms of (a certain kind of) equations but we will not go
into this topic here.

Definition 2.23. A class of regular languages is a function L which maps each alphabet A to
a set LA of regular languages.

Definition 2.24. A variety of regular languages is a class L of regular languages which satisfies
the following conditions for all alphabets A and B:

1. LA is a closed under finite union, finite intersection and complement.

2. For every L P LA and every x P A: x´1L P LA and Lx´1 “ tw P A˚ | wx P Lu P LA.

3. For every L P LA and every homomorphism φ : B˚ Ñ A˚: φ´1pLq P LB.
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From now on we simply speak about a “variety of languages” instead of the longer “variety of
regular languages” and a “variety of monoids” instead of the longer “variety of finite monoids”.

Definition 2.25. For a variety of monoids M and an alphabet A we define

ΦpMqA “ tL Ď A˚ | MpLq P Mu

We have thus defined a mapping Φ from the varieties of monoids to classes of regular languages.
The main result of this section is:

Theorem 2.7 (Eilenberg). Φ is a bijection between the varieties of monoids and the varieties
of languages.

Before we start to prove this result we make some preliminary observations.

Example 2.18. Let AP be the variety of aperiodic monoids, then, by Schützenberger’s theorem,
ΦpAPq is the class of star-free languages, i.e., for every alphabet A, ΦpAPqA is the set of
star-free languages over A.

Lemma 2.19. Let M be a variety of monoids and let A be an alphabet. Then

ΦpMqA “ tL Ď A˚ | there is a monoid M P M which recognises Lu.

Proof. If L P ΦpMqA then MpLq P M and, by Corollary 2.1, MpLq recognises L. On the other
hand, if there is anM P M which recognises L, then, by Theorem 2.5,MpLq ď M and therefore
MpLq P M by the closure properties of a variety. Hence L P ΦpMqA.

Lemma 2.20. Let M be a variety of monoids, then ΦpMq is a variety of languages.

Proof. Fix an alphabet A. Let L1, L2 P ΦpMqA, let η1 : A˚ Ñ MpL1q and η2 : A˚ Ñ MpL2q

be the syntactic homomorphisms of L1 and L2, then L1 “ η´1
1 pη1pL1qq and L2 “ η´1

2 pη2pL2qq.
Define M “ MpL1q ˆMpL2q and let η : A˚ Ñ M,w ÞÑ pη1pwq, η2pwqq. Then

L1 X L2 “ η´1pη1pL1q ˆ η2pL2qq.

Let L P ΦpMqA, let η : A˚ Ñ MpLq be the syntactic homomorphism, then η´1pηpLqq “ L.
Then η´1pMpLqzηpLqq “ A˚zL so MpLq P M recognises A˚zL. Let x P A and define P “ tm P

MpLq | ηpxqm P ηpLqu. Then

η´1pP q “ tw P A˚ | ηpwq P P u “ tw P A˚ | ηpxqηpwq P ηpLqu “

“ tw P A˚ | ηpxwq P ηpLqu “ tw P A˚ | xw P Lu “ x´1L,

soMpLq recognises x´1L. The proof for Lx´1 is analogous. Let B be an alphabet and φ : B˚ Ñ

A˚ be a homomorphism. Then ψ “ η ˝ φ : B˚ Ñ MpLq and ψ´1pηpLqq “ φ´1pη´1pηpLqqq “

φ´1pLq, so MpLq recognises φ´1pLq.

The above lemma shows that Φ, as a mapping from the varieties of monoids to the varieties of
languages is well-defined. Before proving injectivity of Φ, we need some lemmas.

Lemma 2.21. Let M be a monoid, let «1 and «2 be congruences on M s.t. «1 is a refinement
of «2. Then M{«2 is a quotient of M{«1.

Proof. The homomorphism φ : M{«1 Ñ M{«2, rms«1 ÞÑ rms«2 is surjective.

50



Lemma 2.22. Let M be a monoid and p«iqiPI be a family of congruences on M . Define m « n
by m «i n for all i P I. Then M{« is isomorphic to a submonoid of

ś

iPI
M{«i.

Proof. For i P I let πi : M Ñ M{«i,m ÞÑ rms«i . Moreover, let π : M Ñ
ś

iPI
M{«i,m ÞÑ

pπipmqqiPI . Then m « n iff m «π n. Therefore M{« “ M{«π » πpMq which is a submonoid of
ś

iPI
M{«i.

Lemma 2.23. Let M be a variety of monoids and let M P M. Then there is an alphabet A
and languages L1, . . . , Ln P ΦpMqA s.t. M ď

śn
i“1MpLiq.

Proof. Let A “ M and φ : M˚ Ñ M be the homomorphism induced by the identity mapping.
For m P M the language Lm “ φ´1pmq is recognised by M and thus Lm P ΦpMqM . Let
n “ |M | and L1, . . . , Ln be the languages Lm for m P M .

For v, w P M˚ define v « w by v «Lm w for all m P M . Then « is a congruence relation. If
v « w, then v «Lφpvq

w so εvε P Lφpvq iff εwε P Lφpvq. Since v P Lφpvq “ φ´1pφpvqq, v « w

implies w P Lφpvq “ φ´1pφpvqq, i.e., φpvq “ φpwq, i.e., v «φ w.

Now φpM˚q “ M » M˚
{«φ. Since « is a refinement of «φ, M

˚
{«φ is a quotient of M˚

{« by
Lemma 2.21. Moreover, by Lemma 2.22, A˚

{« is isomorphic to a submonoid of
ś

mPM
M˚

{«Lm

which is, by definition,
ś

mPM MpLmq. Thus we have obtained M ď
śn
i“1MpLnq.

Lemma 2.24. Let M and N be varieties of finite monoids. Then M Ď N iff, for every alphabet
A, ΦpMqA Ď ΦpN qA. In particular, M “ N iff, for every alphabet A, ΦpMqA “ ΦpN qA.

Proof. If M Ď N then ΦpMqA Ď ΦpN qA by definition. For the other direction, suppose that
ΦpMqA Ď ΦpN qA for every alphabet A and let M P M. Then, by Lemma 2.23, there is
an alphabet A and languages L1, . . . , Ln P ΦpMqA Ď ΦpN qA s.t. M ď

śn
i“1MpLiq. Then

MpL1q, . . . ,MpLnq P N and thus M P N .

This shows injectivity of Φ. We now turn to showing surjectivity of Φ.

Lemma 2.25. Let L be a variety of languages, let A be an alphabet, let L P LA and let
η : A˚ Ñ MpLq, w ÞÑ rws«L. Then, for every m P MpLq we have η´1pmq P LA.

Proof. For w P A˚ define

Cpwq “ tpu, vq P A˚ ˆA˚ | uwv P Lu “ tpu, vq P A˚ ˆA˚ | w P u´1Lv´1u.

Then we have

w «L w
1 iff @u, v P A˚ : puwv P L ô uw1v P Lq iff Cpwq “ Cpw1q.

Therefore

rws«L “
č

pu,vqPCpwq

u´1Lv´1 X
č

pu,vqRCpwq

pu´1Lv´1qc.

Since L P LA also u´1Lv´1 P LA. Since L is recognisable, «L has finite index, so there are
only finitely many sets of the form u´1Lv´1 for u, v P A˚. Since LA is closed under Boolean
operations we have rws«L P LA.
Let m P MpLq and w P A˚ with ηpwq “ m, then η´1pmq “ η´1pηpwqq “ rws«L P LA.

Lemma 2.26. For every variety of languages L there is a variety of monoids M s.t. ΦpMq “ L.
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Proof. Let L be a variety of languages. Let M be the variety of monoids generated by tMpLq |

L P LA, A alphabetu. We will show that ΦpMqA “ LA for all alphabets A. If L P LA, then
MpLq P M and thus L P ΦpMqA by definition.

For the other direction let L P ΦpMqA, thenMpLq P M, so, by Lemma 2.23, there is an alphabet
B and languages L1, . . . , Ln P ΦpMqB s.t. MpLq ď

śn
i“1MpLiq “: M . By Theorem 2.5 the

monoidM recognises L, i.e., there is a homorphism φ : A˚ Ñ M and a P Ď M s.t. L “ φ´1pP q.
Let πi : M Ñ MpLiq, pm1, . . . ,mnq ÞÑ mi and let φi “ φ ˝ πi. Let ηi : B

˚ Ñ MpLiq be the
syntactic homomorphism of Li. Since ηi is surjective, there is a homomorphism ψi : A

˚ Ñ B˚

s.t. φi “ ψi ˝ ηi. Therefore the following diagram commutes:

A˚ B˚

M MpLiq

ψi

φ
φi ηi

πi

We want to show that L P LA. We have L “
Ť

mPP φ
´1pmq and, since LA is closed under union,

it suffices to show φ´1pmq P LA for all m P M .

Let m “ pm1, . . . ,mnq, then

w P φ´1pmq “ φ´1ppm1, . . . ,mnqq ô @i P t1, . . . , nuw P φ´1
i pmiq ô w P

n
č

i“1

φ´1
i pmiq

so φ´1pmq “
Şn
i“1 φ

´1
i pmiq and, since LA is closed under intersection, it suffices to show

φ´1
i pmq P LA for all mi P MpLiq.

We have φ´1
i pmiq “ ψ´1

i pη´1
i pmiqq and, since ψi : A

˚ Ñ B˚ and L is closed under inverse homo-
morphism, it suffices to show that η´1

i pmiq P LB. This follows immediately from Lemma 2.25.

Proof of Theorem 2.7. Φ is well-defined by Lemma 2.20, injective by Lemma 2.24, and surjective
by Lemma 2.26.

Example 2.19. Let CG be the class of finite commutative groups. It is easy to verify that CG is
a variety of monoids. So ΦpCGq is a variety of languages. For an alphabet A, x P A, m ě 1,
and 0 ď k ă m define

Lpx, k,mq “ tw P A˚ | nxpwq ” k pmod mqu.

One can show that the variety of languages ΦpCGqA is obtained from taking all Boolean combi-
nations of all languages of the form Lpx, k,mq.
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Chapter 3

Further topics

3.1 Automatic sequences

3.1.1 DFAs with output

Definition 3.1. A deterministic finite automaton with output (DFAO) is a tupleD “ xQ,Σ, ¨, q0,∆, τy

where Q,Σ, ¨, q0 is defined as for a DFA, ∆ is the finite output alphabet and τ : Q Ñ ∆ is the
output function.

For a DFAO D “ xQ,Σ, ¨, q0,∆, τy and x P ∆ we define LxpDq “ tw P Σ˚ | τpq0 ¨ wq “ xu.

Example 3.1. Consider the following automaton:

q2

b

��

a

��
q3b
**

a
��

q1 b
tt

a

__

// q0

b

JJ

a

??

We have q0 ¨ w “ qi iff napwq ” i pmod 4q. Let ∆ “ te, 1, 3u and τpq0q “ τpq2q “ e, τpq1q “ 1,
and τpq3q “ 3. Then, given a w P ta, bu˚, this DFAO determines whether the number of a’s in
w is even, congruent 1 modulo 4 or congruent 3 modulo 4.

Every DFA can be considered a DFAO with ∆ “ tY,Nu and τ : Q Ñ ∆ defined as

τpqq “

#

Y if q is a final state

N otherwise

Then LpDq “ tw P Σ˚ | τpq0 ¨ wq “ Y u. A DFA hence corresponds to a partition of Σ˚ into
two regular languages: LpDq and LpDqc. In general, a DFAO D “ xQ,Σ, ¨, q0,∆, τy induces the
partition Σ˚ “

Ţ

xP∆ LxpDq. A finite partition L1 Z ¨ ¨ ¨ Z Ln “ Σ˚ is called regular if all Li are
regular languages.
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Theorem 3.1. A finite partition of Σ˚ is regular iff it is induced by a DFAO.

Proof. For the right-to-left direction, fix x P ∆ and consider the DFA D “ xQ,Σ, ¨, q0, Fxy with
Fx “ tq P Q | τpqq “ xu. Then LpDq “ tw P Σ˚ | q0 ¨ w P Fxu “ tw P Σ˚ | τpq0 ¨ wq “ xu.
Therefore each of the classes and hence the partition is regular.

For the left-to-right direction let L1 Z ¨ ¨ ¨ Z Ln “ Σ˚ be a regular partition. Then for all
i P t1, . . . , nu there is a DFA Di “ xQi,Σ, ¨, qi,0, Fiy with LpDiq “ Li. W.l.o.g. we assume
the Qi to be disjoint. Let Q “ Q1 ˆ ¨ ¨ ¨ ˆ Qn, let q0 “ pq1,0, . . . , qn,0q and for x P Σ and
pq1, . . . , qnq P Q define

pq1, . . . , qnq ¨ x “ pq1 ¨ x, . . . , qn ¨ xq.

Let Q1 “ tq P Q | Dw P Σ˚ s.t. q0 ¨ w “ qu. Now we claim that for every pq1, . . . , qnq P Q1 there
is exactly one i s.t. qi P Fi. There is at least one because pq1, . . . , qnq is reachable by a w P Σ˚

and w must be in one of the Li. On the other hand w can also be in at most one of the Li since
the Li are disjoint. Let ∆ “ t1, . . . , nu and define τ : Q1 Ñ ∆ by letting τppq1, . . . , qnqq be this
unique i. We define the DFAO D “ xQ1,Σ, ¨, q0,∆, τy. Then for all i P t1, . . . , nu we have

LipDq “ tw P Σ˚ | τpq0¨wq “ iu “ tw P Σ˚ | pq0¨wqi P Fiu “ tw P Σ˚ | qi,0¨w P Fiu “ LpDiq “ Li.

3.1.2 k-automatic sequences

First we need to fix some notation about the base-k representation of natural numbers. It is
well known that, for fixed k ě 2, every n P N can be written as

n “

r
ÿ

i“0

aik
i with 0 ď ai ă k.

Defining Σk “ t0, . . . , k ´ 1u we can consider ar ¨ ¨ ¨ a0 as a word in Σ˚
k. For w “ ar ¨ ¨ ¨ a0 P Σ˚

k

we write rwsk for the natural number n defined as above. Note that the base k representation is
not unique due to the possibility of adding leading zeros, i.e., the function r¨sk is not injective.
However, each n permits a unique representation without leading zeros, i.e., for every n P N
there is exactly one representation of the form

n “

r
ÿ

i“0

aik
i with 0 ď ai ă k and ar ‰ 0.

For n P N we write pnqk for the unique word w “ ar ¨ ¨ ¨ a0 P Σk with rwsk “ n and ar ‰ 0. Note
that n “ 0 is represented by the empty word ε P Σ˚

k since the empty sum is 0. Hence p0qk “ ε.

We will consider infinite words, i.e., infinite sequences over a (finite) alphabet:

Definition 3.2. For an alphabet Σ, define Σω “ tpanqně0 | an P Σu.

Definition 3.3. A sequence panqně0 P ∆ω is called k-automatic if there is a DFAO D “

xQ,Σk, ¨, q0,∆, τy s.t. an “ τpq0 ¨ wq for all n ě 0 and w with rwsk “ n.

Example 3.2. The Thue-Morse sequence ptnqně0 is defined by letting tn be the number of 1’s
modulo 2 in the binary representation of n. Its first few elements are:

n “ 0 1 2 3 4 5 6 7 8 9 10 ¨ ¨ ¨

tn “ 0 1 1 0 1 0 0 1 1 0 0 ¨ ¨ ¨
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The Thue-Morse sequence is 2-automatic since it is generated by the following DFAO:

// q0{0

0
�� 1

))
q1{1

0
��

1

ii

where the notation q{i represents τpqq “ i. The Thue-Morse sequence is one of the most famous
automatic sequences and has numerous interesting properties. For example, it is overlap-free
(i.e. it does not contain a subword of the form xwxwx for x P t0, 1u, w P t0, 1u˚) which can be
used for constructing a square-free word over t0, 1, 2u.

Example 3.3. Define e2;11pnq as the number of (possibly overlapping) occurrences of the word
11 in the binary representation of n. For example, the word 1101110 contains three occurrences
of the word 11. Then the Rudin-Shapiro sequence prnqně0 is defined as rn “ p´1qe2;11pnq. The
Rudin-Shapiro sequence is 2-automatic since it is generated by the following DFAO:

// q00

0
�� 1

))
q01

0

ii

1
))
q11

1

ii

0
))
q10

0
��

1

ii

with τpqji q “ p´1qj . Here the subscript denotes the last letter seen and the superscript denotes
the number of occurrences of 11 modulo 2. As one can easily verify, the transitions preserve
these properties. An interesting property of rn is that it defines a space-filling lattice walk. Let

dn`1 “

#

R if rn`1rn “ p´1qn

L if rn`1rn “ p´1qn`1

The first few elements of prnqně0 and pdnqně0 are:

n “ 0 1 2 3 4 5 6 7 8 9 10 ¨ ¨ ¨

rn “ 1 1 1 ´1 1 1 ´1 1 1 1 1 ¨ ¨ ¨

dn`1 “ R L L R R R L L R L ¨ ¨ ¨

Define a walk in Z ˆ Z by starting at p0, 0q making a first step to p0, 1q and then turning left
or right according to the value of dn. The result is a walk that contains all points in the first
quadrant which are above (or on) the diagonal.

A k-automatic sequence corresponds to a partition of Σ˚
k in the following sense:

Proposition 3.1. A sequence panqně0 P ∆ω is k-automatic iff
Ţ

dP∆tw P Σ˚
k | arwsk

“ du is a
regular partition of Σ˚

k.

Proof. panqně0 is k-automatic iff there is a DFAO D “ xQ,Σk, ¨, q0,∆, τy s.t. an “ τpq0 ¨wq for
all w P Σ˚

k with rwsk “ n. In other words we require that LdpDq “ tw P Σ˚
k | arwsk

“ du. Then
Theorem 3.1 entails that panqně0 is k-automatic iff

Ţ

dP∆ “ tw P Σ˚
k | arwsk

“ du is a regular
partition of Σ˚

k.

For defining the notion of k-automatic sequence, it suffices to consider number representations
without leading zeros.

Lemma 3.1. Let panqně0 P ∆ω and let D “ xQ,Σk, ¨, q0,∆, τy s.t. an “ τpq0 ¨ pnqkq for all
n ě 0, then there is a DFAO D1 “ xQ1,Σk, ¨, q

1
0,∆, τ

1y s.t. an “ τpq1
0 ¨ wq for all w P Σ˚

k with
rwsk “ n and all n ě 0. Moreover, we have q1

0 ¨ 0 “ q1
0.
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Proof. Let q1
0 be a new state and define Q1 “ QY tq1

0u and q1
0 ¨ 0 “ q1

0 and q1
0 ¨ x “ q0 ¨ x for all

x P Σkzt0u. The output function τ 1 is defined by τ 1|Q “ τ and τ 1pq1
0q “ τpq0q.

Then we claim that τ 1pq1
0 ¨ 0ipnqkq “ an for all i ě 0. First note that we have τ 1pq1

0 ¨ 0ipnqkq “

τ 1pq1
0 ¨ pnqkq because q1

0 ¨ 0 “ q1
0. If n “ 0, then τ 1pq1

0 ¨ pnqkq “ τ 1pq1
0q “ τpq0q “ a0. If n ‰ 0, then

pnqk starts with an x P Σkzt0u and hence τ 1pq1
0 ¨ pnqkq “ τ 1pq0 ¨ pnqkq “ τpq0 ¨ pnqkq “ an.

Proposition 3.2. A sequence panqně0 is k-automatic iff there is a DFAO D “ xQ,Σk, ¨, q0,∆, τy

s.t. an “ τpq0 ¨ pnqkq for all n ě 0.

Proof. The left-to-right direction is trivial. The right-to-left direction follows from Lemma 3.1.

3.1.3 Morphic sequences

A homomorphism φ : Σ˚ Ñ ∆˚ can be extended to φ : Σω Ñ ∆ω by defining

φpa0a1a2 ¨ ¨ ¨ q “ φpa0qφpa1qφpa2q ¨ ¨ ¨ .

Note that, since φpvwq “ φpvqφpwq every way of splitting panqně0 into finite words will lead
to the same value for φppanqně0q. A sequence s P Σω is called fixed point of a homomorphism
φ : Σ˚ Ñ Σ˚ if φpsq “ s. Let φ : Σ˚ Ñ Σ˚ be a homomorphism. If there is an x P Σ s.t.
φpxq “ xw for some w P Σk´1, then φ is called prolongable on x.

Example 3.4. Define φ : Σ˚
2 Ñ Σ˚

2 by φp0q “ 01 and φp1q “ 10. Then φ is prolongable on both
0 and 1. We have

φp0q “ 01

φ2p0q “ φp01q “ 0110

φ3p0q “ φp0110q “ 01101001

φ4p0q “ φp01101001q “ 0110100110010110

...

Note that the positions already computed do not change. As we will see now this can be
generalised to yield a mechanism for defining an infinite sequence.

Proposition 3.3. Let φ : Σ˚ Ñ Σ˚ be a homomorphism which is prolongable on a P Σ, i.e.,
φpaq “ aw. Then φωpaq “ awφpwqφ2pwq ¨ ¨ ¨ is the unique fixed point of φ in Σω that starts
with a.

Proof. First observe that φωpaq is indeed a fixed point of φ since

φpφωpaqq “ φpawφpwqφ2pwq ¨ ¨ ¨ q “ φpaqφpwqφ2pwqφ3pwq ¨ ¨ ¨ “ awφpwqφ2pwq ¨ ¨ ¨ “ φωpaq.

Furthermore, assume that s P Σω is a fixed point of φ which starts with a. We claim that s
must start with aφ0pwqφ1pwq ¨ ¨ ¨φlpwq for all l ě ´1. Since this determines all finite prefixes
of s it uniquely determines s “ φωpaq. We proceed by induction on l. The case l “ ´1 follows
immediately from the assumption that s starts with a. For the induction step, assume that s
starts with aφ0pwqφ1pwq ¨ ¨ ¨φlpwq for some l ě ´1, then

s “ φpsq “ φpaφ0pwqφ1pwq ¨ ¨ ¨φlpwqtq

“ φpaqφpwqφ2pwq ¨ ¨ ¨φl`1pwqφptq

“ aφ0pwqφpwq ¨ ¨ ¨φl`1pwqφptq.
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In the other direction, note that, if psnqně0 is a fixed point of a homomorphism φ, then φ must
be prolongable on s0 since φps0s1s2 ¨ ¨ ¨ q “ φps0qφps1s2 ¨ ¨ ¨ q “ s0s1s2 ¨ ¨ ¨ .

Definition 3.4. A homomorphism φ : Σ˚ Ñ ∆˚ is called k-uniform if |φpxq| “ k for all x P Σ.
A 1-uniform homomorphism is also called a coding.

If φ : Σ˚ Ñ Σ˚ is a k-uniform homomorphism and a P Σ s.t. φ is prolongable on a, then φωpaq

is called pure morphic sequence. If, in addition, τ is a coding, then τpφωpaqq is called morphic
sequence.

Lemma 3.2. Let s “ psnqně0 be fixed point of a k-uniform homomorphism φ. Then φpsnq “

sknskn`1 ¨ ¨ ¨ skn`k´1 for all n ě 0.

Proof. Since φ is k-uniform, we have |φps0 ¨ ¨ ¨ siq| “ kpi ` 1q and since φpsq “ s, we have
φps0 ¨ ¨ ¨ siq “ s0 ¨ ¨ ¨ ski`k´1. Now we have

φps0 ¨ ¨ ¨ snq “ s0 ¨ ¨ ¨ skn`k´1,

φps0 ¨ ¨ ¨ sn´1q “ s0 ¨ ¨ ¨ skn´1, and

φps0 ¨ ¨ ¨ snq “ φps0 ¨ ¨ ¨ sn´1qφpsnq

and therefore φpsnq “ skn ¨ ¨ ¨ skn`k´1.

Theorem 3.2. A sequence is k-automatic iff it is morphic sequence of a k-uniform homomor-
phism.

Proof. For the left-to-right direction, assume that panqně0 is k-automatic. Then there is a DFAO
D “ xQ,Σk, ¨, q0,∆, τy s.t. an “ τpq0 ¨ pnqkq. By Lemma 3.1 we can assume that q0 ¨ 0 “ q0. We
consider Q as alphabet and define a homomorphism φ : Q˚ Ñ Q˚ by

φpqq “ pq ¨ 0qpq ¨ 1q ¨ ¨ ¨ pq ¨ pk ´ 1qq for each q P Q.

Now φ is k-uniform and prolongable on q0, so by Proposition 3.3 we know that psnqně0 “ φωpq0q

is a fixed point of φ. We claim that srwsk
“ q0 ¨ w for all w P Σ˚

k. We proceed by induction on
|w|: if w “ ε, then q0 ¨ w “ q0 “ srεsk

“ q0 since s starts with q0. For the induction step, let
w “ vx with x P Σk. Then

q0 ¨ w “ q0 ¨ vx “IH srvsk
¨ x “Def. φ φpsrvsk

qx “Lem. 3.2 skrvsk`x “ srvxsk
“ srwsk

.

Therefore sn “ q0 ¨ pnqk and hence τpsnq “ τpq0 ¨ pnqkq “ an.

For the right-to-left direction, let φ : Q˚ Ñ Q˚ be a k-uniform homomorphism, let s P Qω with
s “ φpsq, τ : Q Ñ ∆ be a coding and let a “ τpsq, i.e., an “ τpsnq for all n ě 0. Define the
DFAO xQ,Σk, ¨, s0,∆, τy where q ¨ i is the i-th letter of φpqq. We claim that s0 ¨ pnqk “ sn for all
n ě 0. We proceed by induction on n: if n “ 0, then s0 ¨ pnqk “ s0 ¨ ε “ s0. For the induction
step, let n “ kn1 ` d with 0 ď d ă k. Then

s0 ¨ pnqk “ ps0 ¨ pn1qkq ¨ d “IH sn1 ¨ d “Def. D φpsn1qd “Lem. 3.2 skn1`d “ sn.

Therefore an “ τpsnq “ τps0 ¨ pnqkq.
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